source: branches/alma/src/STMath.cpp @ 1705

Last change on this file since 1705 was 1705, checked in by Takeshi Nakazato, 14 years ago

New Development: No

JIRA Issue: Yes CAS-1799

Ready to Release: Yes

Interface Changes: No

What Interface Changed: Please list interface changes

Test Programs: List test programs

Put in Release Notes: Yes/No?

Module(s): Module Names change impacts.

Description: Describe your changes here...

Fixed a bug that OSF data were not recognized as OTF scan.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 162.6 KB
Line 
1//
2// C++ Implementation: STMath
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2006
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12
13#include <casa/iomanip.h>
14#include <casa/Exceptions/Error.h>
15#include <casa/Containers/Block.h>
16#include <casa/BasicSL/String.h>
17#include <casa/Arrays/MaskArrLogi.h>
18#include <casa/Arrays/MaskArrMath.h>
19#include <casa/Arrays/ArrayLogical.h>
20#include <casa/Arrays/ArrayMath.h>
21#include <casa/Arrays/Slice.h>
22#include <casa/Arrays/Slicer.h>
23#include <casa/Containers/RecordField.h>
24#include <tables/Tables/TableRow.h>
25#include <tables/Tables/TableVector.h>
26#include <tables/Tables/TabVecMath.h>
27#include <tables/Tables/ExprNode.h>
28#include <tables/Tables/TableRecord.h>
29#include <tables/Tables/TableParse.h>
30#include <tables/Tables/ReadAsciiTable.h>
31#include <tables/Tables/TableIter.h>
32#include <tables/Tables/TableCopy.h>
33#include <scimath/Mathematics/FFTServer.h>
34
35#include <lattices/Lattices/LatticeUtilities.h>
36
37#include <coordinates/Coordinates/SpectralCoordinate.h>
38#include <coordinates/Coordinates/CoordinateSystem.h>
39#include <coordinates/Coordinates/CoordinateUtil.h>
40#include <coordinates/Coordinates/FrequencyAligner.h>
41
42#include <scimath/Mathematics/VectorKernel.h>
43#include <scimath/Mathematics/Convolver.h>
44#include <scimath/Functionals/Polynomial.h>
45
46#include <atnf/PKSIO/SrcType.h>
47
48#include <casa/Logging/LogIO.h>
49#include <sstream>
50
51#include "MathUtils.h"
52#include "RowAccumulator.h"
53#include "STAttr.h"
54#include "STMath.h"
55#include "STSelector.h"
56
57using namespace casa;
58
59using namespace asap;
60
61// tolerance for direction comparison (rad)
62#define TOL_OTF    1.0e-15
63#define TOL_POINT  2.9088821e-4  // 1 arcmin
64
65STMath::STMath(bool insitu) :
66  insitu_(insitu)
67{
68}
69
70
71STMath::~STMath()
72{
73}
74
75CountedPtr<Scantable>
76STMath::average( const std::vector<CountedPtr<Scantable> >& in,
77                 const std::vector<bool>& mask,
78                 const std::string& weight,
79                 const std::string& avmode)
80{
81  LogIO os( LogOrigin( "STMath", "average()", WHERE ) ) ;
82  if ( avmode == "SCAN" && in.size() != 1 )
83    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
84                    "Use merge first."));
85  WeightType wtype = stringToWeight(weight);
86
87  // check if OTF observation
88  String obstype = in[0]->getHeader().obstype ;
89  Double tol = 0.0 ;
90  if ( (obstype.find( "OTF" ) != String::npos) || (obstype.find( "OBSERVE_TARGET" ) != String::npos) ) {
91    tol = TOL_OTF ;
92  }
93  else {
94    tol = TOL_POINT ;
95  }
96
97  // output
98  // clone as this is non insitu
99  bool insitu = insitu_;
100  setInsitu(false);
101  CountedPtr< Scantable > out = getScantable(in[0], true);
102  setInsitu(insitu);
103  std::vector<CountedPtr<Scantable> >::const_iterator stit = in.begin();
104  ++stit;
105  while ( stit != in.end() ) {
106    out->appendToHistoryTable((*stit)->history());
107    ++stit;
108  }
109
110  Table& tout = out->table();
111
112  /// @todo check if all scantables are conformant
113
114  ArrayColumn<Float> specColOut(tout,"SPECTRA");
115  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
116  ArrayColumn<Float> tsysColOut(tout,"TSYS");
117  ScalarColumn<Double> mjdColOut(tout,"TIME");
118  ScalarColumn<Double> intColOut(tout,"INTERVAL");
119  ScalarColumn<uInt> cycColOut(tout,"CYCLENO");
120  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
121
122  // set up the output table rows. These are based on the structure of the
123  // FIRST scantable in the vector
124  const Table& baset = in[0]->table();
125
126  Block<String> cols(3);
127  cols[0] = String("BEAMNO");
128  cols[1] = String("IFNO");
129  cols[2] = String("POLNO");
130  if ( avmode == "SOURCE" ) {
131    cols.resize(4);
132    cols[3] = String("SRCNAME");
133  }
134  if ( avmode == "SCAN"  && in.size() == 1) {
135    //cols.resize(4);
136    //cols[3] = String("SCANNO");
137    cols.resize(5);
138    cols[3] = String("SRCNAME");
139    cols[4] = String("SCANNO");
140  }
141  uInt outrowCount = 0;
142  TableIterator iter(baset, cols);
143//   int count = 0 ;
144  while (!iter.pastEnd()) {
145    Table subt = iter.table();
146//     // copy the first row of this selection into the new table
147//     tout.addRow();
148//     TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
149//     // re-index to 0
150//     if ( avmode != "SCAN" && avmode != "SOURCE" ) {
151//       scanColOut.put(outrowCount, uInt(0));
152//     }
153//     ++outrowCount;
154    MDirection::ScalarColumn dircol ;
155    dircol.attach( subt, "DIRECTION" ) ;
156    Int length = subt.nrow() ;
157    vector< Vector<Double> > dirs ;
158    vector<int> indexes ;
159    for ( Int i = 0 ; i < length ; i++ ) {
160      Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
161      //os << << count++ << ": " ;
162      //os << "[" << t[0] << "," << t[1] << "]" << LogIO::POST ;
163      bool adddir = true ;
164      for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
165        //if ( allTrue( t == dirs[j] ) ) {
166        Double dx = t[0] - dirs[j][0] ;
167        Double dy = t[1] - dirs[j][1] ;
168        Double dd = sqrt( dx * dx + dy * dy ) ;
169        //if ( allNearAbs( t, dirs[j], tol ) ) {
170        if ( dd <= tol ) {
171          adddir = false ;
172          break ;
173        }
174      }
175      if ( adddir ) {
176        dirs.push_back( t ) ;
177        indexes.push_back( i ) ;
178      }
179    }
180    uInt rowNum = dirs.size() ;
181    tout.addRow( rowNum ) ;
182    for ( uInt i = 0 ; i < rowNum ; i++ ) {
183      TableCopy::copyRows( tout, subt, outrowCount+i, indexes[i], 1 ) ;
184      // re-index to 0
185      if ( avmode != "SCAN" && avmode != "SOURCE" ) {
186        scanColOut.put(outrowCount+i, uInt(0));
187      }       
188    }
189    outrowCount += rowNum ;
190    ++iter;
191  }
192  RowAccumulator acc(wtype);
193  Vector<Bool> cmask(mask);
194  acc.setUserMask(cmask);
195  ROTableRow row(tout);
196  ROArrayColumn<Float> specCol, tsysCol;
197  ROArrayColumn<uChar> flagCol;
198  ROScalarColumn<Double> mjdCol, intCol;
199  ROScalarColumn<Int> scanIDCol;
200
201  Vector<uInt> rowstodelete;
202
203  for (uInt i=0; i < tout.nrow(); ++i) {
204    for ( int j=0; j < int(in.size()); ++j ) {
205      const Table& tin = in[j]->table();
206      const TableRecord& rec = row.get(i);
207      ROScalarColumn<Double> tmp(tin, "TIME");
208      Double td;tmp.get(0,td);
209      Table basesubt = tin(tin.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
210                       && tin.col("IFNO") == Int(rec.asuInt("IFNO"))
211                       && tin.col("POLNO") == Int(rec.asuInt("POLNO")) );
212      Table subt;
213      if ( avmode == "SOURCE") {
214        subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME") );
215      } else if (avmode == "SCAN") {
216        //subt = basesubt( basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO")) );
217        subt = basesubt( basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO"))
218                         && basesubt.col("SRCNAME") == rec.asString("SRCNAME") );
219      } else {
220        subt = basesubt;
221      }
222
223      vector<uInt> removeRows ;
224      uInt nrsubt = subt.nrow() ;
225      for ( uInt irow = 0 ; irow < nrsubt ; irow++ ) {
226        //if ( !allTrue((subt.col("DIRECTION").getArrayDouble(TableExprId(irow)))==rec.asArrayDouble("DIRECTION")) ) {
227        Vector<Double> x0 = (subt.col("DIRECTION").getArrayDouble(TableExprId(irow))) ;
228        Vector<Double> x1 = rec.asArrayDouble("DIRECTION") ;
229        double dx = x0[0] - x1[0] ;
230        double dy = x0[0] - x1[0] ;
231        Double dd = sqrt( dx * dx + dy * dy ) ;
232        //if ( !allNearAbs((subt.col("DIRECTION").getArrayDouble(TableExprId(irow))), rec.asArrayDouble("DIRECTION"), tol ) ) {
233        if ( dd > tol ) {
234          removeRows.push_back( irow ) ;
235        }
236      }
237      if ( removeRows.size() != 0 ) {
238        subt.removeRow( removeRows ) ;
239      }
240     
241      if ( nrsubt == removeRows.size() )
242        throw(AipsError("Averaging data is empty.")) ;
243
244      specCol.attach(subt,"SPECTRA");
245      flagCol.attach(subt,"FLAGTRA");
246      tsysCol.attach(subt,"TSYS");
247      intCol.attach(subt,"INTERVAL");
248      mjdCol.attach(subt,"TIME");
249      Vector<Float> spec,tsys;
250      Vector<uChar> flag;
251      Double inter,time;
252      for (uInt k = 0; k < subt.nrow(); ++k ) {
253        flagCol.get(k, flag);
254        Vector<Bool> bflag(flag.shape());
255        convertArray(bflag, flag);
256        /*
257        if ( allEQ(bflag, True) ) {
258        continue;//don't accumulate
259        }
260        */
261        specCol.get(k, spec);
262        tsysCol.get(k, tsys);
263        intCol.get(k, inter);
264        mjdCol.get(k, time);
265        // spectrum has to be added last to enable weighting by the other values
266        acc.add(spec, !bflag, tsys, inter, time);
267      }
268    }
269    const Vector<Bool>& msk = acc.getMask();
270    if ( allEQ(msk, False) ) {
271      uint n = rowstodelete.nelements();
272      rowstodelete.resize(n+1, True);
273      rowstodelete[n] = i;
274      continue;
275    }
276    //write out
277    if (acc.state()) {
278      Vector<uChar> flg(msk.shape());
279      convertArray(flg, !msk);
280      flagColOut.put(i, flg);
281      specColOut.put(i, acc.getSpectrum());
282      tsysColOut.put(i, acc.getTsys());
283      intColOut.put(i, acc.getInterval());
284      mjdColOut.put(i, acc.getTime());
285      // we should only have one cycle now -> reset it to be 0
286      // frequency switched data has different CYCLENO for different IFNO
287      // which requires resetting this value
288      cycColOut.put(i, uInt(0));
289    } else {
290      ostringstream oss;
291      oss << "For output row="<<i<<", all input rows of data are flagged. no averaging" << endl;
292      pushLog(String(oss));
293    }
294    acc.reset();
295  }
296  if (rowstodelete.nelements() > 0) {
297    //cout << rowstodelete << endl;
298    os << rowstodelete << LogIO::POST ;
299    tout.removeRow(rowstodelete);
300    if (tout.nrow() == 0) {
301      throw(AipsError("Can't average fully flagged data."));
302    }
303  }
304  return out;
305}
306
307CountedPtr< Scantable >
308  STMath::averageChannel( const CountedPtr < Scantable > & in,
309                          const std::string & mode,
310                          const std::string& avmode )
311{
312  // check if OTF observation
313  String obstype = in->getHeader().obstype ;
314  Double tol = 0.0 ;
315  if ( obstype.find( "OTF" ) != String::npos ) {
316    tol = TOL_OTF ;
317  }
318  else {
319    tol = TOL_POINT ;
320  }
321
322  // clone as this is non insitu
323  bool insitu = insitu_;
324  setInsitu(false);
325  CountedPtr< Scantable > out = getScantable(in, true);
326  setInsitu(insitu);
327  Table& tout = out->table();
328  ArrayColumn<Float> specColOut(tout,"SPECTRA");
329  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
330  ArrayColumn<Float> tsysColOut(tout,"TSYS");
331  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
332  ScalarColumn<Double> intColOut(tout, "INTERVAL");
333  Table tmp = in->table().sort("BEAMNO");
334  Block<String> cols(3);
335  cols[0] = String("BEAMNO");
336  cols[1] = String("IFNO");
337  cols[2] = String("POLNO");
338  if ( avmode == "SCAN") {
339    cols.resize(4);
340    cols[3] = String("SCANNO");
341  }
342  uInt outrowCount = 0;
343  uChar userflag = 1 << 7;
344  TableIterator iter(tmp, cols);
345  while (!iter.pastEnd()) {
346    Table subt = iter.table();
347    ROArrayColumn<Float> specCol, tsysCol;
348    ROArrayColumn<uChar> flagCol;
349    ROScalarColumn<Double> intCol(subt, "INTERVAL");
350    specCol.attach(subt,"SPECTRA");
351    flagCol.attach(subt,"FLAGTRA");
352    tsysCol.attach(subt,"TSYS");
353//     tout.addRow();
354//     TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
355//     if ( avmode != "SCAN") {
356//       scanColOut.put(outrowCount, uInt(0));
357//     }
358//     Vector<Float> tmp;
359//     specCol.get(0, tmp);
360//     uInt nchan = tmp.nelements();
361//     // have to do channel by channel here as MaskedArrMath
362//     // doesn't have partialMedians
363//     Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
364//     Vector<Float> outspec(nchan);
365//     Vector<uChar> outflag(nchan,0);
366//     Vector<Float> outtsys(1);/// @fixme when tsys is channel based
367//     for (uInt i=0; i<nchan; ++i) {
368//       Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
369//       MaskedArray<Float> ma = maskedArray(specs,flags);
370//       outspec[i] = median(ma);
371//       if ( allEQ(ma.getMask(), False) )
372//         outflag[i] = userflag;// flag data
373//     }
374//     outtsys[0] = median(tsysCol.getColumn());
375//     specColOut.put(outrowCount, outspec);
376//     flagColOut.put(outrowCount, outflag);
377//     tsysColOut.put(outrowCount, outtsys);
378//     Double intsum = sum(intCol.getColumn());
379//     intColOut.put(outrowCount, intsum);
380//     ++outrowCount;
381//     ++iter;
382    MDirection::ScalarColumn dircol ;
383    dircol.attach( subt, "DIRECTION" ) ;
384    Int length = subt.nrow() ;
385    vector< Vector<Double> > dirs ;
386    vector<int> indexes ;
387    for ( Int i = 0 ; i < length ; i++ ) {
388      Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
389      bool adddir = true ;
390      for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
391        //if ( allTrue( t == dirs[j] ) ) {
392        Double dx = t[0] - dirs[j][0] ;
393        Double dy = t[1] - dirs[j][1] ;
394        Double dd = sqrt( dx * dx + dy * dy ) ;
395        //if ( allNearAbs( t, dirs[j], tol ) ) {
396        if ( dd <= tol ) {
397          adddir = false ;
398          break ;
399        }
400      }
401      if ( adddir ) {
402        dirs.push_back( t ) ;
403        indexes.push_back( i ) ;
404      }
405    }
406    uInt rowNum = dirs.size() ;
407    tout.addRow( rowNum );
408    for ( uInt i = 0 ; i < rowNum ; i++ ) {
409      TableCopy::copyRows(tout, subt, outrowCount+i, indexes[i], 1) ;
410      if ( avmode != "SCAN") {
411        //scanColOut.put(outrowCount+i, uInt(0));
412      }
413    }
414    MDirection::ScalarColumn dircolOut ;
415    dircolOut.attach( tout, "DIRECTION" ) ;
416    for ( uInt irow = 0 ; irow < rowNum ; irow++ ) {
417      Vector<Double> t = dircolOut(outrowCount+irow).getAngle(Unit(String("rad"))).getValue() ;
418      Vector<Float> tmp;
419      specCol.get(0, tmp);
420      uInt nchan = tmp.nelements();
421      // have to do channel by channel here as MaskedArrMath
422      // doesn't have partialMedians
423      Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
424      // mask spectra for different DIRECTION
425      for ( uInt jrow = 0 ; jrow < subt.nrow() ; jrow++ ) {
426        Vector<Double> direction = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
427        //if ( t[0] != direction[0] || t[1] != direction[1] ) {
428        Double dx = t[0] - direction[0] ;
429        Double dy = t[1] - direction[1] ;
430        Double dd = sqrt( dx * dx + dy * dy ) ;
431        //if ( !allNearAbs( t, direction, tol ) ) {
432        if ( dd > tol ) {
433          flags[jrow] = userflag ;
434        }
435      }
436      Vector<Float> outspec(nchan);
437      Vector<uChar> outflag(nchan,0);
438      Vector<Float> outtsys(1);/// @fixme when tsys is channel based
439      for (uInt i=0; i<nchan; ++i) {
440        Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
441        MaskedArray<Float> ma = maskedArray(specs,flags);
442        outspec[i] = median(ma);
443        if ( allEQ(ma.getMask(), False) )
444          outflag[i] = userflag;// flag data
445      }
446      outtsys[0] = median(tsysCol.getColumn());
447      specColOut.put(outrowCount+irow, outspec);
448      flagColOut.put(outrowCount+irow, outflag);
449      tsysColOut.put(outrowCount+irow, outtsys);
450      Vector<Double> integ = intCol.getColumn() ;
451      MaskedArray<Double> mi = maskedArray( integ, flags ) ;
452      Double intsum = sum(mi);
453      intColOut.put(outrowCount+irow, intsum);
454    }
455    outrowCount += rowNum ;
456    ++iter;
457  }
458  return out;
459}
460
461CountedPtr< Scantable > STMath::getScantable(const CountedPtr< Scantable >& in,
462                                             bool droprows)
463{
464  if (insitu_) {
465    return in;
466  }
467  else {
468    // clone
469    return CountedPtr<Scantable>(new Scantable(*in, Bool(droprows)));
470  }
471}
472
473CountedPtr< Scantable > STMath::unaryOperate( const CountedPtr< Scantable >& in,
474                                              float val,
475                                              const std::string& mode,
476                                              bool tsys )
477{
478  CountedPtr< Scantable > out = getScantable(in, false);
479  Table& tab = out->table();
480  ArrayColumn<Float> specCol(tab,"SPECTRA");
481  ArrayColumn<Float> tsysCol(tab,"TSYS");
482  for (uInt i=0; i<tab.nrow(); ++i) {
483    Vector<Float> spec;
484    Vector<Float> ts;
485    specCol.get(i, spec);
486    tsysCol.get(i, ts);
487    if (mode == "MUL" || mode == "DIV") {
488      if (mode == "DIV") val = 1.0/val;
489      spec *= val;
490      specCol.put(i, spec);
491      if ( tsys ) {
492        ts *= val;
493        tsysCol.put(i, ts);
494      }
495    } else if ( mode == "ADD"  || mode == "SUB") {
496      if (mode == "SUB") val *= -1.0;
497      spec += val;
498      specCol.put(i, spec);
499      if ( tsys ) {
500        ts += val;
501        tsysCol.put(i, ts);
502      }
503    }
504  }
505  return out;
506}
507
508CountedPtr< Scantable > STMath::arrayOperate( const CountedPtr< Scantable >& in,
509                                              const std::vector<float> val,
510                                              const std::string& mode,
511                                              const std::string& opmode,
512                                              bool tsys )
513{
514  CountedPtr< Scantable > out ;
515  if ( opmode == "channel" ) {
516    out = arrayOperateChannel( in, val, mode, tsys ) ;
517  }
518  else if ( opmode == "row" ) {
519    out = arrayOperateRow( in, val, mode, tsys ) ;
520  }
521  else {
522    throw( AipsError( "Unknown array operation mode." ) ) ;
523  }
524  return out ;
525}
526
527CountedPtr< Scantable > STMath::arrayOperateChannel( const CountedPtr< Scantable >& in,
528                                                     const std::vector<float> val,
529                                                     const std::string& mode,
530                                                     bool tsys )
531{
532  if ( val.size() == 1 ){
533    return unaryOperate( in, val[0], mode, tsys ) ;
534  }
535
536  // conformity of SPECTRA and TSYS
537  if ( tsys ) {
538    TableIterator titer(in->table(), "IFNO");
539    while ( !titer.pastEnd() ) {
540      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
541      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
542      Array<Float> spec = specCol.getColumn() ;
543      Array<Float> ts = tsysCol.getColumn() ;
544      if ( !spec.conform( ts ) ) {
545        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
546      }
547      titer.next() ;
548    }
549  }
550
551  // check if all spectra in the scantable have the same number of channel
552  vector<uInt> nchans;
553  vector<uInt> ifnos = in->getIFNos() ;
554  for ( uInt i = 0 ; i < ifnos.size() ; i++ ) {
555    nchans.push_back( in->nchan( ifnos[i] ) ) ;
556  }
557  Vector<uInt> mchans( nchans ) ;
558  if ( anyNE( mchans, mchans[0] ) ) {
559    throw( AipsError("All spectra in the input scantable must have the same number of channel for vector operation." ) ) ;
560  }
561
562  // check if vector size is equal to nchan
563  Vector<Float> fact( val ) ;
564  if ( fact.nelements() != mchans[0] ) {
565    throw( AipsError("Vector size must be 1 or be same as number of channel.") ) ;
566  }
567
568  // check divided by zero
569  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
570    throw( AipsError("Divided by zero is not recommended." ) ) ;
571  }
572
573  CountedPtr< Scantable > out = getScantable(in, false);
574  Table& tab = out->table();
575  ArrayColumn<Float> specCol(tab,"SPECTRA");
576  ArrayColumn<Float> tsysCol(tab,"TSYS");
577  for (uInt i=0; i<tab.nrow(); ++i) {
578    Vector<Float> spec;
579    Vector<Float> ts;
580    specCol.get(i, spec);
581    tsysCol.get(i, ts);
582    if (mode == "MUL" || mode == "DIV") {
583      if (mode == "DIV") fact = (float)1.0 / fact;
584      spec *= fact;
585      specCol.put(i, spec);
586      if ( tsys ) {
587        ts *= fact;
588        tsysCol.put(i, ts);
589      }
590    } else if ( mode == "ADD"  || mode == "SUB") {
591      if (mode == "SUB") fact *= (float)-1.0 ;
592      spec += fact;
593      specCol.put(i, spec);
594      if ( tsys ) {
595        ts += fact;
596        tsysCol.put(i, ts);
597      }
598    }
599  }
600  return out;
601}
602
603CountedPtr< Scantable > STMath::arrayOperateRow( const CountedPtr< Scantable >& in,
604                                                 const std::vector<float> val,
605                                                 const std::string& mode,
606                                                 bool tsys )
607{
608  if ( val.size() == 1 ) {
609    return unaryOperate( in, val[0], mode, tsys ) ;
610  }
611
612  // conformity of SPECTRA and TSYS
613  if ( tsys ) {
614    TableIterator titer(in->table(), "IFNO");
615    while ( !titer.pastEnd() ) {
616      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
617      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
618      Array<Float> spec = specCol.getColumn() ;
619      Array<Float> ts = tsysCol.getColumn() ;
620      if ( !spec.conform( ts ) ) {
621        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
622      }
623      titer.next() ;
624    }
625  }
626
627  // check if vector size is equal to nrow
628  Vector<Float> fact( val ) ;
629  if ( fact.nelements() != in->nrow() ) {
630    throw( AipsError("Vector size must be 1 or be same as number of row.") ) ;
631  }
632
633  // check divided by zero
634  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
635    throw( AipsError("Divided by zero is not recommended." ) ) ;
636  }
637
638  CountedPtr< Scantable > out = getScantable(in, false);
639  Table& tab = out->table();
640  ArrayColumn<Float> specCol(tab,"SPECTRA");
641  ArrayColumn<Float> tsysCol(tab,"TSYS");
642  if (mode == "DIV") fact = (float)1.0 / fact;
643  if (mode == "SUB") fact *= (float)-1.0 ;
644  for (uInt i=0; i<tab.nrow(); ++i) {
645    Vector<Float> spec;
646    Vector<Float> ts;
647    specCol.get(i, spec);
648    tsysCol.get(i, ts);
649    if (mode == "MUL" || mode == "DIV") {
650      spec *= fact[i];
651      specCol.put(i, spec);
652      if ( tsys ) {
653        ts *= fact[i];
654        tsysCol.put(i, ts);
655      }
656    } else if ( mode == "ADD"  || mode == "SUB") {
657      spec += fact[i];
658      specCol.put(i, spec);
659      if ( tsys ) {
660        ts += fact[i];
661        tsysCol.put(i, ts);
662      }
663    }
664  }
665  return out;
666}
667
668CountedPtr< Scantable > STMath::array2dOperate( const CountedPtr< Scantable >& in,
669                                                const std::vector< std::vector<float> > val,
670                                                const std::string& mode,
671                                                bool tsys )
672{
673  // conformity of SPECTRA and TSYS
674  if ( tsys ) {
675    TableIterator titer(in->table(), "IFNO");
676    while ( !titer.pastEnd() ) {
677      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
678      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
679      Array<Float> spec = specCol.getColumn() ;
680      Array<Float> ts = tsysCol.getColumn() ;
681      if ( !spec.conform( ts ) ) {
682        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
683      }
684      titer.next() ;
685    }
686  }
687
688  // some checks
689  vector<uInt> nchans;
690  for ( uInt i = 0 ; i < in->nrow() ; i++ ) {
691    nchans.push_back( (in->getSpectrum( i )).size() ) ;
692  }
693  //Vector<uInt> mchans( nchans ) ;
694  vector< Vector<Float> > facts ;
695  for ( uInt i = 0 ; i < nchans.size() ; i++ ) {
696    Vector<Float> tmp( val[i] ) ;
697    // check divided by zero
698    if ( ( mode == "DIV" ) && anyEQ( tmp, (float)0.0 ) ) {
699      throw( AipsError("Divided by zero is not recommended." ) ) ;
700    }
701    // conformity check
702    if ( tmp.nelements() != nchans[i] ) {
703      stringstream ss ;
704      ss << "Row " << i << ": Vector size must be same as number of channel." ;
705      throw( AipsError( ss.str() ) ) ;
706    }
707    facts.push_back( tmp ) ;
708  }
709
710
711  CountedPtr< Scantable > out = getScantable(in, false);
712  Table& tab = out->table();
713  ArrayColumn<Float> specCol(tab,"SPECTRA");
714  ArrayColumn<Float> tsysCol(tab,"TSYS");
715  for (uInt i=0; i<tab.nrow(); ++i) {
716    Vector<Float> fact = facts[i] ;
717    Vector<Float> spec;
718    Vector<Float> ts;
719    specCol.get(i, spec);
720    tsysCol.get(i, ts);
721    if (mode == "MUL" || mode == "DIV") {
722      if (mode == "DIV") fact = (float)1.0 / fact;
723      spec *= fact;
724      specCol.put(i, spec);
725      if ( tsys ) {
726        ts *= fact;
727        tsysCol.put(i, ts);
728      }
729    } else if ( mode == "ADD"  || mode == "SUB") {
730      if (mode == "SUB") fact *= (float)-1.0 ;
731      spec += fact;
732      specCol.put(i, spec);
733      if ( tsys ) {
734        ts += fact;
735        tsysCol.put(i, ts);
736      }
737    }
738  }
739  return out;
740}
741
742CountedPtr<Scantable> STMath::binaryOperate(const CountedPtr<Scantable>& left,
743                                            const CountedPtr<Scantable>& right,
744                                            const std::string& mode)
745{
746  bool insitu = insitu_;
747  if ( ! left->conformant(*right) ) {
748    throw(AipsError("'left' and 'right' scantables are not conformant."));
749  }
750  setInsitu(false);
751  CountedPtr< Scantable > out = getScantable(left, false);
752  setInsitu(insitu);
753  Table& tout = out->table();
754  Block<String> coln(5);
755  coln[0] = "SCANNO";  coln[1] = "CYCLENO";  coln[2] = "BEAMNO";
756  coln[3] = "IFNO";  coln[4] = "POLNO";
757  Table tmpl = tout.sort(coln);
758  Table tmpr = right->table().sort(coln);
759  ArrayColumn<Float> lspecCol(tmpl,"SPECTRA");
760  ROArrayColumn<Float> rspecCol(tmpr,"SPECTRA");
761  ArrayColumn<uChar> lflagCol(tmpl,"FLAGTRA");
762  ROArrayColumn<uChar> rflagCol(tmpr,"FLAGTRA");
763
764  for (uInt i=0; i<tout.nrow(); ++i) {
765    Vector<Float> lspecvec, rspecvec;
766    Vector<uChar> lflagvec, rflagvec;
767    lspecvec = lspecCol(i);    rspecvec = rspecCol(i);
768    lflagvec = lflagCol(i);    rflagvec = rflagCol(i);
769    MaskedArray<Float> mleft = maskedArray(lspecvec, lflagvec);
770    MaskedArray<Float> mright = maskedArray(rspecvec, rflagvec);
771    if (mode == "ADD") {
772      mleft += mright;
773    } else if ( mode == "SUB") {
774      mleft -= mright;
775    } else if ( mode == "MUL") {
776      mleft *= mright;
777    } else if ( mode == "DIV") {
778      mleft /= mright;
779    } else {
780      throw(AipsError("Illegal binary operator"));
781    }
782    lspecCol.put(i, mleft.getArray());
783  }
784  return out;
785}
786
787
788
789MaskedArray<Float> STMath::maskedArray( const Vector<Float>& s,
790                                        const Vector<uChar>& f)
791{
792  Vector<Bool> mask;
793  mask.resize(f.shape());
794  convertArray(mask, f);
795  return MaskedArray<Float>(s,!mask);
796}
797
798MaskedArray<Double> STMath::maskedArray( const Vector<Double>& s,
799                                         const Vector<uChar>& f)
800{
801  Vector<Bool> mask;
802  mask.resize(f.shape());
803  convertArray(mask, f);
804  return MaskedArray<Double>(s,!mask);
805}
806
807Vector<uChar> STMath::flagsFromMA(const MaskedArray<Float>& ma)
808{
809  const Vector<Bool>& m = ma.getMask();
810  Vector<uChar> flags(m.shape());
811  convertArray(flags, !m);
812  return flags;
813}
814
815CountedPtr< Scantable > STMath::autoQuotient( const CountedPtr< Scantable >& in,
816                                              const std::string & mode,
817                                              bool preserve )
818{
819  /// @todo make other modes available
820  /// modes should be "nearest", "pair"
821  // make this operation non insitu
822  const Table& tin = in->table();
823  Table ons = tin(tin.col("SRCTYPE") == Int(SrcType::PSON));
824  Table offs = tin(tin.col("SRCTYPE") == Int(SrcType::PSOFF));
825  if ( offs.nrow() == 0 )
826    throw(AipsError("No 'off' scans present."));
827  // put all "on" scans into output table
828
829  bool insitu = insitu_;
830  setInsitu(false);
831  CountedPtr< Scantable > out = getScantable(in, true);
832  setInsitu(insitu);
833  Table& tout = out->table();
834
835  TableCopy::copyRows(tout, ons);
836  TableRow row(tout);
837  ROScalarColumn<Double> offtimeCol(offs, "TIME");
838  ArrayColumn<Float> outspecCol(tout, "SPECTRA");
839  ROArrayColumn<Float> outtsysCol(tout, "TSYS");
840  ArrayColumn<uChar> outflagCol(tout, "FLAGTRA");
841  for (uInt i=0; i < tout.nrow(); ++i) {
842    const TableRecord& rec = row.get(i);
843    Double ontime = rec.asDouble("TIME");
844    Table presel = offs(offs.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
845                        && offs.col("IFNO") == Int(rec.asuInt("IFNO"))
846                        && offs.col("POLNO") == Int(rec.asuInt("POLNO")) );
847    ROScalarColumn<Double> offtimeCol(presel, "TIME");
848
849    Double mindeltat = min(abs(offtimeCol.getColumn() - ontime));
850    // Timestamp may vary within a cycle ???!!!
851    // increase this by 0.01 sec in case of rounding errors...
852    // There might be a better way to do this.
853    // fix to this fix. TIME is MJD, so 1.0d not 1.0s
854    mindeltat += 0.01/24./60./60.;
855    Table sel = presel( abs(presel.col("TIME")-ontime) <= mindeltat);
856
857    if ( sel.nrow() < 1 )  {
858      throw(AipsError("No closest in time found... This could be a rounding "
859                      "issue. Try quotient instead."));
860    }
861    TableRow offrow(sel);
862    const TableRecord& offrec = offrow.get(0);//should only be one row
863    RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
864    RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
865    RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
866    /// @fixme this assumes tsys is a scalar not vector
867    Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
868    Vector<Float> specon, tsyson;
869    outtsysCol.get(i, tsyson);
870    outspecCol.get(i, specon);
871    Vector<uChar> flagon;
872    outflagCol.get(i, flagon);
873    MaskedArray<Float> mon = maskedArray(specon, flagon);
874    MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
875    MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
876    if (preserve) {
877      quot -= tsysoffscalar;
878    } else {
879      quot -= tsyson[0];
880    }
881    outspecCol.put(i, quot.getArray());
882    outflagCol.put(i, flagsFromMA(quot));
883  }
884  // renumber scanno
885  TableIterator it(tout, "SCANNO");
886  uInt i = 0;
887  while ( !it.pastEnd() ) {
888    Table t = it.table();
889    TableVector<uInt> vec(t, "SCANNO");
890    vec = i;
891    ++i;
892    ++it;
893  }
894  return out;
895}
896
897
898CountedPtr< Scantable > STMath::quotient( const CountedPtr< Scantable > & on,
899                                          const CountedPtr< Scantable > & off,
900                                          bool preserve )
901{
902  bool insitu = insitu_;
903  if ( ! on->conformant(*off) ) {
904    throw(AipsError("'on' and 'off' scantables are not conformant."));
905  }
906  setInsitu(false);
907  CountedPtr< Scantable > out = getScantable(on, false);
908  setInsitu(insitu);
909  Table& tout = out->table();
910  const Table& toff = off->table();
911  TableIterator sit(tout, "SCANNO");
912  TableIterator s2it(toff, "SCANNO");
913  while ( !sit.pastEnd() ) {
914    Table ton = sit.table();
915    TableRow row(ton);
916    Table t = s2it.table();
917    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
918    ROArrayColumn<Float> outtsysCol(ton, "TSYS");
919    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
920    for (uInt i=0; i < ton.nrow(); ++i) {
921      const TableRecord& rec = row.get(i);
922      Table offsel = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
923                          && t.col("IFNO") == Int(rec.asuInt("IFNO"))
924                          && t.col("POLNO") == Int(rec.asuInt("POLNO")) );
925      if ( offsel.nrow() == 0 )
926        throw AipsError("STMath::quotient: no matching off");
927      TableRow offrow(offsel);
928      const TableRecord& offrec = offrow.get(0);//should be ncycles - take first
929      RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
930      RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
931      RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
932      Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
933      Vector<Float> specon, tsyson;
934      outtsysCol.get(i, tsyson);
935      outspecCol.get(i, specon);
936      Vector<uChar> flagon;
937      outflagCol.get(i, flagon);
938      MaskedArray<Float> mon = maskedArray(specon, flagon);
939      MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
940      MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
941      if (preserve) {
942        quot -= tsysoffscalar;
943      } else {
944        quot -= tsyson[0];
945      }
946      outspecCol.put(i, quot.getArray());
947      outflagCol.put(i, flagsFromMA(quot));
948    }
949    ++sit;
950    ++s2it;
951    // take the first off for each on scan which doesn't have a
952    // matching off scan
953    // non <= noff:  matching pairs, non > noff matching pairs then first off
954    if ( s2it.pastEnd() ) s2it.reset();
955  }
956  return out;
957}
958
959// dototalpower (migration of GBTIDL procedure dototalpower.pro)
960// calibrate the CAL on-off pair. It calculate Tsys and average CAL on-off subintegrations
961// do it for each cycles in a specific scan.
962CountedPtr< Scantable > STMath::dototalpower( const CountedPtr< Scantable >& calon,
963                                              const CountedPtr< Scantable >& caloff, Float tcal )
964{
965if ( ! calon->conformant(*caloff) ) {
966    throw(AipsError("'CAL on' and 'CAL off' scantables are not conformant."));
967  }
968  setInsitu(false);
969  CountedPtr< Scantable > out = getScantable(caloff, false);
970  Table& tout = out->table();
971  const Table& tcon = calon->table();
972  Vector<Float> tcalout;
973  Vector<Float> tcalout2;  //debug
974
975  if ( tout.nrow() != tcon.nrow() ) {
976    throw(AipsError("Mismatch in number of rows to form cal on - off pair."));
977  }
978  // iteration by scanno or cycle no.
979  TableIterator sit(tout, "SCANNO");
980  TableIterator s2it(tcon, "SCANNO");
981  while ( !sit.pastEnd() ) {
982    Table toff = sit.table();
983    TableRow row(toff);
984    Table t = s2it.table();
985    ScalarColumn<Double> outintCol(toff, "INTERVAL");
986    ArrayColumn<Float> outspecCol(toff, "SPECTRA");
987    ArrayColumn<Float> outtsysCol(toff, "TSYS");
988    ArrayColumn<uChar> outflagCol(toff, "FLAGTRA");
989    ROScalarColumn<uInt> outtcalIdCol(toff, "TCAL_ID");
990    ROScalarColumn<uInt> outpolCol(toff, "POLNO");
991    ROScalarColumn<Double> onintCol(t, "INTERVAL");
992    ROArrayColumn<Float> onspecCol(t, "SPECTRA");
993    ROArrayColumn<Float> ontsysCol(t, "TSYS");
994    ROArrayColumn<uChar> onflagCol(t, "FLAGTRA");
995    //ROScalarColumn<uInt> ontcalIdCol(t, "TCAL_ID");
996
997    for (uInt i=0; i < toff.nrow(); ++i) {
998      //skip these checks -> assumes the data order are the same between the cal on off pairs
999      //
1000      Vector<Float> specCalon, specCaloff;
1001      // to store scalar (mean) tsys
1002      Vector<Float> tsysout(1);
1003      uInt tcalId, polno;
1004      Double offint, onint;
1005      outpolCol.get(i, polno);
1006      outspecCol.get(i, specCaloff);
1007      onspecCol.get(i, specCalon);
1008      Vector<uChar> flagCaloff, flagCalon;
1009      outflagCol.get(i, flagCaloff);
1010      onflagCol.get(i, flagCalon);
1011      outtcalIdCol.get(i, tcalId);
1012      outintCol.get(i, offint);
1013      onintCol.get(i, onint);
1014      // caluculate mean Tsys
1015      uInt nchan = specCaloff.nelements();
1016      // percentage of edge cut off
1017      uInt pc = 10;
1018      uInt bchan = nchan/pc;
1019      uInt echan = nchan-bchan;
1020
1021      Slicer chansl(IPosition(1,bchan-1), IPosition(1,echan-1), IPosition(1,1),Slicer::endIsLast);
1022      Vector<Float> testsubsp = specCaloff(chansl);
1023      MaskedArray<Float> spoff = maskedArray( specCaloff(chansl),flagCaloff(chansl) );
1024      MaskedArray<Float> spon = maskedArray( specCalon(chansl),flagCalon(chansl) );
1025      MaskedArray<Float> spdiff = spon-spoff;
1026      uInt noff = spoff.nelementsValid();
1027      //uInt non = spon.nelementsValid();
1028      uInt ndiff = spdiff.nelementsValid();
1029      Float meantsys;
1030
1031/**
1032      Double subspec, subdiff;
1033      uInt usednchan;
1034      subspec = 0;
1035      subdiff = 0;
1036      usednchan = 0;
1037      for(uInt k=(bchan-1); k<echan; k++) {
1038        subspec += specCaloff[k];
1039        subdiff += static_cast<Double>(specCalon[k]-specCaloff[k]);
1040        ++usednchan;
1041      }
1042**/
1043      // get tcal if input tcal <= 0
1044      String tcalt;
1045      Float tcalUsed;
1046      tcalUsed = tcal;
1047      if ( tcal <= 0.0 ) {
1048        caloff->tcal().getEntry(tcalt, tcalout, tcalId);
1049        if (polno<=3) {
1050          tcalUsed = tcalout[polno];
1051        }
1052        else {
1053          tcalUsed = tcalout[0];
1054        }
1055      }
1056
1057      Float meanoff;
1058      Float meandiff;
1059      if (noff && ndiff) {
1060         //Debug
1061         //if(noff!=ndiff) cerr<<"noff and ndiff is not equal"<<endl;
1062         //LogIO os( LogOrigin( "STMath", "dototalpower()", WHERE ) ) ;
1063         //if(noff!=ndiff) os<<"noff and ndiff is not equal"<<LogIO::POST;
1064         meanoff = sum(spoff)/noff;
1065         meandiff = sum(spdiff)/ndiff;
1066         meantsys= (meanoff/meandiff )*tcalUsed + tcalUsed/2;
1067      }
1068      else {
1069         meantsys=1;
1070      }
1071
1072      tsysout[0] = Float(meantsys);
1073      MaskedArray<Float> mcaloff = maskedArray(specCaloff, flagCaloff);
1074      MaskedArray<Float> mcalon = maskedArray(specCalon, flagCalon);
1075      MaskedArray<Float> sig =   Float(0.5) * (mcaloff + mcalon);
1076      //uInt ncaloff = mcaloff.nelementsValid();
1077      //uInt ncalon = mcalon.nelementsValid();
1078
1079      outintCol.put(i, offint+onint);
1080      outspecCol.put(i, sig.getArray());
1081      outflagCol.put(i, flagsFromMA(sig));
1082      outtsysCol.put(i, tsysout);
1083    }
1084    ++sit;
1085    ++s2it;
1086  }
1087  return out;
1088}
1089
1090//dosigref - migrated from GBT IDL's dosigref.pro, do calibration of position switch
1091// observatiions.
1092// input: sig and ref scantables, and an optional boxcar smoothing width(default width=0,
1093//        no smoothing).
1094// output: resultant scantable [= (sig-ref/ref)*tsys]
1095CountedPtr< Scantable > STMath::dosigref( const CountedPtr < Scantable >& sig,
1096                                          const CountedPtr < Scantable >& ref,
1097                                          int smoothref,
1098                                          casa::Float tsysv,
1099                                          casa::Float tau )
1100{
1101if ( ! ref->conformant(*sig) ) {
1102    throw(AipsError("'sig' and 'ref' scantables are not conformant."));
1103  }
1104  setInsitu(false);
1105  CountedPtr< Scantable > out = getScantable(sig, false);
1106  CountedPtr< Scantable > smref;
1107  if ( smoothref > 1 ) {
1108    float fsmoothref = static_cast<float>(smoothref);
1109    std::string inkernel = "boxcar";
1110    smref = smooth(ref, inkernel, fsmoothref );
1111    ostringstream oss;
1112    oss<<"Applied smoothing of "<<fsmoothref<<" on the reference."<<endl;
1113    pushLog(String(oss));
1114  }
1115  else {
1116    smref = ref;
1117  }
1118  Table& tout = out->table();
1119  const Table& tref = smref->table();
1120  if ( tout.nrow() != tref.nrow() ) {
1121    throw(AipsError("Mismatch in number of rows to form on-source and reference pair."));
1122  }
1123  // iteration by scanno? or cycle no.
1124  TableIterator sit(tout, "SCANNO");
1125  TableIterator s2it(tref, "SCANNO");
1126  while ( !sit.pastEnd() ) {
1127    Table ton = sit.table();
1128    Table t = s2it.table();
1129    ScalarColumn<Double> outintCol(ton, "INTERVAL");
1130    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1131    ArrayColumn<Float> outtsysCol(ton, "TSYS");
1132    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1133    ArrayColumn<Float> refspecCol(t, "SPECTRA");
1134    ROScalarColumn<Double> refintCol(t, "INTERVAL");
1135    ROArrayColumn<Float> reftsysCol(t, "TSYS");
1136    ArrayColumn<uChar> refflagCol(t, "FLAGTRA");
1137    ROScalarColumn<Float> refelevCol(t, "ELEVATION");
1138    for (uInt i=0; i < ton.nrow(); ++i) {
1139
1140      Double onint, refint;
1141      Vector<Float> specon, specref;
1142      // to store scalar (mean) tsys
1143      Vector<Float> tsysref;
1144      outintCol.get(i, onint);
1145      refintCol.get(i, refint);
1146      outspecCol.get(i, specon);
1147      refspecCol.get(i, specref);
1148      Vector<uChar> flagref, flagon;
1149      outflagCol.get(i, flagon);
1150      refflagCol.get(i, flagref);
1151      reftsysCol.get(i, tsysref);
1152
1153      Float tsysrefscalar;
1154      if ( tsysv > 0.0 ) {
1155        ostringstream oss;
1156        Float elev;
1157        refelevCol.get(i, elev);
1158        oss << "user specified Tsys = " << tsysv;
1159        // do recalc elevation if EL = 0
1160        if ( elev == 0 ) {
1161          throw(AipsError("EL=0, elevation data is missing."));
1162        } else {
1163          if ( tau <= 0.0 ) {
1164            throw(AipsError("Valid tau is not supplied."));
1165          } else {
1166            tsysrefscalar = tsysv * exp(tau/elev);
1167          }
1168        }
1169        oss << ", corrected (for El) tsys= "<<tsysrefscalar;
1170        pushLog(String(oss));
1171      }
1172      else {
1173        tsysrefscalar = tsysref[0];
1174      }
1175      //get quotient spectrum
1176      MaskedArray<Float> mref = maskedArray(specref, flagref);
1177      MaskedArray<Float> mon = maskedArray(specon, flagon);
1178      MaskedArray<Float> specres =   tsysrefscalar*((mon - mref)/mref);
1179      Double resint = onint*refint*smoothref/(onint+refint*smoothref);
1180
1181      //Debug
1182      //cerr<<"Tsys used="<<tsysrefscalar<<endl;
1183      //LogIO os( LogOrigin( "STMath", "dosigref", WHERE ) ) ;
1184      //os<<"Tsys used="<<tsysrefscalar<<LogIO::POST;
1185      // fill the result, replay signal tsys by reference tsys
1186      outintCol.put(i, resint);
1187      outspecCol.put(i, specres.getArray());
1188      outflagCol.put(i, flagsFromMA(specres));
1189      outtsysCol.put(i, tsysref);
1190    }
1191    ++sit;
1192    ++s2it;
1193  }
1194  return out;
1195}
1196
1197CountedPtr< Scantable > STMath::donod(const casa::CountedPtr<Scantable>& s,
1198                                     const std::vector<int>& scans,
1199                                     int smoothref,
1200                                     casa::Float tsysv,
1201                                     casa::Float tau,
1202                                     casa::Float tcal )
1203
1204{
1205  setInsitu(false);
1206  STSelector sel;
1207  std::vector<int> scan1, scan2, beams, types;
1208  std::vector< vector<int> > scanpair;
1209  //std::vector<string> calstate;
1210  std::vector<int> calstate;
1211  String msg;
1212
1213  CountedPtr< Scantable > s1b1on, s1b1off, s1b2on, s1b2off;
1214  CountedPtr< Scantable > s2b1on, s2b1off, s2b2on, s2b2off;
1215
1216  std::vector< CountedPtr< Scantable > > sctables;
1217  sctables.push_back(s1b1on);
1218  sctables.push_back(s1b1off);
1219  sctables.push_back(s1b2on);
1220  sctables.push_back(s1b2off);
1221  sctables.push_back(s2b1on);
1222  sctables.push_back(s2b1off);
1223  sctables.push_back(s2b2on);
1224  sctables.push_back(s2b2off);
1225
1226  //check scanlist
1227  int n=s->checkScanInfo(scans);
1228  if (n==1) {
1229     throw(AipsError("Incorrect scan pairs. "));
1230  }
1231
1232  // Assume scans contain only a pair of consecutive scan numbers.
1233  // It is assumed that first beam, b1,  is on target.
1234  // There is no check if the first beam is on or not.
1235  if ( scans.size()==1 ) {
1236    scan1.push_back(scans[0]);
1237    scan2.push_back(scans[0]+1);
1238  } else if ( scans.size()==2 ) {
1239   scan1.push_back(scans[0]);
1240   scan2.push_back(scans[1]);
1241  } else {
1242    if ( scans.size()%2 == 0 ) {
1243      for (uInt i=0; i<scans.size(); i++) {
1244        if (i%2 == 0) {
1245          scan1.push_back(scans[i]);
1246        }
1247        else {
1248          scan2.push_back(scans[i]);
1249        }
1250      }
1251    } else {
1252      throw(AipsError("Odd numbers of scans, cannot form pairs."));
1253    }
1254  }
1255  scanpair.push_back(scan1);
1256  scanpair.push_back(scan2);
1257  //calstate.push_back("*calon");
1258  //calstate.push_back("*[^calon]");
1259  calstate.push_back(SrcType::NODCAL);
1260  calstate.push_back(SrcType::NOD);
1261  CountedPtr< Scantable > ws = getScantable(s, false);
1262  uInt l=0;
1263  while ( l < sctables.size() ) {
1264    for (uInt i=0; i < 2; i++) {
1265      for (uInt j=0; j < 2; j++) {
1266        for (uInt k=0; k < 2; k++) {
1267          sel.reset();
1268          sel.setScans(scanpair[i]);
1269          //sel.setName(calstate[k]);
1270          types.clear();
1271          types.push_back(calstate[k]);
1272          sel.setTypes(types);
1273          beams.clear();
1274          beams.push_back(j);
1275          sel.setBeams(beams);
1276          ws->setSelection(sel);
1277          sctables[l]= getScantable(ws, false);
1278          l++;
1279        }
1280      }
1281    }
1282  }
1283
1284  // replace here by splitData or getData functionality
1285  CountedPtr< Scantable > sig1;
1286  CountedPtr< Scantable > ref1;
1287  CountedPtr< Scantable > sig2;
1288  CountedPtr< Scantable > ref2;
1289  CountedPtr< Scantable > calb1;
1290  CountedPtr< Scantable > calb2;
1291
1292  msg=String("Processing dototalpower for subset of the data");
1293  ostringstream oss1;
1294  oss1 << msg  << endl;
1295  pushLog(String(oss1));
1296  // Debug for IRC CS data
1297  //float tcal1=7.0;
1298  //float tcal2=4.0;
1299  sig1 = dototalpower(sctables[0], sctables[1], tcal=tcal);
1300  ref1 = dototalpower(sctables[2], sctables[3], tcal=tcal);
1301  ref2 = dototalpower(sctables[4], sctables[5], tcal=tcal);
1302  sig2 = dototalpower(sctables[6], sctables[7], tcal=tcal);
1303
1304  // correction of user-specified tsys for elevation here
1305
1306  // dosigref calibration
1307  msg=String("Processing dosigref for subset of the data");
1308  ostringstream oss2;
1309  oss2 << msg  << endl;
1310  pushLog(String(oss2));
1311  calb1=dosigref(sig1,ref2,smoothref,tsysv,tau);
1312  calb2=dosigref(sig2,ref1,smoothref,tsysv,tau);
1313
1314  // iteration by scanno or cycle no.
1315  Table& tcalb1 = calb1->table();
1316  Table& tcalb2 = calb2->table();
1317  TableIterator sit(tcalb1, "SCANNO");
1318  TableIterator s2it(tcalb2, "SCANNO");
1319  while ( !sit.pastEnd() ) {
1320    Table t1 = sit.table();
1321    Table t2= s2it.table();
1322    ArrayColumn<Float> outspecCol(t1, "SPECTRA");
1323    ArrayColumn<Float> outtsysCol(t1, "TSYS");
1324    ArrayColumn<uChar> outflagCol(t1, "FLAGTRA");
1325    ScalarColumn<Double> outintCol(t1, "INTERVAL");
1326    ArrayColumn<Float> t2specCol(t2, "SPECTRA");
1327    ROArrayColumn<Float> t2tsysCol(t2, "TSYS");
1328    ArrayColumn<uChar> t2flagCol(t2, "FLAGTRA");
1329    ROScalarColumn<Double> t2intCol(t2, "INTERVAL");
1330    for (uInt i=0; i < t1.nrow(); ++i) {
1331      Vector<Float> spec1, spec2;
1332      // to store scalar (mean) tsys
1333      Vector<Float> tsys1, tsys2;
1334      Vector<uChar> flag1, flag2;
1335      Double tint1, tint2;
1336      outspecCol.get(i, spec1);
1337      t2specCol.get(i, spec2);
1338      outflagCol.get(i, flag1);
1339      t2flagCol.get(i, flag2);
1340      outtsysCol.get(i, tsys1);
1341      t2tsysCol.get(i, tsys2);
1342      outintCol.get(i, tint1);
1343      t2intCol.get(i, tint2);
1344      // average
1345      // assume scalar tsys for weights
1346      Float wt1, wt2, tsyssq1, tsyssq2;
1347      tsyssq1 = tsys1[0]*tsys1[0];
1348      tsyssq2 = tsys2[0]*tsys2[0];
1349      wt1 = Float(tint1)/tsyssq1;
1350      wt2 = Float(tint2)/tsyssq2;
1351      Float invsumwt=1/(wt1+wt2);
1352      MaskedArray<Float> mspec1 = maskedArray(spec1, flag1);
1353      MaskedArray<Float> mspec2 = maskedArray(spec2, flag2);
1354      MaskedArray<Float> avspec =  invsumwt * (wt1*mspec1 + wt2*mspec2);
1355      //Array<Float> avtsys =  Float(0.5) * (tsys1 + tsys2);
1356      // cerr<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<endl;
1357      // LogIO os( LogOrigin( "STMath", "donod", WHERE ) ) ;
1358      // os<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<LogIO::POST;
1359      tsys1[0] = sqrt(tsyssq1 + tsyssq2);
1360      Array<Float> avtsys =  tsys1;
1361
1362      outspecCol.put(i, avspec.getArray());
1363      outflagCol.put(i, flagsFromMA(avspec));
1364      outtsysCol.put(i, avtsys);
1365    }
1366    ++sit;
1367    ++s2it;
1368  }
1369  return calb1;
1370}
1371
1372//GBTIDL version of frequency switched data calibration
1373CountedPtr< Scantable > STMath::dofs( const CountedPtr< Scantable >& s,
1374                                      const std::vector<int>& scans,
1375                                      int smoothref,
1376                                      casa::Float tsysv,
1377                                      casa::Float tau,
1378                                      casa::Float tcal )
1379{
1380
1381 
1382  STSelector sel;
1383  CountedPtr< Scantable > ws = getScantable(s, false);
1384  CountedPtr< Scantable > sig, sigwcal, ref, refwcal;
1385  CountedPtr< Scantable > calsig, calref, out, out1, out2;
1386  Bool nofold=False;
1387  vector<int> types ;
1388
1389  //split the data
1390  //sel.setName("*_fs");
1391  types.push_back( SrcType::FSON ) ;
1392  sel.setTypes( types ) ;
1393  ws->setSelection(sel);
1394  sig = getScantable(ws,false);
1395  sel.reset();
1396  types.clear() ;
1397  //sel.setName("*_fs_calon");
1398  types.push_back( SrcType::FONCAL ) ;
1399  sel.setTypes( types ) ;
1400  ws->setSelection(sel);
1401  sigwcal = getScantable(ws,false);
1402  sel.reset();
1403  types.clear() ;
1404  //sel.setName("*_fsr");
1405  types.push_back( SrcType::FSOFF ) ;
1406  sel.setTypes( types ) ;
1407  ws->setSelection(sel);
1408  ref = getScantable(ws,false);
1409  sel.reset();
1410  types.clear() ;
1411  //sel.setName("*_fsr_calon");
1412  types.push_back( SrcType::FOFFCAL ) ;
1413  sel.setTypes( types ) ;
1414  ws->setSelection(sel);
1415  refwcal = getScantable(ws,false);
1416  sel.reset() ;
1417  types.clear() ;
1418
1419  calsig = dototalpower(sigwcal, sig, tcal=tcal);
1420  calref = dototalpower(refwcal, ref, tcal=tcal);
1421
1422  out1=dosigref(calsig,calref,smoothref,tsysv,tau);
1423  out2=dosigref(calref,calsig,smoothref,tsysv,tau);
1424
1425  Table& tabout1=out1->table();
1426  Table& tabout2=out2->table();
1427  ROScalarColumn<uInt> freqidCol1(tabout1, "FREQ_ID");
1428  ScalarColumn<uInt> freqidCol2(tabout2, "FREQ_ID");
1429  ROArrayColumn<Float> specCol(tabout2, "SPECTRA");
1430  Vector<Float> spec; specCol.get(0, spec);
1431  uInt nchan = spec.nelements();
1432  uInt freqid1; freqidCol1.get(0,freqid1);
1433  uInt freqid2; freqidCol2.get(0,freqid2);
1434  Double rp1, rp2, rv1, rv2, inc1, inc2;
1435  out1->frequencies().getEntry(rp1, rv1, inc1, freqid1);
1436  out2->frequencies().getEntry(rp2, rv2, inc2, freqid2);
1437  //cerr << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << endl ;
1438  //LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1439  //os << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << LogIO::POST ;
1440  if (rp1==rp2) {
1441    Double foffset = rv1 - rv2;
1442    uInt choffset = static_cast<uInt>(foffset/abs(inc2));
1443    if (choffset >= nchan) {
1444      //cerr<<"out-band frequency switching, no folding"<<endl;
1445      LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1446      os<<"out-band frequency switching, no folding"<<LogIO::POST;
1447      nofold = True;
1448    }
1449  }
1450
1451  if (nofold) {
1452    std::vector< CountedPtr< Scantable > > tabs;
1453    tabs.push_back(out1);
1454    tabs.push_back(out2);
1455    out = merge(tabs);
1456  }
1457  else {
1458    //out = out1;
1459    Double choffset = ( rv1 - rv2 ) / inc2 ;
1460    out = dofold( out1, out2, choffset ) ;
1461  }
1462   
1463  return out;
1464}
1465
1466CountedPtr<Scantable> STMath::dofold( const CountedPtr<Scantable> &sig,
1467                                      const CountedPtr<Scantable> &ref,
1468                                      Double choffset,
1469                                      Double choffset2 )
1470{
1471  LogIO os( LogOrigin( "STMath", "dofold", WHERE ) ) ;
1472  os << "choffset=" << choffset << " choffset2=" << choffset2 << LogIO::POST ;
1473
1474  // output scantable
1475  CountedPtr<Scantable> out = getScantable( sig, false ) ;
1476
1477  // separate choffset to integer part and decimal part
1478  Int ioffset = (Int)choffset ;
1479  Double doffset = choffset - ioffset ;
1480  Int ioffset2 = (Int)choffset2 ;
1481  Double doffset2 = choffset2 - ioffset2 ;
1482  os << "ioffset=" << ioffset << " doffset=" << doffset << LogIO::POST ;
1483  os << "ioffset2=" << ioffset2 << " doffset2=" << doffset2 << LogIO::POST ; 
1484
1485  // get column
1486  ROArrayColumn<Float> specCol1( sig->table(), "SPECTRA" ) ;
1487  ROArrayColumn<Float> specCol2( ref->table(), "SPECTRA" ) ;
1488  ROArrayColumn<Float> tsysCol1( sig->table(), "TSYS" ) ;
1489  ROArrayColumn<Float> tsysCol2( ref->table(), "TSYS" ) ;
1490  ROArrayColumn<uChar> flagCol1( sig->table(), "FLAGTRA" ) ;
1491  ROArrayColumn<uChar> flagCol2( ref->table(), "FLAGTRA" ) ;
1492  ROScalarColumn<Double> mjdCol1( sig->table(), "TIME" ) ;
1493  ROScalarColumn<Double> mjdCol2( ref->table(), "TIME" ) ;
1494  ROScalarColumn<Double> intervalCol1( sig->table(), "INTERVAL" ) ;
1495  ROScalarColumn<Double> intervalCol2( ref->table(), "INTERVAL" ) ;
1496
1497  // check
1498  if ( ioffset == 0 ) {
1499    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1500    os << "channel offset is zero, no folding" << LogIO::POST ;
1501    return out ;
1502  }
1503  int nchan = ref->nchan() ;
1504  if ( abs(ioffset) >= nchan ) {
1505    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1506    os << "out-band frequency switching, no folding" << LogIO::POST ;
1507    return out ;
1508  }
1509
1510  // attach column for output scantable
1511  ArrayColumn<Float> specColOut( out->table(), "SPECTRA" ) ;
1512  ArrayColumn<uChar> flagColOut( out->table(), "FLAGTRA" ) ;
1513  ArrayColumn<Float> tsysColOut( out->table(), "TSYS" ) ;
1514  ScalarColumn<Double> mjdColOut( out->table(), "TIME" ) ;
1515  ScalarColumn<Double> intervalColOut( out->table(), "INTERVAL" ) ;
1516  ScalarColumn<uInt> fidColOut( out->table(), "FREQ_ID" ) ;
1517
1518  // for each row
1519  // assume that the data order are same between sig and ref
1520  RowAccumulator acc( asap::TINTSYS ) ;
1521  for ( int i = 0 ; i < sig->nrow() ; i++ ) {
1522    // get values
1523    Vector<Float> spsig ;
1524    specCol1.get( i, spsig ) ;
1525    Vector<Float> spref ;
1526    specCol2.get( i, spref ) ;
1527    Vector<Float> tsyssig ;
1528    tsysCol1.get( i, tsyssig ) ;
1529    Vector<Float> tsysref ;
1530    tsysCol2.get( i, tsysref ) ;
1531    Vector<uChar> flagsig ;
1532    flagCol1.get( i, flagsig ) ;
1533    Vector<uChar> flagref ;
1534    flagCol2.get( i, flagref ) ;
1535    Double timesig ;
1536    mjdCol1.get( i, timesig ) ;
1537    Double timeref ;
1538    mjdCol2.get( i, timeref ) ;
1539    Double intsig ;
1540    intervalCol1.get( i, intsig ) ;
1541    Double intref ;
1542    intervalCol2.get( i, intref ) ;
1543
1544    // shift reference spectra
1545    int refchan = spref.nelements() ;
1546    Vector<Float> sspref( spref.nelements() ) ;
1547    Vector<Float> stsysref( tsysref.nelements() ) ;
1548    Vector<uChar> sflagref( flagref.nelements() ) ;
1549    if ( ioffset > 0 ) {
1550      // SPECTRA and FLAGTRA
1551      for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1552        sspref[j] = spref[j+ioffset] ;
1553        sflagref[j] = flagref[j+ioffset] ;
1554      }
1555      for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1556        sspref[j] = spref[j-refchan+ioffset] ;
1557        sflagref[j] = flagref[j-refchan+ioffset] ;
1558      }
1559      spref = sspref.copy() ;
1560      flagref = sflagref.copy() ;
1561      for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1562        sspref[j] = doffset * spref[j+1] + ( 1.0 - doffset ) * spref[j] ;
1563        sflagref[j] = flagref[j+1] + flagref[j] ;
1564      }
1565      sspref[refchan-1] = doffset * spref[0] + ( 1.0 - doffset ) * spref[refchan-1] ;
1566      sflagref[refchan-1] = flagref[0] + flagref[refchan-1] ;
1567
1568      // TSYS
1569      if ( spref.nelements() == tsysref.nelements() ) {
1570        for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1571          stsysref[j] = tsysref[j+ioffset] ;
1572        }
1573        for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1574          stsysref[j] = tsysref[j-refchan+ioffset] ;
1575        }
1576        tsysref = stsysref.copy() ;
1577        for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1578          stsysref[j] = doffset * tsysref[j+1] + ( 1.0 - doffset ) * tsysref[j] ;
1579        }
1580        stsysref[refchan-1] = doffset * tsysref[0] + ( 1.0 - doffset ) * tsysref[refchan-1] ;
1581      }
1582    }
1583    else {
1584      // SPECTRA and FLAGTRA
1585      for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1586        sspref[j] = spref[refchan+ioffset+j] ;
1587        sflagref[j] = flagref[refchan+ioffset+j] ;
1588      }
1589      for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1590        sspref[j] = spref[j+ioffset] ;
1591        sflagref[j] = flagref[j+ioffset] ;
1592      }
1593      spref = sspref.copy() ;
1594      flagref = sflagref.copy() ;
1595      sspref[0] = doffset * spref[refchan-1] + ( 1.0 - doffset ) * spref[0] ;
1596      sflagref[0] = flagref[0] + flagref[refchan-1] ;
1597      for ( int j = 1 ; j < refchan ; j++ ) {
1598        sspref[j] = doffset * spref[j-1] + ( 1.0 - doffset ) * spref[j] ;
1599        sflagref[j] = flagref[j-1] + flagref[j] ;
1600      }
1601      // TSYS
1602      if ( spref.nelements() == tsysref.nelements() ) {
1603        for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1604          stsysref[j] = tsysref[refchan+ioffset+j] ;
1605        }
1606        for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1607          stsysref[j] = tsysref[j+ioffset] ;
1608        }
1609        tsysref = stsysref.copy() ;
1610        stsysref[0] = doffset * tsysref[refchan-1] + ( 1.0 - doffset ) * tsysref[0] ;
1611        for ( int j = 1 ; j < refchan ; j++ ) {
1612          stsysref[j] = doffset * tsysref[j-1] + ( 1.0 - doffset ) * tsysref[j] ;
1613        }
1614      }
1615    }
1616
1617    // shift signal spectra if necessary (only for APEX?)
1618    if ( choffset2 != 0.0 ) {
1619      int sigchan = spsig.nelements() ;
1620      Vector<Float> sspsig( spsig.nelements() ) ;
1621      Vector<Float> stsyssig( tsyssig.nelements() ) ;
1622      Vector<uChar> sflagsig( flagsig.nelements() ) ;
1623      if ( ioffset2 > 0 ) {
1624        // SPECTRA and FLAGTRA
1625        for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1626          sspsig[j] = spsig[j+ioffset2] ;
1627          sflagsig[j] = flagsig[j+ioffset2] ;
1628        }
1629        for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1630          sspsig[j] = spsig[j-sigchan+ioffset2] ;
1631          sflagsig[j] = flagsig[j-sigchan+ioffset2] ;
1632        }
1633        spsig = sspsig.copy() ;
1634        flagsig = sflagsig.copy() ;
1635        for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1636          sspsig[j] = doffset2 * spsig[j+1] + ( 1.0 - doffset2 ) * spsig[j] ;
1637          sflagsig[j] = flagsig[j+1] || flagsig[j] ;
1638        }
1639        sspsig[sigchan-1] = doffset2 * spsig[0] + ( 1.0 - doffset2 ) * spsig[sigchan-1] ;
1640        sflagsig[sigchan-1] = flagsig[0] || flagsig[sigchan-1] ;
1641        // TSTS
1642        if ( spsig.nelements() == tsyssig.nelements() ) {
1643          for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1644            stsyssig[j] = tsyssig[j+ioffset2] ;
1645          }
1646          for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1647            stsyssig[j] = tsyssig[j-sigchan+ioffset2] ;
1648          }
1649          tsyssig = stsyssig.copy() ;
1650          for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1651            stsyssig[j] = doffset2 * tsyssig[j+1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1652          }
1653          stsyssig[sigchan-1] = doffset2 * tsyssig[0] + ( 1.0 - doffset2 ) * tsyssig[sigchan-1] ;
1654        }
1655      }
1656      else {
1657        // SPECTRA and FLAGTRA
1658        for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1659          sspsig[j] = spsig[sigchan+ioffset2+j] ;
1660          sflagsig[j] = flagsig[sigchan+ioffset2+j] ;
1661        }
1662        for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1663          sspsig[j] = spsig[j+ioffset2] ;
1664          sflagsig[j] = flagsig[j+ioffset2] ;
1665        }
1666        spsig = sspsig.copy() ;
1667        flagsig = sflagsig.copy() ;
1668        sspsig[0] = doffset2 * spsig[sigchan-1] + ( 1.0 - doffset2 ) * spsig[0] ;
1669        sflagsig[0] = flagsig[0] + flagsig[sigchan-1] ;
1670        for ( int j = 1 ; j < sigchan ; j++ ) {
1671          sspsig[j] = doffset2 * spsig[j-1] + ( 1.0 - doffset2 ) * spsig[j] ;
1672          sflagsig[j] = flagsig[j-1] + flagsig[j] ;
1673        }
1674        // TSYS
1675        if ( spsig.nelements() == tsyssig.nelements() ) {
1676          for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1677            stsyssig[j] = tsyssig[sigchan+ioffset2+j] ;
1678          }
1679          for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1680            stsyssig[j] = tsyssig[j+ioffset2] ;
1681          }
1682          tsyssig = stsyssig.copy() ;
1683          stsyssig[0] = doffset2 * tsyssig[sigchan-1] + ( 1.0 - doffset2 ) * tsyssig[0] ;
1684          for ( int j = 1 ; j < sigchan ; j++ ) {
1685            stsyssig[j] = doffset2 * tsyssig[j-1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1686          }
1687        }
1688      }
1689    }
1690
1691    // folding
1692    acc.add( spsig, !flagsig, tsyssig, intsig, timesig ) ;
1693    acc.add( sspref, !sflagref, stsysref, intref, timeref ) ;
1694   
1695    // put result
1696    specColOut.put( i, acc.getSpectrum() ) ;
1697    const Vector<Bool> &msk = acc.getMask() ;
1698    Vector<uChar> flg( msk.shape() ) ;
1699    convertArray( flg, !msk ) ;
1700    flagColOut.put( i, flg ) ;
1701    tsysColOut.put( i, acc.getTsys() ) ;
1702    intervalColOut.put( i, acc.getInterval() ) ;
1703    mjdColOut.put( i, acc.getTime() ) ;
1704    // change FREQ_ID to unshifted IF setting (only for APEX?)
1705    if ( choffset2 != 0.0 ) {
1706      uInt freqid = fidColOut( 0 ) ; // assume single-IF data
1707      double refpix, refval, increment ;
1708      out->frequencies().getEntry( refpix, refval, increment, freqid ) ;
1709      refval -= choffset * increment ;
1710      uInt newfreqid = out->frequencies().addEntry( refpix, refval, increment ) ;
1711      Vector<uInt> freqids = fidColOut.getColumn() ;
1712      for ( uInt j = 0 ; j < freqids.nelements() ; j++ ) {
1713        if ( freqids[j] == freqid )
1714          freqids[j] = newfreqid ;
1715      }
1716      fidColOut.putColumn( freqids ) ;
1717    }
1718
1719    acc.reset() ;
1720  }
1721
1722  return out ;
1723}
1724
1725
1726CountedPtr< Scantable > STMath::freqSwitch( const CountedPtr< Scantable >& in )
1727{
1728  // make copy or reference
1729  CountedPtr< Scantable > out = getScantable(in, false);
1730  Table& tout = out->table();
1731  Block<String> cols(4);
1732  cols[0] = String("SCANNO");
1733  cols[1] = String("CYCLENO");
1734  cols[2] = String("BEAMNO");
1735  cols[3] = String("POLNO");
1736  TableIterator iter(tout, cols);
1737  while (!iter.pastEnd()) {
1738    Table subt = iter.table();
1739    // this should leave us with two rows for the two IFs....if not ignore
1740    if (subt.nrow() != 2 ) {
1741      continue;
1742    }
1743    ArrayColumn<Float> specCol(subt, "SPECTRA");
1744    ArrayColumn<Float> tsysCol(subt, "TSYS");
1745    ArrayColumn<uChar> flagCol(subt, "FLAGTRA");
1746    Vector<Float> onspec,offspec, ontsys, offtsys;
1747    Vector<uChar> onflag, offflag;
1748    tsysCol.get(0, ontsys);   tsysCol.get(1, offtsys);
1749    specCol.get(0, onspec);   specCol.get(1, offspec);
1750    flagCol.get(0, onflag);   flagCol.get(1, offflag);
1751    MaskedArray<Float> on  = maskedArray(onspec, onflag);
1752    MaskedArray<Float> off = maskedArray(offspec, offflag);
1753    MaskedArray<Float> oncopy = on.copy();
1754
1755    on /= off; on -= 1.0f;
1756    on *= ontsys[0];
1757    off /= oncopy; off -= 1.0f;
1758    off *= offtsys[0];
1759    specCol.put(0, on.getArray());
1760    const Vector<Bool>& m0 = on.getMask();
1761    Vector<uChar> flags0(m0.shape());
1762    convertArray(flags0, !m0);
1763    flagCol.put(0, flags0);
1764
1765    specCol.put(1, off.getArray());
1766    const Vector<Bool>& m1 = off.getMask();
1767    Vector<uChar> flags1(m1.shape());
1768    convertArray(flags1, !m1);
1769    flagCol.put(1, flags1);
1770    ++iter;
1771  }
1772
1773  return out;
1774}
1775
1776std::vector< float > STMath::statistic( const CountedPtr< Scantable > & in,
1777                                        const std::vector< bool > & mask,
1778                                        const std::string& which )
1779{
1780
1781  Vector<Bool> m(mask);
1782  const Table& tab = in->table();
1783  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1784  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1785  std::vector<float> out;
1786  for (uInt i=0; i < tab.nrow(); ++i ) {
1787    Vector<Float> spec; specCol.get(i, spec);
1788    Vector<uChar> flag; flagCol.get(i, flag);
1789    MaskedArray<Float> ma  = maskedArray(spec, flag);
1790    float outstat = 0.0;
1791    if ( spec.nelements() == m.nelements() ) {
1792      outstat = mathutil::statistics(which, ma(m));
1793    } else {
1794      outstat = mathutil::statistics(which, ma);
1795    }
1796    out.push_back(outstat);
1797  }
1798  return out;
1799}
1800
1801std::vector< int > STMath::minMaxChan( const CountedPtr< Scantable > & in,
1802                                        const std::vector< bool > & mask,
1803                                        const std::string& which )
1804{
1805
1806  Vector<Bool> m(mask);
1807  const Table& tab = in->table();
1808  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1809  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1810  std::vector<int> out;
1811  for (uInt i=0; i < tab.nrow(); ++i ) {
1812    Vector<Float> spec; specCol.get(i, spec);
1813    Vector<uChar> flag; flagCol.get(i, flag);
1814    MaskedArray<Float> ma  = maskedArray(spec, flag);
1815    if (ma.ndim() != 1) {
1816      throw (ArrayError(
1817          "std::vector<int> STMath::minMaxChan("
1818          "ContedPtr<Scantable> &in, std::vector<bool> &mask, "
1819          " std::string &which)"
1820          " - MaskedArray is not 1D"));
1821    }
1822    IPosition outpos(1,0);
1823    if ( spec.nelements() == m.nelements() ) {
1824      outpos = mathutil::minMaxPos(which, ma(m));
1825    } else {
1826      outpos = mathutil::minMaxPos(which, ma);
1827    }
1828    out.push_back(outpos[0]);
1829  }
1830  return out;
1831}
1832
1833CountedPtr< Scantable > STMath::bin( const CountedPtr< Scantable > & in,
1834                                     int width )
1835{
1836  if ( !in->getSelection().empty() ) throw(AipsError("Can't bin subset of the data."));
1837  CountedPtr< Scantable > out = getScantable(in, false);
1838  Table& tout = out->table();
1839  out->frequencies().rescale(width, "BIN");
1840  ArrayColumn<Float> specCol(tout, "SPECTRA");
1841  ArrayColumn<uChar> flagCol(tout, "FLAGTRA");
1842  for (uInt i=0; i < tout.nrow(); ++i ) {
1843    MaskedArray<Float> main  = maskedArray(specCol(i), flagCol(i));
1844    MaskedArray<Float> maout;
1845    LatticeUtilities::bin(maout, main, 0, Int(width));
1846    /// @todo implement channel based tsys binning
1847    specCol.put(i, maout.getArray());
1848    flagCol.put(i, flagsFromMA(maout));
1849    // take only the first binned spectrum's length for the deprecated
1850    // global header item nChan
1851    if (i==0) tout.rwKeywordSet().define(String("nChan"),
1852                                       Int(maout.getArray().nelements()));
1853  }
1854  return out;
1855}
1856
1857CountedPtr< Scantable > STMath::resample( const CountedPtr< Scantable >& in,
1858                                          const std::string& method,
1859                                          float width )
1860//
1861// Should add the possibility of width being specified in km/s. This means
1862// that for each freqID (SpectralCoordinate) we will need to convert to an
1863// average channel width (say at the reference pixel).  Then we would need
1864// to be careful to make sure each spectrum (of different freqID)
1865// is the same length.
1866//
1867{
1868  //InterpolateArray1D<Double,Float>::InterpolationMethod interp;
1869  Int interpMethod(stringToIMethod(method));
1870
1871  CountedPtr< Scantable > out = getScantable(in, false);
1872  Table& tout = out->table();
1873
1874// Resample SpectralCoordinates (one per freqID)
1875  out->frequencies().rescale(width, "RESAMPLE");
1876  TableIterator iter(tout, "IFNO");
1877  TableRow row(tout);
1878  while ( !iter.pastEnd() ) {
1879    Table tab = iter.table();
1880    ArrayColumn<Float> specCol(tab, "SPECTRA");
1881    //ArrayColumn<Float> tsysCol(tout, "TSYS");
1882    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1883    Vector<Float> spec;
1884    Vector<uChar> flag;
1885    specCol.get(0,spec); // the number of channels should be constant per IF
1886    uInt nChanIn = spec.nelements();
1887    Vector<Float> xIn(nChanIn); indgen(xIn);
1888    Int fac =  Int(nChanIn/width);
1889    Vector<Float> xOut(fac+10); // 10 to be safe - resize later
1890    uInt k = 0;
1891    Float x = 0.0;
1892    while (x < Float(nChanIn) ) {
1893      xOut(k) = x;
1894      k++;
1895      x += width;
1896    }
1897    uInt nChanOut = k;
1898    xOut.resize(nChanOut, True);
1899    // process all rows for this IFNO
1900    Vector<Float> specOut;
1901    Vector<Bool> maskOut;
1902    Vector<uChar> flagOut;
1903    for (uInt i=0; i < tab.nrow(); ++i) {
1904      specCol.get(i, spec);
1905      flagCol.get(i, flag);
1906      Vector<Bool> mask(flag.nelements());
1907      convertArray(mask, flag);
1908
1909      IPosition shapeIn(spec.shape());
1910      //sh.nchan = nChanOut;
1911      InterpolateArray1D<Float,Float>::interpolate(specOut, maskOut, xOut,
1912                                                   xIn, spec, mask,
1913                                                   interpMethod, True, True);
1914      /// @todo do the same for channel based Tsys
1915      flagOut.resize(maskOut.nelements());
1916      convertArray(flagOut, maskOut);
1917      specCol.put(i, specOut);
1918      flagCol.put(i, flagOut);
1919    }
1920    ++iter;
1921  }
1922
1923  return out;
1924}
1925
1926STMath::imethod STMath::stringToIMethod(const std::string& in)
1927{
1928  static STMath::imap lookup;
1929
1930  // initialize the lookup table if necessary
1931  if ( lookup.empty() ) {
1932    lookup["nearest"]   = InterpolateArray1D<Double,Float>::nearestNeighbour;
1933    lookup["linear"] = InterpolateArray1D<Double,Float>::linear;
1934    lookup["cubic"]  = InterpolateArray1D<Double,Float>::cubic;
1935    lookup["spline"]  = InterpolateArray1D<Double,Float>::spline;
1936  }
1937
1938  STMath::imap::const_iterator iter = lookup.find(in);
1939
1940  if ( lookup.end() == iter ) {
1941    std::string message = in;
1942    message += " is not a valid interpolation mode";
1943    throw(AipsError(message));
1944  }
1945  return iter->second;
1946}
1947
1948WeightType STMath::stringToWeight(const std::string& in)
1949{
1950  static std::map<std::string, WeightType> lookup;
1951
1952  // initialize the lookup table if necessary
1953  if ( lookup.empty() ) {
1954    lookup["NONE"]   = asap::NONE;
1955    lookup["TINT"] = asap::TINT;
1956    lookup["TINTSYS"]  = asap::TINTSYS;
1957    lookup["TSYS"]  = asap::TSYS;
1958    lookup["VAR"]  = asap::VAR;
1959  }
1960
1961  std::map<std::string, WeightType>::const_iterator iter = lookup.find(in);
1962
1963  if ( lookup.end() == iter ) {
1964    std::string message = in;
1965    message += " is not a valid weighting mode";
1966    throw(AipsError(message));
1967  }
1968  return iter->second;
1969}
1970
1971CountedPtr< Scantable > STMath::gainElevation( const CountedPtr< Scantable >& in,
1972                                               const vector< float > & coeff,
1973                                               const std::string & filename,
1974                                               const std::string& method)
1975{
1976  // Get elevation data from Scantable and convert to degrees
1977  CountedPtr< Scantable > out = getScantable(in, false);
1978  Table& tab = out->table();
1979  ROScalarColumn<Float> elev(tab, "ELEVATION");
1980  Vector<Float> x = elev.getColumn();
1981  x *= Float(180 / C::pi);                        // Degrees
1982
1983  Vector<Float> coeffs(coeff);
1984  const uInt nc = coeffs.nelements();
1985  if ( filename.length() > 0 && nc > 0 ) {
1986    throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
1987  }
1988
1989  // Correct
1990  if ( nc > 0 || filename.length() == 0 ) {
1991    // Find instrument
1992    Bool throwit = True;
1993    Instrument inst =
1994      STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
1995                                throwit);
1996
1997    // Set polynomial
1998    Polynomial<Float>* ppoly = 0;
1999    Vector<Float> coeff;
2000    String msg;
2001    if ( nc > 0 ) {
2002      ppoly = new Polynomial<Float>(nc);
2003      coeff = coeffs;
2004      msg = String("user");
2005    } else {
2006      STAttr sdAttr;
2007      coeff = sdAttr.gainElevationPoly(inst);
2008      ppoly = new Polynomial<Float>(3);
2009      msg = String("built in");
2010    }
2011
2012    if ( coeff.nelements() > 0 ) {
2013      ppoly->setCoefficients(coeff);
2014    } else {
2015      delete ppoly;
2016      throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
2017    }
2018    ostringstream oss;
2019    oss << "Making polynomial correction with " << msg << " coefficients:" << endl;
2020    oss << "   " <<  coeff;
2021    pushLog(String(oss));
2022    const uInt nrow = tab.nrow();
2023    Vector<Float> factor(nrow);
2024    for ( uInt i=0; i < nrow; ++i ) {
2025      factor[i] = 1.0 / (*ppoly)(x[i]);
2026    }
2027    delete ppoly;
2028    scaleByVector(tab, factor, true);
2029
2030  } else {
2031    // Read and correct
2032    pushLog("Making correction from ascii Table");
2033    scaleFromAsciiTable(tab, filename, method, x, true);
2034  }
2035  return out;
2036}
2037
2038void STMath::scaleFromAsciiTable(Table& in, const std::string& filename,
2039                                 const std::string& method,
2040                                 const Vector<Float>& xout, bool dotsys)
2041{
2042
2043// Read gain-elevation ascii file data into a Table.
2044
2045  String formatString;
2046  Table tbl = readAsciiTable(formatString, Table::Memory, filename, "", "", False);
2047  scaleFromTable(in, tbl, method, xout, dotsys);
2048}
2049
2050void STMath::scaleFromTable(Table& in,
2051                            const Table& table,
2052                            const std::string& method,
2053                            const Vector<Float>& xout, bool dotsys)
2054{
2055
2056  ROScalarColumn<Float> geElCol(table, "ELEVATION");
2057  ROScalarColumn<Float> geFacCol(table, "FACTOR");
2058  Vector<Float> xin = geElCol.getColumn();
2059  Vector<Float> yin = geFacCol.getColumn();
2060  Vector<Bool> maskin(xin.nelements(),True);
2061
2062  // Interpolate (and extrapolate) with desired method
2063
2064  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2065
2066   Vector<Float> yout;
2067   Vector<Bool> maskout;
2068   InterpolateArray1D<Float,Float>::interpolate(yout, maskout, xout,
2069                                                xin, yin, maskin, interp,
2070                                                True, True);
2071
2072   scaleByVector(in, Float(1.0)/yout, dotsys);
2073}
2074
2075void STMath::scaleByVector( Table& in,
2076                            const Vector< Float >& factor,
2077                            bool dotsys )
2078{
2079  uInt nrow = in.nrow();
2080  if ( factor.nelements() != nrow ) {
2081    throw(AipsError("factors.nelements() != table.nelements()"));
2082  }
2083  ArrayColumn<Float> specCol(in, "SPECTRA");
2084  ArrayColumn<uChar> flagCol(in, "FLAGTRA");
2085  ArrayColumn<Float> tsysCol(in, "TSYS");
2086  for (uInt i=0; i < nrow; ++i) {
2087    MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2088    ma *= factor[i];
2089    specCol.put(i, ma.getArray());
2090    flagCol.put(i, flagsFromMA(ma));
2091    if ( dotsys ) {
2092      Vector<Float> tsys = tsysCol(i);
2093      tsys *= factor[i];
2094      tsysCol.put(i,tsys);
2095    }
2096  }
2097}
2098
2099CountedPtr< Scantable > STMath::convertFlux( const CountedPtr< Scantable >& in,
2100                                             float d, float etaap,
2101                                             float jyperk )
2102{
2103  CountedPtr< Scantable > out = getScantable(in, false);
2104  Table& tab = in->table();
2105  Unit fluxUnit(tab.keywordSet().asString("FluxUnit"));
2106  Unit K(String("K"));
2107  Unit JY(String("Jy"));
2108
2109  bool tokelvin = true;
2110  Double cfac = 1.0;
2111
2112  if ( fluxUnit == JY ) {
2113    pushLog("Converting to K");
2114    Quantum<Double> t(1.0,fluxUnit);
2115    Quantum<Double> t2 = t.get(JY);
2116    cfac = (t2 / t).getValue();               // value to Jy
2117
2118    tokelvin = true;
2119    out->setFluxUnit("K");
2120  } else if ( fluxUnit == K ) {
2121    pushLog("Converting to Jy");
2122    Quantum<Double> t(1.0,fluxUnit);
2123    Quantum<Double> t2 = t.get(K);
2124    cfac = (t2 / t).getValue();              // value to K
2125
2126    tokelvin = false;
2127    out->setFluxUnit("Jy");
2128  } else {
2129    throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
2130  }
2131  // Make sure input values are converted to either Jy or K first...
2132  Float factor = cfac;
2133
2134  // Select method
2135  if (jyperk > 0.0) {
2136    factor *= jyperk;
2137    if ( tokelvin ) factor = 1.0 / jyperk;
2138    ostringstream oss;
2139    oss << "Jy/K = " << jyperk;
2140    pushLog(String(oss));
2141    Vector<Float> factors(tab.nrow(), factor);
2142    scaleByVector(tab,factors, false);
2143  } else if ( etaap > 0.0) {
2144    if (d < 0) {
2145      Instrument inst =
2146        STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2147                                  True);
2148      STAttr sda;
2149      d = sda.diameter(inst);
2150    }
2151    jyperk = STAttr::findJyPerK(etaap, d);
2152    ostringstream oss;
2153    oss << "Jy/K = " << jyperk;
2154    pushLog(String(oss));
2155    factor *= jyperk;
2156    if ( tokelvin ) {
2157      factor = 1.0 / factor;
2158    }
2159    Vector<Float> factors(tab.nrow(), factor);
2160    scaleByVector(tab, factors, False);
2161  } else {
2162
2163    // OK now we must deal with automatic look up of values.
2164    // We must also deal with the fact that the factors need
2165    // to be computed per IF and may be different and may
2166    // change per integration.
2167
2168    pushLog("Looking up conversion factors");
2169    convertBrightnessUnits(out, tokelvin, cfac);
2170  }
2171
2172  return out;
2173}
2174
2175void STMath::convertBrightnessUnits( CountedPtr<Scantable>& in,
2176                                     bool tokelvin, float cfac )
2177{
2178  Table& table = in->table();
2179  Instrument inst =
2180    STAttr::convertInstrument(table.keywordSet().asString("AntennaName"), True);
2181  TableIterator iter(table, "FREQ_ID");
2182  STFrequencies stfreqs = in->frequencies();
2183  STAttr sdAtt;
2184  while (!iter.pastEnd()) {
2185    Table tab = iter.table();
2186    ArrayColumn<Float> specCol(tab, "SPECTRA");
2187    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2188    ROScalarColumn<uInt> freqidCol(tab, "FREQ_ID");
2189    MEpoch::ROScalarColumn timeCol(tab, "TIME");
2190
2191    uInt freqid; freqidCol.get(0, freqid);
2192    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2193    // STAttr.JyPerK has a Vector interface... change sometime.
2194    Vector<Float> freqs(1,stfreqs.getRefFreq(freqid, tmpspec.nelements()));
2195    for ( uInt i=0; i<tab.nrow(); ++i) {
2196      Float jyperk = (sdAtt.JyPerK(inst, timeCol(i), freqs))[0];
2197      Float factor = cfac * jyperk;
2198      if ( tokelvin ) factor = Float(1.0) / factor;
2199      MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2200      ma *= factor;
2201      specCol.put(i, ma.getArray());
2202      flagCol.put(i, flagsFromMA(ma));
2203    }
2204  ++iter;
2205  }
2206}
2207
2208CountedPtr< Scantable > STMath::opacity( const CountedPtr< Scantable > & in,
2209                                         float tau )
2210{
2211  CountedPtr< Scantable > out = getScantable(in, false);
2212
2213  Table tab = out->table();
2214  ROScalarColumn<Float> elev(tab, "ELEVATION");
2215  ArrayColumn<Float> specCol(tab, "SPECTRA");
2216  ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2217  ArrayColumn<Float> tsysCol(tab, "TSYS");
2218  for ( uInt i=0; i<tab.nrow(); ++i) {
2219    Float zdist = Float(C::pi_2) - elev(i);
2220    Float factor = exp(tau/cos(zdist));
2221    MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2222    ma *= factor;
2223    specCol.put(i, ma.getArray());
2224    flagCol.put(i, flagsFromMA(ma));
2225    Vector<Float> tsys;
2226    tsysCol.get(i, tsys);
2227    tsys *= factor;
2228    tsysCol.put(i, tsys);
2229  }
2230  return out;
2231}
2232
2233CountedPtr< Scantable > STMath::smoothOther( const CountedPtr< Scantable >& in,
2234                                             const std::string& kernel,
2235                                             float width )
2236{
2237  CountedPtr< Scantable > out = getScantable(in, false);
2238  Table& table = out->table();
2239  ArrayColumn<Float> specCol(table, "SPECTRA");
2240  ArrayColumn<uChar> flagCol(table, "FLAGTRA");
2241  Vector<Float> spec;
2242  Vector<uChar> flag;
2243  for ( uInt i=0; i<table.nrow(); ++i) {
2244    specCol.get(i, spec);
2245    flagCol.get(i, flag);
2246    Vector<Bool> mask(flag.nelements());
2247    convertArray(mask, flag);
2248    Vector<Float> specout;
2249    Vector<Bool> maskout;
2250    if ( kernel == "hanning" ) {
2251      mathutil::hanning(specout, maskout, spec , !mask);
2252      convertArray(flag, !maskout);
2253    } else if (  kernel == "rmedian" ) {
2254      mathutil::runningMedian(specout, maskout, spec , mask, width);
2255      convertArray(flag, maskout);
2256    }
2257    flagCol.put(i, flag);
2258    specCol.put(i, specout);
2259  }
2260  return out;
2261}
2262
2263CountedPtr< Scantable > STMath::smooth( const CountedPtr< Scantable >& in,
2264                                        const std::string& kernel, float width )
2265{
2266  if (kernel == "rmedian"  || kernel == "hanning") {
2267    return smoothOther(in, kernel, width);
2268  }
2269  CountedPtr< Scantable > out = getScantable(in, false);
2270  Table& table = out->table();
2271  VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernel);
2272  // same IFNO should have same no of channels
2273  // this saves overhead
2274  TableIterator iter(table, "IFNO");
2275  while (!iter.pastEnd()) {
2276    Table tab = iter.table();
2277    ArrayColumn<Float> specCol(tab, "SPECTRA");
2278    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2279    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2280    uInt nchan = tmpspec.nelements();
2281    Vector<Float> kvec = VectorKernel::make(type, width, nchan, True, False);
2282    Convolver<Float> conv(kvec, IPosition(1,nchan));
2283    Vector<Float> spec;
2284    Vector<uChar> flag;
2285    for ( uInt i=0; i<tab.nrow(); ++i) {
2286      specCol.get(i, spec);
2287      flagCol.get(i, flag);
2288      Vector<Bool> mask(flag.nelements());
2289      convertArray(mask, flag);
2290      Vector<Float> specout;
2291      mathutil::replaceMaskByZero(specout, mask);
2292      conv.linearConv(specout, spec);
2293      specCol.put(i, specout);
2294    }
2295    ++iter;
2296  }
2297  return out;
2298}
2299
2300CountedPtr< Scantable >
2301  STMath::merge( const std::vector< CountedPtr < Scantable > >& in )
2302{
2303  if ( in.size() < 2 ) {
2304    throw(AipsError("Need at least two scantables to perform a merge."));
2305  }
2306  std::vector<CountedPtr < Scantable > >::const_iterator it = in.begin();
2307  bool insitu = insitu_;
2308  setInsitu(false);
2309  CountedPtr< Scantable > out = getScantable(*it, false);
2310  setInsitu(insitu);
2311  Table& tout = out->table();
2312  ScalarColumn<uInt> freqidcol(tout,"FREQ_ID"), molidcol(tout, "MOLECULE_ID");
2313  ScalarColumn<uInt> scannocol(tout,"SCANNO"), focusidcol(tout,"FOCUS_ID");
2314  // Renumber SCANNO to be 0-based
2315  Vector<uInt> scannos = scannocol.getColumn();
2316  uInt offset = min(scannos);
2317  scannos -= offset;
2318  scannocol.putColumn(scannos);
2319  uInt newscanno = max(scannos)+1;
2320  ++it;
2321  while ( it != in.end() ){
2322    if ( ! (*it)->conformant(*out) ) {
2323      // non conformant.
2324      pushLog(String("Warning: Can't merge scantables as header info differs."));
2325    }
2326    out->appendToHistoryTable((*it)->history());
2327    const Table& tab = (*it)->table();
2328    TableIterator scanit(tab, "SCANNO");
2329    while (!scanit.pastEnd()) {
2330      TableIterator freqit(scanit.table(), "FREQ_ID");
2331      while ( !freqit.pastEnd() ) {
2332        Table thetab = freqit.table();
2333        uInt nrow = tout.nrow();
2334        tout.addRow(thetab.nrow());
2335        TableCopy::copyRows(tout, thetab, nrow, 0, thetab.nrow());
2336        ROTableRow row(thetab);
2337        for ( uInt i=0; i<thetab.nrow(); ++i) {
2338          uInt k = nrow+i;
2339          scannocol.put(k, newscanno);
2340          const TableRecord& rec = row.get(i);
2341          Double rv,rp,inc;
2342          (*it)->frequencies().getEntry(rp, rv, inc, rec.asuInt("FREQ_ID"));
2343          uInt id;
2344          id = out->frequencies().addEntry(rp, rv, inc);
2345          freqidcol.put(k,id);
2346          //String name,fname;Double rf;
2347          Vector<String> name,fname;Vector<Double> rf;
2348          (*it)->molecules().getEntry(rf, name, fname, rec.asuInt("MOLECULE_ID"));
2349          id = out->molecules().addEntry(rf, name, fname);
2350          molidcol.put(k, id);
2351          Float frot,fax,ftan,fhand,fmount,fuser, fxy, fxyp;
2352          (*it)->focus().getEntry(fax, ftan, frot, fhand,
2353                                  fmount,fuser, fxy, fxyp,
2354                                  rec.asuInt("FOCUS_ID"));
2355          id = out->focus().addEntry(fax, ftan, frot, fhand,
2356                                     fmount,fuser, fxy, fxyp);
2357          focusidcol.put(k, id);
2358        }
2359        ++freqit;
2360      }
2361      ++newscanno;
2362      ++scanit;
2363    }
2364    ++it;
2365  }
2366  return out;
2367}
2368
2369CountedPtr< Scantable >
2370  STMath::invertPhase( const CountedPtr < Scantable >& in )
2371{
2372  return applyToPol(in, &STPol::invertPhase, Float(0.0));
2373}
2374
2375CountedPtr< Scantable >
2376  STMath::rotateXYPhase( const CountedPtr < Scantable >& in, float phase )
2377{
2378   return applyToPol(in, &STPol::rotatePhase, Float(phase));
2379}
2380
2381CountedPtr< Scantable >
2382  STMath::rotateLinPolPhase( const CountedPtr < Scantable >& in, float phase )
2383{
2384  return applyToPol(in, &STPol::rotateLinPolPhase, Float(phase));
2385}
2386
2387CountedPtr< Scantable > STMath::applyToPol( const CountedPtr<Scantable>& in,
2388                                             STPol::polOperation fptr,
2389                                             Float phase )
2390{
2391  CountedPtr< Scantable > out = getScantable(in, false);
2392  Table& tout = out->table();
2393  Block<String> cols(4);
2394  cols[0] = String("SCANNO");
2395  cols[1] = String("BEAMNO");
2396  cols[2] = String("IFNO");
2397  cols[3] = String("CYCLENO");
2398  TableIterator iter(tout, cols);
2399  CountedPtr<STPol> stpol = STPol::getPolClass(out->factories_,
2400                                               out->getPolType() );
2401  while (!iter.pastEnd()) {
2402    Table t = iter.table();
2403    ArrayColumn<Float> speccol(t, "SPECTRA");
2404    ScalarColumn<uInt> focidcol(t, "FOCUS_ID");
2405    ScalarColumn<Float> parancol(t, "PARANGLE");
2406    Matrix<Float> pols(speccol.getColumn());
2407    try {
2408      stpol->setSpectra(pols);
2409      Float fang,fhand,parang;
2410      fang = in->focusTable_.getTotalFeedAngle(focidcol(0));
2411      fhand = in->focusTable_.getFeedHand(focidcol(0));
2412      parang = parancol(0);
2413      /// @todo re-enable this
2414      // disable total feed angle to support paralactifying Caswell style
2415      stpol->setPhaseCorrections(parang, -parang, fhand);
2416      // use a member function pointer in STPol.  This only works on
2417      // the STPol pointer itself, not the Counted Pointer so
2418      // derefernce it.
2419      (&(*(stpol))->*fptr)(phase);
2420      speccol.putColumn(stpol->getSpectra());
2421    } catch (AipsError& e) {
2422      //delete stpol;stpol=0;
2423      throw(e);
2424    }
2425    ++iter;
2426  }
2427  //delete stpol;stpol=0;
2428  return out;
2429}
2430
2431CountedPtr< Scantable >
2432  STMath::swapPolarisations( const CountedPtr< Scantable > & in )
2433{
2434  CountedPtr< Scantable > out = getScantable(in, false);
2435  Table& tout = out->table();
2436  Table t0 = tout(tout.col("POLNO") == 0);
2437  Table t1 = tout(tout.col("POLNO") == 1);
2438  if ( t0.nrow() != t1.nrow() )
2439    throw(AipsError("Inconsistent number of polarisations"));
2440  ArrayColumn<Float> speccol0(t0, "SPECTRA");
2441  ArrayColumn<uChar> flagcol0(t0, "FLAGTRA");
2442  ArrayColumn<Float> speccol1(t1, "SPECTRA");
2443  ArrayColumn<uChar> flagcol1(t1, "FLAGTRA");
2444  Matrix<Float> s0 = speccol0.getColumn();
2445  Matrix<uChar> f0 = flagcol0.getColumn();
2446  speccol0.putColumn(speccol1.getColumn());
2447  flagcol0.putColumn(flagcol1.getColumn());
2448  speccol1.putColumn(s0);
2449  flagcol1.putColumn(f0);
2450  return out;
2451}
2452
2453CountedPtr< Scantable >
2454  STMath::averagePolarisations( const CountedPtr< Scantable > & in,
2455                                const std::vector<bool>& mask,
2456                                const std::string& weight )
2457{
2458  if (in->npol() < 2 )
2459    throw(AipsError("averagePolarisations can only be applied to two or more"
2460                    "polarisations"));
2461  bool insitu = insitu_;
2462  setInsitu(false);
2463  CountedPtr< Scantable > pols = getScantable(in, true);
2464  setInsitu(insitu);
2465  Table& tout = pols->table();
2466  std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
2467  Table tab = tableCommand(taql, in->table());
2468  if (tab.nrow() == 0 )
2469    throw(AipsError("Could not find  any rows with POLNO==0 and POLNO==1"));
2470  TableCopy::copyRows(tout, tab);
2471  TableVector<uInt> vec(tout, "POLNO");
2472  vec = 0;
2473  pols->table_.rwKeywordSet().define("nPol", Int(1));
2474  //pols->table_.rwKeywordSet().define("POLTYPE", String("stokes"));
2475  pols->table_.rwKeywordSet().define("POLTYPE", in->getPolType());
2476  std::vector<CountedPtr<Scantable> > vpols;
2477  vpols.push_back(pols);
2478  CountedPtr< Scantable > out = average(vpols, mask, weight, "SCAN");
2479  return out;
2480}
2481
2482CountedPtr< Scantable >
2483  STMath::averageBeams( const CountedPtr< Scantable > & in,
2484                        const std::vector<bool>& mask,
2485                        const std::string& weight )
2486{
2487  bool insitu = insitu_;
2488  setInsitu(false);
2489  CountedPtr< Scantable > beams = getScantable(in, false);
2490  setInsitu(insitu);
2491  Table& tout = beams->table();
2492  // give all rows the same BEAMNO
2493  TableVector<uInt> vec(tout, "BEAMNO");
2494  vec = 0;
2495  beams->table_.rwKeywordSet().define("nBeam", Int(1));
2496  std::vector<CountedPtr<Scantable> > vbeams;
2497  vbeams.push_back(beams);
2498  CountedPtr< Scantable > out = average(vbeams, mask, weight, "SCAN");
2499  return out;
2500}
2501
2502
2503CountedPtr< Scantable >
2504  asap::STMath::frequencyAlign( const CountedPtr< Scantable > & in,
2505                                const std::string & refTime,
2506                                const std::string & method)
2507{
2508  // clone as this is not working insitu
2509  bool insitu = insitu_;
2510  setInsitu(false);
2511  CountedPtr< Scantable > out = getScantable(in, false);
2512  setInsitu(insitu);
2513  Table& tout = out->table();
2514  // Get reference Epoch to time of first row or given String
2515  Unit DAY(String("d"));
2516  MEpoch::Ref epochRef(in->getTimeReference());
2517  MEpoch refEpoch;
2518  if (refTime.length()>0) {
2519    Quantum<Double> qt;
2520    if (MVTime::read(qt,refTime)) {
2521      MVEpoch mv(qt);
2522      refEpoch = MEpoch(mv, epochRef);
2523   } else {
2524      throw(AipsError("Invalid format for Epoch string"));
2525   }
2526  } else {
2527    refEpoch = in->timeCol_(0);
2528  }
2529  MPosition refPos = in->getAntennaPosition();
2530
2531  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2532  /*
2533  // Comment from MV.
2534  // the following code has been commented out because different FREQ_IDs have to be aligned together even
2535  // if the frame doesn't change. So far, lack of this check didn't cause any problems.
2536  // test if user frame is different to base frame
2537  if ( in->frequencies().getFrameString(true)
2538       == in->frequencies().getFrameString(false) ) {
2539    throw(AipsError("Can't convert as no output frame has been set"
2540                    " (use set_freqframe) or it is aligned already."));
2541  }
2542  */
2543  MFrequency::Types system = in->frequencies().getFrame();
2544  MVTime mvt(refEpoch.getValue());
2545  String epochout = mvt.string(MVTime::YMD) + String(" (") + refEpoch.getRefString() + String(")");
2546  ostringstream oss;
2547  oss << "Aligned at reference Epoch " << epochout
2548      << " in frame " << MFrequency::showType(system);
2549  pushLog(String(oss));
2550  // set up the iterator
2551  Block<String> cols(4);
2552  // select by constant direction
2553  cols[0] = String("SRCNAME");
2554  cols[1] = String("BEAMNO");
2555  // select by IF ( no of channels varies over this )
2556  cols[2] = String("IFNO");
2557  // select by restfrequency
2558  cols[3] = String("MOLECULE_ID");
2559  TableIterator iter(tout, cols);
2560  while ( !iter.pastEnd() ) {
2561    Table t = iter.table();
2562    MDirection::ROScalarColumn dirCol(t, "DIRECTION");
2563    TableIterator fiter(t, "FREQ_ID");
2564    // determine nchan from the first row. This should work as
2565    // we are iterating over BEAMNO and IFNO    // we should have constant direction
2566
2567    ROArrayColumn<Float> sCol(t, "SPECTRA");
2568    const MDirection direction = dirCol(0);
2569    const uInt nchan = sCol(0).nelements();
2570
2571    // skip operations if there is nothing to align
2572    if (fiter.pastEnd()) {
2573        continue;
2574    }
2575
2576    Table ftab = fiter.table();
2577    // align all frequency ids with respect to the first encountered id
2578    ScalarColumn<uInt> freqidCol(ftab, "FREQ_ID");
2579    // get the SpectralCoordinate for the freqid, which we are iterating over
2580    SpectralCoordinate sC = in->frequencies().getSpectralCoordinate(freqidCol(0));
2581    FrequencyAligner<Float> fa( sC, nchan, refEpoch,
2582                                direction, refPos, system );
2583    // realign the SpectralCoordinate and put into the output Scantable
2584    Vector<String> units(1);
2585    units = String("Hz");
2586    Bool linear=True;
2587    SpectralCoordinate sc2 = fa.alignedSpectralCoordinate(linear);
2588    sc2.setWorldAxisUnits(units);
2589    const uInt id = out->frequencies().addEntry(sc2.referencePixel()[0],
2590                                                sc2.referenceValue()[0],
2591                                                sc2.increment()[0]);
2592    while ( !fiter.pastEnd() ) {
2593      ftab = fiter.table();
2594      // spectral coordinate for the current FREQ_ID
2595      ScalarColumn<uInt> freqidCol2(ftab, "FREQ_ID");
2596      sC = in->frequencies().getSpectralCoordinate(freqidCol2(0));
2597      // create the "global" abcissa for alignment with same FREQ_ID
2598      Vector<Double> abc(nchan);
2599      for (uInt i=0; i<nchan; i++) {
2600           Double w;
2601           sC.toWorld(w,Double(i));
2602           abc[i] = w;
2603      }
2604      TableVector<uInt> tvec(ftab, "FREQ_ID");
2605      // assign new frequency id to all rows
2606      tvec = id;
2607      // cache abcissa for same time stamps, so iterate over those
2608      TableIterator timeiter(ftab, "TIME");
2609      while ( !timeiter.pastEnd() ) {
2610        Table tab = timeiter.table();
2611        ArrayColumn<Float> specCol(tab, "SPECTRA");
2612        ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2613        MEpoch::ROScalarColumn timeCol(tab, "TIME");
2614        // use align abcissa cache after the first row
2615        // these rows should be just be POLNO
2616        bool first = true;
2617        for (int i=0; i<int(tab.nrow()); ++i) {
2618          // input values
2619          Vector<uChar> flag = flagCol(i);
2620          Vector<Bool> mask(flag.shape());
2621          Vector<Float> specOut, spec;
2622          spec  = specCol(i);
2623          Vector<Bool> maskOut;Vector<uChar> flagOut;
2624          convertArray(mask, flag);
2625          // alignment
2626          Bool ok = fa.align(specOut, maskOut, abc, spec,
2627                             mask, timeCol(i), !first,
2628                             interp, False);
2629          // back into scantable
2630          flagOut.resize(maskOut.nelements());
2631          convertArray(flagOut, maskOut);
2632          flagCol.put(i, flagOut);
2633          specCol.put(i, specOut);
2634          // start abcissa caching
2635          first = false;
2636        }
2637        // next timestamp
2638        ++timeiter;
2639      }
2640      // next FREQ_ID
2641      ++fiter;
2642    }
2643    // next aligner
2644    ++iter;
2645  }
2646  // set this afterwards to ensure we are doing insitu correctly.
2647  out->frequencies().setFrame(system, true);
2648  return out;
2649}
2650
2651CountedPtr<Scantable>
2652  asap::STMath::convertPolarisation( const CountedPtr<Scantable>& in,
2653                                     const std::string & newtype )
2654{
2655  if (in->npol() != 2 && in->npol() != 4)
2656    throw(AipsError("Can only convert two or four polarisations."));
2657  if ( in->getPolType() == newtype )
2658    throw(AipsError("No need to convert."));
2659  if ( ! in->selector_.empty() )
2660    throw(AipsError("Can only convert whole scantable. Unset the selection."));
2661  bool insitu = insitu_;
2662  setInsitu(false);
2663  CountedPtr< Scantable > out = getScantable(in, true);
2664  setInsitu(insitu);
2665  Table& tout = out->table();
2666  tout.rwKeywordSet().define("POLTYPE", String(newtype));
2667
2668  Block<String> cols(4);
2669  cols[0] = "SCANNO";
2670  cols[1] = "CYCLENO";
2671  cols[2] = "BEAMNO";
2672  cols[3] = "IFNO";
2673  TableIterator it(in->originalTable_, cols);
2674  String basetype = in->getPolType();
2675  STPol* stpol = STPol::getPolClass(in->factories_, basetype);
2676  try {
2677    while ( !it.pastEnd() ) {
2678      Table tab = it.table();
2679      uInt row = tab.rowNumbers()[0];
2680      stpol->setSpectra(in->getPolMatrix(row));
2681      Float fang,fhand,parang;
2682      fang = in->focusTable_.getTotalFeedAngle(in->mfocusidCol_(row));
2683      fhand = in->focusTable_.getFeedHand(in->mfocusidCol_(row));
2684      parang = in->paraCol_(row);
2685      /// @todo re-enable this
2686      // disable total feed angle to support paralactifying Caswell style
2687      stpol->setPhaseCorrections(parang, -parang, fhand);
2688      Int npolout = 0;
2689      for (uInt i=0; i<tab.nrow(); ++i) {
2690        Vector<Float> outvec = stpol->getSpectrum(i, newtype);
2691        if ( outvec.nelements() > 0 ) {
2692          tout.addRow();
2693          TableCopy::copyRows(tout, tab, tout.nrow()-1, 0, 1);
2694          ArrayColumn<Float> sCol(tout,"SPECTRA");
2695          ScalarColumn<uInt> pCol(tout,"POLNO");
2696          sCol.put(tout.nrow()-1 ,outvec);
2697          pCol.put(tout.nrow()-1 ,uInt(npolout));
2698          npolout++;
2699       }
2700      }
2701      tout.rwKeywordSet().define("nPol", npolout);
2702      ++it;
2703    }
2704  } catch (AipsError& e) {
2705    delete stpol;
2706    throw(e);
2707  }
2708  delete stpol;
2709  return out;
2710}
2711
2712CountedPtr< Scantable >
2713  asap::STMath::mxExtract( const CountedPtr< Scantable > & in,
2714                           const std::string & scantype )
2715{
2716  bool insitu = insitu_;
2717  setInsitu(false);
2718  CountedPtr< Scantable > out = getScantable(in, true);
2719  setInsitu(insitu);
2720  Table& tout = out->table();
2721  std::string taql = "SELECT FROM $1 WHERE BEAMNO != REFBEAMNO";
2722  if (scantype == "on") {
2723    taql = "SELECT FROM $1 WHERE BEAMNO == REFBEAMNO";
2724  }
2725  Table tab = tableCommand(taql, in->table());
2726  TableCopy::copyRows(tout, tab);
2727  if (scantype == "on") {
2728    // re-index SCANNO to 0
2729    TableVector<uInt> vec(tout, "SCANNO");
2730    vec = 0;
2731  }
2732  return out;
2733}
2734
2735CountedPtr< Scantable >
2736  asap::STMath::lagFlag( const CountedPtr< Scantable > & in,
2737                          double frequency, double width )
2738{
2739  CountedPtr< Scantable > out = getScantable(in, false);
2740  Table& tout = out->table();
2741  TableIterator iter(tout, "FREQ_ID");
2742  FFTServer<Float,Complex> ffts;
2743  while ( !iter.pastEnd() ) {
2744    Table tab = iter.table();
2745    Double rp,rv,inc;
2746    ROTableRow row(tab);
2747    const TableRecord& rec = row.get(0);
2748    uInt freqid = rec.asuInt("FREQ_ID");
2749    out->frequencies().getEntry(rp, rv, inc, freqid);
2750    ArrayColumn<Float> specCol(tab, "SPECTRA");
2751    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2752    for (int i=0; i<int(tab.nrow()); ++i) {
2753      Vector<Float> spec = specCol(i);
2754      Vector<uChar> flag = flagCol(i);
2755      Int lag0 = Int(spec.nelements()*abs(inc)/(frequency+width)+0.5);
2756      Int lag1 = Int(spec.nelements()*abs(inc)/(frequency-width)+0.5);
2757      for (unsigned int k=0; k < flag.nelements(); ++k ) {
2758        if (flag[k] > 0) {
2759          spec[k] = 0.0;
2760        }
2761      }
2762      Vector<Complex> lags;
2763      ffts.fft0(lags, spec);
2764      Int start =  max(0, lag0);
2765      Int end =  min(Int(lags.nelements()-1), lag1);
2766      if (start == end) {
2767        lags[start] = Complex(0.0);
2768      } else {
2769        for (int j=start; j <=end ;++j) {
2770          lags[j] = Complex(0.0);
2771        }
2772      }
2773      ffts.fft0(spec, lags);
2774      specCol.put(i, spec);
2775    }
2776    ++iter;
2777  }
2778  return out;
2779}
2780
2781// Averaging spectra with different channel/resolution
2782CountedPtr<Scantable>
2783STMath::new_average( const std::vector<CountedPtr<Scantable> >& in,
2784                     const bool& compel,
2785                     const std::vector<bool>& mask,
2786                     const std::string& weight,
2787                     const std::string& avmode )
2788  throw ( casa::AipsError )
2789{
2790  LogIO os( LogOrigin( "STMath", "new_average()", WHERE ) ) ;
2791  if ( avmode == "SCAN" && in.size() != 1 )
2792    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
2793                    "Use merge first."));
2794 
2795  // check if OTF observation
2796  String obstype = in[0]->getHeader().obstype ;
2797  Double tol = 0.0 ;
2798  if ( obstype.find( "OTF" ) != String::npos ) {
2799    tol = TOL_OTF ;
2800  }
2801  else {
2802    tol = TOL_POINT ;
2803  }
2804
2805  CountedPtr<Scantable> out ;     // processed result
2806  if ( compel ) {
2807    std::vector< CountedPtr<Scantable> > newin ; // input for average process
2808    uInt insize = in.size() ;    // number of input scantables
2809
2810    // TEST: do normal average in each table before IF grouping
2811    os << "Do preliminary averaging" << LogIO::POST ;
2812    vector< CountedPtr<Scantable> > tmpin( insize ) ;
2813    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2814      vector< CountedPtr<Scantable> > v( 1, in[itable] ) ;
2815      tmpin[itable] = average( v, mask, weight, avmode ) ;
2816    }
2817
2818    // warning
2819    os << "Average spectra with different spectral resolution" << LogIO::POST ;
2820
2821    // temporarily set coordinfo
2822    vector<string> oldinfo( insize ) ;
2823    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2824      vector<string> coordinfo = in[itable]->getCoordInfo() ;
2825      oldinfo[itable] = coordinfo[0] ;
2826      coordinfo[0] = "Hz" ;
2827      tmpin[itable]->setCoordInfo( coordinfo ) ;
2828    }
2829
2830    // columns
2831    ScalarColumn<uInt> freqIDCol ;
2832    ScalarColumn<uInt> ifnoCol ;
2833    ScalarColumn<uInt> scannoCol ;
2834
2835
2836    // check IF frequency coverage
2837    // freqid: list of FREQ_ID, which is used, in each table 
2838    // iffreq: list of minimum and maximum frequency for each FREQ_ID in
2839    //         each table
2840    // freqid[insize][numIF]
2841    // freqid: [[id00, id01, ...],
2842    //          [id10, id11, ...],
2843    //          ...
2844    //          [idn0, idn1, ...]]
2845    // iffreq[insize][numIF*2]
2846    // iffreq: [[min_id00, max_id00, min_id01, max_id01, ...],
2847    //          [min_id10, max_id10, min_id11, max_id11, ...],
2848    //          ...
2849    //          [min_idn0, max_idn0, min_idn1, max_idn1, ...]]
2850    //os << "Check IF settings in each table" << LogIO::POST ;
2851    vector< vector<uInt> > freqid( insize );
2852    vector< vector<double> > iffreq( insize ) ;
2853    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2854      uInt rows = tmpin[itable]->nrow() ;
2855      uInt freqnrows = tmpin[itable]->frequencies().table().nrow() ;
2856      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
2857        if ( freqid[itable].size() == freqnrows ) {
2858          break ;
2859        }
2860        else {
2861          freqIDCol.attach( tmpin[itable]->table(), "FREQ_ID" ) ;
2862          ifnoCol.attach( tmpin[itable]->table(), "IFNO" ) ;
2863          uInt id = freqIDCol( irow ) ;
2864          if ( freqid[itable].size() == 0 || count( freqid[itable].begin(), freqid[itable].end(), id ) == 0 ) {
2865            //os << "itable = " << itable << ": IF " << id << " is included in the list" << LogIO::POST ;
2866            vector<double> abcissa = tmpin[itable]->getAbcissa( irow ) ;
2867            freqid[itable].push_back( id ) ;
2868            iffreq[itable].push_back( abcissa[0] - 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
2869            iffreq[itable].push_back( abcissa[abcissa.size()-1] + 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
2870          }
2871        }
2872      }
2873    }
2874
2875    // debug
2876    //os << "IF settings summary:" << endl ;
2877    //for ( uInt i = 0 ; i < freqid.size() ; i++ ) {
2878    //os << "   Table" << i << endl ;
2879    //for ( uInt j = 0 ; j < freqid[i].size() ; j++ ) {
2880    //os << "      id = " << freqid[i][j] << " (min,max) = (" << iffreq[i][2*j] << "," << iffreq[i][2*j+1] << ")" << endl ;
2881    //}
2882    //}
2883    //os << endl ;
2884    //os.post() ;
2885
2886    // IF grouping based on their frequency coverage
2887    // ifgrp: list of table index and FREQ_ID for all members in each IF group
2888    // ifgfreq: list of minimum and maximum frequency in each IF group
2889    // ifgrp[numgrp][nummember*2]
2890    // ifgrp: [[table00, freqrow00, table01, freqrow01, ...],
2891    //         [table10, freqrow10, table11, freqrow11, ...],
2892    //         ...
2893    //         [tablen0, freqrown0, tablen1, freqrown1, ...]]
2894    // ifgfreq[numgrp*2]
2895    // ifgfreq: [min0_grp0, max0_grp0, min1_grp1, max1_grp1, ...]
2896    //os << "IF grouping based on their frequency coverage" << LogIO::POST ;
2897    vector< vector<uInt> > ifgrp ;
2898    vector<double> ifgfreq ;
2899
2900    // parameter for IF grouping
2901    // groupmode = OR    retrieve all region
2902    //             AND   only retrieve overlaped region
2903    //string groupmode = "AND" ;
2904    string groupmode = "OR" ;
2905    uInt sizecr = 0 ;
2906    if ( groupmode == "AND" )
2907      sizecr = 2 ;
2908    else if ( groupmode == "OR" )
2909      sizecr = 0 ;
2910
2911    vector<double> sortedfreq ;
2912    for ( uInt i = 0 ; i < iffreq.size() ; i++ ) {
2913      for ( uInt j = 0 ; j < iffreq[i].size() ; j++ ) {
2914        if ( count( sortedfreq.begin(), sortedfreq.end(), iffreq[i][j] ) == 0 )
2915          sortedfreq.push_back( iffreq[i][j] ) ;
2916      }
2917    }
2918    sort( sortedfreq.begin(), sortedfreq.end() ) ;
2919    for ( vector<double>::iterator i = sortedfreq.begin() ; i != sortedfreq.end()-1 ; i++ ) {
2920      ifgfreq.push_back( *i ) ;
2921      ifgfreq.push_back( *(i+1) ) ;
2922    }
2923    ifgrp.resize( ifgfreq.size()/2 ) ;
2924    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2925      for ( uInt iif = 0 ; iif < freqid[itable].size() ; iif++ ) {
2926        double range0 = iffreq[itable][2*iif] ;
2927        double range1 = iffreq[itable][2*iif+1] ;
2928        for ( uInt j = 0 ; j < ifgrp.size() ; j++ ) {
2929          double fmin = max( range0, ifgfreq[2*j] ) ;
2930          double fmax = min( range1, ifgfreq[2*j+1] ) ;
2931          if ( fmin < fmax ) {
2932            ifgrp[j].push_back( itable ) ;
2933            ifgrp[j].push_back( freqid[itable][iif] ) ;
2934          }
2935        }
2936      }
2937    }
2938    vector< vector<uInt> >::iterator fiter = ifgrp.begin() ;
2939    vector<double>::iterator giter = ifgfreq.begin() ;
2940    while( fiter != ifgrp.end() ) {
2941      if ( fiter->size() <= sizecr ) {
2942        fiter = ifgrp.erase( fiter ) ;
2943        giter = ifgfreq.erase( giter ) ;
2944        giter = ifgfreq.erase( giter ) ;
2945      }
2946      else {
2947        fiter++ ;
2948        advance( giter, 2 ) ;
2949      }
2950    }
2951
2952    // Grouping continuous IF groups (without frequency gap)
2953    // freqgrp: list of IF group indexes in each frequency group
2954    // freqrange: list of minimum and maximum frequency in each frequency group
2955    // freqgrp[numgrp][nummember]
2956    // freqgrp: [[ifgrp00, ifgrp01, ifgrp02, ...],
2957    //           [ifgrp10, ifgrp11, ifgrp12, ...],
2958    //           ...
2959    //           [ifgrpn0, ifgrpn1, ifgrpn2, ...]]
2960    // freqrange[numgrp*2]
2961    // freqrange: [min_grp0, max_grp0, min_grp1, max_grp1, ...]
2962    vector< vector<uInt> > freqgrp ;
2963    double freqrange = 0.0 ;
2964    uInt grpnum = 0 ;
2965    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
2966      // Assumed that ifgfreq was sorted
2967      if ( grpnum != 0 && freqrange == ifgfreq[2*i] ) {
2968        freqgrp[grpnum-1].push_back( i ) ;
2969      }
2970      else {
2971        vector<uInt> grp0( 1, i ) ;
2972        freqgrp.push_back( grp0 ) ;
2973        grpnum++ ;
2974      }
2975      freqrange = ifgfreq[2*i+1] ;
2976    }
2977       
2978
2979    // print IF groups
2980    ostringstream oss ;
2981    oss << "IF Group summary: " << endl ;
2982    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
2983    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
2984      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
2985      for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
2986        oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
2987      }
2988      oss << endl ;
2989    }
2990    oss << endl ;
2991    os << oss.str() << LogIO::POST ;
2992   
2993    // print frequency group
2994    oss.str("") ;
2995    oss << "Frequency Group summary: " << endl ;
2996    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: IF_GROUP_ID" << endl ;
2997    for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
2998      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*freqgrp[i][0]] << "," << ifgfreq[2*freqgrp[i][freqgrp[i].size()-1]+1] << "]: " ;
2999      for ( uInt j = 0 ; j < freqgrp[i].size() ; j++ ) {
3000        oss << freqgrp[i][j] << " " ;
3001      }
3002      oss << endl ;
3003    }
3004    oss << endl ;
3005    os << oss.str() << LogIO::POST ;
3006
3007    // membership check
3008    // groups: list of IF group indexes whose frequency range overlaps with
3009    //         that of each table and IF
3010    // groups[numtable][numIF][nummembership]
3011    // groups: [[[grp, grp,...], [grp, grp,...],...],
3012    //          [[grp, grp,...], [grp, grp,...],...],
3013    //          ...
3014    //          [[grp, grp,...], [grp, grp,...],...]]
3015    vector< vector< vector<uInt> > > groups( insize ) ;
3016    for ( uInt i = 0 ; i < insize ; i++ ) {
3017      groups[i].resize( freqid[i].size() ) ;
3018    }
3019    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3020      for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3021        uInt tableid = ifgrp[igrp][2*imem] ;
3022        vector<uInt>::iterator iter = find( freqid[tableid].begin(), freqid[tableid].end(), ifgrp[igrp][2*imem+1] ) ;
3023        if ( iter != freqid[tableid].end() ) {
3024          uInt rowid = distance( freqid[tableid].begin(), iter ) ;
3025          groups[tableid][rowid].push_back( igrp ) ;
3026        }
3027      }
3028    }
3029
3030    // print membership
3031    //oss.str("") ;
3032    //for ( uInt i = 0 ; i < insize ; i++ ) {
3033    //oss << "Table " << i << endl ;
3034    //for ( uInt j = 0 ; j < groups[i].size() ; j++ ) {
3035    //oss << "   FREQ_ID " <<  setw( 2 ) << freqid[i][j] << ": " ;
3036    //for ( uInt k = 0 ; k < groups[i][j].size() ; k++ ) {
3037    //oss << setw( 2 ) << groups[i][j][k] << " " ;
3038    //}
3039    //oss << endl ;
3040    //}
3041    //}
3042    //os << oss.str() << LogIO::POST ;
3043
3044    // set back coordinfo
3045    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3046      vector<string> coordinfo = tmpin[itable]->getCoordInfo() ;
3047      coordinfo[0] = oldinfo[itable] ;
3048      tmpin[itable]->setCoordInfo( coordinfo ) ;
3049    }
3050
3051    // Create additional table if needed
3052    bool oldInsitu = insitu_ ;
3053    setInsitu( false ) ;
3054    vector< vector<uInt> > addrow( insize ) ;
3055    vector<uInt> addtable( insize, 0 ) ;
3056    vector<uInt> newtableids( insize ) ;
3057    vector<uInt> newifids( insize, 0 ) ;
3058    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3059      //os << "Table " << itable << ": " ;
3060      for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3061        addrow[itable].push_back( groups[itable][ifrow].size()-1 ) ;
3062        //os << addrow[itable][ifrow] << " " ;
3063      }
3064      addtable[itable] = *max_element( addrow[itable].begin(), addrow[itable].end() ) ;
3065      //os << "(" << addtable[itable] << ")" << LogIO::POST ;
3066    }
3067    newin.resize( insize ) ;
3068    copy( tmpin.begin(), tmpin.end(), newin.begin() ) ;
3069    for ( uInt i = 0 ; i < insize ; i++ ) {
3070      newtableids[i] = i ;
3071    }
3072    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3073      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3074        CountedPtr<Scantable> add = getScantable( newin[itable], false ) ;
3075        vector<int> freqidlist ;
3076        for ( uInt i = 0 ; i < groups[itable].size() ; i++ ) {
3077          if ( groups[itable][i].size() > iadd + 1 ) {
3078            freqidlist.push_back( freqid[itable][i] ) ;
3079          }
3080        }
3081        stringstream taqlstream ;
3082        taqlstream << "SELECT FROM $1 WHERE FREQ_ID IN [" ;
3083        for ( uInt i = 0 ; i < freqidlist.size() ; i++ ) {
3084          taqlstream << i ;
3085          if ( i < freqidlist.size() - 1 )
3086            taqlstream << "," ;
3087          else
3088            taqlstream << "]" ;
3089        }
3090        string taql = taqlstream.str() ;
3091        //os << "taql = " << taql << LogIO::POST ;
3092        STSelector selector = STSelector() ;
3093        selector.setTaQL( taql ) ;
3094        add->setSelection( selector ) ;
3095        newin.push_back( add ) ;
3096        newtableids.push_back( itable ) ;
3097        newifids.push_back( iadd + 1 ) ;
3098      }
3099    }
3100
3101    // udpate ifgrp
3102    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3103      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3104        for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3105          if ( groups[itable][ifrow].size() > iadd + 1 ) {
3106            uInt igrp = groups[itable][ifrow][iadd+1] ;
3107            for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3108              if ( ifgrp[igrp][2*imem] == newtableids[iadd+insize] && ifgrp[igrp][2*imem+1] == freqid[newtableids[iadd+insize]][ifrow] ) {
3109                ifgrp[igrp][2*imem] = insize + iadd ;
3110              }
3111            }
3112          }
3113        }
3114      }
3115    }
3116
3117    // print IF groups again for debug
3118    //oss.str( "" ) ;
3119    //oss << "IF Group summary: " << endl ;
3120    //oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3121    //for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3122    //oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3123    //for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3124    //oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3125    //}
3126    //oss << endl ;
3127    //}
3128    //oss << endl ;
3129    //os << oss.str() << LogIO::POST ;
3130
3131    // reset SCANNO and IFNO/FREQ_ID: IF is reset by the result of sortation
3132    os << "All scan number is set to 0" << LogIO::POST ;
3133    //os << "All IF number is set to IF group index" << LogIO::POST ;
3134    insize = newin.size() ;
3135    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3136      uInt rows = newin[itable]->nrow() ;
3137      Table &tmpt = newin[itable]->table() ;
3138      freqIDCol.attach( tmpt, "FREQ_ID" ) ;
3139      scannoCol.attach( tmpt, "SCANNO" ) ;
3140      ifnoCol.attach( tmpt, "IFNO" ) ;
3141      for ( uInt irow=0 ; irow < rows ; irow++ ) {
3142        scannoCol.put( irow, 0 ) ;
3143        uInt freqID = freqIDCol( irow ) ;
3144        vector<uInt>::iterator iter = find( freqid[newtableids[itable]].begin(), freqid[newtableids[itable]].end(), freqID ) ;
3145        if ( iter != freqid[newtableids[itable]].end() ) {
3146          uInt index = distance( freqid[newtableids[itable]].begin(), iter ) ;
3147          ifnoCol.put( irow, groups[newtableids[itable]][index][newifids[itable]] ) ;
3148        }
3149        else {
3150          throw(AipsError("IF grouping was wrong in additional tables.")) ;
3151        }
3152      }
3153    }
3154    oldinfo.resize( insize ) ;
3155    setInsitu( oldInsitu ) ;
3156
3157    // temporarily set coordinfo
3158    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3159      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3160      oldinfo[itable] = coordinfo[0] ;
3161      coordinfo[0] = "Hz" ;
3162      newin[itable]->setCoordInfo( coordinfo ) ;
3163    }
3164
3165    // save column values in the vector
3166    vector< vector<uInt> > freqTableIdVec( insize ) ;
3167    vector< vector<uInt> > freqIdVec( insize ) ;
3168    vector< vector<uInt> > ifNoVec( insize ) ;
3169    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3170      ScalarColumn<uInt> freqIDs ;
3171      freqIDs.attach( newin[itable]->frequencies().table(), "ID" ) ;
3172      ifnoCol.attach( newin[itable]->table(), "IFNO" ) ;
3173      freqIDCol.attach( newin[itable]->table(), "FREQ_ID" ) ;
3174      for ( uInt irow = 0 ; irow < newin[itable]->frequencies().table().nrow() ; irow++ ) {
3175        freqTableIdVec[itable].push_back( freqIDs( irow ) ) ;
3176      }
3177      for ( uInt irow = 0 ; irow < newin[itable]->table().nrow() ; irow++ ) {
3178        freqIdVec[itable].push_back( freqIDCol( irow ) ) ;
3179        ifNoVec[itable].push_back( ifnoCol( irow ) ) ;
3180      }
3181    }
3182
3183    // reset spectra and flagtra: pick up common part of frequency coverage
3184    //os << "Pick common frequency range and align resolution" << LogIO::POST ;
3185    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3186      uInt rows = newin[itable]->nrow() ;
3187      int nminchan = -1 ;
3188      int nmaxchan = -1 ;
3189      vector<uInt> freqIdUpdate ;
3190      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3191        uInt ifno = ifNoVec[itable][irow] ;  // IFNO is reset by group index
3192        double minfreq = ifgfreq[2*ifno] ;
3193        double maxfreq = ifgfreq[2*ifno+1] ;
3194        //os << "frequency range: [" << minfreq << "," << maxfreq << "]" << LogIO::POST ;
3195        vector<double> abcissa = newin[itable]->getAbcissa( irow ) ;
3196        int nchan = abcissa.size() ;
3197        double resol = abcissa[1] - abcissa[0] ;
3198        //os << "abcissa range  : [" << abcissa[0] << "," << abcissa[nchan-1] << "]" << LogIO::POST ;
3199        if ( minfreq <= abcissa[0] )
3200          nminchan = 0 ;
3201        else {
3202          //double cfreq = ( minfreq - abcissa[0] ) / resol ;
3203          double cfreq = ( minfreq - abcissa[0] + 0.5 * resol ) / resol ;
3204          nminchan = int(cfreq) + ( ( cfreq - int(cfreq) <= 0.5 ) ? 0 : 1 ) ;
3205        }
3206        if ( maxfreq >= abcissa[abcissa.size()-1] )
3207          nmaxchan = abcissa.size() - 1 ;
3208        else {
3209          //double cfreq = ( abcissa[abcissa.size()-1] - maxfreq ) / resol ;
3210          double cfreq = ( abcissa[abcissa.size()-1] - maxfreq + 0.5 * resol ) / resol ;
3211          nmaxchan = abcissa.size() - 1 - int(cfreq) - ( ( cfreq - int(cfreq) >= 0.5 ) ? 1 : 0 ) ;
3212        }
3213        //os << "channel range (" << irow << "): [" << nminchan << "," << nmaxchan << "]" << LogIO::POST ;
3214        if ( nmaxchan > nminchan ) {
3215          newin[itable]->reshapeSpectrum( nminchan, nmaxchan, irow ) ;
3216          int newchan = nmaxchan - nminchan + 1 ;
3217          if ( count( freqIdUpdate.begin(), freqIdUpdate.end(), freqIdVec[itable][irow] ) == 0 && newchan < nchan )
3218            freqIdUpdate.push_back( freqIdVec[itable][irow] ) ;
3219        }
3220        else {
3221          throw(AipsError("Failed to pick up common part of frequency range.")) ;
3222        }
3223      }
3224      for ( uInt i = 0 ; i < freqIdUpdate.size() ; i++ ) {
3225        uInt freqId = freqIdUpdate[i] ;
3226        Double refpix ;
3227        Double refval ;
3228        Double increment ;
3229       
3230        // update row
3231        newin[itable]->frequencies().getEntry( refpix, refval, increment, freqId ) ;
3232        refval = refval - ( refpix - nminchan ) * increment ;
3233        refpix = 0 ;
3234        newin[itable]->frequencies().setEntry( refpix, refval, increment, freqId ) ;
3235      }   
3236    }
3237
3238   
3239    // reset spectra and flagtra: align spectral resolution
3240    //os << "Align spectral resolution" << LogIO::POST ;
3241    // gmaxdnu: the coarsest frequency resolution in the frequency group
3242    // gmemid: member index that have a resolution equal to gmaxdnu
3243    // gmaxdnu[numfreqgrp]
3244    // gmaxdnu: [dnu0, dnu1, ...]
3245    // gmemid[numfreqgrp]
3246    // gmemid: [id0, id1, ...]
3247    vector<double> gmaxdnu( freqgrp.size(), 0.0 ) ;
3248    vector<uInt> gmemid( freqgrp.size(), 0 ) ;
3249    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3250      double maxdnu = 0.0 ;       // maximum (coarsest) frequency resolution
3251      int minchan = INT_MAX ;     // minimum channel number
3252      Double refpixref = -1 ;     // reference of 'reference pixel'
3253      Double refvalref = -1 ;     // reference of 'reference frequency'
3254      Double refinc = -1 ;        // reference frequency resolution
3255      uInt refreqid ;
3256      uInt reftable = INT_MAX;
3257      // process only if group member > 1
3258      if ( ifgrp[igrp].size() > 2 ) {
3259        // find minchan and maxdnu in each group
3260        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3261          uInt tableid = ifgrp[igrp][2*imem] ;
3262          uInt rowid = ifgrp[igrp][2*imem+1] ;
3263          vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3264          if ( iter != freqIdVec[tableid].end() ) {
3265            uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3266            vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3267            int nchan = abcissa.size() ;
3268            double dnu = abcissa[1] - abcissa[0] ;
3269            //os << "GROUP " << igrp << " (" << tableid << "," << rowid << "): nchan = " << nchan << " (minchan = " << minchan << ")" << LogIO::POST ;
3270            if ( nchan < minchan ) {
3271              minchan = nchan ;
3272              maxdnu = dnu ;
3273              newin[tableid]->frequencies().getEntry( refpixref, refvalref, refinc, rowid ) ;
3274              refreqid = rowid ;
3275              reftable = tableid ;
3276            }
3277          }
3278        }
3279        // regrid spectra in each group
3280        os << "GROUP " << igrp << endl ;
3281        os << "   Channel number is adjusted to " << minchan << endl ;
3282        os << "   Corresponding frequency resolution is " << maxdnu << "Hz" << LogIO::POST ;
3283        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3284          uInt tableid = ifgrp[igrp][2*imem] ;
3285          uInt rowid = ifgrp[igrp][2*imem+1] ;
3286          freqIDCol.attach( newin[tableid]->table(), "FREQ_ID" ) ;
3287          //os << "tableid = " << tableid << " rowid = " << rowid << ": " << LogIO::POST ;
3288          //os << "   regridChannel applied to " ;
3289          if ( tableid != reftable )
3290            refreqid = newin[tableid]->frequencies().addEntry( refpixref, refvalref, refinc ) ;
3291          for ( uInt irow = 0 ; irow < newin[tableid]->table().nrow() ; irow++ ) {
3292            uInt tfreqid = freqIdVec[tableid][irow] ;
3293            if ( tfreqid == rowid ) {     
3294              //os << irow << " " ;
3295              newin[tableid]->regridChannel( minchan, maxdnu, irow ) ;
3296              freqIDCol.put( irow, refreqid ) ;
3297              freqIdVec[tableid][irow] = refreqid ;
3298            }
3299          }
3300          //os << LogIO::POST ;
3301        }
3302      }
3303      else {
3304        uInt tableid = ifgrp[igrp][0] ;
3305        uInt rowid = ifgrp[igrp][1] ;
3306        vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3307        if ( iter != freqIdVec[tableid].end() ) {
3308          uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3309          vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3310          minchan = abcissa.size() ;
3311          maxdnu = abcissa[1] - abcissa[0] ;
3312        }
3313      }
3314      for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3315        if ( count( freqgrp[i].begin(), freqgrp[i].end(), igrp ) > 0 ) {
3316          if ( maxdnu > gmaxdnu[i] ) {
3317            gmaxdnu[i] = maxdnu ;
3318            gmemid[i] = igrp ;
3319          }
3320          break ;
3321        }
3322      }
3323    }
3324
3325    // set back coordinfo
3326    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3327      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3328      coordinfo[0] = oldinfo[itable] ;
3329      newin[itable]->setCoordInfo( coordinfo ) ;
3330    }     
3331
3332    // accumulate all rows into the first table
3333    // NOTE: assumed in.size() = 1
3334    vector< CountedPtr<Scantable> > tmp( 1 ) ;
3335    if ( newin.size() == 1 )
3336      tmp[0] = newin[0] ;
3337    else
3338      tmp[0] = merge( newin ) ;
3339
3340    //return tmp[0] ;
3341
3342    // average
3343    CountedPtr<Scantable> tmpout = average( tmp, mask, weight, avmode ) ;
3344
3345    //return tmpout ;
3346
3347    // combine frequency group
3348    os << "Combine spectra based on frequency grouping" << LogIO::POST ;
3349    os << "IFNO is renumbered as frequency group ID (see above)" << LogIO::POST ;
3350    vector<string> coordinfo = tmpout->getCoordInfo() ;
3351    oldinfo[0] = coordinfo[0] ;
3352    coordinfo[0] = "Hz" ;
3353    tmpout->setCoordInfo( coordinfo ) ;
3354    // create proformas of output table
3355    stringstream taqlstream ;
3356    taqlstream << "SELECT FROM $1 WHERE IFNO IN [" ;
3357    for ( uInt i = 0 ; i < gmemid.size() ; i++ ) {
3358      taqlstream << gmemid[i] ;
3359      if ( i < gmemid.size() - 1 )
3360        taqlstream << "," ;
3361      else
3362        taqlstream << "]" ;
3363    }
3364    string taql = taqlstream.str() ;
3365    //os << "taql = " << taql << LogIO::POST ;
3366    STSelector selector = STSelector() ;
3367    selector.setTaQL( taql ) ;
3368    oldInsitu = insitu_ ;
3369    setInsitu( false ) ;
3370    out = getScantable( tmpout, false ) ;
3371    setInsitu( oldInsitu ) ;
3372    out->setSelection( selector ) ;
3373    // regrid rows
3374    ifnoCol.attach( tmpout->table(), "IFNO" ) ;
3375    for ( uInt irow = 0 ; irow < tmpout->table().nrow() ; irow++ ) {
3376      uInt ifno = ifnoCol( irow ) ;
3377      for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3378        if ( count( freqgrp[igrp].begin(), freqgrp[igrp].end(), ifno ) > 0 ) {
3379          vector<double> abcissa = tmpout->getAbcissa( irow ) ;
3380          double bw = ( abcissa[1] - abcissa[0] ) * abcissa.size() ;
3381          int nchan = (int)( bw / gmaxdnu[igrp] ) ;
3382          tmpout->regridChannel( nchan, gmaxdnu[igrp], irow ) ;
3383          break ;
3384        }
3385      }
3386    }
3387    // combine spectra
3388    ArrayColumn<Float> specColOut ;
3389    specColOut.attach( out->table(), "SPECTRA" ) ;
3390    ArrayColumn<uChar> flagColOut ;
3391    flagColOut.attach( out->table(), "FLAGTRA" ) ;
3392    ScalarColumn<uInt> ifnoColOut ;
3393    ifnoColOut.attach( out->table(), "IFNO" ) ;
3394    ScalarColumn<uInt> polnoColOut ;
3395    polnoColOut.attach( out->table(), "POLNO" ) ;
3396    ScalarColumn<uInt> freqidColOut ;
3397    freqidColOut.attach( out->table(), "FREQ_ID" ) ;
3398    MDirection::ScalarColumn dirColOut ;
3399    dirColOut.attach( out->table(), "DIRECTION" ) ;
3400    Table &tab = tmpout->table() ;
3401    Block<String> cols(1);
3402    cols[0] = String("POLNO") ;
3403    TableIterator iter( tab, cols ) ;
3404    bool done = false ;
3405    vector< vector<uInt> > sizes( freqgrp.size() ) ;
3406    while( !iter.pastEnd() ) {
3407      vector< vector<Float> > specout( freqgrp.size() ) ;
3408      vector< vector<uChar> > flagout( freqgrp.size() ) ;
3409      ArrayColumn<Float> specCols ;
3410      specCols.attach( iter.table(), "SPECTRA" ) ;
3411      ArrayColumn<uChar> flagCols ;
3412      flagCols.attach( iter.table(), "FLAGTRA" ) ;
3413      ifnoCol.attach( iter.table(), "IFNO" ) ;
3414      ScalarColumn<uInt> polnos ;
3415      polnos.attach( iter.table(), "POLNO" ) ;
3416      MDirection::ScalarColumn dircol ;
3417      dircol.attach( iter.table(), "DIRECTION" ) ;
3418      uInt polno = polnos( 0 ) ;
3419      //os << "POLNO iteration: " << polno << LogIO::POST ;
3420//       for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3421//      sizes[igrp].resize( freqgrp[igrp].size() ) ;
3422//      for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3423//        for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3424//          uInt ifno = ifnoCol( irow ) ;
3425//          if ( ifno == freqgrp[igrp][imem] ) {
3426//            Vector<Float> spec = specCols( irow ) ;
3427//            Vector<uChar> flag = flagCols( irow ) ;
3428//            vector<Float> svec ;
3429//            spec.tovector( svec ) ;
3430//            vector<uChar> fvec ;
3431//            flag.tovector( fvec ) ;
3432//            //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3433//            specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3434//            flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3435//            //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3436//            sizes[igrp][imem] = spec.nelements() ;
3437//          }
3438//        }
3439//      }
3440//      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3441//        uInt ifout = ifnoColOut( irow ) ;
3442//        uInt polout = polnoColOut( irow ) ;
3443//        if ( ifout == gmemid[igrp] && polout == polno ) {
3444//          // set SPECTRA and FRAGTRA
3445//          Vector<Float> newspec( specout[igrp] ) ;
3446//          Vector<uChar> newflag( flagout[igrp] ) ;
3447//          specColOut.put( irow, newspec ) ;
3448//          flagColOut.put( irow, newflag ) ;
3449//          // IFNO renumbering
3450//          ifnoColOut.put( irow, igrp ) ;
3451//        }
3452//      }
3453//       }
3454      // get a list of number of channels for each frequency group member
3455      if ( !done ) {
3456        for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3457          sizes[igrp].resize( freqgrp[igrp].size() ) ;
3458          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3459            for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3460              uInt ifno = ifnoCol( irow ) ;
3461              if ( ifno == freqgrp[igrp][imem] ) {
3462                Vector<Float> spec = specCols( irow ) ;
3463                sizes[igrp][imem] = spec.nelements() ;
3464                break ;
3465              }               
3466            }
3467          }
3468        }
3469        done = true ;
3470      }
3471      // combine spectra
3472      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3473        uInt polout = polnoColOut( irow ) ;
3474        if ( polout == polno ) {
3475          uInt ifout = ifnoColOut( irow ) ;
3476          Vector<Double> direction = dirColOut(irow).getAngle(Unit(String("rad"))).getValue() ;
3477          uInt igrp ;
3478          for ( uInt jgrp = 0 ; jgrp < freqgrp.size() ; jgrp++ ) {
3479            if ( ifout == gmemid[jgrp] ) {
3480              igrp = jgrp ;
3481              break ;
3482            }
3483          }
3484          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3485            for ( uInt jrow = 0 ; jrow < iter.table().nrow() ; jrow++ ) {
3486              uInt ifno = ifnoCol( jrow ) ;
3487              Vector<Double> tdir = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
3488              //if ( ifno == freqgrp[igrp][imem] && allTrue( tdir == direction  ) ) {
3489              Double dx = tdir[0] - direction[0] ;
3490              Double dy = tdir[1] - direction[1] ;
3491              Double dd = sqrt( dx * dx + dy * dy ) ;
3492              //if ( ifno == freqgrp[igrp][imem] && allNearAbs( tdir, direction, tol ) ) {
3493              if ( ifno == freqgrp[igrp][imem] && dd <= tol ) {
3494                Vector<Float> spec = specCols( jrow ) ;
3495                Vector<uChar> flag = flagCols( jrow ) ;
3496                vector<Float> svec ;
3497                spec.tovector( svec ) ;
3498                vector<uChar> fvec ;
3499                flag.tovector( fvec ) ;
3500                //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3501                specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3502                flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3503                //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3504              }
3505            }
3506          }
3507          // set SPECTRA and FRAGTRA
3508          Vector<Float> newspec( specout[igrp] ) ;
3509          Vector<uChar> newflag( flagout[igrp] ) ;
3510          specColOut.put( irow, newspec ) ;
3511          flagColOut.put( irow, newflag ) ;
3512          // IFNO renumbering
3513          ifnoColOut.put( irow, igrp ) ;
3514        }
3515      }
3516      iter++ ;
3517    }
3518    // update FREQUENCIES subtable
3519    vector<bool> updated( freqgrp.size(), false ) ;
3520    for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3521      uInt index = 0 ;
3522      uInt pixShift = 0 ;
3523      while ( freqgrp[igrp][index] != gmemid[igrp] ) {
3524        pixShift += sizes[igrp][index++] ;
3525      }
3526      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3527        if ( ifnoColOut( irow ) == gmemid[igrp] && !updated[igrp] ) {
3528          uInt freqidOut = freqidColOut( irow ) ;
3529          //os << "freqgrp " << igrp << " freqidOut = " << freqidOut << LogIO::POST ;
3530          double refpix ;
3531          double refval ;
3532          double increm ;
3533          out->frequencies().getEntry( refpix, refval, increm, freqidOut ) ;
3534          refpix += pixShift ;
3535          out->frequencies().setEntry( refpix, refval, increm, freqidOut ) ;
3536          updated[igrp] = true ;
3537        }
3538      }
3539    }
3540
3541    //out = tmpout ;
3542
3543    coordinfo = tmpout->getCoordInfo() ;
3544    coordinfo[0] = oldinfo[0] ;
3545    tmpout->setCoordInfo( coordinfo ) ;
3546  }
3547  else {
3548    // simple average
3549    out =  average( in, mask, weight, avmode ) ;
3550  }
3551 
3552  return out ;
3553}
3554
3555CountedPtr<Scantable> STMath::cwcal( const CountedPtr<Scantable>& s,
3556                                     const String calmode,
3557                                     const String antname )
3558{
3559  // frequency switch
3560  if ( calmode == "fs" ) {
3561    return cwcalfs( s, antname ) ;
3562  }
3563  else {
3564    vector<bool> masks = s->getMask( 0 ) ;
3565    vector<int> types ;
3566
3567    // sky scan
3568    STSelector sel = STSelector() ;
3569    types.push_back( SrcType::SKY ) ;
3570    sel.setTypes( types ) ;
3571    s->setSelection( sel ) ;
3572    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3573    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
3574    s->unsetSelection() ;
3575    sel.reset() ;
3576    types.clear() ;
3577
3578    // hot scan
3579    types.push_back( SrcType::HOT ) ;
3580    sel.setTypes( types ) ;
3581    s->setSelection( sel ) ;
3582    tmp.clear() ;
3583    tmp.push_back( getScantable( s, false ) ) ;
3584    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
3585    s->unsetSelection() ;
3586    sel.reset() ;
3587    types.clear() ;
3588   
3589    // cold scan
3590    CountedPtr<Scantable> acold ;
3591//     types.push_back( SrcType::COLD ) ;
3592//     sel.setTypes( types ) ;
3593//     s->setSelection( sel ) ;
3594//     tmp.clear() ;
3595//     tmp.push_back( getScantable( s, false ) ) ;
3596//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCNAN" ) ;
3597//     s->unsetSelection() ;
3598//     sel.reset() ;
3599//     types.clear() ;
3600
3601    // off scan
3602    types.push_back( SrcType::PSOFF ) ;
3603    sel.setTypes( types ) ;
3604    s->setSelection( sel ) ;
3605    tmp.clear() ;
3606    tmp.push_back( getScantable( s, false ) ) ;
3607    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3608    s->unsetSelection() ;
3609    sel.reset() ;
3610    types.clear() ;
3611   
3612    // on scan
3613    bool insitu = insitu_ ;
3614    insitu_ = false ;
3615    CountedPtr<Scantable> out = getScantable( s, true ) ;
3616    insitu_ = insitu ;
3617    types.push_back( SrcType::PSON ) ;
3618    sel.setTypes( types ) ;
3619    s->setSelection( sel ) ;
3620    TableCopy::copyRows( out->table(), s->table() ) ;
3621    s->unsetSelection() ;
3622    sel.reset() ;
3623    types.clear() ;
3624   
3625    // process each on scan
3626    ArrayColumn<Float> tsysCol ;
3627    tsysCol.attach( out->table(), "TSYS" ) ;
3628    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3629      vector<float> sp = getCalibratedSpectra( out, aoff, asky, ahot, acold, i, antname ) ;
3630      out->setSpectrum( sp, i ) ;
3631      string reftime = out->getTime( i ) ;
3632      vector<int> ii( 1, out->getIF( i ) ) ;
3633      vector<int> ib( 1, out->getBeam( i ) ) ;
3634      vector<int> ip( 1, out->getPol( i ) ) ;
3635      sel.setIFs( ii ) ;
3636      sel.setBeams( ib ) ;
3637      sel.setPolarizations( ip ) ;
3638      asky->setSelection( sel ) ;   
3639      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
3640      const Vector<Float> Vtsys( sptsys ) ;
3641      tsysCol.put( i, Vtsys ) ;
3642      asky->unsetSelection() ;
3643      sel.reset() ;
3644    }
3645
3646    // flux unit
3647    out->setFluxUnit( "K" ) ;
3648
3649    return out ;
3650  }
3651}
3652 
3653CountedPtr<Scantable> STMath::almacal( const CountedPtr<Scantable>& s,
3654                                       const String calmode )
3655{
3656  // frequency switch
3657  if ( calmode == "fs" ) {
3658    return almacalfs( s ) ;
3659  }
3660  else {
3661    vector<bool> masks = s->getMask( 0 ) ;
3662   
3663    // off scan
3664    STSelector sel = STSelector() ;
3665    vector<int> types ;
3666    types.push_back( SrcType::PSOFF ) ;
3667    sel.setTypes( types ) ;
3668    s->setSelection( sel ) ;
3669    // TODO 2010/01/08 TN
3670    // Grouping by time should be needed before averaging.
3671    // Each group must have own unique SCANNO (should be renumbered).
3672    // See PIPELINE/SDCalibration.py
3673    CountedPtr<Scantable> soff = getScantable( s, false ) ;
3674    Table ttab = soff->table() ;
3675    ROScalarColumn<Double> timeCol( ttab, "TIME" ) ;
3676    uInt nrow = timeCol.nrow() ;
3677    Vector<Double> timeSep( nrow - 1 ) ;
3678    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3679      timeSep[i] = timeCol(i+1) - timeCol(i) ;
3680    }
3681    ScalarColumn<Double> intervalCol( ttab, "INTERVAL" ) ;
3682    Vector<Double> interval = intervalCol.getColumn() ;
3683    interval /= 86400.0 ;
3684    ScalarColumn<uInt> scanCol( ttab, "SCANNO" ) ;
3685    vector<uInt> glist ;
3686    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3687      double gap = 2.0 * timeSep[i] / ( interval[i] + interval[i+1] ) ;
3688      //cout << "gap[" << i << "]=" << setw(5) << gap << endl ;
3689      if ( gap > 1.1 ) {
3690        glist.push_back( i ) ;
3691      }
3692    }
3693    Vector<uInt> gaplist( glist ) ;
3694    //cout << "gaplist = " << gaplist << endl ;
3695    uInt newid = 0 ;
3696    for ( uInt i = 0 ; i < nrow ; i++ ) {
3697      scanCol.put( i, newid ) ;
3698      if ( i == gaplist[newid] ) {
3699        newid++ ;
3700      }
3701    }
3702    //cout << "new scancol = " << scanCol.getColumn() << endl ;
3703    vector< CountedPtr<Scantable> > tmp( 1, soff ) ;
3704    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3705    //cout << "aoff.nrow = " << aoff->nrow() << endl ;
3706    s->unsetSelection() ;
3707    sel.reset() ;
3708    types.clear() ;
3709   
3710    // on scan
3711    bool insitu = insitu_ ;
3712    insitu_ = false ;
3713    CountedPtr<Scantable> out = getScantable( s, true ) ;
3714    insitu_ = insitu ;
3715    types.push_back( SrcType::PSON ) ;
3716    sel.setTypes( types ) ;
3717    s->setSelection( sel ) ;
3718    TableCopy::copyRows( out->table(), s->table() ) ;
3719    s->unsetSelection() ;
3720    sel.reset() ;
3721    types.clear() ;
3722   
3723    // process each on scan
3724    ArrayColumn<Float> tsysCol ;
3725    tsysCol.attach( out->table(), "TSYS" ) ;
3726    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3727      vector<float> sp = getCalibratedSpectra( out, aoff, i ) ;
3728      out->setSpectrum( sp, i ) ;
3729    }
3730
3731    // flux unit
3732    out->setFluxUnit( "K" ) ;
3733
3734    return out ;
3735  }
3736}
3737
3738CountedPtr<Scantable> STMath::cwcalfs( const CountedPtr<Scantable>& s,
3739                                       const String antname )
3740{
3741  vector<int> types ;
3742
3743  // APEX calibration mode
3744  int apexcalmode = 1 ;
3745 
3746  if ( antname.find( "APEX" ) != string::npos ) {
3747    // check if off scan exists or not
3748    STSelector sel = STSelector() ;
3749    //sel.setName( offstr1 ) ;
3750    types.push_back( SrcType::FLOOFF ) ;
3751    sel.setTypes( types ) ;
3752    try {
3753      s->setSelection( sel ) ;
3754    }
3755    catch ( AipsError &e ) {
3756      apexcalmode = 0 ;
3757    }
3758    sel.reset() ;
3759  }
3760  s->unsetSelection() ;
3761  types.clear() ;
3762
3763  vector<bool> masks = s->getMask( 0 ) ;
3764  CountedPtr<Scantable> ssig, sref ;
3765  CountedPtr<Scantable> out ;
3766
3767  if ( antname.find( "APEX" ) != string::npos ) {
3768    // APEX calibration
3769    // sky scan
3770    STSelector sel = STSelector() ;
3771    types.push_back( SrcType::FLOSKY ) ;
3772    sel.setTypes( types ) ;
3773    s->setSelection( sel ) ;
3774    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3775    CountedPtr<Scantable> askylo = average( tmp, masks, "TINT", "SCAN" ) ;
3776    s->unsetSelection() ;
3777    sel.reset() ;
3778    types.clear() ;
3779    types.push_back( SrcType::FHISKY ) ;
3780    sel.setTypes( types ) ;
3781    s->setSelection( sel ) ;
3782    tmp.clear() ;
3783    tmp.push_back( getScantable( s, false ) ) ;
3784    CountedPtr<Scantable> askyhi = average( tmp, masks, "TINT", "SCAN" ) ;
3785    s->unsetSelection() ;
3786    sel.reset() ;
3787    types.clear() ;
3788   
3789    // hot scan
3790    types.push_back( SrcType::FLOHOT ) ;
3791    sel.setTypes( types ) ;
3792    s->setSelection( sel ) ;
3793    tmp.clear() ;
3794    tmp.push_back( getScantable( s, false ) ) ;
3795    CountedPtr<Scantable> ahotlo = average( tmp, masks, "TINT", "SCAN" ) ;
3796    s->unsetSelection() ;
3797    sel.reset() ;
3798    types.clear() ;
3799    types.push_back( SrcType::FHIHOT ) ;
3800    sel.setTypes( types ) ;
3801    s->setSelection( sel ) ;
3802    tmp.clear() ;
3803    tmp.push_back( getScantable( s, false ) ) ;
3804    CountedPtr<Scantable> ahothi = average( tmp, masks, "TINT", "SCAN" ) ;
3805    s->unsetSelection() ;
3806    sel.reset() ;
3807    types.clear() ;
3808   
3809    // cold scan
3810    CountedPtr<Scantable> acoldlo, acoldhi ;
3811//     types.push_back( SrcType::FLOCOLD ) ;
3812//     sel.setTypes( types ) ;
3813//     s->setSelection( sel ) ;
3814//     tmp.clear() ;
3815//     tmp.push_back( getScantable( s, false ) ) ;
3816//     CountedPtr<Scantable> acoldlo = average( tmp, masks, "TINT", "SCAN" ) ;
3817//     s->unsetSelection() ;
3818//     sel.reset() ;
3819//     types.clear() ;
3820//     types.push_back( SrcType::FHICOLD ) ;
3821//     sel.setTypes( types ) ;
3822//     s->setSelection( sel ) ;
3823//     tmp.clear() ;
3824//     tmp.push_back( getScantable( s, false ) ) ;
3825//     CountedPtr<Scantable> acoldhi = average( tmp, masks, "TINT", "SCAN" ) ;
3826//     s->unsetSelection() ;
3827//     sel.reset() ;
3828//     types.clear() ;
3829
3830    // ref scan
3831    bool insitu = insitu_ ;
3832    insitu_ = false ;
3833    sref = getScantable( s, true ) ;
3834    insitu_ = insitu ;
3835    types.push_back( SrcType::FSLO ) ;
3836    sel.setTypes( types ) ;
3837    s->setSelection( sel ) ;
3838    TableCopy::copyRows( sref->table(), s->table() ) ;
3839    s->unsetSelection() ;
3840    sel.reset() ;
3841    types.clear() ;
3842   
3843    // sig scan
3844    insitu_ = false ;
3845    ssig = getScantable( s, true ) ;
3846    insitu_ = insitu ;
3847    types.push_back( SrcType::FSHI ) ;
3848    sel.setTypes( types ) ;
3849    s->setSelection( sel ) ;
3850    TableCopy::copyRows( ssig->table(), s->table() ) ;
3851    s->unsetSelection() ;
3852    sel.reset() ; 
3853    types.clear() ;
3854         
3855    if ( apexcalmode == 0 ) {
3856      // APEX fs data without off scan
3857      // process each sig and ref scan
3858      ArrayColumn<Float> tsysCollo ;
3859      tsysCollo.attach( ssig->table(), "TSYS" ) ;
3860      ArrayColumn<Float> tsysColhi ;
3861      tsysColhi.attach( sref->table(), "TSYS" ) ;
3862      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
3863        vector< CountedPtr<Scantable> > sky( 2 ) ;
3864        sky[0] = askylo ;
3865        sky[1] = askyhi ;
3866        vector< CountedPtr<Scantable> > hot( 2 ) ;
3867        hot[0] = ahotlo ;
3868        hot[1] = ahothi ;
3869        vector< CountedPtr<Scantable> > cold( 2 ) ;
3870        //cold[0] = acoldlo ;
3871        //cold[1] = acoldhi ;
3872        vector<float> sp = getFSCalibratedSpectra( ssig, sref, sky, hot, cold, i ) ;
3873        ssig->setSpectrum( sp, i ) ;
3874        string reftime = ssig->getTime( i ) ;
3875        vector<int> ii( 1, ssig->getIF( i ) ) ;
3876        vector<int> ib( 1, ssig->getBeam( i ) ) ;
3877        vector<int> ip( 1, ssig->getPol( i ) ) ;
3878        sel.setIFs( ii ) ;
3879        sel.setBeams( ib ) ;
3880        sel.setPolarizations( ip ) ;
3881        askylo->setSelection( sel ) ;
3882        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
3883        const Vector<Float> Vtsyslo( sptsys ) ;
3884        tsysCollo.put( i, Vtsyslo ) ;
3885        askylo->unsetSelection() ;
3886        sel.reset() ;
3887        sky[0] = askyhi ;
3888        sky[1] = askylo ;
3889        hot[0] = ahothi ;
3890        hot[1] = ahotlo ;
3891        cold[0] = acoldhi ;
3892        cold[1] = acoldlo ;
3893        sp = getFSCalibratedSpectra( sref, ssig, sky, hot, cold, i ) ;
3894        sref->setSpectrum( sp, i ) ;
3895        reftime = sref->getTime( i ) ;
3896        ii[0] = sref->getIF( i )  ;
3897        ib[0] = sref->getBeam( i ) ;
3898        ip[0] = sref->getPol( i ) ;
3899        sel.setIFs( ii ) ;
3900        sel.setBeams( ib ) ;
3901        sel.setPolarizations( ip ) ;
3902        askyhi->setSelection( sel ) ;   
3903        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
3904        const Vector<Float> Vtsyshi( sptsys ) ;
3905        tsysColhi.put( i, Vtsyshi ) ;
3906        askyhi->unsetSelection() ;
3907        sel.reset() ;
3908      }
3909    }
3910    else if ( apexcalmode == 1 ) {
3911      // APEX fs data with off scan
3912      // off scan
3913      types.push_back( SrcType::FLOOFF ) ;
3914      sel.setTypes( types ) ;
3915      s->setSelection( sel ) ;
3916      tmp.clear() ;
3917      tmp.push_back( getScantable( s, false ) ) ;
3918      CountedPtr<Scantable> aofflo = average( tmp, masks, "TINT", "SCAN" ) ;
3919      s->unsetSelection() ;
3920      sel.reset() ;
3921      types.clear() ;
3922      types.push_back( SrcType::FHIOFF ) ;
3923      sel.setTypes( types ) ;
3924      s->setSelection( sel ) ;
3925      tmp.clear() ;
3926      tmp.push_back( getScantable( s, false ) ) ;
3927      CountedPtr<Scantable> aoffhi = average( tmp, masks, "TINT", "SCAN" ) ;
3928      s->unsetSelection() ;
3929      sel.reset() ;
3930      types.clear() ;
3931     
3932      // process each sig and ref scan
3933      ArrayColumn<Float> tsysCollo ;
3934      tsysCollo.attach( ssig->table(), "TSYS" ) ;
3935      ArrayColumn<Float> tsysColhi ;
3936      tsysColhi.attach( sref->table(), "TSYS" ) ;
3937      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
3938        vector<float> sp = getCalibratedSpectra( ssig, aofflo, askylo, ahotlo, acoldlo, i, antname ) ;
3939        ssig->setSpectrum( sp, i ) ;
3940        sp = getCalibratedSpectra( sref, aoffhi, askyhi, ahothi, acoldhi, i, antname ) ;
3941        string reftime = ssig->getTime( i ) ;
3942        vector<int> ii( 1, ssig->getIF( i ) ) ;
3943        vector<int> ib( 1, ssig->getBeam( i ) ) ;
3944        vector<int> ip( 1, ssig->getPol( i ) ) ;
3945        sel.setIFs( ii ) ;
3946        sel.setBeams( ib ) ;
3947        sel.setPolarizations( ip ) ;
3948        askylo->setSelection( sel ) ;
3949        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
3950        const Vector<Float> Vtsyslo( sptsys ) ;
3951        tsysCollo.put( i, Vtsyslo ) ;
3952        askylo->unsetSelection() ;
3953        sel.reset() ;
3954        sref->setSpectrum( sp, i ) ;
3955        reftime = sref->getTime( i ) ;
3956        ii[0] = sref->getIF( i )  ;
3957        ib[0] = sref->getBeam( i ) ;
3958        ip[0] = sref->getPol( i ) ;
3959        sel.setIFs( ii ) ;
3960        sel.setBeams( ib ) ;
3961        sel.setPolarizations( ip ) ;
3962        askyhi->setSelection( sel ) ;   
3963        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
3964        const Vector<Float> Vtsyshi( sptsys ) ;
3965        tsysColhi.put( i, Vtsyshi ) ;
3966        askyhi->unsetSelection() ;
3967        sel.reset() ;
3968      }
3969    }
3970  }
3971  else {
3972    // non-APEX fs data
3973    // sky scan
3974    STSelector sel = STSelector() ;
3975    types.push_back( SrcType::SKY ) ;
3976    sel.setTypes( types ) ;
3977    s->setSelection( sel ) ;
3978    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3979    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
3980    s->unsetSelection() ;
3981    sel.reset() ;
3982    types.clear() ;
3983   
3984    // hot scan
3985    types.push_back( SrcType::HOT ) ;
3986    sel.setTypes( types ) ;
3987    s->setSelection( sel ) ;
3988    tmp.clear() ;
3989    tmp.push_back( getScantable( s, false ) ) ;
3990    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
3991    s->unsetSelection() ;
3992    sel.reset() ;
3993    types.clear() ;
3994
3995    // cold scan
3996    CountedPtr<Scantable> acold ;
3997//     types.push_back( SrcType::COLD ) ;
3998//     sel.setTypes( types ) ;
3999//     s->setSelection( sel ) ;
4000//     tmp.clear() ;
4001//     tmp.push_back( getScantable( s, false ) ) ;
4002//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCAN" ) ;
4003//     s->unsetSelection() ;
4004//     sel.reset() ;
4005//     types.clear() ;
4006   
4007    // ref scan
4008    bool insitu = insitu_ ;
4009    insitu_ = false ;
4010    sref = getScantable( s, true ) ;
4011    insitu_ = insitu ;
4012    types.push_back( SrcType::FSOFF ) ;
4013    sel.setTypes( types ) ;
4014    s->setSelection( sel ) ;
4015    TableCopy::copyRows( sref->table(), s->table() ) ;
4016    s->unsetSelection() ;
4017    sel.reset() ;
4018    types.clear() ;
4019   
4020    // sig scan
4021    insitu_ = false ;
4022    ssig = getScantable( s, true ) ;
4023    insitu_ = insitu ;
4024    types.push_back( SrcType::FSON ) ;
4025    sel.setTypes( types ) ;
4026    s->setSelection( sel ) ;
4027    TableCopy::copyRows( ssig->table(), s->table() ) ;
4028    s->unsetSelection() ;
4029    sel.reset() ;
4030    types.clear() ;
4031
4032    // process each sig and ref scan
4033    ArrayColumn<Float> tsysColsig ;
4034    tsysColsig.attach( ssig->table(), "TSYS" ) ;
4035    ArrayColumn<Float> tsysColref ;
4036    tsysColref.attach( ssig->table(), "TSYS" ) ;
4037    for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4038      vector<float> sp = getFSCalibratedSpectra( ssig, sref, asky, ahot, acold, i ) ;
4039      ssig->setSpectrum( sp, i ) ;
4040      string reftime = ssig->getTime( i ) ;
4041      vector<int> ii( 1, ssig->getIF( i ) ) ;
4042      vector<int> ib( 1, ssig->getBeam( i ) ) ;
4043      vector<int> ip( 1, ssig->getPol( i ) ) ;
4044      sel.setIFs( ii ) ;
4045      sel.setBeams( ib ) ;
4046      sel.setPolarizations( ip ) ;
4047      asky->setSelection( sel ) ;
4048      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
4049      const Vector<Float> Vtsys( sptsys ) ;
4050      tsysColsig.put( i, Vtsys ) ;
4051      asky->unsetSelection() ;
4052      sel.reset() ;
4053      sp = getFSCalibratedSpectra( sref, ssig, asky, ahot, acold, i ) ;
4054      sref->setSpectrum( sp, i ) ;
4055      tsysColref.put( i, Vtsys ) ;
4056    }
4057  }
4058
4059  // do folding if necessary
4060  Table sigtab = ssig->table() ;
4061  Table reftab = sref->table() ;
4062  ScalarColumn<uInt> sigifnoCol ;
4063  ScalarColumn<uInt> refifnoCol ;
4064  ScalarColumn<uInt> sigfidCol ;
4065  ScalarColumn<uInt> reffidCol ;
4066  Int nchan = (Int)ssig->nchan() ;
4067  sigifnoCol.attach( sigtab, "IFNO" ) ;
4068  refifnoCol.attach( reftab, "IFNO" ) ;
4069  sigfidCol.attach( sigtab, "FREQ_ID" ) ;
4070  reffidCol.attach( reftab, "FREQ_ID" ) ;
4071  Vector<uInt> sfids( sigfidCol.getColumn() ) ;
4072  Vector<uInt> rfids( reffidCol.getColumn() ) ;
4073  vector<uInt> sfids_unique ;
4074  vector<uInt> rfids_unique ;
4075  vector<uInt> sifno_unique ;
4076  vector<uInt> rifno_unique ;
4077  for ( uInt i = 0 ; i < sfids.nelements() ; i++ ) {
4078    if ( count( sfids_unique.begin(), sfids_unique.end(), sfids[i] ) == 0 ) {
4079      sfids_unique.push_back( sfids[i] ) ;
4080      sifno_unique.push_back( ssig->getIF( i ) ) ;
4081    }
4082    if ( count( rfids_unique.begin(), rfids_unique.end(),  rfids[i] ) == 0 ) {
4083      rfids_unique.push_back( rfids[i] ) ;
4084      rifno_unique.push_back( sref->getIF( i ) ) ;
4085    }
4086  }
4087  double refpix_sig, refval_sig, increment_sig ;
4088  double refpix_ref, refval_ref, increment_ref ;
4089  vector< CountedPtr<Scantable> > tmp( sfids_unique.size() ) ;
4090  for ( uInt i = 0 ; i < sfids_unique.size() ; i++ ) {
4091    ssig->frequencies().getEntry( refpix_sig, refval_sig, increment_sig, sfids_unique[i] ) ;
4092    sref->frequencies().getEntry( refpix_ref, refval_ref, increment_ref, rfids_unique[i] ) ;
4093    if ( refpix_sig == refpix_ref ) {
4094      double foffset = refval_ref - refval_sig ;
4095      int choffset = static_cast<int>(foffset/increment_sig) ;
4096      double doffset = foffset / increment_sig ;
4097      if ( abs(choffset) >= nchan ) {
4098        LogIO os( LogOrigin( "STMath", "cwcalfs", WHERE ) ) ;
4099        os << "FREQ_ID=[" << sfids_unique[i] << "," << rfids_unique[i] << "]: out-band frequency switching, no folding" << LogIO::POST ;
4100        os << "Just return signal data" << LogIO::POST ;
4101        //std::vector< CountedPtr<Scantable> > tabs ;
4102        //tabs.push_back( ssig ) ;
4103        //tabs.push_back( sref ) ;
4104        //out = merge( tabs ) ;
4105        tmp[i] = ssig ;
4106      }
4107      else {
4108        STSelector sel = STSelector() ;
4109        vector<int> v( 1, sifno_unique[i] ) ;
4110        sel.setIFs( v ) ;
4111        ssig->setSelection( sel ) ;
4112        sel.reset() ;
4113        v[0] = rifno_unique[i] ;
4114        sel.setIFs( v ) ;
4115        sref->setSelection( sel ) ;
4116        sel.reset() ;
4117        if ( antname.find( "APEX" ) != string::npos ) {
4118          tmp[i] = dofold( ssig, sref, 0.5*doffset, -0.5*doffset ) ;
4119          //tmp[i] = dofold( ssig, sref, doffset ) ;
4120        }
4121        else {
4122          tmp[i] = dofold( ssig, sref, doffset ) ;
4123        }
4124        ssig->unsetSelection() ;
4125        sref->unsetSelection() ;
4126      }
4127    }
4128  }
4129
4130  if ( tmp.size() > 1 ) {
4131    out = merge( tmp ) ;
4132  }
4133  else {
4134    out = tmp[0] ;
4135  }
4136
4137  // flux unit
4138  out->setFluxUnit( "K" ) ;
4139
4140  return out ;
4141}
4142
4143CountedPtr<Scantable> STMath::almacalfs( const CountedPtr<Scantable>& s )
4144{
4145  CountedPtr<Scantable> out ;
4146
4147  return out ;
4148}
4149
4150vector<float> STMath::getSpectrumFromTime( string reftime,
4151                                           CountedPtr<Scantable>& s,
4152                                           string mode )
4153{
4154  LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
4155  vector<float> sp ;
4156
4157  if ( s->nrow() == 0 ) {
4158    os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4159    return sp ;
4160  }
4161  else if ( s->nrow() == 1 ) {
4162    //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4163    return s->getSpectrum( 0 ) ;
4164  }
4165  else {
4166    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4167    if ( mode == "before" ) {
4168      int id = -1 ;
4169      if ( idx[0] != -1 ) {
4170        id = idx[0] ;
4171      }
4172      else if ( idx[1] != -1 ) {
4173        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4174        id = idx[1] ;
4175      }
4176      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4177      sp = s->getSpectrum( id ) ;
4178    }
4179    else if ( mode == "after" ) {
4180      int id = -1 ;
4181      if ( idx[1] != -1 ) {
4182        id = idx[1] ;
4183      }
4184      else if ( idx[0] != -1 ) {
4185        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4186        id = idx[1] ;
4187      }
4188      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4189      sp = s->getSpectrum( id ) ;
4190    }
4191    else if ( mode == "nearest" ) {
4192      int id = -1 ;
4193      if ( idx[0] == -1 ) {
4194        id = idx[1] ;
4195      }
4196      else if ( idx[1] == -1 ) {
4197        id = idx[0] ;
4198      }
4199      else if ( idx[0] == idx[1] ) {
4200        id = idx[0] ;
4201      }
4202      else {
4203        double t0 = getMJD( s->getTime( idx[0] ) ) ;
4204        double t1 = getMJD( s->getTime( idx[1] ) ) ;
4205        double tref = getMJD( reftime ) ;
4206        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4207          id = idx[1] ;
4208        }
4209        else {
4210          id = idx[0] ;
4211        }
4212      }
4213      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4214      sp = s->getSpectrum( id ) ;     
4215    }
4216    else if ( mode == "linear" ) {
4217      if ( idx[0] == -1 ) {
4218        // use after
4219        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4220        int id = idx[1] ;
4221        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4222        sp = s->getSpectrum( id ) ;
4223      }
4224      else if ( idx[1] == -1 ) {
4225        // use before
4226        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4227        int id = idx[0] ;
4228        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4229        sp = s->getSpectrum( id ) ;
4230      }
4231      else if ( idx[0] == idx[1] ) {
4232        // use before
4233        //os << "No need to interporate." << LogIO::POST ;
4234        int id = idx[0] ;
4235        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4236        sp = s->getSpectrum( id ) ;
4237      }
4238      else {
4239        // do interpolation
4240        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4241        double t0 = getMJD( s->getTime( idx[0] ) ) ;
4242        double t1 = getMJD( s->getTime( idx[1] ) ) ;
4243        double tref = getMJD( reftime ) ;
4244        vector<float> sp0 = s->getSpectrum( idx[0] ) ;
4245        vector<float> sp1 = s->getSpectrum( idx[1] ) ;
4246        for ( unsigned int i = 0 ; i < sp0.size() ; i++ ) {
4247          float v = ( sp1[i] - sp0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + sp0[i] ;
4248          sp.push_back( v ) ;
4249        }
4250      }
4251    }
4252    else {
4253      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4254    }
4255    return sp ;
4256  }
4257}
4258
4259double STMath::getMJD( string strtime )
4260{
4261  if ( strtime.find("/") == string::npos ) {
4262    // MJD time string
4263    return atof( strtime.c_str() ) ;
4264  }
4265  else {
4266    // string in YYYY/MM/DD/HH:MM:SS format
4267    uInt year = atoi( strtime.substr( 0, 4 ).c_str() ) ;
4268    uInt month = atoi( strtime.substr( 5, 2 ).c_str() ) ;
4269    uInt day = atoi( strtime.substr( 8, 2 ).c_str() ) ;
4270    uInt hour = atoi( strtime.substr( 11, 2 ).c_str() ) ;
4271    uInt minute = atoi( strtime.substr( 14, 2 ).c_str() ) ;
4272    uInt sec = atoi( strtime.substr( 17, 2 ).c_str() ) ;
4273    Time t( year, month, day, hour, minute, sec ) ;
4274    return t.modifiedJulianDay() ;
4275  }
4276}
4277
4278vector<int> STMath::getRowIdFromTime( string reftime, CountedPtr<Scantable> &s )
4279{
4280  double reft = getMJD( reftime ) ;
4281  double dtmin = 1.0e100 ;
4282  double dtmax = -1.0e100 ;
4283  vector<double> dt ;
4284  int just_before = -1 ;
4285  int just_after = -1 ;
4286  for ( int i = 0 ; i < s->nrow() ; i++ ) {
4287    dt.push_back( getMJD( s->getTime( i ) ) - reft ) ;
4288  }
4289  for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
4290    if ( dt[i] > 0.0 ) {
4291      // after reftime
4292      if ( dt[i] < dtmin ) {
4293        just_after = i ;
4294        dtmin = dt[i] ;
4295      }
4296    }
4297    else if ( dt[i] < 0.0 ) {
4298      // before reftime
4299      if ( dt[i] > dtmax ) {
4300        just_before = i ;
4301        dtmax = dt[i] ;
4302      }
4303    }
4304    else {
4305      // just a reftime
4306      just_before = i ;
4307      just_after = i ;
4308      dtmax = 0 ;
4309      dtmin = 0 ;
4310      break ;
4311    }
4312  }
4313
4314  vector<int> v ;
4315  v.push_back( just_before ) ;
4316  v.push_back( just_after ) ;
4317
4318  return v ;
4319}
4320
4321vector<float> STMath::getTcalFromTime( string reftime,
4322                                       CountedPtr<Scantable>& s,
4323                                       string mode )
4324{
4325  LogIO os( LogOrigin( "STMath", "getTcalFromTime", WHERE ) ) ;
4326  vector<float> tcal ;
4327  STTcal tcalTable = s->tcal() ;
4328  String time ;
4329  Vector<Float> tcalval ;
4330  if ( s->nrow() == 0 ) {
4331    os << LogIO::SEVERE << "No row in the input scantable. Return empty tcal." << LogIO::POST ;
4332    return tcal ;
4333  }
4334  else if ( s->nrow() == 1 ) {
4335    uInt tcalid = s->getTcalId( 0 ) ;
4336    //os << "use row " << 0 << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4337    tcalTable.getEntry( time, tcalval, tcalid ) ;
4338    tcalval.tovector( tcal ) ;
4339    return tcal ;
4340  }
4341  else {
4342    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4343    if ( mode == "before" ) {
4344      int id = -1 ;
4345      if ( idx[0] != -1 ) {
4346        id = idx[0] ;
4347      }
4348      else if ( idx[1] != -1 ) {
4349        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4350        id = idx[1] ;
4351      }
4352      uInt tcalid = s->getTcalId( id ) ;
4353      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4354      tcalTable.getEntry( time, tcalval, tcalid ) ;
4355      tcalval.tovector( tcal ) ;
4356    }
4357    else if ( mode == "after" ) {
4358      int id = -1 ;
4359      if ( idx[1] != -1 ) {
4360        id = idx[1] ;
4361      }
4362      else if ( idx[0] != -1 ) {
4363        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4364        id = idx[1] ;
4365      }
4366      uInt tcalid = s->getTcalId( id ) ;
4367      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4368      tcalTable.getEntry( time, tcalval, tcalid ) ;
4369      tcalval.tovector( tcal ) ;
4370    }
4371    else if ( mode == "nearest" ) {
4372      int id = -1 ;
4373      if ( idx[0] == -1 ) {
4374        id = idx[1] ;
4375      }
4376      else if ( idx[1] == -1 ) {
4377        id = idx[0] ;
4378      }
4379      else if ( idx[0] == idx[1] ) {
4380        id = idx[0] ;
4381      }
4382      else {
4383        double t0 = getMJD( s->getTime( idx[0] ) ) ;
4384        double t1 = getMJD( s->getTime( idx[1] ) ) ;
4385        double tref = getMJD( reftime ) ;
4386        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4387          id = idx[1] ;
4388        }
4389        else {
4390          id = idx[0] ;
4391        }
4392      }
4393      uInt tcalid = s->getTcalId( id ) ;
4394      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4395      tcalTable.getEntry( time, tcalval, tcalid ) ;
4396      tcalval.tovector( tcal ) ;
4397    }
4398    else if ( mode == "linear" ) {
4399      if ( idx[0] == -1 ) {
4400        // use after
4401        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4402        int id = idx[1] ;
4403        uInt tcalid = s->getTcalId( id ) ;
4404        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4405        tcalTable.getEntry( time, tcalval, tcalid ) ;
4406        tcalval.tovector( tcal ) ;
4407      }
4408      else if ( idx[1] == -1 ) {
4409        // use before
4410        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4411        int id = idx[0] ;
4412        uInt tcalid = s->getTcalId( id ) ;
4413        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4414        tcalTable.getEntry( time, tcalval, tcalid ) ;
4415        tcalval.tovector( tcal ) ;
4416      }
4417      else if ( idx[0] == idx[1] ) {
4418        // use before
4419        //os << "No need to interporate." << LogIO::POST ;
4420        int id = idx[0] ;
4421        uInt tcalid = s->getTcalId( id ) ;
4422        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4423        tcalTable.getEntry( time, tcalval, tcalid ) ;
4424        tcalval.tovector( tcal ) ;
4425      }
4426      else {
4427        // do interpolation
4428        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4429        double t0 = getMJD( s->getTime( idx[0] ) ) ;
4430        double t1 = getMJD( s->getTime( idx[1] ) ) ;
4431        double tref = getMJD( reftime ) ;
4432        vector<float> tcal0 ;
4433        vector<float> tcal1 ;
4434        uInt tcalid0 = s->getTcalId( idx[0] ) ;
4435        uInt tcalid1 = s->getTcalId( idx[1] ) ;
4436        tcalTable.getEntry( time, tcalval, tcalid0 ) ;
4437        tcalval.tovector( tcal0 ) ;
4438        tcalTable.getEntry( time, tcalval, tcalid1 ) ;
4439        tcalval.tovector( tcal1 ) ;       
4440        for ( unsigned int i = 0 ; i < tcal0.size() ; i++ ) {
4441          float v = ( tcal1[i] - tcal0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tcal0[i] ;
4442          tcal.push_back( v ) ;
4443        }
4444      }
4445    }
4446    else {
4447      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4448    }
4449    return tcal ;
4450  }
4451}
4452
4453vector<float> STMath::getTsysFromTime( string reftime,
4454                                       CountedPtr<Scantable>& s,
4455                                       string mode )
4456{
4457  LogIO os( LogOrigin( "STMath", "getTsysFromTime", WHERE ) ) ;
4458  ArrayColumn<Float> tsysCol ;
4459  tsysCol.attach( s->table(), "TSYS" ) ;
4460  vector<float> tsys ;
4461  String time ;
4462  Vector<Float> tsysval ;
4463  if ( s->nrow() == 0 ) {
4464    os << LogIO::SEVERE << "No row in the input scantable. Return empty tsys." << LogIO::POST ;
4465    return tsys ;
4466  }
4467  else if ( s->nrow() == 1 ) {
4468    //os << "use row " << 0 << LogIO::POST ;
4469    tsysval = tsysCol( 0 ) ;
4470    tsysval.tovector( tsys ) ;
4471    return tsys ;
4472  }
4473  else {
4474    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4475    if ( mode == "before" ) {
4476      int id = -1 ;
4477      if ( idx[0] != -1 ) {
4478        id = idx[0] ;
4479      }
4480      else if ( idx[1] != -1 ) {
4481        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4482        id = idx[1] ;
4483      }
4484      //os << "use row " << id << LogIO::POST ;
4485      tsysval = tsysCol( id ) ;
4486      tsysval.tovector( tsys ) ;
4487    }
4488    else if ( mode == "after" ) {
4489      int id = -1 ;
4490      if ( idx[1] != -1 ) {
4491        id = idx[1] ;
4492      }
4493      else if ( idx[0] != -1 ) {
4494        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4495        id = idx[1] ;
4496      }
4497      //os << "use row " << id << LogIO::POST ;
4498      tsysval = tsysCol( id ) ;
4499      tsysval.tovector( tsys ) ;
4500    }
4501    else if ( mode == "nearest" ) {
4502      int id = -1 ;
4503      if ( idx[0] == -1 ) {
4504        id = idx[1] ;
4505      }
4506      else if ( idx[1] == -1 ) {
4507        id = idx[0] ;
4508      }
4509      else if ( idx[0] == idx[1] ) {
4510        id = idx[0] ;
4511      }
4512      else {
4513        double t0 = getMJD( s->getTime( idx[0] ) ) ;
4514        double t1 = getMJD( s->getTime( idx[1] ) ) ;
4515        double tref = getMJD( reftime ) ;
4516        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4517          id = idx[1] ;
4518        }
4519        else {
4520          id = idx[0] ;
4521        }
4522      }
4523      //os << "use row " << id << LogIO::POST ;
4524      tsysval = tsysCol( id ) ;
4525      tsysval.tovector( tsys ) ;
4526    }
4527    else if ( mode == "linear" ) {
4528      if ( idx[0] == -1 ) {
4529        // use after
4530        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4531        int id = idx[1] ;
4532        //os << "use row " << id << LogIO::POST ;
4533        tsysval = tsysCol( id ) ;
4534        tsysval.tovector( tsys ) ;
4535      }
4536      else if ( idx[1] == -1 ) {
4537        // use before
4538        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4539        int id = idx[0] ;
4540        //os << "use row " << id << LogIO::POST ;
4541        tsysval = tsysCol( id ) ;
4542        tsysval.tovector( tsys ) ;
4543      }
4544      else if ( idx[0] == idx[1] ) {
4545        // use before
4546        //os << "No need to interporate." << LogIO::POST ;
4547        int id = idx[0] ;
4548        //os << "use row " << id << LogIO::POST ;
4549        tsysval = tsysCol( id ) ;
4550        tsysval.tovector( tsys ) ;
4551      }
4552      else {
4553        // do interpolation
4554        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4555        double t0 = getMJD( s->getTime( idx[0] ) ) ;
4556        double t1 = getMJD( s->getTime( idx[1] ) ) ;
4557        double tref = getMJD( reftime ) ;
4558        vector<float> tsys0 ;
4559        vector<float> tsys1 ;
4560        tsysval = tsysCol( idx[0] ) ;
4561        tsysval.tovector( tsys0 ) ;
4562        tsysval = tsysCol( idx[1] ) ;
4563        tsysval.tovector( tsys1 ) ;       
4564        for ( unsigned int i = 0 ; i < tsys0.size() ; i++ ) {
4565          float v = ( tsys1[i] - tsys0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tsys0[i] ;
4566          tsys.push_back( v ) ;
4567        }
4568      }
4569    }
4570    else {
4571      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4572    }
4573    return tsys ;
4574  }
4575}
4576
4577vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
4578                                            CountedPtr<Scantable>& off,
4579                                            CountedPtr<Scantable>& sky,
4580                                            CountedPtr<Scantable>& hot,
4581                                            CountedPtr<Scantable>& cold,
4582                                            int index,
4583                                            string antname )
4584{
4585  string reftime = on->getTime( index ) ;
4586  vector<int> ii( 1, on->getIF( index ) ) ;
4587  vector<int> ib( 1, on->getBeam( index ) ) ;
4588  vector<int> ip( 1, on->getPol( index ) ) ;
4589  vector<int> ic( 1, on->getScan( index ) ) ;
4590  STSelector sel = STSelector() ;
4591  sel.setIFs( ii ) ;
4592  sel.setBeams( ib ) ;
4593  sel.setPolarizations( ip ) ;
4594  sky->setSelection( sel ) ;
4595  hot->setSelection( sel ) ;
4596  //cold->setSelection( sel ) ;
4597  off->setSelection( sel ) ;
4598  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
4599  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
4600  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
4601  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
4602  vector<float> spec = on->getSpectrum( index ) ;
4603  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4604  vector<float> sp( tcal.size() ) ;
4605  if ( antname.find( "APEX" ) != string::npos ) {
4606    // using gain array
4607    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4608      float v = ( ( spec[j] - spoff[j] ) / spoff[j] )
4609        * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
4610      sp[j] = v ;
4611    }
4612  }
4613  else {
4614    // Chopper-Wheel calibration (Ulich & Haas 1976)
4615    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4616      float v = ( spec[j] - spoff[j] ) / ( sphot[j] - spsky[j] ) * tcal[j] ;
4617      sp[j] = v ;
4618    }
4619  }
4620  sel.reset() ;
4621  sky->unsetSelection() ;
4622  hot->unsetSelection() ;
4623  //cold->unsetSelection() ;
4624  off->unsetSelection() ;
4625
4626  return sp ;
4627}
4628
4629vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
4630                                            CountedPtr<Scantable>& off,
4631                                            int index )
4632{
4633  string reftime = on->getTime( index ) ;
4634  vector<int> ii( 1, on->getIF( index ) ) ;
4635  vector<int> ib( 1, on->getBeam( index ) ) ;
4636  vector<int> ip( 1, on->getPol( index ) ) ;
4637  vector<int> ic( 1, on->getScan( index ) ) ;
4638  STSelector sel = STSelector() ;
4639  sel.setIFs( ii ) ;
4640  sel.setBeams( ib ) ;
4641  sel.setPolarizations( ip ) ;
4642  off->setSelection( sel ) ;
4643  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
4644  vector<float> spec = on->getSpectrum( index ) ;
4645  //vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4646  //vector<float> tsys = on->getTsysVec( index ) ;
4647  ArrayColumn<Float> tsysCol( on->table(), "TSYS" ) ;
4648  Vector<Float> tsys = tsysCol( index ) ;
4649  vector<float> sp( spec.size() ) ;
4650  // ALMA Calibration
4651  //
4652  // Ta* = Tsys * ( ON - OFF ) / OFF
4653  //
4654  // 2010/01/07 Takeshi Nakazato
4655  unsigned int tsyssize = tsys.nelements() ;
4656  unsigned int spsize = sp.size() ;
4657  for ( unsigned int j = 0 ; j < sp.size() ; j++ ) {
4658    float tscale = 0.0 ;
4659    if ( tsyssize == spsize )
4660      tscale = tsys[j] ;
4661    else
4662      tscale = tsys[0] ;
4663    float v = tscale * ( spec[j] - spoff[j] ) / spoff[j] ;
4664    sp[j] = v ;
4665  }
4666  sel.reset() ;
4667  off->unsetSelection() ;
4668
4669  return sp ;
4670}
4671
4672vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
4673                                              CountedPtr<Scantable>& ref,
4674                                              CountedPtr<Scantable>& sky,
4675                                              CountedPtr<Scantable>& hot,
4676                                              CountedPtr<Scantable>& cold,
4677                                              int index )
4678{
4679  string reftime = sig->getTime( index ) ;
4680  vector<int> ii( 1, sig->getIF( index ) ) ;
4681  vector<int> ib( 1, sig->getBeam( index ) ) ;
4682  vector<int> ip( 1, sig->getPol( index ) ) ;
4683  vector<int> ic( 1, sig->getScan( index ) ) ;
4684  STSelector sel = STSelector() ;
4685  sel.setIFs( ii ) ;
4686  sel.setBeams( ib ) ;
4687  sel.setPolarizations( ip ) ;
4688  sky->setSelection( sel ) ;
4689  hot->setSelection( sel ) ;
4690  //cold->setSelection( sel ) ;
4691  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
4692  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
4693  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
4694  vector<float> spref = ref->getSpectrum( index ) ;
4695  vector<float> spsig = sig->getSpectrum( index ) ;
4696  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4697  vector<float> sp( tcal.size() ) ;
4698  for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4699    float v = tcal[j] * spsky[j] / ( sphot[j] - spsky[j] ) * ( spsig[j] - spref[j] ) / spref[j] ;
4700    sp[j] = v ;
4701  }
4702  sel.reset() ;
4703  sky->unsetSelection() ;
4704  hot->unsetSelection() ;
4705  //cold->unsetSelection() ;
4706
4707  return sp ;
4708}
4709
4710vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
4711                                              CountedPtr<Scantable>& ref,
4712                                              vector< CountedPtr<Scantable> >& sky,
4713                                              vector< CountedPtr<Scantable> >& hot,
4714                                              vector< CountedPtr<Scantable> >& cold,
4715                                              int index )
4716{
4717  string reftime = sig->getTime( index ) ;
4718  vector<int> ii( 1, sig->getIF( index ) ) ;
4719  vector<int> ib( 1, sig->getBeam( index ) ) ;
4720  vector<int> ip( 1, sig->getPol( index ) ) ;
4721  vector<int> ic( 1, sig->getScan( index ) ) ;
4722  STSelector sel = STSelector() ;
4723  sel.setIFs( ii ) ;
4724  sel.setBeams( ib ) ;
4725  sel.setPolarizations( ip ) ;
4726  sky[0]->setSelection( sel ) ;
4727  hot[0]->setSelection( sel ) ;
4728  //cold[0]->setSelection( sel ) ;
4729  vector<float> spskys = getSpectrumFromTime( reftime, sky[0], "linear" ) ;
4730  vector<float> sphots = getSpectrumFromTime( reftime, hot[0], "linear" ) ;
4731  //vector<float> spcolds = getSpectrumFromTime( reftime, cold[0], "linear" ) ;
4732  vector<float> tcals = getTcalFromTime( reftime, sky[0], "linear" ) ;
4733  sel.reset() ;
4734  ii[0] = ref->getIF( index ) ;
4735  sel.setIFs( ii ) ;
4736  sel.setBeams( ib ) ;
4737  sel.setPolarizations( ip ) ;
4738  sky[1]->setSelection( sel ) ;
4739  hot[1]->setSelection( sel ) ;
4740  //cold[1]->setSelection( sel ) ;
4741  vector<float> spskyr = getSpectrumFromTime( reftime, sky[1], "linear" ) ;
4742  vector<float> sphotr = getSpectrumFromTime( reftime, hot[1], "linear" ) ;
4743  //vector<float> spcoldr = getSpectrumFromTime( reftime, cold[1], "linear" ) ;
4744  vector<float> tcalr = getTcalFromTime( reftime, sky[1], "linear" ) ; 
4745  vector<float> spref = ref->getSpectrum( index ) ;
4746  vector<float> spsig = sig->getSpectrum( index ) ;
4747  vector<float> sp( tcals.size() ) ;
4748  for ( unsigned int j = 0 ; j < tcals.size() ; j++ ) {
4749    float v = tcals[j] * spsig[j] / ( sphots[j] - spskys[j] ) - tcalr[j] * spref[j] / ( sphotr[j] - spskyr[j] ) ;
4750    sp[j] = v ;
4751  }
4752  sel.reset() ;
4753  sky[0]->unsetSelection() ;
4754  hot[0]->unsetSelection() ;
4755  //cold[0]->unsetSelection() ;
4756  sky[1]->unsetSelection() ;
4757  hot[1]->unsetSelection() ;
4758  //cold[1]->unsetSelection() ;
4759
4760  return sp ;
4761}
Note: See TracBrowser for help on using the repository browser.