source: branches/alma/src/STMath.cpp@ 1707

Last change on this file since 1707 was 1705, checked in by Takeshi Nakazato, 15 years ago

New Development: No

JIRA Issue: Yes CAS-1799

Ready to Release: Yes

Interface Changes: No

What Interface Changed: Please list interface changes

Test Programs: List test programs

Put in Release Notes: Yes/No

Module(s): Module Names change impacts.

Description: Describe your changes here...

Fixed a bug that OSF data were not recognized as OTF scan.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 162.6 KB
Line 
1//
2// C++ Implementation: STMath
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2006
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12
13#include <casa/iomanip.h>
14#include <casa/Exceptions/Error.h>
15#include <casa/Containers/Block.h>
16#include <casa/BasicSL/String.h>
17#include <casa/Arrays/MaskArrLogi.h>
18#include <casa/Arrays/MaskArrMath.h>
19#include <casa/Arrays/ArrayLogical.h>
20#include <casa/Arrays/ArrayMath.h>
21#include <casa/Arrays/Slice.h>
22#include <casa/Arrays/Slicer.h>
23#include <casa/Containers/RecordField.h>
24#include <tables/Tables/TableRow.h>
25#include <tables/Tables/TableVector.h>
26#include <tables/Tables/TabVecMath.h>
27#include <tables/Tables/ExprNode.h>
28#include <tables/Tables/TableRecord.h>
29#include <tables/Tables/TableParse.h>
30#include <tables/Tables/ReadAsciiTable.h>
31#include <tables/Tables/TableIter.h>
32#include <tables/Tables/TableCopy.h>
33#include <scimath/Mathematics/FFTServer.h>
34
35#include <lattices/Lattices/LatticeUtilities.h>
36
37#include <coordinates/Coordinates/SpectralCoordinate.h>
38#include <coordinates/Coordinates/CoordinateSystem.h>
39#include <coordinates/Coordinates/CoordinateUtil.h>
40#include <coordinates/Coordinates/FrequencyAligner.h>
41
42#include <scimath/Mathematics/VectorKernel.h>
43#include <scimath/Mathematics/Convolver.h>
44#include <scimath/Functionals/Polynomial.h>
45
46#include <atnf/PKSIO/SrcType.h>
47
48#include <casa/Logging/LogIO.h>
49#include <sstream>
50
51#include "MathUtils.h"
52#include "RowAccumulator.h"
53#include "STAttr.h"
54#include "STMath.h"
55#include "STSelector.h"
56
57using namespace casa;
58
59using namespace asap;
60
61// tolerance for direction comparison (rad)
62#define TOL_OTF 1.0e-15
63#define TOL_POINT 2.9088821e-4 // 1 arcmin
64
65STMath::STMath(bool insitu) :
66 insitu_(insitu)
67{
68}
69
70
71STMath::~STMath()
72{
73}
74
75CountedPtr<Scantable>
76STMath::average( const std::vector<CountedPtr<Scantable> >& in,
77 const std::vector<bool>& mask,
78 const std::string& weight,
79 const std::string& avmode)
80{
81 LogIO os( LogOrigin( "STMath", "average()", WHERE ) ) ;
82 if ( avmode == "SCAN" && in.size() != 1 )
83 throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
84 "Use merge first."));
85 WeightType wtype = stringToWeight(weight);
86
87 // check if OTF observation
88 String obstype = in[0]->getHeader().obstype ;
89 Double tol = 0.0 ;
90 if ( (obstype.find( "OTF" ) != String::npos) || (obstype.find( "OBSERVE_TARGET" ) != String::npos) ) {
91 tol = TOL_OTF ;
92 }
93 else {
94 tol = TOL_POINT ;
95 }
96
97 // output
98 // clone as this is non insitu
99 bool insitu = insitu_;
100 setInsitu(false);
101 CountedPtr< Scantable > out = getScantable(in[0], true);
102 setInsitu(insitu);
103 std::vector<CountedPtr<Scantable> >::const_iterator stit = in.begin();
104 ++stit;
105 while ( stit != in.end() ) {
106 out->appendToHistoryTable((*stit)->history());
107 ++stit;
108 }
109
110 Table& tout = out->table();
111
112 /// @todo check if all scantables are conformant
113
114 ArrayColumn<Float> specColOut(tout,"SPECTRA");
115 ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
116 ArrayColumn<Float> tsysColOut(tout,"TSYS");
117 ScalarColumn<Double> mjdColOut(tout,"TIME");
118 ScalarColumn<Double> intColOut(tout,"INTERVAL");
119 ScalarColumn<uInt> cycColOut(tout,"CYCLENO");
120 ScalarColumn<uInt> scanColOut(tout,"SCANNO");
121
122 // set up the output table rows. These are based on the structure of the
123 // FIRST scantable in the vector
124 const Table& baset = in[0]->table();
125
126 Block<String> cols(3);
127 cols[0] = String("BEAMNO");
128 cols[1] = String("IFNO");
129 cols[2] = String("POLNO");
130 if ( avmode == "SOURCE" ) {
131 cols.resize(4);
132 cols[3] = String("SRCNAME");
133 }
134 if ( avmode == "SCAN" && in.size() == 1) {
135 //cols.resize(4);
136 //cols[3] = String("SCANNO");
137 cols.resize(5);
138 cols[3] = String("SRCNAME");
139 cols[4] = String("SCANNO");
140 }
141 uInt outrowCount = 0;
142 TableIterator iter(baset, cols);
143// int count = 0 ;
144 while (!iter.pastEnd()) {
145 Table subt = iter.table();
146// // copy the first row of this selection into the new table
147// tout.addRow();
148// TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
149// // re-index to 0
150// if ( avmode != "SCAN" && avmode != "SOURCE" ) {
151// scanColOut.put(outrowCount, uInt(0));
152// }
153// ++outrowCount;
154 MDirection::ScalarColumn dircol ;
155 dircol.attach( subt, "DIRECTION" ) ;
156 Int length = subt.nrow() ;
157 vector< Vector<Double> > dirs ;
158 vector<int> indexes ;
159 for ( Int i = 0 ; i < length ; i++ ) {
160 Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
161 //os << << count++ << ": " ;
162 //os << "[" << t[0] << "," << t[1] << "]" << LogIO::POST ;
163 bool adddir = true ;
164 for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
165 //if ( allTrue( t == dirs[j] ) ) {
166 Double dx = t[0] - dirs[j][0] ;
167 Double dy = t[1] - dirs[j][1] ;
168 Double dd = sqrt( dx * dx + dy * dy ) ;
169 //if ( allNearAbs( t, dirs[j], tol ) ) {
170 if ( dd <= tol ) {
171 adddir = false ;
172 break ;
173 }
174 }
175 if ( adddir ) {
176 dirs.push_back( t ) ;
177 indexes.push_back( i ) ;
178 }
179 }
180 uInt rowNum = dirs.size() ;
181 tout.addRow( rowNum ) ;
182 for ( uInt i = 0 ; i < rowNum ; i++ ) {
183 TableCopy::copyRows( tout, subt, outrowCount+i, indexes[i], 1 ) ;
184 // re-index to 0
185 if ( avmode != "SCAN" && avmode != "SOURCE" ) {
186 scanColOut.put(outrowCount+i, uInt(0));
187 }
188 }
189 outrowCount += rowNum ;
190 ++iter;
191 }
192 RowAccumulator acc(wtype);
193 Vector<Bool> cmask(mask);
194 acc.setUserMask(cmask);
195 ROTableRow row(tout);
196 ROArrayColumn<Float> specCol, tsysCol;
197 ROArrayColumn<uChar> flagCol;
198 ROScalarColumn<Double> mjdCol, intCol;
199 ROScalarColumn<Int> scanIDCol;
200
201 Vector<uInt> rowstodelete;
202
203 for (uInt i=0; i < tout.nrow(); ++i) {
204 for ( int j=0; j < int(in.size()); ++j ) {
205 const Table& tin = in[j]->table();
206 const TableRecord& rec = row.get(i);
207 ROScalarColumn<Double> tmp(tin, "TIME");
208 Double td;tmp.get(0,td);
209 Table basesubt = tin(tin.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
210 && tin.col("IFNO") == Int(rec.asuInt("IFNO"))
211 && tin.col("POLNO") == Int(rec.asuInt("POLNO")) );
212 Table subt;
213 if ( avmode == "SOURCE") {
214 subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME") );
215 } else if (avmode == "SCAN") {
216 //subt = basesubt( basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO")) );
217 subt = basesubt( basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO"))
218 && basesubt.col("SRCNAME") == rec.asString("SRCNAME") );
219 } else {
220 subt = basesubt;
221 }
222
223 vector<uInt> removeRows ;
224 uInt nrsubt = subt.nrow() ;
225 for ( uInt irow = 0 ; irow < nrsubt ; irow++ ) {
226 //if ( !allTrue((subt.col("DIRECTION").getArrayDouble(TableExprId(irow)))==rec.asArrayDouble("DIRECTION")) ) {
227 Vector<Double> x0 = (subt.col("DIRECTION").getArrayDouble(TableExprId(irow))) ;
228 Vector<Double> x1 = rec.asArrayDouble("DIRECTION") ;
229 double dx = x0[0] - x1[0] ;
230 double dy = x0[0] - x1[0] ;
231 Double dd = sqrt( dx * dx + dy * dy ) ;
232 //if ( !allNearAbs((subt.col("DIRECTION").getArrayDouble(TableExprId(irow))), rec.asArrayDouble("DIRECTION"), tol ) ) {
233 if ( dd > tol ) {
234 removeRows.push_back( irow ) ;
235 }
236 }
237 if ( removeRows.size() != 0 ) {
238 subt.removeRow( removeRows ) ;
239 }
240
241 if ( nrsubt == removeRows.size() )
242 throw(AipsError("Averaging data is empty.")) ;
243
244 specCol.attach(subt,"SPECTRA");
245 flagCol.attach(subt,"FLAGTRA");
246 tsysCol.attach(subt,"TSYS");
247 intCol.attach(subt,"INTERVAL");
248 mjdCol.attach(subt,"TIME");
249 Vector<Float> spec,tsys;
250 Vector<uChar> flag;
251 Double inter,time;
252 for (uInt k = 0; k < subt.nrow(); ++k ) {
253 flagCol.get(k, flag);
254 Vector<Bool> bflag(flag.shape());
255 convertArray(bflag, flag);
256 /*
257 if ( allEQ(bflag, True) ) {
258 continue;//don't accumulate
259 }
260 */
261 specCol.get(k, spec);
262 tsysCol.get(k, tsys);
263 intCol.get(k, inter);
264 mjdCol.get(k, time);
265 // spectrum has to be added last to enable weighting by the other values
266 acc.add(spec, !bflag, tsys, inter, time);
267 }
268 }
269 const Vector<Bool>& msk = acc.getMask();
270 if ( allEQ(msk, False) ) {
271 uint n = rowstodelete.nelements();
272 rowstodelete.resize(n+1, True);
273 rowstodelete[n] = i;
274 continue;
275 }
276 //write out
277 if (acc.state()) {
278 Vector<uChar> flg(msk.shape());
279 convertArray(flg, !msk);
280 flagColOut.put(i, flg);
281 specColOut.put(i, acc.getSpectrum());
282 tsysColOut.put(i, acc.getTsys());
283 intColOut.put(i, acc.getInterval());
284 mjdColOut.put(i, acc.getTime());
285 // we should only have one cycle now -> reset it to be 0
286 // frequency switched data has different CYCLENO for different IFNO
287 // which requires resetting this value
288 cycColOut.put(i, uInt(0));
289 } else {
290 ostringstream oss;
291 oss << "For output row="<<i<<", all input rows of data are flagged. no averaging" << endl;
292 pushLog(String(oss));
293 }
294 acc.reset();
295 }
296 if (rowstodelete.nelements() > 0) {
297 //cout << rowstodelete << endl;
298 os << rowstodelete << LogIO::POST ;
299 tout.removeRow(rowstodelete);
300 if (tout.nrow() == 0) {
301 throw(AipsError("Can't average fully flagged data."));
302 }
303 }
304 return out;
305}
306
307CountedPtr< Scantable >
308 STMath::averageChannel( const CountedPtr < Scantable > & in,
309 const std::string & mode,
310 const std::string& avmode )
311{
312 // check if OTF observation
313 String obstype = in->getHeader().obstype ;
314 Double tol = 0.0 ;
315 if ( obstype.find( "OTF" ) != String::npos ) {
316 tol = TOL_OTF ;
317 }
318 else {
319 tol = TOL_POINT ;
320 }
321
322 // clone as this is non insitu
323 bool insitu = insitu_;
324 setInsitu(false);
325 CountedPtr< Scantable > out = getScantable(in, true);
326 setInsitu(insitu);
327 Table& tout = out->table();
328 ArrayColumn<Float> specColOut(tout,"SPECTRA");
329 ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
330 ArrayColumn<Float> tsysColOut(tout,"TSYS");
331 ScalarColumn<uInt> scanColOut(tout,"SCANNO");
332 ScalarColumn<Double> intColOut(tout, "INTERVAL");
333 Table tmp = in->table().sort("BEAMNO");
334 Block<String> cols(3);
335 cols[0] = String("BEAMNO");
336 cols[1] = String("IFNO");
337 cols[2] = String("POLNO");
338 if ( avmode == "SCAN") {
339 cols.resize(4);
340 cols[3] = String("SCANNO");
341 }
342 uInt outrowCount = 0;
343 uChar userflag = 1 << 7;
344 TableIterator iter(tmp, cols);
345 while (!iter.pastEnd()) {
346 Table subt = iter.table();
347 ROArrayColumn<Float> specCol, tsysCol;
348 ROArrayColumn<uChar> flagCol;
349 ROScalarColumn<Double> intCol(subt, "INTERVAL");
350 specCol.attach(subt,"SPECTRA");
351 flagCol.attach(subt,"FLAGTRA");
352 tsysCol.attach(subt,"TSYS");
353// tout.addRow();
354// TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
355// if ( avmode != "SCAN") {
356// scanColOut.put(outrowCount, uInt(0));
357// }
358// Vector<Float> tmp;
359// specCol.get(0, tmp);
360// uInt nchan = tmp.nelements();
361// // have to do channel by channel here as MaskedArrMath
362// // doesn't have partialMedians
363// Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
364// Vector<Float> outspec(nchan);
365// Vector<uChar> outflag(nchan,0);
366// Vector<Float> outtsys(1);/// @fixme when tsys is channel based
367// for (uInt i=0; i<nchan; ++i) {
368// Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
369// MaskedArray<Float> ma = maskedArray(specs,flags);
370// outspec[i] = median(ma);
371// if ( allEQ(ma.getMask(), False) )
372// outflag[i] = userflag;// flag data
373// }
374// outtsys[0] = median(tsysCol.getColumn());
375// specColOut.put(outrowCount, outspec);
376// flagColOut.put(outrowCount, outflag);
377// tsysColOut.put(outrowCount, outtsys);
378// Double intsum = sum(intCol.getColumn());
379// intColOut.put(outrowCount, intsum);
380// ++outrowCount;
381// ++iter;
382 MDirection::ScalarColumn dircol ;
383 dircol.attach( subt, "DIRECTION" ) ;
384 Int length = subt.nrow() ;
385 vector< Vector<Double> > dirs ;
386 vector<int> indexes ;
387 for ( Int i = 0 ; i < length ; i++ ) {
388 Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
389 bool adddir = true ;
390 for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
391 //if ( allTrue( t == dirs[j] ) ) {
392 Double dx = t[0] - dirs[j][0] ;
393 Double dy = t[1] - dirs[j][1] ;
394 Double dd = sqrt( dx * dx + dy * dy ) ;
395 //if ( allNearAbs( t, dirs[j], tol ) ) {
396 if ( dd <= tol ) {
397 adddir = false ;
398 break ;
399 }
400 }
401 if ( adddir ) {
402 dirs.push_back( t ) ;
403 indexes.push_back( i ) ;
404 }
405 }
406 uInt rowNum = dirs.size() ;
407 tout.addRow( rowNum );
408 for ( uInt i = 0 ; i < rowNum ; i++ ) {
409 TableCopy::copyRows(tout, subt, outrowCount+i, indexes[i], 1) ;
410 if ( avmode != "SCAN") {
411 //scanColOut.put(outrowCount+i, uInt(0));
412 }
413 }
414 MDirection::ScalarColumn dircolOut ;
415 dircolOut.attach( tout, "DIRECTION" ) ;
416 for ( uInt irow = 0 ; irow < rowNum ; irow++ ) {
417 Vector<Double> t = dircolOut(outrowCount+irow).getAngle(Unit(String("rad"))).getValue() ;
418 Vector<Float> tmp;
419 specCol.get(0, tmp);
420 uInt nchan = tmp.nelements();
421 // have to do channel by channel here as MaskedArrMath
422 // doesn't have partialMedians
423 Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
424 // mask spectra for different DIRECTION
425 for ( uInt jrow = 0 ; jrow < subt.nrow() ; jrow++ ) {
426 Vector<Double> direction = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
427 //if ( t[0] != direction[0] || t[1] != direction[1] ) {
428 Double dx = t[0] - direction[0] ;
429 Double dy = t[1] - direction[1] ;
430 Double dd = sqrt( dx * dx + dy * dy ) ;
431 //if ( !allNearAbs( t, direction, tol ) ) {
432 if ( dd > tol ) {
433 flags[jrow] = userflag ;
434 }
435 }
436 Vector<Float> outspec(nchan);
437 Vector<uChar> outflag(nchan,0);
438 Vector<Float> outtsys(1);/// @fixme when tsys is channel based
439 for (uInt i=0; i<nchan; ++i) {
440 Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
441 MaskedArray<Float> ma = maskedArray(specs,flags);
442 outspec[i] = median(ma);
443 if ( allEQ(ma.getMask(), False) )
444 outflag[i] = userflag;// flag data
445 }
446 outtsys[0] = median(tsysCol.getColumn());
447 specColOut.put(outrowCount+irow, outspec);
448 flagColOut.put(outrowCount+irow, outflag);
449 tsysColOut.put(outrowCount+irow, outtsys);
450 Vector<Double> integ = intCol.getColumn() ;
451 MaskedArray<Double> mi = maskedArray( integ, flags ) ;
452 Double intsum = sum(mi);
453 intColOut.put(outrowCount+irow, intsum);
454 }
455 outrowCount += rowNum ;
456 ++iter;
457 }
458 return out;
459}
460
461CountedPtr< Scantable > STMath::getScantable(const CountedPtr< Scantable >& in,
462 bool droprows)
463{
464 if (insitu_) {
465 return in;
466 }
467 else {
468 // clone
469 return CountedPtr<Scantable>(new Scantable(*in, Bool(droprows)));
470 }
471}
472
473CountedPtr< Scantable > STMath::unaryOperate( const CountedPtr< Scantable >& in,
474 float val,
475 const std::string& mode,
476 bool tsys )
477{
478 CountedPtr< Scantable > out = getScantable(in, false);
479 Table& tab = out->table();
480 ArrayColumn<Float> specCol(tab,"SPECTRA");
481 ArrayColumn<Float> tsysCol(tab,"TSYS");
482 for (uInt i=0; i<tab.nrow(); ++i) {
483 Vector<Float> spec;
484 Vector<Float> ts;
485 specCol.get(i, spec);
486 tsysCol.get(i, ts);
487 if (mode == "MUL" || mode == "DIV") {
488 if (mode == "DIV") val = 1.0/val;
489 spec *= val;
490 specCol.put(i, spec);
491 if ( tsys ) {
492 ts *= val;
493 tsysCol.put(i, ts);
494 }
495 } else if ( mode == "ADD" || mode == "SUB") {
496 if (mode == "SUB") val *= -1.0;
497 spec += val;
498 specCol.put(i, spec);
499 if ( tsys ) {
500 ts += val;
501 tsysCol.put(i, ts);
502 }
503 }
504 }
505 return out;
506}
507
508CountedPtr< Scantable > STMath::arrayOperate( const CountedPtr< Scantable >& in,
509 const std::vector<float> val,
510 const std::string& mode,
511 const std::string& opmode,
512 bool tsys )
513{
514 CountedPtr< Scantable > out ;
515 if ( opmode == "channel" ) {
516 out = arrayOperateChannel( in, val, mode, tsys ) ;
517 }
518 else if ( opmode == "row" ) {
519 out = arrayOperateRow( in, val, mode, tsys ) ;
520 }
521 else {
522 throw( AipsError( "Unknown array operation mode." ) ) ;
523 }
524 return out ;
525}
526
527CountedPtr< Scantable > STMath::arrayOperateChannel( const CountedPtr< Scantable >& in,
528 const std::vector<float> val,
529 const std::string& mode,
530 bool tsys )
531{
532 if ( val.size() == 1 ){
533 return unaryOperate( in, val[0], mode, tsys ) ;
534 }
535
536 // conformity of SPECTRA and TSYS
537 if ( tsys ) {
538 TableIterator titer(in->table(), "IFNO");
539 while ( !titer.pastEnd() ) {
540 ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
541 ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
542 Array<Float> spec = specCol.getColumn() ;
543 Array<Float> ts = tsysCol.getColumn() ;
544 if ( !spec.conform( ts ) ) {
545 throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
546 }
547 titer.next() ;
548 }
549 }
550
551 // check if all spectra in the scantable have the same number of channel
552 vector<uInt> nchans;
553 vector<uInt> ifnos = in->getIFNos() ;
554 for ( uInt i = 0 ; i < ifnos.size() ; i++ ) {
555 nchans.push_back( in->nchan( ifnos[i] ) ) ;
556 }
557 Vector<uInt> mchans( nchans ) ;
558 if ( anyNE( mchans, mchans[0] ) ) {
559 throw( AipsError("All spectra in the input scantable must have the same number of channel for vector operation." ) ) ;
560 }
561
562 // check if vector size is equal to nchan
563 Vector<Float> fact( val ) ;
564 if ( fact.nelements() != mchans[0] ) {
565 throw( AipsError("Vector size must be 1 or be same as number of channel.") ) ;
566 }
567
568 // check divided by zero
569 if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
570 throw( AipsError("Divided by zero is not recommended." ) ) ;
571 }
572
573 CountedPtr< Scantable > out = getScantable(in, false);
574 Table& tab = out->table();
575 ArrayColumn<Float> specCol(tab,"SPECTRA");
576 ArrayColumn<Float> tsysCol(tab,"TSYS");
577 for (uInt i=0; i<tab.nrow(); ++i) {
578 Vector<Float> spec;
579 Vector<Float> ts;
580 specCol.get(i, spec);
581 tsysCol.get(i, ts);
582 if (mode == "MUL" || mode == "DIV") {
583 if (mode == "DIV") fact = (float)1.0 / fact;
584 spec *= fact;
585 specCol.put(i, spec);
586 if ( tsys ) {
587 ts *= fact;
588 tsysCol.put(i, ts);
589 }
590 } else if ( mode == "ADD" || mode == "SUB") {
591 if (mode == "SUB") fact *= (float)-1.0 ;
592 spec += fact;
593 specCol.put(i, spec);
594 if ( tsys ) {
595 ts += fact;
596 tsysCol.put(i, ts);
597 }
598 }
599 }
600 return out;
601}
602
603CountedPtr< Scantable > STMath::arrayOperateRow( const CountedPtr< Scantable >& in,
604 const std::vector<float> val,
605 const std::string& mode,
606 bool tsys )
607{
608 if ( val.size() == 1 ) {
609 return unaryOperate( in, val[0], mode, tsys ) ;
610 }
611
612 // conformity of SPECTRA and TSYS
613 if ( tsys ) {
614 TableIterator titer(in->table(), "IFNO");
615 while ( !titer.pastEnd() ) {
616 ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
617 ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
618 Array<Float> spec = specCol.getColumn() ;
619 Array<Float> ts = tsysCol.getColumn() ;
620 if ( !spec.conform( ts ) ) {
621 throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
622 }
623 titer.next() ;
624 }
625 }
626
627 // check if vector size is equal to nrow
628 Vector<Float> fact( val ) ;
629 if ( fact.nelements() != in->nrow() ) {
630 throw( AipsError("Vector size must be 1 or be same as number of row.") ) ;
631 }
632
633 // check divided by zero
634 if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
635 throw( AipsError("Divided by zero is not recommended." ) ) ;
636 }
637
638 CountedPtr< Scantable > out = getScantable(in, false);
639 Table& tab = out->table();
640 ArrayColumn<Float> specCol(tab,"SPECTRA");
641 ArrayColumn<Float> tsysCol(tab,"TSYS");
642 if (mode == "DIV") fact = (float)1.0 / fact;
643 if (mode == "SUB") fact *= (float)-1.0 ;
644 for (uInt i=0; i<tab.nrow(); ++i) {
645 Vector<Float> spec;
646 Vector<Float> ts;
647 specCol.get(i, spec);
648 tsysCol.get(i, ts);
649 if (mode == "MUL" || mode == "DIV") {
650 spec *= fact[i];
651 specCol.put(i, spec);
652 if ( tsys ) {
653 ts *= fact[i];
654 tsysCol.put(i, ts);
655 }
656 } else if ( mode == "ADD" || mode == "SUB") {
657 spec += fact[i];
658 specCol.put(i, spec);
659 if ( tsys ) {
660 ts += fact[i];
661 tsysCol.put(i, ts);
662 }
663 }
664 }
665 return out;
666}
667
668CountedPtr< Scantable > STMath::array2dOperate( const CountedPtr< Scantable >& in,
669 const std::vector< std::vector<float> > val,
670 const std::string& mode,
671 bool tsys )
672{
673 // conformity of SPECTRA and TSYS
674 if ( tsys ) {
675 TableIterator titer(in->table(), "IFNO");
676 while ( !titer.pastEnd() ) {
677 ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
678 ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
679 Array<Float> spec = specCol.getColumn() ;
680 Array<Float> ts = tsysCol.getColumn() ;
681 if ( !spec.conform( ts ) ) {
682 throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
683 }
684 titer.next() ;
685 }
686 }
687
688 // some checks
689 vector<uInt> nchans;
690 for ( uInt i = 0 ; i < in->nrow() ; i++ ) {
691 nchans.push_back( (in->getSpectrum( i )).size() ) ;
692 }
693 //Vector<uInt> mchans( nchans ) ;
694 vector< Vector<Float> > facts ;
695 for ( uInt i = 0 ; i < nchans.size() ; i++ ) {
696 Vector<Float> tmp( val[i] ) ;
697 // check divided by zero
698 if ( ( mode == "DIV" ) && anyEQ( tmp, (float)0.0 ) ) {
699 throw( AipsError("Divided by zero is not recommended." ) ) ;
700 }
701 // conformity check
702 if ( tmp.nelements() != nchans[i] ) {
703 stringstream ss ;
704 ss << "Row " << i << ": Vector size must be same as number of channel." ;
705 throw( AipsError( ss.str() ) ) ;
706 }
707 facts.push_back( tmp ) ;
708 }
709
710
711 CountedPtr< Scantable > out = getScantable(in, false);
712 Table& tab = out->table();
713 ArrayColumn<Float> specCol(tab,"SPECTRA");
714 ArrayColumn<Float> tsysCol(tab,"TSYS");
715 for (uInt i=0; i<tab.nrow(); ++i) {
716 Vector<Float> fact = facts[i] ;
717 Vector<Float> spec;
718 Vector<Float> ts;
719 specCol.get(i, spec);
720 tsysCol.get(i, ts);
721 if (mode == "MUL" || mode == "DIV") {
722 if (mode == "DIV") fact = (float)1.0 / fact;
723 spec *= fact;
724 specCol.put(i, spec);
725 if ( tsys ) {
726 ts *= fact;
727 tsysCol.put(i, ts);
728 }
729 } else if ( mode == "ADD" || mode == "SUB") {
730 if (mode == "SUB") fact *= (float)-1.0 ;
731 spec += fact;
732 specCol.put(i, spec);
733 if ( tsys ) {
734 ts += fact;
735 tsysCol.put(i, ts);
736 }
737 }
738 }
739 return out;
740}
741
742CountedPtr<Scantable> STMath::binaryOperate(const CountedPtr<Scantable>& left,
743 const CountedPtr<Scantable>& right,
744 const std::string& mode)
745{
746 bool insitu = insitu_;
747 if ( ! left->conformant(*right) ) {
748 throw(AipsError("'left' and 'right' scantables are not conformant."));
749 }
750 setInsitu(false);
751 CountedPtr< Scantable > out = getScantable(left, false);
752 setInsitu(insitu);
753 Table& tout = out->table();
754 Block<String> coln(5);
755 coln[0] = "SCANNO"; coln[1] = "CYCLENO"; coln[2] = "BEAMNO";
756 coln[3] = "IFNO"; coln[4] = "POLNO";
757 Table tmpl = tout.sort(coln);
758 Table tmpr = right->table().sort(coln);
759 ArrayColumn<Float> lspecCol(tmpl,"SPECTRA");
760 ROArrayColumn<Float> rspecCol(tmpr,"SPECTRA");
761 ArrayColumn<uChar> lflagCol(tmpl,"FLAGTRA");
762 ROArrayColumn<uChar> rflagCol(tmpr,"FLAGTRA");
763
764 for (uInt i=0; i<tout.nrow(); ++i) {
765 Vector<Float> lspecvec, rspecvec;
766 Vector<uChar> lflagvec, rflagvec;
767 lspecvec = lspecCol(i); rspecvec = rspecCol(i);
768 lflagvec = lflagCol(i); rflagvec = rflagCol(i);
769 MaskedArray<Float> mleft = maskedArray(lspecvec, lflagvec);
770 MaskedArray<Float> mright = maskedArray(rspecvec, rflagvec);
771 if (mode == "ADD") {
772 mleft += mright;
773 } else if ( mode == "SUB") {
774 mleft -= mright;
775 } else if ( mode == "MUL") {
776 mleft *= mright;
777 } else if ( mode == "DIV") {
778 mleft /= mright;
779 } else {
780 throw(AipsError("Illegal binary operator"));
781 }
782 lspecCol.put(i, mleft.getArray());
783 }
784 return out;
785}
786
787
788
789MaskedArray<Float> STMath::maskedArray( const Vector<Float>& s,
790 const Vector<uChar>& f)
791{
792 Vector<Bool> mask;
793 mask.resize(f.shape());
794 convertArray(mask, f);
795 return MaskedArray<Float>(s,!mask);
796}
797
798MaskedArray<Double> STMath::maskedArray( const Vector<Double>& s,
799 const Vector<uChar>& f)
800{
801 Vector<Bool> mask;
802 mask.resize(f.shape());
803 convertArray(mask, f);
804 return MaskedArray<Double>(s,!mask);
805}
806
807Vector<uChar> STMath::flagsFromMA(const MaskedArray<Float>& ma)
808{
809 const Vector<Bool>& m = ma.getMask();
810 Vector<uChar> flags(m.shape());
811 convertArray(flags, !m);
812 return flags;
813}
814
815CountedPtr< Scantable > STMath::autoQuotient( const CountedPtr< Scantable >& in,
816 const std::string & mode,
817 bool preserve )
818{
819 /// @todo make other modes available
820 /// modes should be "nearest", "pair"
821 // make this operation non insitu
822 const Table& tin = in->table();
823 Table ons = tin(tin.col("SRCTYPE") == Int(SrcType::PSON));
824 Table offs = tin(tin.col("SRCTYPE") == Int(SrcType::PSOFF));
825 if ( offs.nrow() == 0 )
826 throw(AipsError("No 'off' scans present."));
827 // put all "on" scans into output table
828
829 bool insitu = insitu_;
830 setInsitu(false);
831 CountedPtr< Scantable > out = getScantable(in, true);
832 setInsitu(insitu);
833 Table& tout = out->table();
834
835 TableCopy::copyRows(tout, ons);
836 TableRow row(tout);
837 ROScalarColumn<Double> offtimeCol(offs, "TIME");
838 ArrayColumn<Float> outspecCol(tout, "SPECTRA");
839 ROArrayColumn<Float> outtsysCol(tout, "TSYS");
840 ArrayColumn<uChar> outflagCol(tout, "FLAGTRA");
841 for (uInt i=0; i < tout.nrow(); ++i) {
842 const TableRecord& rec = row.get(i);
843 Double ontime = rec.asDouble("TIME");
844 Table presel = offs(offs.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
845 && offs.col("IFNO") == Int(rec.asuInt("IFNO"))
846 && offs.col("POLNO") == Int(rec.asuInt("POLNO")) );
847 ROScalarColumn<Double> offtimeCol(presel, "TIME");
848
849 Double mindeltat = min(abs(offtimeCol.getColumn() - ontime));
850 // Timestamp may vary within a cycle ???!!!
851 // increase this by 0.01 sec in case of rounding errors...
852 // There might be a better way to do this.
853 // fix to this fix. TIME is MJD, so 1.0d not 1.0s
854 mindeltat += 0.01/24./60./60.;
855 Table sel = presel( abs(presel.col("TIME")-ontime) <= mindeltat);
856
857 if ( sel.nrow() < 1 ) {
858 throw(AipsError("No closest in time found... This could be a rounding "
859 "issue. Try quotient instead."));
860 }
861 TableRow offrow(sel);
862 const TableRecord& offrec = offrow.get(0);//should only be one row
863 RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
864 RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
865 RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
866 /// @fixme this assumes tsys is a scalar not vector
867 Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
868 Vector<Float> specon, tsyson;
869 outtsysCol.get(i, tsyson);
870 outspecCol.get(i, specon);
871 Vector<uChar> flagon;
872 outflagCol.get(i, flagon);
873 MaskedArray<Float> mon = maskedArray(specon, flagon);
874 MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
875 MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
876 if (preserve) {
877 quot -= tsysoffscalar;
878 } else {
879 quot -= tsyson[0];
880 }
881 outspecCol.put(i, quot.getArray());
882 outflagCol.put(i, flagsFromMA(quot));
883 }
884 // renumber scanno
885 TableIterator it(tout, "SCANNO");
886 uInt i = 0;
887 while ( !it.pastEnd() ) {
888 Table t = it.table();
889 TableVector<uInt> vec(t, "SCANNO");
890 vec = i;
891 ++i;
892 ++it;
893 }
894 return out;
895}
896
897
898CountedPtr< Scantable > STMath::quotient( const CountedPtr< Scantable > & on,
899 const CountedPtr< Scantable > & off,
900 bool preserve )
901{
902 bool insitu = insitu_;
903 if ( ! on->conformant(*off) ) {
904 throw(AipsError("'on' and 'off' scantables are not conformant."));
905 }
906 setInsitu(false);
907 CountedPtr< Scantable > out = getScantable(on, false);
908 setInsitu(insitu);
909 Table& tout = out->table();
910 const Table& toff = off->table();
911 TableIterator sit(tout, "SCANNO");
912 TableIterator s2it(toff, "SCANNO");
913 while ( !sit.pastEnd() ) {
914 Table ton = sit.table();
915 TableRow row(ton);
916 Table t = s2it.table();
917 ArrayColumn<Float> outspecCol(ton, "SPECTRA");
918 ROArrayColumn<Float> outtsysCol(ton, "TSYS");
919 ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
920 for (uInt i=0; i < ton.nrow(); ++i) {
921 const TableRecord& rec = row.get(i);
922 Table offsel = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
923 && t.col("IFNO") == Int(rec.asuInt("IFNO"))
924 && t.col("POLNO") == Int(rec.asuInt("POLNO")) );
925 if ( offsel.nrow() == 0 )
926 throw AipsError("STMath::quotient: no matching off");
927 TableRow offrow(offsel);
928 const TableRecord& offrec = offrow.get(0);//should be ncycles - take first
929 RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
930 RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
931 RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
932 Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
933 Vector<Float> specon, tsyson;
934 outtsysCol.get(i, tsyson);
935 outspecCol.get(i, specon);
936 Vector<uChar> flagon;
937 outflagCol.get(i, flagon);
938 MaskedArray<Float> mon = maskedArray(specon, flagon);
939 MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
940 MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
941 if (preserve) {
942 quot -= tsysoffscalar;
943 } else {
944 quot -= tsyson[0];
945 }
946 outspecCol.put(i, quot.getArray());
947 outflagCol.put(i, flagsFromMA(quot));
948 }
949 ++sit;
950 ++s2it;
951 // take the first off for each on scan which doesn't have a
952 // matching off scan
953 // non <= noff: matching pairs, non > noff matching pairs then first off
954 if ( s2it.pastEnd() ) s2it.reset();
955 }
956 return out;
957}
958
959// dototalpower (migration of GBTIDL procedure dototalpower.pro)
960// calibrate the CAL on-off pair. It calculate Tsys and average CAL on-off subintegrations
961// do it for each cycles in a specific scan.
962CountedPtr< Scantable > STMath::dototalpower( const CountedPtr< Scantable >& calon,
963 const CountedPtr< Scantable >& caloff, Float tcal )
964{
965if ( ! calon->conformant(*caloff) ) {
966 throw(AipsError("'CAL on' and 'CAL off' scantables are not conformant."));
967 }
968 setInsitu(false);
969 CountedPtr< Scantable > out = getScantable(caloff, false);
970 Table& tout = out->table();
971 const Table& tcon = calon->table();
972 Vector<Float> tcalout;
973 Vector<Float> tcalout2; //debug
974
975 if ( tout.nrow() != tcon.nrow() ) {
976 throw(AipsError("Mismatch in number of rows to form cal on - off pair."));
977 }
978 // iteration by scanno or cycle no.
979 TableIterator sit(tout, "SCANNO");
980 TableIterator s2it(tcon, "SCANNO");
981 while ( !sit.pastEnd() ) {
982 Table toff = sit.table();
983 TableRow row(toff);
984 Table t = s2it.table();
985 ScalarColumn<Double> outintCol(toff, "INTERVAL");
986 ArrayColumn<Float> outspecCol(toff, "SPECTRA");
987 ArrayColumn<Float> outtsysCol(toff, "TSYS");
988 ArrayColumn<uChar> outflagCol(toff, "FLAGTRA");
989 ROScalarColumn<uInt> outtcalIdCol(toff, "TCAL_ID");
990 ROScalarColumn<uInt> outpolCol(toff, "POLNO");
991 ROScalarColumn<Double> onintCol(t, "INTERVAL");
992 ROArrayColumn<Float> onspecCol(t, "SPECTRA");
993 ROArrayColumn<Float> ontsysCol(t, "TSYS");
994 ROArrayColumn<uChar> onflagCol(t, "FLAGTRA");
995 //ROScalarColumn<uInt> ontcalIdCol(t, "TCAL_ID");
996
997 for (uInt i=0; i < toff.nrow(); ++i) {
998 //skip these checks -> assumes the data order are the same between the cal on off pairs
999 //
1000 Vector<Float> specCalon, specCaloff;
1001 // to store scalar (mean) tsys
1002 Vector<Float> tsysout(1);
1003 uInt tcalId, polno;
1004 Double offint, onint;
1005 outpolCol.get(i, polno);
1006 outspecCol.get(i, specCaloff);
1007 onspecCol.get(i, specCalon);
1008 Vector<uChar> flagCaloff, flagCalon;
1009 outflagCol.get(i, flagCaloff);
1010 onflagCol.get(i, flagCalon);
1011 outtcalIdCol.get(i, tcalId);
1012 outintCol.get(i, offint);
1013 onintCol.get(i, onint);
1014 // caluculate mean Tsys
1015 uInt nchan = specCaloff.nelements();
1016 // percentage of edge cut off
1017 uInt pc = 10;
1018 uInt bchan = nchan/pc;
1019 uInt echan = nchan-bchan;
1020
1021 Slicer chansl(IPosition(1,bchan-1), IPosition(1,echan-1), IPosition(1,1),Slicer::endIsLast);
1022 Vector<Float> testsubsp = specCaloff(chansl);
1023 MaskedArray<Float> spoff = maskedArray( specCaloff(chansl),flagCaloff(chansl) );
1024 MaskedArray<Float> spon = maskedArray( specCalon(chansl),flagCalon(chansl) );
1025 MaskedArray<Float> spdiff = spon-spoff;
1026 uInt noff = spoff.nelementsValid();
1027 //uInt non = spon.nelementsValid();
1028 uInt ndiff = spdiff.nelementsValid();
1029 Float meantsys;
1030
1031/**
1032 Double subspec, subdiff;
1033 uInt usednchan;
1034 subspec = 0;
1035 subdiff = 0;
1036 usednchan = 0;
1037 for(uInt k=(bchan-1); k<echan; k++) {
1038 subspec += specCaloff[k];
1039 subdiff += static_cast<Double>(specCalon[k]-specCaloff[k]);
1040 ++usednchan;
1041 }
1042**/
1043 // get tcal if input tcal <= 0
1044 String tcalt;
1045 Float tcalUsed;
1046 tcalUsed = tcal;
1047 if ( tcal <= 0.0 ) {
1048 caloff->tcal().getEntry(tcalt, tcalout, tcalId);
1049 if (polno<=3) {
1050 tcalUsed = tcalout[polno];
1051 }
1052 else {
1053 tcalUsed = tcalout[0];
1054 }
1055 }
1056
1057 Float meanoff;
1058 Float meandiff;
1059 if (noff && ndiff) {
1060 //Debug
1061 //if(noff!=ndiff) cerr<<"noff and ndiff is not equal"<<endl;
1062 //LogIO os( LogOrigin( "STMath", "dototalpower()", WHERE ) ) ;
1063 //if(noff!=ndiff) os<<"noff and ndiff is not equal"<<LogIO::POST;
1064 meanoff = sum(spoff)/noff;
1065 meandiff = sum(spdiff)/ndiff;
1066 meantsys= (meanoff/meandiff )*tcalUsed + tcalUsed/2;
1067 }
1068 else {
1069 meantsys=1;
1070 }
1071
1072 tsysout[0] = Float(meantsys);
1073 MaskedArray<Float> mcaloff = maskedArray(specCaloff, flagCaloff);
1074 MaskedArray<Float> mcalon = maskedArray(specCalon, flagCalon);
1075 MaskedArray<Float> sig = Float(0.5) * (mcaloff + mcalon);
1076 //uInt ncaloff = mcaloff.nelementsValid();
1077 //uInt ncalon = mcalon.nelementsValid();
1078
1079 outintCol.put(i, offint+onint);
1080 outspecCol.put(i, sig.getArray());
1081 outflagCol.put(i, flagsFromMA(sig));
1082 outtsysCol.put(i, tsysout);
1083 }
1084 ++sit;
1085 ++s2it;
1086 }
1087 return out;
1088}
1089
1090//dosigref - migrated from GBT IDL's dosigref.pro, do calibration of position switch
1091// observatiions.
1092// input: sig and ref scantables, and an optional boxcar smoothing width(default width=0,
1093// no smoothing).
1094// output: resultant scantable [= (sig-ref/ref)*tsys]
1095CountedPtr< Scantable > STMath::dosigref( const CountedPtr < Scantable >& sig,
1096 const CountedPtr < Scantable >& ref,
1097 int smoothref,
1098 casa::Float tsysv,
1099 casa::Float tau )
1100{
1101if ( ! ref->conformant(*sig) ) {
1102 throw(AipsError("'sig' and 'ref' scantables are not conformant."));
1103 }
1104 setInsitu(false);
1105 CountedPtr< Scantable > out = getScantable(sig, false);
1106 CountedPtr< Scantable > smref;
1107 if ( smoothref > 1 ) {
1108 float fsmoothref = static_cast<float>(smoothref);
1109 std::string inkernel = "boxcar";
1110 smref = smooth(ref, inkernel, fsmoothref );
1111 ostringstream oss;
1112 oss<<"Applied smoothing of "<<fsmoothref<<" on the reference."<<endl;
1113 pushLog(String(oss));
1114 }
1115 else {
1116 smref = ref;
1117 }
1118 Table& tout = out->table();
1119 const Table& tref = smref->table();
1120 if ( tout.nrow() != tref.nrow() ) {
1121 throw(AipsError("Mismatch in number of rows to form on-source and reference pair."));
1122 }
1123 // iteration by scanno? or cycle no.
1124 TableIterator sit(tout, "SCANNO");
1125 TableIterator s2it(tref, "SCANNO");
1126 while ( !sit.pastEnd() ) {
1127 Table ton = sit.table();
1128 Table t = s2it.table();
1129 ScalarColumn<Double> outintCol(ton, "INTERVAL");
1130 ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1131 ArrayColumn<Float> outtsysCol(ton, "TSYS");
1132 ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1133 ArrayColumn<Float> refspecCol(t, "SPECTRA");
1134 ROScalarColumn<Double> refintCol(t, "INTERVAL");
1135 ROArrayColumn<Float> reftsysCol(t, "TSYS");
1136 ArrayColumn<uChar> refflagCol(t, "FLAGTRA");
1137 ROScalarColumn<Float> refelevCol(t, "ELEVATION");
1138 for (uInt i=0; i < ton.nrow(); ++i) {
1139
1140 Double onint, refint;
1141 Vector<Float> specon, specref;
1142 // to store scalar (mean) tsys
1143 Vector<Float> tsysref;
1144 outintCol.get(i, onint);
1145 refintCol.get(i, refint);
1146 outspecCol.get(i, specon);
1147 refspecCol.get(i, specref);
1148 Vector<uChar> flagref, flagon;
1149 outflagCol.get(i, flagon);
1150 refflagCol.get(i, flagref);
1151 reftsysCol.get(i, tsysref);
1152
1153 Float tsysrefscalar;
1154 if ( tsysv > 0.0 ) {
1155 ostringstream oss;
1156 Float elev;
1157 refelevCol.get(i, elev);
1158 oss << "user specified Tsys = " << tsysv;
1159 // do recalc elevation if EL = 0
1160 if ( elev == 0 ) {
1161 throw(AipsError("EL=0, elevation data is missing."));
1162 } else {
1163 if ( tau <= 0.0 ) {
1164 throw(AipsError("Valid tau is not supplied."));
1165 } else {
1166 tsysrefscalar = tsysv * exp(tau/elev);
1167 }
1168 }
1169 oss << ", corrected (for El) tsys= "<<tsysrefscalar;
1170 pushLog(String(oss));
1171 }
1172 else {
1173 tsysrefscalar = tsysref[0];
1174 }
1175 //get quotient spectrum
1176 MaskedArray<Float> mref = maskedArray(specref, flagref);
1177 MaskedArray<Float> mon = maskedArray(specon, flagon);
1178 MaskedArray<Float> specres = tsysrefscalar*((mon - mref)/mref);
1179 Double resint = onint*refint*smoothref/(onint+refint*smoothref);
1180
1181 //Debug
1182 //cerr<<"Tsys used="<<tsysrefscalar<<endl;
1183 //LogIO os( LogOrigin( "STMath", "dosigref", WHERE ) ) ;
1184 //os<<"Tsys used="<<tsysrefscalar<<LogIO::POST;
1185 // fill the result, replay signal tsys by reference tsys
1186 outintCol.put(i, resint);
1187 outspecCol.put(i, specres.getArray());
1188 outflagCol.put(i, flagsFromMA(specres));
1189 outtsysCol.put(i, tsysref);
1190 }
1191 ++sit;
1192 ++s2it;
1193 }
1194 return out;
1195}
1196
1197CountedPtr< Scantable > STMath::donod(const casa::CountedPtr<Scantable>& s,
1198 const std::vector<int>& scans,
1199 int smoothref,
1200 casa::Float tsysv,
1201 casa::Float tau,
1202 casa::Float tcal )
1203
1204{
1205 setInsitu(false);
1206 STSelector sel;
1207 std::vector<int> scan1, scan2, beams, types;
1208 std::vector< vector<int> > scanpair;
1209 //std::vector<string> calstate;
1210 std::vector<int> calstate;
1211 String msg;
1212
1213 CountedPtr< Scantable > s1b1on, s1b1off, s1b2on, s1b2off;
1214 CountedPtr< Scantable > s2b1on, s2b1off, s2b2on, s2b2off;
1215
1216 std::vector< CountedPtr< Scantable > > sctables;
1217 sctables.push_back(s1b1on);
1218 sctables.push_back(s1b1off);
1219 sctables.push_back(s1b2on);
1220 sctables.push_back(s1b2off);
1221 sctables.push_back(s2b1on);
1222 sctables.push_back(s2b1off);
1223 sctables.push_back(s2b2on);
1224 sctables.push_back(s2b2off);
1225
1226 //check scanlist
1227 int n=s->checkScanInfo(scans);
1228 if (n==1) {
1229 throw(AipsError("Incorrect scan pairs. "));
1230 }
1231
1232 // Assume scans contain only a pair of consecutive scan numbers.
1233 // It is assumed that first beam, b1, is on target.
1234 // There is no check if the first beam is on or not.
1235 if ( scans.size()==1 ) {
1236 scan1.push_back(scans[0]);
1237 scan2.push_back(scans[0]+1);
1238 } else if ( scans.size()==2 ) {
1239 scan1.push_back(scans[0]);
1240 scan2.push_back(scans[1]);
1241 } else {
1242 if ( scans.size()%2 == 0 ) {
1243 for (uInt i=0; i<scans.size(); i++) {
1244 if (i%2 == 0) {
1245 scan1.push_back(scans[i]);
1246 }
1247 else {
1248 scan2.push_back(scans[i]);
1249 }
1250 }
1251 } else {
1252 throw(AipsError("Odd numbers of scans, cannot form pairs."));
1253 }
1254 }
1255 scanpair.push_back(scan1);
1256 scanpair.push_back(scan2);
1257 //calstate.push_back("*calon");
1258 //calstate.push_back("*[^calon]");
1259 calstate.push_back(SrcType::NODCAL);
1260 calstate.push_back(SrcType::NOD);
1261 CountedPtr< Scantable > ws = getScantable(s, false);
1262 uInt l=0;
1263 while ( l < sctables.size() ) {
1264 for (uInt i=0; i < 2; i++) {
1265 for (uInt j=0; j < 2; j++) {
1266 for (uInt k=0; k < 2; k++) {
1267 sel.reset();
1268 sel.setScans(scanpair[i]);
1269 //sel.setName(calstate[k]);
1270 types.clear();
1271 types.push_back(calstate[k]);
1272 sel.setTypes(types);
1273 beams.clear();
1274 beams.push_back(j);
1275 sel.setBeams(beams);
1276 ws->setSelection(sel);
1277 sctables[l]= getScantable(ws, false);
1278 l++;
1279 }
1280 }
1281 }
1282 }
1283
1284 // replace here by splitData or getData functionality
1285 CountedPtr< Scantable > sig1;
1286 CountedPtr< Scantable > ref1;
1287 CountedPtr< Scantable > sig2;
1288 CountedPtr< Scantable > ref2;
1289 CountedPtr< Scantable > calb1;
1290 CountedPtr< Scantable > calb2;
1291
1292 msg=String("Processing dototalpower for subset of the data");
1293 ostringstream oss1;
1294 oss1 << msg << endl;
1295 pushLog(String(oss1));
1296 // Debug for IRC CS data
1297 //float tcal1=7.0;
1298 //float tcal2=4.0;
1299 sig1 = dototalpower(sctables[0], sctables[1], tcal=tcal);
1300 ref1 = dototalpower(sctables[2], sctables[3], tcal=tcal);
1301 ref2 = dototalpower(sctables[4], sctables[5], tcal=tcal);
1302 sig2 = dototalpower(sctables[6], sctables[7], tcal=tcal);
1303
1304 // correction of user-specified tsys for elevation here
1305
1306 // dosigref calibration
1307 msg=String("Processing dosigref for subset of the data");
1308 ostringstream oss2;
1309 oss2 << msg << endl;
1310 pushLog(String(oss2));
1311 calb1=dosigref(sig1,ref2,smoothref,tsysv,tau);
1312 calb2=dosigref(sig2,ref1,smoothref,tsysv,tau);
1313
1314 // iteration by scanno or cycle no.
1315 Table& tcalb1 = calb1->table();
1316 Table& tcalb2 = calb2->table();
1317 TableIterator sit(tcalb1, "SCANNO");
1318 TableIterator s2it(tcalb2, "SCANNO");
1319 while ( !sit.pastEnd() ) {
1320 Table t1 = sit.table();
1321 Table t2= s2it.table();
1322 ArrayColumn<Float> outspecCol(t1, "SPECTRA");
1323 ArrayColumn<Float> outtsysCol(t1, "TSYS");
1324 ArrayColumn<uChar> outflagCol(t1, "FLAGTRA");
1325 ScalarColumn<Double> outintCol(t1, "INTERVAL");
1326 ArrayColumn<Float> t2specCol(t2, "SPECTRA");
1327 ROArrayColumn<Float> t2tsysCol(t2, "TSYS");
1328 ArrayColumn<uChar> t2flagCol(t2, "FLAGTRA");
1329 ROScalarColumn<Double> t2intCol(t2, "INTERVAL");
1330 for (uInt i=0; i < t1.nrow(); ++i) {
1331 Vector<Float> spec1, spec2;
1332 // to store scalar (mean) tsys
1333 Vector<Float> tsys1, tsys2;
1334 Vector<uChar> flag1, flag2;
1335 Double tint1, tint2;
1336 outspecCol.get(i, spec1);
1337 t2specCol.get(i, spec2);
1338 outflagCol.get(i, flag1);
1339 t2flagCol.get(i, flag2);
1340 outtsysCol.get(i, tsys1);
1341 t2tsysCol.get(i, tsys2);
1342 outintCol.get(i, tint1);
1343 t2intCol.get(i, tint2);
1344 // average
1345 // assume scalar tsys for weights
1346 Float wt1, wt2, tsyssq1, tsyssq2;
1347 tsyssq1 = tsys1[0]*tsys1[0];
1348 tsyssq2 = tsys2[0]*tsys2[0];
1349 wt1 = Float(tint1)/tsyssq1;
1350 wt2 = Float(tint2)/tsyssq2;
1351 Float invsumwt=1/(wt1+wt2);
1352 MaskedArray<Float> mspec1 = maskedArray(spec1, flag1);
1353 MaskedArray<Float> mspec2 = maskedArray(spec2, flag2);
1354 MaskedArray<Float> avspec = invsumwt * (wt1*mspec1 + wt2*mspec2);
1355 //Array<Float> avtsys = Float(0.5) * (tsys1 + tsys2);
1356 // cerr<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<endl;
1357 // LogIO os( LogOrigin( "STMath", "donod", WHERE ) ) ;
1358 // os<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<LogIO::POST;
1359 tsys1[0] = sqrt(tsyssq1 + tsyssq2);
1360 Array<Float> avtsys = tsys1;
1361
1362 outspecCol.put(i, avspec.getArray());
1363 outflagCol.put(i, flagsFromMA(avspec));
1364 outtsysCol.put(i, avtsys);
1365 }
1366 ++sit;
1367 ++s2it;
1368 }
1369 return calb1;
1370}
1371
1372//GBTIDL version of frequency switched data calibration
1373CountedPtr< Scantable > STMath::dofs( const CountedPtr< Scantable >& s,
1374 const std::vector<int>& scans,
1375 int smoothref,
1376 casa::Float tsysv,
1377 casa::Float tau,
1378 casa::Float tcal )
1379{
1380
1381
1382 STSelector sel;
1383 CountedPtr< Scantable > ws = getScantable(s, false);
1384 CountedPtr< Scantable > sig, sigwcal, ref, refwcal;
1385 CountedPtr< Scantable > calsig, calref, out, out1, out2;
1386 Bool nofold=False;
1387 vector<int> types ;
1388
1389 //split the data
1390 //sel.setName("*_fs");
1391 types.push_back( SrcType::FSON ) ;
1392 sel.setTypes( types ) ;
1393 ws->setSelection(sel);
1394 sig = getScantable(ws,false);
1395 sel.reset();
1396 types.clear() ;
1397 //sel.setName("*_fs_calon");
1398 types.push_back( SrcType::FONCAL ) ;
1399 sel.setTypes( types ) ;
1400 ws->setSelection(sel);
1401 sigwcal = getScantable(ws,false);
1402 sel.reset();
1403 types.clear() ;
1404 //sel.setName("*_fsr");
1405 types.push_back( SrcType::FSOFF ) ;
1406 sel.setTypes( types ) ;
1407 ws->setSelection(sel);
1408 ref = getScantable(ws,false);
1409 sel.reset();
1410 types.clear() ;
1411 //sel.setName("*_fsr_calon");
1412 types.push_back( SrcType::FOFFCAL ) ;
1413 sel.setTypes( types ) ;
1414 ws->setSelection(sel);
1415 refwcal = getScantable(ws,false);
1416 sel.reset() ;
1417 types.clear() ;
1418
1419 calsig = dototalpower(sigwcal, sig, tcal=tcal);
1420 calref = dototalpower(refwcal, ref, tcal=tcal);
1421
1422 out1=dosigref(calsig,calref,smoothref,tsysv,tau);
1423 out2=dosigref(calref,calsig,smoothref,tsysv,tau);
1424
1425 Table& tabout1=out1->table();
1426 Table& tabout2=out2->table();
1427 ROScalarColumn<uInt> freqidCol1(tabout1, "FREQ_ID");
1428 ScalarColumn<uInt> freqidCol2(tabout2, "FREQ_ID");
1429 ROArrayColumn<Float> specCol(tabout2, "SPECTRA");
1430 Vector<Float> spec; specCol.get(0, spec);
1431 uInt nchan = spec.nelements();
1432 uInt freqid1; freqidCol1.get(0,freqid1);
1433 uInt freqid2; freqidCol2.get(0,freqid2);
1434 Double rp1, rp2, rv1, rv2, inc1, inc2;
1435 out1->frequencies().getEntry(rp1, rv1, inc1, freqid1);
1436 out2->frequencies().getEntry(rp2, rv2, inc2, freqid2);
1437 //cerr << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << endl ;
1438 //LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1439 //os << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << LogIO::POST ;
1440 if (rp1==rp2) {
1441 Double foffset = rv1 - rv2;
1442 uInt choffset = static_cast<uInt>(foffset/abs(inc2));
1443 if (choffset >= nchan) {
1444 //cerr<<"out-band frequency switching, no folding"<<endl;
1445 LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1446 os<<"out-band frequency switching, no folding"<<LogIO::POST;
1447 nofold = True;
1448 }
1449 }
1450
1451 if (nofold) {
1452 std::vector< CountedPtr< Scantable > > tabs;
1453 tabs.push_back(out1);
1454 tabs.push_back(out2);
1455 out = merge(tabs);
1456 }
1457 else {
1458 //out = out1;
1459 Double choffset = ( rv1 - rv2 ) / inc2 ;
1460 out = dofold( out1, out2, choffset ) ;
1461 }
1462
1463 return out;
1464}
1465
1466CountedPtr<Scantable> STMath::dofold( const CountedPtr<Scantable> &sig,
1467 const CountedPtr<Scantable> &ref,
1468 Double choffset,
1469 Double choffset2 )
1470{
1471 LogIO os( LogOrigin( "STMath", "dofold", WHERE ) ) ;
1472 os << "choffset=" << choffset << " choffset2=" << choffset2 << LogIO::POST ;
1473
1474 // output scantable
1475 CountedPtr<Scantable> out = getScantable( sig, false ) ;
1476
1477 // separate choffset to integer part and decimal part
1478 Int ioffset = (Int)choffset ;
1479 Double doffset = choffset - ioffset ;
1480 Int ioffset2 = (Int)choffset2 ;
1481 Double doffset2 = choffset2 - ioffset2 ;
1482 os << "ioffset=" << ioffset << " doffset=" << doffset << LogIO::POST ;
1483 os << "ioffset2=" << ioffset2 << " doffset2=" << doffset2 << LogIO::POST ;
1484
1485 // get column
1486 ROArrayColumn<Float> specCol1( sig->table(), "SPECTRA" ) ;
1487 ROArrayColumn<Float> specCol2( ref->table(), "SPECTRA" ) ;
1488 ROArrayColumn<Float> tsysCol1( sig->table(), "TSYS" ) ;
1489 ROArrayColumn<Float> tsysCol2( ref->table(), "TSYS" ) ;
1490 ROArrayColumn<uChar> flagCol1( sig->table(), "FLAGTRA" ) ;
1491 ROArrayColumn<uChar> flagCol2( ref->table(), "FLAGTRA" ) ;
1492 ROScalarColumn<Double> mjdCol1( sig->table(), "TIME" ) ;
1493 ROScalarColumn<Double> mjdCol2( ref->table(), "TIME" ) ;
1494 ROScalarColumn<Double> intervalCol1( sig->table(), "INTERVAL" ) ;
1495 ROScalarColumn<Double> intervalCol2( ref->table(), "INTERVAL" ) ;
1496
1497 // check
1498 if ( ioffset == 0 ) {
1499 LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1500 os << "channel offset is zero, no folding" << LogIO::POST ;
1501 return out ;
1502 }
1503 int nchan = ref->nchan() ;
1504 if ( abs(ioffset) >= nchan ) {
1505 LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1506 os << "out-band frequency switching, no folding" << LogIO::POST ;
1507 return out ;
1508 }
1509
1510 // attach column for output scantable
1511 ArrayColumn<Float> specColOut( out->table(), "SPECTRA" ) ;
1512 ArrayColumn<uChar> flagColOut( out->table(), "FLAGTRA" ) ;
1513 ArrayColumn<Float> tsysColOut( out->table(), "TSYS" ) ;
1514 ScalarColumn<Double> mjdColOut( out->table(), "TIME" ) ;
1515 ScalarColumn<Double> intervalColOut( out->table(), "INTERVAL" ) ;
1516 ScalarColumn<uInt> fidColOut( out->table(), "FREQ_ID" ) ;
1517
1518 // for each row
1519 // assume that the data order are same between sig and ref
1520 RowAccumulator acc( asap::TINTSYS ) ;
1521 for ( int i = 0 ; i < sig->nrow() ; i++ ) {
1522 // get values
1523 Vector<Float> spsig ;
1524 specCol1.get( i, spsig ) ;
1525 Vector<Float> spref ;
1526 specCol2.get( i, spref ) ;
1527 Vector<Float> tsyssig ;
1528 tsysCol1.get( i, tsyssig ) ;
1529 Vector<Float> tsysref ;
1530 tsysCol2.get( i, tsysref ) ;
1531 Vector<uChar> flagsig ;
1532 flagCol1.get( i, flagsig ) ;
1533 Vector<uChar> flagref ;
1534 flagCol2.get( i, flagref ) ;
1535 Double timesig ;
1536 mjdCol1.get( i, timesig ) ;
1537 Double timeref ;
1538 mjdCol2.get( i, timeref ) ;
1539 Double intsig ;
1540 intervalCol1.get( i, intsig ) ;
1541 Double intref ;
1542 intervalCol2.get( i, intref ) ;
1543
1544 // shift reference spectra
1545 int refchan = spref.nelements() ;
1546 Vector<Float> sspref( spref.nelements() ) ;
1547 Vector<Float> stsysref( tsysref.nelements() ) ;
1548 Vector<uChar> sflagref( flagref.nelements() ) ;
1549 if ( ioffset > 0 ) {
1550 // SPECTRA and FLAGTRA
1551 for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1552 sspref[j] = spref[j+ioffset] ;
1553 sflagref[j] = flagref[j+ioffset] ;
1554 }
1555 for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1556 sspref[j] = spref[j-refchan+ioffset] ;
1557 sflagref[j] = flagref[j-refchan+ioffset] ;
1558 }
1559 spref = sspref.copy() ;
1560 flagref = sflagref.copy() ;
1561 for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1562 sspref[j] = doffset * spref[j+1] + ( 1.0 - doffset ) * spref[j] ;
1563 sflagref[j] = flagref[j+1] + flagref[j] ;
1564 }
1565 sspref[refchan-1] = doffset * spref[0] + ( 1.0 - doffset ) * spref[refchan-1] ;
1566 sflagref[refchan-1] = flagref[0] + flagref[refchan-1] ;
1567
1568 // TSYS
1569 if ( spref.nelements() == tsysref.nelements() ) {
1570 for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1571 stsysref[j] = tsysref[j+ioffset] ;
1572 }
1573 for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1574 stsysref[j] = tsysref[j-refchan+ioffset] ;
1575 }
1576 tsysref = stsysref.copy() ;
1577 for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1578 stsysref[j] = doffset * tsysref[j+1] + ( 1.0 - doffset ) * tsysref[j] ;
1579 }
1580 stsysref[refchan-1] = doffset * tsysref[0] + ( 1.0 - doffset ) * tsysref[refchan-1] ;
1581 }
1582 }
1583 else {
1584 // SPECTRA and FLAGTRA
1585 for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1586 sspref[j] = spref[refchan+ioffset+j] ;
1587 sflagref[j] = flagref[refchan+ioffset+j] ;
1588 }
1589 for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1590 sspref[j] = spref[j+ioffset] ;
1591 sflagref[j] = flagref[j+ioffset] ;
1592 }
1593 spref = sspref.copy() ;
1594 flagref = sflagref.copy() ;
1595 sspref[0] = doffset * spref[refchan-1] + ( 1.0 - doffset ) * spref[0] ;
1596 sflagref[0] = flagref[0] + flagref[refchan-1] ;
1597 for ( int j = 1 ; j < refchan ; j++ ) {
1598 sspref[j] = doffset * spref[j-1] + ( 1.0 - doffset ) * spref[j] ;
1599 sflagref[j] = flagref[j-1] + flagref[j] ;
1600 }
1601 // TSYS
1602 if ( spref.nelements() == tsysref.nelements() ) {
1603 for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1604 stsysref[j] = tsysref[refchan+ioffset+j] ;
1605 }
1606 for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1607 stsysref[j] = tsysref[j+ioffset] ;
1608 }
1609 tsysref = stsysref.copy() ;
1610 stsysref[0] = doffset * tsysref[refchan-1] + ( 1.0 - doffset ) * tsysref[0] ;
1611 for ( int j = 1 ; j < refchan ; j++ ) {
1612 stsysref[j] = doffset * tsysref[j-1] + ( 1.0 - doffset ) * tsysref[j] ;
1613 }
1614 }
1615 }
1616
1617 // shift signal spectra if necessary (only for APEX?)
1618 if ( choffset2 != 0.0 ) {
1619 int sigchan = spsig.nelements() ;
1620 Vector<Float> sspsig( spsig.nelements() ) ;
1621 Vector<Float> stsyssig( tsyssig.nelements() ) ;
1622 Vector<uChar> sflagsig( flagsig.nelements() ) ;
1623 if ( ioffset2 > 0 ) {
1624 // SPECTRA and FLAGTRA
1625 for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1626 sspsig[j] = spsig[j+ioffset2] ;
1627 sflagsig[j] = flagsig[j+ioffset2] ;
1628 }
1629 for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1630 sspsig[j] = spsig[j-sigchan+ioffset2] ;
1631 sflagsig[j] = flagsig[j-sigchan+ioffset2] ;
1632 }
1633 spsig = sspsig.copy() ;
1634 flagsig = sflagsig.copy() ;
1635 for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1636 sspsig[j] = doffset2 * spsig[j+1] + ( 1.0 - doffset2 ) * spsig[j] ;
1637 sflagsig[j] = flagsig[j+1] || flagsig[j] ;
1638 }
1639 sspsig[sigchan-1] = doffset2 * spsig[0] + ( 1.0 - doffset2 ) * spsig[sigchan-1] ;
1640 sflagsig[sigchan-1] = flagsig[0] || flagsig[sigchan-1] ;
1641 // TSTS
1642 if ( spsig.nelements() == tsyssig.nelements() ) {
1643 for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1644 stsyssig[j] = tsyssig[j+ioffset2] ;
1645 }
1646 for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1647 stsyssig[j] = tsyssig[j-sigchan+ioffset2] ;
1648 }
1649 tsyssig = stsyssig.copy() ;
1650 for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1651 stsyssig[j] = doffset2 * tsyssig[j+1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1652 }
1653 stsyssig[sigchan-1] = doffset2 * tsyssig[0] + ( 1.0 - doffset2 ) * tsyssig[sigchan-1] ;
1654 }
1655 }
1656 else {
1657 // SPECTRA and FLAGTRA
1658 for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1659 sspsig[j] = spsig[sigchan+ioffset2+j] ;
1660 sflagsig[j] = flagsig[sigchan+ioffset2+j] ;
1661 }
1662 for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1663 sspsig[j] = spsig[j+ioffset2] ;
1664 sflagsig[j] = flagsig[j+ioffset2] ;
1665 }
1666 spsig = sspsig.copy() ;
1667 flagsig = sflagsig.copy() ;
1668 sspsig[0] = doffset2 * spsig[sigchan-1] + ( 1.0 - doffset2 ) * spsig[0] ;
1669 sflagsig[0] = flagsig[0] + flagsig[sigchan-1] ;
1670 for ( int j = 1 ; j < sigchan ; j++ ) {
1671 sspsig[j] = doffset2 * spsig[j-1] + ( 1.0 - doffset2 ) * spsig[j] ;
1672 sflagsig[j] = flagsig[j-1] + flagsig[j] ;
1673 }
1674 // TSYS
1675 if ( spsig.nelements() == tsyssig.nelements() ) {
1676 for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1677 stsyssig[j] = tsyssig[sigchan+ioffset2+j] ;
1678 }
1679 for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1680 stsyssig[j] = tsyssig[j+ioffset2] ;
1681 }
1682 tsyssig = stsyssig.copy() ;
1683 stsyssig[0] = doffset2 * tsyssig[sigchan-1] + ( 1.0 - doffset2 ) * tsyssig[0] ;
1684 for ( int j = 1 ; j < sigchan ; j++ ) {
1685 stsyssig[j] = doffset2 * tsyssig[j-1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1686 }
1687 }
1688 }
1689 }
1690
1691 // folding
1692 acc.add( spsig, !flagsig, tsyssig, intsig, timesig ) ;
1693 acc.add( sspref, !sflagref, stsysref, intref, timeref ) ;
1694
1695 // put result
1696 specColOut.put( i, acc.getSpectrum() ) ;
1697 const Vector<Bool> &msk = acc.getMask() ;
1698 Vector<uChar> flg( msk.shape() ) ;
1699 convertArray( flg, !msk ) ;
1700 flagColOut.put( i, flg ) ;
1701 tsysColOut.put( i, acc.getTsys() ) ;
1702 intervalColOut.put( i, acc.getInterval() ) ;
1703 mjdColOut.put( i, acc.getTime() ) ;
1704 // change FREQ_ID to unshifted IF setting (only for APEX?)
1705 if ( choffset2 != 0.0 ) {
1706 uInt freqid = fidColOut( 0 ) ; // assume single-IF data
1707 double refpix, refval, increment ;
1708 out->frequencies().getEntry( refpix, refval, increment, freqid ) ;
1709 refval -= choffset * increment ;
1710 uInt newfreqid = out->frequencies().addEntry( refpix, refval, increment ) ;
1711 Vector<uInt> freqids = fidColOut.getColumn() ;
1712 for ( uInt j = 0 ; j < freqids.nelements() ; j++ ) {
1713 if ( freqids[j] == freqid )
1714 freqids[j] = newfreqid ;
1715 }
1716 fidColOut.putColumn( freqids ) ;
1717 }
1718
1719 acc.reset() ;
1720 }
1721
1722 return out ;
1723}
1724
1725
1726CountedPtr< Scantable > STMath::freqSwitch( const CountedPtr< Scantable >& in )
1727{
1728 // make copy or reference
1729 CountedPtr< Scantable > out = getScantable(in, false);
1730 Table& tout = out->table();
1731 Block<String> cols(4);
1732 cols[0] = String("SCANNO");
1733 cols[1] = String("CYCLENO");
1734 cols[2] = String("BEAMNO");
1735 cols[3] = String("POLNO");
1736 TableIterator iter(tout, cols);
1737 while (!iter.pastEnd()) {
1738 Table subt = iter.table();
1739 // this should leave us with two rows for the two IFs....if not ignore
1740 if (subt.nrow() != 2 ) {
1741 continue;
1742 }
1743 ArrayColumn<Float> specCol(subt, "SPECTRA");
1744 ArrayColumn<Float> tsysCol(subt, "TSYS");
1745 ArrayColumn<uChar> flagCol(subt, "FLAGTRA");
1746 Vector<Float> onspec,offspec, ontsys, offtsys;
1747 Vector<uChar> onflag, offflag;
1748 tsysCol.get(0, ontsys); tsysCol.get(1, offtsys);
1749 specCol.get(0, onspec); specCol.get(1, offspec);
1750 flagCol.get(0, onflag); flagCol.get(1, offflag);
1751 MaskedArray<Float> on = maskedArray(onspec, onflag);
1752 MaskedArray<Float> off = maskedArray(offspec, offflag);
1753 MaskedArray<Float> oncopy = on.copy();
1754
1755 on /= off; on -= 1.0f;
1756 on *= ontsys[0];
1757 off /= oncopy; off -= 1.0f;
1758 off *= offtsys[0];
1759 specCol.put(0, on.getArray());
1760 const Vector<Bool>& m0 = on.getMask();
1761 Vector<uChar> flags0(m0.shape());
1762 convertArray(flags0, !m0);
1763 flagCol.put(0, flags0);
1764
1765 specCol.put(1, off.getArray());
1766 const Vector<Bool>& m1 = off.getMask();
1767 Vector<uChar> flags1(m1.shape());
1768 convertArray(flags1, !m1);
1769 flagCol.put(1, flags1);
1770 ++iter;
1771 }
1772
1773 return out;
1774}
1775
1776std::vector< float > STMath::statistic( const CountedPtr< Scantable > & in,
1777 const std::vector< bool > & mask,
1778 const std::string& which )
1779{
1780
1781 Vector<Bool> m(mask);
1782 const Table& tab = in->table();
1783 ROArrayColumn<Float> specCol(tab, "SPECTRA");
1784 ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1785 std::vector<float> out;
1786 for (uInt i=0; i < tab.nrow(); ++i ) {
1787 Vector<Float> spec; specCol.get(i, spec);
1788 Vector<uChar> flag; flagCol.get(i, flag);
1789 MaskedArray<Float> ma = maskedArray(spec, flag);
1790 float outstat = 0.0;
1791 if ( spec.nelements() == m.nelements() ) {
1792 outstat = mathutil::statistics(which, ma(m));
1793 } else {
1794 outstat = mathutil::statistics(which, ma);
1795 }
1796 out.push_back(outstat);
1797 }
1798 return out;
1799}
1800
1801std::vector< int > STMath::minMaxChan( const CountedPtr< Scantable > & in,
1802 const std::vector< bool > & mask,
1803 const std::string& which )
1804{
1805
1806 Vector<Bool> m(mask);
1807 const Table& tab = in->table();
1808 ROArrayColumn<Float> specCol(tab, "SPECTRA");
1809 ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1810 std::vector<int> out;
1811 for (uInt i=0; i < tab.nrow(); ++i ) {
1812 Vector<Float> spec; specCol.get(i, spec);
1813 Vector<uChar> flag; flagCol.get(i, flag);
1814 MaskedArray<Float> ma = maskedArray(spec, flag);
1815 if (ma.ndim() != 1) {
1816 throw (ArrayError(
1817 "std::vector<int> STMath::minMaxChan("
1818 "ContedPtr<Scantable> &in, std::vector<bool> &mask, "
1819 " std::string &which)"
1820 " - MaskedArray is not 1D"));
1821 }
1822 IPosition outpos(1,0);
1823 if ( spec.nelements() == m.nelements() ) {
1824 outpos = mathutil::minMaxPos(which, ma(m));
1825 } else {
1826 outpos = mathutil::minMaxPos(which, ma);
1827 }
1828 out.push_back(outpos[0]);
1829 }
1830 return out;
1831}
1832
1833CountedPtr< Scantable > STMath::bin( const CountedPtr< Scantable > & in,
1834 int width )
1835{
1836 if ( !in->getSelection().empty() ) throw(AipsError("Can't bin subset of the data."));
1837 CountedPtr< Scantable > out = getScantable(in, false);
1838 Table& tout = out->table();
1839 out->frequencies().rescale(width, "BIN");
1840 ArrayColumn<Float> specCol(tout, "SPECTRA");
1841 ArrayColumn<uChar> flagCol(tout, "FLAGTRA");
1842 for (uInt i=0; i < tout.nrow(); ++i ) {
1843 MaskedArray<Float> main = maskedArray(specCol(i), flagCol(i));
1844 MaskedArray<Float> maout;
1845 LatticeUtilities::bin(maout, main, 0, Int(width));
1846 /// @todo implement channel based tsys binning
1847 specCol.put(i, maout.getArray());
1848 flagCol.put(i, flagsFromMA(maout));
1849 // take only the first binned spectrum's length for the deprecated
1850 // global header item nChan
1851 if (i==0) tout.rwKeywordSet().define(String("nChan"),
1852 Int(maout.getArray().nelements()));
1853 }
1854 return out;
1855}
1856
1857CountedPtr< Scantable > STMath::resample( const CountedPtr< Scantable >& in,
1858 const std::string& method,
1859 float width )
1860//
1861// Should add the possibility of width being specified in km/s. This means
1862// that for each freqID (SpectralCoordinate) we will need to convert to an
1863// average channel width (say at the reference pixel). Then we would need
1864// to be careful to make sure each spectrum (of different freqID)
1865// is the same length.
1866//
1867{
1868 //InterpolateArray1D<Double,Float>::InterpolationMethod interp;
1869 Int interpMethod(stringToIMethod(method));
1870
1871 CountedPtr< Scantable > out = getScantable(in, false);
1872 Table& tout = out->table();
1873
1874// Resample SpectralCoordinates (one per freqID)
1875 out->frequencies().rescale(width, "RESAMPLE");
1876 TableIterator iter(tout, "IFNO");
1877 TableRow row(tout);
1878 while ( !iter.pastEnd() ) {
1879 Table tab = iter.table();
1880 ArrayColumn<Float> specCol(tab, "SPECTRA");
1881 //ArrayColumn<Float> tsysCol(tout, "TSYS");
1882 ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1883 Vector<Float> spec;
1884 Vector<uChar> flag;
1885 specCol.get(0,spec); // the number of channels should be constant per IF
1886 uInt nChanIn = spec.nelements();
1887 Vector<Float> xIn(nChanIn); indgen(xIn);
1888 Int fac = Int(nChanIn/width);
1889 Vector<Float> xOut(fac+10); // 10 to be safe - resize later
1890 uInt k = 0;
1891 Float x = 0.0;
1892 while (x < Float(nChanIn) ) {
1893 xOut(k) = x;
1894 k++;
1895 x += width;
1896 }
1897 uInt nChanOut = k;
1898 xOut.resize(nChanOut, True);
1899 // process all rows for this IFNO
1900 Vector<Float> specOut;
1901 Vector<Bool> maskOut;
1902 Vector<uChar> flagOut;
1903 for (uInt i=0; i < tab.nrow(); ++i) {
1904 specCol.get(i, spec);
1905 flagCol.get(i, flag);
1906 Vector<Bool> mask(flag.nelements());
1907 convertArray(mask, flag);
1908
1909 IPosition shapeIn(spec.shape());
1910 //sh.nchan = nChanOut;
1911 InterpolateArray1D<Float,Float>::interpolate(specOut, maskOut, xOut,
1912 xIn, spec, mask,
1913 interpMethod, True, True);
1914 /// @todo do the same for channel based Tsys
1915 flagOut.resize(maskOut.nelements());
1916 convertArray(flagOut, maskOut);
1917 specCol.put(i, specOut);
1918 flagCol.put(i, flagOut);
1919 }
1920 ++iter;
1921 }
1922
1923 return out;
1924}
1925
1926STMath::imethod STMath::stringToIMethod(const std::string& in)
1927{
1928 static STMath::imap lookup;
1929
1930 // initialize the lookup table if necessary
1931 if ( lookup.empty() ) {
1932 lookup["nearest"] = InterpolateArray1D<Double,Float>::nearestNeighbour;
1933 lookup["linear"] = InterpolateArray1D<Double,Float>::linear;
1934 lookup["cubic"] = InterpolateArray1D<Double,Float>::cubic;
1935 lookup["spline"] = InterpolateArray1D<Double,Float>::spline;
1936 }
1937
1938 STMath::imap::const_iterator iter = lookup.find(in);
1939
1940 if ( lookup.end() == iter ) {
1941 std::string message = in;
1942 message += " is not a valid interpolation mode";
1943 throw(AipsError(message));
1944 }
1945 return iter->second;
1946}
1947
1948WeightType STMath::stringToWeight(const std::string& in)
1949{
1950 static std::map<std::string, WeightType> lookup;
1951
1952 // initialize the lookup table if necessary
1953 if ( lookup.empty() ) {
1954 lookup["NONE"] = asap::NONE;
1955 lookup["TINT"] = asap::TINT;
1956 lookup["TINTSYS"] = asap::TINTSYS;
1957 lookup["TSYS"] = asap::TSYS;
1958 lookup["VAR"] = asap::VAR;
1959 }
1960
1961 std::map<std::string, WeightType>::const_iterator iter = lookup.find(in);
1962
1963 if ( lookup.end() == iter ) {
1964 std::string message = in;
1965 message += " is not a valid weighting mode";
1966 throw(AipsError(message));
1967 }
1968 return iter->second;
1969}
1970
1971CountedPtr< Scantable > STMath::gainElevation( const CountedPtr< Scantable >& in,
1972 const vector< float > & coeff,
1973 const std::string & filename,
1974 const std::string& method)
1975{
1976 // Get elevation data from Scantable and convert to degrees
1977 CountedPtr< Scantable > out = getScantable(in, false);
1978 Table& tab = out->table();
1979 ROScalarColumn<Float> elev(tab, "ELEVATION");
1980 Vector<Float> x = elev.getColumn();
1981 x *= Float(180 / C::pi); // Degrees
1982
1983 Vector<Float> coeffs(coeff);
1984 const uInt nc = coeffs.nelements();
1985 if ( filename.length() > 0 && nc > 0 ) {
1986 throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
1987 }
1988
1989 // Correct
1990 if ( nc > 0 || filename.length() == 0 ) {
1991 // Find instrument
1992 Bool throwit = True;
1993 Instrument inst =
1994 STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
1995 throwit);
1996
1997 // Set polynomial
1998 Polynomial<Float>* ppoly = 0;
1999 Vector<Float> coeff;
2000 String msg;
2001 if ( nc > 0 ) {
2002 ppoly = new Polynomial<Float>(nc);
2003 coeff = coeffs;
2004 msg = String("user");
2005 } else {
2006 STAttr sdAttr;
2007 coeff = sdAttr.gainElevationPoly(inst);
2008 ppoly = new Polynomial<Float>(3);
2009 msg = String("built in");
2010 }
2011
2012 if ( coeff.nelements() > 0 ) {
2013 ppoly->setCoefficients(coeff);
2014 } else {
2015 delete ppoly;
2016 throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
2017 }
2018 ostringstream oss;
2019 oss << "Making polynomial correction with " << msg << " coefficients:" << endl;
2020 oss << " " << coeff;
2021 pushLog(String(oss));
2022 const uInt nrow = tab.nrow();
2023 Vector<Float> factor(nrow);
2024 for ( uInt i=0; i < nrow; ++i ) {
2025 factor[i] = 1.0 / (*ppoly)(x[i]);
2026 }
2027 delete ppoly;
2028 scaleByVector(tab, factor, true);
2029
2030 } else {
2031 // Read and correct
2032 pushLog("Making correction from ascii Table");
2033 scaleFromAsciiTable(tab, filename, method, x, true);
2034 }
2035 return out;
2036}
2037
2038void STMath::scaleFromAsciiTable(Table& in, const std::string& filename,
2039 const std::string& method,
2040 const Vector<Float>& xout, bool dotsys)
2041{
2042
2043// Read gain-elevation ascii file data into a Table.
2044
2045 String formatString;
2046 Table tbl = readAsciiTable(formatString, Table::Memory, filename, "", "", False);
2047 scaleFromTable(in, tbl, method, xout, dotsys);
2048}
2049
2050void STMath::scaleFromTable(Table& in,
2051 const Table& table,
2052 const std::string& method,
2053 const Vector<Float>& xout, bool dotsys)
2054{
2055
2056 ROScalarColumn<Float> geElCol(table, "ELEVATION");
2057 ROScalarColumn<Float> geFacCol(table, "FACTOR");
2058 Vector<Float> xin = geElCol.getColumn();
2059 Vector<Float> yin = geFacCol.getColumn();
2060 Vector<Bool> maskin(xin.nelements(),True);
2061
2062 // Interpolate (and extrapolate) with desired method
2063
2064 InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2065
2066 Vector<Float> yout;
2067 Vector<Bool> maskout;
2068 InterpolateArray1D<Float,Float>::interpolate(yout, maskout, xout,
2069 xin, yin, maskin, interp,
2070 True, True);
2071
2072 scaleByVector(in, Float(1.0)/yout, dotsys);
2073}
2074
2075void STMath::scaleByVector( Table& in,
2076 const Vector< Float >& factor,
2077 bool dotsys )
2078{
2079 uInt nrow = in.nrow();
2080 if ( factor.nelements() != nrow ) {
2081 throw(AipsError("factors.nelements() != table.nelements()"));
2082 }
2083 ArrayColumn<Float> specCol(in, "SPECTRA");
2084 ArrayColumn<uChar> flagCol(in, "FLAGTRA");
2085 ArrayColumn<Float> tsysCol(in, "TSYS");
2086 for (uInt i=0; i < nrow; ++i) {
2087 MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2088 ma *= factor[i];
2089 specCol.put(i, ma.getArray());
2090 flagCol.put(i, flagsFromMA(ma));
2091 if ( dotsys ) {
2092 Vector<Float> tsys = tsysCol(i);
2093 tsys *= factor[i];
2094 tsysCol.put(i,tsys);
2095 }
2096 }
2097}
2098
2099CountedPtr< Scantable > STMath::convertFlux( const CountedPtr< Scantable >& in,
2100 float d, float etaap,
2101 float jyperk )
2102{
2103 CountedPtr< Scantable > out = getScantable(in, false);
2104 Table& tab = in->table();
2105 Unit fluxUnit(tab.keywordSet().asString("FluxUnit"));
2106 Unit K(String("K"));
2107 Unit JY(String("Jy"));
2108
2109 bool tokelvin = true;
2110 Double cfac = 1.0;
2111
2112 if ( fluxUnit == JY ) {
2113 pushLog("Converting to K");
2114 Quantum<Double> t(1.0,fluxUnit);
2115 Quantum<Double> t2 = t.get(JY);
2116 cfac = (t2 / t).getValue(); // value to Jy
2117
2118 tokelvin = true;
2119 out->setFluxUnit("K");
2120 } else if ( fluxUnit == K ) {
2121 pushLog("Converting to Jy");
2122 Quantum<Double> t(1.0,fluxUnit);
2123 Quantum<Double> t2 = t.get(K);
2124 cfac = (t2 / t).getValue(); // value to K
2125
2126 tokelvin = false;
2127 out->setFluxUnit("Jy");
2128 } else {
2129 throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
2130 }
2131 // Make sure input values are converted to either Jy or K first...
2132 Float factor = cfac;
2133
2134 // Select method
2135 if (jyperk > 0.0) {
2136 factor *= jyperk;
2137 if ( tokelvin ) factor = 1.0 / jyperk;
2138 ostringstream oss;
2139 oss << "Jy/K = " << jyperk;
2140 pushLog(String(oss));
2141 Vector<Float> factors(tab.nrow(), factor);
2142 scaleByVector(tab,factors, false);
2143 } else if ( etaap > 0.0) {
2144 if (d < 0) {
2145 Instrument inst =
2146 STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2147 True);
2148 STAttr sda;
2149 d = sda.diameter(inst);
2150 }
2151 jyperk = STAttr::findJyPerK(etaap, d);
2152 ostringstream oss;
2153 oss << "Jy/K = " << jyperk;
2154 pushLog(String(oss));
2155 factor *= jyperk;
2156 if ( tokelvin ) {
2157 factor = 1.0 / factor;
2158 }
2159 Vector<Float> factors(tab.nrow(), factor);
2160 scaleByVector(tab, factors, False);
2161 } else {
2162
2163 // OK now we must deal with automatic look up of values.
2164 // We must also deal with the fact that the factors need
2165 // to be computed per IF and may be different and may
2166 // change per integration.
2167
2168 pushLog("Looking up conversion factors");
2169 convertBrightnessUnits(out, tokelvin, cfac);
2170 }
2171
2172 return out;
2173}
2174
2175void STMath::convertBrightnessUnits( CountedPtr<Scantable>& in,
2176 bool tokelvin, float cfac )
2177{
2178 Table& table = in->table();
2179 Instrument inst =
2180 STAttr::convertInstrument(table.keywordSet().asString("AntennaName"), True);
2181 TableIterator iter(table, "FREQ_ID");
2182 STFrequencies stfreqs = in->frequencies();
2183 STAttr sdAtt;
2184 while (!iter.pastEnd()) {
2185 Table tab = iter.table();
2186 ArrayColumn<Float> specCol(tab, "SPECTRA");
2187 ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2188 ROScalarColumn<uInt> freqidCol(tab, "FREQ_ID");
2189 MEpoch::ROScalarColumn timeCol(tab, "TIME");
2190
2191 uInt freqid; freqidCol.get(0, freqid);
2192 Vector<Float> tmpspec; specCol.get(0, tmpspec);
2193 // STAttr.JyPerK has a Vector interface... change sometime.
2194 Vector<Float> freqs(1,stfreqs.getRefFreq(freqid, tmpspec.nelements()));
2195 for ( uInt i=0; i<tab.nrow(); ++i) {
2196 Float jyperk = (sdAtt.JyPerK(inst, timeCol(i), freqs))[0];
2197 Float factor = cfac * jyperk;
2198 if ( tokelvin ) factor = Float(1.0) / factor;
2199 MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2200 ma *= factor;
2201 specCol.put(i, ma.getArray());
2202 flagCol.put(i, flagsFromMA(ma));
2203 }
2204 ++iter;
2205 }
2206}
2207
2208CountedPtr< Scantable > STMath::opacity( const CountedPtr< Scantable > & in,
2209 float tau )
2210{
2211 CountedPtr< Scantable > out = getScantable(in, false);
2212
2213 Table tab = out->table();
2214 ROScalarColumn<Float> elev(tab, "ELEVATION");
2215 ArrayColumn<Float> specCol(tab, "SPECTRA");
2216 ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2217 ArrayColumn<Float> tsysCol(tab, "TSYS");
2218 for ( uInt i=0; i<tab.nrow(); ++i) {
2219 Float zdist = Float(C::pi_2) - elev(i);
2220 Float factor = exp(tau/cos(zdist));
2221 MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2222 ma *= factor;
2223 specCol.put(i, ma.getArray());
2224 flagCol.put(i, flagsFromMA(ma));
2225 Vector<Float> tsys;
2226 tsysCol.get(i, tsys);
2227 tsys *= factor;
2228 tsysCol.put(i, tsys);
2229 }
2230 return out;
2231}
2232
2233CountedPtr< Scantable > STMath::smoothOther( const CountedPtr< Scantable >& in,
2234 const std::string& kernel,
2235 float width )
2236{
2237 CountedPtr< Scantable > out = getScantable(in, false);
2238 Table& table = out->table();
2239 ArrayColumn<Float> specCol(table, "SPECTRA");
2240 ArrayColumn<uChar> flagCol(table, "FLAGTRA");
2241 Vector<Float> spec;
2242 Vector<uChar> flag;
2243 for ( uInt i=0; i<table.nrow(); ++i) {
2244 specCol.get(i, spec);
2245 flagCol.get(i, flag);
2246 Vector<Bool> mask(flag.nelements());
2247 convertArray(mask, flag);
2248 Vector<Float> specout;
2249 Vector<Bool> maskout;
2250 if ( kernel == "hanning" ) {
2251 mathutil::hanning(specout, maskout, spec , !mask);
2252 convertArray(flag, !maskout);
2253 } else if ( kernel == "rmedian" ) {
2254 mathutil::runningMedian(specout, maskout, spec , mask, width);
2255 convertArray(flag, maskout);
2256 }
2257 flagCol.put(i, flag);
2258 specCol.put(i, specout);
2259 }
2260 return out;
2261}
2262
2263CountedPtr< Scantable > STMath::smooth( const CountedPtr< Scantable >& in,
2264 const std::string& kernel, float width )
2265{
2266 if (kernel == "rmedian" || kernel == "hanning") {
2267 return smoothOther(in, kernel, width);
2268 }
2269 CountedPtr< Scantable > out = getScantable(in, false);
2270 Table& table = out->table();
2271 VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernel);
2272 // same IFNO should have same no of channels
2273 // this saves overhead
2274 TableIterator iter(table, "IFNO");
2275 while (!iter.pastEnd()) {
2276 Table tab = iter.table();
2277 ArrayColumn<Float> specCol(tab, "SPECTRA");
2278 ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2279 Vector<Float> tmpspec; specCol.get(0, tmpspec);
2280 uInt nchan = tmpspec.nelements();
2281 Vector<Float> kvec = VectorKernel::make(type, width, nchan, True, False);
2282 Convolver<Float> conv(kvec, IPosition(1,nchan));
2283 Vector<Float> spec;
2284 Vector<uChar> flag;
2285 for ( uInt i=0; i<tab.nrow(); ++i) {
2286 specCol.get(i, spec);
2287 flagCol.get(i, flag);
2288 Vector<Bool> mask(flag.nelements());
2289 convertArray(mask, flag);
2290 Vector<Float> specout;
2291 mathutil::replaceMaskByZero(specout, mask);
2292 conv.linearConv(specout, spec);
2293 specCol.put(i, specout);
2294 }
2295 ++iter;
2296 }
2297 return out;
2298}
2299
2300CountedPtr< Scantable >
2301 STMath::merge( const std::vector< CountedPtr < Scantable > >& in )
2302{
2303 if ( in.size() < 2 ) {
2304 throw(AipsError("Need at least two scantables to perform a merge."));
2305 }
2306 std::vector<CountedPtr < Scantable > >::const_iterator it = in.begin();
2307 bool insitu = insitu_;
2308 setInsitu(false);
2309 CountedPtr< Scantable > out = getScantable(*it, false);
2310 setInsitu(insitu);
2311 Table& tout = out->table();
2312 ScalarColumn<uInt> freqidcol(tout,"FREQ_ID"), molidcol(tout, "MOLECULE_ID");
2313 ScalarColumn<uInt> scannocol(tout,"SCANNO"), focusidcol(tout,"FOCUS_ID");
2314 // Renumber SCANNO to be 0-based
2315 Vector<uInt> scannos = scannocol.getColumn();
2316 uInt offset = min(scannos);
2317 scannos -= offset;
2318 scannocol.putColumn(scannos);
2319 uInt newscanno = max(scannos)+1;
2320 ++it;
2321 while ( it != in.end() ){
2322 if ( ! (*it)->conformant(*out) ) {
2323 // non conformant.
2324 pushLog(String("Warning: Can't merge scantables as header info differs."));
2325 }
2326 out->appendToHistoryTable((*it)->history());
2327 const Table& tab = (*it)->table();
2328 TableIterator scanit(tab, "SCANNO");
2329 while (!scanit.pastEnd()) {
2330 TableIterator freqit(scanit.table(), "FREQ_ID");
2331 while ( !freqit.pastEnd() ) {
2332 Table thetab = freqit.table();
2333 uInt nrow = tout.nrow();
2334 tout.addRow(thetab.nrow());
2335 TableCopy::copyRows(tout, thetab, nrow, 0, thetab.nrow());
2336 ROTableRow row(thetab);
2337 for ( uInt i=0; i<thetab.nrow(); ++i) {
2338 uInt k = nrow+i;
2339 scannocol.put(k, newscanno);
2340 const TableRecord& rec = row.get(i);
2341 Double rv,rp,inc;
2342 (*it)->frequencies().getEntry(rp, rv, inc, rec.asuInt("FREQ_ID"));
2343 uInt id;
2344 id = out->frequencies().addEntry(rp, rv, inc);
2345 freqidcol.put(k,id);
2346 //String name,fname;Double rf;
2347 Vector<String> name,fname;Vector<Double> rf;
2348 (*it)->molecules().getEntry(rf, name, fname, rec.asuInt("MOLECULE_ID"));
2349 id = out->molecules().addEntry(rf, name, fname);
2350 molidcol.put(k, id);
2351 Float frot,fax,ftan,fhand,fmount,fuser, fxy, fxyp;
2352 (*it)->focus().getEntry(fax, ftan, frot, fhand,
2353 fmount,fuser, fxy, fxyp,
2354 rec.asuInt("FOCUS_ID"));
2355 id = out->focus().addEntry(fax, ftan, frot, fhand,
2356 fmount,fuser, fxy, fxyp);
2357 focusidcol.put(k, id);
2358 }
2359 ++freqit;
2360 }
2361 ++newscanno;
2362 ++scanit;
2363 }
2364 ++it;
2365 }
2366 return out;
2367}
2368
2369CountedPtr< Scantable >
2370 STMath::invertPhase( const CountedPtr < Scantable >& in )
2371{
2372 return applyToPol(in, &STPol::invertPhase, Float(0.0));
2373}
2374
2375CountedPtr< Scantable >
2376 STMath::rotateXYPhase( const CountedPtr < Scantable >& in, float phase )
2377{
2378 return applyToPol(in, &STPol::rotatePhase, Float(phase));
2379}
2380
2381CountedPtr< Scantable >
2382 STMath::rotateLinPolPhase( const CountedPtr < Scantable >& in, float phase )
2383{
2384 return applyToPol(in, &STPol::rotateLinPolPhase, Float(phase));
2385}
2386
2387CountedPtr< Scantable > STMath::applyToPol( const CountedPtr<Scantable>& in,
2388 STPol::polOperation fptr,
2389 Float phase )
2390{
2391 CountedPtr< Scantable > out = getScantable(in, false);
2392 Table& tout = out->table();
2393 Block<String> cols(4);
2394 cols[0] = String("SCANNO");
2395 cols[1] = String("BEAMNO");
2396 cols[2] = String("IFNO");
2397 cols[3] = String("CYCLENO");
2398 TableIterator iter(tout, cols);
2399 CountedPtr<STPol> stpol = STPol::getPolClass(out->factories_,
2400 out->getPolType() );
2401 while (!iter.pastEnd()) {
2402 Table t = iter.table();
2403 ArrayColumn<Float> speccol(t, "SPECTRA");
2404 ScalarColumn<uInt> focidcol(t, "FOCUS_ID");
2405 ScalarColumn<Float> parancol(t, "PARANGLE");
2406 Matrix<Float> pols(speccol.getColumn());
2407 try {
2408 stpol->setSpectra(pols);
2409 Float fang,fhand,parang;
2410 fang = in->focusTable_.getTotalFeedAngle(focidcol(0));
2411 fhand = in->focusTable_.getFeedHand(focidcol(0));
2412 parang = parancol(0);
2413 /// @todo re-enable this
2414 // disable total feed angle to support paralactifying Caswell style
2415 stpol->setPhaseCorrections(parang, -parang, fhand);
2416 // use a member function pointer in STPol. This only works on
2417 // the STPol pointer itself, not the Counted Pointer so
2418 // derefernce it.
2419 (&(*(stpol))->*fptr)(phase);
2420 speccol.putColumn(stpol->getSpectra());
2421 } catch (AipsError& e) {
2422 //delete stpol;stpol=0;
2423 throw(e);
2424 }
2425 ++iter;
2426 }
2427 //delete stpol;stpol=0;
2428 return out;
2429}
2430
2431CountedPtr< Scantable >
2432 STMath::swapPolarisations( const CountedPtr< Scantable > & in )
2433{
2434 CountedPtr< Scantable > out = getScantable(in, false);
2435 Table& tout = out->table();
2436 Table t0 = tout(tout.col("POLNO") == 0);
2437 Table t1 = tout(tout.col("POLNO") == 1);
2438 if ( t0.nrow() != t1.nrow() )
2439 throw(AipsError("Inconsistent number of polarisations"));
2440 ArrayColumn<Float> speccol0(t0, "SPECTRA");
2441 ArrayColumn<uChar> flagcol0(t0, "FLAGTRA");
2442 ArrayColumn<Float> speccol1(t1, "SPECTRA");
2443 ArrayColumn<uChar> flagcol1(t1, "FLAGTRA");
2444 Matrix<Float> s0 = speccol0.getColumn();
2445 Matrix<uChar> f0 = flagcol0.getColumn();
2446 speccol0.putColumn(speccol1.getColumn());
2447 flagcol0.putColumn(flagcol1.getColumn());
2448 speccol1.putColumn(s0);
2449 flagcol1.putColumn(f0);
2450 return out;
2451}
2452
2453CountedPtr< Scantable >
2454 STMath::averagePolarisations( const CountedPtr< Scantable > & in,
2455 const std::vector<bool>& mask,
2456 const std::string& weight )
2457{
2458 if (in->npol() < 2 )
2459 throw(AipsError("averagePolarisations can only be applied to two or more"
2460 "polarisations"));
2461 bool insitu = insitu_;
2462 setInsitu(false);
2463 CountedPtr< Scantable > pols = getScantable(in, true);
2464 setInsitu(insitu);
2465 Table& tout = pols->table();
2466 std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
2467 Table tab = tableCommand(taql, in->table());
2468 if (tab.nrow() == 0 )
2469 throw(AipsError("Could not find any rows with POLNO==0 and POLNO==1"));
2470 TableCopy::copyRows(tout, tab);
2471 TableVector<uInt> vec(tout, "POLNO");
2472 vec = 0;
2473 pols->table_.rwKeywordSet().define("nPol", Int(1));
2474 //pols->table_.rwKeywordSet().define("POLTYPE", String("stokes"));
2475 pols->table_.rwKeywordSet().define("POLTYPE", in->getPolType());
2476 std::vector<CountedPtr<Scantable> > vpols;
2477 vpols.push_back(pols);
2478 CountedPtr< Scantable > out = average(vpols, mask, weight, "SCAN");
2479 return out;
2480}
2481
2482CountedPtr< Scantable >
2483 STMath::averageBeams( const CountedPtr< Scantable > & in,
2484 const std::vector<bool>& mask,
2485 const std::string& weight )
2486{
2487 bool insitu = insitu_;
2488 setInsitu(false);
2489 CountedPtr< Scantable > beams = getScantable(in, false);
2490 setInsitu(insitu);
2491 Table& tout = beams->table();
2492 // give all rows the same BEAMNO
2493 TableVector<uInt> vec(tout, "BEAMNO");
2494 vec = 0;
2495 beams->table_.rwKeywordSet().define("nBeam", Int(1));
2496 std::vector<CountedPtr<Scantable> > vbeams;
2497 vbeams.push_back(beams);
2498 CountedPtr< Scantable > out = average(vbeams, mask, weight, "SCAN");
2499 return out;
2500}
2501
2502
2503CountedPtr< Scantable >
2504 asap::STMath::frequencyAlign( const CountedPtr< Scantable > & in,
2505 const std::string & refTime,
2506 const std::string & method)
2507{
2508 // clone as this is not working insitu
2509 bool insitu = insitu_;
2510 setInsitu(false);
2511 CountedPtr< Scantable > out = getScantable(in, false);
2512 setInsitu(insitu);
2513 Table& tout = out->table();
2514 // Get reference Epoch to time of first row or given String
2515 Unit DAY(String("d"));
2516 MEpoch::Ref epochRef(in->getTimeReference());
2517 MEpoch refEpoch;
2518 if (refTime.length()>0) {
2519 Quantum<Double> qt;
2520 if (MVTime::read(qt,refTime)) {
2521 MVEpoch mv(qt);
2522 refEpoch = MEpoch(mv, epochRef);
2523 } else {
2524 throw(AipsError("Invalid format for Epoch string"));
2525 }
2526 } else {
2527 refEpoch = in->timeCol_(0);
2528 }
2529 MPosition refPos = in->getAntennaPosition();
2530
2531 InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2532 /*
2533 // Comment from MV.
2534 // the following code has been commented out because different FREQ_IDs have to be aligned together even
2535 // if the frame doesn't change. So far, lack of this check didn't cause any problems.
2536 // test if user frame is different to base frame
2537 if ( in->frequencies().getFrameString(true)
2538 == in->frequencies().getFrameString(false) ) {
2539 throw(AipsError("Can't convert as no output frame has been set"
2540 " (use set_freqframe) or it is aligned already."));
2541 }
2542 */
2543 MFrequency::Types system = in->frequencies().getFrame();
2544 MVTime mvt(refEpoch.getValue());
2545 String epochout = mvt.string(MVTime::YMD) + String(" (") + refEpoch.getRefString() + String(")");
2546 ostringstream oss;
2547 oss << "Aligned at reference Epoch " << epochout
2548 << " in frame " << MFrequency::showType(system);
2549 pushLog(String(oss));
2550 // set up the iterator
2551 Block<String> cols(4);
2552 // select by constant direction
2553 cols[0] = String("SRCNAME");
2554 cols[1] = String("BEAMNO");
2555 // select by IF ( no of channels varies over this )
2556 cols[2] = String("IFNO");
2557 // select by restfrequency
2558 cols[3] = String("MOLECULE_ID");
2559 TableIterator iter(tout, cols);
2560 while ( !iter.pastEnd() ) {
2561 Table t = iter.table();
2562 MDirection::ROScalarColumn dirCol(t, "DIRECTION");
2563 TableIterator fiter(t, "FREQ_ID");
2564 // determine nchan from the first row. This should work as
2565 // we are iterating over BEAMNO and IFNO // we should have constant direction
2566
2567 ROArrayColumn<Float> sCol(t, "SPECTRA");
2568 const MDirection direction = dirCol(0);
2569 const uInt nchan = sCol(0).nelements();
2570
2571 // skip operations if there is nothing to align
2572 if (fiter.pastEnd()) {
2573 continue;
2574 }
2575
2576 Table ftab = fiter.table();
2577 // align all frequency ids with respect to the first encountered id
2578 ScalarColumn<uInt> freqidCol(ftab, "FREQ_ID");
2579 // get the SpectralCoordinate for the freqid, which we are iterating over
2580 SpectralCoordinate sC = in->frequencies().getSpectralCoordinate(freqidCol(0));
2581 FrequencyAligner<Float> fa( sC, nchan, refEpoch,
2582 direction, refPos, system );
2583 // realign the SpectralCoordinate and put into the output Scantable
2584 Vector<String> units(1);
2585 units = String("Hz");
2586 Bool linear=True;
2587 SpectralCoordinate sc2 = fa.alignedSpectralCoordinate(linear);
2588 sc2.setWorldAxisUnits(units);
2589 const uInt id = out->frequencies().addEntry(sc2.referencePixel()[0],
2590 sc2.referenceValue()[0],
2591 sc2.increment()[0]);
2592 while ( !fiter.pastEnd() ) {
2593 ftab = fiter.table();
2594 // spectral coordinate for the current FREQ_ID
2595 ScalarColumn<uInt> freqidCol2(ftab, "FREQ_ID");
2596 sC = in->frequencies().getSpectralCoordinate(freqidCol2(0));
2597 // create the "global" abcissa for alignment with same FREQ_ID
2598 Vector<Double> abc(nchan);
2599 for (uInt i=0; i<nchan; i++) {
2600 Double w;
2601 sC.toWorld(w,Double(i));
2602 abc[i] = w;
2603 }
2604 TableVector<uInt> tvec(ftab, "FREQ_ID");
2605 // assign new frequency id to all rows
2606 tvec = id;
2607 // cache abcissa for same time stamps, so iterate over those
2608 TableIterator timeiter(ftab, "TIME");
2609 while ( !timeiter.pastEnd() ) {
2610 Table tab = timeiter.table();
2611 ArrayColumn<Float> specCol(tab, "SPECTRA");
2612 ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2613 MEpoch::ROScalarColumn timeCol(tab, "TIME");
2614 // use align abcissa cache after the first row
2615 // these rows should be just be POLNO
2616 bool first = true;
2617 for (int i=0; i<int(tab.nrow()); ++i) {
2618 // input values
2619 Vector<uChar> flag = flagCol(i);
2620 Vector<Bool> mask(flag.shape());
2621 Vector<Float> specOut, spec;
2622 spec = specCol(i);
2623 Vector<Bool> maskOut;Vector<uChar> flagOut;
2624 convertArray(mask, flag);
2625 // alignment
2626 Bool ok = fa.align(specOut, maskOut, abc, spec,
2627 mask, timeCol(i), !first,
2628 interp, False);
2629 // back into scantable
2630 flagOut.resize(maskOut.nelements());
2631 convertArray(flagOut, maskOut);
2632 flagCol.put(i, flagOut);
2633 specCol.put(i, specOut);
2634 // start abcissa caching
2635 first = false;
2636 }
2637 // next timestamp
2638 ++timeiter;
2639 }
2640 // next FREQ_ID
2641 ++fiter;
2642 }
2643 // next aligner
2644 ++iter;
2645 }
2646 // set this afterwards to ensure we are doing insitu correctly.
2647 out->frequencies().setFrame(system, true);
2648 return out;
2649}
2650
2651CountedPtr<Scantable>
2652 asap::STMath::convertPolarisation( const CountedPtr<Scantable>& in,
2653 const std::string & newtype )
2654{
2655 if (in->npol() != 2 && in->npol() != 4)
2656 throw(AipsError("Can only convert two or four polarisations."));
2657 if ( in->getPolType() == newtype )
2658 throw(AipsError("No need to convert."));
2659 if ( ! in->selector_.empty() )
2660 throw(AipsError("Can only convert whole scantable. Unset the selection."));
2661 bool insitu = insitu_;
2662 setInsitu(false);
2663 CountedPtr< Scantable > out = getScantable(in, true);
2664 setInsitu(insitu);
2665 Table& tout = out->table();
2666 tout.rwKeywordSet().define("POLTYPE", String(newtype));
2667
2668 Block<String> cols(4);
2669 cols[0] = "SCANNO";
2670 cols[1] = "CYCLENO";
2671 cols[2] = "BEAMNO";
2672 cols[3] = "IFNO";
2673 TableIterator it(in->originalTable_, cols);
2674 String basetype = in->getPolType();
2675 STPol* stpol = STPol::getPolClass(in->factories_, basetype);
2676 try {
2677 while ( !it.pastEnd() ) {
2678 Table tab = it.table();
2679 uInt row = tab.rowNumbers()[0];
2680 stpol->setSpectra(in->getPolMatrix(row));
2681 Float fang,fhand,parang;
2682 fang = in->focusTable_.getTotalFeedAngle(in->mfocusidCol_(row));
2683 fhand = in->focusTable_.getFeedHand(in->mfocusidCol_(row));
2684 parang = in->paraCol_(row);
2685 /// @todo re-enable this
2686 // disable total feed angle to support paralactifying Caswell style
2687 stpol->setPhaseCorrections(parang, -parang, fhand);
2688 Int npolout = 0;
2689 for (uInt i=0; i<tab.nrow(); ++i) {
2690 Vector<Float> outvec = stpol->getSpectrum(i, newtype);
2691 if ( outvec.nelements() > 0 ) {
2692 tout.addRow();
2693 TableCopy::copyRows(tout, tab, tout.nrow()-1, 0, 1);
2694 ArrayColumn<Float> sCol(tout,"SPECTRA");
2695 ScalarColumn<uInt> pCol(tout,"POLNO");
2696 sCol.put(tout.nrow()-1 ,outvec);
2697 pCol.put(tout.nrow()-1 ,uInt(npolout));
2698 npolout++;
2699 }
2700 }
2701 tout.rwKeywordSet().define("nPol", npolout);
2702 ++it;
2703 }
2704 } catch (AipsError& e) {
2705 delete stpol;
2706 throw(e);
2707 }
2708 delete stpol;
2709 return out;
2710}
2711
2712CountedPtr< Scantable >
2713 asap::STMath::mxExtract( const CountedPtr< Scantable > & in,
2714 const std::string & scantype )
2715{
2716 bool insitu = insitu_;
2717 setInsitu(false);
2718 CountedPtr< Scantable > out = getScantable(in, true);
2719 setInsitu(insitu);
2720 Table& tout = out->table();
2721 std::string taql = "SELECT FROM $1 WHERE BEAMNO != REFBEAMNO";
2722 if (scantype == "on") {
2723 taql = "SELECT FROM $1 WHERE BEAMNO == REFBEAMNO";
2724 }
2725 Table tab = tableCommand(taql, in->table());
2726 TableCopy::copyRows(tout, tab);
2727 if (scantype == "on") {
2728 // re-index SCANNO to 0
2729 TableVector<uInt> vec(tout, "SCANNO");
2730 vec = 0;
2731 }
2732 return out;
2733}
2734
2735CountedPtr< Scantable >
2736 asap::STMath::lagFlag( const CountedPtr< Scantable > & in,
2737 double frequency, double width )
2738{
2739 CountedPtr< Scantable > out = getScantable(in, false);
2740 Table& tout = out->table();
2741 TableIterator iter(tout, "FREQ_ID");
2742 FFTServer<Float,Complex> ffts;
2743 while ( !iter.pastEnd() ) {
2744 Table tab = iter.table();
2745 Double rp,rv,inc;
2746 ROTableRow row(tab);
2747 const TableRecord& rec = row.get(0);
2748 uInt freqid = rec.asuInt("FREQ_ID");
2749 out->frequencies().getEntry(rp, rv, inc, freqid);
2750 ArrayColumn<Float> specCol(tab, "SPECTRA");
2751 ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2752 for (int i=0; i<int(tab.nrow()); ++i) {
2753 Vector<Float> spec = specCol(i);
2754 Vector<uChar> flag = flagCol(i);
2755 Int lag0 = Int(spec.nelements()*abs(inc)/(frequency+width)+0.5);
2756 Int lag1 = Int(spec.nelements()*abs(inc)/(frequency-width)+0.5);
2757 for (unsigned int k=0; k < flag.nelements(); ++k ) {
2758 if (flag[k] > 0) {
2759 spec[k] = 0.0;
2760 }
2761 }
2762 Vector<Complex> lags;
2763 ffts.fft0(lags, spec);
2764 Int start = max(0, lag0);
2765 Int end = min(Int(lags.nelements()-1), lag1);
2766 if (start == end) {
2767 lags[start] = Complex(0.0);
2768 } else {
2769 for (int j=start; j <=end ;++j) {
2770 lags[j] = Complex(0.0);
2771 }
2772 }
2773 ffts.fft0(spec, lags);
2774 specCol.put(i, spec);
2775 }
2776 ++iter;
2777 }
2778 return out;
2779}
2780
2781// Averaging spectra with different channel/resolution
2782CountedPtr<Scantable>
2783STMath::new_average( const std::vector<CountedPtr<Scantable> >& in,
2784 const bool& compel,
2785 const std::vector<bool>& mask,
2786 const std::string& weight,
2787 const std::string& avmode )
2788 throw ( casa::AipsError )
2789{
2790 LogIO os( LogOrigin( "STMath", "new_average()", WHERE ) ) ;
2791 if ( avmode == "SCAN" && in.size() != 1 )
2792 throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
2793 "Use merge first."));
2794
2795 // check if OTF observation
2796 String obstype = in[0]->getHeader().obstype ;
2797 Double tol = 0.0 ;
2798 if ( obstype.find( "OTF" ) != String::npos ) {
2799 tol = TOL_OTF ;
2800 }
2801 else {
2802 tol = TOL_POINT ;
2803 }
2804
2805 CountedPtr<Scantable> out ; // processed result
2806 if ( compel ) {
2807 std::vector< CountedPtr<Scantable> > newin ; // input for average process
2808 uInt insize = in.size() ; // number of input scantables
2809
2810 // TEST: do normal average in each table before IF grouping
2811 os << "Do preliminary averaging" << LogIO::POST ;
2812 vector< CountedPtr<Scantable> > tmpin( insize ) ;
2813 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2814 vector< CountedPtr<Scantable> > v( 1, in[itable] ) ;
2815 tmpin[itable] = average( v, mask, weight, avmode ) ;
2816 }
2817
2818 // warning
2819 os << "Average spectra with different spectral resolution" << LogIO::POST ;
2820
2821 // temporarily set coordinfo
2822 vector<string> oldinfo( insize ) ;
2823 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2824 vector<string> coordinfo = in[itable]->getCoordInfo() ;
2825 oldinfo[itable] = coordinfo[0] ;
2826 coordinfo[0] = "Hz" ;
2827 tmpin[itable]->setCoordInfo( coordinfo ) ;
2828 }
2829
2830 // columns
2831 ScalarColumn<uInt> freqIDCol ;
2832 ScalarColumn<uInt> ifnoCol ;
2833 ScalarColumn<uInt> scannoCol ;
2834
2835
2836 // check IF frequency coverage
2837 // freqid: list of FREQ_ID, which is used, in each table
2838 // iffreq: list of minimum and maximum frequency for each FREQ_ID in
2839 // each table
2840 // freqid[insize][numIF]
2841 // freqid: [[id00, id01, ...],
2842 // [id10, id11, ...],
2843 // ...
2844 // [idn0, idn1, ...]]
2845 // iffreq[insize][numIF*2]
2846 // iffreq: [[min_id00, max_id00, min_id01, max_id01, ...],
2847 // [min_id10, max_id10, min_id11, max_id11, ...],
2848 // ...
2849 // [min_idn0, max_idn0, min_idn1, max_idn1, ...]]
2850 //os << "Check IF settings in each table" << LogIO::POST ;
2851 vector< vector<uInt> > freqid( insize );
2852 vector< vector<double> > iffreq( insize ) ;
2853 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2854 uInt rows = tmpin[itable]->nrow() ;
2855 uInt freqnrows = tmpin[itable]->frequencies().table().nrow() ;
2856 for ( uInt irow = 0 ; irow < rows ; irow++ ) {
2857 if ( freqid[itable].size() == freqnrows ) {
2858 break ;
2859 }
2860 else {
2861 freqIDCol.attach( tmpin[itable]->table(), "FREQ_ID" ) ;
2862 ifnoCol.attach( tmpin[itable]->table(), "IFNO" ) ;
2863 uInt id = freqIDCol( irow ) ;
2864 if ( freqid[itable].size() == 0 || count( freqid[itable].begin(), freqid[itable].end(), id ) == 0 ) {
2865 //os << "itable = " << itable << ": IF " << id << " is included in the list" << LogIO::POST ;
2866 vector<double> abcissa = tmpin[itable]->getAbcissa( irow ) ;
2867 freqid[itable].push_back( id ) ;
2868 iffreq[itable].push_back( abcissa[0] - 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
2869 iffreq[itable].push_back( abcissa[abcissa.size()-1] + 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
2870 }
2871 }
2872 }
2873 }
2874
2875 // debug
2876 //os << "IF settings summary:" << endl ;
2877 //for ( uInt i = 0 ; i < freqid.size() ; i++ ) {
2878 //os << " Table" << i << endl ;
2879 //for ( uInt j = 0 ; j < freqid[i].size() ; j++ ) {
2880 //os << " id = " << freqid[i][j] << " (min,max) = (" << iffreq[i][2*j] << "," << iffreq[i][2*j+1] << ")" << endl ;
2881 //}
2882 //}
2883 //os << endl ;
2884 //os.post() ;
2885
2886 // IF grouping based on their frequency coverage
2887 // ifgrp: list of table index and FREQ_ID for all members in each IF group
2888 // ifgfreq: list of minimum and maximum frequency in each IF group
2889 // ifgrp[numgrp][nummember*2]
2890 // ifgrp: [[table00, freqrow00, table01, freqrow01, ...],
2891 // [table10, freqrow10, table11, freqrow11, ...],
2892 // ...
2893 // [tablen0, freqrown0, tablen1, freqrown1, ...]]
2894 // ifgfreq[numgrp*2]
2895 // ifgfreq: [min0_grp0, max0_grp0, min1_grp1, max1_grp1, ...]
2896 //os << "IF grouping based on their frequency coverage" << LogIO::POST ;
2897 vector< vector<uInt> > ifgrp ;
2898 vector<double> ifgfreq ;
2899
2900 // parameter for IF grouping
2901 // groupmode = OR retrieve all region
2902 // AND only retrieve overlaped region
2903 //string groupmode = "AND" ;
2904 string groupmode = "OR" ;
2905 uInt sizecr = 0 ;
2906 if ( groupmode == "AND" )
2907 sizecr = 2 ;
2908 else if ( groupmode == "OR" )
2909 sizecr = 0 ;
2910
2911 vector<double> sortedfreq ;
2912 for ( uInt i = 0 ; i < iffreq.size() ; i++ ) {
2913 for ( uInt j = 0 ; j < iffreq[i].size() ; j++ ) {
2914 if ( count( sortedfreq.begin(), sortedfreq.end(), iffreq[i][j] ) == 0 )
2915 sortedfreq.push_back( iffreq[i][j] ) ;
2916 }
2917 }
2918 sort( sortedfreq.begin(), sortedfreq.end() ) ;
2919 for ( vector<double>::iterator i = sortedfreq.begin() ; i != sortedfreq.end()-1 ; i++ ) {
2920 ifgfreq.push_back( *i ) ;
2921 ifgfreq.push_back( *(i+1) ) ;
2922 }
2923 ifgrp.resize( ifgfreq.size()/2 ) ;
2924 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2925 for ( uInt iif = 0 ; iif < freqid[itable].size() ; iif++ ) {
2926 double range0 = iffreq[itable][2*iif] ;
2927 double range1 = iffreq[itable][2*iif+1] ;
2928 for ( uInt j = 0 ; j < ifgrp.size() ; j++ ) {
2929 double fmin = max( range0, ifgfreq[2*j] ) ;
2930 double fmax = min( range1, ifgfreq[2*j+1] ) ;
2931 if ( fmin < fmax ) {
2932 ifgrp[j].push_back( itable ) ;
2933 ifgrp[j].push_back( freqid[itable][iif] ) ;
2934 }
2935 }
2936 }
2937 }
2938 vector< vector<uInt> >::iterator fiter = ifgrp.begin() ;
2939 vector<double>::iterator giter = ifgfreq.begin() ;
2940 while( fiter != ifgrp.end() ) {
2941 if ( fiter->size() <= sizecr ) {
2942 fiter = ifgrp.erase( fiter ) ;
2943 giter = ifgfreq.erase( giter ) ;
2944 giter = ifgfreq.erase( giter ) ;
2945 }
2946 else {
2947 fiter++ ;
2948 advance( giter, 2 ) ;
2949 }
2950 }
2951
2952 // Grouping continuous IF groups (without frequency gap)
2953 // freqgrp: list of IF group indexes in each frequency group
2954 // freqrange: list of minimum and maximum frequency in each frequency group
2955 // freqgrp[numgrp][nummember]
2956 // freqgrp: [[ifgrp00, ifgrp01, ifgrp02, ...],
2957 // [ifgrp10, ifgrp11, ifgrp12, ...],
2958 // ...
2959 // [ifgrpn0, ifgrpn1, ifgrpn2, ...]]
2960 // freqrange[numgrp*2]
2961 // freqrange: [min_grp0, max_grp0, min_grp1, max_grp1, ...]
2962 vector< vector<uInt> > freqgrp ;
2963 double freqrange = 0.0 ;
2964 uInt grpnum = 0 ;
2965 for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
2966 // Assumed that ifgfreq was sorted
2967 if ( grpnum != 0 && freqrange == ifgfreq[2*i] ) {
2968 freqgrp[grpnum-1].push_back( i ) ;
2969 }
2970 else {
2971 vector<uInt> grp0( 1, i ) ;
2972 freqgrp.push_back( grp0 ) ;
2973 grpnum++ ;
2974 }
2975 freqrange = ifgfreq[2*i+1] ;
2976 }
2977
2978
2979 // print IF groups
2980 ostringstream oss ;
2981 oss << "IF Group summary: " << endl ;
2982 oss << " GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
2983 for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
2984 oss << " GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
2985 for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
2986 oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
2987 }
2988 oss << endl ;
2989 }
2990 oss << endl ;
2991 os << oss.str() << LogIO::POST ;
2992
2993 // print frequency group
2994 oss.str("") ;
2995 oss << "Frequency Group summary: " << endl ;
2996 oss << " GROUP_ID [FREQ_MIN, FREQ_MAX]: IF_GROUP_ID" << endl ;
2997 for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
2998 oss << " GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*freqgrp[i][0]] << "," << ifgfreq[2*freqgrp[i][freqgrp[i].size()-1]+1] << "]: " ;
2999 for ( uInt j = 0 ; j < freqgrp[i].size() ; j++ ) {
3000 oss << freqgrp[i][j] << " " ;
3001 }
3002 oss << endl ;
3003 }
3004 oss << endl ;
3005 os << oss.str() << LogIO::POST ;
3006
3007 // membership check
3008 // groups: list of IF group indexes whose frequency range overlaps with
3009 // that of each table and IF
3010 // groups[numtable][numIF][nummembership]
3011 // groups: [[[grp, grp,...], [grp, grp,...],...],
3012 // [[grp, grp,...], [grp, grp,...],...],
3013 // ...
3014 // [[grp, grp,...], [grp, grp,...],...]]
3015 vector< vector< vector<uInt> > > groups( insize ) ;
3016 for ( uInt i = 0 ; i < insize ; i++ ) {
3017 groups[i].resize( freqid[i].size() ) ;
3018 }
3019 for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3020 for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3021 uInt tableid = ifgrp[igrp][2*imem] ;
3022 vector<uInt>::iterator iter = find( freqid[tableid].begin(), freqid[tableid].end(), ifgrp[igrp][2*imem+1] ) ;
3023 if ( iter != freqid[tableid].end() ) {
3024 uInt rowid = distance( freqid[tableid].begin(), iter ) ;
3025 groups[tableid][rowid].push_back( igrp ) ;
3026 }
3027 }
3028 }
3029
3030 // print membership
3031 //oss.str("") ;
3032 //for ( uInt i = 0 ; i < insize ; i++ ) {
3033 //oss << "Table " << i << endl ;
3034 //for ( uInt j = 0 ; j < groups[i].size() ; j++ ) {
3035 //oss << " FREQ_ID " << setw( 2 ) << freqid[i][j] << ": " ;
3036 //for ( uInt k = 0 ; k < groups[i][j].size() ; k++ ) {
3037 //oss << setw( 2 ) << groups[i][j][k] << " " ;
3038 //}
3039 //oss << endl ;
3040 //}
3041 //}
3042 //os << oss.str() << LogIO::POST ;
3043
3044 // set back coordinfo
3045 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3046 vector<string> coordinfo = tmpin[itable]->getCoordInfo() ;
3047 coordinfo[0] = oldinfo[itable] ;
3048 tmpin[itable]->setCoordInfo( coordinfo ) ;
3049 }
3050
3051 // Create additional table if needed
3052 bool oldInsitu = insitu_ ;
3053 setInsitu( false ) ;
3054 vector< vector<uInt> > addrow( insize ) ;
3055 vector<uInt> addtable( insize, 0 ) ;
3056 vector<uInt> newtableids( insize ) ;
3057 vector<uInt> newifids( insize, 0 ) ;
3058 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3059 //os << "Table " << itable << ": " ;
3060 for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3061 addrow[itable].push_back( groups[itable][ifrow].size()-1 ) ;
3062 //os << addrow[itable][ifrow] << " " ;
3063 }
3064 addtable[itable] = *max_element( addrow[itable].begin(), addrow[itable].end() ) ;
3065 //os << "(" << addtable[itable] << ")" << LogIO::POST ;
3066 }
3067 newin.resize( insize ) ;
3068 copy( tmpin.begin(), tmpin.end(), newin.begin() ) ;
3069 for ( uInt i = 0 ; i < insize ; i++ ) {
3070 newtableids[i] = i ;
3071 }
3072 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3073 for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3074 CountedPtr<Scantable> add = getScantable( newin[itable], false ) ;
3075 vector<int> freqidlist ;
3076 for ( uInt i = 0 ; i < groups[itable].size() ; i++ ) {
3077 if ( groups[itable][i].size() > iadd + 1 ) {
3078 freqidlist.push_back( freqid[itable][i] ) ;
3079 }
3080 }
3081 stringstream taqlstream ;
3082 taqlstream << "SELECT FROM $1 WHERE FREQ_ID IN [" ;
3083 for ( uInt i = 0 ; i < freqidlist.size() ; i++ ) {
3084 taqlstream << i ;
3085 if ( i < freqidlist.size() - 1 )
3086 taqlstream << "," ;
3087 else
3088 taqlstream << "]" ;
3089 }
3090 string taql = taqlstream.str() ;
3091 //os << "taql = " << taql << LogIO::POST ;
3092 STSelector selector = STSelector() ;
3093 selector.setTaQL( taql ) ;
3094 add->setSelection( selector ) ;
3095 newin.push_back( add ) ;
3096 newtableids.push_back( itable ) ;
3097 newifids.push_back( iadd + 1 ) ;
3098 }
3099 }
3100
3101 // udpate ifgrp
3102 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3103 for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3104 for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3105 if ( groups[itable][ifrow].size() > iadd + 1 ) {
3106 uInt igrp = groups[itable][ifrow][iadd+1] ;
3107 for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3108 if ( ifgrp[igrp][2*imem] == newtableids[iadd+insize] && ifgrp[igrp][2*imem+1] == freqid[newtableids[iadd+insize]][ifrow] ) {
3109 ifgrp[igrp][2*imem] = insize + iadd ;
3110 }
3111 }
3112 }
3113 }
3114 }
3115 }
3116
3117 // print IF groups again for debug
3118 //oss.str( "" ) ;
3119 //oss << "IF Group summary: " << endl ;
3120 //oss << " GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3121 //for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3122 //oss << " GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3123 //for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3124 //oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3125 //}
3126 //oss << endl ;
3127 //}
3128 //oss << endl ;
3129 //os << oss.str() << LogIO::POST ;
3130
3131 // reset SCANNO and IFNO/FREQ_ID: IF is reset by the result of sortation
3132 os << "All scan number is set to 0" << LogIO::POST ;
3133 //os << "All IF number is set to IF group index" << LogIO::POST ;
3134 insize = newin.size() ;
3135 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3136 uInt rows = newin[itable]->nrow() ;
3137 Table &tmpt = newin[itable]->table() ;
3138 freqIDCol.attach( tmpt, "FREQ_ID" ) ;
3139 scannoCol.attach( tmpt, "SCANNO" ) ;
3140 ifnoCol.attach( tmpt, "IFNO" ) ;
3141 for ( uInt irow=0 ; irow < rows ; irow++ ) {
3142 scannoCol.put( irow, 0 ) ;
3143 uInt freqID = freqIDCol( irow ) ;
3144 vector<uInt>::iterator iter = find( freqid[newtableids[itable]].begin(), freqid[newtableids[itable]].end(), freqID ) ;
3145 if ( iter != freqid[newtableids[itable]].end() ) {
3146 uInt index = distance( freqid[newtableids[itable]].begin(), iter ) ;
3147 ifnoCol.put( irow, groups[newtableids[itable]][index][newifids[itable]] ) ;
3148 }
3149 else {
3150 throw(AipsError("IF grouping was wrong in additional tables.")) ;
3151 }
3152 }
3153 }
3154 oldinfo.resize( insize ) ;
3155 setInsitu( oldInsitu ) ;
3156
3157 // temporarily set coordinfo
3158 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3159 vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3160 oldinfo[itable] = coordinfo[0] ;
3161 coordinfo[0] = "Hz" ;
3162 newin[itable]->setCoordInfo( coordinfo ) ;
3163 }
3164
3165 // save column values in the vector
3166 vector< vector<uInt> > freqTableIdVec( insize ) ;
3167 vector< vector<uInt> > freqIdVec( insize ) ;
3168 vector< vector<uInt> > ifNoVec( insize ) ;
3169 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3170 ScalarColumn<uInt> freqIDs ;
3171 freqIDs.attach( newin[itable]->frequencies().table(), "ID" ) ;
3172 ifnoCol.attach( newin[itable]->table(), "IFNO" ) ;
3173 freqIDCol.attach( newin[itable]->table(), "FREQ_ID" ) ;
3174 for ( uInt irow = 0 ; irow < newin[itable]->frequencies().table().nrow() ; irow++ ) {
3175 freqTableIdVec[itable].push_back( freqIDs( irow ) ) ;
3176 }
3177 for ( uInt irow = 0 ; irow < newin[itable]->table().nrow() ; irow++ ) {
3178 freqIdVec[itable].push_back( freqIDCol( irow ) ) ;
3179 ifNoVec[itable].push_back( ifnoCol( irow ) ) ;
3180 }
3181 }
3182
3183 // reset spectra and flagtra: pick up common part of frequency coverage
3184 //os << "Pick common frequency range and align resolution" << LogIO::POST ;
3185 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3186 uInt rows = newin[itable]->nrow() ;
3187 int nminchan = -1 ;
3188 int nmaxchan = -1 ;
3189 vector<uInt> freqIdUpdate ;
3190 for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3191 uInt ifno = ifNoVec[itable][irow] ; // IFNO is reset by group index
3192 double minfreq = ifgfreq[2*ifno] ;
3193 double maxfreq = ifgfreq[2*ifno+1] ;
3194 //os << "frequency range: [" << minfreq << "," << maxfreq << "]" << LogIO::POST ;
3195 vector<double> abcissa = newin[itable]->getAbcissa( irow ) ;
3196 int nchan = abcissa.size() ;
3197 double resol = abcissa[1] - abcissa[0] ;
3198 //os << "abcissa range : [" << abcissa[0] << "," << abcissa[nchan-1] << "]" << LogIO::POST ;
3199 if ( minfreq <= abcissa[0] )
3200 nminchan = 0 ;
3201 else {
3202 //double cfreq = ( minfreq - abcissa[0] ) / resol ;
3203 double cfreq = ( minfreq - abcissa[0] + 0.5 * resol ) / resol ;
3204 nminchan = int(cfreq) + ( ( cfreq - int(cfreq) <= 0.5 ) ? 0 : 1 ) ;
3205 }
3206 if ( maxfreq >= abcissa[abcissa.size()-1] )
3207 nmaxchan = abcissa.size() - 1 ;
3208 else {
3209 //double cfreq = ( abcissa[abcissa.size()-1] - maxfreq ) / resol ;
3210 double cfreq = ( abcissa[abcissa.size()-1] - maxfreq + 0.5 * resol ) / resol ;
3211 nmaxchan = abcissa.size() - 1 - int(cfreq) - ( ( cfreq - int(cfreq) >= 0.5 ) ? 1 : 0 ) ;
3212 }
3213 //os << "channel range (" << irow << "): [" << nminchan << "," << nmaxchan << "]" << LogIO::POST ;
3214 if ( nmaxchan > nminchan ) {
3215 newin[itable]->reshapeSpectrum( nminchan, nmaxchan, irow ) ;
3216 int newchan = nmaxchan - nminchan + 1 ;
3217 if ( count( freqIdUpdate.begin(), freqIdUpdate.end(), freqIdVec[itable][irow] ) == 0 && newchan < nchan )
3218 freqIdUpdate.push_back( freqIdVec[itable][irow] ) ;
3219 }
3220 else {
3221 throw(AipsError("Failed to pick up common part of frequency range.")) ;
3222 }
3223 }
3224 for ( uInt i = 0 ; i < freqIdUpdate.size() ; i++ ) {
3225 uInt freqId = freqIdUpdate[i] ;
3226 Double refpix ;
3227 Double refval ;
3228 Double increment ;
3229
3230 // update row
3231 newin[itable]->frequencies().getEntry( refpix, refval, increment, freqId ) ;
3232 refval = refval - ( refpix - nminchan ) * increment ;
3233 refpix = 0 ;
3234 newin[itable]->frequencies().setEntry( refpix, refval, increment, freqId ) ;
3235 }
3236 }
3237
3238
3239 // reset spectra and flagtra: align spectral resolution
3240 //os << "Align spectral resolution" << LogIO::POST ;
3241 // gmaxdnu: the coarsest frequency resolution in the frequency group
3242 // gmemid: member index that have a resolution equal to gmaxdnu
3243 // gmaxdnu[numfreqgrp]
3244 // gmaxdnu: [dnu0, dnu1, ...]
3245 // gmemid[numfreqgrp]
3246 // gmemid: [id0, id1, ...]
3247 vector<double> gmaxdnu( freqgrp.size(), 0.0 ) ;
3248 vector<uInt> gmemid( freqgrp.size(), 0 ) ;
3249 for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3250 double maxdnu = 0.0 ; // maximum (coarsest) frequency resolution
3251 int minchan = INT_MAX ; // minimum channel number
3252 Double refpixref = -1 ; // reference of 'reference pixel'
3253 Double refvalref = -1 ; // reference of 'reference frequency'
3254 Double refinc = -1 ; // reference frequency resolution
3255 uInt refreqid ;
3256 uInt reftable = INT_MAX;
3257 // process only if group member > 1
3258 if ( ifgrp[igrp].size() > 2 ) {
3259 // find minchan and maxdnu in each group
3260 for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3261 uInt tableid = ifgrp[igrp][2*imem] ;
3262 uInt rowid = ifgrp[igrp][2*imem+1] ;
3263 vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3264 if ( iter != freqIdVec[tableid].end() ) {
3265 uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3266 vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3267 int nchan = abcissa.size() ;
3268 double dnu = abcissa[1] - abcissa[0] ;
3269 //os << "GROUP " << igrp << " (" << tableid << "," << rowid << "): nchan = " << nchan << " (minchan = " << minchan << ")" << LogIO::POST ;
3270 if ( nchan < minchan ) {
3271 minchan = nchan ;
3272 maxdnu = dnu ;
3273 newin[tableid]->frequencies().getEntry( refpixref, refvalref, refinc, rowid ) ;
3274 refreqid = rowid ;
3275 reftable = tableid ;
3276 }
3277 }
3278 }
3279 // regrid spectra in each group
3280 os << "GROUP " << igrp << endl ;
3281 os << " Channel number is adjusted to " << minchan << endl ;
3282 os << " Corresponding frequency resolution is " << maxdnu << "Hz" << LogIO::POST ;
3283 for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3284 uInt tableid = ifgrp[igrp][2*imem] ;
3285 uInt rowid = ifgrp[igrp][2*imem+1] ;
3286 freqIDCol.attach( newin[tableid]->table(), "FREQ_ID" ) ;
3287 //os << "tableid = " << tableid << " rowid = " << rowid << ": " << LogIO::POST ;
3288 //os << " regridChannel applied to " ;
3289 if ( tableid != reftable )
3290 refreqid = newin[tableid]->frequencies().addEntry( refpixref, refvalref, refinc ) ;
3291 for ( uInt irow = 0 ; irow < newin[tableid]->table().nrow() ; irow++ ) {
3292 uInt tfreqid = freqIdVec[tableid][irow] ;
3293 if ( tfreqid == rowid ) {
3294 //os << irow << " " ;
3295 newin[tableid]->regridChannel( minchan, maxdnu, irow ) ;
3296 freqIDCol.put( irow, refreqid ) ;
3297 freqIdVec[tableid][irow] = refreqid ;
3298 }
3299 }
3300 //os << LogIO::POST ;
3301 }
3302 }
3303 else {
3304 uInt tableid = ifgrp[igrp][0] ;
3305 uInt rowid = ifgrp[igrp][1] ;
3306 vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3307 if ( iter != freqIdVec[tableid].end() ) {
3308 uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3309 vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3310 minchan = abcissa.size() ;
3311 maxdnu = abcissa[1] - abcissa[0] ;
3312 }
3313 }
3314 for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3315 if ( count( freqgrp[i].begin(), freqgrp[i].end(), igrp ) > 0 ) {
3316 if ( maxdnu > gmaxdnu[i] ) {
3317 gmaxdnu[i] = maxdnu ;
3318 gmemid[i] = igrp ;
3319 }
3320 break ;
3321 }
3322 }
3323 }
3324
3325 // set back coordinfo
3326 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3327 vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3328 coordinfo[0] = oldinfo[itable] ;
3329 newin[itable]->setCoordInfo( coordinfo ) ;
3330 }
3331
3332 // accumulate all rows into the first table
3333 // NOTE: assumed in.size() = 1
3334 vector< CountedPtr<Scantable> > tmp( 1 ) ;
3335 if ( newin.size() == 1 )
3336 tmp[0] = newin[0] ;
3337 else
3338 tmp[0] = merge( newin ) ;
3339
3340 //return tmp[0] ;
3341
3342 // average
3343 CountedPtr<Scantable> tmpout = average( tmp, mask, weight, avmode ) ;
3344
3345 //return tmpout ;
3346
3347 // combine frequency group
3348 os << "Combine spectra based on frequency grouping" << LogIO::POST ;
3349 os << "IFNO is renumbered as frequency group ID (see above)" << LogIO::POST ;
3350 vector<string> coordinfo = tmpout->getCoordInfo() ;
3351 oldinfo[0] = coordinfo[0] ;
3352 coordinfo[0] = "Hz" ;
3353 tmpout->setCoordInfo( coordinfo ) ;
3354 // create proformas of output table
3355 stringstream taqlstream ;
3356 taqlstream << "SELECT FROM $1 WHERE IFNO IN [" ;
3357 for ( uInt i = 0 ; i < gmemid.size() ; i++ ) {
3358 taqlstream << gmemid[i] ;
3359 if ( i < gmemid.size() - 1 )
3360 taqlstream << "," ;
3361 else
3362 taqlstream << "]" ;
3363 }
3364 string taql = taqlstream.str() ;
3365 //os << "taql = " << taql << LogIO::POST ;
3366 STSelector selector = STSelector() ;
3367 selector.setTaQL( taql ) ;
3368 oldInsitu = insitu_ ;
3369 setInsitu( false ) ;
3370 out = getScantable( tmpout, false ) ;
3371 setInsitu( oldInsitu ) ;
3372 out->setSelection( selector ) ;
3373 // regrid rows
3374 ifnoCol.attach( tmpout->table(), "IFNO" ) ;
3375 for ( uInt irow = 0 ; irow < tmpout->table().nrow() ; irow++ ) {
3376 uInt ifno = ifnoCol( irow ) ;
3377 for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3378 if ( count( freqgrp[igrp].begin(), freqgrp[igrp].end(), ifno ) > 0 ) {
3379 vector<double> abcissa = tmpout->getAbcissa( irow ) ;
3380 double bw = ( abcissa[1] - abcissa[0] ) * abcissa.size() ;
3381 int nchan = (int)( bw / gmaxdnu[igrp] ) ;
3382 tmpout->regridChannel( nchan, gmaxdnu[igrp], irow ) ;
3383 break ;
3384 }
3385 }
3386 }
3387 // combine spectra
3388 ArrayColumn<Float> specColOut ;
3389 specColOut.attach( out->table(), "SPECTRA" ) ;
3390 ArrayColumn<uChar> flagColOut ;
3391 flagColOut.attach( out->table(), "FLAGTRA" ) ;
3392 ScalarColumn<uInt> ifnoColOut ;
3393 ifnoColOut.attach( out->table(), "IFNO" ) ;
3394 ScalarColumn<uInt> polnoColOut ;
3395 polnoColOut.attach( out->table(), "POLNO" ) ;
3396 ScalarColumn<uInt> freqidColOut ;
3397 freqidColOut.attach( out->table(), "FREQ_ID" ) ;
3398 MDirection::ScalarColumn dirColOut ;
3399 dirColOut.attach( out->table(), "DIRECTION" ) ;
3400 Table &tab = tmpout->table() ;
3401 Block<String> cols(1);
3402 cols[0] = String("POLNO") ;
3403 TableIterator iter( tab, cols ) ;
3404 bool done = false ;
3405 vector< vector<uInt> > sizes( freqgrp.size() ) ;
3406 while( !iter.pastEnd() ) {
3407 vector< vector<Float> > specout( freqgrp.size() ) ;
3408 vector< vector<uChar> > flagout( freqgrp.size() ) ;
3409 ArrayColumn<Float> specCols ;
3410 specCols.attach( iter.table(), "SPECTRA" ) ;
3411 ArrayColumn<uChar> flagCols ;
3412 flagCols.attach( iter.table(), "FLAGTRA" ) ;
3413 ifnoCol.attach( iter.table(), "IFNO" ) ;
3414 ScalarColumn<uInt> polnos ;
3415 polnos.attach( iter.table(), "POLNO" ) ;
3416 MDirection::ScalarColumn dircol ;
3417 dircol.attach( iter.table(), "DIRECTION" ) ;
3418 uInt polno = polnos( 0 ) ;
3419 //os << "POLNO iteration: " << polno << LogIO::POST ;
3420// for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3421// sizes[igrp].resize( freqgrp[igrp].size() ) ;
3422// for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3423// for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3424// uInt ifno = ifnoCol( irow ) ;
3425// if ( ifno == freqgrp[igrp][imem] ) {
3426// Vector<Float> spec = specCols( irow ) ;
3427// Vector<uChar> flag = flagCols( irow ) ;
3428// vector<Float> svec ;
3429// spec.tovector( svec ) ;
3430// vector<uChar> fvec ;
3431// flag.tovector( fvec ) ;
3432// //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3433// specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3434// flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3435// //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3436// sizes[igrp][imem] = spec.nelements() ;
3437// }
3438// }
3439// }
3440// for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3441// uInt ifout = ifnoColOut( irow ) ;
3442// uInt polout = polnoColOut( irow ) ;
3443// if ( ifout == gmemid[igrp] && polout == polno ) {
3444// // set SPECTRA and FRAGTRA
3445// Vector<Float> newspec( specout[igrp] ) ;
3446// Vector<uChar> newflag( flagout[igrp] ) ;
3447// specColOut.put( irow, newspec ) ;
3448// flagColOut.put( irow, newflag ) ;
3449// // IFNO renumbering
3450// ifnoColOut.put( irow, igrp ) ;
3451// }
3452// }
3453// }
3454 // get a list of number of channels for each frequency group member
3455 if ( !done ) {
3456 for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3457 sizes[igrp].resize( freqgrp[igrp].size() ) ;
3458 for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3459 for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3460 uInt ifno = ifnoCol( irow ) ;
3461 if ( ifno == freqgrp[igrp][imem] ) {
3462 Vector<Float> spec = specCols( irow ) ;
3463 sizes[igrp][imem] = spec.nelements() ;
3464 break ;
3465 }
3466 }
3467 }
3468 }
3469 done = true ;
3470 }
3471 // combine spectra
3472 for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3473 uInt polout = polnoColOut( irow ) ;
3474 if ( polout == polno ) {
3475 uInt ifout = ifnoColOut( irow ) ;
3476 Vector<Double> direction = dirColOut(irow).getAngle(Unit(String("rad"))).getValue() ;
3477 uInt igrp ;
3478 for ( uInt jgrp = 0 ; jgrp < freqgrp.size() ; jgrp++ ) {
3479 if ( ifout == gmemid[jgrp] ) {
3480 igrp = jgrp ;
3481 break ;
3482 }
3483 }
3484 for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3485 for ( uInt jrow = 0 ; jrow < iter.table().nrow() ; jrow++ ) {
3486 uInt ifno = ifnoCol( jrow ) ;
3487 Vector<Double> tdir = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
3488 //if ( ifno == freqgrp[igrp][imem] && allTrue( tdir == direction ) ) {
3489 Double dx = tdir[0] - direction[0] ;
3490 Double dy = tdir[1] - direction[1] ;
3491 Double dd = sqrt( dx * dx + dy * dy ) ;
3492 //if ( ifno == freqgrp[igrp][imem] && allNearAbs( tdir, direction, tol ) ) {
3493 if ( ifno == freqgrp[igrp][imem] && dd <= tol ) {
3494 Vector<Float> spec = specCols( jrow ) ;
3495 Vector<uChar> flag = flagCols( jrow ) ;
3496 vector<Float> svec ;
3497 spec.tovector( svec ) ;
3498 vector<uChar> fvec ;
3499 flag.tovector( fvec ) ;
3500 //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3501 specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3502 flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3503 //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3504 }
3505 }
3506 }
3507 // set SPECTRA and FRAGTRA
3508 Vector<Float> newspec( specout[igrp] ) ;
3509 Vector<uChar> newflag( flagout[igrp] ) ;
3510 specColOut.put( irow, newspec ) ;
3511 flagColOut.put( irow, newflag ) ;
3512 // IFNO renumbering
3513 ifnoColOut.put( irow, igrp ) ;
3514 }
3515 }
3516 iter++ ;
3517 }
3518 // update FREQUENCIES subtable
3519 vector<bool> updated( freqgrp.size(), false ) ;
3520 for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3521 uInt index = 0 ;
3522 uInt pixShift = 0 ;
3523 while ( freqgrp[igrp][index] != gmemid[igrp] ) {
3524 pixShift += sizes[igrp][index++] ;
3525 }
3526 for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3527 if ( ifnoColOut( irow ) == gmemid[igrp] && !updated[igrp] ) {
3528 uInt freqidOut = freqidColOut( irow ) ;
3529 //os << "freqgrp " << igrp << " freqidOut = " << freqidOut << LogIO::POST ;
3530 double refpix ;
3531 double refval ;
3532 double increm ;
3533 out->frequencies().getEntry( refpix, refval, increm, freqidOut ) ;
3534 refpix += pixShift ;
3535 out->frequencies().setEntry( refpix, refval, increm, freqidOut ) ;
3536 updated[igrp] = true ;
3537 }
3538 }
3539 }
3540
3541 //out = tmpout ;
3542
3543 coordinfo = tmpout->getCoordInfo() ;
3544 coordinfo[0] = oldinfo[0] ;
3545 tmpout->setCoordInfo( coordinfo ) ;
3546 }
3547 else {
3548 // simple average
3549 out = average( in, mask, weight, avmode ) ;
3550 }
3551
3552 return out ;
3553}
3554
3555CountedPtr<Scantable> STMath::cwcal( const CountedPtr<Scantable>& s,
3556 const String calmode,
3557 const String antname )
3558{
3559 // frequency switch
3560 if ( calmode == "fs" ) {
3561 return cwcalfs( s, antname ) ;
3562 }
3563 else {
3564 vector<bool> masks = s->getMask( 0 ) ;
3565 vector<int> types ;
3566
3567 // sky scan
3568 STSelector sel = STSelector() ;
3569 types.push_back( SrcType::SKY ) ;
3570 sel.setTypes( types ) ;
3571 s->setSelection( sel ) ;
3572 vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3573 CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
3574 s->unsetSelection() ;
3575 sel.reset() ;
3576 types.clear() ;
3577
3578 // hot scan
3579 types.push_back( SrcType::HOT ) ;
3580 sel.setTypes( types ) ;
3581 s->setSelection( sel ) ;
3582 tmp.clear() ;
3583 tmp.push_back( getScantable( s, false ) ) ;
3584 CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
3585 s->unsetSelection() ;
3586 sel.reset() ;
3587 types.clear() ;
3588
3589 // cold scan
3590 CountedPtr<Scantable> acold ;
3591// types.push_back( SrcType::COLD ) ;
3592// sel.setTypes( types ) ;
3593// s->setSelection( sel ) ;
3594// tmp.clear() ;
3595// tmp.push_back( getScantable( s, false ) ) ;
3596// CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCNAN" ) ;
3597// s->unsetSelection() ;
3598// sel.reset() ;
3599// types.clear() ;
3600
3601 // off scan
3602 types.push_back( SrcType::PSOFF ) ;
3603 sel.setTypes( types ) ;
3604 s->setSelection( sel ) ;
3605 tmp.clear() ;
3606 tmp.push_back( getScantable( s, false ) ) ;
3607 CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3608 s->unsetSelection() ;
3609 sel.reset() ;
3610 types.clear() ;
3611
3612 // on scan
3613 bool insitu = insitu_ ;
3614 insitu_ = false ;
3615 CountedPtr<Scantable> out = getScantable( s, true ) ;
3616 insitu_ = insitu ;
3617 types.push_back( SrcType::PSON ) ;
3618 sel.setTypes( types ) ;
3619 s->setSelection( sel ) ;
3620 TableCopy::copyRows( out->table(), s->table() ) ;
3621 s->unsetSelection() ;
3622 sel.reset() ;
3623 types.clear() ;
3624
3625 // process each on scan
3626 ArrayColumn<Float> tsysCol ;
3627 tsysCol.attach( out->table(), "TSYS" ) ;
3628 for ( int i = 0 ; i < out->nrow() ; i++ ) {
3629 vector<float> sp = getCalibratedSpectra( out, aoff, asky, ahot, acold, i, antname ) ;
3630 out->setSpectrum( sp, i ) ;
3631 string reftime = out->getTime( i ) ;
3632 vector<int> ii( 1, out->getIF( i ) ) ;
3633 vector<int> ib( 1, out->getBeam( i ) ) ;
3634 vector<int> ip( 1, out->getPol( i ) ) ;
3635 sel.setIFs( ii ) ;
3636 sel.setBeams( ib ) ;
3637 sel.setPolarizations( ip ) ;
3638 asky->setSelection( sel ) ;
3639 vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
3640 const Vector<Float> Vtsys( sptsys ) ;
3641 tsysCol.put( i, Vtsys ) ;
3642 asky->unsetSelection() ;
3643 sel.reset() ;
3644 }
3645
3646 // flux unit
3647 out->setFluxUnit( "K" ) ;
3648
3649 return out ;
3650 }
3651}
3652
3653CountedPtr<Scantable> STMath::almacal( const CountedPtr<Scantable>& s,
3654 const String calmode )
3655{
3656 // frequency switch
3657 if ( calmode == "fs" ) {
3658 return almacalfs( s ) ;
3659 }
3660 else {
3661 vector<bool> masks = s->getMask( 0 ) ;
3662
3663 // off scan
3664 STSelector sel = STSelector() ;
3665 vector<int> types ;
3666 types.push_back( SrcType::PSOFF ) ;
3667 sel.setTypes( types ) ;
3668 s->setSelection( sel ) ;
3669 // TODO 2010/01/08 TN
3670 // Grouping by time should be needed before averaging.
3671 // Each group must have own unique SCANNO (should be renumbered).
3672 // See PIPELINE/SDCalibration.py
3673 CountedPtr<Scantable> soff = getScantable( s, false ) ;
3674 Table ttab = soff->table() ;
3675 ROScalarColumn<Double> timeCol( ttab, "TIME" ) ;
3676 uInt nrow = timeCol.nrow() ;
3677 Vector<Double> timeSep( nrow - 1 ) ;
3678 for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3679 timeSep[i] = timeCol(i+1) - timeCol(i) ;
3680 }
3681 ScalarColumn<Double> intervalCol( ttab, "INTERVAL" ) ;
3682 Vector<Double> interval = intervalCol.getColumn() ;
3683 interval /= 86400.0 ;
3684 ScalarColumn<uInt> scanCol( ttab, "SCANNO" ) ;
3685 vector<uInt> glist ;
3686 for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3687 double gap = 2.0 * timeSep[i] / ( interval[i] + interval[i+1] ) ;
3688 //cout << "gap[" << i << "]=" << setw(5) << gap << endl ;
3689 if ( gap > 1.1 ) {
3690 glist.push_back( i ) ;
3691 }
3692 }
3693 Vector<uInt> gaplist( glist ) ;
3694 //cout << "gaplist = " << gaplist << endl ;
3695 uInt newid = 0 ;
3696 for ( uInt i = 0 ; i < nrow ; i++ ) {
3697 scanCol.put( i, newid ) ;
3698 if ( i == gaplist[newid] ) {
3699 newid++ ;
3700 }
3701 }
3702 //cout << "new scancol = " << scanCol.getColumn() << endl ;
3703 vector< CountedPtr<Scantable> > tmp( 1, soff ) ;
3704 CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3705 //cout << "aoff.nrow = " << aoff->nrow() << endl ;
3706 s->unsetSelection() ;
3707 sel.reset() ;
3708 types.clear() ;
3709
3710 // on scan
3711 bool insitu = insitu_ ;
3712 insitu_ = false ;
3713 CountedPtr<Scantable> out = getScantable( s, true ) ;
3714 insitu_ = insitu ;
3715 types.push_back( SrcType::PSON ) ;
3716 sel.setTypes( types ) ;
3717 s->setSelection( sel ) ;
3718 TableCopy::copyRows( out->table(), s->table() ) ;
3719 s->unsetSelection() ;
3720 sel.reset() ;
3721 types.clear() ;
3722
3723 // process each on scan
3724 ArrayColumn<Float> tsysCol ;
3725 tsysCol.attach( out->table(), "TSYS" ) ;
3726 for ( int i = 0 ; i < out->nrow() ; i++ ) {
3727 vector<float> sp = getCalibratedSpectra( out, aoff, i ) ;
3728 out->setSpectrum( sp, i ) ;
3729 }
3730
3731 // flux unit
3732 out->setFluxUnit( "K" ) ;
3733
3734 return out ;
3735 }
3736}
3737
3738CountedPtr<Scantable> STMath::cwcalfs( const CountedPtr<Scantable>& s,
3739 const String antname )
3740{
3741 vector<int> types ;
3742
3743 // APEX calibration mode
3744 int apexcalmode = 1 ;
3745
3746 if ( antname.find( "APEX" ) != string::npos ) {
3747 // check if off scan exists or not
3748 STSelector sel = STSelector() ;
3749 //sel.setName( offstr1 ) ;
3750 types.push_back( SrcType::FLOOFF ) ;
3751 sel.setTypes( types ) ;
3752 try {
3753 s->setSelection( sel ) ;
3754 }
3755 catch ( AipsError &e ) {
3756 apexcalmode = 0 ;
3757 }
3758 sel.reset() ;
3759 }
3760 s->unsetSelection() ;
3761 types.clear() ;
3762
3763 vector<bool> masks = s->getMask( 0 ) ;
3764 CountedPtr<Scantable> ssig, sref ;
3765 CountedPtr<Scantable> out ;
3766
3767 if ( antname.find( "APEX" ) != string::npos ) {
3768 // APEX calibration
3769 // sky scan
3770 STSelector sel = STSelector() ;
3771 types.push_back( SrcType::FLOSKY ) ;
3772 sel.setTypes( types ) ;
3773 s->setSelection( sel ) ;
3774 vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3775 CountedPtr<Scantable> askylo = average( tmp, masks, "TINT", "SCAN" ) ;
3776 s->unsetSelection() ;
3777 sel.reset() ;
3778 types.clear() ;
3779 types.push_back( SrcType::FHISKY ) ;
3780 sel.setTypes( types ) ;
3781 s->setSelection( sel ) ;
3782 tmp.clear() ;
3783 tmp.push_back( getScantable( s, false ) ) ;
3784 CountedPtr<Scantable> askyhi = average( tmp, masks, "TINT", "SCAN" ) ;
3785 s->unsetSelection() ;
3786 sel.reset() ;
3787 types.clear() ;
3788
3789 // hot scan
3790 types.push_back( SrcType::FLOHOT ) ;
3791 sel.setTypes( types ) ;
3792 s->setSelection( sel ) ;
3793 tmp.clear() ;
3794 tmp.push_back( getScantable( s, false ) ) ;
3795 CountedPtr<Scantable> ahotlo = average( tmp, masks, "TINT", "SCAN" ) ;
3796 s->unsetSelection() ;
3797 sel.reset() ;
3798 types.clear() ;
3799 types.push_back( SrcType::FHIHOT ) ;
3800 sel.setTypes( types ) ;
3801 s->setSelection( sel ) ;
3802 tmp.clear() ;
3803 tmp.push_back( getScantable( s, false ) ) ;
3804 CountedPtr<Scantable> ahothi = average( tmp, masks, "TINT", "SCAN" ) ;
3805 s->unsetSelection() ;
3806 sel.reset() ;
3807 types.clear() ;
3808
3809 // cold scan
3810 CountedPtr<Scantable> acoldlo, acoldhi ;
3811// types.push_back( SrcType::FLOCOLD ) ;
3812// sel.setTypes( types ) ;
3813// s->setSelection( sel ) ;
3814// tmp.clear() ;
3815// tmp.push_back( getScantable( s, false ) ) ;
3816// CountedPtr<Scantable> acoldlo = average( tmp, masks, "TINT", "SCAN" ) ;
3817// s->unsetSelection() ;
3818// sel.reset() ;
3819// types.clear() ;
3820// types.push_back( SrcType::FHICOLD ) ;
3821// sel.setTypes( types ) ;
3822// s->setSelection( sel ) ;
3823// tmp.clear() ;
3824// tmp.push_back( getScantable( s, false ) ) ;
3825// CountedPtr<Scantable> acoldhi = average( tmp, masks, "TINT", "SCAN" ) ;
3826// s->unsetSelection() ;
3827// sel.reset() ;
3828// types.clear() ;
3829
3830 // ref scan
3831 bool insitu = insitu_ ;
3832 insitu_ = false ;
3833 sref = getScantable( s, true ) ;
3834 insitu_ = insitu ;
3835 types.push_back( SrcType::FSLO ) ;
3836 sel.setTypes( types ) ;
3837 s->setSelection( sel ) ;
3838 TableCopy::copyRows( sref->table(), s->table() ) ;
3839 s->unsetSelection() ;
3840 sel.reset() ;
3841 types.clear() ;
3842
3843 // sig scan
3844 insitu_ = false ;
3845 ssig = getScantable( s, true ) ;
3846 insitu_ = insitu ;
3847 types.push_back( SrcType::FSHI ) ;
3848 sel.setTypes( types ) ;
3849 s->setSelection( sel ) ;
3850 TableCopy::copyRows( ssig->table(), s->table() ) ;
3851 s->unsetSelection() ;
3852 sel.reset() ;
3853 types.clear() ;
3854
3855 if ( apexcalmode == 0 ) {
3856 // APEX fs data without off scan
3857 // process each sig and ref scan
3858 ArrayColumn<Float> tsysCollo ;
3859 tsysCollo.attach( ssig->table(), "TSYS" ) ;
3860 ArrayColumn<Float> tsysColhi ;
3861 tsysColhi.attach( sref->table(), "TSYS" ) ;
3862 for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
3863 vector< CountedPtr<Scantable> > sky( 2 ) ;
3864 sky[0] = askylo ;
3865 sky[1] = askyhi ;
3866 vector< CountedPtr<Scantable> > hot( 2 ) ;
3867 hot[0] = ahotlo ;
3868 hot[1] = ahothi ;
3869 vector< CountedPtr<Scantable> > cold( 2 ) ;
3870 //cold[0] = acoldlo ;
3871 //cold[1] = acoldhi ;
3872 vector<float> sp = getFSCalibratedSpectra( ssig, sref, sky, hot, cold, i ) ;
3873 ssig->setSpectrum( sp, i ) ;
3874 string reftime = ssig->getTime( i ) ;
3875 vector<int> ii( 1, ssig->getIF( i ) ) ;
3876 vector<int> ib( 1, ssig->getBeam( i ) ) ;
3877 vector<int> ip( 1, ssig->getPol( i ) ) ;
3878 sel.setIFs( ii ) ;
3879 sel.setBeams( ib ) ;
3880 sel.setPolarizations( ip ) ;
3881 askylo->setSelection( sel ) ;
3882 vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
3883 const Vector<Float> Vtsyslo( sptsys ) ;
3884 tsysCollo.put( i, Vtsyslo ) ;
3885 askylo->unsetSelection() ;
3886 sel.reset() ;
3887 sky[0] = askyhi ;
3888 sky[1] = askylo ;
3889 hot[0] = ahothi ;
3890 hot[1] = ahotlo ;
3891 cold[0] = acoldhi ;
3892 cold[1] = acoldlo ;
3893 sp = getFSCalibratedSpectra( sref, ssig, sky, hot, cold, i ) ;
3894 sref->setSpectrum( sp, i ) ;
3895 reftime = sref->getTime( i ) ;
3896 ii[0] = sref->getIF( i ) ;
3897 ib[0] = sref->getBeam( i ) ;
3898 ip[0] = sref->getPol( i ) ;
3899 sel.setIFs( ii ) ;
3900 sel.setBeams( ib ) ;
3901 sel.setPolarizations( ip ) ;
3902 askyhi->setSelection( sel ) ;
3903 sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
3904 const Vector<Float> Vtsyshi( sptsys ) ;
3905 tsysColhi.put( i, Vtsyshi ) ;
3906 askyhi->unsetSelection() ;
3907 sel.reset() ;
3908 }
3909 }
3910 else if ( apexcalmode == 1 ) {
3911 // APEX fs data with off scan
3912 // off scan
3913 types.push_back( SrcType::FLOOFF ) ;
3914 sel.setTypes( types ) ;
3915 s->setSelection( sel ) ;
3916 tmp.clear() ;
3917 tmp.push_back( getScantable( s, false ) ) ;
3918 CountedPtr<Scantable> aofflo = average( tmp, masks, "TINT", "SCAN" ) ;
3919 s->unsetSelection() ;
3920 sel.reset() ;
3921 types.clear() ;
3922 types.push_back( SrcType::FHIOFF ) ;
3923 sel.setTypes( types ) ;
3924 s->setSelection( sel ) ;
3925 tmp.clear() ;
3926 tmp.push_back( getScantable( s, false ) ) ;
3927 CountedPtr<Scantable> aoffhi = average( tmp, masks, "TINT", "SCAN" ) ;
3928 s->unsetSelection() ;
3929 sel.reset() ;
3930 types.clear() ;
3931
3932 // process each sig and ref scan
3933 ArrayColumn<Float> tsysCollo ;
3934 tsysCollo.attach( ssig->table(), "TSYS" ) ;
3935 ArrayColumn<Float> tsysColhi ;
3936 tsysColhi.attach( sref->table(), "TSYS" ) ;
3937 for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
3938 vector<float> sp = getCalibratedSpectra( ssig, aofflo, askylo, ahotlo, acoldlo, i, antname ) ;
3939 ssig->setSpectrum( sp, i ) ;
3940 sp = getCalibratedSpectra( sref, aoffhi, askyhi, ahothi, acoldhi, i, antname ) ;
3941 string reftime = ssig->getTime( i ) ;
3942 vector<int> ii( 1, ssig->getIF( i ) ) ;
3943 vector<int> ib( 1, ssig->getBeam( i ) ) ;
3944 vector<int> ip( 1, ssig->getPol( i ) ) ;
3945 sel.setIFs( ii ) ;
3946 sel.setBeams( ib ) ;
3947 sel.setPolarizations( ip ) ;
3948 askylo->setSelection( sel ) ;
3949 vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
3950 const Vector<Float> Vtsyslo( sptsys ) ;
3951 tsysCollo.put( i, Vtsyslo ) ;
3952 askylo->unsetSelection() ;
3953 sel.reset() ;
3954 sref->setSpectrum( sp, i ) ;
3955 reftime = sref->getTime( i ) ;
3956 ii[0] = sref->getIF( i ) ;
3957 ib[0] = sref->getBeam( i ) ;
3958 ip[0] = sref->getPol( i ) ;
3959 sel.setIFs( ii ) ;
3960 sel.setBeams( ib ) ;
3961 sel.setPolarizations( ip ) ;
3962 askyhi->setSelection( sel ) ;
3963 sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
3964 const Vector<Float> Vtsyshi( sptsys ) ;
3965 tsysColhi.put( i, Vtsyshi ) ;
3966 askyhi->unsetSelection() ;
3967 sel.reset() ;
3968 }
3969 }
3970 }
3971 else {
3972 // non-APEX fs data
3973 // sky scan
3974 STSelector sel = STSelector() ;
3975 types.push_back( SrcType::SKY ) ;
3976 sel.setTypes( types ) ;
3977 s->setSelection( sel ) ;
3978 vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3979 CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
3980 s->unsetSelection() ;
3981 sel.reset() ;
3982 types.clear() ;
3983
3984 // hot scan
3985 types.push_back( SrcType::HOT ) ;
3986 sel.setTypes( types ) ;
3987 s->setSelection( sel ) ;
3988 tmp.clear() ;
3989 tmp.push_back( getScantable( s, false ) ) ;
3990 CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
3991 s->unsetSelection() ;
3992 sel.reset() ;
3993 types.clear() ;
3994
3995 // cold scan
3996 CountedPtr<Scantable> acold ;
3997// types.push_back( SrcType::COLD ) ;
3998// sel.setTypes( types ) ;
3999// s->setSelection( sel ) ;
4000// tmp.clear() ;
4001// tmp.push_back( getScantable( s, false ) ) ;
4002// CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCAN" ) ;
4003// s->unsetSelection() ;
4004// sel.reset() ;
4005// types.clear() ;
4006
4007 // ref scan
4008 bool insitu = insitu_ ;
4009 insitu_ = false ;
4010 sref = getScantable( s, true ) ;
4011 insitu_ = insitu ;
4012 types.push_back( SrcType::FSOFF ) ;
4013 sel.setTypes( types ) ;
4014 s->setSelection( sel ) ;
4015 TableCopy::copyRows( sref->table(), s->table() ) ;
4016 s->unsetSelection() ;
4017 sel.reset() ;
4018 types.clear() ;
4019
4020 // sig scan
4021 insitu_ = false ;
4022 ssig = getScantable( s, true ) ;
4023 insitu_ = insitu ;
4024 types.push_back( SrcType::FSON ) ;
4025 sel.setTypes( types ) ;
4026 s->setSelection( sel ) ;
4027 TableCopy::copyRows( ssig->table(), s->table() ) ;
4028 s->unsetSelection() ;
4029 sel.reset() ;
4030 types.clear() ;
4031
4032 // process each sig and ref scan
4033 ArrayColumn<Float> tsysColsig ;
4034 tsysColsig.attach( ssig->table(), "TSYS" ) ;
4035 ArrayColumn<Float> tsysColref ;
4036 tsysColref.attach( ssig->table(), "TSYS" ) ;
4037 for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4038 vector<float> sp = getFSCalibratedSpectra( ssig, sref, asky, ahot, acold, i ) ;
4039 ssig->setSpectrum( sp, i ) ;
4040 string reftime = ssig->getTime( i ) ;
4041 vector<int> ii( 1, ssig->getIF( i ) ) ;
4042 vector<int> ib( 1, ssig->getBeam( i ) ) ;
4043 vector<int> ip( 1, ssig->getPol( i ) ) ;
4044 sel.setIFs( ii ) ;
4045 sel.setBeams( ib ) ;
4046 sel.setPolarizations( ip ) ;
4047 asky->setSelection( sel ) ;
4048 vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
4049 const Vector<Float> Vtsys( sptsys ) ;
4050 tsysColsig.put( i, Vtsys ) ;
4051 asky->unsetSelection() ;
4052 sel.reset() ;
4053 sp = getFSCalibratedSpectra( sref, ssig, asky, ahot, acold, i ) ;
4054 sref->setSpectrum( sp, i ) ;
4055 tsysColref.put( i, Vtsys ) ;
4056 }
4057 }
4058
4059 // do folding if necessary
4060 Table sigtab = ssig->table() ;
4061 Table reftab = sref->table() ;
4062 ScalarColumn<uInt> sigifnoCol ;
4063 ScalarColumn<uInt> refifnoCol ;
4064 ScalarColumn<uInt> sigfidCol ;
4065 ScalarColumn<uInt> reffidCol ;
4066 Int nchan = (Int)ssig->nchan() ;
4067 sigifnoCol.attach( sigtab, "IFNO" ) ;
4068 refifnoCol.attach( reftab, "IFNO" ) ;
4069 sigfidCol.attach( sigtab, "FREQ_ID" ) ;
4070 reffidCol.attach( reftab, "FREQ_ID" ) ;
4071 Vector<uInt> sfids( sigfidCol.getColumn() ) ;
4072 Vector<uInt> rfids( reffidCol.getColumn() ) ;
4073 vector<uInt> sfids_unique ;
4074 vector<uInt> rfids_unique ;
4075 vector<uInt> sifno_unique ;
4076 vector<uInt> rifno_unique ;
4077 for ( uInt i = 0 ; i < sfids.nelements() ; i++ ) {
4078 if ( count( sfids_unique.begin(), sfids_unique.end(), sfids[i] ) == 0 ) {
4079 sfids_unique.push_back( sfids[i] ) ;
4080 sifno_unique.push_back( ssig->getIF( i ) ) ;
4081 }
4082 if ( count( rfids_unique.begin(), rfids_unique.end(), rfids[i] ) == 0 ) {
4083 rfids_unique.push_back( rfids[i] ) ;
4084 rifno_unique.push_back( sref->getIF( i ) ) ;
4085 }
4086 }
4087 double refpix_sig, refval_sig, increment_sig ;
4088 double refpix_ref, refval_ref, increment_ref ;
4089 vector< CountedPtr<Scantable> > tmp( sfids_unique.size() ) ;
4090 for ( uInt i = 0 ; i < sfids_unique.size() ; i++ ) {
4091 ssig->frequencies().getEntry( refpix_sig, refval_sig, increment_sig, sfids_unique[i] ) ;
4092 sref->frequencies().getEntry( refpix_ref, refval_ref, increment_ref, rfids_unique[i] ) ;
4093 if ( refpix_sig == refpix_ref ) {
4094 double foffset = refval_ref - refval_sig ;
4095 int choffset = static_cast<int>(foffset/increment_sig) ;
4096 double doffset = foffset / increment_sig ;
4097 if ( abs(choffset) >= nchan ) {
4098 LogIO os( LogOrigin( "STMath", "cwcalfs", WHERE ) ) ;
4099 os << "FREQ_ID=[" << sfids_unique[i] << "," << rfids_unique[i] << "]: out-band frequency switching, no folding" << LogIO::POST ;
4100 os << "Just return signal data" << LogIO::POST ;
4101 //std::vector< CountedPtr<Scantable> > tabs ;
4102 //tabs.push_back( ssig ) ;
4103 //tabs.push_back( sref ) ;
4104 //out = merge( tabs ) ;
4105 tmp[i] = ssig ;
4106 }
4107 else {
4108 STSelector sel = STSelector() ;
4109 vector<int> v( 1, sifno_unique[i] ) ;
4110 sel.setIFs( v ) ;
4111 ssig->setSelection( sel ) ;
4112 sel.reset() ;
4113 v[0] = rifno_unique[i] ;
4114 sel.setIFs( v ) ;
4115 sref->setSelection( sel ) ;
4116 sel.reset() ;
4117 if ( antname.find( "APEX" ) != string::npos ) {
4118 tmp[i] = dofold( ssig, sref, 0.5*doffset, -0.5*doffset ) ;
4119 //tmp[i] = dofold( ssig, sref, doffset ) ;
4120 }
4121 else {
4122 tmp[i] = dofold( ssig, sref, doffset ) ;
4123 }
4124 ssig->unsetSelection() ;
4125 sref->unsetSelection() ;
4126 }
4127 }
4128 }
4129
4130 if ( tmp.size() > 1 ) {
4131 out = merge( tmp ) ;
4132 }
4133 else {
4134 out = tmp[0] ;
4135 }
4136
4137 // flux unit
4138 out->setFluxUnit( "K" ) ;
4139
4140 return out ;
4141}
4142
4143CountedPtr<Scantable> STMath::almacalfs( const CountedPtr<Scantable>& s )
4144{
4145 CountedPtr<Scantable> out ;
4146
4147 return out ;
4148}
4149
4150vector<float> STMath::getSpectrumFromTime( string reftime,
4151 CountedPtr<Scantable>& s,
4152 string mode )
4153{
4154 LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
4155 vector<float> sp ;
4156
4157 if ( s->nrow() == 0 ) {
4158 os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4159 return sp ;
4160 }
4161 else if ( s->nrow() == 1 ) {
4162 //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4163 return s->getSpectrum( 0 ) ;
4164 }
4165 else {
4166 vector<int> idx = getRowIdFromTime( reftime, s ) ;
4167 if ( mode == "before" ) {
4168 int id = -1 ;
4169 if ( idx[0] != -1 ) {
4170 id = idx[0] ;
4171 }
4172 else if ( idx[1] != -1 ) {
4173 os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4174 id = idx[1] ;
4175 }
4176 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4177 sp = s->getSpectrum( id ) ;
4178 }
4179 else if ( mode == "after" ) {
4180 int id = -1 ;
4181 if ( idx[1] != -1 ) {
4182 id = idx[1] ;
4183 }
4184 else if ( idx[0] != -1 ) {
4185 os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4186 id = idx[1] ;
4187 }
4188 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4189 sp = s->getSpectrum( id ) ;
4190 }
4191 else if ( mode == "nearest" ) {
4192 int id = -1 ;
4193 if ( idx[0] == -1 ) {
4194 id = idx[1] ;
4195 }
4196 else if ( idx[1] == -1 ) {
4197 id = idx[0] ;
4198 }
4199 else if ( idx[0] == idx[1] ) {
4200 id = idx[0] ;
4201 }
4202 else {
4203 double t0 = getMJD( s->getTime( idx[0] ) ) ;
4204 double t1 = getMJD( s->getTime( idx[1] ) ) ;
4205 double tref = getMJD( reftime ) ;
4206 if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4207 id = idx[1] ;
4208 }
4209 else {
4210 id = idx[0] ;
4211 }
4212 }
4213 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4214 sp = s->getSpectrum( id ) ;
4215 }
4216 else if ( mode == "linear" ) {
4217 if ( idx[0] == -1 ) {
4218 // use after
4219 os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4220 int id = idx[1] ;
4221 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4222 sp = s->getSpectrum( id ) ;
4223 }
4224 else if ( idx[1] == -1 ) {
4225 // use before
4226 os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4227 int id = idx[0] ;
4228 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4229 sp = s->getSpectrum( id ) ;
4230 }
4231 else if ( idx[0] == idx[1] ) {
4232 // use before
4233 //os << "No need to interporate." << LogIO::POST ;
4234 int id = idx[0] ;
4235 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4236 sp = s->getSpectrum( id ) ;
4237 }
4238 else {
4239 // do interpolation
4240 //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4241 double t0 = getMJD( s->getTime( idx[0] ) ) ;
4242 double t1 = getMJD( s->getTime( idx[1] ) ) ;
4243 double tref = getMJD( reftime ) ;
4244 vector<float> sp0 = s->getSpectrum( idx[0] ) ;
4245 vector<float> sp1 = s->getSpectrum( idx[1] ) ;
4246 for ( unsigned int i = 0 ; i < sp0.size() ; i++ ) {
4247 float v = ( sp1[i] - sp0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + sp0[i] ;
4248 sp.push_back( v ) ;
4249 }
4250 }
4251 }
4252 else {
4253 os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4254 }
4255 return sp ;
4256 }
4257}
4258
4259double STMath::getMJD( string strtime )
4260{
4261 if ( strtime.find("/") == string::npos ) {
4262 // MJD time string
4263 return atof( strtime.c_str() ) ;
4264 }
4265 else {
4266 // string in YYYY/MM/DD/HH:MM:SS format
4267 uInt year = atoi( strtime.substr( 0, 4 ).c_str() ) ;
4268 uInt month = atoi( strtime.substr( 5, 2 ).c_str() ) ;
4269 uInt day = atoi( strtime.substr( 8, 2 ).c_str() ) ;
4270 uInt hour = atoi( strtime.substr( 11, 2 ).c_str() ) ;
4271 uInt minute = atoi( strtime.substr( 14, 2 ).c_str() ) ;
4272 uInt sec = atoi( strtime.substr( 17, 2 ).c_str() ) ;
4273 Time t( year, month, day, hour, minute, sec ) ;
4274 return t.modifiedJulianDay() ;
4275 }
4276}
4277
4278vector<int> STMath::getRowIdFromTime( string reftime, CountedPtr<Scantable> &s )
4279{
4280 double reft = getMJD( reftime ) ;
4281 double dtmin = 1.0e100 ;
4282 double dtmax = -1.0e100 ;
4283 vector<double> dt ;
4284 int just_before = -1 ;
4285 int just_after = -1 ;
4286 for ( int i = 0 ; i < s->nrow() ; i++ ) {
4287 dt.push_back( getMJD( s->getTime( i ) ) - reft ) ;
4288 }
4289 for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
4290 if ( dt[i] > 0.0 ) {
4291 // after reftime
4292 if ( dt[i] < dtmin ) {
4293 just_after = i ;
4294 dtmin = dt[i] ;
4295 }
4296 }
4297 else if ( dt[i] < 0.0 ) {
4298 // before reftime
4299 if ( dt[i] > dtmax ) {
4300 just_before = i ;
4301 dtmax = dt[i] ;
4302 }
4303 }
4304 else {
4305 // just a reftime
4306 just_before = i ;
4307 just_after = i ;
4308 dtmax = 0 ;
4309 dtmin = 0 ;
4310 break ;
4311 }
4312 }
4313
4314 vector<int> v ;
4315 v.push_back( just_before ) ;
4316 v.push_back( just_after ) ;
4317
4318 return v ;
4319}
4320
4321vector<float> STMath::getTcalFromTime( string reftime,
4322 CountedPtr<Scantable>& s,
4323 string mode )
4324{
4325 LogIO os( LogOrigin( "STMath", "getTcalFromTime", WHERE ) ) ;
4326 vector<float> tcal ;
4327 STTcal tcalTable = s->tcal() ;
4328 String time ;
4329 Vector<Float> tcalval ;
4330 if ( s->nrow() == 0 ) {
4331 os << LogIO::SEVERE << "No row in the input scantable. Return empty tcal." << LogIO::POST ;
4332 return tcal ;
4333 }
4334 else if ( s->nrow() == 1 ) {
4335 uInt tcalid = s->getTcalId( 0 ) ;
4336 //os << "use row " << 0 << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4337 tcalTable.getEntry( time, tcalval, tcalid ) ;
4338 tcalval.tovector( tcal ) ;
4339 return tcal ;
4340 }
4341 else {
4342 vector<int> idx = getRowIdFromTime( reftime, s ) ;
4343 if ( mode == "before" ) {
4344 int id = -1 ;
4345 if ( idx[0] != -1 ) {
4346 id = idx[0] ;
4347 }
4348 else if ( idx[1] != -1 ) {
4349 os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4350 id = idx[1] ;
4351 }
4352 uInt tcalid = s->getTcalId( id ) ;
4353 //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4354 tcalTable.getEntry( time, tcalval, tcalid ) ;
4355 tcalval.tovector( tcal ) ;
4356 }
4357 else if ( mode == "after" ) {
4358 int id = -1 ;
4359 if ( idx[1] != -1 ) {
4360 id = idx[1] ;
4361 }
4362 else if ( idx[0] != -1 ) {
4363 os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4364 id = idx[1] ;
4365 }
4366 uInt tcalid = s->getTcalId( id ) ;
4367 //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4368 tcalTable.getEntry( time, tcalval, tcalid ) ;
4369 tcalval.tovector( tcal ) ;
4370 }
4371 else if ( mode == "nearest" ) {
4372 int id = -1 ;
4373 if ( idx[0] == -1 ) {
4374 id = idx[1] ;
4375 }
4376 else if ( idx[1] == -1 ) {
4377 id = idx[0] ;
4378 }
4379 else if ( idx[0] == idx[1] ) {
4380 id = idx[0] ;
4381 }
4382 else {
4383 double t0 = getMJD( s->getTime( idx[0] ) ) ;
4384 double t1 = getMJD( s->getTime( idx[1] ) ) ;
4385 double tref = getMJD( reftime ) ;
4386 if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4387 id = idx[1] ;
4388 }
4389 else {
4390 id = idx[0] ;
4391 }
4392 }
4393 uInt tcalid = s->getTcalId( id ) ;
4394 //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4395 tcalTable.getEntry( time, tcalval, tcalid ) ;
4396 tcalval.tovector( tcal ) ;
4397 }
4398 else if ( mode == "linear" ) {
4399 if ( idx[0] == -1 ) {
4400 // use after
4401 os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4402 int id = idx[1] ;
4403 uInt tcalid = s->getTcalId( id ) ;
4404 //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4405 tcalTable.getEntry( time, tcalval, tcalid ) ;
4406 tcalval.tovector( tcal ) ;
4407 }
4408 else if ( idx[1] == -1 ) {
4409 // use before
4410 os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4411 int id = idx[0] ;
4412 uInt tcalid = s->getTcalId( id ) ;
4413 //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4414 tcalTable.getEntry( time, tcalval, tcalid ) ;
4415 tcalval.tovector( tcal ) ;
4416 }
4417 else if ( idx[0] == idx[1] ) {
4418 // use before
4419 //os << "No need to interporate." << LogIO::POST ;
4420 int id = idx[0] ;
4421 uInt tcalid = s->getTcalId( id ) ;
4422 //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4423 tcalTable.getEntry( time, tcalval, tcalid ) ;
4424 tcalval.tovector( tcal ) ;
4425 }
4426 else {
4427 // do interpolation
4428 //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4429 double t0 = getMJD( s->getTime( idx[0] ) ) ;
4430 double t1 = getMJD( s->getTime( idx[1] ) ) ;
4431 double tref = getMJD( reftime ) ;
4432 vector<float> tcal0 ;
4433 vector<float> tcal1 ;
4434 uInt tcalid0 = s->getTcalId( idx[0] ) ;
4435 uInt tcalid1 = s->getTcalId( idx[1] ) ;
4436 tcalTable.getEntry( time, tcalval, tcalid0 ) ;
4437 tcalval.tovector( tcal0 ) ;
4438 tcalTable.getEntry( time, tcalval, tcalid1 ) ;
4439 tcalval.tovector( tcal1 ) ;
4440 for ( unsigned int i = 0 ; i < tcal0.size() ; i++ ) {
4441 float v = ( tcal1[i] - tcal0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tcal0[i] ;
4442 tcal.push_back( v ) ;
4443 }
4444 }
4445 }
4446 else {
4447 os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4448 }
4449 return tcal ;
4450 }
4451}
4452
4453vector<float> STMath::getTsysFromTime( string reftime,
4454 CountedPtr<Scantable>& s,
4455 string mode )
4456{
4457 LogIO os( LogOrigin( "STMath", "getTsysFromTime", WHERE ) ) ;
4458 ArrayColumn<Float> tsysCol ;
4459 tsysCol.attach( s->table(), "TSYS" ) ;
4460 vector<float> tsys ;
4461 String time ;
4462 Vector<Float> tsysval ;
4463 if ( s->nrow() == 0 ) {
4464 os << LogIO::SEVERE << "No row in the input scantable. Return empty tsys." << LogIO::POST ;
4465 return tsys ;
4466 }
4467 else if ( s->nrow() == 1 ) {
4468 //os << "use row " << 0 << LogIO::POST ;
4469 tsysval = tsysCol( 0 ) ;
4470 tsysval.tovector( tsys ) ;
4471 return tsys ;
4472 }
4473 else {
4474 vector<int> idx = getRowIdFromTime( reftime, s ) ;
4475 if ( mode == "before" ) {
4476 int id = -1 ;
4477 if ( idx[0] != -1 ) {
4478 id = idx[0] ;
4479 }
4480 else if ( idx[1] != -1 ) {
4481 os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4482 id = idx[1] ;
4483 }
4484 //os << "use row " << id << LogIO::POST ;
4485 tsysval = tsysCol( id ) ;
4486 tsysval.tovector( tsys ) ;
4487 }
4488 else if ( mode == "after" ) {
4489 int id = -1 ;
4490 if ( idx[1] != -1 ) {
4491 id = idx[1] ;
4492 }
4493 else if ( idx[0] != -1 ) {
4494 os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4495 id = idx[1] ;
4496 }
4497 //os << "use row " << id << LogIO::POST ;
4498 tsysval = tsysCol( id ) ;
4499 tsysval.tovector( tsys ) ;
4500 }
4501 else if ( mode == "nearest" ) {
4502 int id = -1 ;
4503 if ( idx[0] == -1 ) {
4504 id = idx[1] ;
4505 }
4506 else if ( idx[1] == -1 ) {
4507 id = idx[0] ;
4508 }
4509 else if ( idx[0] == idx[1] ) {
4510 id = idx[0] ;
4511 }
4512 else {
4513 double t0 = getMJD( s->getTime( idx[0] ) ) ;
4514 double t1 = getMJD( s->getTime( idx[1] ) ) ;
4515 double tref = getMJD( reftime ) ;
4516 if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4517 id = idx[1] ;
4518 }
4519 else {
4520 id = idx[0] ;
4521 }
4522 }
4523 //os << "use row " << id << LogIO::POST ;
4524 tsysval = tsysCol( id ) ;
4525 tsysval.tovector( tsys ) ;
4526 }
4527 else if ( mode == "linear" ) {
4528 if ( idx[0] == -1 ) {
4529 // use after
4530 os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4531 int id = idx[1] ;
4532 //os << "use row " << id << LogIO::POST ;
4533 tsysval = tsysCol( id ) ;
4534 tsysval.tovector( tsys ) ;
4535 }
4536 else if ( idx[1] == -1 ) {
4537 // use before
4538 os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4539 int id = idx[0] ;
4540 //os << "use row " << id << LogIO::POST ;
4541 tsysval = tsysCol( id ) ;
4542 tsysval.tovector( tsys ) ;
4543 }
4544 else if ( idx[0] == idx[1] ) {
4545 // use before
4546 //os << "No need to interporate." << LogIO::POST ;
4547 int id = idx[0] ;
4548 //os << "use row " << id << LogIO::POST ;
4549 tsysval = tsysCol( id ) ;
4550 tsysval.tovector( tsys ) ;
4551 }
4552 else {
4553 // do interpolation
4554 //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4555 double t0 = getMJD( s->getTime( idx[0] ) ) ;
4556 double t1 = getMJD( s->getTime( idx[1] ) ) ;
4557 double tref = getMJD( reftime ) ;
4558 vector<float> tsys0 ;
4559 vector<float> tsys1 ;
4560 tsysval = tsysCol( idx[0] ) ;
4561 tsysval.tovector( tsys0 ) ;
4562 tsysval = tsysCol( idx[1] ) ;
4563 tsysval.tovector( tsys1 ) ;
4564 for ( unsigned int i = 0 ; i < tsys0.size() ; i++ ) {
4565 float v = ( tsys1[i] - tsys0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tsys0[i] ;
4566 tsys.push_back( v ) ;
4567 }
4568 }
4569 }
4570 else {
4571 os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4572 }
4573 return tsys ;
4574 }
4575}
4576
4577vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
4578 CountedPtr<Scantable>& off,
4579 CountedPtr<Scantable>& sky,
4580 CountedPtr<Scantable>& hot,
4581 CountedPtr<Scantable>& cold,
4582 int index,
4583 string antname )
4584{
4585 string reftime = on->getTime( index ) ;
4586 vector<int> ii( 1, on->getIF( index ) ) ;
4587 vector<int> ib( 1, on->getBeam( index ) ) ;
4588 vector<int> ip( 1, on->getPol( index ) ) ;
4589 vector<int> ic( 1, on->getScan( index ) ) ;
4590 STSelector sel = STSelector() ;
4591 sel.setIFs( ii ) ;
4592 sel.setBeams( ib ) ;
4593 sel.setPolarizations( ip ) ;
4594 sky->setSelection( sel ) ;
4595 hot->setSelection( sel ) ;
4596 //cold->setSelection( sel ) ;
4597 off->setSelection( sel ) ;
4598 vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
4599 vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
4600 //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
4601 vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
4602 vector<float> spec = on->getSpectrum( index ) ;
4603 vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4604 vector<float> sp( tcal.size() ) ;
4605 if ( antname.find( "APEX" ) != string::npos ) {
4606 // using gain array
4607 for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4608 float v = ( ( spec[j] - spoff[j] ) / spoff[j] )
4609 * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
4610 sp[j] = v ;
4611 }
4612 }
4613 else {
4614 // Chopper-Wheel calibration (Ulich & Haas 1976)
4615 for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4616 float v = ( spec[j] - spoff[j] ) / ( sphot[j] - spsky[j] ) * tcal[j] ;
4617 sp[j] = v ;
4618 }
4619 }
4620 sel.reset() ;
4621 sky->unsetSelection() ;
4622 hot->unsetSelection() ;
4623 //cold->unsetSelection() ;
4624 off->unsetSelection() ;
4625
4626 return sp ;
4627}
4628
4629vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
4630 CountedPtr<Scantable>& off,
4631 int index )
4632{
4633 string reftime = on->getTime( index ) ;
4634 vector<int> ii( 1, on->getIF( index ) ) ;
4635 vector<int> ib( 1, on->getBeam( index ) ) ;
4636 vector<int> ip( 1, on->getPol( index ) ) ;
4637 vector<int> ic( 1, on->getScan( index ) ) ;
4638 STSelector sel = STSelector() ;
4639 sel.setIFs( ii ) ;
4640 sel.setBeams( ib ) ;
4641 sel.setPolarizations( ip ) ;
4642 off->setSelection( sel ) ;
4643 vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
4644 vector<float> spec = on->getSpectrum( index ) ;
4645 //vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4646 //vector<float> tsys = on->getTsysVec( index ) ;
4647 ArrayColumn<Float> tsysCol( on->table(), "TSYS" ) ;
4648 Vector<Float> tsys = tsysCol( index ) ;
4649 vector<float> sp( spec.size() ) ;
4650 // ALMA Calibration
4651 //
4652 // Ta* = Tsys * ( ON - OFF ) / OFF
4653 //
4654 // 2010/01/07 Takeshi Nakazato
4655 unsigned int tsyssize = tsys.nelements() ;
4656 unsigned int spsize = sp.size() ;
4657 for ( unsigned int j = 0 ; j < sp.size() ; j++ ) {
4658 float tscale = 0.0 ;
4659 if ( tsyssize == spsize )
4660 tscale = tsys[j] ;
4661 else
4662 tscale = tsys[0] ;
4663 float v = tscale * ( spec[j] - spoff[j] ) / spoff[j] ;
4664 sp[j] = v ;
4665 }
4666 sel.reset() ;
4667 off->unsetSelection() ;
4668
4669 return sp ;
4670}
4671
4672vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
4673 CountedPtr<Scantable>& ref,
4674 CountedPtr<Scantable>& sky,
4675 CountedPtr<Scantable>& hot,
4676 CountedPtr<Scantable>& cold,
4677 int index )
4678{
4679 string reftime = sig->getTime( index ) ;
4680 vector<int> ii( 1, sig->getIF( index ) ) ;
4681 vector<int> ib( 1, sig->getBeam( index ) ) ;
4682 vector<int> ip( 1, sig->getPol( index ) ) ;
4683 vector<int> ic( 1, sig->getScan( index ) ) ;
4684 STSelector sel = STSelector() ;
4685 sel.setIFs( ii ) ;
4686 sel.setBeams( ib ) ;
4687 sel.setPolarizations( ip ) ;
4688 sky->setSelection( sel ) ;
4689 hot->setSelection( sel ) ;
4690 //cold->setSelection( sel ) ;
4691 vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
4692 vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
4693 //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
4694 vector<float> spref = ref->getSpectrum( index ) ;
4695 vector<float> spsig = sig->getSpectrum( index ) ;
4696 vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4697 vector<float> sp( tcal.size() ) ;
4698 for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4699 float v = tcal[j] * spsky[j] / ( sphot[j] - spsky[j] ) * ( spsig[j] - spref[j] ) / spref[j] ;
4700 sp[j] = v ;
4701 }
4702 sel.reset() ;
4703 sky->unsetSelection() ;
4704 hot->unsetSelection() ;
4705 //cold->unsetSelection() ;
4706
4707 return sp ;
4708}
4709
4710vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
4711 CountedPtr<Scantable>& ref,
4712 vector< CountedPtr<Scantable> >& sky,
4713 vector< CountedPtr<Scantable> >& hot,
4714 vector< CountedPtr<Scantable> >& cold,
4715 int index )
4716{
4717 string reftime = sig->getTime( index ) ;
4718 vector<int> ii( 1, sig->getIF( index ) ) ;
4719 vector<int> ib( 1, sig->getBeam( index ) ) ;
4720 vector<int> ip( 1, sig->getPol( index ) ) ;
4721 vector<int> ic( 1, sig->getScan( index ) ) ;
4722 STSelector sel = STSelector() ;
4723 sel.setIFs( ii ) ;
4724 sel.setBeams( ib ) ;
4725 sel.setPolarizations( ip ) ;
4726 sky[0]->setSelection( sel ) ;
4727 hot[0]->setSelection( sel ) ;
4728 //cold[0]->setSelection( sel ) ;
4729 vector<float> spskys = getSpectrumFromTime( reftime, sky[0], "linear" ) ;
4730 vector<float> sphots = getSpectrumFromTime( reftime, hot[0], "linear" ) ;
4731 //vector<float> spcolds = getSpectrumFromTime( reftime, cold[0], "linear" ) ;
4732 vector<float> tcals = getTcalFromTime( reftime, sky[0], "linear" ) ;
4733 sel.reset() ;
4734 ii[0] = ref->getIF( index ) ;
4735 sel.setIFs( ii ) ;
4736 sel.setBeams( ib ) ;
4737 sel.setPolarizations( ip ) ;
4738 sky[1]->setSelection( sel ) ;
4739 hot[1]->setSelection( sel ) ;
4740 //cold[1]->setSelection( sel ) ;
4741 vector<float> spskyr = getSpectrumFromTime( reftime, sky[1], "linear" ) ;
4742 vector<float> sphotr = getSpectrumFromTime( reftime, hot[1], "linear" ) ;
4743 //vector<float> spcoldr = getSpectrumFromTime( reftime, cold[1], "linear" ) ;
4744 vector<float> tcalr = getTcalFromTime( reftime, sky[1], "linear" ) ;
4745 vector<float> spref = ref->getSpectrum( index ) ;
4746 vector<float> spsig = sig->getSpectrum( index ) ;
4747 vector<float> sp( tcals.size() ) ;
4748 for ( unsigned int j = 0 ; j < tcals.size() ; j++ ) {
4749 float v = tcals[j] * spsig[j] / ( sphots[j] - spskys[j] ) - tcalr[j] * spref[j] / ( sphotr[j] - spskyr[j] ) ;
4750 sp[j] = v ;
4751 }
4752 sel.reset() ;
4753 sky[0]->unsetSelection() ;
4754 hot[0]->unsetSelection() ;
4755 //cold[0]->unsetSelection() ;
4756 sky[1]->unsetSelection() ;
4757 hot[1]->unsetSelection() ;
4758 //cold[1]->unsetSelection() ;
4759
4760 return sp ;
4761}
Note: See TracBrowser for help on using the repository browser.