source: branches/asap4casa3.1.0/python/scantable.py@ 1941

Last change on this file since 1941 was 1936, checked in by Takeshi Nakazato, 14 years ago

New Development: No

JIRA Issue: No

Ready for Test: Yes

Interface Changes: No

What Interface Changed: Please list interface changes

Test Programs: List test programs

Put in Release Notes: Yes/No

Module(s): Module Names change impacts.

Description: Describe your changes here...

Just restored previous bug fixes that were lost for some reason.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 92.3 KB
RevLine 
[1846]1"""This module defines the scantable class."""
2
[1697]3import os
[1691]4try:
5 from functools import wraps as wraps_dec
6except ImportError:
7 from asap.compatibility import wraps as wraps_dec
8
[1824]9from asap.env import is_casapy
[876]10from asap._asap import Scantable
[1843]11from asap._asap import filler
[1824]12from asap.parameters import rcParams
[1862]13from asap.logging import asaplog, asaplog_post_dec
[1824]14from asap.selector import selector
15from asap.linecatalog import linecatalog
[1600]16from asap.coordinate import coordinate
[1859]17from asap.utils import _n_bools, mask_not, mask_and, mask_or, page
[1907]18from asap.asapfitter import fitter
[102]19
[1689]20
21def preserve_selection(func):
[1691]22 @wraps_dec(func)
[1689]23 def wrap(obj, *args, **kw):
24 basesel = obj.get_selection()
[1857]25 try:
26 val = func(obj, *args, **kw)
27 finally:
28 obj.set_selection(basesel)
[1689]29 return val
30 return wrap
31
[1846]32def is_scantable(filename):
33 """Is the given file a scantable?
[1689]34
[1846]35 Parameters:
36
37 filename: the name of the file/directory to test
38
39 """
[1883]40 if ( os.path.isdir(filename)
41 and os.path.exists(filename+'/table.info')
42 and os.path.exists(filename+'/table.dat') ):
43 f=open(filename+'/table.info')
44 l=f.readline()
45 f.close()
46 #if ( l.find('Scantable') != -1 ):
47 if ( l.find('Measurement Set') == -1 ):
48 return True
49 else:
50 return False
51 else:
52 return False
53## return (os.path.isdir(filename)
54## and not os.path.exists(filename+'/table.f1')
55## and os.path.exists(filename+'/table.info'))
[1697]56
[1883]57def is_ms(filename):
58 """Is the given file a MeasurementSet?
[1697]59
[1883]60 Parameters:
61
62 filename: the name of the file/directory to test
63
64 """
65 if ( os.path.isdir(filename)
66 and os.path.exists(filename+'/table.info')
67 and os.path.exists(filename+'/table.dat') ):
68 f=open(filename+'/table.info')
69 l=f.readline()
70 f.close()
71 if ( l.find('Measurement Set') != -1 ):
72 return True
73 else:
74 return False
75 else:
76 return False
77
[876]78class scantable(Scantable):
[1846]79 """\
80 The ASAP container for scans (single-dish data).
[102]81 """
[1819]82
[1862]83 @asaplog_post_dec
[1916]84 #def __init__(self, filename, average=None, unit=None, getpt=None,
85 # antenna=None, parallactify=None):
86 def __init__(self, filename, average=None, unit=None, parallactify=None, **args):
[1846]87 """\
[102]88 Create a scantable from a saved one or make a reference
[1846]89
[102]90 Parameters:
[1846]91
92 filename: the name of an asap table on disk
93 or
94 the name of a rpfits/sdfits/ms file
95 (integrations within scans are auto averaged
96 and the whole file is read) or
97 [advanced] a reference to an existing scantable
98
99 average: average all integrations withinb a scan on read.
100 The default (True) is taken from .asaprc.
101
[484]102 unit: brightness unit; must be consistent with K or Jy.
[1846]103 Over-rides the default selected by the filler
104 (input rpfits/sdfits/ms) or replaces the value
105 in existing scantables
106
107 getpt: for MeasurementSet input data only:
108 If True, all pointing data are filled.
109 The deafult is False, which makes time to load
110 the MS data faster in some cases.
111
[1920]112 antenna: for MeasurementSet input data only:
113 Antenna selection. integer (id) or string (name or id).
[1846]114
115 parallactify: Indicate that the data had been parallatified. Default
116 is taken from rc file.
117
[710]118 """
[976]119 if average is None:
[710]120 average = rcParams['scantable.autoaverage']
[1916]121 #if getpt is None:
122 # getpt = True
123 #if antenna is not None:
124 # asaplog.push("Antenna selection currently unsupported."
125 # "Using ''")
126 # asaplog.post('WARN')
127 #if antenna is None:
128 # antenna = ''
129 #elif type(antenna) == int:
130 # antenna = '%s' % antenna
131 #elif type(antenna) == list:
132 # tmpstr = ''
133 # for i in range( len(antenna) ):
134 # if type(antenna[i]) == int:
135 # tmpstr = tmpstr + ('%s,'%(antenna[i]))
136 # elif type(antenna[i]) == str:
137 # tmpstr=tmpstr+antenna[i]+','
138 # else:
139 # raise TypeError('Bad antenna selection.')
140 # antenna = tmpstr.rstrip(',')
[1593]141 parallactify = parallactify or rcParams['scantable.parallactify']
[1259]142 varlist = vars()
[876]143 from asap._asap import stmath
[1819]144 self._math = stmath( rcParams['insitu'] )
[876]145 if isinstance(filename, Scantable):
146 Scantable.__init__(self, filename)
[181]147 else:
[1697]148 if isinstance(filename, str):
[976]149 filename = os.path.expandvars(filename)
150 filename = os.path.expanduser(filename)
151 if not os.path.exists(filename):
152 s = "File '%s' not found." % (filename)
153 raise IOError(s)
[1697]154 if is_scantable(filename):
155 ondisk = rcParams['scantable.storage'] == 'disk'
156 Scantable.__init__(self, filename, ondisk)
157 if unit is not None:
158 self.set_fluxunit(unit)
[1819]159 # do not reset to the default freqframe
160 #self.set_freqframe(rcParams['scantable.freqframe'])
[1883]161 #elif os.path.isdir(filename) \
162 # and not os.path.exists(filename+'/table.f1'):
163 elif is_ms(filename):
[1916]164 # Measurement Set
165 opts={'ms': {}}
166 mskeys=['getpt','antenna']
167 for key in mskeys:
168 if key in args.keys():
169 opts['ms'][key] = args[key]
170 #self._fill([filename], unit, average, getpt, antenna)
171 self._fill([filename], unit, average, opts)
[1893]172 elif os.path.isfile(filename):
[1916]173 #self._fill([filename], unit, average, getpt, antenna)
174 self._fill([filename], unit, average)
[1883]175 else:
[1819]176 msg = "The given file '%s'is not a valid " \
177 "asap table." % (filename)
[1859]178 raise IOError(msg)
[1118]179 elif (isinstance(filename, list) or isinstance(filename, tuple)) \
[976]180 and isinstance(filename[-1], str):
[1916]181 #self._fill(filename, unit, average, getpt, antenna)
182 self._fill(filename, unit, average)
[1586]183 self.parallactify(parallactify)
[1259]184 self._add_history("scantable", varlist)
[102]185
[1862]186 @asaplog_post_dec
[876]187 def save(self, name=None, format=None, overwrite=False):
[1846]188 """\
[1280]189 Store the scantable on disk. This can be an asap (aips++) Table,
190 SDFITS or MS2 format.
[1846]191
[116]192 Parameters:
[1846]193
[1093]194 name: the name of the outputfile. For format "ASCII"
195 this is the root file name (data in 'name'.txt
[497]196 and header in 'name'_header.txt)
[1855]197
[116]198 format: an optional file format. Default is ASAP.
[1855]199 Allowed are:
200
201 * 'ASAP' (save as ASAP [aips++] Table),
202 * 'SDFITS' (save as SDFITS file)
203 * 'ASCII' (saves as ascii text file)
204 * 'MS2' (saves as an casacore MeasurementSet V2)
205 * 'FITS' (save as image FITS - not readable by class)
206 * 'CLASS' (save as FITS readable by CLASS)
207
[411]208 overwrite: If the file should be overwritten if it exists.
[256]209 The default False is to return with warning
[411]210 without writing the output. USE WITH CARE.
[1855]211
[1846]212 Example::
213
[116]214 scan.save('myscan.asap')
[1118]215 scan.save('myscan.sdfits', 'SDFITS')
[1846]216
[116]217 """
[411]218 from os import path
[1593]219 format = format or rcParams['scantable.save']
[256]220 suffix = '.'+format.lower()
[1118]221 if name is None or name == "":
[256]222 name = 'scantable'+suffix
[718]223 msg = "No filename given. Using default name %s..." % name
224 asaplog.push(msg)
[411]225 name = path.expandvars(name)
[256]226 if path.isfile(name) or path.isdir(name):
227 if not overwrite:
[718]228 msg = "File %s exists." % name
[1859]229 raise IOError(msg)
[451]230 format2 = format.upper()
231 if format2 == 'ASAP':
[116]232 self._save(name)
233 else:
[989]234 from asap._asap import stwriter as stw
[1118]235 writer = stw(format2)
236 writer.write(self, name)
[116]237 return
238
[102]239 def copy(self):
[1846]240 """Return a copy of this scantable.
241
242 *Note*:
243
[1348]244 This makes a full (deep) copy. scan2 = scan1 makes a reference.
[1846]245
246 Example::
247
[102]248 copiedscan = scan.copy()
[1846]249
[102]250 """
[876]251 sd = scantable(Scantable._copy(self))
[113]252 return sd
253
[1093]254 def drop_scan(self, scanid=None):
[1846]255 """\
[1093]256 Return a new scantable where the specified scan number(s) has(have)
257 been dropped.
[1846]258
[1093]259 Parameters:
[1846]260
[1093]261 scanid: a (list of) scan number(s)
[1846]262
[1093]263 """
264 from asap import _is_sequence_or_number as _is_valid
265 from asap import _to_list
266 from asap import unique
267 if not _is_valid(scanid):
[1859]268 raise RuntimeError( 'Please specify a scanno to drop from the scantable' )
269 scanid = _to_list(scanid)
270 allscans = unique([ self.getscan(i) for i in range(self.nrow())])
271 for sid in scanid: allscans.remove(sid)
272 if len(allscans) == 0:
273 raise ValueError("Can't remove all scans")
274 sel = selector(scans=allscans)
275 return self._select_copy(sel)
[1093]276
[1594]277 def _select_copy(self, selection):
278 orig = self.get_selection()
279 self.set_selection(orig+selection)
280 cp = self.copy()
281 self.set_selection(orig)
282 return cp
283
[102]284 def get_scan(self, scanid=None):
[1855]285 """\
[102]286 Return a specific scan (by scanno) or collection of scans (by
287 source name) in a new scantable.
[1846]288
289 *Note*:
290
[1348]291 See scantable.drop_scan() for the inverse operation.
[1846]292
[102]293 Parameters:
[1846]294
[513]295 scanid: a (list of) scanno or a source name, unix-style
296 patterns are accepted for source name matching, e.g.
297 '*_R' gets all 'ref scans
[1846]298
299 Example::
300
[513]301 # get all scans containing the source '323p459'
302 newscan = scan.get_scan('323p459')
303 # get all 'off' scans
304 refscans = scan.get_scan('*_R')
305 # get a susbset of scans by scanno (as listed in scan.summary())
[1118]306 newscan = scan.get_scan([0, 2, 7, 10])
[1846]307
[102]308 """
309 if scanid is None:
[1859]310 raise RuntimeError( 'Please specify a scan no or name to '
311 'retrieve from the scantable' )
[102]312 try:
[946]313 bsel = self.get_selection()
314 sel = selector()
[102]315 if type(scanid) is str:
[946]316 sel.set_name(scanid)
[1594]317 return self._select_copy(sel)
[102]318 elif type(scanid) is int:
[946]319 sel.set_scans([scanid])
[1594]320 return self._select_copy(sel)
[381]321 elif type(scanid) is list:
[946]322 sel.set_scans(scanid)
[1594]323 return self._select_copy(sel)
[381]324 else:
[718]325 msg = "Illegal scanid type, use 'int' or 'list' if ints."
[1859]326 raise TypeError(msg)
[102]327 except RuntimeError:
[1859]328 raise
[102]329
330 def __str__(self):
[1118]331 return Scantable._summary(self, True)
[102]332
[976]333 def summary(self, filename=None):
[1846]334 """\
[102]335 Print a summary of the contents of this scantable.
[1846]336
[102]337 Parameters:
[1846]338
[1931]339 filename: the name of a file to write the putput to
[102]340 Default - no file output
[1846]341
[102]342 """
[976]343 info = Scantable._summary(self, True)
[102]344 if filename is not None:
[256]345 if filename is "":
346 filename = 'scantable_summary.txt'
[415]347 from os.path import expandvars, isdir
[411]348 filename = expandvars(filename)
[415]349 if not isdir(filename):
[413]350 data = open(filename, 'w')
351 data.write(info)
352 data.close()
353 else:
[718]354 msg = "Illegal file name '%s'." % (filename)
[1859]355 raise IOError(msg)
356 return page(info)
[710]357
[1512]358 def get_spectrum(self, rowno):
[1471]359 """Return the spectrum for the current row in the scantable as a list.
[1846]360
[1471]361 Parameters:
[1846]362
[1573]363 rowno: the row number to retrieve the spectrum from
[1846]364
[1471]365 """
366 return self._getspectrum(rowno)
[946]367
[1471]368 def get_mask(self, rowno):
369 """Return the mask for the current row in the scantable as a list.
[1846]370
[1471]371 Parameters:
[1846]372
[1573]373 rowno: the row number to retrieve the mask from
[1846]374
[1471]375 """
376 return self._getmask(rowno)
377
378 def set_spectrum(self, spec, rowno):
[1936]379 """Set the spectrum for the current row in the scantable.
[1846]380
[1471]381 Parameters:
[1846]382
[1855]383 spec: the new spectrum
[1846]384
[1855]385 rowno: the row number to set the spectrum for
386
[1471]387 """
388 assert(len(spec) == self.nchan())
389 return self._setspectrum(spec, rowno)
390
[1600]391 def get_coordinate(self, rowno):
392 """Return the (spectral) coordinate for a a given 'rowno'.
[1846]393
394 *Note*:
395
[1600]396 * This coordinate is only valid until a scantable method modifies
397 the frequency axis.
398 * This coordinate does contain the original frequency set-up
399 NOT the new frame. The conversions however are done using the user
400 specified frame (e.g. LSRK/TOPO). To get the 'real' coordinate,
401 use scantable.freq_align first. Without it there is no closure,
[1846]402 i.e.::
[1600]403
[1846]404 c = myscan.get_coordinate(0)
405 c.to_frequency(c.get_reference_pixel()) != c.get_reference_value()
406
[1600]407 Parameters:
[1846]408
[1600]409 rowno: the row number for the spectral coordinate
410
411 """
412 return coordinate(Scantable.get_coordinate(self, rowno))
413
[946]414 def get_selection(self):
[1846]415 """\
[1005]416 Get the selection object currently set on this scantable.
[1846]417
418 Example::
419
[1005]420 sel = scan.get_selection()
421 sel.set_ifs(0) # select IF 0
422 scan.set_selection(sel) # apply modified selection
[1846]423
[946]424 """
425 return selector(self._getselection())
426
[1576]427 def set_selection(self, selection=None, **kw):
[1846]428 """\
[1005]429 Select a subset of the data. All following operations on this scantable
430 are only applied to thi selection.
[1846]431
[1005]432 Parameters:
[1697]433
[1846]434 selection: a selector object (default unset the selection), or
435 any combination of "pols", "ifs", "beams", "scans",
436 "cycles", "name", "query"
[1697]437
[1846]438 Examples::
[1697]439
[1005]440 sel = selector() # create a selection object
[1118]441 self.set_scans([0, 3]) # select SCANNO 0 and 3
[1005]442 scan.set_selection(sel) # set the selection
443 scan.summary() # will only print summary of scanno 0 an 3
444 scan.set_selection() # unset the selection
[1697]445 # or the equivalent
446 scan.set_selection(scans=[0,3])
447 scan.summary() # will only print summary of scanno 0 an 3
448 scan.set_selection() # unset the selection
[1846]449
[946]450 """
[1576]451 if selection is None:
452 # reset
453 if len(kw) == 0:
454 selection = selector()
455 else:
456 # try keywords
457 for k in kw:
458 if k not in selector.fields:
459 raise KeyError("Invalid selection key '%s', valid keys are %s" % (k, selector.fields))
460 selection = selector(**kw)
[946]461 self._setselection(selection)
462
[1819]463 def get_row(self, row=0, insitu=None):
[1846]464 """\
[1819]465 Select a row in the scantable.
466 Return a scantable with single row.
[1846]467
[1819]468 Parameters:
[1846]469
470 row: row no of integration, default is 0.
471 insitu: if False a new scantable is returned. Otherwise, the
472 scaling is done in-situ. The default is taken from .asaprc
473 (False)
474
[1819]475 """
476 if insitu is None: insitu = rcParams['insitu']
477 if not insitu:
478 workscan = self.copy()
479 else:
480 workscan = self
481 # Select a row
482 sel=selector()
483 sel.set_scans([workscan.getscan(row)])
484 sel.set_cycles([workscan.getcycle(row)])
485 sel.set_beams([workscan.getbeam(row)])
486 sel.set_ifs([workscan.getif(row)])
487 sel.set_polarisations([workscan.getpol(row)])
488 sel.set_name(workscan._getsourcename(row))
489 workscan.set_selection(sel)
490 if not workscan.nrow() == 1:
491 msg = "Cloud not identify single row. %d rows selected."%(workscan.nrow())
492 raise RuntimeError(msg)
493 del sel
494 if insitu:
495 self._assign(workscan)
496 else:
497 return workscan
498
[1862]499 @asaplog_post_dec
[1907]500 def stats(self, stat='stddev', mask=None, form='3.3f', row=None):
[1846]501 """\
[135]502 Determine the specified statistic of the current beam/if/pol
[102]503 Takes a 'mask' as an optional parameter to specify which
504 channels should be excluded.
[1846]505
[102]506 Parameters:
[1846]507
[1819]508 stat: 'min', 'max', 'min_abc', 'max_abc', 'sumsq', 'sum',
509 'mean', 'var', 'stddev', 'avdev', 'rms', 'median'
[1855]510
[135]511 mask: an optional mask specifying where the statistic
[102]512 should be determined.
[1855]513
[1819]514 form: format string to print statistic values
[1846]515
[1907]516 row: row number of spectrum to process.
517 (default is None: for all rows)
[1846]518
[1907]519 Example:
[113]520 scan.set_unit('channel')
[1118]521 msk = scan.create_mask([100, 200], [500, 600])
[135]522 scan.stats(stat='mean', mask=m)
[1846]523
[102]524 """
[1593]525 mask = mask or []
[876]526 if not self._check_ifs():
[1118]527 raise ValueError("Cannot apply mask as the IFs have different "
528 "number of channels. Please use setselection() "
529 "to select individual IFs")
[1819]530 rtnabc = False
531 if stat.lower().endswith('_abc'): rtnabc = True
532 getchan = False
533 if stat.lower().startswith('min') or stat.lower().startswith('max'):
534 chan = self._math._minmaxchan(self, mask, stat)
535 getchan = True
536 statvals = []
[1907]537 if not rtnabc:
538 if row == None:
539 statvals = self._math._stats(self, mask, stat)
540 else:
541 statvals = self._math._statsrow(self, mask, stat, int(row))
[256]542
[1819]543 #def cb(i):
544 # return statvals[i]
[256]545
[1819]546 #return self._row_callback(cb, stat)
[102]547
[1819]548 label=stat
549 #callback=cb
550 out = ""
551 #outvec = []
552 sep = '-'*50
[1907]553
554 if row == None:
555 rows = xrange(self.nrow())
556 elif isinstance(row, int):
557 rows = [ row ]
558
559 for i in rows:
[1819]560 refstr = ''
561 statunit= ''
562 if getchan:
563 qx, qy = self.chan2data(rowno=i, chan=chan[i])
564 if rtnabc:
565 statvals.append(qx['value'])
566 refstr = ('(value: %'+form) % (qy['value'])+' ['+qy['unit']+'])'
567 statunit= '['+qx['unit']+']'
568 else:
569 refstr = ('(@ %'+form) % (qx['value'])+' ['+qx['unit']+'])'
570
571 tm = self._gettime(i)
572 src = self._getsourcename(i)
573 out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
574 out += 'Time[%s]:\n' % (tm)
[1907]575 if self.nbeam(-1) > 1: out += ' Beam[%d] ' % (self.getbeam(i))
576 if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
577 if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
[1819]578 #outvec.append(callback(i))
[1907]579 if len(rows) > 1:
580 # out += ('= %'+form) % (outvec[i]) +' '+refstr+'\n'
581 out += ('= %'+form) % (statvals[i]) +' '+refstr+'\n'
582 else:
583 # out += ('= %'+form) % (outvec[0]) +' '+refstr+'\n'
584 out += ('= %'+form) % (statvals[0]) +' '+refstr+'\n'
[1819]585 out += sep+"\n"
586
[1859]587 import os
588 if os.environ.has_key( 'USER' ):
589 usr = os.environ['USER']
590 else:
591 import commands
592 usr = commands.getoutput( 'whoami' )
593 tmpfile = '/tmp/tmp_'+usr+'_casapy_asap_scantable_stats'
594 f = open(tmpfile,'w')
595 print >> f, sep
596 print >> f, ' %s %s' % (label, statunit)
597 print >> f, sep
598 print >> f, out
599 f.close()
600 f = open(tmpfile,'r')
601 x = f.readlines()
602 f.close()
603 asaplog.push(''.join(x), False)
604
[1819]605 return statvals
606
607 def chan2data(self, rowno=0, chan=0):
[1846]608 """\
[1819]609 Returns channel/frequency/velocity and spectral value
610 at an arbitrary row and channel in the scantable.
[1846]611
[1819]612 Parameters:
[1846]613
[1819]614 rowno: a row number in the scantable. Default is the
615 first row, i.e. rowno=0
[1855]616
[1819]617 chan: a channel in the scantable. Default is the first
618 channel, i.e. pos=0
[1846]619
[1819]620 """
621 if isinstance(rowno, int) and isinstance(chan, int):
622 qx = {'unit': self.get_unit(),
623 'value': self._getabcissa(rowno)[chan]}
624 qy = {'unit': self.get_fluxunit(),
625 'value': self._getspectrum(rowno)[chan]}
626 return qx, qy
627
[1118]628 def stddev(self, mask=None):
[1846]629 """\
[135]630 Determine the standard deviation of the current beam/if/pol
631 Takes a 'mask' as an optional parameter to specify which
632 channels should be excluded.
[1846]633
[135]634 Parameters:
[1846]635
[135]636 mask: an optional mask specifying where the standard
637 deviation should be determined.
638
[1846]639 Example::
640
[135]641 scan.set_unit('channel')
[1118]642 msk = scan.create_mask([100, 200], [500, 600])
[135]643 scan.stddev(mask=m)
[1846]644
[135]645 """
[1118]646 return self.stats(stat='stddev', mask=mask);
[135]647
[1003]648
[1259]649 def get_column_names(self):
[1846]650 """\
[1003]651 Return a list of column names, which can be used for selection.
652 """
[1259]653 return list(Scantable.get_column_names(self))
[1003]654
[1730]655 def get_tsys(self, row=-1):
[1846]656 """\
[113]657 Return the System temperatures.
[1846]658
659 Parameters:
660
661 row: the rowno to get the information for. (default all rows)
662
[113]663 Returns:
[1846]664
[876]665 a list of Tsys values for the current selection
[1846]666
[113]667 """
[1730]668 if row > -1:
669 return self._get_column(self._gettsys, row)
[876]670 return self._row_callback(self._gettsys, "Tsys")
[256]671
[1730]672
673 def get_weather(self, row=-1):
[1846]674 """\
675 Return the weather informations.
676
677 Parameters:
678
679 row: the rowno to get the information for. (default all rows)
680
681 Returns:
682
683 a dict or list of of dicts of values for the current selection
684
685 """
686
[1730]687 values = self._get_column(self._get_weather, row)
688 if row > -1:
689 return {'temperature': values[0],
690 'pressure': values[1], 'humidity' : values[2],
691 'windspeed' : values[3], 'windaz' : values[4]
692 }
693 else:
694 out = []
695 for r in values:
696
697 out.append({'temperature': r[0],
698 'pressure': r[1], 'humidity' : r[2],
699 'windspeed' : r[3], 'windaz' : r[4]
700 })
701 return out
702
[876]703 def _row_callback(self, callback, label):
704 out = ""
[1118]705 outvec = []
[1590]706 sep = '-'*50
[876]707 for i in range(self.nrow()):
708 tm = self._gettime(i)
709 src = self._getsourcename(i)
[1590]710 out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
[876]711 out += 'Time[%s]:\n' % (tm)
[1590]712 if self.nbeam(-1) > 1:
713 out += ' Beam[%d] ' % (self.getbeam(i))
714 if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
715 if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
[876]716 outvec.append(callback(i))
717 out += '= %3.3f\n' % (outvec[i])
[1590]718 out += sep+'\n'
[1859]719
720 asaplog.push(sep)
721 asaplog.push(" %s" % (label))
722 asaplog.push(sep)
723 asaplog.push(out)
[1861]724 asaplog.post()
[1175]725 return outvec
[256]726
[1070]727 def _get_column(self, callback, row=-1):
728 """
729 """
730 if row == -1:
731 return [callback(i) for i in range(self.nrow())]
732 else:
[1819]733 if 0 <= row < self.nrow():
[1070]734 return callback(row)
[256]735
[1070]736
[1348]737 def get_time(self, row=-1, asdatetime=False):
[1846]738 """\
[113]739 Get a list of time stamps for the observations.
[1936]740 Return a datetime object or a string (default) for each
741 integration time stamp in the scantable.
[1846]742
[113]743 Parameters:
[1846]744
[1348]745 row: row no of integration. Default -1 return all rows
[1855]746
[1348]747 asdatetime: return values as datetime objects rather than strings
[1846]748
[113]749 """
[1175]750 from time import strptime
751 from datetime import datetime
[1392]752 times = self._get_column(self._gettime, row)
[1348]753 if not asdatetime:
[1392]754 return times
[1175]755 format = "%Y/%m/%d/%H:%M:%S"
756 if isinstance(times, list):
757 return [datetime(*strptime(i, format)[:6]) for i in times]
758 else:
759 return datetime(*strptime(times, format)[:6])
[102]760
[1348]761
762 def get_inttime(self, row=-1):
[1846]763 """\
[1348]764 Get a list of integration times for the observations.
765 Return a time in seconds for each integration in the scantable.
[1846]766
[1348]767 Parameters:
[1846]768
[1348]769 row: row no of integration. Default -1 return all rows.
[1846]770
[1348]771 """
[1573]772 return self._get_column(self._getinttime, row)
[1348]773
[1573]774
[714]775 def get_sourcename(self, row=-1):
[1846]776 """\
[794]777 Get a list source names for the observations.
[714]778 Return a string for each integration in the scantable.
779 Parameters:
[1846]780
[1348]781 row: row no of integration. Default -1 return all rows.
[1846]782
[714]783 """
[1070]784 return self._get_column(self._getsourcename, row)
[714]785
[794]786 def get_elevation(self, row=-1):
[1846]787 """\
[794]788 Get a list of elevations for the observations.
789 Return a float for each integration in the scantable.
[1846]790
[794]791 Parameters:
[1846]792
[1348]793 row: row no of integration. Default -1 return all rows.
[1846]794
[794]795 """
[1070]796 return self._get_column(self._getelevation, row)
[794]797
798 def get_azimuth(self, row=-1):
[1846]799 """\
[794]800 Get a list of azimuths for the observations.
801 Return a float for each integration in the scantable.
[1846]802
[794]803 Parameters:
[1348]804 row: row no of integration. Default -1 return all rows.
[1846]805
[794]806 """
[1070]807 return self._get_column(self._getazimuth, row)
[794]808
809 def get_parangle(self, row=-1):
[1846]810 """\
[794]811 Get a list of parallactic angles for the observations.
812 Return a float for each integration in the scantable.
[1846]813
[794]814 Parameters:
[1846]815
[1348]816 row: row no of integration. Default -1 return all rows.
[1846]817
[794]818 """
[1070]819 return self._get_column(self._getparangle, row)
[794]820
[1070]821 def get_direction(self, row=-1):
822 """
823 Get a list of Positions on the sky (direction) for the observations.
[1594]824 Return a string for each integration in the scantable.
[1855]825
[1070]826 Parameters:
[1855]827
[1070]828 row: row no of integration. Default -1 return all rows
[1855]829
[1070]830 """
831 return self._get_column(self._getdirection, row)
832
[1391]833 def get_directionval(self, row=-1):
[1846]834 """\
[1391]835 Get a list of Positions on the sky (direction) for the observations.
836 Return a float for each integration in the scantable.
[1846]837
[1391]838 Parameters:
[1846]839
[1391]840 row: row no of integration. Default -1 return all rows
[1846]841
[1391]842 """
843 return self._get_column(self._getdirectionvec, row)
844
[1862]845 @asaplog_post_dec
[102]846 def set_unit(self, unit='channel'):
[1846]847 """\
[102]848 Set the unit for all following operations on this scantable
[1846]849
[102]850 Parameters:
[1846]851
852 unit: optional unit, default is 'channel'. Use one of '*Hz',
853 'km/s', 'channel' or equivalent ''
854
[102]855 """
[484]856 varlist = vars()
[1118]857 if unit in ['', 'pixel', 'channel']:
[113]858 unit = ''
859 inf = list(self._getcoordinfo())
860 inf[0] = unit
861 self._setcoordinfo(inf)
[1118]862 self._add_history("set_unit", varlist)
[113]863
[1862]864 @asaplog_post_dec
[484]865 def set_instrument(self, instr):
[1846]866 """\
[1348]867 Set the instrument for subsequent processing.
[1846]868
[358]869 Parameters:
[1846]870
[710]871 instr: Select from 'ATPKSMB', 'ATPKSHOH', 'ATMOPRA',
[407]872 'DSS-43' (Tid), 'CEDUNA', and 'HOBART'
[1846]873
[358]874 """
875 self._setInstrument(instr)
[1118]876 self._add_history("set_instument", vars())
[358]877
[1862]878 @asaplog_post_dec
[1190]879 def set_feedtype(self, feedtype):
[1846]880 """\
[1190]881 Overwrite the feed type, which might not be set correctly.
[1846]882
[1190]883 Parameters:
[1846]884
[1190]885 feedtype: 'linear' or 'circular'
[1846]886
[1190]887 """
888 self._setfeedtype(feedtype)
889 self._add_history("set_feedtype", vars())
890
[1862]891 @asaplog_post_dec
[276]892 def set_doppler(self, doppler='RADIO'):
[1846]893 """\
[276]894 Set the doppler for all following operations on this scantable.
[1846]895
[276]896 Parameters:
[1846]897
[276]898 doppler: One of 'RADIO', 'OPTICAL', 'Z', 'BETA', 'GAMMA'
[1846]899
[276]900 """
[484]901 varlist = vars()
[276]902 inf = list(self._getcoordinfo())
903 inf[2] = doppler
904 self._setcoordinfo(inf)
[1118]905 self._add_history("set_doppler", vars())
[710]906
[1862]907 @asaplog_post_dec
[226]908 def set_freqframe(self, frame=None):
[1846]909 """\
[113]910 Set the frame type of the Spectral Axis.
[1846]911
[113]912 Parameters:
[1846]913
[591]914 frame: an optional frame type, default 'LSRK'. Valid frames are:
[1819]915 'TOPO', 'LSRD', 'LSRK', 'BARY',
[1118]916 'GEO', 'GALACTO', 'LGROUP', 'CMB'
[1846]917
918 Example::
919
[113]920 scan.set_freqframe('BARY')
[1846]921
[113]922 """
[1593]923 frame = frame or rcParams['scantable.freqframe']
[484]924 varlist = vars()
[1819]925 # "REST" is not implemented in casacore
926 #valid = ['REST', 'TOPO', 'LSRD', 'LSRK', 'BARY', \
927 # 'GEO', 'GALACTO', 'LGROUP', 'CMB']
928 valid = ['TOPO', 'LSRD', 'LSRK', 'BARY', \
[1118]929 'GEO', 'GALACTO', 'LGROUP', 'CMB']
[591]930
[989]931 if frame in valid:
[113]932 inf = list(self._getcoordinfo())
933 inf[1] = frame
934 self._setcoordinfo(inf)
[1118]935 self._add_history("set_freqframe", varlist)
[102]936 else:
[1118]937 msg = "Please specify a valid freq type. Valid types are:\n", valid
[1859]938 raise TypeError(msg)
[710]939
[1862]940 @asaplog_post_dec
[989]941 def set_dirframe(self, frame=""):
[1846]942 """\
[989]943 Set the frame type of the Direction on the sky.
[1846]944
[989]945 Parameters:
[1846]946
[989]947 frame: an optional frame type, default ''. Valid frames are:
948 'J2000', 'B1950', 'GALACTIC'
[1846]949
950 Example:
951
[989]952 scan.set_dirframe('GALACTIC')
[1846]953
[989]954 """
955 varlist = vars()
[1859]956 Scantable.set_dirframe(self, frame)
[1118]957 self._add_history("set_dirframe", varlist)
[989]958
[113]959 def get_unit(self):
[1846]960 """\
[113]961 Get the default unit set in this scantable
[1846]962
[113]963 Returns:
[1846]964
[113]965 A unit string
[1846]966
[113]967 """
968 inf = self._getcoordinfo()
969 unit = inf[0]
970 if unit == '': unit = 'channel'
971 return unit
[102]972
[1862]973 @asaplog_post_dec
[158]974 def get_abcissa(self, rowno=0):
[1846]975 """\
[158]976 Get the abcissa in the current coordinate setup for the currently
[113]977 selected Beam/IF/Pol
[1846]978
[113]979 Parameters:
[1846]980
[226]981 rowno: an optional row number in the scantable. Default is the
982 first row, i.e. rowno=0
[1846]983
[113]984 Returns:
[1846]985
[1348]986 The abcissa values and the format string (as a dictionary)
[1846]987
[113]988 """
[256]989 abc = self._getabcissa(rowno)
[710]990 lbl = self._getabcissalabel(rowno)
[158]991 return abc, lbl
[113]992
[1862]993 @asaplog_post_dec
[1819]994 def flag(self, mask=None, unflag=False):
[1846]995 """\
[1001]996 Flag the selected data using an optional channel mask.
[1846]997
[1001]998 Parameters:
[1846]999
[1001]1000 mask: an optional channel mask, created with create_mask. Default
1001 (no mask) is all channels.
[1855]1002
[1819]1003 unflag: if True, unflag the data
[1846]1004
[1001]1005 """
1006 varlist = vars()
[1593]1007 mask = mask or []
[1859]1008 self._flag(mask, unflag)
[1001]1009 self._add_history("flag", varlist)
1010
[1862]1011 @asaplog_post_dec
[1819]1012 def flag_row(self, rows=[], unflag=False):
[1846]1013 """\
[1819]1014 Flag the selected data in row-based manner.
[1846]1015
[1819]1016 Parameters:
[1846]1017
[1843]1018 rows: list of row numbers to be flagged. Default is no row
1019 (must be explicitly specified to execute row-based flagging).
[1855]1020
[1819]1021 unflag: if True, unflag the data.
[1846]1022
[1819]1023 """
1024 varlist = vars()
[1859]1025 self._flag_row(rows, unflag)
[1819]1026 self._add_history("flag_row", varlist)
1027
[1862]1028 @asaplog_post_dec
[1819]1029 def clip(self, uthres=None, dthres=None, clipoutside=True, unflag=False):
[1846]1030 """\
[1819]1031 Flag the selected data outside a specified range (in channel-base)
[1846]1032
[1819]1033 Parameters:
[1846]1034
[1819]1035 uthres: upper threshold.
[1855]1036
[1819]1037 dthres: lower threshold
[1846]1038
[1819]1039 clipoutside: True for flagging data outside the range [dthres:uthres].
[1928]1040 False for flagging data inside the range.
[1855]1041
[1846]1042 unflag: if True, unflag the data.
1043
[1819]1044 """
1045 varlist = vars()
[1859]1046 self._clip(uthres, dthres, clipoutside, unflag)
[1819]1047 self._add_history("clip", varlist)
1048
[1862]1049 @asaplog_post_dec
[1584]1050 def lag_flag(self, start, end, unit="MHz", insitu=None):
[1846]1051 """\
[1192]1052 Flag the data in 'lag' space by providing a frequency to remove.
[1584]1053 Flagged data in the scantable gets interpolated over the region.
[1192]1054 No taper is applied.
[1846]1055
[1192]1056 Parameters:
[1846]1057
[1579]1058 start: the start frequency (really a period within the
1059 bandwidth) or period to remove
[1855]1060
[1579]1061 end: the end frequency or period to remove
[1855]1062
[1584]1063 unit: the frequency unit (default "MHz") or "" for
[1579]1064 explicit lag channels
[1846]1065
1066 *Notes*:
1067
[1579]1068 It is recommended to flag edges of the band or strong
[1348]1069 signals beforehand.
[1846]1070
[1192]1071 """
1072 if insitu is None: insitu = rcParams['insitu']
1073 self._math._setinsitu(insitu)
1074 varlist = vars()
[1579]1075 base = { "GHz": 1000000000., "MHz": 1000000., "kHz": 1000., "Hz": 1.}
1076 if not (unit == "" or base.has_key(unit)):
[1192]1077 raise ValueError("%s is not a valid unit." % unit)
[1859]1078 if unit == "":
1079 s = scantable(self._math._lag_flag(self, start, end, "lags"))
1080 else:
1081 s = scantable(self._math._lag_flag(self, start*base[unit],
1082 end*base[unit], "frequency"))
[1192]1083 s._add_history("lag_flag", varlist)
1084 if insitu:
1085 self._assign(s)
1086 else:
1087 return s
[1001]1088
[1862]1089 @asaplog_post_dec
[113]1090 def create_mask(self, *args, **kwargs):
[1846]1091 """\
[1118]1092 Compute and return a mask based on [min, max] windows.
[189]1093 The specified windows are to be INCLUDED, when the mask is
[113]1094 applied.
[1846]1095
[102]1096 Parameters:
[1846]1097
[1118]1098 [min, max], [min2, max2], ...
[1024]1099 Pairs of start/end points (inclusive)specifying the regions
[102]1100 to be masked
[1855]1101
[189]1102 invert: optional argument. If specified as True,
1103 return an inverted mask, i.e. the regions
1104 specified are EXCLUDED
[1855]1105
[513]1106 row: create the mask using the specified row for
1107 unit conversions, default is row=0
1108 only necessary if frequency varies over rows.
[1846]1109
1110 Examples::
1111
[113]1112 scan.set_unit('channel')
[1846]1113 # a)
[1118]1114 msk = scan.create_mask([400, 500], [800, 900])
[189]1115 # masks everything outside 400 and 500
[113]1116 # and 800 and 900 in the unit 'channel'
1117
[1846]1118 # b)
[1118]1119 msk = scan.create_mask([400, 500], [800, 900], invert=True)
[189]1120 # masks the regions between 400 and 500
[113]1121 # and 800 and 900 in the unit 'channel'
[1846]1122
1123 # c)
1124 #mask only channel 400
[1554]1125 msk = scan.create_mask([400])
[1846]1126
[102]1127 """
[1554]1128 row = kwargs.get("row", 0)
[513]1129 data = self._getabcissa(row)
[113]1130 u = self._getcoordinfo()[0]
[1859]1131 if u == "":
1132 u = "channel"
1133 msg = "The current mask window unit is %s" % u
1134 i = self._check_ifs()
1135 if not i:
1136 msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
1137 asaplog.push(msg)
[102]1138 n = self.nchan()
[1295]1139 msk = _n_bools(n, False)
[710]1140 # test if args is a 'list' or a 'normal *args - UGLY!!!
1141
[1118]1142 ws = (isinstance(args[-1][-1], int) or isinstance(args[-1][-1], float)) \
1143 and args or args[0]
[710]1144 for window in ws:
[1554]1145 if len(window) == 1:
1146 window = [window[0], window[0]]
1147 if len(window) == 0 or len(window) > 2:
1148 raise ValueError("A window needs to be defined as [start(, end)]")
[1545]1149 if window[0] > window[1]:
1150 tmp = window[0]
1151 window[0] = window[1]
1152 window[1] = tmp
[102]1153 for i in range(n):
[1024]1154 if data[i] >= window[0] and data[i] <= window[1]:
[1295]1155 msk[i] = True
[113]1156 if kwargs.has_key('invert'):
1157 if kwargs.get('invert'):
[1295]1158 msk = mask_not(msk)
[102]1159 return msk
[710]1160
[1931]1161 def get_masklist(self, mask=None, row=0, silent=False):
[1846]1162 """\
[1819]1163 Compute and return a list of mask windows, [min, max].
[1846]1164
[1819]1165 Parameters:
[1846]1166
[1819]1167 mask: channel mask, created with create_mask.
[1855]1168
[1819]1169 row: calcutate the masklist using the specified row
1170 for unit conversions, default is row=0
1171 only necessary if frequency varies over rows.
[1846]1172
[1819]1173 Returns:
[1846]1174
[1819]1175 [min, max], [min2, max2], ...
1176 Pairs of start/end points (inclusive)specifying
1177 the masked regions
[1846]1178
[1819]1179 """
1180 if not (isinstance(mask,list) or isinstance(mask, tuple)):
1181 raise TypeError("The mask should be list or tuple.")
1182 if len(mask) < 2:
1183 raise TypeError("The mask elements should be > 1")
1184 if self.nchan() != len(mask):
1185 msg = "Number of channels in scantable != number of mask elements"
1186 raise TypeError(msg)
1187 data = self._getabcissa(row)
1188 u = self._getcoordinfo()[0]
[1859]1189 if u == "":
1190 u = "channel"
1191 msg = "The current mask window unit is %s" % u
1192 i = self._check_ifs()
1193 if not i:
1194 msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
[1931]1195 if not silent:
1196 asaplog.push(msg)
[1819]1197 masklist=[]
1198 ist, ien = None, None
1199 ist, ien=self.get_mask_indices(mask)
1200 if ist is not None and ien is not None:
1201 for i in xrange(len(ist)):
1202 range=[data[ist[i]],data[ien[i]]]
1203 range.sort()
1204 masklist.append([range[0],range[1]])
1205 return masklist
1206
1207 def get_mask_indices(self, mask=None):
[1846]1208 """\
[1819]1209 Compute and Return lists of mask start indices and mask end indices.
[1855]1210
1211 Parameters:
1212
[1819]1213 mask: channel mask, created with create_mask.
[1846]1214
[1819]1215 Returns:
[1846]1216
[1819]1217 List of mask start indices and that of mask end indices,
1218 i.e., [istart1,istart2,....], [iend1,iend2,....].
[1846]1219
[1819]1220 """
1221 if not (isinstance(mask,list) or isinstance(mask, tuple)):
1222 raise TypeError("The mask should be list or tuple.")
1223 if len(mask) < 2:
1224 raise TypeError("The mask elements should be > 1")
1225 istart=[]
1226 iend=[]
1227 if mask[0]: istart.append(0)
1228 for i in range(len(mask)-1):
1229 if not mask[i] and mask[i+1]:
1230 istart.append(i+1)
1231 elif mask[i] and not mask[i+1]:
1232 iend.append(i)
1233 if mask[len(mask)-1]: iend.append(len(mask)-1)
1234 if len(istart) != len(iend):
1235 raise RuntimeError("Numbers of mask start != mask end.")
1236 for i in range(len(istart)):
1237 if istart[i] > iend[i]:
1238 raise RuntimeError("Mask start index > mask end index")
1239 break
1240 return istart,iend
1241
1242# def get_restfreqs(self):
1243# """
1244# Get the restfrequency(s) stored in this scantable.
1245# The return value(s) are always of unit 'Hz'
1246# Parameters:
1247# none
1248# Returns:
1249# a list of doubles
1250# """
1251# return list(self._getrestfreqs())
1252
1253 def get_restfreqs(self, ids=None):
[1846]1254 """\
[256]1255 Get the restfrequency(s) stored in this scantable.
1256 The return value(s) are always of unit 'Hz'
[1846]1257
[256]1258 Parameters:
[1846]1259
[1819]1260 ids: (optional) a list of MOLECULE_ID for that restfrequency(s) to
1261 be retrieved
[1846]1262
[256]1263 Returns:
[1846]1264
[1819]1265 dictionary containing ids and a list of doubles for each id
[1846]1266
[256]1267 """
[1819]1268 if ids is None:
1269 rfreqs={}
1270 idlist = self.getmolnos()
1271 for i in idlist:
1272 rfreqs[i]=list(self._getrestfreqs(i))
1273 return rfreqs
1274 else:
1275 if type(ids)==list or type(ids)==tuple:
1276 rfreqs={}
1277 for i in ids:
1278 rfreqs[i]=list(self._getrestfreqs(i))
1279 return rfreqs
1280 else:
1281 return list(self._getrestfreqs(ids))
1282 #return list(self._getrestfreqs(ids))
[102]1283
[931]1284 def set_restfreqs(self, freqs=None, unit='Hz'):
[1846]1285 """\
[931]1286 Set or replace the restfrequency specified and
[1936]1287 if the 'freqs' argument holds a scalar,
[931]1288 then that rest frequency will be applied to all the selected
1289 data. If the 'freqs' argument holds
1290 a vector, then it MUST be of equal or smaller length than
1291 the number of IFs (and the available restfrequencies will be
1292 replaced by this vector). In this case, *all* data have
1293 the restfrequency set per IF according
1294 to the corresponding value you give in the 'freqs' vector.
[1118]1295 E.g. 'freqs=[1e9, 2e9]' would mean IF 0 gets restfreq 1e9 and
[931]1296 IF 1 gets restfreq 2e9.
[1846]1297
[1395]1298 You can also specify the frequencies via a linecatalog.
[1153]1299
[931]1300 Parameters:
[1846]1301
[931]1302 freqs: list of rest frequency values or string idenitfiers
[1855]1303
[931]1304 unit: unit for rest frequency (default 'Hz')
[402]1305
[1846]1306
1307 Example::
1308
[1819]1309 # set the given restfrequency for the all currently selected IFs
[931]1310 scan.set_restfreqs(freqs=1.4e9)
[1845]1311 # set restfrequencies for the n IFs (n > 1) in the order of the
1312 # list, i.e
1313 # IF0 -> 1.4e9, IF1 -> 1.41e9, IF3 -> 1.42e9
1314 # len(list_of_restfreqs) == nIF
1315 # for nIF == 1 the following will set multiple restfrequency for
1316 # that IF
[1819]1317 scan.set_restfreqs(freqs=[1.4e9, 1.41e9, 1.42e9])
[1845]1318 # set multiple restfrequencies per IF. as a list of lists where
1319 # the outer list has nIF elements, the inner s arbitrary
1320 scan.set_restfreqs(freqs=[[1.4e9, 1.41e9], [1.67e9]])
[391]1321
[1846]1322 *Note*:
[1845]1323
[931]1324 To do more sophisticate Restfrequency setting, e.g. on a
1325 source and IF basis, use scantable.set_selection() before using
[1846]1326 this function::
[931]1327
[1846]1328 # provided your scantable is called scan
1329 selection = selector()
1330 selection.set_name("ORION*")
1331 selection.set_ifs([1])
1332 scan.set_selection(selection)
1333 scan.set_restfreqs(freqs=86.6e9)
1334
[931]1335 """
1336 varlist = vars()
[1157]1337 from asap import linecatalog
1338 # simple value
[1118]1339 if isinstance(freqs, int) or isinstance(freqs, float):
[1845]1340 self._setrestfreqs([freqs], [""], unit)
[1157]1341 # list of values
[1118]1342 elif isinstance(freqs, list) or isinstance(freqs, tuple):
[1157]1343 # list values are scalars
[1118]1344 if isinstance(freqs[-1], int) or isinstance(freqs[-1], float):
[1845]1345 if len(freqs) == 1:
1346 self._setrestfreqs(freqs, [""], unit)
1347 else:
1348 # allow the 'old' mode of setting mulitple IFs
1349 sel = selector()
1350 savesel = self._getselection()
1351 iflist = self.getifnos()
1352 if len(freqs)>len(iflist):
1353 raise ValueError("number of elements in list of list "
1354 "exeeds the current IF selections")
1355 iflist = self.getifnos()
1356 for i, fval in enumerate(freqs):
1357 sel.set_ifs(iflist[i])
1358 self._setselection(sel)
1359 self._setrestfreqs([fval], [""], unit)
1360 self._setselection(savesel)
1361
1362 # list values are dict, {'value'=, 'name'=)
[1157]1363 elif isinstance(freqs[-1], dict):
[1845]1364 values = []
1365 names = []
1366 for d in freqs:
1367 values.append(d["value"])
1368 names.append(d["name"])
1369 self._setrestfreqs(values, names, unit)
[1819]1370 elif isinstance(freqs[-1], list) or isinstance(freqs[-1], tuple):
[1157]1371 sel = selector()
1372 savesel = self._getselection()
[1322]1373 iflist = self.getifnos()
[1819]1374 if len(freqs)>len(iflist):
[1845]1375 raise ValueError("number of elements in list of list exeeds"
1376 " the current IF selections")
1377 for i, fval in enumerate(freqs):
[1322]1378 sel.set_ifs(iflist[i])
[1259]1379 self._setselection(sel)
[1845]1380 self._setrestfreqs(fval, [""], unit)
[1157]1381 self._setselection(savesel)
1382 # freqs are to be taken from a linecatalog
[1153]1383 elif isinstance(freqs, linecatalog):
1384 sel = selector()
1385 savesel = self._getselection()
1386 for i in xrange(freqs.nrow()):
[1322]1387 sel.set_ifs(iflist[i])
[1153]1388 self._setselection(sel)
[1845]1389 self._setrestfreqs([freqs.get_frequency(i)],
1390 [freqs.get_name(i)], "MHz")
[1153]1391 # ensure that we are not iterating past nIF
1392 if i == self.nif()-1: break
1393 self._setselection(savesel)
[931]1394 else:
1395 return
1396 self._add_history("set_restfreqs", varlist)
1397
[1360]1398 def shift_refpix(self, delta):
[1846]1399 """\
[1589]1400 Shift the reference pixel of the Spectra Coordinate by an
1401 integer amount.
[1846]1402
[1589]1403 Parameters:
[1846]1404
[1589]1405 delta: the amount to shift by
[1846]1406
1407 *Note*:
1408
[1589]1409 Be careful using this with broadband data.
[1846]1410
[1360]1411 """
[1731]1412 Scantable.shift_refpix(self, delta)
[931]1413
[1862]1414 @asaplog_post_dec
[1259]1415 def history(self, filename=None):
[1846]1416 """\
[1259]1417 Print the history. Optionally to a file.
[1846]1418
[1348]1419 Parameters:
[1846]1420
[1928]1421 filename: The name of the file to save the history to.
[1846]1422
[1259]1423 """
[484]1424 hist = list(self._gethistory())
[794]1425 out = "-"*80
[484]1426 for h in hist:
[489]1427 if h.startswith("---"):
[1857]1428 out = "\n".join([out, h])
[489]1429 else:
1430 items = h.split("##")
1431 date = items[0]
1432 func = items[1]
1433 items = items[2:]
[794]1434 out += "\n"+date+"\n"
1435 out += "Function: %s\n Parameters:" % (func)
[489]1436 for i in items:
[1936]1437 if i == '':
1438 continue
[489]1439 s = i.split("=")
[1118]1440 out += "\n %s = %s" % (s[0], s[1])
[1857]1441 out = "\n".join([out, "-"*80])
[1259]1442 if filename is not None:
1443 if filename is "":
1444 filename = 'scantable_history.txt'
1445 import os
1446 filename = os.path.expandvars(os.path.expanduser(filename))
1447 if not os.path.isdir(filename):
1448 data = open(filename, 'w')
1449 data.write(out)
1450 data.close()
1451 else:
1452 msg = "Illegal file name '%s'." % (filename)
[1859]1453 raise IOError(msg)
1454 return page(out)
[513]1455 #
1456 # Maths business
1457 #
[1862]1458 @asaplog_post_dec
[931]1459 def average_time(self, mask=None, scanav=False, weight='tint', align=False):
[1846]1460 """\
[1070]1461 Return the (time) weighted average of a scan.
[1846]1462
1463 *Note*:
1464
[1070]1465 in channels only - align if necessary
[1846]1466
[513]1467 Parameters:
[1846]1468
[513]1469 mask: an optional mask (only used for 'var' and 'tsys'
1470 weighting)
[1855]1471
[558]1472 scanav: True averages each scan separately
1473 False (default) averages all scans together,
[1855]1474
[1099]1475 weight: Weighting scheme.
1476 'none' (mean no weight)
1477 'var' (1/var(spec) weighted)
1478 'tsys' (1/Tsys**2 weighted)
1479 'tint' (integration time weighted)
1480 'tintsys' (Tint/Tsys**2)
1481 'median' ( median averaging)
[535]1482 The default is 'tint'
[1855]1483
[931]1484 align: align the spectra in velocity before averaging. It takes
1485 the time of the first spectrum as reference time.
[1846]1486
1487 Example::
1488
[513]1489 # time average the scantable without using a mask
[710]1490 newscan = scan.average_time()
[1846]1491
[513]1492 """
1493 varlist = vars()
[1593]1494 weight = weight or 'TINT'
1495 mask = mask or ()
1496 scanav = (scanav and 'SCAN') or 'NONE'
[1118]1497 scan = (self, )
[1859]1498
1499 if align:
1500 scan = (self.freq_align(insitu=False), )
1501 s = None
1502 if weight.upper() == 'MEDIAN':
1503 s = scantable(self._math._averagechannel(scan[0], 'MEDIAN',
1504 scanav))
1505 else:
1506 s = scantable(self._math._average(scan, mask, weight.upper(),
1507 scanav))
[1099]1508 s._add_history("average_time", varlist)
[513]1509 return s
[710]1510
[1862]1511 @asaplog_post_dec
[876]1512 def convert_flux(self, jyperk=None, eta=None, d=None, insitu=None):
[1846]1513 """\
[513]1514 Return a scan where all spectra are converted to either
1515 Jansky or Kelvin depending upon the flux units of the scan table.
1516 By default the function tries to look the values up internally.
1517 If it can't find them (or if you want to over-ride), you must
1518 specify EITHER jyperk OR eta (and D which it will try to look up
1519 also if you don't set it). jyperk takes precedence if you set both.
[1846]1520
[513]1521 Parameters:
[1846]1522
[513]1523 jyperk: the Jy / K conversion factor
[1855]1524
[513]1525 eta: the aperture efficiency
[1855]1526
[1928]1527 d: the geometric diameter (metres)
[1855]1528
[513]1529 insitu: if False a new scantable is returned.
1530 Otherwise, the scaling is done in-situ
1531 The default is taken from .asaprc (False)
[1846]1532
[513]1533 """
1534 if insitu is None: insitu = rcParams['insitu']
[876]1535 self._math._setinsitu(insitu)
[513]1536 varlist = vars()
[1593]1537 jyperk = jyperk or -1.0
1538 d = d or -1.0
1539 eta = eta or -1.0
[876]1540 s = scantable(self._math._convertflux(self, d, eta, jyperk))
1541 s._add_history("convert_flux", varlist)
1542 if insitu: self._assign(s)
1543 else: return s
[513]1544
[1862]1545 @asaplog_post_dec
[876]1546 def gain_el(self, poly=None, filename="", method="linear", insitu=None):
[1846]1547 """\
[513]1548 Return a scan after applying a gain-elevation correction.
1549 The correction can be made via either a polynomial or a
1550 table-based interpolation (and extrapolation if necessary).
1551 You specify polynomial coefficients, an ascii table or neither.
1552 If you specify neither, then a polynomial correction will be made
1553 with built in coefficients known for certain telescopes (an error
1554 will occur if the instrument is not known).
1555 The data and Tsys are *divided* by the scaling factors.
[1846]1556
[513]1557 Parameters:
[1846]1558
[513]1559 poly: Polynomial coefficients (default None) to compute a
1560 gain-elevation correction as a function of
1561 elevation (in degrees).
[1855]1562
[513]1563 filename: The name of an ascii file holding correction factors.
1564 The first row of the ascii file must give the column
1565 names and these MUST include columns
1566 "ELEVATION" (degrees) and "FACTOR" (multiply data
1567 by this) somewhere.
1568 The second row must give the data type of the
1569 column. Use 'R' for Real and 'I' for Integer.
1570 An example file would be
1571 (actual factors are arbitrary) :
1572
1573 TIME ELEVATION FACTOR
1574 R R R
1575 0.1 0 0.8
1576 0.2 20 0.85
1577 0.3 40 0.9
1578 0.4 60 0.85
1579 0.5 80 0.8
1580 0.6 90 0.75
[1855]1581
[513]1582 method: Interpolation method when correcting from a table.
1583 Values are "nearest", "linear" (default), "cubic"
1584 and "spline"
[1855]1585
[513]1586 insitu: if False a new scantable is returned.
1587 Otherwise, the scaling is done in-situ
1588 The default is taken from .asaprc (False)
[1846]1589
[513]1590 """
1591
1592 if insitu is None: insitu = rcParams['insitu']
[876]1593 self._math._setinsitu(insitu)
[513]1594 varlist = vars()
[1593]1595 poly = poly or ()
[513]1596 from os.path import expandvars
1597 filename = expandvars(filename)
[876]1598 s = scantable(self._math._gainel(self, poly, filename, method))
1599 s._add_history("gain_el", varlist)
[1593]1600 if insitu:
1601 self._assign(s)
1602 else:
1603 return s
[710]1604
[1862]1605 @asaplog_post_dec
[931]1606 def freq_align(self, reftime=None, method='cubic', insitu=None):
[1846]1607 """\
[513]1608 Return a scan where all rows have been aligned in frequency/velocity.
1609 The alignment frequency frame (e.g. LSRK) is that set by function
1610 set_freqframe.
[1846]1611
[513]1612 Parameters:
[1855]1613
[513]1614 reftime: reference time to align at. By default, the time of
1615 the first row of data is used.
[1855]1616
[513]1617 method: Interpolation method for regridding the spectra.
1618 Choose from "nearest", "linear", "cubic" (default)
1619 and "spline"
[1855]1620
[513]1621 insitu: if False a new scantable is returned.
1622 Otherwise, the scaling is done in-situ
1623 The default is taken from .asaprc (False)
[1846]1624
[513]1625 """
[931]1626 if insitu is None: insitu = rcParams["insitu"]
[876]1627 self._math._setinsitu(insitu)
[513]1628 varlist = vars()
[1593]1629 reftime = reftime or ""
[931]1630 s = scantable(self._math._freq_align(self, reftime, method))
[876]1631 s._add_history("freq_align", varlist)
1632 if insitu: self._assign(s)
1633 else: return s
[513]1634
[1862]1635 @asaplog_post_dec
[1725]1636 def opacity(self, tau=None, insitu=None):
[1846]1637 """\
[513]1638 Apply an opacity correction. The data
1639 and Tsys are multiplied by the correction factor.
[1846]1640
[513]1641 Parameters:
[1855]1642
[1689]1643 tau: (list of) opacity from which the correction factor is
[513]1644 exp(tau*ZD)
[1689]1645 where ZD is the zenith-distance.
1646 If a list is provided, it has to be of length nIF,
1647 nIF*nPol or 1 and in order of IF/POL, e.g.
1648 [opif0pol0, opif0pol1, opif1pol0 ...]
[1725]1649 if tau is `None` the opacities are determined from a
1650 model.
[1855]1651
[513]1652 insitu: if False a new scantable is returned.
1653 Otherwise, the scaling is done in-situ
1654 The default is taken from .asaprc (False)
[1846]1655
[513]1656 """
1657 if insitu is None: insitu = rcParams['insitu']
[876]1658 self._math._setinsitu(insitu)
[513]1659 varlist = vars()
[1689]1660 if not hasattr(tau, "__len__"):
1661 tau = [tau]
[876]1662 s = scantable(self._math._opacity(self, tau))
1663 s._add_history("opacity", varlist)
1664 if insitu: self._assign(s)
1665 else: return s
[513]1666
[1862]1667 @asaplog_post_dec
[513]1668 def bin(self, width=5, insitu=None):
[1846]1669 """\
[513]1670 Return a scan where all spectra have been binned up.
[1846]1671
[1348]1672 Parameters:
[1846]1673
[513]1674 width: The bin width (default=5) in pixels
[1855]1675
[513]1676 insitu: if False a new scantable is returned.
1677 Otherwise, the scaling is done in-situ
1678 The default is taken from .asaprc (False)
[1846]1679
[513]1680 """
1681 if insitu is None: insitu = rcParams['insitu']
[876]1682 self._math._setinsitu(insitu)
[513]1683 varlist = vars()
[876]1684 s = scantable(self._math._bin(self, width))
[1118]1685 s._add_history("bin", varlist)
[1589]1686 if insitu:
1687 self._assign(s)
1688 else:
1689 return s
[513]1690
[1862]1691 @asaplog_post_dec
[513]1692 def resample(self, width=5, method='cubic', insitu=None):
[1846]1693 """\
[1348]1694 Return a scan where all spectra have been binned up.
[1573]1695
[1348]1696 Parameters:
[1846]1697
[513]1698 width: The bin width (default=5) in pixels
[1855]1699
[513]1700 method: Interpolation method when correcting from a table.
1701 Values are "nearest", "linear", "cubic" (default)
1702 and "spline"
[1855]1703
[513]1704 insitu: if False a new scantable is returned.
1705 Otherwise, the scaling is done in-situ
1706 The default is taken from .asaprc (False)
[1846]1707
[513]1708 """
1709 if insitu is None: insitu = rcParams['insitu']
[876]1710 self._math._setinsitu(insitu)
[513]1711 varlist = vars()
[876]1712 s = scantable(self._math._resample(self, method, width))
[1118]1713 s._add_history("resample", varlist)
[876]1714 if insitu: self._assign(s)
1715 else: return s
[513]1716
[1862]1717 @asaplog_post_dec
[946]1718 def average_pol(self, mask=None, weight='none'):
[1846]1719 """\
[946]1720 Average the Polarisations together.
[1846]1721
[946]1722 Parameters:
[1846]1723
[946]1724 mask: An optional mask defining the region, where the
1725 averaging will be applied. The output will have all
1726 specified points masked.
[1855]1727
[946]1728 weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
1729 weighted), or 'tsys' (1/Tsys**2 weighted)
[1846]1730
[946]1731 """
1732 varlist = vars()
[1593]1733 mask = mask or ()
[1010]1734 s = scantable(self._math._averagepol(self, mask, weight.upper()))
[1118]1735 s._add_history("average_pol", varlist)
[992]1736 return s
[513]1737
[1862]1738 @asaplog_post_dec
[1145]1739 def average_beam(self, mask=None, weight='none'):
[1846]1740 """\
[1145]1741 Average the Beams together.
[1846]1742
[1145]1743 Parameters:
1744 mask: An optional mask defining the region, where the
1745 averaging will be applied. The output will have all
1746 specified points masked.
[1855]1747
[1145]1748 weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
1749 weighted), or 'tsys' (1/Tsys**2 weighted)
[1846]1750
[1145]1751 """
1752 varlist = vars()
[1593]1753 mask = mask or ()
[1145]1754 s = scantable(self._math._averagebeams(self, mask, weight.upper()))
1755 s._add_history("average_beam", varlist)
1756 return s
1757
[1586]1758 def parallactify(self, pflag):
[1846]1759 """\
[1843]1760 Set a flag to indicate whether this data should be treated as having
[1617]1761 been 'parallactified' (total phase == 0.0)
[1846]1762
[1617]1763 Parameters:
[1855]1764
[1843]1765 pflag: Bool indicating whether to turn this on (True) or
[1617]1766 off (False)
[1846]1767
[1617]1768 """
[1586]1769 varlist = vars()
1770 self._parallactify(pflag)
1771 self._add_history("parallactify", varlist)
1772
[1862]1773 @asaplog_post_dec
[992]1774 def convert_pol(self, poltype=None):
[1846]1775 """\
[992]1776 Convert the data to a different polarisation type.
[1565]1777 Note that you will need cross-polarisation terms for most conversions.
[1846]1778
[992]1779 Parameters:
[1855]1780
[992]1781 poltype: The new polarisation type. Valid types are:
[1565]1782 "linear", "circular", "stokes" and "linpol"
[1846]1783
[992]1784 """
1785 varlist = vars()
[1859]1786 s = scantable(self._math._convertpol(self, poltype))
[1118]1787 s._add_history("convert_pol", varlist)
[992]1788 return s
1789
[1862]1790 @asaplog_post_dec
[1819]1791 def smooth(self, kernel="hanning", width=5.0, order=2, plot=False, insitu=None):
[1846]1792 """\
[513]1793 Smooth the spectrum by the specified kernel (conserving flux).
[1846]1794
[513]1795 Parameters:
[1846]1796
[513]1797 kernel: The type of smoothing kernel. Select from
[1574]1798 'hanning' (default), 'gaussian', 'boxcar', 'rmedian'
1799 or 'poly'
[1855]1800
[513]1801 width: The width of the kernel in pixels. For hanning this is
1802 ignored otherwise it defauls to 5 pixels.
1803 For 'gaussian' it is the Full Width Half
1804 Maximum. For 'boxcar' it is the full width.
[1574]1805 For 'rmedian' and 'poly' it is the half width.
[1855]1806
[1574]1807 order: Optional parameter for 'poly' kernel (default is 2), to
1808 specify the order of the polnomial. Ignored by all other
1809 kernels.
[1855]1810
[1819]1811 plot: plot the original and the smoothed spectra.
1812 In this each indivual fit has to be approved, by
1813 typing 'y' or 'n'
[1855]1814
[513]1815 insitu: if False a new scantable is returned.
1816 Otherwise, the scaling is done in-situ
1817 The default is taken from .asaprc (False)
[1846]1818
[513]1819 """
1820 if insitu is None: insitu = rcParams['insitu']
[876]1821 self._math._setinsitu(insitu)
[513]1822 varlist = vars()
[1819]1823
1824 if plot: orgscan = self.copy()
1825
[1574]1826 s = scantable(self._math._smooth(self, kernel.lower(), width, order))
[876]1827 s._add_history("smooth", varlist)
[1819]1828
1829 if plot:
1830 if rcParams['plotter.gui']:
1831 from asap.asaplotgui import asaplotgui as asaplot
1832 else:
1833 from asap.asaplot import asaplot
1834 self._p=asaplot()
1835 self._p.set_panels()
1836 ylab=s._get_ordinate_label()
1837 #self._p.palette(0,["#777777","red"])
1838 for r in xrange(s.nrow()):
1839 xsm=s._getabcissa(r)
1840 ysm=s._getspectrum(r)
1841 xorg=orgscan._getabcissa(r)
1842 yorg=orgscan._getspectrum(r)
1843 self._p.clear()
1844 self._p.hold()
1845 self._p.set_axes('ylabel',ylab)
1846 self._p.set_axes('xlabel',s._getabcissalabel(r))
1847 self._p.set_axes('title',s._getsourcename(r))
1848 self._p.set_line(label='Original',color="#777777")
1849 self._p.plot(xorg,yorg)
1850 self._p.set_line(label='Smoothed',color="red")
1851 self._p.plot(xsm,ysm)
1852 ### Ugly part for legend
1853 for i in [0,1]:
1854 self._p.subplots[0]['lines'].append([self._p.subplots[0]['axes'].lines[i]])
1855 self._p.release()
1856 ### Ugly part for legend
1857 self._p.subplots[0]['lines']=[]
1858 res = raw_input("Accept smoothing ([y]/n): ")
1859 if res.upper() == 'N':
1860 s._setspectrum(yorg, r)
1861 self._p.unmap()
1862 self._p = None
1863 del orgscan
1864
[876]1865 if insitu: self._assign(s)
1866 else: return s
[513]1867
[1862]1868 @asaplog_post_dec
[1907]1869 def old_poly_baseline(self, mask=None, order=0, plot=False, uselin=False, insitu=None, rows=None):
[1846]1870 """\
[513]1871 Return a scan which has been baselined (all rows) by a polynomial.
[1907]1872
[513]1873 Parameters:
[1846]1874
[794]1875 mask: an optional mask
[1855]1876
[794]1877 order: the order of the polynomial (default is 0)
[1855]1878
[1061]1879 plot: plot the fit and the residual. In this each
1880 indivual fit has to be approved, by typing 'y'
1881 or 'n'
[1855]1882
[1391]1883 uselin: use linear polynomial fit
[1855]1884
[794]1885 insitu: if False a new scantable is returned.
1886 Otherwise, the scaling is done in-situ
1887 The default is taken from .asaprc (False)
[1846]1888
[1907]1889 rows: row numbers of spectra to be processed.
1890 (default is None: for all rows)
1891
1892 Example:
[513]1893 # return a scan baselined by a third order polynomial,
1894 # not using a mask
1895 bscan = scan.poly_baseline(order=3)
[1846]1896
[579]1897 """
[513]1898 if insitu is None: insitu = rcParams['insitu']
[1819]1899 if not insitu:
1900 workscan = self.copy()
1901 else:
1902 workscan = self
[513]1903 varlist = vars()
1904 if mask is None:
[1907]1905 mask = [True for i in xrange(self.nchan())]
[1819]1906
[1217]1907 try:
1908 f = fitter()
[1391]1909 if uselin:
1910 f.set_function(lpoly=order)
1911 else:
1912 f.set_function(poly=order)
[1819]1913
[1907]1914 if rows == None:
1915 rows = xrange(workscan.nrow())
1916 elif isinstance(rows, int):
1917 rows = [ rows ]
1918
[1819]1919 if len(rows) > 0:
1920 self.blpars = []
[1907]1921 self.masklists = []
1922 self.actualmask = []
1923
[1819]1924 for r in rows:
1925 f.x = workscan._getabcissa(r)
1926 f.y = workscan._getspectrum(r)
[1907]1927 f.mask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
[1819]1928 f.data = None
1929 f.fit()
1930 if plot:
1931 f.plot(residual=True)
1932 x = raw_input("Accept fit ( [y]/n ): ")
1933 if x.upper() == 'N':
1934 self.blpars.append(None)
[1907]1935 self.masklists.append(None)
1936 self.actualmask.append(None)
[1819]1937 continue
1938 workscan._setspectrum(f.fitter.getresidual(), r)
1939 self.blpars.append(f.get_parameters())
[1931]1940 self.masklists.append(workscan.get_masklist(f.mask, row=r, silent=True))
[1907]1941 self.actualmask.append(f.mask)
[1819]1942
1943 if plot:
1944 f._p.unmap()
1945 f._p = None
1946 workscan._add_history("poly_baseline", varlist)
[1856]1947 if insitu:
1948 self._assign(workscan)
1949 else:
1950 return workscan
[1217]1951 except RuntimeError:
1952 msg = "The fit failed, possibly because it didn't converge."
[1859]1953 raise RuntimeError(msg)
[513]1954
[1931]1955 @asaplog_post_dec
[1907]1956 def poly_baseline(self, mask=None, order=0, plot=False, batch=False, insitu=None, rows=None):
1957 """\
1958 Return a scan which has been baselined (all rows) by a polynomial.
1959 Parameters:
1960 mask: an optional mask
1961 order: the order of the polynomial (default is 0)
1962 plot: plot the fit and the residual. In this each
1963 indivual fit has to be approved, by typing 'y'
1964 or 'n'. Ignored if batch = True.
1965 batch: if True a faster algorithm is used and logs
1966 including the fit results are not output
1967 (default is False)
1968 insitu: if False a new scantable is returned.
1969 Otherwise, the scaling is done in-situ
1970 The default is taken from .asaprc (False)
[1931]1971 rows: row numbers of spectra to be baselined.
[1907]1972 (default is None: for all rows)
1973 Example:
1974 # return a scan baselined by a third order polynomial,
1975 # not using a mask
1976 bscan = scan.poly_baseline(order=3)
1977 """
[1931]1978
1979 varlist = vars()
1980
[1907]1981 if insitu is None: insitu = rcParams["insitu"]
1982 if insitu:
1983 workscan = self
1984 else:
1985 workscan = self.copy()
1986
1987 nchan = workscan.nchan()
1988
1989 if mask is None:
1990 mask = [True for i in xrange(nchan)]
1991
1992 try:
1993 if rows == None:
1994 rows = xrange(workscan.nrow())
1995 elif isinstance(rows, int):
1996 rows = [ rows ]
1997
1998 if len(rows) > 0:
[1931]1999 workscan.blpars = []
2000 workscan.masklists = []
2001 workscan.actualmask = []
[1907]2002
2003 if batch:
[1931]2004 workscan._poly_baseline_batch(mask, order)
[1907]2005 elif plot:
2006 f = fitter()
2007 f.set_function(lpoly=order)
2008 for r in rows:
2009 f.x = workscan._getabcissa(r)
2010 f.y = workscan._getspectrum(r)
2011 f.mask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
2012 f.data = None
2013 f.fit()
2014
2015 f.plot(residual=True)
2016 accept_fit = raw_input("Accept fit ( [y]/n ): ")
2017 if accept_fit.upper() == "N":
2018 self.blpars.append(None)
2019 self.masklists.append(None)
2020 self.actualmask.append(None)
2021 continue
2022 workscan._setspectrum(f.fitter.getresidual(), r)
[1931]2023 workscan.blpars.append(f.get_parameters())
2024 workscan.masklists.append(workscan.get_masklist(f.mask, row=r))
2025 workscan.actualmask.append(f.mask)
[1907]2026
2027 f._p.unmap()
2028 f._p = None
2029 else:
2030 for r in rows:
[1931]2031 fitparams = workscan._poly_baseline(mask, order, r)
2032 params = fitparams.getparameters()
2033 fmtd = ", ".join(["p%d = %3.6f" % (i, v) for i, v in enumerate(params)])
2034 errors = fitparams.geterrors()
2035 fmask = mask_and(mask, workscan._getmask(r))
2036
2037 workscan.blpars.append({"params":params,
2038 "fixed": fitparams.getfixedparameters(),
2039 "formatted":fmtd, "errors":errors})
2040 workscan.masklists.append(workscan.get_masklist(fmask, r, silent=True))
2041 workscan.actualmask.append(fmask)
[1907]2042
[1931]2043 asaplog.push(fmtd)
[1907]2044
2045 workscan._add_history("poly_baseline", varlist)
2046
2047 if insitu:
2048 self._assign(workscan)
2049 else:
2050 return workscan
2051
[1919]2052 except RuntimeError, e:
[1907]2053 msg = "The fit failed, possibly because it didn't converge."
2054 if rcParams["verbose"]:
[1919]2055 asaplog.push(str(e))
[1907]2056 asaplog.push(str(msg))
2057 return
2058 else:
[1919]2059 raise RuntimeError(str(e)+'\n'+msg)
[1907]2060
2061
2062 def auto_poly_baseline(self, mask=None, edge=(0, 0), order=0,
[1280]2063 threshold=3, chan_avg_limit=1, plot=False,
[1907]2064 insitu=None, rows=None):
[1846]2065 """\
[1931]2066 Return a scan which has been baselined (all rows) by a polynomial.
[880]2067 Spectral lines are detected first using linefinder and masked out
2068 to avoid them affecting the baseline solution.
2069
2070 Parameters:
[1846]2071
[880]2072 mask: an optional mask retreived from scantable
[1846]2073
2074 edge: an optional number of channel to drop at the edge of
2075 spectrum. If only one value is
[880]2076 specified, the same number will be dropped from
2077 both sides of the spectrum. Default is to keep
[907]2078 all channels. Nested tuples represent individual
[976]2079 edge selection for different IFs (a number of spectral
2080 channels can be different)
[1846]2081
[880]2082 order: the order of the polynomial (default is 0)
[1846]2083
[880]2084 threshold: the threshold used by line finder. It is better to
2085 keep it large as only strong lines affect the
2086 baseline solution.
[1846]2087
[1280]2088 chan_avg_limit:
2089 a maximum number of consequtive spectral channels to
2090 average during the search of weak and broad lines.
2091 The default is no averaging (and no search for weak
2092 lines). If such lines can affect the fitted baseline
2093 (e.g. a high order polynomial is fitted), increase this
2094 parameter (usually values up to 8 are reasonable). Most
2095 users of this method should find the default value
2096 sufficient.
[1846]2097
[1061]2098 plot: plot the fit and the residual. In this each
2099 indivual fit has to be approved, by typing 'y'
2100 or 'n'
[1846]2101
[880]2102 insitu: if False a new scantable is returned.
2103 Otherwise, the scaling is done in-situ
2104 The default is taken from .asaprc (False)
[1907]2105 rows: row numbers of spectra to be processed.
2106 (default is None: for all rows)
[880]2107
[1846]2108
2109 Example::
2110
2111 scan2 = scan.auto_poly_baseline(order=7, insitu=False)
2112
[880]2113 """
2114 if insitu is None: insitu = rcParams['insitu']
2115 varlist = vars()
2116 from asap.asaplinefind import linefinder
2117 from asap import _is_sequence_or_number as _is_valid
2118
[976]2119 # check whether edge is set up for each IF individually
[1118]2120 individualedge = False;
2121 if len(edge) > 1:
2122 if isinstance(edge[0], list) or isinstance(edge[0], tuple):
2123 individualedge = True;
[907]2124
[1118]2125 if not _is_valid(edge, int) and not individualedge:
[909]2126 raise ValueError, "Parameter 'edge' has to be an integer or a \
[907]2127 pair of integers specified as a tuple. Nested tuples are allowed \
2128 to make individual selection for different IFs."
[919]2129
[1118]2130 curedge = (0, 0)
2131 if individualedge:
2132 for edgepar in edge:
2133 if not _is_valid(edgepar, int):
2134 raise ValueError, "Each element of the 'edge' tuple has \
2135 to be a pair of integers or an integer."
[907]2136 else:
[1118]2137 curedge = edge;
[880]2138
[1907]2139 if not insitu:
2140 workscan = self.copy()
2141 else:
2142 workscan = self
2143
[880]2144 # setup fitter
2145 f = fitter()
[1907]2146 f.set_function(lpoly=order)
[880]2147
2148 # setup line finder
[1118]2149 fl = linefinder()
[1268]2150 fl.set_options(threshold=threshold,avg_limit=chan_avg_limit)
[880]2151
[907]2152 fl.set_scan(workscan)
2153
[1907]2154 if mask is None:
2155 mask = _n_bools(workscan.nchan(), True)
2156
2157 if rows is None:
2158 rows = xrange(workscan.nrow())
2159 elif isinstance(rows, int):
2160 rows = [ rows ]
2161
[1819]2162 # Save parameters of baseline fits & masklists as a class attribute.
2163 # NOTICE: It does not reflect changes in scantable!
2164 if len(rows) > 0:
2165 self.blpars=[]
2166 self.masklists=[]
[1907]2167 self.actualmask=[]
[880]2168 asaplog.push("Processing:")
2169 for r in rows:
[1118]2170 msg = " Scan[%d] Beam[%d] IF[%d] Pol[%d] Cycle[%d]" % \
2171 (workscan.getscan(r), workscan.getbeam(r), workscan.getif(r), \
2172 workscan.getpol(r), workscan.getcycle(r))
[880]2173 asaplog.push(msg, False)
[907]2174
[976]2175 # figure out edge parameter
[1118]2176 if individualedge:
2177 if len(edge) >= workscan.getif(r):
2178 raise RuntimeError, "Number of edge elements appear to " \
2179 "be less than the number of IFs"
2180 curedge = edge[workscan.getif(r)]
[919]2181
[1907]2182 actualmask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
[1819]2183
[976]2184 # setup line finder
[1819]2185 fl.find_lines(r, actualmask, curedge)
[1907]2186
[1819]2187 f.x = workscan._getabcissa(r)
2188 f.y = workscan._getspectrum(r)
[1907]2189 f.mask = fl.get_mask()
[1819]2190 f.data = None
[880]2191 f.fit()
[1819]2192
2193 # Show mask list
[1931]2194 masklist=workscan.get_masklist(f.mask, row=r, silent=True)
[1819]2195 msg = "mask range: "+str(masklist)
2196 asaplog.push(msg, False)
2197
[1061]2198 if plot:
2199 f.plot(residual=True)
2200 x = raw_input("Accept fit ( [y]/n ): ")
2201 if x.upper() == 'N':
[1819]2202 self.blpars.append(None)
2203 self.masklists.append(None)
[1907]2204 self.actualmask.append(None)
[1061]2205 continue
[1819]2206
[880]2207 workscan._setspectrum(f.fitter.getresidual(), r)
[1819]2208 self.blpars.append(f.get_parameters())
2209 self.masklists.append(masklist)
[1907]2210 self.actualmask.append(f.mask)
[1061]2211 if plot:
2212 f._p.unmap()
2213 f._p = None
2214 workscan._add_history("auto_poly_baseline", varlist)
[880]2215 if insitu:
2216 self._assign(workscan)
2217 else:
2218 return workscan
2219
[1862]2220 @asaplog_post_dec
[914]2221 def rotate_linpolphase(self, angle):
[1846]2222 """\
[914]2223 Rotate the phase of the complex polarization O=Q+iU correlation.
2224 This is always done in situ in the raw data. So if you call this
2225 function more than once then each call rotates the phase further.
[1846]2226
[914]2227 Parameters:
[1846]2228
[914]2229 angle: The angle (degrees) to rotate (add) by.
[1846]2230
2231 Example::
2232
[914]2233 scan.rotate_linpolphase(2.3)
[1846]2234
[914]2235 """
2236 varlist = vars()
[936]2237 self._math._rotate_linpolphase(self, angle)
[914]2238 self._add_history("rotate_linpolphase", varlist)
2239 return
[710]2240
[1862]2241 @asaplog_post_dec
[914]2242 def rotate_xyphase(self, angle):
[1846]2243 """\
[914]2244 Rotate the phase of the XY correlation. This is always done in situ
2245 in the data. So if you call this function more than once
2246 then each call rotates the phase further.
[1846]2247
[914]2248 Parameters:
[1846]2249
[914]2250 angle: The angle (degrees) to rotate (add) by.
[1846]2251
2252 Example::
2253
[914]2254 scan.rotate_xyphase(2.3)
[1846]2255
[914]2256 """
2257 varlist = vars()
[936]2258 self._math._rotate_xyphase(self, angle)
[914]2259 self._add_history("rotate_xyphase", varlist)
2260 return
2261
[1862]2262 @asaplog_post_dec
[914]2263 def swap_linears(self):
[1846]2264 """\
[1573]2265 Swap the linear polarisations XX and YY, or better the first two
[1348]2266 polarisations as this also works for ciculars.
[914]2267 """
2268 varlist = vars()
[936]2269 self._math._swap_linears(self)
[914]2270 self._add_history("swap_linears", varlist)
2271 return
2272
[1862]2273 @asaplog_post_dec
[914]2274 def invert_phase(self):
[1846]2275 """\
[914]2276 Invert the phase of the complex polarisation
2277 """
2278 varlist = vars()
[936]2279 self._math._invert_phase(self)
[914]2280 self._add_history("invert_phase", varlist)
2281 return
2282
[1862]2283 @asaplog_post_dec
[876]2284 def add(self, offset, insitu=None):
[1846]2285 """\
[513]2286 Return a scan where all spectra have the offset added
[1846]2287
[513]2288 Parameters:
[1846]2289
[513]2290 offset: the offset
[1855]2291
[513]2292 insitu: if False a new scantable is returned.
2293 Otherwise, the scaling is done in-situ
2294 The default is taken from .asaprc (False)
[1846]2295
[513]2296 """
2297 if insitu is None: insitu = rcParams['insitu']
[876]2298 self._math._setinsitu(insitu)
[513]2299 varlist = vars()
[876]2300 s = scantable(self._math._unaryop(self, offset, "ADD", False))
[1118]2301 s._add_history("add", varlist)
[876]2302 if insitu:
2303 self._assign(s)
2304 else:
[513]2305 return s
2306
[1862]2307 @asaplog_post_dec
[1308]2308 def scale(self, factor, tsys=True, insitu=None):
[1846]2309 """\
2310
[1936]2311 Return a scan where all spectra are scaled by the given 'factor'
[1846]2312
[513]2313 Parameters:
[1846]2314
[1819]2315 factor: the scaling factor (float or 1D float list)
[1855]2316
[513]2317 insitu: if False a new scantable is returned.
2318 Otherwise, the scaling is done in-situ
2319 The default is taken from .asaprc (False)
[1855]2320
[513]2321 tsys: if True (default) then apply the operation to Tsys
2322 as well as the data
[1846]2323
[513]2324 """
2325 if insitu is None: insitu = rcParams['insitu']
[876]2326 self._math._setinsitu(insitu)
[513]2327 varlist = vars()
[1819]2328 s = None
2329 import numpy
2330 if isinstance(factor, list) or isinstance(factor, numpy.ndarray):
2331 if isinstance(factor[0], list) or isinstance(factor[0], numpy.ndarray):
2332 from asapmath import _array2dOp
2333 s = _array2dOp( self.copy(), factor, "MUL", tsys )
2334 else:
2335 s = scantable( self._math._arrayop( self.copy(), factor, "MUL", tsys ) )
2336 else:
2337 s = scantable(self._math._unaryop(self.copy(), factor, "MUL", tsys))
[1118]2338 s._add_history("scale", varlist)
[876]2339 if insitu:
2340 self._assign(s)
2341 else:
[513]2342 return s
2343
[1504]2344 def set_sourcetype(self, match, matchtype="pattern",
2345 sourcetype="reference"):
[1846]2346 """\
[1502]2347 Set the type of the source to be an source or reference scan
[1846]2348 using the provided pattern.
2349
[1502]2350 Parameters:
[1846]2351
[1504]2352 match: a Unix style pattern, regular expression or selector
[1855]2353
[1504]2354 matchtype: 'pattern' (default) UNIX style pattern or
2355 'regex' regular expression
[1855]2356
[1502]2357 sourcetype: the type of the source to use (source/reference)
[1846]2358
[1502]2359 """
2360 varlist = vars()
2361 basesel = self.get_selection()
2362 stype = -1
2363 if sourcetype.lower().startswith("r"):
2364 stype = 1
2365 elif sourcetype.lower().startswith("s"):
2366 stype = 0
[1504]2367 else:
[1502]2368 raise ValueError("Illegal sourcetype use s(ource) or r(eference)")
[1504]2369 if matchtype.lower().startswith("p"):
2370 matchtype = "pattern"
2371 elif matchtype.lower().startswith("r"):
2372 matchtype = "regex"
2373 else:
2374 raise ValueError("Illegal matchtype, use p(attern) or r(egex)")
[1502]2375 sel = selector()
2376 if isinstance(match, selector):
2377 sel = match
2378 else:
[1504]2379 sel.set_query("SRCNAME == %s('%s')" % (matchtype, match))
[1502]2380 self.set_selection(basesel+sel)
2381 self._setsourcetype(stype)
2382 self.set_selection(basesel)
[1573]2383 self._add_history("set_sourcetype", varlist)
[1502]2384
[1862]2385 @asaplog_post_dec
[1857]2386 @preserve_selection
[1819]2387 def auto_quotient(self, preserve=True, mode='paired', verify=False):
[1846]2388 """\
[670]2389 This function allows to build quotients automatically.
[1819]2390 It assumes the observation to have the same number of
[670]2391 "ons" and "offs"
[1846]2392
[670]2393 Parameters:
[1846]2394
[710]2395 preserve: you can preserve (default) the continuum or
2396 remove it. The equations used are
[1857]2397
[670]2398 preserve: Output = Toff * (on/off) - Toff
[1857]2399
[1070]2400 remove: Output = Toff * (on/off) - Ton
[1855]2401
[1573]2402 mode: the on/off detection mode
[1348]2403 'paired' (default)
2404 identifies 'off' scans by the
2405 trailing '_R' (Mopra/Parkes) or
2406 '_e'/'_w' (Tid) and matches
2407 on/off pairs from the observing pattern
[1502]2408 'time'
2409 finds the closest off in time
[1348]2410
[1857]2411 .. todo:: verify argument is not implemented
2412
[670]2413 """
[1857]2414 varlist = vars()
[1348]2415 modes = ["time", "paired"]
[670]2416 if not mode in modes:
[876]2417 msg = "please provide valid mode. Valid modes are %s" % (modes)
2418 raise ValueError(msg)
[1348]2419 s = None
2420 if mode.lower() == "paired":
[1857]2421 sel = self.get_selection()
[1875]2422 sel.set_query("SRCTYPE==psoff")
[1356]2423 self.set_selection(sel)
[1348]2424 offs = self.copy()
[1875]2425 sel.set_query("SRCTYPE==pson")
[1356]2426 self.set_selection(sel)
[1348]2427 ons = self.copy()
2428 s = scantable(self._math._quotient(ons, offs, preserve))
2429 elif mode.lower() == "time":
2430 s = scantable(self._math._auto_quotient(self, mode, preserve))
[1118]2431 s._add_history("auto_quotient", varlist)
[876]2432 return s
[710]2433
[1862]2434 @asaplog_post_dec
[1145]2435 def mx_quotient(self, mask = None, weight='median', preserve=True):
[1846]2436 """\
[1143]2437 Form a quotient using "off" beams when observing in "MX" mode.
[1846]2438
[1143]2439 Parameters:
[1846]2440
[1145]2441 mask: an optional mask to be used when weight == 'stddev'
[1855]2442
[1143]2443 weight: How to average the off beams. Default is 'median'.
[1855]2444
[1145]2445 preserve: you can preserve (default) the continuum or
[1855]2446 remove it. The equations used are:
[1846]2447
[1855]2448 preserve: Output = Toff * (on/off) - Toff
2449
2450 remove: Output = Toff * (on/off) - Ton
2451
[1217]2452 """
[1593]2453 mask = mask or ()
[1141]2454 varlist = vars()
2455 on = scantable(self._math._mx_extract(self, 'on'))
[1143]2456 preoff = scantable(self._math._mx_extract(self, 'off'))
2457 off = preoff.average_time(mask=mask, weight=weight, scanav=False)
[1217]2458 from asapmath import quotient
[1145]2459 q = quotient(on, off, preserve)
[1143]2460 q._add_history("mx_quotient", varlist)
[1217]2461 return q
[513]2462
[1862]2463 @asaplog_post_dec
[718]2464 def freq_switch(self, insitu=None):
[1846]2465 """\
[718]2466 Apply frequency switching to the data.
[1846]2467
[718]2468 Parameters:
[1846]2469
[718]2470 insitu: if False a new scantable is returned.
2471 Otherwise, the swictching is done in-situ
2472 The default is taken from .asaprc (False)
[1846]2473
[718]2474 """
2475 if insitu is None: insitu = rcParams['insitu']
[876]2476 self._math._setinsitu(insitu)
[718]2477 varlist = vars()
[876]2478 s = scantable(self._math._freqswitch(self))
[1118]2479 s._add_history("freq_switch", varlist)
[1856]2480 if insitu:
2481 self._assign(s)
2482 else:
2483 return s
[718]2484
[1862]2485 @asaplog_post_dec
[780]2486 def recalc_azel(self):
[1846]2487 """Recalculate the azimuth and elevation for each position."""
[780]2488 varlist = vars()
[876]2489 self._recalcazel()
[780]2490 self._add_history("recalc_azel", varlist)
2491 return
2492
[1862]2493 @asaplog_post_dec
[513]2494 def __add__(self, other):
2495 varlist = vars()
2496 s = None
2497 if isinstance(other, scantable):
[1573]2498 s = scantable(self._math._binaryop(self, other, "ADD"))
[513]2499 elif isinstance(other, float):
[876]2500 s = scantable(self._math._unaryop(self, other, "ADD", False))
[513]2501 else:
[718]2502 raise TypeError("Other input is not a scantable or float value")
[513]2503 s._add_history("operator +", varlist)
2504 return s
2505
[1862]2506 @asaplog_post_dec
[513]2507 def __sub__(self, other):
2508 """
2509 implicit on all axes and on Tsys
2510 """
2511 varlist = vars()
2512 s = None
2513 if isinstance(other, scantable):
[1588]2514 s = scantable(self._math._binaryop(self, other, "SUB"))
[513]2515 elif isinstance(other, float):
[876]2516 s = scantable(self._math._unaryop(self, other, "SUB", False))
[513]2517 else:
[718]2518 raise TypeError("Other input is not a scantable or float value")
[513]2519 s._add_history("operator -", varlist)
2520 return s
[710]2521
[1862]2522 @asaplog_post_dec
[513]2523 def __mul__(self, other):
2524 """
2525 implicit on all axes and on Tsys
2526 """
2527 varlist = vars()
2528 s = None
2529 if isinstance(other, scantable):
[1588]2530 s = scantable(self._math._binaryop(self, other, "MUL"))
[513]2531 elif isinstance(other, float):
[876]2532 s = scantable(self._math._unaryop(self, other, "MUL", False))
[513]2533 else:
[718]2534 raise TypeError("Other input is not a scantable or float value")
[513]2535 s._add_history("operator *", varlist)
2536 return s
2537
[710]2538
[1862]2539 @asaplog_post_dec
[513]2540 def __div__(self, other):
2541 """
2542 implicit on all axes and on Tsys
2543 """
2544 varlist = vars()
2545 s = None
2546 if isinstance(other, scantable):
[1589]2547 s = scantable(self._math._binaryop(self, other, "DIV"))
[513]2548 elif isinstance(other, float):
2549 if other == 0.0:
[718]2550 raise ZeroDivisionError("Dividing by zero is not recommended")
[876]2551 s = scantable(self._math._unaryop(self, other, "DIV", False))
[513]2552 else:
[718]2553 raise TypeError("Other input is not a scantable or float value")
[513]2554 s._add_history("operator /", varlist)
2555 return s
2556
[1862]2557 @asaplog_post_dec
[530]2558 def get_fit(self, row=0):
[1846]2559 """\
[530]2560 Print or return the stored fits for a row in the scantable
[1846]2561
[530]2562 Parameters:
[1846]2563
[530]2564 row: the row which the fit has been applied to.
[1846]2565
[530]2566 """
2567 if row > self.nrow():
2568 return
[976]2569 from asap.asapfit import asapfit
[530]2570 fit = asapfit(self._getfit(row))
[1859]2571 asaplog.push( '%s' %(fit) )
2572 return fit.as_dict()
[530]2573
[1483]2574 def flag_nans(self):
[1846]2575 """\
[1483]2576 Utility function to flag NaN values in the scantable.
2577 """
2578 import numpy
2579 basesel = self.get_selection()
2580 for i in range(self.nrow()):
[1589]2581 sel = self.get_row_selector(i)
2582 self.set_selection(basesel+sel)
[1483]2583 nans = numpy.isnan(self._getspectrum(0))
2584 if numpy.any(nans):
2585 bnans = [ bool(v) for v in nans]
2586 self.flag(bnans)
2587 self.set_selection(basesel)
2588
[1588]2589 def get_row_selector(self, rowno):
2590 return selector(beams=self.getbeam(rowno),
2591 ifs=self.getif(rowno),
2592 pols=self.getpol(rowno),
2593 scans=self.getscan(rowno),
2594 cycles=self.getcycle(rowno))
[1573]2595
[484]2596 def _add_history(self, funcname, parameters):
[1435]2597 if not rcParams['scantable.history']:
2598 return
[484]2599 # create date
2600 sep = "##"
2601 from datetime import datetime
2602 dstr = datetime.now().strftime('%Y/%m/%d %H:%M:%S')
2603 hist = dstr+sep
2604 hist += funcname+sep#cdate+sep
2605 if parameters.has_key('self'): del parameters['self']
[1118]2606 for k, v in parameters.iteritems():
[484]2607 if type(v) is dict:
[1118]2608 for k2, v2 in v.iteritems():
[484]2609 hist += k2
2610 hist += "="
[1118]2611 if isinstance(v2, scantable):
[484]2612 hist += 'scantable'
2613 elif k2 == 'mask':
[1118]2614 if isinstance(v2, list) or isinstance(v2, tuple):
[513]2615 hist += str(self._zip_mask(v2))
2616 else:
2617 hist += str(v2)
[484]2618 else:
[513]2619 hist += str(v2)
[484]2620 else:
2621 hist += k
2622 hist += "="
[1118]2623 if isinstance(v, scantable):
[484]2624 hist += 'scantable'
2625 elif k == 'mask':
[1118]2626 if isinstance(v, list) or isinstance(v, tuple):
[513]2627 hist += str(self._zip_mask(v))
2628 else:
2629 hist += str(v)
[484]2630 else:
2631 hist += str(v)
2632 hist += sep
2633 hist = hist[:-2] # remove trailing '##'
2634 self._addhistory(hist)
2635
[710]2636
[484]2637 def _zip_mask(self, mask):
2638 mask = list(mask)
2639 i = 0
2640 segments = []
2641 while mask[i:].count(1):
2642 i += mask[i:].index(1)
2643 if mask[i:].count(0):
2644 j = i + mask[i:].index(0)
2645 else:
[710]2646 j = len(mask)
[1118]2647 segments.append([i, j])
[710]2648 i = j
[484]2649 return segments
[714]2650
[626]2651 def _get_ordinate_label(self):
2652 fu = "("+self.get_fluxunit()+")"
2653 import re
2654 lbl = "Intensity"
[1118]2655 if re.match(".K.", fu):
[626]2656 lbl = "Brightness Temperature "+ fu
[1118]2657 elif re.match(".Jy.", fu):
[626]2658 lbl = "Flux density "+ fu
2659 return lbl
[710]2660
[876]2661 def _check_ifs(self):
2662 nchans = [self.nchan(i) for i in range(self.nif(-1))]
[889]2663 nchans = filter(lambda t: t > 0, nchans)
[876]2664 return (sum(nchans)/len(nchans) == nchans[0])
[976]2665
[1862]2666 @asaplog_post_dec
[1916]2667 #def _fill(self, names, unit, average, getpt, antenna):
2668 def _fill(self, names, unit, average, opts={}):
[976]2669 first = True
2670 fullnames = []
2671 for name in names:
2672 name = os.path.expandvars(name)
2673 name = os.path.expanduser(name)
2674 if not os.path.exists(name):
2675 msg = "File '%s' does not exists" % (name)
2676 raise IOError(msg)
2677 fullnames.append(name)
2678 if average:
2679 asaplog.push('Auto averaging integrations')
[1079]2680 stype = int(rcParams['scantable.storage'].lower() == 'disk')
[976]2681 for name in fullnames:
[1073]2682 tbl = Scantable(stype)
[1843]2683 r = filler(tbl)
[1504]2684 rx = rcParams['scantable.reference']
[1843]2685 r.setreferenceexpr(rx)
[976]2686 msg = "Importing %s..." % (name)
[1118]2687 asaplog.push(msg, False)
[1916]2688 #opts = {'ms': {'antenna' : antenna, 'getpt': getpt} }
[1904]2689 r.open(name, opts)# antenna, -1, -1, getpt)
[1843]2690 r.fill()
[976]2691 if average:
[1118]2692 tbl = self._math._average((tbl, ), (), 'NONE', 'SCAN')
[976]2693 if not first:
2694 tbl = self._math._merge([self, tbl])
2695 Scantable.__init__(self, tbl)
[1843]2696 r.close()
[1118]2697 del r, tbl
[976]2698 first = False
[1861]2699 #flush log
2700 asaplog.post()
[976]2701 if unit is not None:
2702 self.set_fluxunit(unit)
[1824]2703 if not is_casapy():
2704 self.set_freqframe(rcParams['scantable.freqframe'])
[976]2705
[1402]2706 def __getitem__(self, key):
2707 if key < 0:
2708 key += self.nrow()
2709 if key >= self.nrow():
2710 raise IndexError("Row index out of range.")
2711 return self._getspectrum(key)
2712
2713 def __setitem__(self, key, value):
2714 if key < 0:
2715 key += self.nrow()
2716 if key >= self.nrow():
2717 raise IndexError("Row index out of range.")
2718 if not hasattr(value, "__len__") or \
2719 len(value) > self.nchan(self.getif(key)):
2720 raise ValueError("Spectrum length doesn't match.")
2721 return self._setspectrum(value, key)
2722
2723 def __len__(self):
2724 return self.nrow()
2725
2726 def __iter__(self):
2727 for i in range(len(self)):
2728 yield self[i]
Note: See TracBrowser for help on using the repository browser.