
Implementation of VO queries

Matthew Whiting

Contents

1 Summary 1

2 Expected queries 2

3 The mySQL database 3
3.1 Problems . 3

4 Existing data: The “observations” table 4
4.1 Missing and incomplete data . 4
4.2 Positional information . 4

5 The new data: 70cm Survey 6
5.1 Location of data . 6
5.2 Incorporating the data into the database . 6

6 VO conesearch queries 7
6.1 How it can be done in SQL code . 7
6.2 Producing a VOTable . 7
6.3 Provision of data – what’s in the VOTable? . 7
6.4 Registering the VO cone search service . 7

7 The web query form 8
7.1 Structure . 8
7.2 Authentication . 8

A The “observations” table setup 9

B Proposed “S70” table setup 11

1 Summary

This document summarises how the VO-compliant query form is to be set up, what queries we expect,
and what modifications need to be made from where the archive is at present (June 2007). This will be
continually updated as this part of the project progresses.

October 11, 2007 1

2 Expected queries

Here is a list of expected queries that the archive should be able to deal with, along with comments on each:

• All observations of a given pulsar.
This is essentially how the archive works at the moment.

• All observations of a given sky position, within a search radius – this is essentially a conesearch.
This also exists on the archive at the moment, but doesn’t seem to work. An example: a search for
J0835-4510 returns a large number of files, but a search at its RA & Dec gives nothing (i.e. “No
pulsars found within (08:35:20.700, -45:10:35.700) with radius 2”).

• Accept standard conesearch queries from a VO service.
Not possible at present.

• All observations within given time range, perhaps combined with above.
A time-range is catered for at present – and it seems to work fine.

• Be able to refine queries based on pulsar parameters.
i.e. search for all pulsars with period in a given range, or with DM greater than some value... This is
not catered for at present.

This is mostly a wish-list. The current project (as at June 2007) will involve enabling conesearches to be
made on survey data, as well as the queries that are currently possible with the on-line archive. Conesearches
on timing data, particularly with concurrent searches on pulsar parameters is probably beyond the scope of
what we can do.

October 11, 2007 2

3 The mySQL database

We note here some important points for the mySQL database. It is based on herschel, with two accounts:
pulsar and psrdba – the latter is the administrative account and should be used for adding/modifying
tables and so on. The first allows searching of tables and other similar queries only.

The full set of php, sql and related files that Albert has compiled reside on the machine herschel, in
herschel:/var/www/vhosts/pulsararchive.atnf.csiro.au/htdocs and sub-directories. This includes
the perl script perl/find archives.pl, which does the trawling of the disks to pick up new data files.

3.1 Problems

• When you are on herschel, you cannot see the /psr disk, which means all the psr programs are
unavailable. Is there any reason for this? It is particularly a problem with the position-related query
on the web archive, as this uses vap to search for pulsars around a given position.

• The version of mySQL could probably do with an update. It is only 4.0, and it would be great to
have 5.0 or similar so that we could create functions easily – I’m thinking functions like an angular
separation calculator, as this would make the cone-search queries much easier to write.

October 11, 2007 3

4 Existing data: The “observations” table

The list of the columns in the existing observations mySQL table is given in the table in Appendix A.
There is a second table, observations2 that has different data in it – it is not clear exactly what this data
is or where it comes from (there is no reference to it in any of the files in the htdocs directory on herschel.
Its setup (which is slightly different to observations) is also shown in Appendix A.

4.1 Missing and incomplete data

There are several columns that have no information – that is, every row in the table is NULL. They are:
date, ut, gl, gb, tsamp, nbeam.

4.2 Positional information

Note that the sky positions for the files in the observations table are broken up into hours/degrees,
minutes and seconds columns. This presents a problem, as the declination information does not properly
record positions like -00:01:23. This is because you cannot distinguish between −0 and +0 in the decj degree
entry.

The positions should either be stored as decimal degrees (best option), or, if the hours/degrees, minutes
and seconds must be stored separately, also have a decj sign column that indicates the sign of the declination
(equal to +1 or −1). The positions could also be stored as a string (i.e. “18:23:45.3”), although a numerical
value will also be needed for angular separation calculations.

An example of how we can create new columns to store the decimal degree values is the following bit of
SQL code:

SELECT pulsar_name,filename,data_type,decj_degree,decj_minute,decj_second,
(raj_hour+raj_minute/60.+raj_second/3600.)*15 as raj,
CASE WHEN pulsar_name LIKE "%-%"

THEN -1.*(abs(decj_degree)+decj_minute/60.+decj_second/3600.)
ELSE abs(decj_degree)+decj_minute/60.+decj_second/3600.
END as decj

FROM observations
WHERE abs(decj_degree)<1

AND (decj_minute>0 or decj_second>0)
ORDER BY pulsar_name;

Currently the positions are stored incorrectly even in the ATNF Pulsar Database1. A search “within
circular boundary” with radius of 1 degree from 16:07:00, -00:30:00 does not return J1607−0032, which
appears to be 1.05 degrees away. This is because the DECJ is returned as +00:32:40.83 (i.e. the sign of the
declination is not preserved). This seems to be a wider problem, originating with the psrcat program.

A new table can be created very simply that has two new columns with the decimal values of RA and
DEC in it. We can also put values:

-- version of mysql is <4.1 so cannot use CREATE ... LIKE ...
CREATE TEMPORARY TABLE newobs
SELECT *,

(raj_hour+raj_minute/60.+raj_second/3600.)*15 as raj,
CASE WHEN pulsar_name LIKE "%-%"

THEN -1.*(abs(decj_degree)+decj_minute/60.+decj_second/3600.)
WHEN (decj_degree<0.)

THEN -1.*(abs(decj_degree)+decj_minute/60.+decj_second/3600.)
ELSE abs(decj_degree)+decj_minute/60.+decj_second/3600.

END AS decj
FROM observations;

Note the two clauses that set the declination to be negative. The first is designed to deal with sources that
have −1◦ < δ < 0◦, and looks at the name to see if it has a minus sign. The second clause deals with sources

1See http://www.atnf.csiro.au/research/pulsar/psrcat/

October 11, 2007 4

that don’t have an “IAU-format” name (such as “CAL”). This will only catch them if they have δ < −1◦,
but fortunately all the sources with −1◦ < δ < 0◦ are suitably named to be caught by the first clause.

The only remaining problem sources as far as positions go are those with no positional information in
the table. There are 246 rows that satisfy this criterion – how are we going to deal with these? If they have
a pulsar name, then we can access the positions somehow and manually put them in. However that may be
a somewhat labourious process...

While adding in the decimal RA & Dec, we could also add in the proper values for the galactic coordinates.
These have not been put in the database for most/all(?) of the existing data, and so we could do it all at
once. The code is shown in sql/create new obs table.sql: it first creates a temp copy of observations,
with RA and DEC but without GL and GB. It then creates a new table with the following code, calculating
the values of GL and GB:

SET @ngpra=192.859508, @ngpdec=27.128336, @ascnode=32.932; -- base coords for galactic coord transformation.

CREATE TEMPORARY TABLE newobs
SELECT *,

case when degrees(atan2((sin(radians(decjd))*cos(radians(@ngpdec)) - cos(radians(decjd))*sin(radians(@ngpdec))*cos(radians(rajd-@ngpra))) , (cos(radians(decjd))*sin(radians(rajd-@ngpra))))) + @ascnode > 0
then degrees(atan2((sin(radians(decjd))*cos(radians(@ngpdec)) - cos(radians(decjd))*sin(radians(@ngpdec))*cos(radians(rajd-@ngpra))) , (cos(radians(decjd))*sin(radians(rajd-@ngpra))))) + @ascnode
else degrees(atan2((sin(radians(decjd))*cos(radians(@ngpdec)) - cos(radians(decjd))*sin(radians(@ngpdec))*cos(radians(rajd-@ngpra))) , (cos(radians(decjd))*sin(radians(rajd-@ngpra))))) + @ascnode + 360. end as gl,

(degrees(asin(cos(radians(decjd))*cos(radians(@ngpdec))*cos(radians(rajd-@ngpra)) + sin(radians(decjd))*sin(radians(@ngpdec))))) as gb
FROM temptab;

October 11, 2007 5

5 The new data: 70cm Survey

5.1 Location of data

The data is going to be stored in the $S70V directory, once it is converted to PSRFITS format from the
PKS format files in $S70TAPES. There is some data there now, most of which is not up to date with all
the metadata (it was converted earlier in the year, with older versions of the pvoconvert code and the
PSRFITS definition file), and some that I have converted in the past week.

5.2 Incorporating the data into the database

It is relatively straightforward to load the data into the database, either directly using SQL commands or via
the PHP interface. Here’s an example of how it may be done (taken from $PVO/sql/create table s70.sql):

-- create the table with the following fields
CREATE TEMPORARY TABLE s70 (
file_id SMALLINT UNSIGNED AUTO_INCREMENT,
filename VARCHAR(30),
fileloc VARCHAR(100),
hdrver VARCHAR(10),
survey VARCHAR(10),
src_name VARCHAR(20),

telescope VARCHAR(16),
data_type VARCHAR(16),

raj VARCHAR(15),
decj VARCHAR(15),
rajd DOUBLE,
decjd DOUBLE,
gl DECIMAL(9,4),
gb DECIMAL(9,4),
bmaj FLOAT,
bmin FLOAT,
bpa FLOAT,
date_obs VARCHAR(30),
mjd DOUBLE,
obsfreq DOUBLE,
chanbw DOUBLE,
nchan INT,
scanlen DOUBLE,
tsamp DOUBLE,

nbits INT,
PRIMARY KEY (file_id)
);

-- now load the data from the file in my PulsarVO directory.
-- It is a csv file, and the strings in it are enclosed by ".
-- We don’t want the quote marks in the table, so the
-- "OPTIONALLY ENCLOSED BY" statement will remove them.
LOAD DATA LOCAL
INFILE "/DATA/SITAR_1/whi550/VO/PulsarVO/s70v_summary.csv"
INTO TABLE s70
FIELDS TERMINATED BY ","
OPTIONALLY ENCLOSED BY "\""
IGNORE 1 LINES -- ignore the first line in the csv file (contains the headers)
(filename,fileloc,hdrver,survey,src_name,raj,decj,rajd,decjd,gl,gb,
bmaj,bmin,bpa,date_obs,mjd,obsfreq,chanbw,nchan,scanlen,tsamp,nbits);

The exact columns are still to be fully determined, but the SQL makeup will be as given in Appendix B.

October 11, 2007 6

6 VO conesearch queries

6.1 How it can be done in SQL code

Here is an example of how you can query the database, once the 70cm data is in there, by searching for
angular separation:

-- Performing a conesearch around the position
-- RA=0.=00:00:00 and DEC=-43.=-43:00:00 for the S70 data.
-- This should pick up three files from the new batch added on June 26.
-- The old query of RA=0 and DEC=-49 should pick up four files.
SET @qra=0., @qdec=-49.;
SELECT filename, raj, decj, 0.5*(bmaj+bmin) AS beamsize, obsfreq, scanlen,

(degrees(acos(cos(radians(rajd-@qra))*
cos(radians(decjd))*cos(radians(@qdec))
+sin(radians(decjd))*sin(radians(@qdec))))) AS angsep

FROM s70
WHERE (degrees(acos(cos(radians(rajd-@qra))*

cos(radians(decjd))*cos(radians(@qdec))
+sin(radians(decjd))*sin(radians(@qdec))))

- 0.25*(bmaj+bmin)) < 1.
ORDER BY angsep;

6.2 Producing a VOTable

The above SQL structure can be readily incorporated into a .php file and used to query the database via a
dynamic webpage. This .php file can also produce an XML file rather than the usual HTML format. The
way to do this is to have the following expression at the start of the php file:

header("Content-type: text/xml");

to make sure the resulting file is read as XML.
From there, it is straightforward to put in the necessary VOTable fields and fill in the data that results

from the query. This is done in the file conequery-vo.php.

6.3 Provision of data – what’s in the VOTable?

The VOTable that we provide is simply a table of metadata. By default all metadata that is in the SQL
table is provided, with the exception of the file’s disk location. We do provide the filename, but that is all –
there is no mechanism to directly obtain the data from the cone-search query.

The reasoning here is that a user might first do a VO cone-search, and then, if a result of interest came
up, they would then go to the web archive and repeat the search. The web archive’s results page would then
provide means for downloading the data, in much the same way as it is set up at present (thanks to Albert).

6.4 Registering the VO cone search service

For the conesearch service to be widely accessible, it should be registered with a VO registry. There are a
number of such registries, which typically have forms that allow registration of new services. Two sites that
provide links to registries are:

1. NVO at http://www.us-vo.org/pubs/files/PublishHowTo.html, linking to three different NVO reg-
istries.

2. Euro-VO, at http://www.euro-vo.org/pub/tc/registries.html, which also links to three different reg-
istries.

It is unclear whether all these registries are linked together, in such a way that registering at one provides
access through all. This is the aim of VO registries, but it is not apparent whether this is reality yet. This
needs to be sorted out.

The process of registering a service involves providing the registry with metadata about the service. The
full list of Resource Metadata can be found in the IVOA document “Resource Metadata for the Virtual
Observatory”, at http://www.ivoa.net/Documents/latest/RM.html.

October 11, 2007 7

http://www.us-vo.org/pubs/files/PublishHowTo.html
http://www.euro-vo.org/pub/tc/registries.html
http://www.ivoa.net/Documents/latest/RM.html

7 The web query form

7.1 Structure

This section will layout the rough format of the query form that acts as the front-end to the archive. The
following options should exist:

• Position query. RA & Dec should be the default. May be useful to offer the possibility of a query in
Galactic coordinates. Will need to be able to switch between these.

Also need a search radius box. Default units in arcmin? degrees? Allow this to be selectable?

• Pulsar name. This should accept a pulsar name, be able to deal with a leading letter (e.g. J1234−5678
and 1234−5678 should act the same). This functionality exists, although check that it uses SQL
directly and not vap or similar.

• Time of observation. This should be a range, default values being the range of observation dates in
the database (although maybe make final date today’s date?).

It may be good to make this field selectable as well, so that one can query with MJD rather than date.

• Refinement of returned parameters. Since there are different tables with different fields, the way to
deal with this might be to make a master list of fields to select from. The queries can then only refer
to the relevant ones for their table and set the others to NULL or similar (can we use something like
left outer join?).

Perhaps a format similar to that used by Vizier2, where it provides a default list of parameters but
allows selection of more and querying on them as well.

The way it is currently set up does not allow querying on these parameters. This is beyond the scope
of the current project, although may be worthwhile implementing in the future. Something similar
is enabled with the pulsar database (i.e. querying on pulsar parameters such as period, DM, period-
derivative), although there is no data access involved. The difference here is that one would be able to
query on the parameters related to the observations (such as tsamp, nchan).

• The existing webpage has the possibility of restricting the query by specifying what type of data to
look for (CPSR2, DFB, WBC). This should be extended to include FB 1BIT (as for the 70cm data)
and MFB (for multibeam-filterbank – uncertain exactly what to call this at this stage). These need to
be included in the database ingest, and be extracted from the database in making the query page.

The selection of data type could allow more than one selection – this will change how the selection is
done in the sql query.

7.2 Authentication

Currently, the authentication of users is done via a users table in the mySQL database. A better way would
be to do something similar to that used by ATOA3 This accesses the OPAL database to authenticate users,
and also allows proprietary access to data. This is achieved by associating a Project ID with each file, and
having a list of accredited observers associated with each Project ID. If the user is in the list of observers
for the ID listed with the file in question, the user is allowed to access the file. Otherwise, the file is marked
as unavailable.

The way the OPAL database is accessed can be hidden from the main archive web page, and be wrapped
up in a single php function call. This part should be straightforward.

The determination of proprietary access will require a bit of work, as the Project ID is currently not
stored in the mySQL database. This will need to be incorporated and stored as part of the upkeep of the
database.

2http://vizier.u-strasbg.fr/cgi-bin/VizieR – see an example catalogue at http://vizier.u-strasbg.fr/viz-bin/VizieR?-
source=VIII/34 (select “catalog”).

3Australia Telescope Online Archive, http://atoa.atnf.csiro.au.

October 11, 2007 8

http://vizier.u-strasbg.fr/cgi-bin/VizieR
http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=VIII/34
http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=VIII/34
http://atoa.atnf.csiro.au

A The “observations” table setup

Field Type Null Key Default Extra
pulsar name varchar(16)
filename varchar(32) PRI
raj hour int(2) YES 0
raj minute int(2) YES 0
raj second decimal(12,10) YES 0.0000000000
decj degree int(2) YES 0
decj minute int(2) YES 0
decj second decimal(12,10) YES 0.0000000000
dm decimal(16,10) YES NULL
period decimal(32,24) YES NULL
bw decimal(16,6) YES NULL
cnfg varchar(128) YES NULL
data loc varchar(128) PRI
data type varchar(16) YES NULL
freq decimal(32,16) YES NULL
inst varchar(32) YES NULL
MJD decimal(32,26) YES NULL
npol int(6) YES NULL
nchan int(6) YES NULL
nbin int(6) YES NULL
nsub int(6) YES NULL
rcvr varchar(16) YES NULL
site varchar(8) YES NULL
file size bytes int(32) YES NULL
length decimal(32,20) YES NULL
obsrvr varchar(32) YES NULL
date varchar(16) YES NULL
ut varchar(16) YES NULL
gl float YES NULL
gb float YES NULL
tsamp float YES NULL
nbeam tinyint(3) unsigned YES NULL

Table 1: Fields for the observations table in the mySQL database, as it stands at present.

October 11, 2007 9

Field Type Null Key Default Extra
pulsar name varchar(16)
filename varchar(32)
raj hour int(2) YES 0
raj minute int(2) YES 0
raj second decimal(12,10) YES 0.0000000000
decj degree int(2) YES 0
decj minute int(2) YES 0
decj second decimal(12,10) YES 0.0000000000
dm decimal(16,10) YES NULL
period decimal(32,24) YES NULL
bw decimal(16,6) YES NULL
cal file loc varchar(128) YES NULL
cnfg varchar(128) YES NULL
data loc varchar(128)
data type varchar(16) YES NULL
freq decimal(32,16) YES NULL
inst varchar(32) YES NULL
MJD decimal(32,26) YES NULL
npol int(6) YES NULL
nchan int(6) YES NULL
nbin int(6) YES NULL
nsub int(6) YES NULL
processing options varchar(255) YES NULL
is calibrated tinyint(1) YES 0
rcvr varchar(16) YES NULL
site varchar(8) YES NULL
file size bytes int(32) YES NULL
length decimal(32,20) YES NULL
obsrvr varchar(32) YES NULL

Table 2: Fields for the observations2 table in the mySQL database.

October 11, 2007 10

B Proposed “S70” table setup

Field Type Null Key Default Extra
file id smallint(5) unsigned PRI NULL auto increment
filename varchar(30) YES NULL
fileloc varchar(100) YES NULL
hdrver varchar(10) YES NULL
survey varchar(10) YES NULL
src name varchar(20) YES NULL
telescope varchar(16) YES NULL
data type varchar(16) YES NULL
raj varchar(15) YES NULL
decj varchar(15) YES NULL
rajd double YES NULL
decjd double YES NULL
gl decimal(9,4) YES NULL
gb decimal(9,4) YES NULL
bmaj float YES NULL
bmin float YES NULL
bpa float YES NULL
date obs varchar(30) YES NULL
mjd double YES NULL
obsfreq double YES NULL
chanbw double YES NULL
nchan int YES NULL
scanlen double YES NULL
tsamp double YES NULL
nbits int YES NULL

Table 3: Fields for the proposed 70cm data table in the mySQL database.

October 11, 2007 11

	Summary
	Expected queries
	The mySQL database
	Problems

	Existing data: The ``observations'' table
	Missing and incomplete data
	Positional information

	The new data: 70cm Survey
	Location of data
	Incorporating the data into the database

	VO conesearch queries
	How it can be done in SQL code
	Producing a VOTable
	Provision of data -- what's in the VOTable?
	Registering the VO cone search service

	The web query form
	Structure
	Authentication

	The ``observations'' table setup
	Proposed ``S70'' table setup

