source: trunk/src/Detection/detection.cc @ 1130

Last change on this file since 1130 was 1130, checked in by MatthewWhiting, 11 years ago

Ticket #132 - allowing fitting of an ellipse to the moment-0 map of a detection. Also allowing it to be written to annotation files and to the moment-0 cutout in the spectral output.

File size: 39.4 KB
RevLine 
[300]1// -----------------------------------------------------------------------
2// detection.cc : Member functions for the Detection class.
3// -----------------------------------------------------------------------
4// Copyright (C) 2006, Matthew Whiting, ATNF
5//
6// This program is free software; you can redistribute it and/or modify it
7// under the terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 2 of the License, or (at your
9// option) any later version.
10//
11// Duchamp is distributed in the hope that it will be useful, but WITHOUT
12// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14// for more details.
15//
16// You should have received a copy of the GNU General Public License
17// along with Duchamp; if not, write to the Free Software Foundation,
18// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
19//
20// Correspondence concerning Duchamp may be directed to:
21//    Internet email: Matthew.Whiting [at] atnf.csiro.au
22//    Postal address: Dr. Matthew Whiting
23//                    Australia Telescope National Facility, CSIRO
24//                    PO Box 76
25//                    Epping NSW 1710
26//                    AUSTRALIA
27// -----------------------------------------------------------------------
[3]28#include <iostream>
29#include <iomanip>
30#include <vector>
[863]31#include <map>
[3]32#include <string>
[394]33#include <wcslib/wcs.h>
[69]34#include <math.h>
[393]35#include <duchamp/duchamp.hh>
36#include <duchamp/param.hh>
37#include <duchamp/fitsHeader.hh>
38#include <duchamp/Utils/utils.hh>
39#include <duchamp/PixelMap/Voxel.hh>
40#include <duchamp/PixelMap/Object3D.hh>
41#include <duchamp/Detection/detection.hh>
[463]42#include <duchamp/Cubes/cubeUtils.hh>
[1061]43#include <duchamp/Outputs/columns.hh>
[3]44
[258]45using namespace PixelInfo;
46
[378]47namespace duchamp
[365]48{
49
[570]50  void Detection::defaultDetection()
[378]51  {
[570]52    this->xSubOffset = 0;
53    this->ySubOffset = 0;
54    this->zSubOffset = 0;
[681]55    this->haveParams = false;
[570]56    this->totalFlux = 0.;
57    this->peakFlux = 0.;
58    this->intFlux = 0.;
59    this->xpeak = 0;
60    this->ypeak = 0;
61    this->zpeak = 0;
62    this->peakSNR = 0.;
63    this->xCentroid = 0.;
64    this->yCentroid = 0.;
65    this->zCentroid = 0.;
66    this->centreType="centroid";
[378]67    this->negSource = false;
68    this->flagText="";
[468]69    this->id = -1;
[570]70    this->name = "";
71    this->flagWCS=false;
72    this->specOK = true;
73    this->raS = "";
74    this->decS = "";
75    this->ra = 0.;
76    this->dec = 0.;
77    this->raWidth = 0.;
78    this->decWidth = 0.;
79    this->majorAxis = 0.;
80    this->minorAxis = 0.;
81    this->posang = 0.;
82    this->specUnits = "";
[947]83    this->specType = "";
[570]84    this->fluxUnits = "";
85    this->intFluxUnits = "";
86    this->lngtype = "RA";
87    this->lattype = "DEC";
88    this->vel = 0.;
89    this->velWidth = 0.;
90    this->velMin = 0.;
91    this->velMax = 0.;
92    this->w20 = 0.;
93    this->v20min = 0.;
94    this->v20max = 0.;
95    this->w50 = 0.;
96    this->v50min = 0.;
97    this->v50max = 0.;
[1061]98    this->posPrec = Catalogues::prPOS;
99    this->xyzPrec = Catalogues::prXYZ;
100    this->fintPrec = Catalogues::prFLUX;
101    this->fpeakPrec = Catalogues::prFLUX;
102    this->velPrec = Catalogues::prVEL;
103    this->snrPrec = Catalogues::prSNR;
[378]104  }
[218]105
[570]106  Detection::Detection():
107    Object3D()
[378]108  {
[570]109    this->defaultDetection();
110  }
111
112  Detection::Detection(const Object3D& o):
113    Object3D(o)
114  {
115    this->defaultDetection();
116  }
117
118  Detection::Detection(const Detection& d):
119    Object3D(d)
120  {
[378]121    operator=(d);
122  }
[218]123
[378]124  Detection& Detection::operator= (const Detection& d)
125  {
[570]126    ((Object3D &) *this) = d;
[378]127    this->xSubOffset   = d.xSubOffset;
128    this->ySubOffset   = d.ySubOffset;
129    this->zSubOffset   = d.zSubOffset;
[681]130    this->haveParams   = d.haveParams;
[378]131    this->totalFlux    = d.totalFlux;
[461]132    this->intFlux      = d.intFlux;
[378]133    this->peakFlux     = d.peakFlux;
134    this->xpeak        = d.xpeak;
135    this->ypeak        = d.ypeak;
136    this->zpeak        = d.zpeak;
137    this->peakSNR      = d.peakSNR;
138    this->xCentroid    = d.xCentroid;
139    this->yCentroid    = d.yCentroid;
140    this->zCentroid    = d.zCentroid;
141    this->centreType   = d.centreType;
142    this->negSource    = d.negSource;
143    this->flagText     = d.flagText;
144    this->id           = d.id;
145    this->name         = d.name;
146    this->flagWCS      = d.flagWCS;
147    this->specOK       = d.specOK;
148    this->raS          = d.raS;
149    this->decS         = d.decS;
150    this->ra           = d.ra;
[461]151    this->dec          = d.dec;
152    this->raWidth      = d.raWidth;
[378]153    this->decWidth     = d.decWidth;
[473]154    this->majorAxis    = d.majorAxis;
155    this->minorAxis    = d.minorAxis;
156    this->posang       = d.posang;
[378]157    this->specUnits    = d.specUnits;
[947]158    this->specType     = d.specType;
[378]159    this->fluxUnits    = d.fluxUnits;
160    this->intFluxUnits = d.intFluxUnits;
[461]161    this->lngtype      = d.lngtype;
162    this->lattype      = d.lattype;
[378]163    this->vel          = d.vel;
164    this->velWidth     = d.velWidth;
165    this->velMin       = d.velMin;
166    this->velMax       = d.velMax;
[463]167    this->w20          = d.w20;
168    this->v20min       = d.v20min;
169    this->v20max       = d.v20max;
170    this->w50          = d.w50;
171    this->v50min       = d.v50min;
172    this->v50max       = d.v50max;
[378]173    this->posPrec      = d.posPrec;
174    this->xyzPrec      = d.xyzPrec;
175    this->fintPrec     = d.fintPrec;
176    this->fpeakPrec    = d.fpeakPrec;
[461]177    this->velPrec      = d.velPrec;
[378]178    this->snrPrec      = d.snrPrec;
179    return *this;
180  }
[3]181
[378]182  //--------------------------------------------------------------------
[570]183  float Detection::getXcentre()
184  {
185    if(this->centreType=="peak") return this->xpeak;
186    else if(this->centreType=="average") return this->getXaverage();
187    else return this->xCentroid;
188  }
[258]189
[570]190  float Detection::getYcentre()
191  {
192    if(this->centreType=="peak") return this->ypeak;
193    else if(this->centreType=="average") return this->getYaverage();
194    else return this->yCentroid;
195  }
196
197  float Detection::getZcentre()
198  {
199    if(this->centreType=="peak") return this->zpeak;
200    else if(this->centreType=="average") return this->getZaverage();
201    else return this->zCentroid;
202  }
203
204  //--------------------------------------------------------------------
205
[417]206  bool Detection::voxelListsMatch(std::vector<Voxel> voxelList)
207  {
[528]208    /// @details
209    ///  A test to see whether there is a 1-1 correspondence between
210    ///  the given list of Voxels and the voxel positions contained in
211    ///  this Detection's pixel list. No testing of the fluxes of the
212    ///  Voxels is done.
213    ///
214    /// \param voxelList The std::vector list of Voxels to be tested.
[417]215
216    bool listsMatch = true;
217    // compare sizes
218    listsMatch = listsMatch && (voxelList.size() == this->getSize());
219    if(!listsMatch) return listsMatch;
220
[463]221    // make sure all Detection pixels are in voxel list
222    listsMatch = listsMatch && this->voxelListCovered(voxelList);
223
[417]224    // make sure all voxels are in Detection
[623]225    std::vector<Voxel>::iterator vox;
226    for(vox=voxelList.begin();vox<voxelList.end();vox++)
227      listsMatch = listsMatch && this->isInObject(*vox);
[463]228
229    return listsMatch;
230
231  }
232  //--------------------------------------------------------------------
233
234  bool Detection::voxelListCovered(std::vector<Voxel> voxelList)
235  {
[528]236    ///  @details
237    ///  A test to see whether the given list of Voxels contains each
238    ///  position in this Detection's pixel list. It does not look for
239    ///  a 1-1 correspondence: the given list can be a super-set of the
240    ///  Detection. No testing of the fluxes of the Voxels is done.
241    ///
242    /// \param voxelList The std::vector list of Voxels to be tested.
[463]243
244    bool listsMatch = true;
245
[417]246    // make sure all Detection pixels are in voxel list
[623]247    size_t v1=0;
[570]248    std::vector<Voxel> detpixlist = this->getPixelSet();
249    while(listsMatch && v1<detpixlist.size()){
[417]250      bool inList = false;
[623]251      size_t v2=0;
[417]252      while(!inList && v2<voxelList.size()){
[570]253        inList = inList || detpixlist[v1].match(voxelList[v2]);
[417]254        v2++;
255      }
256      listsMatch = listsMatch && inList;
[418]257      v1++;
[417]258    }
259
260    return listsMatch;
261
262  }
263  //--------------------------------------------------------------------
264
265  void Detection::calcFluxes(std::vector<Voxel> voxelList)
266  {
[528]267    ///  @details
268    ///  A function that calculates total & peak fluxes (and the location
269    ///  of the peak flux) for a Detection.
270    ///
271    ///  \param fluxArray The array of flux values to calculate the
272    ///  flux parameters from.
273    ///  \param dim The dimensions of the flux array.
[681]274   
275    //    this->haveParams = true;
[417]276
277    this->totalFlux = this->peakFlux = 0;
278    this->xCentroid = this->yCentroid = this->zCentroid = 0.;
279
280    // first check that the voxel list and the Detection's pixel list
281    // have a 1-1 correspondence
282
[463]283    if(!this->voxelListCovered(voxelList)){
[913]284      DUCHAMPERROR("Detection::calcFluxes","Voxel list provided does not match");
[417]285      return;
286    }
287
[623]288    std::vector<Voxel>::iterator vox;
289    for(vox=voxelList.begin();vox<voxelList.end();vox++){
290      if(this->isInObject(*vox)){
291        long x = vox->getX();
292        long y = vox->getY();
293        long z = vox->getZ();
294        float f = vox->getF();
[463]295        this->totalFlux += f;
296        this->xCentroid += x*f;
297        this->yCentroid += y*f;
298        this->zCentroid += z*f;
[623]299        if( (vox==voxelList.begin()) ||  //first time round
[463]300            (this->negSource&&(f<this->peakFlux)) ||
301            (!this->negSource&&(f>this->peakFlux))   )
302          {
303            this->peakFlux = f;
304            this->xpeak =    x;
305            this->ypeak =    y;
306            this->zpeak =    z;
307          }
308      }
[417]309    }
310
311    this->xCentroid /= this->totalFlux;
312    this->yCentroid /= this->totalFlux;
313    this->zCentroid /= this->totalFlux;
314  }
315  //--------------------------------------------------------------------
316
[863]317  void Detection::calcFluxes(std::map<Voxel,float> &voxelMap)
318  {
319    ///  @details
320    ///  A function that calculates total & peak fluxes (and the location
321    ///  of the peak flux) for a Detection.
322    ///
323    ///  \param fluxArray The array of flux values to calculate the
324    ///  flux parameters from.
325    ///  \param dim The dimensions of the flux array.
326   
327    //    this->haveParams = true;
328
329    this->totalFlux = this->peakFlux = 0;
330    this->xCentroid = this->yCentroid = this->zCentroid = 0.;
331
332    std::vector<Voxel> voxelList = this->getPixelSet();
333    std::vector<Voxel>::iterator vox;
334    for(vox=voxelList.begin();vox<voxelList.end();vox++){
335      if(voxelMap.find(*vox) == voxelMap.end()){
[913]336        DUCHAMPERROR("Detection::calcFluxes","Voxel list provided does not match");
[863]337        return;
338      }
339      else {
340        long x = vox->getX();
341        long y = vox->getY();
342        long z = vox->getZ();
343        float f = voxelMap[*vox];
344        this->totalFlux += f;
345        this->xCentroid += x*f;
346        this->yCentroid += y*f;
347        this->zCentroid += z*f;
348        if( (vox==voxelList.begin()) ||  //first time round
349            (this->negSource&&(f<this->peakFlux)) ||
350            (!this->negSource&&(f>this->peakFlux))   )
351          {
352            this->peakFlux = f;
353            this->xpeak =    x;
354            this->ypeak =    y;
355            this->zpeak =    z;
356          }
357      }
358    }
359
360    this->xCentroid /= this->totalFlux;
361    this->yCentroid /= this->totalFlux;
362    this->zCentroid /= this->totalFlux;
363  }
364  //--------------------------------------------------------------------
365
[884]366  void Detection::calcFluxes(float *fluxArray, size_t *dim)
[378]367  {
[528]368    ///  @details
369    ///  A function that calculates total & peak fluxes (and the location
370    ///  of the peak flux) for a Detection.
371    ///
372    ///  \param fluxArray The array of flux values to calculate the
373    ///  flux parameters from.
374    ///  \param dim The dimensions of the flux array.
[258]375
[681]376    //    this->haveParams = true;
377
[378]378    this->totalFlux = this->peakFlux = 0;
379    this->xCentroid = this->yCentroid = this->zCentroid = 0.;
380
[570]381    std::vector<Voxel> voxList = this->getPixelSet();
[473]382    std::vector<Voxel>::iterator vox=voxList.begin();
383    for(;vox<voxList.end();vox++){
[378]384
[473]385      long x=vox->getX();
386      long y=vox->getY();
387      long z=vox->getZ();
[884]388      size_t ind = vox->arrayIndex(dim);
[473]389      float f = fluxArray[ind];
390      this->totalFlux += f;
391      this->xCentroid += x*f;
392      this->yCentroid += y*f;
393      this->zCentroid += z*f;
394      if( (vox==voxList.begin()) ||
395          (this->negSource&&(f<this->peakFlux)) ||
396          (!this->negSource&&(f>this->peakFlux))   )
397        {
398          this->peakFlux = f;
399          this->xpeak = x;
400          this->ypeak = y;
401          this->zpeak = z;
[378]402        }
[473]403 
[45]404    }
[378]405
406    this->xCentroid /= this->totalFlux;
407    this->yCentroid /= this->totalFlux;
408    this->zCentroid /= this->totalFlux;
[263]409  }
[378]410  //--------------------------------------------------------------------
[263]411
[417]412  void Detection::calcWCSparams(FitsHeader &head)
[378]413  {
[528]414    ///  @details
415    ///  Use the input wcs to calculate the position and velocity
416    ///    information for the Detection.
417    ///  Quantities calculated:
418    ///  <ul><li> RA: ra [deg], ra (string), ra width.
419    ///      <li> Dec: dec [deg], dec (string), dec width.
420    ///      <li> Vel: vel [km/s], min & max vel, vel width.
421    ///      <li> coord type for all three axes, nuRest,
422    ///      <li> name (IAU-style, in equatorial or Galactic)
423    ///  </ul>
424    ///
425    ///  Note that the regular parameters are NOT recalculated!
426    ///
427    ///  \param head FitsHeader object that contains the WCS information.
[3]428
[378]429    if(head.isWCS()){
[3]430
[378]431      double *pixcrd = new double[15];
432      double *world  = new double[15];
433      /*
434        define a five-point array in 3D:
435        (x,y,z), (x,y,z1), (x,y,z2), (x1,y1,z), (x2,y2,z)
436        [note: x = central point, x1 = minimum x, x2 = maximum x etc.]
437        and convert to world coordinates.   
438      */
439      pixcrd[0]  = pixcrd[3] = pixcrd[6] = this->getXcentre();
440      pixcrd[9]  = this->getXmin()-0.5;
441      pixcrd[12] = this->getXmax()+0.5;
442      pixcrd[1]  = pixcrd[4] = pixcrd[7] = this->getYcentre();
443      pixcrd[10] = this->getYmin()-0.5;
444      pixcrd[13] = this->getYmax()+0.5;
445      pixcrd[2] = pixcrd[11] = pixcrd[14] = this->getZcentre();
446      pixcrd[5] = this->getZmin();
447      pixcrd[8] = this->getZmax();
448      int flag = head.pixToWCS(pixcrd, world, 5);
449      delete [] pixcrd;
[913]450      if(flag!=0) {
451        DUCHAMPERROR("calcWCSparams", "Error in calculating the WCS for this object.");
452      }
[378]453      else{
[913]454       
[378]455        // world now has the WCS coords for the five points
456        //    -- use this to work out WCS params
[22]457 
[681]458        this->haveParams = true;
459
[378]460        this->specOK = head.canUseThirdAxis();
[963]461        this->lngtype = head.lngtype();
462        this->lattype = head.lattype();
[378]463        this->specUnits = head.getSpectralUnits();
[947]464        this->specType  = head.getSpectralType();
[378]465        this->fluxUnits = head.getFluxUnits();
466        // if fluxUnits are eg. Jy/beam, make intFluxUnits = Jy km/s
467        this->intFluxUnits = head.getIntFluxUnits();
468        this->ra   = world[0];
469        this->dec  = world[1];
[907]470        int precision = -int(log10(fabs(head.WCS().cdelt[head.WCS().lng]*3600./10.)));
471        this->raS  = decToDMS(this->ra, this->lngtype,precision);
472        this->decS = decToDMS(this->dec,this->lattype,precision);
[378]473        this->raWidth = angularSeparation(world[9],world[1],
474                                          world[12],world[1]) * 60.;
475        this->decWidth  = angularSeparation(world[0],world[10],
476                                            world[0],world[13]) * 60.;
[473]477
[570]478        Object2D spatMap = this->getSpatialMap();
[473]479        std::pair<double,double> axes = spatMap.getPrincipleAxes();
480        this->majorAxis = std::max(axes.first,axes.second) * head.getAvPixScale();
481        this->minorAxis = std::min(axes.first,axes.second) * head.getAvPixScale();
482        this->posang = spatMap.getPositionAngle() * 180. / M_PI;
[1130]483        //      std::cerr << majorAxis << " " << minorAxis << " " << posang << "   " << majorAxis/head.getAvPixScale() << " " << minorAxis/head.getAvPixScale() << " " << posang*M_PI/180.<<"\n";
[473]484
[378]485        this->name = head.getIAUName(this->ra, this->dec);
486        this->vel    = head.specToVel(world[2]);
487        this->velMin = head.specToVel(world[5]);
488        this->velMax = head.specToVel(world[8]);
489        this->velWidth = fabs(this->velMax - this->velMin);
[3]490
[378]491        this->flagWCS = true;
492      }
493      delete [] world;
494
[270]495    }
[982]496    else {
497      double x=this->getXcentre(),y=this->getYcentre(),z=this->getZmin();
498      this->velMin = head.pixToVel(x,y,z);
499      z=this->getZmax();
500      this->velMax = head.pixToVel(x,y,z);
501      this->velWidth = fabs(this->velMax - this->velMin);
502    }
503
504     
[103]505  }
[378]506  //--------------------------------------------------------------------
[3]507
[884]508  void Detection::calcIntegFlux(size_t zdim, std::vector<Voxel> voxelList, FitsHeader &head)
[417]509  {
[528]510    ///  @details
511    ///  Uses the input WCS to calculate the velocity-integrated flux,
512    ///   putting velocity in units of km/s.
513    ///  The fluxes used are taken from the Voxels, rather than an
514    ///   array of flux values.
515    ///  Integrates over full spatial and velocity range as given
516    ///   by the extrema calculated by calcWCSparams.
517    ///
518    ///  If the flux units end in "/beam" (eg. Jy/beam), then the flux is
519    ///  corrected by the beam size (in pixels). This is done by
520    ///  multiplying the integrated flux by the number of spatial pixels,
521    ///  and dividing by the beam size in pixels (e.g. Jy/beam * pix /
522    ///  pix/beam --> Jy)
523    ///
[719]524    ///  \param zdim The size of the spectral axis (needed to find the velocity widths)
[528]525    ///  \param voxelList The list of Voxels with flux information
526    ///  \param head FitsHeader object that contains the WCS information.
[417]527
[463]528    if(!this->voxelListCovered(voxelList)){
[913]529      DUCHAMPERROR("Detection::calcIntegFlux","Voxel list provided does not match");
[417]530      return;
531    }
532
[513]533    if(!head.is2D()){
[417]534
[681]535      this->haveParams = true;
536
[982]537      const int border = 1;  // include one pixel either side in each direction
[983]538      size_t xsize = size_t(this->xmax-this->xmin+2*border+1);
539      size_t ysize = size_t(this->ymax-this->ymin+2*border+1);
540      size_t zsize = size_t(this->zmax-this->zmin+2*border+1);
[982]541      size_t xzero = size_t(std::max(0L,this->xmin-border));
542      size_t yzero = size_t(std::max(0L,this->ymin-border));
543      size_t zzero = size_t(std::max(0L,this->zmin-border));
[884]544      size_t spatsize=xsize*ysize;
545      size_t size = xsize*ysize*zsize;
[473]546      std::vector <bool> isObj(size,false);
[463]547      double *localFlux = new double[size];
[884]548      for(size_t i=0;i<size;i++) localFlux[i]=0.;
[417]549
[623]550      std::vector<Voxel>::iterator vox;
551      for(vox=voxelList.begin();vox<voxelList.end();vox++){
552        if(this->isInObject(*vox)){
[983]553          size_t pos=(vox->getX()-xzero) + (vox->getY()-yzero)*xsize + (vox->getZ()-zzero)*spatsize;
[623]554          localFlux[pos] = vox->getF();
[463]555          isObj[pos] = true;
556        }
[417]557      }
558 
559      // work out the WCS coords for each pixel
[463]560      double *world  = new double[size];
[417]561      double xpt,ypt,zpt;
[924]562      for(size_t i=0;i<size;i++){
[463]563        xpt = double( this->getXmin() - border + i%xsize );
564        ypt = double( this->getYmin() - border + (i/xsize)%ysize );
565        zpt = double( this->getZmin() - border + i/(xsize*ysize) );
[417]566        world[i] = head.pixToVel(xpt,ypt,zpt);
567      }
568
569      double integrated = 0.;
[884]570      for(size_t pix=0; pix<spatsize; pix++){ // loop over each spatial pixel.
571        for(size_t z=0; z<zsize; z++){
[921]572          size_t pos =  z*xsize*ysize + pix;
[417]573          if(isObj[pos]){ // if it's an object pixel...
574            double deltaVel;
575            if(z==0)
576              deltaVel = (world[pos+xsize*ysize] - world[pos]);
577            else if(z==(zsize-1))
578              deltaVel = (world[pos] - world[pos-xsize*ysize]);
579            else
580              deltaVel = (world[pos+xsize*ysize] - world[pos-xsize*ysize]) / 2.;
581            integrated += localFlux[pos] * fabs(deltaVel);
582          }
583        }
584      }
585      this->intFlux = integrated;
586
587      delete [] world;
588      delete [] localFlux;
589
[719]590      calcVelWidths(zdim,voxelList,head);
[464]591
[417]592    }
593    else // in this case there is just a 2D image.
594      this->intFlux = this->totalFlux;
595
596    if(head.isWCS()){
597      // correct for the beam size if the flux units string ends in "/beam"
[788]598      if(head.needBeamSize()) this->intFlux  /= head.beam().area();
[417]599    }
600
601  }
602  //--------------------------------------------------------------------
603
[884]604  void Detection::calcIntegFlux(size_t zdim, std::map<Voxel,float> voxelMap, FitsHeader &head)
[863]605  {
606    ///  @details
607    ///  Uses the input WCS to calculate the velocity-integrated flux,
608    ///   putting velocity in units of km/s.
609    ///  The fluxes used are taken from the Voxels, rather than an
610    ///   array of flux values.
611    ///  Integrates over full spatial and velocity range as given
612    ///   by the extrema calculated by calcWCSparams.
613    ///
614    ///  If the flux units end in "/beam" (eg. Jy/beam), then the flux is
615    ///  corrected by the beam size (in pixels). This is done by
616    ///  multiplying the integrated flux by the number of spatial pixels,
617    ///  and dividing by the beam size in pixels (e.g. Jy/beam * pix /
618    ///  pix/beam --> Jy)
619    ///
620    ///  \param zdim The size of the spectral axis (needed to find the velocity widths)
621    ///  \param voxelList The list of Voxels with flux information
622    ///  \param head FitsHeader object that contains the WCS information.
623
624    if(!head.is2D()){
625
626      this->haveParams = true;
627
[982]628       const int border = 1; // include one pixel either side in each direction
[983]629      size_t xsize = size_t(this->xmax-this->xmin+2*border+1);
630      size_t ysize = size_t(this->ymax-this->ymin+2*border+1);
631      size_t zsize = size_t(this->zmax-this->zmin+2*border+1);
[982]632      size_t xzero = size_t(std::max(0L,this->xmin-border));
633      size_t yzero = size_t(std::max(0L,this->ymin-border));
634      size_t zzero = size_t(std::max(0L,this->zmin-border));
[884]635      size_t spatsize=xsize*ysize;
636      size_t size = xsize*ysize*zsize;
[863]637      std::vector <bool> isObj(size,false);
638      double *localFlux = new double[size];
[884]639      for(size_t i=0;i<size;i++) localFlux[i]=0.;
[863]640
641      std::vector<Voxel> voxelList = this->getPixelSet();
642      std::vector<Voxel>::iterator vox;
643      for(vox=voxelList.begin();vox<voxelList.end();vox++){
644        if(voxelMap.find(*vox) == voxelMap.end()){
[913]645          DUCHAMPERROR("Detection::calcIntegFlux","Voxel list provided does not match");
[863]646          return;
647        }       
648        else {
[983]649          size_t pos=(vox->getX()-xzero) + (vox->getY()-yzero)*xsize + (vox->getZ()-zzero)*spatsize;
[863]650          localFlux[pos] = voxelMap[*vox];
651          isObj[pos] = true;
652        }
653      }
654 
655      // work out the WCS coords for each pixel
656      double *world  = new double[size];
657      double xpt,ypt,zpt;
[884]658      for(size_t i=0;i<xsize*ysize*zsize;i++){
[863]659        xpt = double( this->getXmin() - border + i%xsize );
660        ypt = double( this->getYmin() - border + (i/xsize)%ysize );
661        zpt = double( this->getZmin() - border + i/(xsize*ysize) );
662        world[i] = head.pixToVel(xpt,ypt,zpt);
663      }
664
665      double integrated = 0.;
[884]666      for(size_t pix=0; pix<spatsize; pix++){ // loop over each spatial pixel.
667        for(size_t z=0; z<zsize; z++){
[921]668          size_t pos =  z*xsize*ysize + pix;
[863]669          if(isObj[pos]){ // if it's an object pixel...
670            double deltaVel;
671            if(z==0)
672              deltaVel = (world[pos+xsize*ysize] - world[pos]);
673            else if(z==(zsize-1))
674              deltaVel = (world[pos] - world[pos-xsize*ysize]);
675            else
676              deltaVel = (world[pos+xsize*ysize] - world[pos-xsize*ysize]) / 2.;
677            integrated += localFlux[pos] * fabs(deltaVel);
678          }
679        }
680      }
681      this->intFlux = integrated;
682
683      delete [] world;
684      delete [] localFlux;
685
686      calcVelWidths(zdim,voxelMap,head);
687
688    }
689    else // in this case there is just a 2D image.
690      this->intFlux = this->totalFlux;
691
692    if(head.isWCS()){
693      // correct for the beam size if the flux units string ends in "/beam"
694      if(head.needBeamSize()) this->intFlux  /= head.beam().area();
695    }
696
697  }
698  //--------------------------------------------------------------------
699
[884]700  void Detection::calcIntegFlux(float *fluxArray, size_t *dim, FitsHeader &head)
[378]701  {
[528]702    ///  @details
703    ///  Uses the input WCS to calculate the velocity-integrated flux,
704    ///   putting velocity in units of km/s.
705    ///  Integrates over full spatial and velocity range as given
706    ///   by the extrema calculated by calcWCSparams.
707    ///
708    ///  If the flux units end in "/beam" (eg. Jy/beam), then the flux is
709    ///  corrected by the beam size (in pixels). This is done by
710    ///  multiplying the integrated flux by the number of spatial pixels,
711    ///  and dividing by the beam size in pixels (e.g. Jy/beam * pix /
712    ///  pix/beam --> Jy)
713    ///
714    ///  \param fluxArray The array of flux values.
715    ///  \param dim The dimensions of the flux array.
716    ///  \param head FitsHeader object that contains the WCS information.
[3]717
[513]718    if(!head.is2D()){
[271]719
[681]720      this->haveParams = true;
721
[982]722      const int border=1; // include one pixel either side in each direction
723      size_t xsize = std::min(size_t(this->xmax-this->xmin+2*border+1),dim[0]);
724      size_t ysize = std::min(size_t(this->ymax-this->ymin+2*border+1),dim[1]);
725      size_t zsize = std::min(size_t(this->zmax-this->zmin+2*border+1),dim[2]);
726      size_t xzero = size_t(std::max(0L,this->xmin-border));
727      size_t yzero = size_t(std::max(0L,this->ymin-border));
728      size_t zzero = size_t(std::max(0L,this->zmin-border));
[884]729      size_t spatsize = xsize*ysize;
730      size_t size = xsize*ysize*zsize;
[473]731      std::vector <bool> isObj(size,false);
[463]732      double *localFlux = new double[size];
[894]733      for(size_t i=0;i<size;i++) localFlux[i]=0.;
[1130]734      float *momMap = new float[spatsize];
735      for(size_t i=0;i<spatsize;i++) momMap[i]=0.;
[378]736      // work out which pixels are object pixels
[774]737      std::vector<Voxel> voxlist = this->getPixelSet();
738      for(std::vector<Voxel>::iterator v=voxlist.begin();v<voxlist.end();v++){
[1130]739        size_t spatpos=(v->getX()-xzero) + (v->getY()-yzero)*xsize;
740        size_t pos= spatpos + (v->getZ()-zzero)*spatsize;
[778]741        localFlux[pos] = fluxArray[v->arrayIndex(dim)];
[1130]742        momMap[spatpos] += fluxArray[v->arrayIndex(dim)];
[774]743        isObj[pos] = true;
[258]744      }
[22]745 
[378]746      // work out the WCS coords for each pixel
[463]747      double *world  = new double[size];
[378]748      double xpt,ypt,zpt;
[884]749      size_t i=0;
[986]750      for(size_t z=zzero;z<zzero+zsize;z++){
751        for(size_t y=yzero;y<yzero+ysize;y++){
752          for(size_t x=xzero;x<xzero+xsize;x++){
753            xpt=double(x);
754            ypt=double(y);
755            zpt=double(z);
[781]756            world[i++] = head.pixToVel(xpt,ypt,zpt);
757          }
758        }
[378]759      }
[3]760
[378]761      double integrated = 0.;
[884]762      for(size_t pix=0; pix<xsize*ysize; pix++){ // loop over each spatial pixel.
763        for(size_t z=0; z<zsize; z++){
[921]764          size_t pos =  z*xsize*ysize + pix;
[378]765          if(isObj[pos]){ // if it's an object pixel...
766            double deltaVel;
767            if(z==0)
768              deltaVel = (world[pos+xsize*ysize] - world[pos]);
769            else if(z==(zsize-1))
770              deltaVel = (world[pos] - world[pos-xsize*ysize]);
771            else
772              deltaVel = (world[pos+xsize*ysize] - world[pos-xsize*ysize]) / 2.;
773            integrated += localFlux[pos] * fabs(deltaVel);
774          }
[271]775        }
[3]776      }
[378]777      this->intFlux = integrated;
778
[1130]779      bool ellipseGood=this->spatialMap.findEllipse(true,momMap,xsize,ysize,xzero,yzero);  // try first by weighting the pixels by their flux
780      if(!ellipseGood) ellipseGood=this->spatialMap.findEllipse(false,momMap,xsize,ysize,xzero,yzero); // if that fails, remove the flux weighting
781      if(ellipseGood){
782        this->majorAxis = this->spatialMap.major() * head.getAvPixScale();
783        this->minorAxis = this->spatialMap.minor() * head.getAvPixScale();
784        this->posang = this->spatialMap.posAng() * 180. / M_PI;
785      }
786
[464]787      delete [] world;
788      delete [] localFlux;
[1130]789      delete [] momMap;
[463]790
[464]791      calcVelWidths(fluxArray, dim, head);
[463]792
[464]793    }
794    else // in this case there is just a 2D image.
795      this->intFlux = this->totalFlux;
[463]796
[464]797    if(head.isWCS()){
[789]798      // correct for the beam size if the flux units string ends in "/beam" and we have beam info
[788]799      if(head.needBeamSize()) this->intFlux  /= head.beam().area();
[464]800    }
[463]801
[464]802  }
803  //--------------------------------------------------------------------
804
[884]805  void Detection::calcVelWidths(size_t zdim, std::vector<Voxel> voxelList, FitsHeader &head)
[464]806  {
[528]807    ///  @details
808    /// Calculates the widths of the detection at 20% and 50% of the
809    /// peak integrated flux. The procedure is as follows: first
810    /// generate an integrated flux spectrum (using all given voxels
811    /// that lie in the object's spatial map); find the peak; starting
812    /// at the spectral edges of the detection, move in or out until
813    /// you reach the 20% or 50% peak flux level. Linear interpolation
814    /// between points is done.
815    ///
[719]816    ///  \param zdim The size of the spectral axis in the cube
[528]817    ///  \param voxelList The list of Voxels with flux information
818    ///  \param head FitsHeader object that contains the WCS information.
[464]819
[719]820    float *intSpec = new float[zdim];
[894]821    for(size_t i=0;i<zdim;i++) intSpec[i]=0;
[464]822       
[570]823    Object2D spatMap = this->getSpatialMap();
[464]824    for(int s=0;s<spatMap.getNumScan();s++){
[623]825      std::vector<Voxel>::iterator vox;
826      for(vox=voxelList.begin();vox<voxelList.end();vox++){
827        if(spatMap.isInObject(*vox)){
[719]828          intSpec[vox->getZ()] += vox->getF();
[464]829        }
[463]830      }
[464]831    }
832   
[719]833    calcVelWidths(zdim, intSpec, head);
834
835    delete [] intSpec;
836
837  }
838
839  //--------------------------------------------------------------------
840
[884]841  void Detection::calcVelWidths(size_t zdim, std::map<Voxel,float> voxelMap, FitsHeader &head)
[863]842  {
843    ///  @details
844    /// Calculates the widths of the detection at 20% and 50% of the
845    /// peak integrated flux. The procedure is as follows: first
846    /// generate an integrated flux spectrum (using all given voxels
847    /// that lie in the object's spatial map); find the peak; starting
848    /// at the spectral edges of the detection, move in or out until
849    /// you reach the 20% or 50% peak flux level. Linear interpolation
850    /// between points is done.
851    ///
852    ///  \param zdim The size of the spectral axis in the cube
853    ///  \param voxelList The list of Voxels with flux information
854    ///  \param head FitsHeader object that contains the WCS information.
855
856    float *intSpec = new float[zdim];
[894]857    for(size_t i=0;i<zdim;i++) intSpec[i]=0;
[863]858       
859    std::vector<Voxel> voxelList = this->getPixelSet();
860    std::vector<Voxel>::iterator vox;
861    for(vox=voxelList.begin();vox<voxelList.end();vox++){
862      if(voxelMap.find(*vox) == voxelMap.end()){
[913]863        DUCHAMPERROR("Detection::calcVelWidths","Voxel list provided does not match");
[863]864        return;
865      }
866      else {
867        intSpec[vox->getZ()] += voxelMap[*vox];
868      }
869    }
870
871    calcVelWidths(zdim, intSpec, head);
872
873    delete [] intSpec;
874
875  }
876
877  //--------------------------------------------------------------------
878
[884]879  void Detection::calcVelWidths(size_t zdim, float *intSpec, FitsHeader &head)
[719]880  {
881
[913]882    // finding the 20% & 50% points.  Start at the velmin & velmax
883    //  points. Then, if the int flux there is above the 20%/50%
884    //  limit, go out, otherwise go in. This is to deal with the
885    //  problems from double- (or multi-) peaked sources.
[719]886
887    this->haveParams = true;
888
[924]889    double zpt,xpt=double(this->getXcentre()),ypt=double(this->getYcentre());
[719]890    bool goLeft;
891   
[1054]892    if(this->negSource){
893      // if we've inverted the source, need to make the feature
894      // positive for the interpolation/extrapolation to work
895      for(size_t i=0;i<zdim;i++) intSpec[i] *= -1.;
896    }
897
[634]898    float peak=0.;
[894]899    size_t peakLoc=0;
900    for(size_t z=this->getZmin();z<=size_t(this->getZmax());z++) {
[464]901      if(z==0 || peak<intSpec[z]){
902        peak = intSpec[z];
903        peakLoc = z;
[463]904      }
[464]905    }
[719]906   
[894]907    size_t z=this->getZmin();
[464]908    goLeft = intSpec[z]>peak*0.5;
909    if(goLeft) while(z>0 && intSpec[z]>peak*0.5) z--;
910    else       while(z<peakLoc && intSpec[z]<peak*0.5) z++;
911    if(z==0) this->v50min = this->velMin;
912    else{
[719]913      if(goLeft) zpt = z + (peak*0.5-intSpec[z])/(intSpec[z+1]-intSpec[z]);
914      else       zpt = z - (peak*0.5-intSpec[z])/(intSpec[z-1]-intSpec[z]);
[464]915      this->v50min = head.pixToVel(xpt,ypt,zpt);
916    }
[719]917    z=this->getZmax();
[464]918    goLeft = intSpec[z]<peak*0.5;
919    if(goLeft) while(z>peakLoc && intSpec[z]<peak*0.5) z--;
[719]920    else       while(z<zdim    && intSpec[z]>peak*0.5) z++;
921    if(z==zdim) this->v50max = this->velMax;
[464]922    else{
[719]923      if(goLeft) zpt = z + (peak*0.5-intSpec[z])/(intSpec[z+1]-intSpec[z]);
924      else       zpt = z - (peak*0.5-intSpec[z])/(intSpec[z-1]-intSpec[z]);
[464]925      this->v50max = head.pixToVel(xpt,ypt,zpt);
926    }
[719]927    z=this->getZmin();
[588]928    goLeft = intSpec[z]>peak*0.2;
[464]929    if(goLeft) while(z>0 && intSpec[z]>peak*0.2) z--;
930    else       while(z<peakLoc && intSpec[z]<peak*0.2) z++;
931    if(z==0) this->v20min = this->velMin;
932    else{
[719]933      if(goLeft) zpt = z + (peak*0.2-intSpec[z])/(intSpec[z+1]-intSpec[z]);
934      else       zpt = z - (peak*0.2-intSpec[z])/(intSpec[z-1]-intSpec[z]);
[464]935      this->v20min = head.pixToVel(xpt,ypt,zpt);
936    }
[719]937    z=this->getZmax();
[588]938    goLeft = intSpec[z]<peak*0.2;
[464]939    if(goLeft) while(z>peakLoc && intSpec[z]<peak*0.2) z--;
[719]940    else       while(z<zdim    && intSpec[z]>peak*0.2) z++;
941    if(z==zdim) this->v20max = this->velMax;
[464]942    else{
[719]943      if(goLeft) zpt = z + (peak*0.2-intSpec[z])/(intSpec[z+1]-intSpec[z]);
944      else       zpt = z - (peak*0.2-intSpec[z])/(intSpec[z-1]-intSpec[z]);
[464]945      this->v20max = head.pixToVel(xpt,ypt,zpt);
946    }
[463]947
[464]948    this->w20 = fabs(this->v20min - this->v20max);
949    this->w50 = fabs(this->v50min - this->v50max);
[982]950   
[1054]951    if(this->negSource){
952      // un-do the inversion, in case intSpec is needed elsewhere
953      for(size_t i=0;i<zdim;i++) intSpec[i] *= -1.;
954    }
955
956
[464]957  }
[781]958  //--------------------------------------------------------------------
[464]959
[884]960  void Detection::calcVelWidths(float *fluxArray, size_t *dim, FitsHeader &head)
[464]961  {
[528]962    ///  @details
963    /// Calculates the widths of the detection at 20% and 50% of the
964    /// peak integrated flux. The procedure is as follows: first
965    /// generate an integrated flux spectrum (summing each spatial
966    /// pixel's spectrum); find the peak; starting at the spectral
967    /// edges of the detection, move in or out until you reach the 20%
968    /// or 50% peak flux level. Linear interpolation between points is
969    /// done.
970    ///
971    ///  \param fluxArray The array of flux values.
972    ///  \param dim The dimensions of the flux array.
973    ///  \param head FitsHeader object that contains the WCS information.
[464]974
[465]975    if(dim[2] > 2){
[464]976
[465]977      float *intSpec = new float[dim[2]];
[884]978      size_t size=dim[0]*dim[1]*dim[2];
[748]979      std::vector<bool> mask(size,true);
[465]980      getIntSpec(*this,fluxArray,dim,mask,1.,intSpec);
981
[719]982      this->calcVelWidths(dim[2],intSpec,head);
983
[465]984      delete [] intSpec;
985
[378]986    }
[464]987    else{
[465]988      this->v50min = this->v20min = this->velMin;
989      this->v50max = this->v20max = this->velMax;
[719]990      this->w20 = fabs(this->v20min - this->v20max);
991      this->w50 = fabs(this->v50min - this->v50max);
[464]992    }
[300]993
994  }
[378]995  //--------------------------------------------------------------------
[300]996
[378]997  void Detection::setOffsets(Param &par)
998  {
[528]999    ///  @details
1000    /// This function stores the values of the offsets for each cube axis.
1001    /// The offsets are the starting values of the cube axes that may differ from
1002    ///  the default value of 0 (for instance, if a subsection is being used).
1003    /// The values will be used when the detection is outputted.
1004
[378]1005    this->xSubOffset = par.getXOffset();
1006    this->ySubOffset = par.getYOffset();
1007    this->zSubOffset = par.getZOffset();
1008  }
1009  //--------------------------------------------------------------------
[3]1010
[378]1011  bool Detection::hasEnoughChannels(int minNumber)
1012  {
[528]1013    ///  @details
1014    /// A function to determine if the Detection has enough
1015    /// contiguous channels to meet the minimum requirement
1016    /// given as the argument.
1017    /// \param minNumber How many channels is the minimum acceptable number?
1018    /// \return True if there is at least one occurence of minNumber consecutive
1019    /// channels present to return true. False otherwise.
[3]1020
[378]1021    // Preferred method -- need a set of minNumber consecutive channels present.
[3]1022
[570]1023    int numChan = this->getMaxAdjacentChannels();
1024    bool result = (numChan >= minNumber);
1025
[378]1026    return result;
1027 
1028  }
1029  //--------------------------------------------------------------------
[3]1030
[452]1031  std::vector<int> Detection::getVertexSet()
1032  {
[528]1033    ///  @details
1034    /// Gets a list of points being the end-points of 1-pixel long
1035    /// segments drawing a border around the spatial extend of a
1036    /// detection. The vector is a series of 4 integers, being: x_0,
1037    /// y_0, x_1, y_1.
1038    /// \return The vector of vertex positions.
1039
[452]1040    std::vector<int> vertexSet;
1041
1042    int xmin = this->getXmin() - 1;
1043    int xmax = this->getXmax() + 1;
1044    int ymin = this->getYmin() - 1;
1045    int ymax = this->getYmax() + 1;
1046    int xsize = xmax - xmin + 1;
1047    int ysize = ymax - ymin + 1;
1048
[570]1049    std::vector<Voxel> voxlist = this->getPixelSet();
[452]1050    std::vector<bool> isObj(xsize*ysize,false);
[623]1051    std::vector<Voxel>::iterator vox;
1052    for(vox=voxlist.begin();vox<voxlist.end();vox++){
[921]1053      size_t pos = (vox->getX()-xmin) +
[623]1054        (vox->getY()-ymin)*xsize;
[452]1055      isObj[pos] = true;
1056    }
1057    voxlist.clear();
1058   
1059    for(int x=xmin; x<=xmax; x++){
1060      // for each column...
1061      for(int y=ymin+1;y<=ymax;y++){
1062        int current  = (y-ymin)*xsize + x-xmin;
1063        int previous = (y-ymin-1)*xsize + x-xmin;
1064        if((isObj[current]&&!isObj[previous])   ||
1065           (!isObj[current]&&isObj[previous])){
1066          vertexSet.push_back(x);
1067          vertexSet.push_back(y);
1068          vertexSet.push_back(x+1);
1069          vertexSet.push_back(y);
1070        }
1071      }
1072    }
1073    for(int y=ymin; y<=ymax; y++){
1074      // now for each row...
1075      for(int x=xmin+1;x<=xmax;x++){
1076        int current  = (y-ymin)*xsize + x-xmin;
1077        int previous = (y-ymin)*xsize + x-xmin - 1;
1078        if((isObj[current]&&!isObj[previous])   ||
1079           (!isObj[current]&&isObj[previous])){
1080          vertexSet.push_back(x);
1081          vertexSet.push_back(y);
1082          vertexSet.push_back(x);
1083          vertexSet.push_back(y+1);
1084        }
1085      }
1086    }
1087
1088    return vertexSet;
1089 
1090  }
1091
[747]1092 
[770]1093  void Detection::addDetection(Detection &other)
[747]1094  {
1095    for(std::map<long, Object2D>::iterator it = other.chanlist.begin(); it!=other.chanlist.end();it++)
[770]1096      //      this->addChannel(*it);
[747]1097      this->addChannel(it->first, it->second);
1098    this->haveParams = false; // make it appear as if the parameters haven't been calculated, so that we can re-calculate them 
1099  }
[624]1100
[770]1101  Detection operator+ (Detection &lhs, Detection &rhs)
[624]1102  {
1103    Detection output = lhs;
1104    for(std::map<long, Object2D>::iterator it = rhs.chanlist.begin(); it!=rhs.chanlist.end();it++)
1105      output.addChannel(it->first, it->second);
[681]1106    output.haveParams = false; // make it appear as if the parameters haven't been calculated, so that we can re-calculate them
[624]1107    return output;
1108  }
1109   
1110
[770]1111  bool Detection::canMerge(Detection &other, Param &par)
1112  {
1113    bool near = this->isNear(other,par);
1114    if(near) return this->isClose(other,par);
1115    else return near;
1116  }
[624]1117
[770]1118  bool Detection::isNear(Detection &other, Param &par)
1119  {
[624]1120
[770]1121    bool flagAdj = par.getFlagAdjacent();
1122    float threshS = par.getThreshS();
1123    float threshV = par.getThreshV();
1124
1125    long gap;
1126    if(flagAdj) gap = 1;
1127    else gap = long( ceil(threshS) );
1128
1129    bool areNear;
1130    // Test X ranges
1131    if((this->xmin-gap)<other.xmin) areNear=((this->xmax+gap)>=other.xmin);
1132    else areNear=(other.xmax>=(this->xmin-gap));
1133    // Test Y ranges
1134    if(areNear){
1135      if((this->ymin-gap)<other.ymin) areNear=areNear&&((this->ymax+gap)>=other.ymin);
1136      else areNear=areNear&&(other.ymax>=(this->ymin-gap));
1137    }
1138    // Test Z ranges
1139    if(areNear){
1140      gap = long(ceil(threshV));
1141      if((this->zmin-gap)<other.zmin) areNear=areNear&&((this->zmax+gap)>=other.zmin);
1142      else areNear=areNear&&(other.zmax>=(this->zmin-gap));
1143    }
1144   
1145    return areNear;
1146
1147  }
1148
1149  bool Detection::isClose(Detection &other, Param &par)
1150  {
1151    bool close = false;   // this will be the value returned
1152   
1153    bool flagAdj = par.getFlagAdjacent();
1154    float threshS = par.getThreshS();
1155    float threshV = par.getThreshV();
1156
1157    //
1158    // If we get to here, the pixel ranges overlap -- so we do a
1159    // pixel-by-pixel comparison to make sure they are actually
1160    // "close" according to the thresholds.  Otherwise, close=false,
1161    // and so don't need to do anything else before returning.
1162    //
1163
1164    std::vector<long> zlist1 = this->getChannelList();
1165    std::vector<long> zlist2 = other.getChannelList();
1166    Scan test1,test2;
1167
1168    for(size_t ct1=0; (!close && (ct1<zlist1.size())); ct1++){
1169      for(size_t ct2=0; (!close && (ct2<zlist2.size())); ct2++){
1170       
1171        if(abs(zlist1[ct1]-zlist2[ct2])<=threshV){
1172             
1173          Object2D temp1 = this->getChanMap(zlist1[ct1]);
1174          Object2D temp2 = other.getChanMap(zlist2[ct2]);
1175
1176          close = temp1.canMerge(temp2,threshS,flagAdj);
1177
1178        }
1179
1180      }
1181    }
1182       
1183    return close;
1184   
1185  }
1186
1187
1188
[3]1189}
Note: See TracBrowser for help on using the repository browser.