source: branches/alma/src/STMath.cpp @ 1719

Last change on this file since 1719 was 1719, checked in by Takeshi Nakazato, 14 years ago

New Development: No

JIRA Issue: Yes CAS-1809

Ready to Release: For 3.0.2

Interface Changes: No

What Interface Changed: Please list interface changes

Test Programs: List test programs

Put in Release Notes: Yes/No?

Module(s): Module Names change impacts.

Description: Describe your changes here...

Changed Logging.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 162.8 KB
Line 
1//
2// C++ Implementation: STMath
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2006
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12
13#include <casa/iomanip.h>
14#include <casa/Exceptions/Error.h>
15#include <casa/Containers/Block.h>
16#include <casa/BasicSL/String.h>
17#include <casa/Arrays/MaskArrLogi.h>
18#include <casa/Arrays/MaskArrMath.h>
19#include <casa/Arrays/ArrayLogical.h>
20#include <casa/Arrays/ArrayMath.h>
21#include <casa/Arrays/Slice.h>
22#include <casa/Arrays/Slicer.h>
23#include <casa/Containers/RecordField.h>
24#include <tables/Tables/TableRow.h>
25#include <tables/Tables/TableVector.h>
26#include <tables/Tables/TabVecMath.h>
27#include <tables/Tables/ExprNode.h>
28#include <tables/Tables/TableRecord.h>
29#include <tables/Tables/TableParse.h>
30#include <tables/Tables/ReadAsciiTable.h>
31#include <tables/Tables/TableIter.h>
32#include <tables/Tables/TableCopy.h>
33#include <scimath/Mathematics/FFTServer.h>
34
35#include <lattices/Lattices/LatticeUtilities.h>
36
37#include <coordinates/Coordinates/SpectralCoordinate.h>
38#include <coordinates/Coordinates/CoordinateSystem.h>
39#include <coordinates/Coordinates/CoordinateUtil.h>
40#include <coordinates/Coordinates/FrequencyAligner.h>
41
42#include <scimath/Mathematics/VectorKernel.h>
43#include <scimath/Mathematics/Convolver.h>
44#include <scimath/Functionals/Polynomial.h>
45
46#include <atnf/PKSIO/SrcType.h>
47
48#include <casa/Logging/LogIO.h>
49#include <sstream>
50
51#include "MathUtils.h"
52#include "RowAccumulator.h"
53#include "STAttr.h"
54#include "STMath.h"
55#include "STSelector.h"
56
57using namespace casa;
58
59using namespace asap;
60
61// tolerance for direction comparison (rad)
62#define TOL_OTF    1.0e-15
63#define TOL_POINT  2.9088821e-4  // 1 arcmin
64
65STMath::STMath(bool insitu) :
66  insitu_(insitu)
67{
68}
69
70
71STMath::~STMath()
72{
73}
74
75CountedPtr<Scantable>
76STMath::average( const std::vector<CountedPtr<Scantable> >& in,
77                 const std::vector<bool>& mask,
78                 const std::string& weight,
79                 const std::string& avmode)
80{
81  LogIO os( LogOrigin( "STMath", "average()", WHERE ) ) ;
82  if ( avmode == "SCAN" && in.size() != 1 )
83    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
84                    "Use merge first."));
85  WeightType wtype = stringToWeight(weight);
86
87  // check if OTF observation
88  String obstype = in[0]->getHeader().obstype ;
89  Double tol = 0.0 ;
90  if ( (obstype.find( "OTF" ) != String::npos) || (obstype.find( "OBSERVE_TARGET" ) != String::npos) ) {
91    tol = TOL_OTF ;
92  }
93  else {
94    tol = TOL_POINT ;
95  }
96
97  // output
98  // clone as this is non insitu
99  bool insitu = insitu_;
100  setInsitu(false);
101  CountedPtr< Scantable > out = getScantable(in[0], true);
102  setInsitu(insitu);
103  std::vector<CountedPtr<Scantable> >::const_iterator stit = in.begin();
104  ++stit;
105  while ( stit != in.end() ) {
106    out->appendToHistoryTable((*stit)->history());
107    ++stit;
108  }
109
110  Table& tout = out->table();
111
112  /// @todo check if all scantables are conformant
113
114  ArrayColumn<Float> specColOut(tout,"SPECTRA");
115  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
116  ArrayColumn<Float> tsysColOut(tout,"TSYS");
117  ScalarColumn<Double> mjdColOut(tout,"TIME");
118  ScalarColumn<Double> intColOut(tout,"INTERVAL");
119  ScalarColumn<uInt> cycColOut(tout,"CYCLENO");
120  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
121
122  // set up the output table rows. These are based on the structure of the
123  // FIRST scantable in the vector
124  const Table& baset = in[0]->table();
125
126  Block<String> cols(3);
127  cols[0] = String("BEAMNO");
128  cols[1] = String("IFNO");
129  cols[2] = String("POLNO");
130  if ( avmode == "SOURCE" ) {
131    cols.resize(4);
132    cols[3] = String("SRCNAME");
133  }
134  if ( avmode == "SCAN"  && in.size() == 1) {
135    //cols.resize(4);
136    //cols[3] = String("SCANNO");
137    cols.resize(5);
138    cols[3] = String("SRCNAME");
139    cols[4] = String("SCANNO");
140  }
141  uInt outrowCount = 0;
142  TableIterator iter(baset, cols);
143//   int count = 0 ;
144  while (!iter.pastEnd()) {
145    Table subt = iter.table();
146//     // copy the first row of this selection into the new table
147//     tout.addRow();
148//     TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
149//     // re-index to 0
150//     if ( avmode != "SCAN" && avmode != "SOURCE" ) {
151//       scanColOut.put(outrowCount, uInt(0));
152//     }
153//     ++outrowCount;
154    MDirection::ScalarColumn dircol ;
155    dircol.attach( subt, "DIRECTION" ) ;
156    Int length = subt.nrow() ;
157    vector< Vector<Double> > dirs ;
158    vector<int> indexes ;
159    for ( Int i = 0 ; i < length ; i++ ) {
160      Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
161      //os << << count++ << ": " ;
162      //os << "[" << t[0] << "," << t[1] << "]" << LogIO::POST ;
163      bool adddir = true ;
164      for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
165        //if ( allTrue( t == dirs[j] ) ) {
166        Double dx = t[0] - dirs[j][0] ;
167        Double dy = t[1] - dirs[j][1] ;
168        Double dd = sqrt( dx * dx + dy * dy ) ;
169        //if ( allNearAbs( t, dirs[j], tol ) ) {
170        if ( dd <= tol ) {
171          adddir = false ;
172          break ;
173        }
174      }
175      if ( adddir ) {
176        dirs.push_back( t ) ;
177        indexes.push_back( i ) ;
178      }
179    }
180    uInt rowNum = dirs.size() ;
181    tout.addRow( rowNum ) ;
182    for ( uInt i = 0 ; i < rowNum ; i++ ) {
183      TableCopy::copyRows( tout, subt, outrowCount+i, indexes[i], 1 ) ;
184      // re-index to 0
185      if ( avmode != "SCAN" && avmode != "SOURCE" ) {
186        scanColOut.put(outrowCount+i, uInt(0));
187      }       
188    }
189    outrowCount += rowNum ;
190    ++iter;
191  }
192  RowAccumulator acc(wtype);
193  Vector<Bool> cmask(mask);
194  acc.setUserMask(cmask);
195  ROTableRow row(tout);
196  ROArrayColumn<Float> specCol, tsysCol;
197  ROArrayColumn<uChar> flagCol;
198  ROScalarColumn<Double> mjdCol, intCol;
199  ROScalarColumn<Int> scanIDCol;
200
201  Vector<uInt> rowstodelete;
202
203  for (uInt i=0; i < tout.nrow(); ++i) {
204    for ( int j=0; j < int(in.size()); ++j ) {
205      const Table& tin = in[j]->table();
206      const TableRecord& rec = row.get(i);
207      ROScalarColumn<Double> tmp(tin, "TIME");
208      Double td;tmp.get(0,td);
209      Table basesubt = tin(tin.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
210                       && tin.col("IFNO") == Int(rec.asuInt("IFNO"))
211                       && tin.col("POLNO") == Int(rec.asuInt("POLNO")) );
212      Table subt;
213      if ( avmode == "SOURCE") {
214        subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME") );
215      } else if (avmode == "SCAN") {
216        //subt = basesubt( basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO")) );
217        subt = basesubt( basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO"))
218                         && basesubt.col("SRCNAME") == rec.asString("SRCNAME") );
219      } else {
220        subt = basesubt;
221      }
222
223      vector<uInt> removeRows ;
224      uInt nrsubt = subt.nrow() ;
225      for ( uInt irow = 0 ; irow < nrsubt ; irow++ ) {
226        //if ( !allTrue((subt.col("DIRECTION").getArrayDouble(TableExprId(irow)))==rec.asArrayDouble("DIRECTION")) ) {
227        Vector<Double> x0 = (subt.col("DIRECTION").getArrayDouble(TableExprId(irow))) ;
228        Vector<Double> x1 = rec.asArrayDouble("DIRECTION") ;
229        double dx = x0[0] - x1[0] ;
230        double dy = x0[0] - x1[0] ;
231        Double dd = sqrt( dx * dx + dy * dy ) ;
232        //if ( !allNearAbs((subt.col("DIRECTION").getArrayDouble(TableExprId(irow))), rec.asArrayDouble("DIRECTION"), tol ) ) {
233        if ( dd > tol ) {
234          removeRows.push_back( irow ) ;
235        }
236      }
237      if ( removeRows.size() != 0 ) {
238        subt.removeRow( removeRows ) ;
239      }
240     
241      if ( nrsubt == removeRows.size() )
242        throw(AipsError("Averaging data is empty.")) ;
243
244      specCol.attach(subt,"SPECTRA");
245      flagCol.attach(subt,"FLAGTRA");
246      tsysCol.attach(subt,"TSYS");
247      intCol.attach(subt,"INTERVAL");
248      mjdCol.attach(subt,"TIME");
249      Vector<Float> spec,tsys;
250      Vector<uChar> flag;
251      Double inter,time;
252      for (uInt k = 0; k < subt.nrow(); ++k ) {
253        flagCol.get(k, flag);
254        Vector<Bool> bflag(flag.shape());
255        convertArray(bflag, flag);
256        /*
257        if ( allEQ(bflag, True) ) {
258        continue;//don't accumulate
259        }
260        */
261        specCol.get(k, spec);
262        tsysCol.get(k, tsys);
263        intCol.get(k, inter);
264        mjdCol.get(k, time);
265        // spectrum has to be added last to enable weighting by the other values
266        acc.add(spec, !bflag, tsys, inter, time);
267      }
268    }
269    const Vector<Bool>& msk = acc.getMask();
270    if ( allEQ(msk, False) ) {
271      uint n = rowstodelete.nelements();
272      rowstodelete.resize(n+1, True);
273      rowstodelete[n] = i;
274      continue;
275    }
276    //write out
277    if (acc.state()) {
278      Vector<uChar> flg(msk.shape());
279      convertArray(flg, !msk);
280      flagColOut.put(i, flg);
281      specColOut.put(i, acc.getSpectrum());
282      tsysColOut.put(i, acc.getTsys());
283      intColOut.put(i, acc.getInterval());
284      mjdColOut.put(i, acc.getTime());
285      // we should only have one cycle now -> reset it to be 0
286      // frequency switched data has different CYCLENO for different IFNO
287      // which requires resetting this value
288      cycColOut.put(i, uInt(0));
289    } else {
290      ostringstream oss;
291      oss << "For output row="<<i<<", all input rows of data are flagged. no averaging" << endl;
292      pushLog(String(oss));
293    }
294    acc.reset();
295  }
296  if (rowstodelete.nelements() > 0) {
297    //cout << rowstodelete << endl;
298    os << rowstodelete << LogIO::POST ;
299    tout.removeRow(rowstodelete);
300    if (tout.nrow() == 0) {
301      throw(AipsError("Can't average fully flagged data."));
302    }
303  }
304  return out;
305}
306
307CountedPtr< Scantable >
308  STMath::averageChannel( const CountedPtr < Scantable > & in,
309                          const std::string & mode,
310                          const std::string& avmode )
311{
312  // check if OTF observation
313  String obstype = in->getHeader().obstype ;
314  Double tol = 0.0 ;
315  if ( obstype.find( "OTF" ) != String::npos ) {
316    tol = TOL_OTF ;
317  }
318  else {
319    tol = TOL_POINT ;
320  }
321
322  // clone as this is non insitu
323  bool insitu = insitu_;
324  setInsitu(false);
325  CountedPtr< Scantable > out = getScantable(in, true);
326  setInsitu(insitu);
327  Table& tout = out->table();
328  ArrayColumn<Float> specColOut(tout,"SPECTRA");
329  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
330  ArrayColumn<Float> tsysColOut(tout,"TSYS");
331  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
332  ScalarColumn<Double> intColOut(tout, "INTERVAL");
333  Table tmp = in->table().sort("BEAMNO");
334  Block<String> cols(3);
335  cols[0] = String("BEAMNO");
336  cols[1] = String("IFNO");
337  cols[2] = String("POLNO");
338  if ( avmode == "SCAN") {
339    cols.resize(4);
340    cols[3] = String("SCANNO");
341  }
342  uInt outrowCount = 0;
343  uChar userflag = 1 << 7;
344  TableIterator iter(tmp, cols);
345  while (!iter.pastEnd()) {
346    Table subt = iter.table();
347    ROArrayColumn<Float> specCol, tsysCol;
348    ROArrayColumn<uChar> flagCol;
349    ROScalarColumn<Double> intCol(subt, "INTERVAL");
350    specCol.attach(subt,"SPECTRA");
351    flagCol.attach(subt,"FLAGTRA");
352    tsysCol.attach(subt,"TSYS");
353//     tout.addRow();
354//     TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
355//     if ( avmode != "SCAN") {
356//       scanColOut.put(outrowCount, uInt(0));
357//     }
358//     Vector<Float> tmp;
359//     specCol.get(0, tmp);
360//     uInt nchan = tmp.nelements();
361//     // have to do channel by channel here as MaskedArrMath
362//     // doesn't have partialMedians
363//     Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
364//     Vector<Float> outspec(nchan);
365//     Vector<uChar> outflag(nchan,0);
366//     Vector<Float> outtsys(1);/// @fixme when tsys is channel based
367//     for (uInt i=0; i<nchan; ++i) {
368//       Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
369//       MaskedArray<Float> ma = maskedArray(specs,flags);
370//       outspec[i] = median(ma);
371//       if ( allEQ(ma.getMask(), False) )
372//         outflag[i] = userflag;// flag data
373//     }
374//     outtsys[0] = median(tsysCol.getColumn());
375//     specColOut.put(outrowCount, outspec);
376//     flagColOut.put(outrowCount, outflag);
377//     tsysColOut.put(outrowCount, outtsys);
378//     Double intsum = sum(intCol.getColumn());
379//     intColOut.put(outrowCount, intsum);
380//     ++outrowCount;
381//     ++iter;
382    MDirection::ScalarColumn dircol ;
383    dircol.attach( subt, "DIRECTION" ) ;
384    Int length = subt.nrow() ;
385    vector< Vector<Double> > dirs ;
386    vector<int> indexes ;
387    for ( Int i = 0 ; i < length ; i++ ) {
388      Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
389      bool adddir = true ;
390      for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
391        //if ( allTrue( t == dirs[j] ) ) {
392        Double dx = t[0] - dirs[j][0] ;
393        Double dy = t[1] - dirs[j][1] ;
394        Double dd = sqrt( dx * dx + dy * dy ) ;
395        //if ( allNearAbs( t, dirs[j], tol ) ) {
396        if ( dd <= tol ) {
397          adddir = false ;
398          break ;
399        }
400      }
401      if ( adddir ) {
402        dirs.push_back( t ) ;
403        indexes.push_back( i ) ;
404      }
405    }
406    uInt rowNum = dirs.size() ;
407    tout.addRow( rowNum );
408    for ( uInt i = 0 ; i < rowNum ; i++ ) {
409      TableCopy::copyRows(tout, subt, outrowCount+i, indexes[i], 1) ;
410      if ( avmode != "SCAN") {
411        //scanColOut.put(outrowCount+i, uInt(0));
412      }
413    }
414    MDirection::ScalarColumn dircolOut ;
415    dircolOut.attach( tout, "DIRECTION" ) ;
416    for ( uInt irow = 0 ; irow < rowNum ; irow++ ) {
417      Vector<Double> t = dircolOut(outrowCount+irow).getAngle(Unit(String("rad"))).getValue() ;
418      Vector<Float> tmp;
419      specCol.get(0, tmp);
420      uInt nchan = tmp.nelements();
421      // have to do channel by channel here as MaskedArrMath
422      // doesn't have partialMedians
423      Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
424      // mask spectra for different DIRECTION
425      for ( uInt jrow = 0 ; jrow < subt.nrow() ; jrow++ ) {
426        Vector<Double> direction = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
427        //if ( t[0] != direction[0] || t[1] != direction[1] ) {
428        Double dx = t[0] - direction[0] ;
429        Double dy = t[1] - direction[1] ;
430        Double dd = sqrt( dx * dx + dy * dy ) ;
431        //if ( !allNearAbs( t, direction, tol ) ) {
432        if ( dd > tol ) {
433          flags[jrow] = userflag ;
434        }
435      }
436      Vector<Float> outspec(nchan);
437      Vector<uChar> outflag(nchan,0);
438      Vector<Float> outtsys(1);/// @fixme when tsys is channel based
439      for (uInt i=0; i<nchan; ++i) {
440        Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
441        MaskedArray<Float> ma = maskedArray(specs,flags);
442        outspec[i] = median(ma);
443        if ( allEQ(ma.getMask(), False) )
444          outflag[i] = userflag;// flag data
445      }
446      outtsys[0] = median(tsysCol.getColumn());
447      specColOut.put(outrowCount+irow, outspec);
448      flagColOut.put(outrowCount+irow, outflag);
449      tsysColOut.put(outrowCount+irow, outtsys);
450      Vector<Double> integ = intCol.getColumn() ;
451      MaskedArray<Double> mi = maskedArray( integ, flags ) ;
452      Double intsum = sum(mi);
453      intColOut.put(outrowCount+irow, intsum);
454    }
455    outrowCount += rowNum ;
456    ++iter;
457  }
458  return out;
459}
460
461CountedPtr< Scantable > STMath::getScantable(const CountedPtr< Scantable >& in,
462                                             bool droprows)
463{
464  if (insitu_) {
465    return in;
466  }
467  else {
468    // clone
469    return CountedPtr<Scantable>(new Scantable(*in, Bool(droprows)));
470  }
471}
472
473CountedPtr< Scantable > STMath::unaryOperate( const CountedPtr< Scantable >& in,
474                                              float val,
475                                              const std::string& mode,
476                                              bool tsys )
477{
478  CountedPtr< Scantable > out = getScantable(in, false);
479  Table& tab = out->table();
480  ArrayColumn<Float> specCol(tab,"SPECTRA");
481  ArrayColumn<Float> tsysCol(tab,"TSYS");
482  for (uInt i=0; i<tab.nrow(); ++i) {
483    Vector<Float> spec;
484    Vector<Float> ts;
485    specCol.get(i, spec);
486    tsysCol.get(i, ts);
487    if (mode == "MUL" || mode == "DIV") {
488      if (mode == "DIV") val = 1.0/val;
489      spec *= val;
490      specCol.put(i, spec);
491      if ( tsys ) {
492        ts *= val;
493        tsysCol.put(i, ts);
494      }
495    } else if ( mode == "ADD"  || mode == "SUB") {
496      if (mode == "SUB") val *= -1.0;
497      spec += val;
498      specCol.put(i, spec);
499      if ( tsys ) {
500        ts += val;
501        tsysCol.put(i, ts);
502      }
503    }
504  }
505  return out;
506}
507
508CountedPtr< Scantable > STMath::arrayOperate( const CountedPtr< Scantable >& in,
509                                              const std::vector<float> val,
510                                              const std::string& mode,
511                                              const std::string& opmode,
512                                              bool tsys )
513{
514  CountedPtr< Scantable > out ;
515  if ( opmode == "channel" ) {
516    out = arrayOperateChannel( in, val, mode, tsys ) ;
517  }
518  else if ( opmode == "row" ) {
519    out = arrayOperateRow( in, val, mode, tsys ) ;
520  }
521  else {
522    throw( AipsError( "Unknown array operation mode." ) ) ;
523  }
524  return out ;
525}
526
527CountedPtr< Scantable > STMath::arrayOperateChannel( const CountedPtr< Scantable >& in,
528                                                     const std::vector<float> val,
529                                                     const std::string& mode,
530                                                     bool tsys )
531{
532  if ( val.size() == 1 ){
533    return unaryOperate( in, val[0], mode, tsys ) ;
534  }
535
536  // conformity of SPECTRA and TSYS
537  if ( tsys ) {
538    TableIterator titer(in->table(), "IFNO");
539    while ( !titer.pastEnd() ) {
540      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
541      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
542      Array<Float> spec = specCol.getColumn() ;
543      Array<Float> ts = tsysCol.getColumn() ;
544      if ( !spec.conform( ts ) ) {
545        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
546      }
547      titer.next() ;
548    }
549  }
550
551  // check if all spectra in the scantable have the same number of channel
552  vector<uInt> nchans;
553  vector<uInt> ifnos = in->getIFNos() ;
554  for ( uInt i = 0 ; i < ifnos.size() ; i++ ) {
555    nchans.push_back( in->nchan( ifnos[i] ) ) ;
556  }
557  Vector<uInt> mchans( nchans ) ;
558  if ( anyNE( mchans, mchans[0] ) ) {
559    throw( AipsError("All spectra in the input scantable must have the same number of channel for vector operation." ) ) ;
560  }
561
562  // check if vector size is equal to nchan
563  Vector<Float> fact( val ) ;
564  if ( fact.nelements() != mchans[0] ) {
565    throw( AipsError("Vector size must be 1 or be same as number of channel.") ) ;
566  }
567
568  // check divided by zero
569  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
570    throw( AipsError("Divided by zero is not recommended." ) ) ;
571  }
572
573  CountedPtr< Scantable > out = getScantable(in, false);
574  Table& tab = out->table();
575  ArrayColumn<Float> specCol(tab,"SPECTRA");
576  ArrayColumn<Float> tsysCol(tab,"TSYS");
577  for (uInt i=0; i<tab.nrow(); ++i) {
578    Vector<Float> spec;
579    Vector<Float> ts;
580    specCol.get(i, spec);
581    tsysCol.get(i, ts);
582    if (mode == "MUL" || mode == "DIV") {
583      if (mode == "DIV") fact = (float)1.0 / fact;
584      spec *= fact;
585      specCol.put(i, spec);
586      if ( tsys ) {
587        ts *= fact;
588        tsysCol.put(i, ts);
589      }
590    } else if ( mode == "ADD"  || mode == "SUB") {
591      if (mode == "SUB") fact *= (float)-1.0 ;
592      spec += fact;
593      specCol.put(i, spec);
594      if ( tsys ) {
595        ts += fact;
596        tsysCol.put(i, ts);
597      }
598    }
599  }
600  return out;
601}
602
603CountedPtr< Scantable > STMath::arrayOperateRow( const CountedPtr< Scantable >& in,
604                                                 const std::vector<float> val,
605                                                 const std::string& mode,
606                                                 bool tsys )
607{
608  if ( val.size() == 1 ) {
609    return unaryOperate( in, val[0], mode, tsys ) ;
610  }
611
612  // conformity of SPECTRA and TSYS
613  if ( tsys ) {
614    TableIterator titer(in->table(), "IFNO");
615    while ( !titer.pastEnd() ) {
616      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
617      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
618      Array<Float> spec = specCol.getColumn() ;
619      Array<Float> ts = tsysCol.getColumn() ;
620      if ( !spec.conform( ts ) ) {
621        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
622      }
623      titer.next() ;
624    }
625  }
626
627  // check if vector size is equal to nrow
628  Vector<Float> fact( val ) ;
629  if ( fact.nelements() != in->nrow() ) {
630    throw( AipsError("Vector size must be 1 or be same as number of row.") ) ;
631  }
632
633  // check divided by zero
634  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
635    throw( AipsError("Divided by zero is not recommended." ) ) ;
636  }
637
638  CountedPtr< Scantable > out = getScantable(in, false);
639  Table& tab = out->table();
640  ArrayColumn<Float> specCol(tab,"SPECTRA");
641  ArrayColumn<Float> tsysCol(tab,"TSYS");
642  if (mode == "DIV") fact = (float)1.0 / fact;
643  if (mode == "SUB") fact *= (float)-1.0 ;
644  for (uInt i=0; i<tab.nrow(); ++i) {
645    Vector<Float> spec;
646    Vector<Float> ts;
647    specCol.get(i, spec);
648    tsysCol.get(i, ts);
649    if (mode == "MUL" || mode == "DIV") {
650      spec *= fact[i];
651      specCol.put(i, spec);
652      if ( tsys ) {
653        ts *= fact[i];
654        tsysCol.put(i, ts);
655      }
656    } else if ( mode == "ADD"  || mode == "SUB") {
657      spec += fact[i];
658      specCol.put(i, spec);
659      if ( tsys ) {
660        ts += fact[i];
661        tsysCol.put(i, ts);
662      }
663    }
664  }
665  return out;
666}
667
668CountedPtr< Scantable > STMath::array2dOperate( const CountedPtr< Scantable >& in,
669                                                const std::vector< std::vector<float> > val,
670                                                const std::string& mode,
671                                                bool tsys )
672{
673  // conformity of SPECTRA and TSYS
674  if ( tsys ) {
675    TableIterator titer(in->table(), "IFNO");
676    while ( !titer.pastEnd() ) {
677      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
678      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
679      Array<Float> spec = specCol.getColumn() ;
680      Array<Float> ts = tsysCol.getColumn() ;
681      if ( !spec.conform( ts ) ) {
682        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
683      }
684      titer.next() ;
685    }
686  }
687
688  // some checks
689  vector<uInt> nchans;
690  for ( uInt i = 0 ; i < in->nrow() ; i++ ) {
691    nchans.push_back( (in->getSpectrum( i )).size() ) ;
692  }
693  //Vector<uInt> mchans( nchans ) ;
694  vector< Vector<Float> > facts ;
695  for ( uInt i = 0 ; i < nchans.size() ; i++ ) {
696    Vector<Float> tmp( val[i] ) ;
697    // check divided by zero
698    if ( ( mode == "DIV" ) && anyEQ( tmp, (float)0.0 ) ) {
699      throw( AipsError("Divided by zero is not recommended." ) ) ;
700    }
701    // conformity check
702    if ( tmp.nelements() != nchans[i] ) {
703      stringstream ss ;
704      ss << "Row " << i << ": Vector size must be same as number of channel." ;
705      throw( AipsError( ss.str() ) ) ;
706    }
707    facts.push_back( tmp ) ;
708  }
709
710
711  CountedPtr< Scantable > out = getScantable(in, false);
712  Table& tab = out->table();
713  ArrayColumn<Float> specCol(tab,"SPECTRA");
714  ArrayColumn<Float> tsysCol(tab,"TSYS");
715  for (uInt i=0; i<tab.nrow(); ++i) {
716    Vector<Float> fact = facts[i] ;
717    Vector<Float> spec;
718    Vector<Float> ts;
719    specCol.get(i, spec);
720    tsysCol.get(i, ts);
721    if (mode == "MUL" || mode == "DIV") {
722      if (mode == "DIV") fact = (float)1.0 / fact;
723      spec *= fact;
724      specCol.put(i, spec);
725      if ( tsys ) {
726        ts *= fact;
727        tsysCol.put(i, ts);
728      }
729    } else if ( mode == "ADD"  || mode == "SUB") {
730      if (mode == "SUB") fact *= (float)-1.0 ;
731      spec += fact;
732      specCol.put(i, spec);
733      if ( tsys ) {
734        ts += fact;
735        tsysCol.put(i, ts);
736      }
737    }
738  }
739  return out;
740}
741
742CountedPtr<Scantable> STMath::binaryOperate(const CountedPtr<Scantable>& left,
743                                            const CountedPtr<Scantable>& right,
744                                            const std::string& mode)
745{
746  bool insitu = insitu_;
747  if ( ! left->conformant(*right) ) {
748    throw(AipsError("'left' and 'right' scantables are not conformant."));
749  }
750  setInsitu(false);
751  CountedPtr< Scantable > out = getScantable(left, false);
752  setInsitu(insitu);
753  Table& tout = out->table();
754  Block<String> coln(5);
755  coln[0] = "SCANNO";  coln[1] = "CYCLENO";  coln[2] = "BEAMNO";
756  coln[3] = "IFNO";  coln[4] = "POLNO";
757  Table tmpl = tout.sort(coln);
758  Table tmpr = right->table().sort(coln);
759  ArrayColumn<Float> lspecCol(tmpl,"SPECTRA");
760  ROArrayColumn<Float> rspecCol(tmpr,"SPECTRA");
761  ArrayColumn<uChar> lflagCol(tmpl,"FLAGTRA");
762  ROArrayColumn<uChar> rflagCol(tmpr,"FLAGTRA");
763
764  for (uInt i=0; i<tout.nrow(); ++i) {
765    Vector<Float> lspecvec, rspecvec;
766    Vector<uChar> lflagvec, rflagvec;
767    lspecvec = lspecCol(i);    rspecvec = rspecCol(i);
768    lflagvec = lflagCol(i);    rflagvec = rflagCol(i);
769    MaskedArray<Float> mleft = maskedArray(lspecvec, lflagvec);
770    MaskedArray<Float> mright = maskedArray(rspecvec, rflagvec);
771    if (mode == "ADD") {
772      mleft += mright;
773    } else if ( mode == "SUB") {
774      mleft -= mright;
775    } else if ( mode == "MUL") {
776      mleft *= mright;
777    } else if ( mode == "DIV") {
778      mleft /= mright;
779    } else {
780      throw(AipsError("Illegal binary operator"));
781    }
782    lspecCol.put(i, mleft.getArray());
783  }
784  return out;
785}
786
787
788
789MaskedArray<Float> STMath::maskedArray( const Vector<Float>& s,
790                                        const Vector<uChar>& f)
791{
792  Vector<Bool> mask;
793  mask.resize(f.shape());
794  convertArray(mask, f);
795  return MaskedArray<Float>(s,!mask);
796}
797
798MaskedArray<Double> STMath::maskedArray( const Vector<Double>& s,
799                                         const Vector<uChar>& f)
800{
801  Vector<Bool> mask;
802  mask.resize(f.shape());
803  convertArray(mask, f);
804  return MaskedArray<Double>(s,!mask);
805}
806
807Vector<uChar> STMath::flagsFromMA(const MaskedArray<Float>& ma)
808{
809  const Vector<Bool>& m = ma.getMask();
810  Vector<uChar> flags(m.shape());
811  convertArray(flags, !m);
812  return flags;
813}
814
815CountedPtr< Scantable > STMath::autoQuotient( const CountedPtr< Scantable >& in,
816                                              const std::string & mode,
817                                              bool preserve )
818{
819  /// @todo make other modes available
820  /// modes should be "nearest", "pair"
821  // make this operation non insitu
822  const Table& tin = in->table();
823  Table ons = tin(tin.col("SRCTYPE") == Int(SrcType::PSON));
824  Table offs = tin(tin.col("SRCTYPE") == Int(SrcType::PSOFF));
825  if ( offs.nrow() == 0 )
826    throw(AipsError("No 'off' scans present."));
827  // put all "on" scans into output table
828
829  bool insitu = insitu_;
830  setInsitu(false);
831  CountedPtr< Scantable > out = getScantable(in, true);
832  setInsitu(insitu);
833  Table& tout = out->table();
834
835  TableCopy::copyRows(tout, ons);
836  TableRow row(tout);
837  ROScalarColumn<Double> offtimeCol(offs, "TIME");
838  ArrayColumn<Float> outspecCol(tout, "SPECTRA");
839  ROArrayColumn<Float> outtsysCol(tout, "TSYS");
840  ArrayColumn<uChar> outflagCol(tout, "FLAGTRA");
841  for (uInt i=0; i < tout.nrow(); ++i) {
842    const TableRecord& rec = row.get(i);
843    Double ontime = rec.asDouble("TIME");
844    Table presel = offs(offs.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
845                        && offs.col("IFNO") == Int(rec.asuInt("IFNO"))
846                        && offs.col("POLNO") == Int(rec.asuInt("POLNO")) );
847    ROScalarColumn<Double> offtimeCol(presel, "TIME");
848
849    Double mindeltat = min(abs(offtimeCol.getColumn() - ontime));
850    // Timestamp may vary within a cycle ???!!!
851    // increase this by 0.01 sec in case of rounding errors...
852    // There might be a better way to do this.
853    // fix to this fix. TIME is MJD, so 1.0d not 1.0s
854    mindeltat += 0.01/24./60./60.;
855    Table sel = presel( abs(presel.col("TIME")-ontime) <= mindeltat);
856
857    if ( sel.nrow() < 1 )  {
858      throw(AipsError("No closest in time found... This could be a rounding "
859                      "issue. Try quotient instead."));
860    }
861    TableRow offrow(sel);
862    const TableRecord& offrec = offrow.get(0);//should only be one row
863    RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
864    RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
865    RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
866    /// @fixme this assumes tsys is a scalar not vector
867    Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
868    Vector<Float> specon, tsyson;
869    outtsysCol.get(i, tsyson);
870    outspecCol.get(i, specon);
871    Vector<uChar> flagon;
872    outflagCol.get(i, flagon);
873    MaskedArray<Float> mon = maskedArray(specon, flagon);
874    MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
875    MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
876    if (preserve) {
877      quot -= tsysoffscalar;
878    } else {
879      quot -= tsyson[0];
880    }
881    outspecCol.put(i, quot.getArray());
882    outflagCol.put(i, flagsFromMA(quot));
883  }
884  // renumber scanno
885  TableIterator it(tout, "SCANNO");
886  uInt i = 0;
887  while ( !it.pastEnd() ) {
888    Table t = it.table();
889    TableVector<uInt> vec(t, "SCANNO");
890    vec = i;
891    ++i;
892    ++it;
893  }
894  return out;
895}
896
897
898CountedPtr< Scantable > STMath::quotient( const CountedPtr< Scantable > & on,
899                                          const CountedPtr< Scantable > & off,
900                                          bool preserve )
901{
902  bool insitu = insitu_;
903  if ( ! on->conformant(*off) ) {
904    throw(AipsError("'on' and 'off' scantables are not conformant."));
905  }
906  setInsitu(false);
907  CountedPtr< Scantable > out = getScantable(on, false);
908  setInsitu(insitu);
909  Table& tout = out->table();
910  const Table& toff = off->table();
911  TableIterator sit(tout, "SCANNO");
912  TableIterator s2it(toff, "SCANNO");
913  while ( !sit.pastEnd() ) {
914    Table ton = sit.table();
915    TableRow row(ton);
916    Table t = s2it.table();
917    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
918    ROArrayColumn<Float> outtsysCol(ton, "TSYS");
919    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
920    for (uInt i=0; i < ton.nrow(); ++i) {
921      const TableRecord& rec = row.get(i);
922      Table offsel = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
923                          && t.col("IFNO") == Int(rec.asuInt("IFNO"))
924                          && t.col("POLNO") == Int(rec.asuInt("POLNO")) );
925      if ( offsel.nrow() == 0 )
926        throw AipsError("STMath::quotient: no matching off");
927      TableRow offrow(offsel);
928      const TableRecord& offrec = offrow.get(0);//should be ncycles - take first
929      RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
930      RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
931      RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
932      Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
933      Vector<Float> specon, tsyson;
934      outtsysCol.get(i, tsyson);
935      outspecCol.get(i, specon);
936      Vector<uChar> flagon;
937      outflagCol.get(i, flagon);
938      MaskedArray<Float> mon = maskedArray(specon, flagon);
939      MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
940      MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
941      if (preserve) {
942        quot -= tsysoffscalar;
943      } else {
944        quot -= tsyson[0];
945      }
946      outspecCol.put(i, quot.getArray());
947      outflagCol.put(i, flagsFromMA(quot));
948    }
949    ++sit;
950    ++s2it;
951    // take the first off for each on scan which doesn't have a
952    // matching off scan
953    // non <= noff:  matching pairs, non > noff matching pairs then first off
954    if ( s2it.pastEnd() ) s2it.reset();
955  }
956  return out;
957}
958
959// dototalpower (migration of GBTIDL procedure dototalpower.pro)
960// calibrate the CAL on-off pair. It calculate Tsys and average CAL on-off subintegrations
961// do it for each cycles in a specific scan.
962CountedPtr< Scantable > STMath::dototalpower( const CountedPtr< Scantable >& calon,
963                                              const CountedPtr< Scantable >& caloff, Float tcal )
964{
965if ( ! calon->conformant(*caloff) ) {
966    throw(AipsError("'CAL on' and 'CAL off' scantables are not conformant."));
967  }
968  setInsitu(false);
969  CountedPtr< Scantable > out = getScantable(caloff, false);
970  Table& tout = out->table();
971  const Table& tcon = calon->table();
972  Vector<Float> tcalout;
973  Vector<Float> tcalout2;  //debug
974
975  if ( tout.nrow() != tcon.nrow() ) {
976    throw(AipsError("Mismatch in number of rows to form cal on - off pair."));
977  }
978  // iteration by scanno or cycle no.
979  TableIterator sit(tout, "SCANNO");
980  TableIterator s2it(tcon, "SCANNO");
981  while ( !sit.pastEnd() ) {
982    Table toff = sit.table();
983    TableRow row(toff);
984    Table t = s2it.table();
985    ScalarColumn<Double> outintCol(toff, "INTERVAL");
986    ArrayColumn<Float> outspecCol(toff, "SPECTRA");
987    ArrayColumn<Float> outtsysCol(toff, "TSYS");
988    ArrayColumn<uChar> outflagCol(toff, "FLAGTRA");
989    ROScalarColumn<uInt> outtcalIdCol(toff, "TCAL_ID");
990    ROScalarColumn<uInt> outpolCol(toff, "POLNO");
991    ROScalarColumn<Double> onintCol(t, "INTERVAL");
992    ROArrayColumn<Float> onspecCol(t, "SPECTRA");
993    ROArrayColumn<Float> ontsysCol(t, "TSYS");
994    ROArrayColumn<uChar> onflagCol(t, "FLAGTRA");
995    //ROScalarColumn<uInt> ontcalIdCol(t, "TCAL_ID");
996
997    for (uInt i=0; i < toff.nrow(); ++i) {
998      //skip these checks -> assumes the data order are the same between the cal on off pairs
999      //
1000      Vector<Float> specCalon, specCaloff;
1001      // to store scalar (mean) tsys
1002      Vector<Float> tsysout(1);
1003      uInt tcalId, polno;
1004      Double offint, onint;
1005      outpolCol.get(i, polno);
1006      outspecCol.get(i, specCaloff);
1007      onspecCol.get(i, specCalon);
1008      Vector<uChar> flagCaloff, flagCalon;
1009      outflagCol.get(i, flagCaloff);
1010      onflagCol.get(i, flagCalon);
1011      outtcalIdCol.get(i, tcalId);
1012      outintCol.get(i, offint);
1013      onintCol.get(i, onint);
1014      // caluculate mean Tsys
1015      uInt nchan = specCaloff.nelements();
1016      // percentage of edge cut off
1017      uInt pc = 10;
1018      uInt bchan = nchan/pc;
1019      uInt echan = nchan-bchan;
1020
1021      Slicer chansl(IPosition(1,bchan-1), IPosition(1,echan-1), IPosition(1,1),Slicer::endIsLast);
1022      Vector<Float> testsubsp = specCaloff(chansl);
1023      MaskedArray<Float> spoff = maskedArray( specCaloff(chansl),flagCaloff(chansl) );
1024      MaskedArray<Float> spon = maskedArray( specCalon(chansl),flagCalon(chansl) );
1025      MaskedArray<Float> spdiff = spon-spoff;
1026      uInt noff = spoff.nelementsValid();
1027      //uInt non = spon.nelementsValid();
1028      uInt ndiff = spdiff.nelementsValid();
1029      Float meantsys;
1030
1031/**
1032      Double subspec, subdiff;
1033      uInt usednchan;
1034      subspec = 0;
1035      subdiff = 0;
1036      usednchan = 0;
1037      for(uInt k=(bchan-1); k<echan; k++) {
1038        subspec += specCaloff[k];
1039        subdiff += static_cast<Double>(specCalon[k]-specCaloff[k]);
1040        ++usednchan;
1041      }
1042**/
1043      // get tcal if input tcal <= 0
1044      String tcalt;
1045      Float tcalUsed;
1046      tcalUsed = tcal;
1047      if ( tcal <= 0.0 ) {
1048        caloff->tcal().getEntry(tcalt, tcalout, tcalId);
1049        if (polno<=3) {
1050          tcalUsed = tcalout[polno];
1051        }
1052        else {
1053          tcalUsed = tcalout[0];
1054        }
1055      }
1056
1057      Float meanoff;
1058      Float meandiff;
1059      if (noff && ndiff) {
1060         //Debug
1061         //if(noff!=ndiff) cerr<<"noff and ndiff is not equal"<<endl;
1062         //LogIO os( LogOrigin( "STMath", "dototalpower()", WHERE ) ) ;
1063         //if(noff!=ndiff) os<<"noff and ndiff is not equal"<<LogIO::POST;
1064         meanoff = sum(spoff)/noff;
1065         meandiff = sum(spdiff)/ndiff;
1066         meantsys= (meanoff/meandiff )*tcalUsed + tcalUsed/2;
1067      }
1068      else {
1069         meantsys=1;
1070      }
1071
1072      tsysout[0] = Float(meantsys);
1073      MaskedArray<Float> mcaloff = maskedArray(specCaloff, flagCaloff);
1074      MaskedArray<Float> mcalon = maskedArray(specCalon, flagCalon);
1075      MaskedArray<Float> sig =   Float(0.5) * (mcaloff + mcalon);
1076      //uInt ncaloff = mcaloff.nelementsValid();
1077      //uInt ncalon = mcalon.nelementsValid();
1078
1079      outintCol.put(i, offint+onint);
1080      outspecCol.put(i, sig.getArray());
1081      outflagCol.put(i, flagsFromMA(sig));
1082      outtsysCol.put(i, tsysout);
1083    }
1084    ++sit;
1085    ++s2it;
1086  }
1087  return out;
1088}
1089
1090//dosigref - migrated from GBT IDL's dosigref.pro, do calibration of position switch
1091// observatiions.
1092// input: sig and ref scantables, and an optional boxcar smoothing width(default width=0,
1093//        no smoothing).
1094// output: resultant scantable [= (sig-ref/ref)*tsys]
1095CountedPtr< Scantable > STMath::dosigref( const CountedPtr < Scantable >& sig,
1096                                          const CountedPtr < Scantable >& ref,
1097                                          int smoothref,
1098                                          casa::Float tsysv,
1099                                          casa::Float tau )
1100{
1101if ( ! ref->conformant(*sig) ) {
1102    throw(AipsError("'sig' and 'ref' scantables are not conformant."));
1103  }
1104  setInsitu(false);
1105  CountedPtr< Scantable > out = getScantable(sig, false);
1106  CountedPtr< Scantable > smref;
1107  if ( smoothref > 1 ) {
1108    float fsmoothref = static_cast<float>(smoothref);
1109    std::string inkernel = "boxcar";
1110    smref = smooth(ref, inkernel, fsmoothref );
1111    ostringstream oss;
1112    oss<<"Applied smoothing of "<<fsmoothref<<" on the reference."<<endl;
1113    pushLog(String(oss));
1114  }
1115  else {
1116    smref = ref;
1117  }
1118  Table& tout = out->table();
1119  const Table& tref = smref->table();
1120  if ( tout.nrow() != tref.nrow() ) {
1121    throw(AipsError("Mismatch in number of rows to form on-source and reference pair."));
1122  }
1123  // iteration by scanno? or cycle no.
1124  TableIterator sit(tout, "SCANNO");
1125  TableIterator s2it(tref, "SCANNO");
1126  while ( !sit.pastEnd() ) {
1127    Table ton = sit.table();
1128    Table t = s2it.table();
1129    ScalarColumn<Double> outintCol(ton, "INTERVAL");
1130    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1131    ArrayColumn<Float> outtsysCol(ton, "TSYS");
1132    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1133    ArrayColumn<Float> refspecCol(t, "SPECTRA");
1134    ROScalarColumn<Double> refintCol(t, "INTERVAL");
1135    ROArrayColumn<Float> reftsysCol(t, "TSYS");
1136    ArrayColumn<uChar> refflagCol(t, "FLAGTRA");
1137    ROScalarColumn<Float> refelevCol(t, "ELEVATION");
1138    for (uInt i=0; i < ton.nrow(); ++i) {
1139
1140      Double onint, refint;
1141      Vector<Float> specon, specref;
1142      // to store scalar (mean) tsys
1143      Vector<Float> tsysref;
1144      outintCol.get(i, onint);
1145      refintCol.get(i, refint);
1146      outspecCol.get(i, specon);
1147      refspecCol.get(i, specref);
1148      Vector<uChar> flagref, flagon;
1149      outflagCol.get(i, flagon);
1150      refflagCol.get(i, flagref);
1151      reftsysCol.get(i, tsysref);
1152
1153      Float tsysrefscalar;
1154      if ( tsysv > 0.0 ) {
1155        ostringstream oss;
1156        Float elev;
1157        refelevCol.get(i, elev);
1158        oss << "user specified Tsys = " << tsysv;
1159        // do recalc elevation if EL = 0
1160        if ( elev == 0 ) {
1161          throw(AipsError("EL=0, elevation data is missing."));
1162        } else {
1163          if ( tau <= 0.0 ) {
1164            throw(AipsError("Valid tau is not supplied."));
1165          } else {
1166            tsysrefscalar = tsysv * exp(tau/elev);
1167          }
1168        }
1169        oss << ", corrected (for El) tsys= "<<tsysrefscalar;
1170        pushLog(String(oss));
1171      }
1172      else {
1173        tsysrefscalar = tsysref[0];
1174      }
1175      //get quotient spectrum
1176      MaskedArray<Float> mref = maskedArray(specref, flagref);
1177      MaskedArray<Float> mon = maskedArray(specon, flagon);
1178      MaskedArray<Float> specres =   tsysrefscalar*((mon - mref)/mref);
1179      Double resint = onint*refint*smoothref/(onint+refint*smoothref);
1180
1181      //Debug
1182      //cerr<<"Tsys used="<<tsysrefscalar<<endl;
1183      //LogIO os( LogOrigin( "STMath", "dosigref", WHERE ) ) ;
1184      //os<<"Tsys used="<<tsysrefscalar<<LogIO::POST;
1185      // fill the result, replay signal tsys by reference tsys
1186      outintCol.put(i, resint);
1187      outspecCol.put(i, specres.getArray());
1188      outflagCol.put(i, flagsFromMA(specres));
1189      outtsysCol.put(i, tsysref);
1190    }
1191    ++sit;
1192    ++s2it;
1193  }
1194  return out;
1195}
1196
1197CountedPtr< Scantable > STMath::donod(const casa::CountedPtr<Scantable>& s,
1198                                     const std::vector<int>& scans,
1199                                     int smoothref,
1200                                     casa::Float tsysv,
1201                                     casa::Float tau,
1202                                     casa::Float tcal )
1203
1204{
1205  setInsitu(false);
1206  STSelector sel;
1207  std::vector<int> scan1, scan2, beams, types;
1208  std::vector< vector<int> > scanpair;
1209  //std::vector<string> calstate;
1210  std::vector<int> calstate;
1211  String msg;
1212
1213  CountedPtr< Scantable > s1b1on, s1b1off, s1b2on, s1b2off;
1214  CountedPtr< Scantable > s2b1on, s2b1off, s2b2on, s2b2off;
1215
1216  std::vector< CountedPtr< Scantable > > sctables;
1217  sctables.push_back(s1b1on);
1218  sctables.push_back(s1b1off);
1219  sctables.push_back(s1b2on);
1220  sctables.push_back(s1b2off);
1221  sctables.push_back(s2b1on);
1222  sctables.push_back(s2b1off);
1223  sctables.push_back(s2b2on);
1224  sctables.push_back(s2b2off);
1225
1226  //check scanlist
1227  int n=s->checkScanInfo(scans);
1228  if (n==1) {
1229     throw(AipsError("Incorrect scan pairs. "));
1230  }
1231
1232  // Assume scans contain only a pair of consecutive scan numbers.
1233  // It is assumed that first beam, b1,  is on target.
1234  // There is no check if the first beam is on or not.
1235  if ( scans.size()==1 ) {
1236    scan1.push_back(scans[0]);
1237    scan2.push_back(scans[0]+1);
1238  } else if ( scans.size()==2 ) {
1239   scan1.push_back(scans[0]);
1240   scan2.push_back(scans[1]);
1241  } else {
1242    if ( scans.size()%2 == 0 ) {
1243      for (uInt i=0; i<scans.size(); i++) {
1244        if (i%2 == 0) {
1245          scan1.push_back(scans[i]);
1246        }
1247        else {
1248          scan2.push_back(scans[i]);
1249        }
1250      }
1251    } else {
1252      throw(AipsError("Odd numbers of scans, cannot form pairs."));
1253    }
1254  }
1255  scanpair.push_back(scan1);
1256  scanpair.push_back(scan2);
1257  //calstate.push_back("*calon");
1258  //calstate.push_back("*[^calon]");
1259  calstate.push_back(SrcType::NODCAL);
1260  calstate.push_back(SrcType::NOD);
1261  CountedPtr< Scantable > ws = getScantable(s, false);
1262  uInt l=0;
1263  while ( l < sctables.size() ) {
1264    for (uInt i=0; i < 2; i++) {
1265      for (uInt j=0; j < 2; j++) {
1266        for (uInt k=0; k < 2; k++) {
1267          sel.reset();
1268          sel.setScans(scanpair[i]);
1269          //sel.setName(calstate[k]);
1270          types.clear();
1271          types.push_back(calstate[k]);
1272          sel.setTypes(types);
1273          beams.clear();
1274          beams.push_back(j);
1275          sel.setBeams(beams);
1276          ws->setSelection(sel);
1277          sctables[l]= getScantable(ws, false);
1278          l++;
1279        }
1280      }
1281    }
1282  }
1283
1284  // replace here by splitData or getData functionality
1285  CountedPtr< Scantable > sig1;
1286  CountedPtr< Scantable > ref1;
1287  CountedPtr< Scantable > sig2;
1288  CountedPtr< Scantable > ref2;
1289  CountedPtr< Scantable > calb1;
1290  CountedPtr< Scantable > calb2;
1291
1292  msg=String("Processing dototalpower for subset of the data");
1293  ostringstream oss1;
1294  oss1 << msg  << endl;
1295  pushLog(String(oss1));
1296  // Debug for IRC CS data
1297  //float tcal1=7.0;
1298  //float tcal2=4.0;
1299  sig1 = dototalpower(sctables[0], sctables[1], tcal=tcal);
1300  ref1 = dototalpower(sctables[2], sctables[3], tcal=tcal);
1301  ref2 = dototalpower(sctables[4], sctables[5], tcal=tcal);
1302  sig2 = dototalpower(sctables[6], sctables[7], tcal=tcal);
1303
1304  // correction of user-specified tsys for elevation here
1305
1306  // dosigref calibration
1307  msg=String("Processing dosigref for subset of the data");
1308  ostringstream oss2;
1309  oss2 << msg  << endl;
1310  pushLog(String(oss2));
1311  calb1=dosigref(sig1,ref2,smoothref,tsysv,tau);
1312  calb2=dosigref(sig2,ref1,smoothref,tsysv,tau);
1313
1314  // iteration by scanno or cycle no.
1315  Table& tcalb1 = calb1->table();
1316  Table& tcalb2 = calb2->table();
1317  TableIterator sit(tcalb1, "SCANNO");
1318  TableIterator s2it(tcalb2, "SCANNO");
1319  while ( !sit.pastEnd() ) {
1320    Table t1 = sit.table();
1321    Table t2= s2it.table();
1322    ArrayColumn<Float> outspecCol(t1, "SPECTRA");
1323    ArrayColumn<Float> outtsysCol(t1, "TSYS");
1324    ArrayColumn<uChar> outflagCol(t1, "FLAGTRA");
1325    ScalarColumn<Double> outintCol(t1, "INTERVAL");
1326    ArrayColumn<Float> t2specCol(t2, "SPECTRA");
1327    ROArrayColumn<Float> t2tsysCol(t2, "TSYS");
1328    ArrayColumn<uChar> t2flagCol(t2, "FLAGTRA");
1329    ROScalarColumn<Double> t2intCol(t2, "INTERVAL");
1330    for (uInt i=0; i < t1.nrow(); ++i) {
1331      Vector<Float> spec1, spec2;
1332      // to store scalar (mean) tsys
1333      Vector<Float> tsys1, tsys2;
1334      Vector<uChar> flag1, flag2;
1335      Double tint1, tint2;
1336      outspecCol.get(i, spec1);
1337      t2specCol.get(i, spec2);
1338      outflagCol.get(i, flag1);
1339      t2flagCol.get(i, flag2);
1340      outtsysCol.get(i, tsys1);
1341      t2tsysCol.get(i, tsys2);
1342      outintCol.get(i, tint1);
1343      t2intCol.get(i, tint2);
1344      // average
1345      // assume scalar tsys for weights
1346      Float wt1, wt2, tsyssq1, tsyssq2;
1347      tsyssq1 = tsys1[0]*tsys1[0];
1348      tsyssq2 = tsys2[0]*tsys2[0];
1349      wt1 = Float(tint1)/tsyssq1;
1350      wt2 = Float(tint2)/tsyssq2;
1351      Float invsumwt=1/(wt1+wt2);
1352      MaskedArray<Float> mspec1 = maskedArray(spec1, flag1);
1353      MaskedArray<Float> mspec2 = maskedArray(spec2, flag2);
1354      MaskedArray<Float> avspec =  invsumwt * (wt1*mspec1 + wt2*mspec2);
1355      //Array<Float> avtsys =  Float(0.5) * (tsys1 + tsys2);
1356      // cerr<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<endl;
1357      // LogIO os( LogOrigin( "STMath", "donod", WHERE ) ) ;
1358      // os<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<LogIO::POST;
1359      tsys1[0] = sqrt(tsyssq1 + tsyssq2);
1360      Array<Float> avtsys =  tsys1;
1361
1362      outspecCol.put(i, avspec.getArray());
1363      outflagCol.put(i, flagsFromMA(avspec));
1364      outtsysCol.put(i, avtsys);
1365    }
1366    ++sit;
1367    ++s2it;
1368  }
1369  return calb1;
1370}
1371
1372//GBTIDL version of frequency switched data calibration
1373CountedPtr< Scantable > STMath::dofs( const CountedPtr< Scantable >& s,
1374                                      const std::vector<int>& scans,
1375                                      int smoothref,
1376                                      casa::Float tsysv,
1377                                      casa::Float tau,
1378                                      casa::Float tcal )
1379{
1380
1381 
1382  STSelector sel;
1383  CountedPtr< Scantable > ws = getScantable(s, false);
1384  CountedPtr< Scantable > sig, sigwcal, ref, refwcal;
1385  CountedPtr< Scantable > calsig, calref, out, out1, out2;
1386  Bool nofold=False;
1387  vector<int> types ;
1388
1389  //split the data
1390  //sel.setName("*_fs");
1391  types.push_back( SrcType::FSON ) ;
1392  sel.setTypes( types ) ;
1393  ws->setSelection(sel);
1394  sig = getScantable(ws,false);
1395  sel.reset();
1396  types.clear() ;
1397  //sel.setName("*_fs_calon");
1398  types.push_back( SrcType::FONCAL ) ;
1399  sel.setTypes( types ) ;
1400  ws->setSelection(sel);
1401  sigwcal = getScantable(ws,false);
1402  sel.reset();
1403  types.clear() ;
1404  //sel.setName("*_fsr");
1405  types.push_back( SrcType::FSOFF ) ;
1406  sel.setTypes( types ) ;
1407  ws->setSelection(sel);
1408  ref = getScantable(ws,false);
1409  sel.reset();
1410  types.clear() ;
1411  //sel.setName("*_fsr_calon");
1412  types.push_back( SrcType::FOFFCAL ) ;
1413  sel.setTypes( types ) ;
1414  ws->setSelection(sel);
1415  refwcal = getScantable(ws,false);
1416  sel.reset() ;
1417  types.clear() ;
1418
1419  calsig = dototalpower(sigwcal, sig, tcal=tcal);
1420  calref = dototalpower(refwcal, ref, tcal=tcal);
1421
1422  out1=dosigref(calsig,calref,smoothref,tsysv,tau);
1423  out2=dosigref(calref,calsig,smoothref,tsysv,tau);
1424
1425  Table& tabout1=out1->table();
1426  Table& tabout2=out2->table();
1427  ROScalarColumn<uInt> freqidCol1(tabout1, "FREQ_ID");
1428  ScalarColumn<uInt> freqidCol2(tabout2, "FREQ_ID");
1429  ROArrayColumn<Float> specCol(tabout2, "SPECTRA");
1430  Vector<Float> spec; specCol.get(0, spec);
1431  uInt nchan = spec.nelements();
1432  uInt freqid1; freqidCol1.get(0,freqid1);
1433  uInt freqid2; freqidCol2.get(0,freqid2);
1434  Double rp1, rp2, rv1, rv2, inc1, inc2;
1435  out1->frequencies().getEntry(rp1, rv1, inc1, freqid1);
1436  out2->frequencies().getEntry(rp2, rv2, inc2, freqid2);
1437  //cerr << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << endl ;
1438  //LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1439  //os << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << LogIO::POST ;
1440  if (rp1==rp2) {
1441    Double foffset = rv1 - rv2;
1442    uInt choffset = static_cast<uInt>(foffset/abs(inc2));
1443    if (choffset >= nchan) {
1444      //cerr<<"out-band frequency switching, no folding"<<endl;
1445      LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1446      os<<"out-band frequency switching, no folding"<<LogIO::POST;
1447      nofold = True;
1448    }
1449  }
1450
1451  if (nofold) {
1452    std::vector< CountedPtr< Scantable > > tabs;
1453    tabs.push_back(out1);
1454    tabs.push_back(out2);
1455    out = merge(tabs);
1456  }
1457  else {
1458    //out = out1;
1459    Double choffset = ( rv1 - rv2 ) / inc2 ;
1460    out = dofold( out1, out2, choffset ) ;
1461  }
1462   
1463  return out;
1464}
1465
1466CountedPtr<Scantable> STMath::dofold( const CountedPtr<Scantable> &sig,
1467                                      const CountedPtr<Scantable> &ref,
1468                                      Double choffset,
1469                                      Double choffset2 )
1470{
1471  LogIO os( LogOrigin( "STMath", "dofold", WHERE ) ) ;
1472  os << "choffset=" << choffset << " choffset2=" << choffset2 << LogIO::POST ;
1473
1474  // output scantable
1475  CountedPtr<Scantable> out = getScantable( sig, false ) ;
1476
1477  // separate choffset to integer part and decimal part
1478  Int ioffset = (Int)choffset ;
1479  Double doffset = choffset - ioffset ;
1480  Int ioffset2 = (Int)choffset2 ;
1481  Double doffset2 = choffset2 - ioffset2 ;
1482  os << "ioffset=" << ioffset << " doffset=" << doffset << LogIO::POST ;
1483  os << "ioffset2=" << ioffset2 << " doffset2=" << doffset2 << LogIO::POST ; 
1484
1485  // get column
1486  ROArrayColumn<Float> specCol1( sig->table(), "SPECTRA" ) ;
1487  ROArrayColumn<Float> specCol2( ref->table(), "SPECTRA" ) ;
1488  ROArrayColumn<Float> tsysCol1( sig->table(), "TSYS" ) ;
1489  ROArrayColumn<Float> tsysCol2( ref->table(), "TSYS" ) ;
1490  ROArrayColumn<uChar> flagCol1( sig->table(), "FLAGTRA" ) ;
1491  ROArrayColumn<uChar> flagCol2( ref->table(), "FLAGTRA" ) ;
1492  ROScalarColumn<Double> mjdCol1( sig->table(), "TIME" ) ;
1493  ROScalarColumn<Double> mjdCol2( ref->table(), "TIME" ) ;
1494  ROScalarColumn<Double> intervalCol1( sig->table(), "INTERVAL" ) ;
1495  ROScalarColumn<Double> intervalCol2( ref->table(), "INTERVAL" ) ;
1496
1497  // check
1498  if ( ioffset == 0 ) {
1499    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1500    os << "channel offset is zero, no folding" << LogIO::POST ;
1501    return out ;
1502  }
1503  int nchan = ref->nchan() ;
1504  if ( abs(ioffset) >= nchan ) {
1505    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1506    os << "out-band frequency switching, no folding" << LogIO::POST ;
1507    return out ;
1508  }
1509
1510  // attach column for output scantable
1511  ArrayColumn<Float> specColOut( out->table(), "SPECTRA" ) ;
1512  ArrayColumn<uChar> flagColOut( out->table(), "FLAGTRA" ) ;
1513  ArrayColumn<Float> tsysColOut( out->table(), "TSYS" ) ;
1514  ScalarColumn<Double> mjdColOut( out->table(), "TIME" ) ;
1515  ScalarColumn<Double> intervalColOut( out->table(), "INTERVAL" ) ;
1516  ScalarColumn<uInt> fidColOut( out->table(), "FREQ_ID" ) ;
1517
1518  // for each row
1519  // assume that the data order are same between sig and ref
1520  RowAccumulator acc( asap::TINTSYS ) ;
1521  for ( int i = 0 ; i < sig->nrow() ; i++ ) {
1522    // get values
1523    Vector<Float> spsig ;
1524    specCol1.get( i, spsig ) ;
1525    Vector<Float> spref ;
1526    specCol2.get( i, spref ) ;
1527    Vector<Float> tsyssig ;
1528    tsysCol1.get( i, tsyssig ) ;
1529    Vector<Float> tsysref ;
1530    tsysCol2.get( i, tsysref ) ;
1531    Vector<uChar> flagsig ;
1532    flagCol1.get( i, flagsig ) ;
1533    Vector<uChar> flagref ;
1534    flagCol2.get( i, flagref ) ;
1535    Double timesig ;
1536    mjdCol1.get( i, timesig ) ;
1537    Double timeref ;
1538    mjdCol2.get( i, timeref ) ;
1539    Double intsig ;
1540    intervalCol1.get( i, intsig ) ;
1541    Double intref ;
1542    intervalCol2.get( i, intref ) ;
1543
1544    // shift reference spectra
1545    int refchan = spref.nelements() ;
1546    Vector<Float> sspref( spref.nelements() ) ;
1547    Vector<Float> stsysref( tsysref.nelements() ) ;
1548    Vector<uChar> sflagref( flagref.nelements() ) ;
1549    if ( ioffset > 0 ) {
1550      // SPECTRA and FLAGTRA
1551      for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1552        sspref[j] = spref[j+ioffset] ;
1553        sflagref[j] = flagref[j+ioffset] ;
1554      }
1555      for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1556        sspref[j] = spref[j-refchan+ioffset] ;
1557        sflagref[j] = flagref[j-refchan+ioffset] ;
1558      }
1559      spref = sspref.copy() ;
1560      flagref = sflagref.copy() ;
1561      for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1562        sspref[j] = doffset * spref[j+1] + ( 1.0 - doffset ) * spref[j] ;
1563        sflagref[j] = flagref[j+1] + flagref[j] ;
1564      }
1565      sspref[refchan-1] = doffset * spref[0] + ( 1.0 - doffset ) * spref[refchan-1] ;
1566      sflagref[refchan-1] = flagref[0] + flagref[refchan-1] ;
1567
1568      // TSYS
1569      if ( spref.nelements() == tsysref.nelements() ) {
1570        for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1571          stsysref[j] = tsysref[j+ioffset] ;
1572        }
1573        for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1574          stsysref[j] = tsysref[j-refchan+ioffset] ;
1575        }
1576        tsysref = stsysref.copy() ;
1577        for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1578          stsysref[j] = doffset * tsysref[j+1] + ( 1.0 - doffset ) * tsysref[j] ;
1579        }
1580        stsysref[refchan-1] = doffset * tsysref[0] + ( 1.0 - doffset ) * tsysref[refchan-1] ;
1581      }
1582    }
1583    else {
1584      // SPECTRA and FLAGTRA
1585      for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1586        sspref[j] = spref[refchan+ioffset+j] ;
1587        sflagref[j] = flagref[refchan+ioffset+j] ;
1588      }
1589      for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1590        sspref[j] = spref[j+ioffset] ;
1591        sflagref[j] = flagref[j+ioffset] ;
1592      }
1593      spref = sspref.copy() ;
1594      flagref = sflagref.copy() ;
1595      sspref[0] = doffset * spref[refchan-1] + ( 1.0 - doffset ) * spref[0] ;
1596      sflagref[0] = flagref[0] + flagref[refchan-1] ;
1597      for ( int j = 1 ; j < refchan ; j++ ) {
1598        sspref[j] = doffset * spref[j-1] + ( 1.0 - doffset ) * spref[j] ;
1599        sflagref[j] = flagref[j-1] + flagref[j] ;
1600      }
1601      // TSYS
1602      if ( spref.nelements() == tsysref.nelements() ) {
1603        for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1604          stsysref[j] = tsysref[refchan+ioffset+j] ;
1605        }
1606        for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1607          stsysref[j] = tsysref[j+ioffset] ;
1608        }
1609        tsysref = stsysref.copy() ;
1610        stsysref[0] = doffset * tsysref[refchan-1] + ( 1.0 - doffset ) * tsysref[0] ;
1611        for ( int j = 1 ; j < refchan ; j++ ) {
1612          stsysref[j] = doffset * tsysref[j-1] + ( 1.0 - doffset ) * tsysref[j] ;
1613        }
1614      }
1615    }
1616
1617    // shift signal spectra if necessary (only for APEX?)
1618    if ( choffset2 != 0.0 ) {
1619      int sigchan = spsig.nelements() ;
1620      Vector<Float> sspsig( spsig.nelements() ) ;
1621      Vector<Float> stsyssig( tsyssig.nelements() ) ;
1622      Vector<uChar> sflagsig( flagsig.nelements() ) ;
1623      if ( ioffset2 > 0 ) {
1624        // SPECTRA and FLAGTRA
1625        for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1626          sspsig[j] = spsig[j+ioffset2] ;
1627          sflagsig[j] = flagsig[j+ioffset2] ;
1628        }
1629        for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1630          sspsig[j] = spsig[j-sigchan+ioffset2] ;
1631          sflagsig[j] = flagsig[j-sigchan+ioffset2] ;
1632        }
1633        spsig = sspsig.copy() ;
1634        flagsig = sflagsig.copy() ;
1635        for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1636          sspsig[j] = doffset2 * spsig[j+1] + ( 1.0 - doffset2 ) * spsig[j] ;
1637          sflagsig[j] = flagsig[j+1] || flagsig[j] ;
1638        }
1639        sspsig[sigchan-1] = doffset2 * spsig[0] + ( 1.0 - doffset2 ) * spsig[sigchan-1] ;
1640        sflagsig[sigchan-1] = flagsig[0] || flagsig[sigchan-1] ;
1641        // TSTS
1642        if ( spsig.nelements() == tsyssig.nelements() ) {
1643          for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1644            stsyssig[j] = tsyssig[j+ioffset2] ;
1645          }
1646          for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1647            stsyssig[j] = tsyssig[j-sigchan+ioffset2] ;
1648          }
1649          tsyssig = stsyssig.copy() ;
1650          for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1651            stsyssig[j] = doffset2 * tsyssig[j+1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1652          }
1653          stsyssig[sigchan-1] = doffset2 * tsyssig[0] + ( 1.0 - doffset2 ) * tsyssig[sigchan-1] ;
1654        }
1655      }
1656      else {
1657        // SPECTRA and FLAGTRA
1658        for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1659          sspsig[j] = spsig[sigchan+ioffset2+j] ;
1660          sflagsig[j] = flagsig[sigchan+ioffset2+j] ;
1661        }
1662        for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1663          sspsig[j] = spsig[j+ioffset2] ;
1664          sflagsig[j] = flagsig[j+ioffset2] ;
1665        }
1666        spsig = sspsig.copy() ;
1667        flagsig = sflagsig.copy() ;
1668        sspsig[0] = doffset2 * spsig[sigchan-1] + ( 1.0 - doffset2 ) * spsig[0] ;
1669        sflagsig[0] = flagsig[0] + flagsig[sigchan-1] ;
1670        for ( int j = 1 ; j < sigchan ; j++ ) {
1671          sspsig[j] = doffset2 * spsig[j-1] + ( 1.0 - doffset2 ) * spsig[j] ;
1672          sflagsig[j] = flagsig[j-1] + flagsig[j] ;
1673        }
1674        // TSYS
1675        if ( spsig.nelements() == tsyssig.nelements() ) {
1676          for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1677            stsyssig[j] = tsyssig[sigchan+ioffset2+j] ;
1678          }
1679          for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1680            stsyssig[j] = tsyssig[j+ioffset2] ;
1681          }
1682          tsyssig = stsyssig.copy() ;
1683          stsyssig[0] = doffset2 * tsyssig[sigchan-1] + ( 1.0 - doffset2 ) * tsyssig[0] ;
1684          for ( int j = 1 ; j < sigchan ; j++ ) {
1685            stsyssig[j] = doffset2 * tsyssig[j-1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1686          }
1687        }
1688      }
1689    }
1690
1691    // folding
1692    acc.add( spsig, !flagsig, tsyssig, intsig, timesig ) ;
1693    acc.add( sspref, !sflagref, stsysref, intref, timeref ) ;
1694   
1695    // put result
1696    specColOut.put( i, acc.getSpectrum() ) ;
1697    const Vector<Bool> &msk = acc.getMask() ;
1698    Vector<uChar> flg( msk.shape() ) ;
1699    convertArray( flg, !msk ) ;
1700    flagColOut.put( i, flg ) ;
1701    tsysColOut.put( i, acc.getTsys() ) ;
1702    intervalColOut.put( i, acc.getInterval() ) ;
1703    mjdColOut.put( i, acc.getTime() ) ;
1704    // change FREQ_ID to unshifted IF setting (only for APEX?)
1705    if ( choffset2 != 0.0 ) {
1706      uInt freqid = fidColOut( 0 ) ; // assume single-IF data
1707      double refpix, refval, increment ;
1708      out->frequencies().getEntry( refpix, refval, increment, freqid ) ;
1709      refval -= choffset * increment ;
1710      uInt newfreqid = out->frequencies().addEntry( refpix, refval, increment ) ;
1711      Vector<uInt> freqids = fidColOut.getColumn() ;
1712      for ( uInt j = 0 ; j < freqids.nelements() ; j++ ) {
1713        if ( freqids[j] == freqid )
1714          freqids[j] = newfreqid ;
1715      }
1716      fidColOut.putColumn( freqids ) ;
1717    }
1718
1719    acc.reset() ;
1720  }
1721
1722  return out ;
1723}
1724
1725
1726CountedPtr< Scantable > STMath::freqSwitch( const CountedPtr< Scantable >& in )
1727{
1728  // make copy or reference
1729  CountedPtr< Scantable > out = getScantable(in, false);
1730  Table& tout = out->table();
1731  Block<String> cols(4);
1732  cols[0] = String("SCANNO");
1733  cols[1] = String("CYCLENO");
1734  cols[2] = String("BEAMNO");
1735  cols[3] = String("POLNO");
1736  TableIterator iter(tout, cols);
1737  while (!iter.pastEnd()) {
1738    Table subt = iter.table();
1739    // this should leave us with two rows for the two IFs....if not ignore
1740    if (subt.nrow() != 2 ) {
1741      continue;
1742    }
1743    ArrayColumn<Float> specCol(subt, "SPECTRA");
1744    ArrayColumn<Float> tsysCol(subt, "TSYS");
1745    ArrayColumn<uChar> flagCol(subt, "FLAGTRA");
1746    Vector<Float> onspec,offspec, ontsys, offtsys;
1747    Vector<uChar> onflag, offflag;
1748    tsysCol.get(0, ontsys);   tsysCol.get(1, offtsys);
1749    specCol.get(0, onspec);   specCol.get(1, offspec);
1750    flagCol.get(0, onflag);   flagCol.get(1, offflag);
1751    MaskedArray<Float> on  = maskedArray(onspec, onflag);
1752    MaskedArray<Float> off = maskedArray(offspec, offflag);
1753    MaskedArray<Float> oncopy = on.copy();
1754
1755    on /= off; on -= 1.0f;
1756    on *= ontsys[0];
1757    off /= oncopy; off -= 1.0f;
1758    off *= offtsys[0];
1759    specCol.put(0, on.getArray());
1760    const Vector<Bool>& m0 = on.getMask();
1761    Vector<uChar> flags0(m0.shape());
1762    convertArray(flags0, !m0);
1763    flagCol.put(0, flags0);
1764
1765    specCol.put(1, off.getArray());
1766    const Vector<Bool>& m1 = off.getMask();
1767    Vector<uChar> flags1(m1.shape());
1768    convertArray(flags1, !m1);
1769    flagCol.put(1, flags1);
1770    ++iter;
1771  }
1772
1773  return out;
1774}
1775
1776std::vector< float > STMath::statistic( const CountedPtr< Scantable > & in,
1777                                        const std::vector< bool > & mask,
1778                                        const std::string& which )
1779{
1780
1781  Vector<Bool> m(mask);
1782  const Table& tab = in->table();
1783  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1784  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1785  std::vector<float> out;
1786  for (uInt i=0; i < tab.nrow(); ++i ) {
1787    Vector<Float> spec; specCol.get(i, spec);
1788    Vector<uChar> flag; flagCol.get(i, flag);
1789    MaskedArray<Float> ma  = maskedArray(spec, flag);
1790    float outstat = 0.0;
1791    if ( spec.nelements() == m.nelements() ) {
1792      outstat = mathutil::statistics(which, ma(m));
1793    } else {
1794      outstat = mathutil::statistics(which, ma);
1795    }
1796    out.push_back(outstat);
1797  }
1798  return out;
1799}
1800
1801std::vector< int > STMath::minMaxChan( const CountedPtr< Scantable > & in,
1802                                        const std::vector< bool > & mask,
1803                                        const std::string& which )
1804{
1805
1806  Vector<Bool> m(mask);
1807  const Table& tab = in->table();
1808  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1809  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1810  std::vector<int> out;
1811  for (uInt i=0; i < tab.nrow(); ++i ) {
1812    Vector<Float> spec; specCol.get(i, spec);
1813    Vector<uChar> flag; flagCol.get(i, flag);
1814    MaskedArray<Float> ma  = maskedArray(spec, flag);
1815    if (ma.ndim() != 1) {
1816      throw (ArrayError(
1817          "std::vector<int> STMath::minMaxChan("
1818          "ContedPtr<Scantable> &in, std::vector<bool> &mask, "
1819          " std::string &which)"
1820          " - MaskedArray is not 1D"));
1821    }
1822    IPosition outpos(1,0);
1823    if ( spec.nelements() == m.nelements() ) {
1824      outpos = mathutil::minMaxPos(which, ma(m));
1825    } else {
1826      outpos = mathutil::minMaxPos(which, ma);
1827    }
1828    out.push_back(outpos[0]);
1829  }
1830  return out;
1831}
1832
1833CountedPtr< Scantable > STMath::bin( const CountedPtr< Scantable > & in,
1834                                     int width )
1835{
1836  if ( !in->getSelection().empty() ) throw(AipsError("Can't bin subset of the data."));
1837  CountedPtr< Scantable > out = getScantable(in, false);
1838  Table& tout = out->table();
1839  out->frequencies().rescale(width, "BIN");
1840  ArrayColumn<Float> specCol(tout, "SPECTRA");
1841  ArrayColumn<uChar> flagCol(tout, "FLAGTRA");
1842  for (uInt i=0; i < tout.nrow(); ++i ) {
1843    MaskedArray<Float> main  = maskedArray(specCol(i), flagCol(i));
1844    MaskedArray<Float> maout;
1845    LatticeUtilities::bin(maout, main, 0, Int(width));
1846    /// @todo implement channel based tsys binning
1847    specCol.put(i, maout.getArray());
1848    flagCol.put(i, flagsFromMA(maout));
1849    // take only the first binned spectrum's length for the deprecated
1850    // global header item nChan
1851    if (i==0) tout.rwKeywordSet().define(String("nChan"),
1852                                       Int(maout.getArray().nelements()));
1853  }
1854  return out;
1855}
1856
1857CountedPtr< Scantable > STMath::resample( const CountedPtr< Scantable >& in,
1858                                          const std::string& method,
1859                                          float width )
1860//
1861// Should add the possibility of width being specified in km/s. This means
1862// that for each freqID (SpectralCoordinate) we will need to convert to an
1863// average channel width (say at the reference pixel).  Then we would need
1864// to be careful to make sure each spectrum (of different freqID)
1865// is the same length.
1866//
1867{
1868  //InterpolateArray1D<Double,Float>::InterpolationMethod interp;
1869  Int interpMethod(stringToIMethod(method));
1870
1871  CountedPtr< Scantable > out = getScantable(in, false);
1872  Table& tout = out->table();
1873
1874// Resample SpectralCoordinates (one per freqID)
1875  out->frequencies().rescale(width, "RESAMPLE");
1876  TableIterator iter(tout, "IFNO");
1877  TableRow row(tout);
1878  while ( !iter.pastEnd() ) {
1879    Table tab = iter.table();
1880    ArrayColumn<Float> specCol(tab, "SPECTRA");
1881    //ArrayColumn<Float> tsysCol(tout, "TSYS");
1882    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1883    Vector<Float> spec;
1884    Vector<uChar> flag;
1885    specCol.get(0,spec); // the number of channels should be constant per IF
1886    uInt nChanIn = spec.nelements();
1887    Vector<Float> xIn(nChanIn); indgen(xIn);
1888    Int fac =  Int(nChanIn/width);
1889    Vector<Float> xOut(fac+10); // 10 to be safe - resize later
1890    uInt k = 0;
1891    Float x = 0.0;
1892    while (x < Float(nChanIn) ) {
1893      xOut(k) = x;
1894      k++;
1895      x += width;
1896    }
1897    uInt nChanOut = k;
1898    xOut.resize(nChanOut, True);
1899    // process all rows for this IFNO
1900    Vector<Float> specOut;
1901    Vector<Bool> maskOut;
1902    Vector<uChar> flagOut;
1903    for (uInt i=0; i < tab.nrow(); ++i) {
1904      specCol.get(i, spec);
1905      flagCol.get(i, flag);
1906      Vector<Bool> mask(flag.nelements());
1907      convertArray(mask, flag);
1908
1909      IPosition shapeIn(spec.shape());
1910      //sh.nchan = nChanOut;
1911      InterpolateArray1D<Float,Float>::interpolate(specOut, maskOut, xOut,
1912                                                   xIn, spec, mask,
1913                                                   interpMethod, True, True);
1914      /// @todo do the same for channel based Tsys
1915      flagOut.resize(maskOut.nelements());
1916      convertArray(flagOut, maskOut);
1917      specCol.put(i, specOut);
1918      flagCol.put(i, flagOut);
1919    }
1920    ++iter;
1921  }
1922
1923  return out;
1924}
1925
1926STMath::imethod STMath::stringToIMethod(const std::string& in)
1927{
1928  static STMath::imap lookup;
1929
1930  // initialize the lookup table if necessary
1931  if ( lookup.empty() ) {
1932    lookup["nearest"]   = InterpolateArray1D<Double,Float>::nearestNeighbour;
1933    lookup["linear"] = InterpolateArray1D<Double,Float>::linear;
1934    lookup["cubic"]  = InterpolateArray1D<Double,Float>::cubic;
1935    lookup["spline"]  = InterpolateArray1D<Double,Float>::spline;
1936  }
1937
1938  STMath::imap::const_iterator iter = lookup.find(in);
1939
1940  if ( lookup.end() == iter ) {
1941    std::string message = in;
1942    message += " is not a valid interpolation mode";
1943    throw(AipsError(message));
1944  }
1945  return iter->second;
1946}
1947
1948WeightType STMath::stringToWeight(const std::string& in)
1949{
1950  static std::map<std::string, WeightType> lookup;
1951
1952  // initialize the lookup table if necessary
1953  if ( lookup.empty() ) {
1954    lookup["NONE"]   = asap::NONE;
1955    lookup["TINT"] = asap::TINT;
1956    lookup["TINTSYS"]  = asap::TINTSYS;
1957    lookup["TSYS"]  = asap::TSYS;
1958    lookup["VAR"]  = asap::VAR;
1959  }
1960
1961  std::map<std::string, WeightType>::const_iterator iter = lookup.find(in);
1962
1963  if ( lookup.end() == iter ) {
1964    std::string message = in;
1965    message += " is not a valid weighting mode";
1966    throw(AipsError(message));
1967  }
1968  return iter->second;
1969}
1970
1971CountedPtr< Scantable > STMath::gainElevation( const CountedPtr< Scantable >& in,
1972                                               const vector< float > & coeff,
1973                                               const std::string & filename,
1974                                               const std::string& method)
1975{
1976  // Get elevation data from Scantable and convert to degrees
1977  CountedPtr< Scantable > out = getScantable(in, false);
1978  Table& tab = out->table();
1979  ROScalarColumn<Float> elev(tab, "ELEVATION");
1980  Vector<Float> x = elev.getColumn();
1981  x *= Float(180 / C::pi);                        // Degrees
1982
1983  Vector<Float> coeffs(coeff);
1984  const uInt nc = coeffs.nelements();
1985  if ( filename.length() > 0 && nc > 0 ) {
1986    throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
1987  }
1988
1989  // Correct
1990  if ( nc > 0 || filename.length() == 0 ) {
1991    // Find instrument
1992    Bool throwit = True;
1993    Instrument inst =
1994      STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
1995                                throwit);
1996
1997    // Set polynomial
1998    Polynomial<Float>* ppoly = 0;
1999    Vector<Float> coeff;
2000    String msg;
2001    if ( nc > 0 ) {
2002      ppoly = new Polynomial<Float>(nc);
2003      coeff = coeffs;
2004      msg = String("user");
2005    } else {
2006      STAttr sdAttr;
2007      coeff = sdAttr.gainElevationPoly(inst);
2008      ppoly = new Polynomial<Float>(3);
2009      msg = String("built in");
2010    }
2011
2012    if ( coeff.nelements() > 0 ) {
2013      ppoly->setCoefficients(coeff);
2014    } else {
2015      delete ppoly;
2016      throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
2017    }
2018    ostringstream oss;
2019    oss << "Making polynomial correction with " << msg << " coefficients:" << endl;
2020    oss << "   " <<  coeff;
2021    pushLog(String(oss));
2022    const uInt nrow = tab.nrow();
2023    Vector<Float> factor(nrow);
2024    for ( uInt i=0; i < nrow; ++i ) {
2025      factor[i] = 1.0 / (*ppoly)(x[i]);
2026    }
2027    delete ppoly;
2028    scaleByVector(tab, factor, true);
2029
2030  } else {
2031    // Read and correct
2032    pushLog("Making correction from ascii Table");
2033    scaleFromAsciiTable(tab, filename, method, x, true);
2034  }
2035  return out;
2036}
2037
2038void STMath::scaleFromAsciiTable(Table& in, const std::string& filename,
2039                                 const std::string& method,
2040                                 const Vector<Float>& xout, bool dotsys)
2041{
2042
2043// Read gain-elevation ascii file data into a Table.
2044
2045  String formatString;
2046  Table tbl = readAsciiTable(formatString, Table::Memory, filename, "", "", False);
2047  scaleFromTable(in, tbl, method, xout, dotsys);
2048}
2049
2050void STMath::scaleFromTable(Table& in,
2051                            const Table& table,
2052                            const std::string& method,
2053                            const Vector<Float>& xout, bool dotsys)
2054{
2055
2056  ROScalarColumn<Float> geElCol(table, "ELEVATION");
2057  ROScalarColumn<Float> geFacCol(table, "FACTOR");
2058  Vector<Float> xin = geElCol.getColumn();
2059  Vector<Float> yin = geFacCol.getColumn();
2060  Vector<Bool> maskin(xin.nelements(),True);
2061
2062  // Interpolate (and extrapolate) with desired method
2063
2064  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2065
2066   Vector<Float> yout;
2067   Vector<Bool> maskout;
2068   InterpolateArray1D<Float,Float>::interpolate(yout, maskout, xout,
2069                                                xin, yin, maskin, interp,
2070                                                True, True);
2071
2072   scaleByVector(in, Float(1.0)/yout, dotsys);
2073}
2074
2075void STMath::scaleByVector( Table& in,
2076                            const Vector< Float >& factor,
2077                            bool dotsys )
2078{
2079  uInt nrow = in.nrow();
2080  if ( factor.nelements() != nrow ) {
2081    throw(AipsError("factors.nelements() != table.nelements()"));
2082  }
2083  ArrayColumn<Float> specCol(in, "SPECTRA");
2084  ArrayColumn<uChar> flagCol(in, "FLAGTRA");
2085  ArrayColumn<Float> tsysCol(in, "TSYS");
2086  for (uInt i=0; i < nrow; ++i) {
2087    MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2088    ma *= factor[i];
2089    specCol.put(i, ma.getArray());
2090    flagCol.put(i, flagsFromMA(ma));
2091    if ( dotsys ) {
2092      Vector<Float> tsys = tsysCol(i);
2093      tsys *= factor[i];
2094      tsysCol.put(i,tsys);
2095    }
2096  }
2097}
2098
2099CountedPtr< Scantable > STMath::convertFlux( const CountedPtr< Scantable >& in,
2100                                             float d, float etaap,
2101                                             float jyperk )
2102{
2103  CountedPtr< Scantable > out = getScantable(in, false);
2104  Table& tab = in->table();
2105  Unit fluxUnit(tab.keywordSet().asString("FluxUnit"));
2106  Unit K(String("K"));
2107  Unit JY(String("Jy"));
2108
2109  bool tokelvin = true;
2110  Double cfac = 1.0;
2111
2112  if ( fluxUnit == JY ) {
2113    pushLog("Converting to K");
2114    Quantum<Double> t(1.0,fluxUnit);
2115    Quantum<Double> t2 = t.get(JY);
2116    cfac = (t2 / t).getValue();               // value to Jy
2117
2118    tokelvin = true;
2119    out->setFluxUnit("K");
2120  } else if ( fluxUnit == K ) {
2121    pushLog("Converting to Jy");
2122    Quantum<Double> t(1.0,fluxUnit);
2123    Quantum<Double> t2 = t.get(K);
2124    cfac = (t2 / t).getValue();              // value to K
2125
2126    tokelvin = false;
2127    out->setFluxUnit("Jy");
2128  } else {
2129    throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
2130  }
2131  // Make sure input values are converted to either Jy or K first...
2132  Float factor = cfac;
2133
2134  // Select method
2135  if (jyperk > 0.0) {
2136    factor *= jyperk;
2137    if ( tokelvin ) factor = 1.0 / jyperk;
2138    ostringstream oss;
2139    oss << "Jy/K = " << jyperk;
2140    pushLog(String(oss));
2141    Vector<Float> factors(tab.nrow(), factor);
2142    scaleByVector(tab,factors, false);
2143  } else if ( etaap > 0.0) {
2144    if (d < 0) {
2145      Instrument inst =
2146        STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2147                                  True);
2148      STAttr sda;
2149      d = sda.diameter(inst);
2150    }
2151    jyperk = STAttr::findJyPerK(etaap, d);
2152    ostringstream oss;
2153    oss << "Jy/K = " << jyperk;
2154    pushLog(String(oss));
2155    factor *= jyperk;
2156    if ( tokelvin ) {
2157      factor = 1.0 / factor;
2158    }
2159    Vector<Float> factors(tab.nrow(), factor);
2160    scaleByVector(tab, factors, False);
2161  } else {
2162
2163    // OK now we must deal with automatic look up of values.
2164    // We must also deal with the fact that the factors need
2165    // to be computed per IF and may be different and may
2166    // change per integration.
2167
2168    pushLog("Looking up conversion factors");
2169    convertBrightnessUnits(out, tokelvin, cfac);
2170  }
2171
2172  return out;
2173}
2174
2175void STMath::convertBrightnessUnits( CountedPtr<Scantable>& in,
2176                                     bool tokelvin, float cfac )
2177{
2178  Table& table = in->table();
2179  Instrument inst =
2180    STAttr::convertInstrument(table.keywordSet().asString("AntennaName"), True);
2181  TableIterator iter(table, "FREQ_ID");
2182  STFrequencies stfreqs = in->frequencies();
2183  STAttr sdAtt;
2184  while (!iter.pastEnd()) {
2185    Table tab = iter.table();
2186    ArrayColumn<Float> specCol(tab, "SPECTRA");
2187    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2188    ROScalarColumn<uInt> freqidCol(tab, "FREQ_ID");
2189    MEpoch::ROScalarColumn timeCol(tab, "TIME");
2190
2191    uInt freqid; freqidCol.get(0, freqid);
2192    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2193    // STAttr.JyPerK has a Vector interface... change sometime.
2194    Vector<Float> freqs(1,stfreqs.getRefFreq(freqid, tmpspec.nelements()));
2195    for ( uInt i=0; i<tab.nrow(); ++i) {
2196      Float jyperk = (sdAtt.JyPerK(inst, timeCol(i), freqs))[0];
2197      Float factor = cfac * jyperk;
2198      if ( tokelvin ) factor = Float(1.0) / factor;
2199      MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2200      ma *= factor;
2201      specCol.put(i, ma.getArray());
2202      flagCol.put(i, flagsFromMA(ma));
2203    }
2204  ++iter;
2205  }
2206}
2207
2208CountedPtr< Scantable > STMath::opacity( const CountedPtr< Scantable > & in,
2209                                         float tau )
2210{
2211  CountedPtr< Scantable > out = getScantable(in, false);
2212
2213  Table tab = out->table();
2214  ROScalarColumn<Float> elev(tab, "ELEVATION");
2215  ArrayColumn<Float> specCol(tab, "SPECTRA");
2216  ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2217  ArrayColumn<Float> tsysCol(tab, "TSYS");
2218  for ( uInt i=0; i<tab.nrow(); ++i) {
2219    Float zdist = Float(C::pi_2) - elev(i);
2220    Float factor = exp(tau/cos(zdist));
2221    MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2222    ma *= factor;
2223    specCol.put(i, ma.getArray());
2224    flagCol.put(i, flagsFromMA(ma));
2225    Vector<Float> tsys;
2226    tsysCol.get(i, tsys);
2227    tsys *= factor;
2228    tsysCol.put(i, tsys);
2229  }
2230  return out;
2231}
2232
2233CountedPtr< Scantable > STMath::smoothOther( const CountedPtr< Scantable >& in,
2234                                             const std::string& kernel,
2235                                             float width )
2236{
2237  CountedPtr< Scantable > out = getScantable(in, false);
2238  Table& table = out->table();
2239  ArrayColumn<Float> specCol(table, "SPECTRA");
2240  ArrayColumn<uChar> flagCol(table, "FLAGTRA");
2241  Vector<Float> spec;
2242  Vector<uChar> flag;
2243  for ( uInt i=0; i<table.nrow(); ++i) {
2244    specCol.get(i, spec);
2245    flagCol.get(i, flag);
2246    Vector<Bool> mask(flag.nelements());
2247    convertArray(mask, flag);
2248    Vector<Float> specout;
2249    Vector<Bool> maskout;
2250    if ( kernel == "hanning" ) {
2251      mathutil::hanning(specout, maskout, spec , !mask);
2252      convertArray(flag, !maskout);
2253    } else if (  kernel == "rmedian" ) {
2254      mathutil::runningMedian(specout, maskout, spec , mask, width);
2255      convertArray(flag, maskout);
2256    }
2257    flagCol.put(i, flag);
2258    specCol.put(i, specout);
2259  }
2260  return out;
2261}
2262
2263CountedPtr< Scantable > STMath::smooth( const CountedPtr< Scantable >& in,
2264                                        const std::string& kernel, float width )
2265{
2266  if (kernel == "rmedian"  || kernel == "hanning") {
2267    return smoothOther(in, kernel, width);
2268  }
2269  CountedPtr< Scantable > out = getScantable(in, false);
2270  Table& table = out->table();
2271  VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernel);
2272  // same IFNO should have same no of channels
2273  // this saves overhead
2274  TableIterator iter(table, "IFNO");
2275  while (!iter.pastEnd()) {
2276    Table tab = iter.table();
2277    ArrayColumn<Float> specCol(tab, "SPECTRA");
2278    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2279    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2280    uInt nchan = tmpspec.nelements();
2281    Vector<Float> kvec = VectorKernel::make(type, width, nchan, True, False);
2282    Convolver<Float> conv(kvec, IPosition(1,nchan));
2283    Vector<Float> spec;
2284    Vector<uChar> flag;
2285    for ( uInt i=0; i<tab.nrow(); ++i) {
2286      specCol.get(i, spec);
2287      flagCol.get(i, flag);
2288      Vector<Bool> mask(flag.nelements());
2289      convertArray(mask, flag);
2290      Vector<Float> specout;
2291      mathutil::replaceMaskByZero(specout, mask);
2292      conv.linearConv(specout, spec);
2293      specCol.put(i, specout);
2294    }
2295    ++iter;
2296  }
2297  return out;
2298}
2299
2300CountedPtr< Scantable >
2301  STMath::merge( const std::vector< CountedPtr < Scantable > >& in )
2302{
2303  if ( in.size() < 2 ) {
2304    throw(AipsError("Need at least two scantables to perform a merge."));
2305  }
2306  std::vector<CountedPtr < Scantable > >::const_iterator it = in.begin();
2307  bool insitu = insitu_;
2308  setInsitu(false);
2309  CountedPtr< Scantable > out = getScantable(*it, false);
2310  setInsitu(insitu);
2311  Table& tout = out->table();
2312  ScalarColumn<uInt> freqidcol(tout,"FREQ_ID"), molidcol(tout, "MOLECULE_ID");
2313  ScalarColumn<uInt> scannocol(tout,"SCANNO"), focusidcol(tout,"FOCUS_ID");
2314  // Renumber SCANNO to be 0-based
2315  Vector<uInt> scannos = scannocol.getColumn();
2316  uInt offset = min(scannos);
2317  scannos -= offset;
2318  scannocol.putColumn(scannos);
2319  uInt newscanno = max(scannos)+1;
2320  ++it;
2321  while ( it != in.end() ){
2322    if ( ! (*it)->conformant(*out) ) {
2323      // non conformant.
2324      //pushLog(String("Warning: Can't merge scantables as header info differs."));
2325      LogIO os( LogOrigin( "STMath", "merge()", WHERE ) ) ;
2326      os << LogIO::SEVERE << "Can't merge scantables as header informations (any one of AntennaName, Equinox, and FluxUnit) differ." << LogIO::EXCEPTION ;
2327    }
2328    out->appendToHistoryTable((*it)->history());
2329    const Table& tab = (*it)->table();
2330    TableIterator scanit(tab, "SCANNO");
2331    while (!scanit.pastEnd()) {
2332      TableIterator freqit(scanit.table(), "FREQ_ID");
2333      while ( !freqit.pastEnd() ) {
2334        Table thetab = freqit.table();
2335        uInt nrow = tout.nrow();
2336        tout.addRow(thetab.nrow());
2337        TableCopy::copyRows(tout, thetab, nrow, 0, thetab.nrow());
2338        ROTableRow row(thetab);
2339        for ( uInt i=0; i<thetab.nrow(); ++i) {
2340          uInt k = nrow+i;
2341          scannocol.put(k, newscanno);
2342          const TableRecord& rec = row.get(i);
2343          Double rv,rp,inc;
2344          (*it)->frequencies().getEntry(rp, rv, inc, rec.asuInt("FREQ_ID"));
2345          uInt id;
2346          id = out->frequencies().addEntry(rp, rv, inc);
2347          freqidcol.put(k,id);
2348          //String name,fname;Double rf;
2349          Vector<String> name,fname;Vector<Double> rf;
2350          (*it)->molecules().getEntry(rf, name, fname, rec.asuInt("MOLECULE_ID"));
2351          id = out->molecules().addEntry(rf, name, fname);
2352          molidcol.put(k, id);
2353          Float frot,fax,ftan,fhand,fmount,fuser, fxy, fxyp;
2354          (*it)->focus().getEntry(fax, ftan, frot, fhand,
2355                                  fmount,fuser, fxy, fxyp,
2356                                  rec.asuInt("FOCUS_ID"));
2357          id = out->focus().addEntry(fax, ftan, frot, fhand,
2358                                     fmount,fuser, fxy, fxyp);
2359          focusidcol.put(k, id);
2360        }
2361        ++freqit;
2362      }
2363      ++newscanno;
2364      ++scanit;
2365    }
2366    ++it;
2367  }
2368  return out;
2369}
2370
2371CountedPtr< Scantable >
2372  STMath::invertPhase( const CountedPtr < Scantable >& in )
2373{
2374  return applyToPol(in, &STPol::invertPhase, Float(0.0));
2375}
2376
2377CountedPtr< Scantable >
2378  STMath::rotateXYPhase( const CountedPtr < Scantable >& in, float phase )
2379{
2380   return applyToPol(in, &STPol::rotatePhase, Float(phase));
2381}
2382
2383CountedPtr< Scantable >
2384  STMath::rotateLinPolPhase( const CountedPtr < Scantable >& in, float phase )
2385{
2386  return applyToPol(in, &STPol::rotateLinPolPhase, Float(phase));
2387}
2388
2389CountedPtr< Scantable > STMath::applyToPol( const CountedPtr<Scantable>& in,
2390                                             STPol::polOperation fptr,
2391                                             Float phase )
2392{
2393  CountedPtr< Scantable > out = getScantable(in, false);
2394  Table& tout = out->table();
2395  Block<String> cols(4);
2396  cols[0] = String("SCANNO");
2397  cols[1] = String("BEAMNO");
2398  cols[2] = String("IFNO");
2399  cols[3] = String("CYCLENO");
2400  TableIterator iter(tout, cols);
2401  CountedPtr<STPol> stpol = STPol::getPolClass(out->factories_,
2402                                               out->getPolType() );
2403  while (!iter.pastEnd()) {
2404    Table t = iter.table();
2405    ArrayColumn<Float> speccol(t, "SPECTRA");
2406    ScalarColumn<uInt> focidcol(t, "FOCUS_ID");
2407    ScalarColumn<Float> parancol(t, "PARANGLE");
2408    Matrix<Float> pols(speccol.getColumn());
2409    try {
2410      stpol->setSpectra(pols);
2411      Float fang,fhand,parang;
2412      fang = in->focusTable_.getTotalFeedAngle(focidcol(0));
2413      fhand = in->focusTable_.getFeedHand(focidcol(0));
2414      parang = parancol(0);
2415      /// @todo re-enable this
2416      // disable total feed angle to support paralactifying Caswell style
2417      stpol->setPhaseCorrections(parang, -parang, fhand);
2418      // use a member function pointer in STPol.  This only works on
2419      // the STPol pointer itself, not the Counted Pointer so
2420      // derefernce it.
2421      (&(*(stpol))->*fptr)(phase);
2422      speccol.putColumn(stpol->getSpectra());
2423    } catch (AipsError& e) {
2424      //delete stpol;stpol=0;
2425      throw(e);
2426    }
2427    ++iter;
2428  }
2429  //delete stpol;stpol=0;
2430  return out;
2431}
2432
2433CountedPtr< Scantable >
2434  STMath::swapPolarisations( const CountedPtr< Scantable > & in )
2435{
2436  CountedPtr< Scantable > out = getScantable(in, false);
2437  Table& tout = out->table();
2438  Table t0 = tout(tout.col("POLNO") == 0);
2439  Table t1 = tout(tout.col("POLNO") == 1);
2440  if ( t0.nrow() != t1.nrow() )
2441    throw(AipsError("Inconsistent number of polarisations"));
2442  ArrayColumn<Float> speccol0(t0, "SPECTRA");
2443  ArrayColumn<uChar> flagcol0(t0, "FLAGTRA");
2444  ArrayColumn<Float> speccol1(t1, "SPECTRA");
2445  ArrayColumn<uChar> flagcol1(t1, "FLAGTRA");
2446  Matrix<Float> s0 = speccol0.getColumn();
2447  Matrix<uChar> f0 = flagcol0.getColumn();
2448  speccol0.putColumn(speccol1.getColumn());
2449  flagcol0.putColumn(flagcol1.getColumn());
2450  speccol1.putColumn(s0);
2451  flagcol1.putColumn(f0);
2452  return out;
2453}
2454
2455CountedPtr< Scantable >
2456  STMath::averagePolarisations( const CountedPtr< Scantable > & in,
2457                                const std::vector<bool>& mask,
2458                                const std::string& weight )
2459{
2460  if (in->npol() < 2 )
2461    throw(AipsError("averagePolarisations can only be applied to two or more"
2462                    "polarisations"));
2463  bool insitu = insitu_;
2464  setInsitu(false);
2465  CountedPtr< Scantable > pols = getScantable(in, true);
2466  setInsitu(insitu);
2467  Table& tout = pols->table();
2468  std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
2469  Table tab = tableCommand(taql, in->table());
2470  if (tab.nrow() == 0 )
2471    throw(AipsError("Could not find  any rows with POLNO==0 and POLNO==1"));
2472  TableCopy::copyRows(tout, tab);
2473  TableVector<uInt> vec(tout, "POLNO");
2474  vec = 0;
2475  pols->table_.rwKeywordSet().define("nPol", Int(1));
2476  //pols->table_.rwKeywordSet().define("POLTYPE", String("stokes"));
2477  pols->table_.rwKeywordSet().define("POLTYPE", in->getPolType());
2478  std::vector<CountedPtr<Scantable> > vpols;
2479  vpols.push_back(pols);
2480  CountedPtr< Scantable > out = average(vpols, mask, weight, "SCAN");
2481  return out;
2482}
2483
2484CountedPtr< Scantable >
2485  STMath::averageBeams( const CountedPtr< Scantable > & in,
2486                        const std::vector<bool>& mask,
2487                        const std::string& weight )
2488{
2489  bool insitu = insitu_;
2490  setInsitu(false);
2491  CountedPtr< Scantable > beams = getScantable(in, false);
2492  setInsitu(insitu);
2493  Table& tout = beams->table();
2494  // give all rows the same BEAMNO
2495  TableVector<uInt> vec(tout, "BEAMNO");
2496  vec = 0;
2497  beams->table_.rwKeywordSet().define("nBeam", Int(1));
2498  std::vector<CountedPtr<Scantable> > vbeams;
2499  vbeams.push_back(beams);
2500  CountedPtr< Scantable > out = average(vbeams, mask, weight, "SCAN");
2501  return out;
2502}
2503
2504
2505CountedPtr< Scantable >
2506  asap::STMath::frequencyAlign( const CountedPtr< Scantable > & in,
2507                                const std::string & refTime,
2508                                const std::string & method)
2509{
2510  // clone as this is not working insitu
2511  bool insitu = insitu_;
2512  setInsitu(false);
2513  CountedPtr< Scantable > out = getScantable(in, false);
2514  setInsitu(insitu);
2515  Table& tout = out->table();
2516  // Get reference Epoch to time of first row or given String
2517  Unit DAY(String("d"));
2518  MEpoch::Ref epochRef(in->getTimeReference());
2519  MEpoch refEpoch;
2520  if (refTime.length()>0) {
2521    Quantum<Double> qt;
2522    if (MVTime::read(qt,refTime)) {
2523      MVEpoch mv(qt);
2524      refEpoch = MEpoch(mv, epochRef);
2525   } else {
2526      throw(AipsError("Invalid format for Epoch string"));
2527   }
2528  } else {
2529    refEpoch = in->timeCol_(0);
2530  }
2531  MPosition refPos = in->getAntennaPosition();
2532
2533  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2534  /*
2535  // Comment from MV.
2536  // the following code has been commented out because different FREQ_IDs have to be aligned together even
2537  // if the frame doesn't change. So far, lack of this check didn't cause any problems.
2538  // test if user frame is different to base frame
2539  if ( in->frequencies().getFrameString(true)
2540       == in->frequencies().getFrameString(false) ) {
2541    throw(AipsError("Can't convert as no output frame has been set"
2542                    " (use set_freqframe) or it is aligned already."));
2543  }
2544  */
2545  MFrequency::Types system = in->frequencies().getFrame();
2546  MVTime mvt(refEpoch.getValue());
2547  String epochout = mvt.string(MVTime::YMD) + String(" (") + refEpoch.getRefString() + String(")");
2548  ostringstream oss;
2549  oss << "Aligned at reference Epoch " << epochout
2550      << " in frame " << MFrequency::showType(system);
2551  pushLog(String(oss));
2552  // set up the iterator
2553  Block<String> cols(4);
2554  // select by constant direction
2555  cols[0] = String("SRCNAME");
2556  cols[1] = String("BEAMNO");
2557  // select by IF ( no of channels varies over this )
2558  cols[2] = String("IFNO");
2559  // select by restfrequency
2560  cols[3] = String("MOLECULE_ID");
2561  TableIterator iter(tout, cols);
2562  while ( !iter.pastEnd() ) {
2563    Table t = iter.table();
2564    MDirection::ROScalarColumn dirCol(t, "DIRECTION");
2565    TableIterator fiter(t, "FREQ_ID");
2566    // determine nchan from the first row. This should work as
2567    // we are iterating over BEAMNO and IFNO    // we should have constant direction
2568
2569    ROArrayColumn<Float> sCol(t, "SPECTRA");
2570    const MDirection direction = dirCol(0);
2571    const uInt nchan = sCol(0).nelements();
2572
2573    // skip operations if there is nothing to align
2574    if (fiter.pastEnd()) {
2575        continue;
2576    }
2577
2578    Table ftab = fiter.table();
2579    // align all frequency ids with respect to the first encountered id
2580    ScalarColumn<uInt> freqidCol(ftab, "FREQ_ID");
2581    // get the SpectralCoordinate for the freqid, which we are iterating over
2582    SpectralCoordinate sC = in->frequencies().getSpectralCoordinate(freqidCol(0));
2583    FrequencyAligner<Float> fa( sC, nchan, refEpoch,
2584                                direction, refPos, system );
2585    // realign the SpectralCoordinate and put into the output Scantable
2586    Vector<String> units(1);
2587    units = String("Hz");
2588    Bool linear=True;
2589    SpectralCoordinate sc2 = fa.alignedSpectralCoordinate(linear);
2590    sc2.setWorldAxisUnits(units);
2591    const uInt id = out->frequencies().addEntry(sc2.referencePixel()[0],
2592                                                sc2.referenceValue()[0],
2593                                                sc2.increment()[0]);
2594    while ( !fiter.pastEnd() ) {
2595      ftab = fiter.table();
2596      // spectral coordinate for the current FREQ_ID
2597      ScalarColumn<uInt> freqidCol2(ftab, "FREQ_ID");
2598      sC = in->frequencies().getSpectralCoordinate(freqidCol2(0));
2599      // create the "global" abcissa for alignment with same FREQ_ID
2600      Vector<Double> abc(nchan);
2601      for (uInt i=0; i<nchan; i++) {
2602           Double w;
2603           sC.toWorld(w,Double(i));
2604           abc[i] = w;
2605      }
2606      TableVector<uInt> tvec(ftab, "FREQ_ID");
2607      // assign new frequency id to all rows
2608      tvec = id;
2609      // cache abcissa for same time stamps, so iterate over those
2610      TableIterator timeiter(ftab, "TIME");
2611      while ( !timeiter.pastEnd() ) {
2612        Table tab = timeiter.table();
2613        ArrayColumn<Float> specCol(tab, "SPECTRA");
2614        ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2615        MEpoch::ROScalarColumn timeCol(tab, "TIME");
2616        // use align abcissa cache after the first row
2617        // these rows should be just be POLNO
2618        bool first = true;
2619        for (int i=0; i<int(tab.nrow()); ++i) {
2620          // input values
2621          Vector<uChar> flag = flagCol(i);
2622          Vector<Bool> mask(flag.shape());
2623          Vector<Float> specOut, spec;
2624          spec  = specCol(i);
2625          Vector<Bool> maskOut;Vector<uChar> flagOut;
2626          convertArray(mask, flag);
2627          // alignment
2628          Bool ok = fa.align(specOut, maskOut, abc, spec,
2629                             mask, timeCol(i), !first,
2630                             interp, False);
2631          // back into scantable
2632          flagOut.resize(maskOut.nelements());
2633          convertArray(flagOut, maskOut);
2634          flagCol.put(i, flagOut);
2635          specCol.put(i, specOut);
2636          // start abcissa caching
2637          first = false;
2638        }
2639        // next timestamp
2640        ++timeiter;
2641      }
2642      // next FREQ_ID
2643      ++fiter;
2644    }
2645    // next aligner
2646    ++iter;
2647  }
2648  // set this afterwards to ensure we are doing insitu correctly.
2649  out->frequencies().setFrame(system, true);
2650  return out;
2651}
2652
2653CountedPtr<Scantable>
2654  asap::STMath::convertPolarisation( const CountedPtr<Scantable>& in,
2655                                     const std::string & newtype )
2656{
2657  if (in->npol() != 2 && in->npol() != 4)
2658    throw(AipsError("Can only convert two or four polarisations."));
2659  if ( in->getPolType() == newtype )
2660    throw(AipsError("No need to convert."));
2661  if ( ! in->selector_.empty() )
2662    throw(AipsError("Can only convert whole scantable. Unset the selection."));
2663  bool insitu = insitu_;
2664  setInsitu(false);
2665  CountedPtr< Scantable > out = getScantable(in, true);
2666  setInsitu(insitu);
2667  Table& tout = out->table();
2668  tout.rwKeywordSet().define("POLTYPE", String(newtype));
2669
2670  Block<String> cols(4);
2671  cols[0] = "SCANNO";
2672  cols[1] = "CYCLENO";
2673  cols[2] = "BEAMNO";
2674  cols[3] = "IFNO";
2675  TableIterator it(in->originalTable_, cols);
2676  String basetype = in->getPolType();
2677  STPol* stpol = STPol::getPolClass(in->factories_, basetype);
2678  try {
2679    while ( !it.pastEnd() ) {
2680      Table tab = it.table();
2681      uInt row = tab.rowNumbers()[0];
2682      stpol->setSpectra(in->getPolMatrix(row));
2683      Float fang,fhand,parang;
2684      fang = in->focusTable_.getTotalFeedAngle(in->mfocusidCol_(row));
2685      fhand = in->focusTable_.getFeedHand(in->mfocusidCol_(row));
2686      parang = in->paraCol_(row);
2687      /// @todo re-enable this
2688      // disable total feed angle to support paralactifying Caswell style
2689      stpol->setPhaseCorrections(parang, -parang, fhand);
2690      Int npolout = 0;
2691      for (uInt i=0; i<tab.nrow(); ++i) {
2692        Vector<Float> outvec = stpol->getSpectrum(i, newtype);
2693        if ( outvec.nelements() > 0 ) {
2694          tout.addRow();
2695          TableCopy::copyRows(tout, tab, tout.nrow()-1, 0, 1);
2696          ArrayColumn<Float> sCol(tout,"SPECTRA");
2697          ScalarColumn<uInt> pCol(tout,"POLNO");
2698          sCol.put(tout.nrow()-1 ,outvec);
2699          pCol.put(tout.nrow()-1 ,uInt(npolout));
2700          npolout++;
2701       }
2702      }
2703      tout.rwKeywordSet().define("nPol", npolout);
2704      ++it;
2705    }
2706  } catch (AipsError& e) {
2707    delete stpol;
2708    throw(e);
2709  }
2710  delete stpol;
2711  return out;
2712}
2713
2714CountedPtr< Scantable >
2715  asap::STMath::mxExtract( const CountedPtr< Scantable > & in,
2716                           const std::string & scantype )
2717{
2718  bool insitu = insitu_;
2719  setInsitu(false);
2720  CountedPtr< Scantable > out = getScantable(in, true);
2721  setInsitu(insitu);
2722  Table& tout = out->table();
2723  std::string taql = "SELECT FROM $1 WHERE BEAMNO != REFBEAMNO";
2724  if (scantype == "on") {
2725    taql = "SELECT FROM $1 WHERE BEAMNO == REFBEAMNO";
2726  }
2727  Table tab = tableCommand(taql, in->table());
2728  TableCopy::copyRows(tout, tab);
2729  if (scantype == "on") {
2730    // re-index SCANNO to 0
2731    TableVector<uInt> vec(tout, "SCANNO");
2732    vec = 0;
2733  }
2734  return out;
2735}
2736
2737CountedPtr< Scantable >
2738  asap::STMath::lagFlag( const CountedPtr< Scantable > & in,
2739                          double frequency, double width )
2740{
2741  CountedPtr< Scantable > out = getScantable(in, false);
2742  Table& tout = out->table();
2743  TableIterator iter(tout, "FREQ_ID");
2744  FFTServer<Float,Complex> ffts;
2745  while ( !iter.pastEnd() ) {
2746    Table tab = iter.table();
2747    Double rp,rv,inc;
2748    ROTableRow row(tab);
2749    const TableRecord& rec = row.get(0);
2750    uInt freqid = rec.asuInt("FREQ_ID");
2751    out->frequencies().getEntry(rp, rv, inc, freqid);
2752    ArrayColumn<Float> specCol(tab, "SPECTRA");
2753    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2754    for (int i=0; i<int(tab.nrow()); ++i) {
2755      Vector<Float> spec = specCol(i);
2756      Vector<uChar> flag = flagCol(i);
2757      Int lag0 = Int(spec.nelements()*abs(inc)/(frequency+width)+0.5);
2758      Int lag1 = Int(spec.nelements()*abs(inc)/(frequency-width)+0.5);
2759      for (unsigned int k=0; k < flag.nelements(); ++k ) {
2760        if (flag[k] > 0) {
2761          spec[k] = 0.0;
2762        }
2763      }
2764      Vector<Complex> lags;
2765      ffts.fft0(lags, spec);
2766      Int start =  max(0, lag0);
2767      Int end =  min(Int(lags.nelements()-1), lag1);
2768      if (start == end) {
2769        lags[start] = Complex(0.0);
2770      } else {
2771        for (int j=start; j <=end ;++j) {
2772          lags[j] = Complex(0.0);
2773        }
2774      }
2775      ffts.fft0(spec, lags);
2776      specCol.put(i, spec);
2777    }
2778    ++iter;
2779  }
2780  return out;
2781}
2782
2783// Averaging spectra with different channel/resolution
2784CountedPtr<Scantable>
2785STMath::new_average( const std::vector<CountedPtr<Scantable> >& in,
2786                     const bool& compel,
2787                     const std::vector<bool>& mask,
2788                     const std::string& weight,
2789                     const std::string& avmode )
2790  throw ( casa::AipsError )
2791{
2792  LogIO os( LogOrigin( "STMath", "new_average()", WHERE ) ) ;
2793  if ( avmode == "SCAN" && in.size() != 1 )
2794    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
2795                    "Use merge first."));
2796 
2797  // check if OTF observation
2798  String obstype = in[0]->getHeader().obstype ;
2799  Double tol = 0.0 ;
2800  if ( obstype.find( "OTF" ) != String::npos ) {
2801    tol = TOL_OTF ;
2802  }
2803  else {
2804    tol = TOL_POINT ;
2805  }
2806
2807  CountedPtr<Scantable> out ;     // processed result
2808  if ( compel ) {
2809    std::vector< CountedPtr<Scantable> > newin ; // input for average process
2810    uInt insize = in.size() ;    // number of input scantables
2811
2812    // TEST: do normal average in each table before IF grouping
2813    os << "Do preliminary averaging" << LogIO::POST ;
2814    vector< CountedPtr<Scantable> > tmpin( insize ) ;
2815    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2816      vector< CountedPtr<Scantable> > v( 1, in[itable] ) ;
2817      tmpin[itable] = average( v, mask, weight, avmode ) ;
2818    }
2819
2820    // warning
2821    os << "Average spectra with different spectral resolution" << LogIO::POST ;
2822
2823    // temporarily set coordinfo
2824    vector<string> oldinfo( insize ) ;
2825    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2826      vector<string> coordinfo = in[itable]->getCoordInfo() ;
2827      oldinfo[itable] = coordinfo[0] ;
2828      coordinfo[0] = "Hz" ;
2829      tmpin[itable]->setCoordInfo( coordinfo ) ;
2830    }
2831
2832    // columns
2833    ScalarColumn<uInt> freqIDCol ;
2834    ScalarColumn<uInt> ifnoCol ;
2835    ScalarColumn<uInt> scannoCol ;
2836
2837
2838    // check IF frequency coverage
2839    // freqid: list of FREQ_ID, which is used, in each table 
2840    // iffreq: list of minimum and maximum frequency for each FREQ_ID in
2841    //         each table
2842    // freqid[insize][numIF]
2843    // freqid: [[id00, id01, ...],
2844    //          [id10, id11, ...],
2845    //          ...
2846    //          [idn0, idn1, ...]]
2847    // iffreq[insize][numIF*2]
2848    // iffreq: [[min_id00, max_id00, min_id01, max_id01, ...],
2849    //          [min_id10, max_id10, min_id11, max_id11, ...],
2850    //          ...
2851    //          [min_idn0, max_idn0, min_idn1, max_idn1, ...]]
2852    //os << "Check IF settings in each table" << LogIO::POST ;
2853    vector< vector<uInt> > freqid( insize );
2854    vector< vector<double> > iffreq( insize ) ;
2855    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2856      uInt rows = tmpin[itable]->nrow() ;
2857      uInt freqnrows = tmpin[itable]->frequencies().table().nrow() ;
2858      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
2859        if ( freqid[itable].size() == freqnrows ) {
2860          break ;
2861        }
2862        else {
2863          freqIDCol.attach( tmpin[itable]->table(), "FREQ_ID" ) ;
2864          ifnoCol.attach( tmpin[itable]->table(), "IFNO" ) ;
2865          uInt id = freqIDCol( irow ) ;
2866          if ( freqid[itable].size() == 0 || count( freqid[itable].begin(), freqid[itable].end(), id ) == 0 ) {
2867            //os << "itable = " << itable << ": IF " << id << " is included in the list" << LogIO::POST ;
2868            vector<double> abcissa = tmpin[itable]->getAbcissa( irow ) ;
2869            freqid[itable].push_back( id ) ;
2870            iffreq[itable].push_back( abcissa[0] - 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
2871            iffreq[itable].push_back( abcissa[abcissa.size()-1] + 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
2872          }
2873        }
2874      }
2875    }
2876
2877    // debug
2878    //os << "IF settings summary:" << endl ;
2879    //for ( uInt i = 0 ; i < freqid.size() ; i++ ) {
2880    //os << "   Table" << i << endl ;
2881    //for ( uInt j = 0 ; j < freqid[i].size() ; j++ ) {
2882    //os << "      id = " << freqid[i][j] << " (min,max) = (" << iffreq[i][2*j] << "," << iffreq[i][2*j+1] << ")" << endl ;
2883    //}
2884    //}
2885    //os << endl ;
2886    //os.post() ;
2887
2888    // IF grouping based on their frequency coverage
2889    // ifgrp: list of table index and FREQ_ID for all members in each IF group
2890    // ifgfreq: list of minimum and maximum frequency in each IF group
2891    // ifgrp[numgrp][nummember*2]
2892    // ifgrp: [[table00, freqrow00, table01, freqrow01, ...],
2893    //         [table10, freqrow10, table11, freqrow11, ...],
2894    //         ...
2895    //         [tablen0, freqrown0, tablen1, freqrown1, ...]]
2896    // ifgfreq[numgrp*2]
2897    // ifgfreq: [min0_grp0, max0_grp0, min1_grp1, max1_grp1, ...]
2898    //os << "IF grouping based on their frequency coverage" << LogIO::POST ;
2899    vector< vector<uInt> > ifgrp ;
2900    vector<double> ifgfreq ;
2901
2902    // parameter for IF grouping
2903    // groupmode = OR    retrieve all region
2904    //             AND   only retrieve overlaped region
2905    //string groupmode = "AND" ;
2906    string groupmode = "OR" ;
2907    uInt sizecr = 0 ;
2908    if ( groupmode == "AND" )
2909      sizecr = 2 ;
2910    else if ( groupmode == "OR" )
2911      sizecr = 0 ;
2912
2913    vector<double> sortedfreq ;
2914    for ( uInt i = 0 ; i < iffreq.size() ; i++ ) {
2915      for ( uInt j = 0 ; j < iffreq[i].size() ; j++ ) {
2916        if ( count( sortedfreq.begin(), sortedfreq.end(), iffreq[i][j] ) == 0 )
2917          sortedfreq.push_back( iffreq[i][j] ) ;
2918      }
2919    }
2920    sort( sortedfreq.begin(), sortedfreq.end() ) ;
2921    for ( vector<double>::iterator i = sortedfreq.begin() ; i != sortedfreq.end()-1 ; i++ ) {
2922      ifgfreq.push_back( *i ) ;
2923      ifgfreq.push_back( *(i+1) ) ;
2924    }
2925    ifgrp.resize( ifgfreq.size()/2 ) ;
2926    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2927      for ( uInt iif = 0 ; iif < freqid[itable].size() ; iif++ ) {
2928        double range0 = iffreq[itable][2*iif] ;
2929        double range1 = iffreq[itable][2*iif+1] ;
2930        for ( uInt j = 0 ; j < ifgrp.size() ; j++ ) {
2931          double fmin = max( range0, ifgfreq[2*j] ) ;
2932          double fmax = min( range1, ifgfreq[2*j+1] ) ;
2933          if ( fmin < fmax ) {
2934            ifgrp[j].push_back( itable ) ;
2935            ifgrp[j].push_back( freqid[itable][iif] ) ;
2936          }
2937        }
2938      }
2939    }
2940    vector< vector<uInt> >::iterator fiter = ifgrp.begin() ;
2941    vector<double>::iterator giter = ifgfreq.begin() ;
2942    while( fiter != ifgrp.end() ) {
2943      if ( fiter->size() <= sizecr ) {
2944        fiter = ifgrp.erase( fiter ) ;
2945        giter = ifgfreq.erase( giter ) ;
2946        giter = ifgfreq.erase( giter ) ;
2947      }
2948      else {
2949        fiter++ ;
2950        advance( giter, 2 ) ;
2951      }
2952    }
2953
2954    // Grouping continuous IF groups (without frequency gap)
2955    // freqgrp: list of IF group indexes in each frequency group
2956    // freqrange: list of minimum and maximum frequency in each frequency group
2957    // freqgrp[numgrp][nummember]
2958    // freqgrp: [[ifgrp00, ifgrp01, ifgrp02, ...],
2959    //           [ifgrp10, ifgrp11, ifgrp12, ...],
2960    //           ...
2961    //           [ifgrpn0, ifgrpn1, ifgrpn2, ...]]
2962    // freqrange[numgrp*2]
2963    // freqrange: [min_grp0, max_grp0, min_grp1, max_grp1, ...]
2964    vector< vector<uInt> > freqgrp ;
2965    double freqrange = 0.0 ;
2966    uInt grpnum = 0 ;
2967    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
2968      // Assumed that ifgfreq was sorted
2969      if ( grpnum != 0 && freqrange == ifgfreq[2*i] ) {
2970        freqgrp[grpnum-1].push_back( i ) ;
2971      }
2972      else {
2973        vector<uInt> grp0( 1, i ) ;
2974        freqgrp.push_back( grp0 ) ;
2975        grpnum++ ;
2976      }
2977      freqrange = ifgfreq[2*i+1] ;
2978    }
2979       
2980
2981    // print IF groups
2982    ostringstream oss ;
2983    oss << "IF Group summary: " << endl ;
2984    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
2985    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
2986      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
2987      for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
2988        oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
2989      }
2990      oss << endl ;
2991    }
2992    oss << endl ;
2993    os << oss.str() << LogIO::POST ;
2994   
2995    // print frequency group
2996    oss.str("") ;
2997    oss << "Frequency Group summary: " << endl ;
2998    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: IF_GROUP_ID" << endl ;
2999    for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3000      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*freqgrp[i][0]] << "," << ifgfreq[2*freqgrp[i][freqgrp[i].size()-1]+1] << "]: " ;
3001      for ( uInt j = 0 ; j < freqgrp[i].size() ; j++ ) {
3002        oss << freqgrp[i][j] << " " ;
3003      }
3004      oss << endl ;
3005    }
3006    oss << endl ;
3007    os << oss.str() << LogIO::POST ;
3008
3009    // membership check
3010    // groups: list of IF group indexes whose frequency range overlaps with
3011    //         that of each table and IF
3012    // groups[numtable][numIF][nummembership]
3013    // groups: [[[grp, grp,...], [grp, grp,...],...],
3014    //          [[grp, grp,...], [grp, grp,...],...],
3015    //          ...
3016    //          [[grp, grp,...], [grp, grp,...],...]]
3017    vector< vector< vector<uInt> > > groups( insize ) ;
3018    for ( uInt i = 0 ; i < insize ; i++ ) {
3019      groups[i].resize( freqid[i].size() ) ;
3020    }
3021    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3022      for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3023        uInt tableid = ifgrp[igrp][2*imem] ;
3024        vector<uInt>::iterator iter = find( freqid[tableid].begin(), freqid[tableid].end(), ifgrp[igrp][2*imem+1] ) ;
3025        if ( iter != freqid[tableid].end() ) {
3026          uInt rowid = distance( freqid[tableid].begin(), iter ) ;
3027          groups[tableid][rowid].push_back( igrp ) ;
3028        }
3029      }
3030    }
3031
3032    // print membership
3033    //oss.str("") ;
3034    //for ( uInt i = 0 ; i < insize ; i++ ) {
3035    //oss << "Table " << i << endl ;
3036    //for ( uInt j = 0 ; j < groups[i].size() ; j++ ) {
3037    //oss << "   FREQ_ID " <<  setw( 2 ) << freqid[i][j] << ": " ;
3038    //for ( uInt k = 0 ; k < groups[i][j].size() ; k++ ) {
3039    //oss << setw( 2 ) << groups[i][j][k] << " " ;
3040    //}
3041    //oss << endl ;
3042    //}
3043    //}
3044    //os << oss.str() << LogIO::POST ;
3045
3046    // set back coordinfo
3047    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3048      vector<string> coordinfo = tmpin[itable]->getCoordInfo() ;
3049      coordinfo[0] = oldinfo[itable] ;
3050      tmpin[itable]->setCoordInfo( coordinfo ) ;
3051    }
3052
3053    // Create additional table if needed
3054    bool oldInsitu = insitu_ ;
3055    setInsitu( false ) ;
3056    vector< vector<uInt> > addrow( insize ) ;
3057    vector<uInt> addtable( insize, 0 ) ;
3058    vector<uInt> newtableids( insize ) ;
3059    vector<uInt> newifids( insize, 0 ) ;
3060    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3061      //os << "Table " << itable << ": " ;
3062      for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3063        addrow[itable].push_back( groups[itable][ifrow].size()-1 ) ;
3064        //os << addrow[itable][ifrow] << " " ;
3065      }
3066      addtable[itable] = *max_element( addrow[itable].begin(), addrow[itable].end() ) ;
3067      //os << "(" << addtable[itable] << ")" << LogIO::POST ;
3068    }
3069    newin.resize( insize ) ;
3070    copy( tmpin.begin(), tmpin.end(), newin.begin() ) ;
3071    for ( uInt i = 0 ; i < insize ; i++ ) {
3072      newtableids[i] = i ;
3073    }
3074    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3075      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3076        CountedPtr<Scantable> add = getScantable( newin[itable], false ) ;
3077        vector<int> freqidlist ;
3078        for ( uInt i = 0 ; i < groups[itable].size() ; i++ ) {
3079          if ( groups[itable][i].size() > iadd + 1 ) {
3080            freqidlist.push_back( freqid[itable][i] ) ;
3081          }
3082        }
3083        stringstream taqlstream ;
3084        taqlstream << "SELECT FROM $1 WHERE FREQ_ID IN [" ;
3085        for ( uInt i = 0 ; i < freqidlist.size() ; i++ ) {
3086          taqlstream << i ;
3087          if ( i < freqidlist.size() - 1 )
3088            taqlstream << "," ;
3089          else
3090            taqlstream << "]" ;
3091        }
3092        string taql = taqlstream.str() ;
3093        //os << "taql = " << taql << LogIO::POST ;
3094        STSelector selector = STSelector() ;
3095        selector.setTaQL( taql ) ;
3096        add->setSelection( selector ) ;
3097        newin.push_back( add ) ;
3098        newtableids.push_back( itable ) ;
3099        newifids.push_back( iadd + 1 ) ;
3100      }
3101    }
3102
3103    // udpate ifgrp
3104    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3105      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3106        for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3107          if ( groups[itable][ifrow].size() > iadd + 1 ) {
3108            uInt igrp = groups[itable][ifrow][iadd+1] ;
3109            for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3110              if ( ifgrp[igrp][2*imem] == newtableids[iadd+insize] && ifgrp[igrp][2*imem+1] == freqid[newtableids[iadd+insize]][ifrow] ) {
3111                ifgrp[igrp][2*imem] = insize + iadd ;
3112              }
3113            }
3114          }
3115        }
3116      }
3117    }
3118
3119    // print IF groups again for debug
3120    //oss.str( "" ) ;
3121    //oss << "IF Group summary: " << endl ;
3122    //oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3123    //for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3124    //oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3125    //for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3126    //oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3127    //}
3128    //oss << endl ;
3129    //}
3130    //oss << endl ;
3131    //os << oss.str() << LogIO::POST ;
3132
3133    // reset SCANNO and IFNO/FREQ_ID: IF is reset by the result of sortation
3134    os << "All scan number is set to 0" << LogIO::POST ;
3135    //os << "All IF number is set to IF group index" << LogIO::POST ;
3136    insize = newin.size() ;
3137    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3138      uInt rows = newin[itable]->nrow() ;
3139      Table &tmpt = newin[itable]->table() ;
3140      freqIDCol.attach( tmpt, "FREQ_ID" ) ;
3141      scannoCol.attach( tmpt, "SCANNO" ) ;
3142      ifnoCol.attach( tmpt, "IFNO" ) ;
3143      for ( uInt irow=0 ; irow < rows ; irow++ ) {
3144        scannoCol.put( irow, 0 ) ;
3145        uInt freqID = freqIDCol( irow ) ;
3146        vector<uInt>::iterator iter = find( freqid[newtableids[itable]].begin(), freqid[newtableids[itable]].end(), freqID ) ;
3147        if ( iter != freqid[newtableids[itable]].end() ) {
3148          uInt index = distance( freqid[newtableids[itable]].begin(), iter ) ;
3149          ifnoCol.put( irow, groups[newtableids[itable]][index][newifids[itable]] ) ;
3150        }
3151        else {
3152          throw(AipsError("IF grouping was wrong in additional tables.")) ;
3153        }
3154      }
3155    }
3156    oldinfo.resize( insize ) ;
3157    setInsitu( oldInsitu ) ;
3158
3159    // temporarily set coordinfo
3160    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3161      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3162      oldinfo[itable] = coordinfo[0] ;
3163      coordinfo[0] = "Hz" ;
3164      newin[itable]->setCoordInfo( coordinfo ) ;
3165    }
3166
3167    // save column values in the vector
3168    vector< vector<uInt> > freqTableIdVec( insize ) ;
3169    vector< vector<uInt> > freqIdVec( insize ) ;
3170    vector< vector<uInt> > ifNoVec( insize ) ;
3171    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3172      ScalarColumn<uInt> freqIDs ;
3173      freqIDs.attach( newin[itable]->frequencies().table(), "ID" ) ;
3174      ifnoCol.attach( newin[itable]->table(), "IFNO" ) ;
3175      freqIDCol.attach( newin[itable]->table(), "FREQ_ID" ) ;
3176      for ( uInt irow = 0 ; irow < newin[itable]->frequencies().table().nrow() ; irow++ ) {
3177        freqTableIdVec[itable].push_back( freqIDs( irow ) ) ;
3178      }
3179      for ( uInt irow = 0 ; irow < newin[itable]->table().nrow() ; irow++ ) {
3180        freqIdVec[itable].push_back( freqIDCol( irow ) ) ;
3181        ifNoVec[itable].push_back( ifnoCol( irow ) ) ;
3182      }
3183    }
3184
3185    // reset spectra and flagtra: pick up common part of frequency coverage
3186    //os << "Pick common frequency range and align resolution" << LogIO::POST ;
3187    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3188      uInt rows = newin[itable]->nrow() ;
3189      int nminchan = -1 ;
3190      int nmaxchan = -1 ;
3191      vector<uInt> freqIdUpdate ;
3192      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3193        uInt ifno = ifNoVec[itable][irow] ;  // IFNO is reset by group index
3194        double minfreq = ifgfreq[2*ifno] ;
3195        double maxfreq = ifgfreq[2*ifno+1] ;
3196        //os << "frequency range: [" << minfreq << "," << maxfreq << "]" << LogIO::POST ;
3197        vector<double> abcissa = newin[itable]->getAbcissa( irow ) ;
3198        int nchan = abcissa.size() ;
3199        double resol = abcissa[1] - abcissa[0] ;
3200        //os << "abcissa range  : [" << abcissa[0] << "," << abcissa[nchan-1] << "]" << LogIO::POST ;
3201        if ( minfreq <= abcissa[0] )
3202          nminchan = 0 ;
3203        else {
3204          //double cfreq = ( minfreq - abcissa[0] ) / resol ;
3205          double cfreq = ( minfreq - abcissa[0] + 0.5 * resol ) / resol ;
3206          nminchan = int(cfreq) + ( ( cfreq - int(cfreq) <= 0.5 ) ? 0 : 1 ) ;
3207        }
3208        if ( maxfreq >= abcissa[abcissa.size()-1] )
3209          nmaxchan = abcissa.size() - 1 ;
3210        else {
3211          //double cfreq = ( abcissa[abcissa.size()-1] - maxfreq ) / resol ;
3212          double cfreq = ( abcissa[abcissa.size()-1] - maxfreq + 0.5 * resol ) / resol ;
3213          nmaxchan = abcissa.size() - 1 - int(cfreq) - ( ( cfreq - int(cfreq) >= 0.5 ) ? 1 : 0 ) ;
3214        }
3215        //os << "channel range (" << irow << "): [" << nminchan << "," << nmaxchan << "]" << LogIO::POST ;
3216        if ( nmaxchan > nminchan ) {
3217          newin[itable]->reshapeSpectrum( nminchan, nmaxchan, irow ) ;
3218          int newchan = nmaxchan - nminchan + 1 ;
3219          if ( count( freqIdUpdate.begin(), freqIdUpdate.end(), freqIdVec[itable][irow] ) == 0 && newchan < nchan )
3220            freqIdUpdate.push_back( freqIdVec[itable][irow] ) ;
3221        }
3222        else {
3223          throw(AipsError("Failed to pick up common part of frequency range.")) ;
3224        }
3225      }
3226      for ( uInt i = 0 ; i < freqIdUpdate.size() ; i++ ) {
3227        uInt freqId = freqIdUpdate[i] ;
3228        Double refpix ;
3229        Double refval ;
3230        Double increment ;
3231       
3232        // update row
3233        newin[itable]->frequencies().getEntry( refpix, refval, increment, freqId ) ;
3234        refval = refval - ( refpix - nminchan ) * increment ;
3235        refpix = 0 ;
3236        newin[itable]->frequencies().setEntry( refpix, refval, increment, freqId ) ;
3237      }   
3238    }
3239
3240   
3241    // reset spectra and flagtra: align spectral resolution
3242    //os << "Align spectral resolution" << LogIO::POST ;
3243    // gmaxdnu: the coarsest frequency resolution in the frequency group
3244    // gmemid: member index that have a resolution equal to gmaxdnu
3245    // gmaxdnu[numfreqgrp]
3246    // gmaxdnu: [dnu0, dnu1, ...]
3247    // gmemid[numfreqgrp]
3248    // gmemid: [id0, id1, ...]
3249    vector<double> gmaxdnu( freqgrp.size(), 0.0 ) ;
3250    vector<uInt> gmemid( freqgrp.size(), 0 ) ;
3251    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3252      double maxdnu = 0.0 ;       // maximum (coarsest) frequency resolution
3253      int minchan = INT_MAX ;     // minimum channel number
3254      Double refpixref = -1 ;     // reference of 'reference pixel'
3255      Double refvalref = -1 ;     // reference of 'reference frequency'
3256      Double refinc = -1 ;        // reference frequency resolution
3257      uInt refreqid ;
3258      uInt reftable = INT_MAX;
3259      // process only if group member > 1
3260      if ( ifgrp[igrp].size() > 2 ) {
3261        // find minchan and maxdnu in each group
3262        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3263          uInt tableid = ifgrp[igrp][2*imem] ;
3264          uInt rowid = ifgrp[igrp][2*imem+1] ;
3265          vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3266          if ( iter != freqIdVec[tableid].end() ) {
3267            uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3268            vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3269            int nchan = abcissa.size() ;
3270            double dnu = abcissa[1] - abcissa[0] ;
3271            //os << "GROUP " << igrp << " (" << tableid << "," << rowid << "): nchan = " << nchan << " (minchan = " << minchan << ")" << LogIO::POST ;
3272            if ( nchan < minchan ) {
3273              minchan = nchan ;
3274              maxdnu = dnu ;
3275              newin[tableid]->frequencies().getEntry( refpixref, refvalref, refinc, rowid ) ;
3276              refreqid = rowid ;
3277              reftable = tableid ;
3278            }
3279          }
3280        }
3281        // regrid spectra in each group
3282        os << "GROUP " << igrp << endl ;
3283        os << "   Channel number is adjusted to " << minchan << endl ;
3284        os << "   Corresponding frequency resolution is " << maxdnu << "Hz" << LogIO::POST ;
3285        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3286          uInt tableid = ifgrp[igrp][2*imem] ;
3287          uInt rowid = ifgrp[igrp][2*imem+1] ;
3288          freqIDCol.attach( newin[tableid]->table(), "FREQ_ID" ) ;
3289          //os << "tableid = " << tableid << " rowid = " << rowid << ": " << LogIO::POST ;
3290          //os << "   regridChannel applied to " ;
3291          if ( tableid != reftable )
3292            refreqid = newin[tableid]->frequencies().addEntry( refpixref, refvalref, refinc ) ;
3293          for ( uInt irow = 0 ; irow < newin[tableid]->table().nrow() ; irow++ ) {
3294            uInt tfreqid = freqIdVec[tableid][irow] ;
3295            if ( tfreqid == rowid ) {     
3296              //os << irow << " " ;
3297              newin[tableid]->regridChannel( minchan, maxdnu, irow ) ;
3298              freqIDCol.put( irow, refreqid ) ;
3299              freqIdVec[tableid][irow] = refreqid ;
3300            }
3301          }
3302          //os << LogIO::POST ;
3303        }
3304      }
3305      else {
3306        uInt tableid = ifgrp[igrp][0] ;
3307        uInt rowid = ifgrp[igrp][1] ;
3308        vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3309        if ( iter != freqIdVec[tableid].end() ) {
3310          uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3311          vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3312          minchan = abcissa.size() ;
3313          maxdnu = abcissa[1] - abcissa[0] ;
3314        }
3315      }
3316      for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3317        if ( count( freqgrp[i].begin(), freqgrp[i].end(), igrp ) > 0 ) {
3318          if ( maxdnu > gmaxdnu[i] ) {
3319            gmaxdnu[i] = maxdnu ;
3320            gmemid[i] = igrp ;
3321          }
3322          break ;
3323        }
3324      }
3325    }
3326
3327    // set back coordinfo
3328    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3329      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3330      coordinfo[0] = oldinfo[itable] ;
3331      newin[itable]->setCoordInfo( coordinfo ) ;
3332    }     
3333
3334    // accumulate all rows into the first table
3335    // NOTE: assumed in.size() = 1
3336    vector< CountedPtr<Scantable> > tmp( 1 ) ;
3337    if ( newin.size() == 1 )
3338      tmp[0] = newin[0] ;
3339    else
3340      tmp[0] = merge( newin ) ;
3341
3342    //return tmp[0] ;
3343
3344    // average
3345    CountedPtr<Scantable> tmpout = average( tmp, mask, weight, avmode ) ;
3346
3347    //return tmpout ;
3348
3349    // combine frequency group
3350    os << "Combine spectra based on frequency grouping" << LogIO::POST ;
3351    os << "IFNO is renumbered as frequency group ID (see above)" << LogIO::POST ;
3352    vector<string> coordinfo = tmpout->getCoordInfo() ;
3353    oldinfo[0] = coordinfo[0] ;
3354    coordinfo[0] = "Hz" ;
3355    tmpout->setCoordInfo( coordinfo ) ;
3356    // create proformas of output table
3357    stringstream taqlstream ;
3358    taqlstream << "SELECT FROM $1 WHERE IFNO IN [" ;
3359    for ( uInt i = 0 ; i < gmemid.size() ; i++ ) {
3360      taqlstream << gmemid[i] ;
3361      if ( i < gmemid.size() - 1 )
3362        taqlstream << "," ;
3363      else
3364        taqlstream << "]" ;
3365    }
3366    string taql = taqlstream.str() ;
3367    //os << "taql = " << taql << LogIO::POST ;
3368    STSelector selector = STSelector() ;
3369    selector.setTaQL( taql ) ;
3370    oldInsitu = insitu_ ;
3371    setInsitu( false ) ;
3372    out = getScantable( tmpout, false ) ;
3373    setInsitu( oldInsitu ) ;
3374    out->setSelection( selector ) ;
3375    // regrid rows
3376    ifnoCol.attach( tmpout->table(), "IFNO" ) ;
3377    for ( uInt irow = 0 ; irow < tmpout->table().nrow() ; irow++ ) {
3378      uInt ifno = ifnoCol( irow ) ;
3379      for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3380        if ( count( freqgrp[igrp].begin(), freqgrp[igrp].end(), ifno ) > 0 ) {
3381          vector<double> abcissa = tmpout->getAbcissa( irow ) ;
3382          double bw = ( abcissa[1] - abcissa[0] ) * abcissa.size() ;
3383          int nchan = (int)( bw / gmaxdnu[igrp] ) ;
3384          tmpout->regridChannel( nchan, gmaxdnu[igrp], irow ) ;
3385          break ;
3386        }
3387      }
3388    }
3389    // combine spectra
3390    ArrayColumn<Float> specColOut ;
3391    specColOut.attach( out->table(), "SPECTRA" ) ;
3392    ArrayColumn<uChar> flagColOut ;
3393    flagColOut.attach( out->table(), "FLAGTRA" ) ;
3394    ScalarColumn<uInt> ifnoColOut ;
3395    ifnoColOut.attach( out->table(), "IFNO" ) ;
3396    ScalarColumn<uInt> polnoColOut ;
3397    polnoColOut.attach( out->table(), "POLNO" ) ;
3398    ScalarColumn<uInt> freqidColOut ;
3399    freqidColOut.attach( out->table(), "FREQ_ID" ) ;
3400    MDirection::ScalarColumn dirColOut ;
3401    dirColOut.attach( out->table(), "DIRECTION" ) ;
3402    Table &tab = tmpout->table() ;
3403    Block<String> cols(1);
3404    cols[0] = String("POLNO") ;
3405    TableIterator iter( tab, cols ) ;
3406    bool done = false ;
3407    vector< vector<uInt> > sizes( freqgrp.size() ) ;
3408    while( !iter.pastEnd() ) {
3409      vector< vector<Float> > specout( freqgrp.size() ) ;
3410      vector< vector<uChar> > flagout( freqgrp.size() ) ;
3411      ArrayColumn<Float> specCols ;
3412      specCols.attach( iter.table(), "SPECTRA" ) ;
3413      ArrayColumn<uChar> flagCols ;
3414      flagCols.attach( iter.table(), "FLAGTRA" ) ;
3415      ifnoCol.attach( iter.table(), "IFNO" ) ;
3416      ScalarColumn<uInt> polnos ;
3417      polnos.attach( iter.table(), "POLNO" ) ;
3418      MDirection::ScalarColumn dircol ;
3419      dircol.attach( iter.table(), "DIRECTION" ) ;
3420      uInt polno = polnos( 0 ) ;
3421      //os << "POLNO iteration: " << polno << LogIO::POST ;
3422//       for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3423//      sizes[igrp].resize( freqgrp[igrp].size() ) ;
3424//      for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3425//        for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3426//          uInt ifno = ifnoCol( irow ) ;
3427//          if ( ifno == freqgrp[igrp][imem] ) {
3428//            Vector<Float> spec = specCols( irow ) ;
3429//            Vector<uChar> flag = flagCols( irow ) ;
3430//            vector<Float> svec ;
3431//            spec.tovector( svec ) ;
3432//            vector<uChar> fvec ;
3433//            flag.tovector( fvec ) ;
3434//            //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3435//            specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3436//            flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3437//            //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3438//            sizes[igrp][imem] = spec.nelements() ;
3439//          }
3440//        }
3441//      }
3442//      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3443//        uInt ifout = ifnoColOut( irow ) ;
3444//        uInt polout = polnoColOut( irow ) ;
3445//        if ( ifout == gmemid[igrp] && polout == polno ) {
3446//          // set SPECTRA and FRAGTRA
3447//          Vector<Float> newspec( specout[igrp] ) ;
3448//          Vector<uChar> newflag( flagout[igrp] ) ;
3449//          specColOut.put( irow, newspec ) ;
3450//          flagColOut.put( irow, newflag ) ;
3451//          // IFNO renumbering
3452//          ifnoColOut.put( irow, igrp ) ;
3453//        }
3454//      }
3455//       }
3456      // get a list of number of channels for each frequency group member
3457      if ( !done ) {
3458        for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3459          sizes[igrp].resize( freqgrp[igrp].size() ) ;
3460          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3461            for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3462              uInt ifno = ifnoCol( irow ) ;
3463              if ( ifno == freqgrp[igrp][imem] ) {
3464                Vector<Float> spec = specCols( irow ) ;
3465                sizes[igrp][imem] = spec.nelements() ;
3466                break ;
3467              }               
3468            }
3469          }
3470        }
3471        done = true ;
3472      }
3473      // combine spectra
3474      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3475        uInt polout = polnoColOut( irow ) ;
3476        if ( polout == polno ) {
3477          uInt ifout = ifnoColOut( irow ) ;
3478          Vector<Double> direction = dirColOut(irow).getAngle(Unit(String("rad"))).getValue() ;
3479          uInt igrp ;
3480          for ( uInt jgrp = 0 ; jgrp < freqgrp.size() ; jgrp++ ) {
3481            if ( ifout == gmemid[jgrp] ) {
3482              igrp = jgrp ;
3483              break ;
3484            }
3485          }
3486          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3487            for ( uInt jrow = 0 ; jrow < iter.table().nrow() ; jrow++ ) {
3488              uInt ifno = ifnoCol( jrow ) ;
3489              Vector<Double> tdir = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
3490              //if ( ifno == freqgrp[igrp][imem] && allTrue( tdir == direction  ) ) {
3491              Double dx = tdir[0] - direction[0] ;
3492              Double dy = tdir[1] - direction[1] ;
3493              Double dd = sqrt( dx * dx + dy * dy ) ;
3494              //if ( ifno == freqgrp[igrp][imem] && allNearAbs( tdir, direction, tol ) ) {
3495              if ( ifno == freqgrp[igrp][imem] && dd <= tol ) {
3496                Vector<Float> spec = specCols( jrow ) ;
3497                Vector<uChar> flag = flagCols( jrow ) ;
3498                vector<Float> svec ;
3499                spec.tovector( svec ) ;
3500                vector<uChar> fvec ;
3501                flag.tovector( fvec ) ;
3502                //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3503                specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3504                flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3505                //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3506              }
3507            }
3508          }
3509          // set SPECTRA and FRAGTRA
3510          Vector<Float> newspec( specout[igrp] ) ;
3511          Vector<uChar> newflag( flagout[igrp] ) ;
3512          specColOut.put( irow, newspec ) ;
3513          flagColOut.put( irow, newflag ) ;
3514          // IFNO renumbering
3515          ifnoColOut.put( irow, igrp ) ;
3516        }
3517      }
3518      iter++ ;
3519    }
3520    // update FREQUENCIES subtable
3521    vector<bool> updated( freqgrp.size(), false ) ;
3522    for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3523      uInt index = 0 ;
3524      uInt pixShift = 0 ;
3525      while ( freqgrp[igrp][index] != gmemid[igrp] ) {
3526        pixShift += sizes[igrp][index++] ;
3527      }
3528      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3529        if ( ifnoColOut( irow ) == gmemid[igrp] && !updated[igrp] ) {
3530          uInt freqidOut = freqidColOut( irow ) ;
3531          //os << "freqgrp " << igrp << " freqidOut = " << freqidOut << LogIO::POST ;
3532          double refpix ;
3533          double refval ;
3534          double increm ;
3535          out->frequencies().getEntry( refpix, refval, increm, freqidOut ) ;
3536          refpix += pixShift ;
3537          out->frequencies().setEntry( refpix, refval, increm, freqidOut ) ;
3538          updated[igrp] = true ;
3539        }
3540      }
3541    }
3542
3543    //out = tmpout ;
3544
3545    coordinfo = tmpout->getCoordInfo() ;
3546    coordinfo[0] = oldinfo[0] ;
3547    tmpout->setCoordInfo( coordinfo ) ;
3548  }
3549  else {
3550    // simple average
3551    out =  average( in, mask, weight, avmode ) ;
3552  }
3553 
3554  return out ;
3555}
3556
3557CountedPtr<Scantable> STMath::cwcal( const CountedPtr<Scantable>& s,
3558                                     const String calmode,
3559                                     const String antname )
3560{
3561  // frequency switch
3562  if ( calmode == "fs" ) {
3563    return cwcalfs( s, antname ) ;
3564  }
3565  else {
3566    vector<bool> masks = s->getMask( 0 ) ;
3567    vector<int> types ;
3568
3569    // sky scan
3570    STSelector sel = STSelector() ;
3571    types.push_back( SrcType::SKY ) ;
3572    sel.setTypes( types ) ;
3573    s->setSelection( sel ) ;
3574    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3575    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
3576    s->unsetSelection() ;
3577    sel.reset() ;
3578    types.clear() ;
3579
3580    // hot scan
3581    types.push_back( SrcType::HOT ) ;
3582    sel.setTypes( types ) ;
3583    s->setSelection( sel ) ;
3584    tmp.clear() ;
3585    tmp.push_back( getScantable( s, false ) ) ;
3586    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
3587    s->unsetSelection() ;
3588    sel.reset() ;
3589    types.clear() ;
3590   
3591    // cold scan
3592    CountedPtr<Scantable> acold ;
3593//     types.push_back( SrcType::COLD ) ;
3594//     sel.setTypes( types ) ;
3595//     s->setSelection( sel ) ;
3596//     tmp.clear() ;
3597//     tmp.push_back( getScantable( s, false ) ) ;
3598//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCNAN" ) ;
3599//     s->unsetSelection() ;
3600//     sel.reset() ;
3601//     types.clear() ;
3602
3603    // off scan
3604    types.push_back( SrcType::PSOFF ) ;
3605    sel.setTypes( types ) ;
3606    s->setSelection( sel ) ;
3607    tmp.clear() ;
3608    tmp.push_back( getScantable( s, false ) ) ;
3609    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3610    s->unsetSelection() ;
3611    sel.reset() ;
3612    types.clear() ;
3613   
3614    // on scan
3615    bool insitu = insitu_ ;
3616    insitu_ = false ;
3617    CountedPtr<Scantable> out = getScantable( s, true ) ;
3618    insitu_ = insitu ;
3619    types.push_back( SrcType::PSON ) ;
3620    sel.setTypes( types ) ;
3621    s->setSelection( sel ) ;
3622    TableCopy::copyRows( out->table(), s->table() ) ;
3623    s->unsetSelection() ;
3624    sel.reset() ;
3625    types.clear() ;
3626   
3627    // process each on scan
3628    ArrayColumn<Float> tsysCol ;
3629    tsysCol.attach( out->table(), "TSYS" ) ;
3630    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3631      vector<float> sp = getCalibratedSpectra( out, aoff, asky, ahot, acold, i, antname ) ;
3632      out->setSpectrum( sp, i ) ;
3633      string reftime = out->getTime( i ) ;
3634      vector<int> ii( 1, out->getIF( i ) ) ;
3635      vector<int> ib( 1, out->getBeam( i ) ) ;
3636      vector<int> ip( 1, out->getPol( i ) ) ;
3637      sel.setIFs( ii ) ;
3638      sel.setBeams( ib ) ;
3639      sel.setPolarizations( ip ) ;
3640      asky->setSelection( sel ) ;   
3641      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
3642      const Vector<Float> Vtsys( sptsys ) ;
3643      tsysCol.put( i, Vtsys ) ;
3644      asky->unsetSelection() ;
3645      sel.reset() ;
3646    }
3647
3648    // flux unit
3649    out->setFluxUnit( "K" ) ;
3650
3651    return out ;
3652  }
3653}
3654 
3655CountedPtr<Scantable> STMath::almacal( const CountedPtr<Scantable>& s,
3656                                       const String calmode )
3657{
3658  // frequency switch
3659  if ( calmode == "fs" ) {
3660    return almacalfs( s ) ;
3661  }
3662  else {
3663    vector<bool> masks = s->getMask( 0 ) ;
3664   
3665    // off scan
3666    STSelector sel = STSelector() ;
3667    vector<int> types ;
3668    types.push_back( SrcType::PSOFF ) ;
3669    sel.setTypes( types ) ;
3670    s->setSelection( sel ) ;
3671    // TODO 2010/01/08 TN
3672    // Grouping by time should be needed before averaging.
3673    // Each group must have own unique SCANNO (should be renumbered).
3674    // See PIPELINE/SDCalibration.py
3675    CountedPtr<Scantable> soff = getScantable( s, false ) ;
3676    Table ttab = soff->table() ;
3677    ROScalarColumn<Double> timeCol( ttab, "TIME" ) ;
3678    uInt nrow = timeCol.nrow() ;
3679    Vector<Double> timeSep( nrow - 1 ) ;
3680    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3681      timeSep[i] = timeCol(i+1) - timeCol(i) ;
3682    }
3683    ScalarColumn<Double> intervalCol( ttab, "INTERVAL" ) ;
3684    Vector<Double> interval = intervalCol.getColumn() ;
3685    interval /= 86400.0 ;
3686    ScalarColumn<uInt> scanCol( ttab, "SCANNO" ) ;
3687    vector<uInt> glist ;
3688    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3689      double gap = 2.0 * timeSep[i] / ( interval[i] + interval[i+1] ) ;
3690      //cout << "gap[" << i << "]=" << setw(5) << gap << endl ;
3691      if ( gap > 1.1 ) {
3692        glist.push_back( i ) ;
3693      }
3694    }
3695    Vector<uInt> gaplist( glist ) ;
3696    //cout << "gaplist = " << gaplist << endl ;
3697    uInt newid = 0 ;
3698    for ( uInt i = 0 ; i < nrow ; i++ ) {
3699      scanCol.put( i, newid ) ;
3700      if ( i == gaplist[newid] ) {
3701        newid++ ;
3702      }
3703    }
3704    //cout << "new scancol = " << scanCol.getColumn() << endl ;
3705    vector< CountedPtr<Scantable> > tmp( 1, soff ) ;
3706    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3707    //cout << "aoff.nrow = " << aoff->nrow() << endl ;
3708    s->unsetSelection() ;
3709    sel.reset() ;
3710    types.clear() ;
3711   
3712    // on scan
3713    bool insitu = insitu_ ;
3714    insitu_ = false ;
3715    CountedPtr<Scantable> out = getScantable( s, true ) ;
3716    insitu_ = insitu ;
3717    types.push_back( SrcType::PSON ) ;
3718    sel.setTypes( types ) ;
3719    s->setSelection( sel ) ;
3720    TableCopy::copyRows( out->table(), s->table() ) ;
3721    s->unsetSelection() ;
3722    sel.reset() ;
3723    types.clear() ;
3724   
3725    // process each on scan
3726    ArrayColumn<Float> tsysCol ;
3727    tsysCol.attach( out->table(), "TSYS" ) ;
3728    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3729      vector<float> sp = getCalibratedSpectra( out, aoff, i ) ;
3730      out->setSpectrum( sp, i ) ;
3731    }
3732
3733    // flux unit
3734    out->setFluxUnit( "K" ) ;
3735
3736    return out ;
3737  }
3738}
3739
3740CountedPtr<Scantable> STMath::cwcalfs( const CountedPtr<Scantable>& s,
3741                                       const String antname )
3742{
3743  vector<int> types ;
3744
3745  // APEX calibration mode
3746  int apexcalmode = 1 ;
3747 
3748  if ( antname.find( "APEX" ) != string::npos ) {
3749    // check if off scan exists or not
3750    STSelector sel = STSelector() ;
3751    //sel.setName( offstr1 ) ;
3752    types.push_back( SrcType::FLOOFF ) ;
3753    sel.setTypes( types ) ;
3754    try {
3755      s->setSelection( sel ) ;
3756    }
3757    catch ( AipsError &e ) {
3758      apexcalmode = 0 ;
3759    }
3760    sel.reset() ;
3761  }
3762  s->unsetSelection() ;
3763  types.clear() ;
3764
3765  vector<bool> masks = s->getMask( 0 ) ;
3766  CountedPtr<Scantable> ssig, sref ;
3767  CountedPtr<Scantable> out ;
3768
3769  if ( antname.find( "APEX" ) != string::npos ) {
3770    // APEX calibration
3771    // sky scan
3772    STSelector sel = STSelector() ;
3773    types.push_back( SrcType::FLOSKY ) ;
3774    sel.setTypes( types ) ;
3775    s->setSelection( sel ) ;
3776    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3777    CountedPtr<Scantable> askylo = average( tmp, masks, "TINT", "SCAN" ) ;
3778    s->unsetSelection() ;
3779    sel.reset() ;
3780    types.clear() ;
3781    types.push_back( SrcType::FHISKY ) ;
3782    sel.setTypes( types ) ;
3783    s->setSelection( sel ) ;
3784    tmp.clear() ;
3785    tmp.push_back( getScantable( s, false ) ) ;
3786    CountedPtr<Scantable> askyhi = average( tmp, masks, "TINT", "SCAN" ) ;
3787    s->unsetSelection() ;
3788    sel.reset() ;
3789    types.clear() ;
3790   
3791    // hot scan
3792    types.push_back( SrcType::FLOHOT ) ;
3793    sel.setTypes( types ) ;
3794    s->setSelection( sel ) ;
3795    tmp.clear() ;
3796    tmp.push_back( getScantable( s, false ) ) ;
3797    CountedPtr<Scantable> ahotlo = average( tmp, masks, "TINT", "SCAN" ) ;
3798    s->unsetSelection() ;
3799    sel.reset() ;
3800    types.clear() ;
3801    types.push_back( SrcType::FHIHOT ) ;
3802    sel.setTypes( types ) ;
3803    s->setSelection( sel ) ;
3804    tmp.clear() ;
3805    tmp.push_back( getScantable( s, false ) ) ;
3806    CountedPtr<Scantable> ahothi = average( tmp, masks, "TINT", "SCAN" ) ;
3807    s->unsetSelection() ;
3808    sel.reset() ;
3809    types.clear() ;
3810   
3811    // cold scan
3812    CountedPtr<Scantable> acoldlo, acoldhi ;
3813//     types.push_back( SrcType::FLOCOLD ) ;
3814//     sel.setTypes( types ) ;
3815//     s->setSelection( sel ) ;
3816//     tmp.clear() ;
3817//     tmp.push_back( getScantable( s, false ) ) ;
3818//     CountedPtr<Scantable> acoldlo = average( tmp, masks, "TINT", "SCAN" ) ;
3819//     s->unsetSelection() ;
3820//     sel.reset() ;
3821//     types.clear() ;
3822//     types.push_back( SrcType::FHICOLD ) ;
3823//     sel.setTypes( types ) ;
3824//     s->setSelection( sel ) ;
3825//     tmp.clear() ;
3826//     tmp.push_back( getScantable( s, false ) ) ;
3827//     CountedPtr<Scantable> acoldhi = average( tmp, masks, "TINT", "SCAN" ) ;
3828//     s->unsetSelection() ;
3829//     sel.reset() ;
3830//     types.clear() ;
3831
3832    // ref scan
3833    bool insitu = insitu_ ;
3834    insitu_ = false ;
3835    sref = getScantable( s, true ) ;
3836    insitu_ = insitu ;
3837    types.push_back( SrcType::FSLO ) ;
3838    sel.setTypes( types ) ;
3839    s->setSelection( sel ) ;
3840    TableCopy::copyRows( sref->table(), s->table() ) ;
3841    s->unsetSelection() ;
3842    sel.reset() ;
3843    types.clear() ;
3844   
3845    // sig scan
3846    insitu_ = false ;
3847    ssig = getScantable( s, true ) ;
3848    insitu_ = insitu ;
3849    types.push_back( SrcType::FSHI ) ;
3850    sel.setTypes( types ) ;
3851    s->setSelection( sel ) ;
3852    TableCopy::copyRows( ssig->table(), s->table() ) ;
3853    s->unsetSelection() ;
3854    sel.reset() ; 
3855    types.clear() ;
3856         
3857    if ( apexcalmode == 0 ) {
3858      // APEX fs data without off scan
3859      // process each sig and ref scan
3860      ArrayColumn<Float> tsysCollo ;
3861      tsysCollo.attach( ssig->table(), "TSYS" ) ;
3862      ArrayColumn<Float> tsysColhi ;
3863      tsysColhi.attach( sref->table(), "TSYS" ) ;
3864      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
3865        vector< CountedPtr<Scantable> > sky( 2 ) ;
3866        sky[0] = askylo ;
3867        sky[1] = askyhi ;
3868        vector< CountedPtr<Scantable> > hot( 2 ) ;
3869        hot[0] = ahotlo ;
3870        hot[1] = ahothi ;
3871        vector< CountedPtr<Scantable> > cold( 2 ) ;
3872        //cold[0] = acoldlo ;
3873        //cold[1] = acoldhi ;
3874        vector<float> sp = getFSCalibratedSpectra( ssig, sref, sky, hot, cold, i ) ;
3875        ssig->setSpectrum( sp, i ) ;
3876        string reftime = ssig->getTime( i ) ;
3877        vector<int> ii( 1, ssig->getIF( i ) ) ;
3878        vector<int> ib( 1, ssig->getBeam( i ) ) ;
3879        vector<int> ip( 1, ssig->getPol( i ) ) ;
3880        sel.setIFs( ii ) ;
3881        sel.setBeams( ib ) ;
3882        sel.setPolarizations( ip ) ;
3883        askylo->setSelection( sel ) ;
3884        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
3885        const Vector<Float> Vtsyslo( sptsys ) ;
3886        tsysCollo.put( i, Vtsyslo ) ;
3887        askylo->unsetSelection() ;
3888        sel.reset() ;
3889        sky[0] = askyhi ;
3890        sky[1] = askylo ;
3891        hot[0] = ahothi ;
3892        hot[1] = ahotlo ;
3893        cold[0] = acoldhi ;
3894        cold[1] = acoldlo ;
3895        sp = getFSCalibratedSpectra( sref, ssig, sky, hot, cold, i ) ;
3896        sref->setSpectrum( sp, i ) ;
3897        reftime = sref->getTime( i ) ;
3898        ii[0] = sref->getIF( i )  ;
3899        ib[0] = sref->getBeam( i ) ;
3900        ip[0] = sref->getPol( i ) ;
3901        sel.setIFs( ii ) ;
3902        sel.setBeams( ib ) ;
3903        sel.setPolarizations( ip ) ;
3904        askyhi->setSelection( sel ) ;   
3905        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
3906        const Vector<Float> Vtsyshi( sptsys ) ;
3907        tsysColhi.put( i, Vtsyshi ) ;
3908        askyhi->unsetSelection() ;
3909        sel.reset() ;
3910      }
3911    }
3912    else if ( apexcalmode == 1 ) {
3913      // APEX fs data with off scan
3914      // off scan
3915      types.push_back( SrcType::FLOOFF ) ;
3916      sel.setTypes( types ) ;
3917      s->setSelection( sel ) ;
3918      tmp.clear() ;
3919      tmp.push_back( getScantable( s, false ) ) ;
3920      CountedPtr<Scantable> aofflo = average( tmp, masks, "TINT", "SCAN" ) ;
3921      s->unsetSelection() ;
3922      sel.reset() ;
3923      types.clear() ;
3924      types.push_back( SrcType::FHIOFF ) ;
3925      sel.setTypes( types ) ;
3926      s->setSelection( sel ) ;
3927      tmp.clear() ;
3928      tmp.push_back( getScantable( s, false ) ) ;
3929      CountedPtr<Scantable> aoffhi = average( tmp, masks, "TINT", "SCAN" ) ;
3930      s->unsetSelection() ;
3931      sel.reset() ;
3932      types.clear() ;
3933     
3934      // process each sig and ref scan
3935      ArrayColumn<Float> tsysCollo ;
3936      tsysCollo.attach( ssig->table(), "TSYS" ) ;
3937      ArrayColumn<Float> tsysColhi ;
3938      tsysColhi.attach( sref->table(), "TSYS" ) ;
3939      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
3940        vector<float> sp = getCalibratedSpectra( ssig, aofflo, askylo, ahotlo, acoldlo, i, antname ) ;
3941        ssig->setSpectrum( sp, i ) ;
3942        sp = getCalibratedSpectra( sref, aoffhi, askyhi, ahothi, acoldhi, i, antname ) ;
3943        string reftime = ssig->getTime( i ) ;
3944        vector<int> ii( 1, ssig->getIF( i ) ) ;
3945        vector<int> ib( 1, ssig->getBeam( i ) ) ;
3946        vector<int> ip( 1, ssig->getPol( i ) ) ;
3947        sel.setIFs( ii ) ;
3948        sel.setBeams( ib ) ;
3949        sel.setPolarizations( ip ) ;
3950        askylo->setSelection( sel ) ;
3951        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
3952        const Vector<Float> Vtsyslo( sptsys ) ;
3953        tsysCollo.put( i, Vtsyslo ) ;
3954        askylo->unsetSelection() ;
3955        sel.reset() ;
3956        sref->setSpectrum( sp, i ) ;
3957        reftime = sref->getTime( i ) ;
3958        ii[0] = sref->getIF( i )  ;
3959        ib[0] = sref->getBeam( i ) ;
3960        ip[0] = sref->getPol( i ) ;
3961        sel.setIFs( ii ) ;
3962        sel.setBeams( ib ) ;
3963        sel.setPolarizations( ip ) ;
3964        askyhi->setSelection( sel ) ;   
3965        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
3966        const Vector<Float> Vtsyshi( sptsys ) ;
3967        tsysColhi.put( i, Vtsyshi ) ;
3968        askyhi->unsetSelection() ;
3969        sel.reset() ;
3970      }
3971    }
3972  }
3973  else {
3974    // non-APEX fs data
3975    // sky scan
3976    STSelector sel = STSelector() ;
3977    types.push_back( SrcType::SKY ) ;
3978    sel.setTypes( types ) ;
3979    s->setSelection( sel ) ;
3980    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3981    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
3982    s->unsetSelection() ;
3983    sel.reset() ;
3984    types.clear() ;
3985   
3986    // hot scan
3987    types.push_back( SrcType::HOT ) ;
3988    sel.setTypes( types ) ;
3989    s->setSelection( sel ) ;
3990    tmp.clear() ;
3991    tmp.push_back( getScantable( s, false ) ) ;
3992    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
3993    s->unsetSelection() ;
3994    sel.reset() ;
3995    types.clear() ;
3996
3997    // cold scan
3998    CountedPtr<Scantable> acold ;
3999//     types.push_back( SrcType::COLD ) ;
4000//     sel.setTypes( types ) ;
4001//     s->setSelection( sel ) ;
4002//     tmp.clear() ;
4003//     tmp.push_back( getScantable( s, false ) ) ;
4004//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCAN" ) ;
4005//     s->unsetSelection() ;
4006//     sel.reset() ;
4007//     types.clear() ;
4008   
4009    // ref scan
4010    bool insitu = insitu_ ;
4011    insitu_ = false ;
4012    sref = getScantable( s, true ) ;
4013    insitu_ = insitu ;
4014    types.push_back( SrcType::FSOFF ) ;
4015    sel.setTypes( types ) ;
4016    s->setSelection( sel ) ;
4017    TableCopy::copyRows( sref->table(), s->table() ) ;
4018    s->unsetSelection() ;
4019    sel.reset() ;
4020    types.clear() ;
4021   
4022    // sig scan
4023    insitu_ = false ;
4024    ssig = getScantable( s, true ) ;
4025    insitu_ = insitu ;
4026    types.push_back( SrcType::FSON ) ;
4027    sel.setTypes( types ) ;
4028    s->setSelection( sel ) ;
4029    TableCopy::copyRows( ssig->table(), s->table() ) ;
4030    s->unsetSelection() ;
4031    sel.reset() ;
4032    types.clear() ;
4033
4034    // process each sig and ref scan
4035    ArrayColumn<Float> tsysColsig ;
4036    tsysColsig.attach( ssig->table(), "TSYS" ) ;
4037    ArrayColumn<Float> tsysColref ;
4038    tsysColref.attach( ssig->table(), "TSYS" ) ;
4039    for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4040      vector<float> sp = getFSCalibratedSpectra( ssig, sref, asky, ahot, acold, i ) ;
4041      ssig->setSpectrum( sp, i ) ;
4042      string reftime = ssig->getTime( i ) ;
4043      vector<int> ii( 1, ssig->getIF( i ) ) ;
4044      vector<int> ib( 1, ssig->getBeam( i ) ) ;
4045      vector<int> ip( 1, ssig->getPol( i ) ) ;
4046      sel.setIFs( ii ) ;
4047      sel.setBeams( ib ) ;
4048      sel.setPolarizations( ip ) ;
4049      asky->setSelection( sel ) ;
4050      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
4051      const Vector<Float> Vtsys( sptsys ) ;
4052      tsysColsig.put( i, Vtsys ) ;
4053      asky->unsetSelection() ;
4054      sel.reset() ;
4055      sp = getFSCalibratedSpectra( sref, ssig, asky, ahot, acold, i ) ;
4056      sref->setSpectrum( sp, i ) ;
4057      tsysColref.put( i, Vtsys ) ;
4058    }
4059  }
4060
4061  // do folding if necessary
4062  Table sigtab = ssig->table() ;
4063  Table reftab = sref->table() ;
4064  ScalarColumn<uInt> sigifnoCol ;
4065  ScalarColumn<uInt> refifnoCol ;
4066  ScalarColumn<uInt> sigfidCol ;
4067  ScalarColumn<uInt> reffidCol ;
4068  Int nchan = (Int)ssig->nchan() ;
4069  sigifnoCol.attach( sigtab, "IFNO" ) ;
4070  refifnoCol.attach( reftab, "IFNO" ) ;
4071  sigfidCol.attach( sigtab, "FREQ_ID" ) ;
4072  reffidCol.attach( reftab, "FREQ_ID" ) ;
4073  Vector<uInt> sfids( sigfidCol.getColumn() ) ;
4074  Vector<uInt> rfids( reffidCol.getColumn() ) ;
4075  vector<uInt> sfids_unique ;
4076  vector<uInt> rfids_unique ;
4077  vector<uInt> sifno_unique ;
4078  vector<uInt> rifno_unique ;
4079  for ( uInt i = 0 ; i < sfids.nelements() ; i++ ) {
4080    if ( count( sfids_unique.begin(), sfids_unique.end(), sfids[i] ) == 0 ) {
4081      sfids_unique.push_back( sfids[i] ) ;
4082      sifno_unique.push_back( ssig->getIF( i ) ) ;
4083    }
4084    if ( count( rfids_unique.begin(), rfids_unique.end(),  rfids[i] ) == 0 ) {
4085      rfids_unique.push_back( rfids[i] ) ;
4086      rifno_unique.push_back( sref->getIF( i ) ) ;
4087    }
4088  }
4089  double refpix_sig, refval_sig, increment_sig ;
4090  double refpix_ref, refval_ref, increment_ref ;
4091  vector< CountedPtr<Scantable> > tmp( sfids_unique.size() ) ;
4092  for ( uInt i = 0 ; i < sfids_unique.size() ; i++ ) {
4093    ssig->frequencies().getEntry( refpix_sig, refval_sig, increment_sig, sfids_unique[i] ) ;
4094    sref->frequencies().getEntry( refpix_ref, refval_ref, increment_ref, rfids_unique[i] ) ;
4095    if ( refpix_sig == refpix_ref ) {
4096      double foffset = refval_ref - refval_sig ;
4097      int choffset = static_cast<int>(foffset/increment_sig) ;
4098      double doffset = foffset / increment_sig ;
4099      if ( abs(choffset) >= nchan ) {
4100        LogIO os( LogOrigin( "STMath", "cwcalfs", WHERE ) ) ;
4101        os << "FREQ_ID=[" << sfids_unique[i] << "," << rfids_unique[i] << "]: out-band frequency switching, no folding" << LogIO::POST ;
4102        os << "Just return signal data" << LogIO::POST ;
4103        //std::vector< CountedPtr<Scantable> > tabs ;
4104        //tabs.push_back( ssig ) ;
4105        //tabs.push_back( sref ) ;
4106        //out = merge( tabs ) ;
4107        tmp[i] = ssig ;
4108      }
4109      else {
4110        STSelector sel = STSelector() ;
4111        vector<int> v( 1, sifno_unique[i] ) ;
4112        sel.setIFs( v ) ;
4113        ssig->setSelection( sel ) ;
4114        sel.reset() ;
4115        v[0] = rifno_unique[i] ;
4116        sel.setIFs( v ) ;
4117        sref->setSelection( sel ) ;
4118        sel.reset() ;
4119        if ( antname.find( "APEX" ) != string::npos ) {
4120          tmp[i] = dofold( ssig, sref, 0.5*doffset, -0.5*doffset ) ;
4121          //tmp[i] = dofold( ssig, sref, doffset ) ;
4122        }
4123        else {
4124          tmp[i] = dofold( ssig, sref, doffset ) ;
4125        }
4126        ssig->unsetSelection() ;
4127        sref->unsetSelection() ;
4128      }
4129    }
4130  }
4131
4132  if ( tmp.size() > 1 ) {
4133    out = merge( tmp ) ;
4134  }
4135  else {
4136    out = tmp[0] ;
4137  }
4138
4139  // flux unit
4140  out->setFluxUnit( "K" ) ;
4141
4142  return out ;
4143}
4144
4145CountedPtr<Scantable> STMath::almacalfs( const CountedPtr<Scantable>& s )
4146{
4147  CountedPtr<Scantable> out ;
4148
4149  return out ;
4150}
4151
4152vector<float> STMath::getSpectrumFromTime( string reftime,
4153                                           CountedPtr<Scantable>& s,
4154                                           string mode )
4155{
4156  LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
4157  vector<float> sp ;
4158
4159  if ( s->nrow() == 0 ) {
4160    os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4161    return sp ;
4162  }
4163  else if ( s->nrow() == 1 ) {
4164    //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4165    return s->getSpectrum( 0 ) ;
4166  }
4167  else {
4168    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4169    if ( mode == "before" ) {
4170      int id = -1 ;
4171      if ( idx[0] != -1 ) {
4172        id = idx[0] ;
4173      }
4174      else if ( idx[1] != -1 ) {
4175        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4176        id = idx[1] ;
4177      }
4178      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4179      sp = s->getSpectrum( id ) ;
4180    }
4181    else if ( mode == "after" ) {
4182      int id = -1 ;
4183      if ( idx[1] != -1 ) {
4184        id = idx[1] ;
4185      }
4186      else if ( idx[0] != -1 ) {
4187        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4188        id = idx[1] ;
4189      }
4190      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4191      sp = s->getSpectrum( id ) ;
4192    }
4193    else if ( mode == "nearest" ) {
4194      int id = -1 ;
4195      if ( idx[0] == -1 ) {
4196        id = idx[1] ;
4197      }
4198      else if ( idx[1] == -1 ) {
4199        id = idx[0] ;
4200      }
4201      else if ( idx[0] == idx[1] ) {
4202        id = idx[0] ;
4203      }
4204      else {
4205        double t0 = getMJD( s->getTime( idx[0] ) ) ;
4206        double t1 = getMJD( s->getTime( idx[1] ) ) ;
4207        double tref = getMJD( reftime ) ;
4208        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4209          id = idx[1] ;
4210        }
4211        else {
4212          id = idx[0] ;
4213        }
4214      }
4215      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4216      sp = s->getSpectrum( id ) ;     
4217    }
4218    else if ( mode == "linear" ) {
4219      if ( idx[0] == -1 ) {
4220        // use after
4221        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4222        int id = idx[1] ;
4223        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4224        sp = s->getSpectrum( id ) ;
4225      }
4226      else if ( idx[1] == -1 ) {
4227        // use before
4228        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4229        int id = idx[0] ;
4230        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4231        sp = s->getSpectrum( id ) ;
4232      }
4233      else if ( idx[0] == idx[1] ) {
4234        // use before
4235        //os << "No need to interporate." << LogIO::POST ;
4236        int id = idx[0] ;
4237        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4238        sp = s->getSpectrum( id ) ;
4239      }
4240      else {
4241        // do interpolation
4242        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4243        double t0 = getMJD( s->getTime( idx[0] ) ) ;
4244        double t1 = getMJD( s->getTime( idx[1] ) ) ;
4245        double tref = getMJD( reftime ) ;
4246        vector<float> sp0 = s->getSpectrum( idx[0] ) ;
4247        vector<float> sp1 = s->getSpectrum( idx[1] ) ;
4248        for ( unsigned int i = 0 ; i < sp0.size() ; i++ ) {
4249          float v = ( sp1[i] - sp0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + sp0[i] ;
4250          sp.push_back( v ) ;
4251        }
4252      }
4253    }
4254    else {
4255      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4256    }
4257    return sp ;
4258  }
4259}
4260
4261double STMath::getMJD( string strtime )
4262{
4263  if ( strtime.find("/") == string::npos ) {
4264    // MJD time string
4265    return atof( strtime.c_str() ) ;
4266  }
4267  else {
4268    // string in YYYY/MM/DD/HH:MM:SS format
4269    uInt year = atoi( strtime.substr( 0, 4 ).c_str() ) ;
4270    uInt month = atoi( strtime.substr( 5, 2 ).c_str() ) ;
4271    uInt day = atoi( strtime.substr( 8, 2 ).c_str() ) ;
4272    uInt hour = atoi( strtime.substr( 11, 2 ).c_str() ) ;
4273    uInt minute = atoi( strtime.substr( 14, 2 ).c_str() ) ;
4274    uInt sec = atoi( strtime.substr( 17, 2 ).c_str() ) ;
4275    Time t( year, month, day, hour, minute, sec ) ;
4276    return t.modifiedJulianDay() ;
4277  }
4278}
4279
4280vector<int> STMath::getRowIdFromTime( string reftime, CountedPtr<Scantable> &s )
4281{
4282  double reft = getMJD( reftime ) ;
4283  double dtmin = 1.0e100 ;
4284  double dtmax = -1.0e100 ;
4285  vector<double> dt ;
4286  int just_before = -1 ;
4287  int just_after = -1 ;
4288  for ( int i = 0 ; i < s->nrow() ; i++ ) {
4289    dt.push_back( getMJD( s->getTime( i ) ) - reft ) ;
4290  }
4291  for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
4292    if ( dt[i] > 0.0 ) {
4293      // after reftime
4294      if ( dt[i] < dtmin ) {
4295        just_after = i ;
4296        dtmin = dt[i] ;
4297      }
4298    }
4299    else if ( dt[i] < 0.0 ) {
4300      // before reftime
4301      if ( dt[i] > dtmax ) {
4302        just_before = i ;
4303        dtmax = dt[i] ;
4304      }
4305    }
4306    else {
4307      // just a reftime
4308      just_before = i ;
4309      just_after = i ;
4310      dtmax = 0 ;
4311      dtmin = 0 ;
4312      break ;
4313    }
4314  }
4315
4316  vector<int> v ;
4317  v.push_back( just_before ) ;
4318  v.push_back( just_after ) ;
4319
4320  return v ;
4321}
4322
4323vector<float> STMath::getTcalFromTime( string reftime,
4324                                       CountedPtr<Scantable>& s,
4325                                       string mode )
4326{
4327  LogIO os( LogOrigin( "STMath", "getTcalFromTime", WHERE ) ) ;
4328  vector<float> tcal ;
4329  STTcal tcalTable = s->tcal() ;
4330  String time ;
4331  Vector<Float> tcalval ;
4332  if ( s->nrow() == 0 ) {
4333    os << LogIO::SEVERE << "No row in the input scantable. Return empty tcal." << LogIO::POST ;
4334    return tcal ;
4335  }
4336  else if ( s->nrow() == 1 ) {
4337    uInt tcalid = s->getTcalId( 0 ) ;
4338    //os << "use row " << 0 << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4339    tcalTable.getEntry( time, tcalval, tcalid ) ;
4340    tcalval.tovector( tcal ) ;
4341    return tcal ;
4342  }
4343  else {
4344    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4345    if ( mode == "before" ) {
4346      int id = -1 ;
4347      if ( idx[0] != -1 ) {
4348        id = idx[0] ;
4349      }
4350      else if ( idx[1] != -1 ) {
4351        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4352        id = idx[1] ;
4353      }
4354      uInt tcalid = s->getTcalId( id ) ;
4355      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4356      tcalTable.getEntry( time, tcalval, tcalid ) ;
4357      tcalval.tovector( tcal ) ;
4358    }
4359    else if ( mode == "after" ) {
4360      int id = -1 ;
4361      if ( idx[1] != -1 ) {
4362        id = idx[1] ;
4363      }
4364      else if ( idx[0] != -1 ) {
4365        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4366        id = idx[1] ;
4367      }
4368      uInt tcalid = s->getTcalId( id ) ;
4369      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4370      tcalTable.getEntry( time, tcalval, tcalid ) ;
4371      tcalval.tovector( tcal ) ;
4372    }
4373    else if ( mode == "nearest" ) {
4374      int id = -1 ;
4375      if ( idx[0] == -1 ) {
4376        id = idx[1] ;
4377      }
4378      else if ( idx[1] == -1 ) {
4379        id = idx[0] ;
4380      }
4381      else if ( idx[0] == idx[1] ) {
4382        id = idx[0] ;
4383      }
4384      else {
4385        double t0 = getMJD( s->getTime( idx[0] ) ) ;
4386        double t1 = getMJD( s->getTime( idx[1] ) ) ;
4387        double tref = getMJD( reftime ) ;
4388        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4389          id = idx[1] ;
4390        }
4391        else {
4392          id = idx[0] ;
4393        }
4394      }
4395      uInt tcalid = s->getTcalId( id ) ;
4396      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4397      tcalTable.getEntry( time, tcalval, tcalid ) ;
4398      tcalval.tovector( tcal ) ;
4399    }
4400    else if ( mode == "linear" ) {
4401      if ( idx[0] == -1 ) {
4402        // use after
4403        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4404        int id = idx[1] ;
4405        uInt tcalid = s->getTcalId( id ) ;
4406        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4407        tcalTable.getEntry( time, tcalval, tcalid ) ;
4408        tcalval.tovector( tcal ) ;
4409      }
4410      else if ( idx[1] == -1 ) {
4411        // use before
4412        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4413        int id = idx[0] ;
4414        uInt tcalid = s->getTcalId( id ) ;
4415        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4416        tcalTable.getEntry( time, tcalval, tcalid ) ;
4417        tcalval.tovector( tcal ) ;
4418      }
4419      else if ( idx[0] == idx[1] ) {
4420        // use before
4421        //os << "No need to interporate." << LogIO::POST ;
4422        int id = idx[0] ;
4423        uInt tcalid = s->getTcalId( id ) ;
4424        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4425        tcalTable.getEntry( time, tcalval, tcalid ) ;
4426        tcalval.tovector( tcal ) ;
4427      }
4428      else {
4429        // do interpolation
4430        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4431        double t0 = getMJD( s->getTime( idx[0] ) ) ;
4432        double t1 = getMJD( s->getTime( idx[1] ) ) ;
4433        double tref = getMJD( reftime ) ;
4434        vector<float> tcal0 ;
4435        vector<float> tcal1 ;
4436        uInt tcalid0 = s->getTcalId( idx[0] ) ;
4437        uInt tcalid1 = s->getTcalId( idx[1] ) ;
4438        tcalTable.getEntry( time, tcalval, tcalid0 ) ;
4439        tcalval.tovector( tcal0 ) ;
4440        tcalTable.getEntry( time, tcalval, tcalid1 ) ;
4441        tcalval.tovector( tcal1 ) ;       
4442        for ( unsigned int i = 0 ; i < tcal0.size() ; i++ ) {
4443          float v = ( tcal1[i] - tcal0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tcal0[i] ;
4444          tcal.push_back( v ) ;
4445        }
4446      }
4447    }
4448    else {
4449      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4450    }
4451    return tcal ;
4452  }
4453}
4454
4455vector<float> STMath::getTsysFromTime( string reftime,
4456                                       CountedPtr<Scantable>& s,
4457                                       string mode )
4458{
4459  LogIO os( LogOrigin( "STMath", "getTsysFromTime", WHERE ) ) ;
4460  ArrayColumn<Float> tsysCol ;
4461  tsysCol.attach( s->table(), "TSYS" ) ;
4462  vector<float> tsys ;
4463  String time ;
4464  Vector<Float> tsysval ;
4465  if ( s->nrow() == 0 ) {
4466    os << LogIO::SEVERE << "No row in the input scantable. Return empty tsys." << LogIO::POST ;
4467    return tsys ;
4468  }
4469  else if ( s->nrow() == 1 ) {
4470    //os << "use row " << 0 << LogIO::POST ;
4471    tsysval = tsysCol( 0 ) ;
4472    tsysval.tovector( tsys ) ;
4473    return tsys ;
4474  }
4475  else {
4476    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4477    if ( mode == "before" ) {
4478      int id = -1 ;
4479      if ( idx[0] != -1 ) {
4480        id = idx[0] ;
4481      }
4482      else if ( idx[1] != -1 ) {
4483        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4484        id = idx[1] ;
4485      }
4486      //os << "use row " << id << LogIO::POST ;
4487      tsysval = tsysCol( id ) ;
4488      tsysval.tovector( tsys ) ;
4489    }
4490    else if ( mode == "after" ) {
4491      int id = -1 ;
4492      if ( idx[1] != -1 ) {
4493        id = idx[1] ;
4494      }
4495      else if ( idx[0] != -1 ) {
4496        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4497        id = idx[1] ;
4498      }
4499      //os << "use row " << id << LogIO::POST ;
4500      tsysval = tsysCol( id ) ;
4501      tsysval.tovector( tsys ) ;
4502    }
4503    else if ( mode == "nearest" ) {
4504      int id = -1 ;
4505      if ( idx[0] == -1 ) {
4506        id = idx[1] ;
4507      }
4508      else if ( idx[1] == -1 ) {
4509        id = idx[0] ;
4510      }
4511      else if ( idx[0] == idx[1] ) {
4512        id = idx[0] ;
4513      }
4514      else {
4515        double t0 = getMJD( s->getTime( idx[0] ) ) ;
4516        double t1 = getMJD( s->getTime( idx[1] ) ) ;
4517        double tref = getMJD( reftime ) ;
4518        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4519          id = idx[1] ;
4520        }
4521        else {
4522          id = idx[0] ;
4523        }
4524      }
4525      //os << "use row " << id << LogIO::POST ;
4526      tsysval = tsysCol( id ) ;
4527      tsysval.tovector( tsys ) ;
4528    }
4529    else if ( mode == "linear" ) {
4530      if ( idx[0] == -1 ) {
4531        // use after
4532        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4533        int id = idx[1] ;
4534        //os << "use row " << id << LogIO::POST ;
4535        tsysval = tsysCol( id ) ;
4536        tsysval.tovector( tsys ) ;
4537      }
4538      else if ( idx[1] == -1 ) {
4539        // use before
4540        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4541        int id = idx[0] ;
4542        //os << "use row " << id << LogIO::POST ;
4543        tsysval = tsysCol( id ) ;
4544        tsysval.tovector( tsys ) ;
4545      }
4546      else if ( idx[0] == idx[1] ) {
4547        // use before
4548        //os << "No need to interporate." << LogIO::POST ;
4549        int id = idx[0] ;
4550        //os << "use row " << id << LogIO::POST ;
4551        tsysval = tsysCol( id ) ;
4552        tsysval.tovector( tsys ) ;
4553      }
4554      else {
4555        // do interpolation
4556        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4557        double t0 = getMJD( s->getTime( idx[0] ) ) ;
4558        double t1 = getMJD( s->getTime( idx[1] ) ) ;
4559        double tref = getMJD( reftime ) ;
4560        vector<float> tsys0 ;
4561        vector<float> tsys1 ;
4562        tsysval = tsysCol( idx[0] ) ;
4563        tsysval.tovector( tsys0 ) ;
4564        tsysval = tsysCol( idx[1] ) ;
4565        tsysval.tovector( tsys1 ) ;       
4566        for ( unsigned int i = 0 ; i < tsys0.size() ; i++ ) {
4567          float v = ( tsys1[i] - tsys0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tsys0[i] ;
4568          tsys.push_back( v ) ;
4569        }
4570      }
4571    }
4572    else {
4573      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4574    }
4575    return tsys ;
4576  }
4577}
4578
4579vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
4580                                            CountedPtr<Scantable>& off,
4581                                            CountedPtr<Scantable>& sky,
4582                                            CountedPtr<Scantable>& hot,
4583                                            CountedPtr<Scantable>& cold,
4584                                            int index,
4585                                            string antname )
4586{
4587  string reftime = on->getTime( index ) ;
4588  vector<int> ii( 1, on->getIF( index ) ) ;
4589  vector<int> ib( 1, on->getBeam( index ) ) ;
4590  vector<int> ip( 1, on->getPol( index ) ) ;
4591  vector<int> ic( 1, on->getScan( index ) ) ;
4592  STSelector sel = STSelector() ;
4593  sel.setIFs( ii ) ;
4594  sel.setBeams( ib ) ;
4595  sel.setPolarizations( ip ) ;
4596  sky->setSelection( sel ) ;
4597  hot->setSelection( sel ) ;
4598  //cold->setSelection( sel ) ;
4599  off->setSelection( sel ) ;
4600  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
4601  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
4602  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
4603  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
4604  vector<float> spec = on->getSpectrum( index ) ;
4605  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4606  vector<float> sp( tcal.size() ) ;
4607  if ( antname.find( "APEX" ) != string::npos ) {
4608    // using gain array
4609    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4610      float v = ( ( spec[j] - spoff[j] ) / spoff[j] )
4611        * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
4612      sp[j] = v ;
4613    }
4614  }
4615  else {
4616    // Chopper-Wheel calibration (Ulich & Haas 1976)
4617    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4618      float v = ( spec[j] - spoff[j] ) / ( sphot[j] - spsky[j] ) * tcal[j] ;
4619      sp[j] = v ;
4620    }
4621  }
4622  sel.reset() ;
4623  sky->unsetSelection() ;
4624  hot->unsetSelection() ;
4625  //cold->unsetSelection() ;
4626  off->unsetSelection() ;
4627
4628  return sp ;
4629}
4630
4631vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
4632                                            CountedPtr<Scantable>& off,
4633                                            int index )
4634{
4635  string reftime = on->getTime( index ) ;
4636  vector<int> ii( 1, on->getIF( index ) ) ;
4637  vector<int> ib( 1, on->getBeam( index ) ) ;
4638  vector<int> ip( 1, on->getPol( index ) ) ;
4639  vector<int> ic( 1, on->getScan( index ) ) ;
4640  STSelector sel = STSelector() ;
4641  sel.setIFs( ii ) ;
4642  sel.setBeams( ib ) ;
4643  sel.setPolarizations( ip ) ;
4644  off->setSelection( sel ) ;
4645  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
4646  vector<float> spec = on->getSpectrum( index ) ;
4647  //vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4648  //vector<float> tsys = on->getTsysVec( index ) ;
4649  ArrayColumn<Float> tsysCol( on->table(), "TSYS" ) ;
4650  Vector<Float> tsys = tsysCol( index ) ;
4651  vector<float> sp( spec.size() ) ;
4652  // ALMA Calibration
4653  //
4654  // Ta* = Tsys * ( ON - OFF ) / OFF
4655  //
4656  // 2010/01/07 Takeshi Nakazato
4657  unsigned int tsyssize = tsys.nelements() ;
4658  unsigned int spsize = sp.size() ;
4659  for ( unsigned int j = 0 ; j < sp.size() ; j++ ) {
4660    float tscale = 0.0 ;
4661    if ( tsyssize == spsize )
4662      tscale = tsys[j] ;
4663    else
4664      tscale = tsys[0] ;
4665    float v = tscale * ( spec[j] - spoff[j] ) / spoff[j] ;
4666    sp[j] = v ;
4667  }
4668  sel.reset() ;
4669  off->unsetSelection() ;
4670
4671  return sp ;
4672}
4673
4674vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
4675                                              CountedPtr<Scantable>& ref,
4676                                              CountedPtr<Scantable>& sky,
4677                                              CountedPtr<Scantable>& hot,
4678                                              CountedPtr<Scantable>& cold,
4679                                              int index )
4680{
4681  string reftime = sig->getTime( index ) ;
4682  vector<int> ii( 1, sig->getIF( index ) ) ;
4683  vector<int> ib( 1, sig->getBeam( index ) ) ;
4684  vector<int> ip( 1, sig->getPol( index ) ) ;
4685  vector<int> ic( 1, sig->getScan( index ) ) ;
4686  STSelector sel = STSelector() ;
4687  sel.setIFs( ii ) ;
4688  sel.setBeams( ib ) ;
4689  sel.setPolarizations( ip ) ;
4690  sky->setSelection( sel ) ;
4691  hot->setSelection( sel ) ;
4692  //cold->setSelection( sel ) ;
4693  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
4694  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
4695  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
4696  vector<float> spref = ref->getSpectrum( index ) ;
4697  vector<float> spsig = sig->getSpectrum( index ) ;
4698  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4699  vector<float> sp( tcal.size() ) ;
4700  for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4701    float v = tcal[j] * spsky[j] / ( sphot[j] - spsky[j] ) * ( spsig[j] - spref[j] ) / spref[j] ;
4702    sp[j] = v ;
4703  }
4704  sel.reset() ;
4705  sky->unsetSelection() ;
4706  hot->unsetSelection() ;
4707  //cold->unsetSelection() ;
4708
4709  return sp ;
4710}
4711
4712vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
4713                                              CountedPtr<Scantable>& ref,
4714                                              vector< CountedPtr<Scantable> >& sky,
4715                                              vector< CountedPtr<Scantable> >& hot,
4716                                              vector< CountedPtr<Scantable> >& cold,
4717                                              int index )
4718{
4719  string reftime = sig->getTime( index ) ;
4720  vector<int> ii( 1, sig->getIF( index ) ) ;
4721  vector<int> ib( 1, sig->getBeam( index ) ) ;
4722  vector<int> ip( 1, sig->getPol( index ) ) ;
4723  vector<int> ic( 1, sig->getScan( index ) ) ;
4724  STSelector sel = STSelector() ;
4725  sel.setIFs( ii ) ;
4726  sel.setBeams( ib ) ;
4727  sel.setPolarizations( ip ) ;
4728  sky[0]->setSelection( sel ) ;
4729  hot[0]->setSelection( sel ) ;
4730  //cold[0]->setSelection( sel ) ;
4731  vector<float> spskys = getSpectrumFromTime( reftime, sky[0], "linear" ) ;
4732  vector<float> sphots = getSpectrumFromTime( reftime, hot[0], "linear" ) ;
4733  //vector<float> spcolds = getSpectrumFromTime( reftime, cold[0], "linear" ) ;
4734  vector<float> tcals = getTcalFromTime( reftime, sky[0], "linear" ) ;
4735  sel.reset() ;
4736  ii[0] = ref->getIF( index ) ;
4737  sel.setIFs( ii ) ;
4738  sel.setBeams( ib ) ;
4739  sel.setPolarizations( ip ) ;
4740  sky[1]->setSelection( sel ) ;
4741  hot[1]->setSelection( sel ) ;
4742  //cold[1]->setSelection( sel ) ;
4743  vector<float> spskyr = getSpectrumFromTime( reftime, sky[1], "linear" ) ;
4744  vector<float> sphotr = getSpectrumFromTime( reftime, hot[1], "linear" ) ;
4745  //vector<float> spcoldr = getSpectrumFromTime( reftime, cold[1], "linear" ) ;
4746  vector<float> tcalr = getTcalFromTime( reftime, sky[1], "linear" ) ; 
4747  vector<float> spref = ref->getSpectrum( index ) ;
4748  vector<float> spsig = sig->getSpectrum( index ) ;
4749  vector<float> sp( tcals.size() ) ;
4750  for ( unsigned int j = 0 ; j < tcals.size() ; j++ ) {
4751    float v = tcals[j] * spsig[j] / ( sphots[j] - spskys[j] ) - tcalr[j] * spref[j] / ( sphotr[j] - spskyr[j] ) ;
4752    sp[j] = v ;
4753  }
4754  sel.reset() ;
4755  sky[0]->unsetSelection() ;
4756  hot[0]->unsetSelection() ;
4757  //cold[0]->unsetSelection() ;
4758  sky[1]->unsetSelection() ;
4759  hot[1]->unsetSelection() ;
4760  //cold[1]->unsetSelection() ;
4761
4762  return sp ;
4763}
Note: See TracBrowser for help on using the repository browser.