source: trunk/src/Cubes/cubes.cc @ 1347

Last change on this file since 1347 was 1336, checked in by MatthewWhiting, 10 years ago

Small improvements to constructors

File size: 74.4 KB
Line 
1// -----------------------------------------------------------------------
2// cubes.cc: Member functions for the DataArray, Cube and Image classes.
3// -----------------------------------------------------------------------
4// Copyright (C) 2006, Matthew Whiting, ATNF
5//
6// This program is free software; you can redistribute it and/or modify it
7// under the terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 2 of the License, or (at your
9// option) any later version.
10//
11// Duchamp is distributed in the hope that it will be useful, but WITHOUT
12// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14// for more details.
15//
16// You should have received a copy of the GNU General Public License
17// along with Duchamp; if not, write to the Free Software Foundation,
18// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
19//
20// Correspondence concerning Duchamp may be directed to:
21//    Internet email: Matthew.Whiting [at] atnf.csiro.au
22//    Postal address: Dr. Matthew Whiting
23//                    Australia Telescope National Facility, CSIRO
24//                    PO Box 76
25//                    Epping NSW 1710
26//                    AUSTRALIA
27// -----------------------------------------------------------------------
28#include <unistd.h>
29#include <iostream>
30#include <iomanip>
31#include <vector>
32#include <algorithm>
33#include <string>
34#include <math.h>
35
36#include <wcslib/wcs.h>
37
38#include <duchamp/pgheader.hh>
39
40#include <duchamp/duchamp.hh>
41#include <duchamp/param.hh>
42#include <duchamp/fitsHeader.hh>
43#include <duchamp/Cubes/cubes.hh>
44#include <duchamp/PixelMap/Voxel.hh>
45#include <duchamp/PixelMap/Object3D.hh>
46#include <duchamp/Detection/detection.hh>
47#include <duchamp/Outputs/columns.hh>
48#include <duchamp/Detection/finders.hh>
49#include <duchamp/Utils/utils.hh>
50#include <duchamp/Utils/feedback.hh>
51#include <duchamp/Utils/mycpgplot.hh>
52#include <duchamp/Utils/Statistics.hh>
53#include <duchamp/FitsIO/DuchampBeam.hh>
54#include <duchamp/FitsIO/WriteReconArray.hh>
55#include <duchamp/FitsIO/WriteSmoothArray.hh>
56#include <duchamp/FitsIO/WriteMaskArray.hh>
57#include <duchamp/FitsIO/WriteMomentMapArray.hh>
58#include <duchamp/FitsIO/WriteMomentMaskArray.hh>
59#include <duchamp/FitsIO/WriteBaselineArray.hh>
60
61using namespace mycpgplot;
62using namespace Statistics;
63using namespace PixelInfo;
64
65#ifdef TEST_DEBUG
66const bool TESTING=true;
67#else
68const bool TESTING=false;
69#endif
70
71namespace duchamp
72{
73
74  using namespace Catalogues;
75
76  /****************************************************************/
77  ///////////////////////////////////////////////////
78  //// Functions for DataArray class:
79  ///////////////////////////////////////////////////
80
81    DataArray::DataArray():
82        numDim(0),axisDimAllocated(false),numPixels(0),array(0),arrayAllocated(false)
83    {
84    /// Fundamental constructor for DataArray.
85    /// Number of dimensions and pixels are set to 0. Nothing else allocated.
86
87    // this->numDim=0;
88    // this->numPixels=0;
89    this->objectList = new std::vector<Detection>;
90    // this->axisDimAllocated = false;
91    // this->arrayAllocated = false;
92  }
93  //--------------------------------------------------------------------
94
95  DataArray::DataArray(const DataArray &d){
96    operator=(d);
97  }
98
99  DataArray& DataArray::operator=(const DataArray &d){
100    if(this==&d) return *this;
101    this->numDim = d.numDim;
102    if(this->axisDimAllocated) delete [] this->axisDim;
103    this->axisDimAllocated = d.axisDimAllocated;
104    if(this->axisDimAllocated){
105      this->axisDim = new size_t[this->numDim];
106      for(size_t i=0;i<size_t(this->numDim);i++) this->axisDim[i] = d.axisDim[i];
107    }
108    this->numPixels = d.numPixels;
109    if(this->arrayAllocated) delete [] this->array;
110    this->arrayAllocated = d.arrayAllocated;
111    if(this->arrayAllocated) {
112      this->array = new float[this->numPixels];
113      for(size_t i=0;i<size_t(this->numPixels);i++) this->array[i] = d.array[i];
114    }
115    this->objectList = d.objectList;
116    this->par = d.par;
117    this->Stats = d.Stats;
118    return *this;
119  }
120
121
122  DataArray::DataArray(short int nDim){
123    /// @details
124    /// N-dimensional constructor for DataArray.
125    /// Number of dimensions defined, and dimension array allocated.
126    /// Number of pixels are set to 0.
127    /// \param nDim Number of dimensions.
128
129    this->axisDimAllocated = false;
130    this->arrayAllocated = false;
131    if(nDim>0){
132      this->axisDim = new size_t[nDim];
133      this->axisDimAllocated = true;
134    }
135    this->numDim=nDim;
136    this->numPixels=0;
137    this->objectList = new std::vector<Detection>;
138  }
139  //--------------------------------------------------------------------
140
141  DataArray::DataArray(short int nDim, size_t size){
142    /// @details
143    /// N-dimensional constructor for DataArray.
144    /// Number of dimensions and number of pixels defined.
145    /// Arrays allocated based on these values.
146    /// \param nDim Number of dimensions.
147    /// \param size Number of pixels.
148    ///
149    /// Note that we can assign values to the dimension array.
150
151    this->axisDimAllocated = false;
152    this->arrayAllocated = false;
153    if(nDim<0){
154      DUCHAMPERROR("DataArray(nDim,size)", "Negative number of dimensions: could not define DataArray");
155    }
156    else {
157        this->array = new float[size];
158        this->arrayAllocated = true;
159        this->numPixels = size;
160        if(nDim>0){
161            this->axisDim = new size_t[nDim];
162            this->axisDimAllocated = true;
163        }
164        this->numDim = nDim;
165    }
166    this->objectList = new std::vector<Detection>;
167  }
168  //--------------------------------------------------------------------
169
170  DataArray::DataArray(short int nDim, size_t *dimensions)
171  {
172    /// @details
173    /// Most robust constructor for DataArray.
174    /// Number and sizes of dimensions are defined, and hence the number of
175    /// pixels. Arrays allocated based on these values.
176    /// \param nDim Number of dimensions.
177    /// \param dimensions Array giving sizes of dimensions.
178
179    this->axisDimAllocated = false;
180    this->arrayAllocated = false;
181    if(nDim<0){
182      DUCHAMPERROR("DataArray(nDim,dimArray)", "Negative number of dimensions: could not define DataArray");
183    }
184    else {
185      int size = dimensions[0];
186      for(int i=1;i<nDim;i++) size *= dimensions[i];
187      if(size<0){
188        DUCHAMPERROR("DataArray(nDim,dimArray)", "Negative size: could not define DataArray");
189      }
190      else{
191        this->numPixels = size;
192        if(size>0){
193          this->array = new float[size];
194          this->arrayAllocated = true;
195        }
196        this->numDim=nDim;
197        if(nDim>0){
198          this->axisDim = new size_t[nDim];
199          this->axisDimAllocated = true;
200        }
201        for(int i=0;i<nDim;i++) this->axisDim[i] = dimensions[i];
202      }
203    }
204  }
205  //--------------------------------------------------------------------
206
207  DataArray::~DataArray()
208  {
209    ///  @details
210    ///  Destructor -- arrays deleted if they have been allocated, and the
211    ///   object list is deleted.
212
213    if(this->numPixels>0 && this->arrayAllocated){
214      delete [] this->array;
215      this->arrayAllocated = false;
216    }
217    if(this->numDim>0 && this->axisDimAllocated){
218      delete [] this->axisDim;
219      this->axisDimAllocated = false;
220    }
221    delete this->objectList;
222  }
223  //--------------------------------------------------------------------
224  //--------------------------------------------------------------------
225
226  void DataArray::getDim(size_t &x, size_t &y, size_t &z)
227  {
228    /// @details
229    /// The sizes of the first three dimensions (if they exist) are returned.
230    /// \param x The first dimension. Defaults to 0 if numDim \f$\le\f$ 0.
231    /// \param y The second dimension. Defaults to 1 if numDim \f$\le\f$ 1.
232    /// \param z The third dimension. Defaults to 1 if numDim \f$\le\f$ 2.
233
234    if(this->numDim>0) x=this->axisDim[0];
235    else x=0;
236    if(this->numDim>1) y=this->axisDim[1];
237    else y=1;
238    if(this->numDim>2) z=this->axisDim[2];
239    else z=1;
240  }
241  //--------------------------------------------------------------------
242
243  void DataArray::getDimArray(size_t *output)
244  {
245    /// @details
246    /// The axisDim array is written to output. This needs to be defined
247    ///  beforehand: no checking is done on the memory.
248    /// \param output The array that is written to.
249
250    for(int i=0;i<this->numDim;i++) output[i] = this->axisDim[i];
251  }
252  //--------------------------------------------------------------------
253
254  void DataArray::getArray(float *output)
255  {
256    /// @details
257    /// The pixel value array is written to output. This needs to be defined
258    ///  beforehand: no checking is done on the memory.
259    /// \param output The array that is written to.
260
261    for(size_t i=0;i<this->numPixels;i++) output[i] = this->array[i];
262  }
263  //--------------------------------------------------------------------
264
265  void DataArray::saveArray(float *input, size_t size)
266  {
267    /// @details
268    /// Saves the array in input to the pixel array DataArray::array.
269    /// The size of the array given must be the same as the current number of
270    /// pixels, else an error message is returned and nothing is done.
271    /// \param input The array of values to be saved.
272    /// \param size The size of input.
273
274    if(size != this->numPixels){
275      DUCHAMPERROR("DataArray::saveArray", "Input array different size to existing array. Cannot save.");
276    }
277    else {
278      if(this->numPixels>0 && this->arrayAllocated) delete [] this->array;
279      this->numPixels = size;
280      this->array = new float[size];
281      this->arrayAllocated = true;
282      for(size_t i=0;i<size;i++) this->array[i] = input[i];
283    }
284  }
285  //--------------------------------------------------------------------
286
287  void DataArray::addObject(Detection object)
288  {
289    /// \param object The object to be added to the object list.
290
291    // objectList is a vector, so just use push_back()
292    this->objectList->push_back(object);
293  }
294  //--------------------------------------------------------------------
295
296  void DataArray::addObjectList(std::vector <Detection> newlist)
297  {
298    /// \param newlist The list of objects to be added to the object list.
299
300    std::vector<Detection>::iterator obj;
301    for(obj=newlist.begin();obj<newlist.end();obj++) this->objectList->push_back(*obj);
302  }
303  //--------------------------------------------------------------------
304
305  bool DataArray::isDetection(float value)
306  {
307    ///  @details
308    /// Is a given value a detection, based on the statistics in the
309    /// DataArray's StatsContainer?
310    /// \param value The pixel value to test.
311
312    if(par.isBlank(value)) return false;
313    else return Stats.isDetection(value);
314  }
315  //--------------------------------------------------------------------
316
317  bool DataArray::isDetection(size_t voxel)
318  {
319    ///  @details
320    /// Is a given pixel a detection, based on the statistics in the
321    /// DataArray's StatsContainer?
322    /// If the pixel lies outside the valid range for the data array, return false.
323    /// \param voxel Location of the DataArray's pixel to be tested.
324
325    if(voxel>this->numPixels) return false;
326    else if(par.isBlank(this->array[voxel])) return false;
327    else return Stats.isDetection(this->array[voxel]);
328  } 
329  //--------------------------------------------------------------------
330
331  std::ostream& operator<< ( std::ostream& theStream, DataArray &array)
332  {
333    /// @details
334    /// A way to print out the pixel coordinates & flux values of the
335    /// list of detected objects belonging to the DataArray.
336    /// These are formatted nicely according to the << operator for Detection,
337    ///  with a line indicating the number of detections at the start.
338    /// \param theStream The ostream object to which the output should be sent.
339    /// \param array The DataArray containing the list of objects.
340
341    for(int i=0;i<array.numDim;i++){
342      if(i>0) theStream<<"x";
343      theStream<<array.axisDim[i];
344    }
345    theStream<<std::endl;
346
347    theStream<<"Threshold\tmiddle\tspread\trobust\n" << array.stats().getThreshold() << "\t";
348    if(array.pars().getFlagUserThreshold())
349      theStream << "0.0000\t" << array.stats().getThreshold() << "\t";
350    else
351      theStream << array.stats().getMiddle() << " " << array.stats().getSpread() << "\t";
352    theStream << array.stats().getRobust()<<"\n";
353
354    theStream<<array.objectList->size()<<" detections:\n--------------\n";
355    std::vector<Detection>::iterator obj;
356    for(obj=array.objectList->begin();obj<array.objectList->end();obj++){
357      theStream << "Detection #" << obj->getID()<<std::endl;
358      Detection *newobj = new Detection;
359      *newobj = *obj;
360      newobj->addOffsets();
361      theStream<<*newobj;
362      delete newobj;
363    }
364    theStream<<"--------------\n";
365    return theStream;
366  }
367
368  /****************************************************************/
369  /////////////////////////////////////////////////////////////
370  //// Functions for Cube class
371  /////////////////////////////////////////////////////////////
372
373    Cube::Cube():
374        DataArray(), recon(0), reconExists(false), detectMap(0), baseline(0), reconAllocated(false), baselineAllocated(false)
375  {
376    /// @details
377    /// Basic Constructor for Cube class.
378    /// numDim set to 3, but numPixels to 0 and all bool flags to false.
379    /// No allocation done.
380
381      numDim=3;
382  }
383  //--------------------------------------------------------------------
384
385  Cube::Cube(size_t size)
386  {
387    /// @details
388    /// Alternative Cube constructor, where size is given but not individual
389    ///  dimensions. Arrays are allocated as appropriate (according to the
390    ///  relevant flags in Param set), but the Cube::axisDim array is not.
391
392    this->reconAllocated = false;
393    this->baselineAllocated = false;
394    this->axisDimAllocated = false;
395    this->arrayAllocated = false;
396    this->numPixels = this->numDim = 0;
397    this->array = new float[size];
398    this->arrayAllocated = true;
399    if(this->par.getFlagATrous()||this->par.getFlagSmooth()){
400        this->recon = new float[size];
401        this->reconAllocated = true;
402    }
403    if(this->par.getFlagBaseline()){
404        this->baseline = new float[size];
405        this->baselineAllocated = true;
406    }
407    this->numPixels = size;
408    this->axisDim = new size_t[3];
409    this->axisDimAllocated = true;
410    this->numDim = 3;
411    this->reconExists = false;
412  }
413  //--------------------------------------------------------------------
414
415  Cube::Cube(size_t *dimensions)
416  {
417    /// Alternative Cube constructor, where sizes of dimensions are given.
418    /// Arrays are allocated as appropriate (according to the
419    ///  relevant flags in Param set), as is the Cube::axisDim array.
420
421    int size   = dimensions[0] * dimensions[1] * dimensions[2];
422    int imsize = dimensions[0] * dimensions[1];
423    this->reconAllocated = false;
424    this->baselineAllocated = false;
425    this->axisDimAllocated = false;
426    this->arrayAllocated = false;
427    this->numPixels = this->numDim = 0;
428    if((size<0) || (imsize<0) ){
429      DUCHAMPERROR("Cube(dimArray)","Negative size -- could not define Cube");
430    }
431    else{
432      this->numPixels = size;
433      if(size>0){
434        this->array      = new float[size];
435        this->arrayAllocated = true;
436        this->detectMap  = new short[imsize];
437        if(this->par.getFlagATrous()||this->par.getFlagSmooth()){
438          this->recon    = new float[size];
439          this->reconAllocated = true;
440        }
441        if(this->par.getFlagBaseline()){
442          this->baseline = new float[size];
443          this->baselineAllocated = true;
444        }
445      }
446      this->numDim  = 3;
447      this->axisDim = new size_t[3];
448      this->axisDimAllocated = true;
449      for(int i=0;i<3     ;i++) this->axisDim[i]   = dimensions[i];
450      for(int i=0;i<imsize;i++) this->detectMap[i] = 0;
451      this->reconExists = false;
452    }
453  }
454  //--------------------------------------------------------------------
455
456  Cube::~Cube()
457  {
458    /// @details
459    ///  The destructor deletes the memory allocated for Cube::detectMap, and,
460    ///  if these have been allocated, Cube::recon and Cube::baseline.
461
462    if(this->numPixels>0 && this->arrayAllocated) delete [] this->detectMap;
463    if(this->reconAllocated)    delete [] this->recon;
464    if(this->baselineAllocated) delete [] this->baseline;
465  }
466  //--------------------------------------------------------------------
467
468  Cube::Cube(const Cube &c):
469    DataArray(c)
470  {
471    this->operator=(c);
472  }
473  //--------------------------------------------------------------------
474
475  Cube& Cube::operator=(const Cube &c)
476  {
477    if(this==&c) return *this;
478    if(this->arrayAllocated) delete [] this->detectMap;
479    ((DataArray &) *this) = c;
480    this->reconExists = c.reconExists;
481    if(this->reconAllocated) delete [] this->recon;
482    this->reconAllocated = c.reconAllocated;
483    if(this->reconAllocated) {
484      this->recon = new float[this->numPixels];
485      for(size_t i=0;i<size_t(this->numPixels);i++) this->recon[i] = c.recon[i];
486    }
487    if(this->arrayAllocated){
488      this->detectMap = new short[this->axisDim[0]*this->axisDim[1]];
489      for(size_t i=0;i<size_t(this->axisDim[0]*this->axisDim[1]);i++) this->detectMap[i] = c.detectMap[i];
490    }
491    if(this->baselineAllocated) delete [] this->baseline;
492    this->baselineAllocated = c.baselineAllocated;
493    if(this->baselineAllocated){
494      this->baseline = new float[this->numPixels];
495      for(size_t i=0;i<size_t(this->numPixels);i++) this->baseline[i] = c.baseline[i];
496    }
497    this->head = c.head;
498    this->fullCols = c.fullCols;
499    return *this;
500  }
501  //--------------------------------------------------------------------
502
503  Cube* Cube::slice(Section subsection)
504  {
505    Cube *output = new Cube;
506    Section thisSection;
507    std::string nullsec=nullSection(this->numDim);
508    if(this->par.section().isParsed()) thisSection=this->par.section();
509    else{
510      thisSection = Section(nullsec);
511      thisSection.parse(this->axisDim, this->numDim);
512    }
513
514    subsection.parse(this->axisDim, this->numDim);
515    if(subsection.isValid()){
516      output->par = this->par;
517      output->par.section() = thisSection * subsection;
518      output->par.setXOffset(output->par.getXOffset()+subsection.getStart(0));
519      output->par.setYOffset(output->par.getYOffset()+subsection.getStart(1));
520      output->par.setZOffset(output->par.getZOffset()+subsection.getStart(2));
521      output->head = this->head;
522      // correct the reference pixel in the WCS
523      output->head.WCS().crpix[output->head.WCS().lng] -= subsection.getStart(output->head.WCS().lng);
524      output->head.WCS().crpix[output->head.WCS().lat] -= subsection.getStart(output->head.WCS().lat);
525      if(output->head.WCS().spec>0)
526        output->head.WCS().crpix[output->head.WCS().spec] -= subsection.getStart(output->head.WCS().spec);
527      output->Stats = this->Stats;
528      output->fullCols = this->fullCols;
529      size_t *dims = new size_t[3];
530      for(size_t i=0;i<3;i++){
531        dims[i] = subsection.getDimList()[i];
532        std::cout << "Dim " << i+1 << " = " << dims[i] << "\n";
533      }
534     
535      output->initialiseCube(dims,true);
536      for(size_t z=0;z<output->axisDim[2];z++){
537        for(size_t y=0;y<output->axisDim[1];y++){
538          for(size_t x=0;x<output->axisDim[0];x++){
539            size_t impos=x+y*output->axisDim[0];
540            size_t pos=impos+z*output->axisDim[0]*output->axisDim[1];
541            if(pos>=output->numPixels) DUCHAMPERROR("cube slicer","Out of bounds in new Cube");
542            size_t imposIn=(x+subsection.getStart(0)) + (y+subsection.getStart(1))*this->axisDim[0];
543            size_t posIn=imposIn + (z+subsection.getStart(2))*this->axisDim[0]*this->axisDim[1];
544            if(posIn>=this->numPixels) DUCHAMPERROR("cube slicer","Out of bounds in new Cube");
545            output->array[pos] = this->array[posIn];
546            output->detectMap[impos] = this->detectMap[imposIn];
547            if(this->reconAllocated) output->recon[pos] = this->recon[posIn];
548            if(this->baselineAllocated) output->baseline[pos] = this->baseline[posIn];
549          }
550        }
551      }
552       std::cout << this->par << "\n"<<output->par <<"\n";
553    }
554    else{
555      DUCHAMPERROR("cube slicer","Subsection does not parse");
556    }
557
558    return output;
559
560  }
561  //--------------------------------------------------------------------
562
563  OUTCOME Cube::initialiseCube(long *dimensions, bool allocateArrays)
564  {
565    int numAxes = this->head.getNumAxes();
566    if(numAxes<=0) numAxes=3;
567    size_t *dim = new size_t[numAxes];
568    for(int i=0;i<numAxes;i++) dim[i]=dimensions[i];
569    OUTCOME outcome=this->initialiseCube(dim,allocateArrays);
570    delete [] dim;
571    return outcome;
572  }
573
574
575  OUTCOME Cube::initialiseCube(size_t *dimensions, bool allocateArrays)
576  {
577    /// @details
578    ///  This function will set the sizes of all arrays that will be used by Cube.
579    ///  It will also define the values of the axis dimensions: this will be done
580    ///   using the WCS in the FitsHeader class, so the WCS needs to be good and
581    ///   have three axes. If this is not the case, the axes are assumed to be
582    ///   ordered in the sense of lng,lat,spc.
583    ///
584    ///  \param dimensions An array of values giving the dimensions (sizes) for
585    ///  all axes. 
586    ///  \param allocateArrays A flag indicating whether to allocate
587    ///  the memory for the data arrays: the default is true. The
588    ///  dimension arrays will be allocated and filled.
589
590    int lng,lat,spc;
591    size_t size,imsize;
592 
593    int numAxes = this->head.getNumAxes();
594    if(numAxes<=0) numAxes=3;
595
596    if(this->head.isWCS() && (numAxes>=3) && (this->head.WCS().spec>=0)){
597      // if there is a WCS and there is at least 3 axes
598      lng = this->head.WCS().lng;
599      lat = this->head.WCS().lat;
600      spc = this->head.WCS().spec;
601    }
602    else{
603      // just take dimensions[] at face value
604      lng = 0;
605      lat = 1;
606      spc = 2;
607    }
608
609    size   = dimensions[lng];
610    if(numAxes>1) size *= dimensions[lat];
611    if(this->head.canUseThirdAxis() && numAxes>spc) size *= dimensions[spc];
612
613    imsize = dimensions[lng];
614    if(numAxes>1) imsize *= dimensions[lat];
615
616    this->reconAllocated = false;
617    this->baselineAllocated = false;
618
619    if(this->axisDimAllocated){
620      delete [] this->axisDim;
621      this->axisDimAllocated = false;
622    }
623
624    if(this->arrayAllocated){
625      delete [] this->array;
626      delete [] this->detectMap;
627      this->arrayAllocated = false;
628    }
629    if(this->reconAllocated){
630      delete [] this->recon;
631      this->reconAllocated = false;
632    }
633    if(this->baselineAllocated){
634      delete [] this->baseline;
635      this->baselineAllocated = false;
636    }
637
638    this->numPixels = size;
639    this->numDim  = 3;
640   
641    this->axisDim = new size_t[this->numDim];
642    this->axisDimAllocated = true;
643    this->axisDim[0] = dimensions[lng];
644    if(numAxes>1) this->axisDim[1] = dimensions[lat];
645    else this->axisDim[1] = 1;
646    if(this->head.canUseThirdAxis() && numAxes>spc) this->axisDim[2] = dimensions[spc];
647    else this->axisDim[2] = 1;
648   
649    this->numNondegDim=0;
650    for(int i=0;i<3;i++) if(this->axisDim[i]>1) this->numNondegDim++;
651   
652    if(this->numNondegDim == 1){
653        if(!head.isWCS()) std::swap(this->axisDim[0],this->axisDim[2]);
654        imsize=this->axisDim[2];
655    }
656   
657    bool haveChanged=false;
658    int change=0;
659    if(this->par.getMinPix() > this->axisDim[0]*this->axisDim[1]){
660        DUCHAMPWARN("Cube::initialiseCube", "The value of minPix ("<<this->par.getMinPix()<<") is greater than the image size. Setting to "<<this->axisDim[0]*this->axisDim[1]);
661        change=this->par.getMinPix() - this->axisDim[0]*this->axisDim[1];
662        haveChanged=true;
663        this->par.setMinPix(this->axisDim[0]*this->axisDim[1]);
664    }
665    if(this->par.getMinChannels() > this->axisDim[2]){
666        DUCHAMPWARN("Cube::initialiseCube", "The value of minChannels ("<<this->par.getMinChannels()<<") is greater than the spectral size. Setting to "<<this->axisDim[2]);
667        change=this->par.getMinChannels() - this->axisDim[2];
668        haveChanged=true;
669        this->par.setMinChannels(this->axisDim[2]);
670    }
671    if(haveChanged){
672        DUCHAMPWARN("Cube::initialiseCube","Reducing minVoxels to "<<this->par.getMinVoxels() - change<<" to accomodate these changes" );
673        this->par.setMinVoxels(this->par.getMinVoxels() - change);
674    }
675     
676    if(this->par.getFlagSmooth()){
677        if(this->par.getSmoothType()=="spectral" && this->numNondegDim==2){
678            DUCHAMPWARN("Cube::initialiseCube", "Spectral smooth requested, but have a 2D image. Setting flagSmooth=false");
679            this->par.setFlagSmooth(false);
680        }
681        if(this->par.getSmoothType()=="spatial" && this->numNondegDim==1){
682            DUCHAMPWARN("Cube::initialiseCube", "Spatial smooth requested, but have a 1D image. Setting flagSmooth=false");
683            this->par.setFlagSmooth(false);
684        }
685    }
686    if(this->par.getFlagATrous()){
687        for(int d=3; d>=1; d--){
688            if(this->par.getReconDim()==d && this->numNondegDim==(d-1)){
689                DUCHAMPWARN("Cube::initialiseCube", d << "D reconstruction requested, but image is " << d-1 <<"D. Setting flagAtrous=false");
690                this->par.setFlagATrous(false);
691            }
692        }
693    }
694
695    if(allocateArrays && this->par.isVerbose()) this->reportMemorySize(std::cout,allocateArrays);
696
697    this->reconExists = false;
698    if(allocateArrays){
699        this->array      = new float[size];
700        this->arrayAllocated = true;
701        this->detectMap  = new short[imsize];
702        for(size_t i=0;i<imsize;i++) this->detectMap[i] = 0;
703        if(this->par.getFlagATrous() || this->par.getFlagSmooth()){
704            this->recon    = new float[size];
705            this->reconAllocated = true;
706            for(size_t i=0;i<size;i++) this->recon[i] = 0.;
707        }
708        if(this->par.getFlagBaseline()){
709            this->baseline = new float[size];
710            this->baselineAllocated = true;
711            for(size_t i=0;i<size;i++) this->baseline[i] = 0.;
712        }
713    }
714   
715    return SUCCESS;
716  }
717  //--------------------------------------------------------------------
718
719  void Cube::reportMemorySize(std::ostream &theStream, bool allocateArrays)
720  {
721    std::string unitlist[4]={"kB","MB","GB","TB"};
722    size_t size=axisDim[0]*axisDim[1]*axisDim[2];
723    size_t imsize=axisDim[0]*axisDim[1];
724   
725      // Calculate and report the total size of memory to be allocated.
726      float allocSize=3*sizeof(size_t);  // axisDim
727      float arrAllocSize=0.;
728      if(size>0 && allocateArrays){
729        allocSize += size * sizeof(float); // array
730        arrAllocSize = size*sizeof(float);
731        allocSize += imsize * sizeof(short); // detectMap
732        if(this->par.getFlagATrous() || this->par.getFlagSmooth())
733          allocSize += size * sizeof(float); // recon
734        if(this->par.getFlagBaseline())
735          allocSize += size * sizeof(float); // baseline
736      }
737      std::string units="bytes";
738      for(int i=0;i<4 && allocSize>1024.;i++){
739        allocSize/=1024.;
740        arrAllocSize /= 1024.;
741        units=unitlist[i];
742      }
743
744      theStream << "\n About to allocate " << allocSize << units;
745      if(arrAllocSize > 0.) theStream << " of which " << arrAllocSize << units << " is for the image\n";
746      else theStream << "\n";
747  }
748
749
750  bool Cube::is2D()
751  {
752    /// @details
753    ///   Check whether the image is 2-dimensional, by counting
754    ///   the number of dimensions that are greater than 1
755
756    if(this->head.WCS().naxis==2) return true;
757    else{
758      int numDim=0;
759      for(int i=0;i<this->numDim;i++) if(axisDim[i]>1) numDim++;
760      return numDim<=2;
761    }
762
763  }
764  //--------------------------------------------------------------------
765
766  OUTCOME Cube::getCube()
767  { 
768    ///  @details
769    /// A front-end to the Cube::getCube() function, that does
770    ///  subsection checks.
771    /// Assumes the Param is set up properly.
772
773    std::string fname = par.getImageFile();
774    if(par.getFlagSubsection()) fname+=par.getSubsection();
775    return getCube(fname);
776  }
777  //--------------------------------------------------------------------
778
779  void Cube::saveArray(float *input, size_t size)
780  {
781    if(size != this->numPixels){
782      DUCHAMPERROR("Cube::saveArray","Input array different size to existing array (" << size << " cf. " << this->numPixels << "). Cannot save.");
783    }
784    else {
785      if(this->numPixels>0 && this->arrayAllocated) delete [] array;
786      this->numPixels = size;
787      this->array = new float[size];
788      this->arrayAllocated = true;
789      for(size_t i=0;i<size;i++) this->array[i] = input[i];
790    }
791  }
792  //--------------------------------------------------------------------
793
794  void Cube::saveArray(std::vector<float> &input)
795  {
796    /// @details
797    /// Saves the array in input to the pixel array Cube::array.
798    /// The size of the array given must be the same as the current number of
799    /// pixels, else an error message is returned and nothing is done.
800    /// \param input The array of values to be saved.
801
802    if(input.size() != this->numPixels){
803      DUCHAMPERROR("Cube::saveArray","Input array different size to existing array (" << input.size() << " cf. " << this->numPixels << "). Cannot save.");
804    }
805    else {
806      if(this->numPixels>0 && this->arrayAllocated) delete [] this->array;
807      this->numPixels = input.size();
808      this->array = new float[input.size()];
809      this->arrayAllocated = true;
810      for(size_t i=0;i<input.size();i++) this->array[i] = input[i];
811    }
812  }
813  //--------------------------------------------------------------------
814
815  void Cube::saveRecon(float *input, size_t size)
816  {
817    /// @details
818    /// Saves the array in input to the reconstructed array Cube::recon
819    /// The size of the array given must be the same as the current number of
820    /// pixels, else an error message is returned and nothing is done.
821    /// If the recon array has already been allocated, it is deleted first, and
822    /// then the space is allocated.
823    /// Afterwards, the appropriate flags are set.
824    /// \param input The array of values to be saved.
825    /// \param size The size of input.
826
827    if(size != this->numPixels){
828      DUCHAMPERROR("Cube::saveRecon","Input array different size to existing array (" << size << " cf. " << this->numPixels << "). Cannot save.");
829    }
830    else {
831      if(this->numPixels>0){
832        if(this->reconAllocated) delete [] this->recon;
833        this->numPixels = size;
834        this->recon = new float[size];
835        this->reconAllocated = true;
836        for(size_t i=0;i<size;i++) this->recon[i] = input[i];
837        this->reconExists = true;
838      }
839    }
840  }
841  //--------------------------------------------------------------------
842
843  void Cube::getRecon(float *output)
844  {
845    /// @details
846    /// The reconstructed array is written to output. The output array needs to
847    ///  be defined beforehand: no checking is done on the memory.
848    /// \param output The array that is written to.
849
850    // Need check for change in number of pixels!
851    for(size_t i=0;i<this->numPixels;i++){
852      if(this->reconExists) output[i] = this->recon[i];
853      else output[i] = 0.;
854    }
855  }
856  //--------------------------------------------------------------------
857
858  void Cube::getBaseline(float *output)
859  {
860    /// @details
861    /// The baseline array is written to output. The output array needs to
862    ///  be defined beforehand: no checking is done on the memory.
863    /// \param output The array that is written to.
864
865    // Need check for change in number of pixels!
866    for(size_t i=0;i<this->numPixels;i++){
867      if(this->baselineAllocated) output[i] = this->baseline[i];
868      else output[i] = 0.;
869    }
870  }
871  //--------------------------------------------------------------------
872  void Cube::setCubeStats()
873  {
874    ///   @details
875    ///   Calculates the full statistics for the cube:
876    ///     mean, rms, median, madfm
877    ///   Only do this if the threshold has not been defined (ie. is still 0.,
878    ///    its default).
879    ///   Also work out the threshold and store it in the par set.
880    ///   
881    ///   Different from Cube::setCubeStatsOld() as it doesn't use the
882    ///    getStats functions but has own versions of them hardcoded to
883    ///    ignore BLANKs and flagged channels. This saves on memory usage -- necessary
884    ///    for dealing with very big files.
885    ///
886    ///   Three cases exist:
887    ///  <ul><li>Simple case, with no reconstruction/smoothing: all stats
888    ///          calculated from the original array.
889    ///      <li>Wavelet reconstruction: mean & median calculated from the
890    ///          original array, and stddev & madfm from the residual.
891    ///      <li>Smoothing: all four stats calculated from the recon array
892    ///          (which holds the smoothed data).
893    ///  </ul>
894
895    if(this->par.getFlagUserThreshold() ){
896      // if the user has defined a threshold, set this in the StatsContainer
897      this->Stats.setThreshold( this->par.getThreshold() );
898    }
899    else{
900      // only work out the stats if we need to.
901      // the only reason we don't is if the user has specified a threshold.
902   
903      this->Stats.setRobust(this->par.getFlagRobustStats());
904
905      if(this->par.isVerbose())
906        std::cout << "Calculating the cube statistics... " << std::flush;
907   
908      // size_t xysize = this->axisDim[0]*this->axisDim[1];
909
910      bool *mask = new bool[this->numPixels];
911      size_t vox=0,goodSize = 0;
912      for(size_t z=0;z<this->axisDim[2];z++){
913        for(size_t y=0;y<this->axisDim[1];y++){
914          for(size_t x=0;x<this->axisDim[0];x++){
915            //      vox = z * xysize + y*this->axisDim[0] + x;
916            bool isBlank=this->isBlank(vox);
917            bool statOK = this->par.isStatOK(x,y,z);
918            bool isFlagged = this->par.isFlaggedChannel(z);
919            mask[vox] = (!isBlank && !isFlagged && statOK );
920            if(mask[vox]) goodSize++;
921            vox++;
922          }
923        }
924      }
925
926      //      float mean,median,stddev,madfm;
927      if( this->par.getFlagATrous() ){
928        // Case #2 -- wavelet reconstruction
929        // just get mean & median from orig array, and rms & madfm from
930        // residual recompute array values to be residuals & then find
931        // stddev & madfm
932        if(!this->reconExists){
933          DUCHAMPERROR("setCubeStats", "Reconstruction not yet done! Cannot calculate stats!");
934        }
935        else{
936          float *tempArray = new float[goodSize];
937
938          goodSize=0;
939          vox=0;
940          for(size_t z=0;z<this->axisDim[2];z++){
941            for(size_t y=0;y<this->axisDim[1];y++){
942              for(size_t x=0;x<this->axisDim[0];x++){
943                //              vox = z * xysize + y*this->axisDim[0] + x;
944                if(mask[vox]) tempArray[goodSize++] = this->array[vox];
945                vox++;
946              }
947            }
948          }
949
950          // First, find the mean of the original array. Store it.
951          float mean = findMean<float>(tempArray, goodSize);
952       
953          // Now sort it and find the median. Store it.
954          float median = findMedian<float>(tempArray, goodSize, true);
955
956          // Now calculate the residuals and find the mean & median of
957          // them. We don't store these, but they are necessary to find
958          // the sttdev & madfm.
959          goodSize = 0;
960          //      for(int p=0;p<xysize;p++){
961          vox=0;
962          for(size_t z=0;z<this->axisDim[2];z++){
963            for(size_t y=0;y<this->axisDim[1];y++){
964              for(size_t x=0;x<this->axisDim[0];x++){
965                //            vox = z * xysize + p;
966              if(mask[vox])
967                tempArray[goodSize++] = this->array[vox] - this->recon[vox];
968              vox++;
969              }
970            }
971          }
972           
973          float stddev = findStddev<float>(tempArray, goodSize);
974
975          // Now find the madfm of the residuals. Store it.
976          float madfm = findMADFM<float>(tempArray, goodSize, true);
977
978          this->Stats.define(mean,median,stddev,madfm);
979
980          delete [] tempArray;
981        }
982      }
983      else if(this->par.getFlagSmooth()) {
984        // Case #3 -- smoothing
985        // get all four stats from the recon array, which holds the
986        // smoothed data. This can just be done with the
987        // StatsContainer::calculate function, using the mask generated
988        // earlier.
989        if(!this->reconExists){
990          DUCHAMPERROR("setCubeStats","Smoothing not yet done! Cannot calculate stats!");
991        }
992        else this->Stats.calculate(this->recon,this->numPixels,mask);
993      }
994      else{
995        // Case #1 -- default case, with no smoothing or reconstruction.
996        // get all four stats from the original array. This can just be
997        // done with the StatsContainer::calculate function, using the
998        // mask generated earlier.
999        this->Stats.calculate(this->array,this->numPixels,mask);
1000      }
1001
1002      this->Stats.setUseFDR( this->par.getFlagFDR() );
1003      // If the FDR method has been requested, define the P-value
1004      // threshold
1005      if(this->par.getFlagFDR())  this->setupFDR();
1006      else{
1007        // otherwise, calculate threshold based on the requested SNR cut
1008        // level, and then set the threshold parameter in the Par set.
1009        this->Stats.setThresholdSNR( this->par.getCut() );
1010        this->par.setThreshold( this->Stats.getThreshold() );
1011      }
1012   
1013      delete [] mask;
1014
1015    }
1016
1017    if(this->par.isVerbose()){
1018      std::cout << "Using ";
1019      if(this->par.getFlagFDR()) std::cout << "effective ";
1020      std::cout << "flux threshold of: ";
1021      float thresh = this->Stats.getThreshold();
1022      if(this->par.getFlagNegative()) thresh *= -1.;
1023      std::cout << thresh;
1024      if(this->par.getFlagGrowth()){
1025        std::cout << " and growing to threshold of: ";
1026        if(this->par.getFlagUserGrowthThreshold()) thresh= this->par.getGrowthThreshold();
1027        else thresh= this->Stats.snrToValue(this->par.getGrowthCut());
1028        if(this->par.getFlagNegative()) thresh *= -1.;
1029        std::cout << thresh;
1030      }
1031      std::cout << std::endl;
1032    }
1033
1034  }
1035  //--------------------------------------------------------------------
1036
1037  void Cube::setupFDR()
1038  {
1039    /// @details
1040    ///  Call the setupFDR(float *) function on the pixel array of the
1041    ///  cube. This is the usual way of running it.
1042    ///
1043    ///  However, if we are in smoothing mode, we calculate the FDR
1044    ///  parameters using the recon array, which holds the smoothed
1045    ///  data. Gives an error message if the reconExists flag is not set.
1046
1047    if(this->par.getFlagSmooth())
1048      if(this->reconExists) this->setupFDR(this->recon);
1049      else{
1050        DUCHAMPERROR("setupFDR", "Smoothing not done properly! Using original array for defining threshold.");
1051        this->setupFDR(this->array);
1052      }
1053    else if( this->par.getFlagATrous() ){
1054      if(this->reconExists) this->setupFDR(this->recon);
1055      else{
1056        DUCHAMPERROR("setupFDR", "Reconstruction not done properly! Using original array for defining threshold.");
1057        this->setupFDR(this->array);
1058      }
1059    }
1060    else{
1061      this->setupFDR(this->array);
1062    }
1063  }
1064  //--------------------------------------------------------------------
1065
1066  void Cube::setupFDR(float *input)
1067  {
1068    ///   @details
1069    ///   Determines the critical Probability value for the False
1070    ///   Discovery Rate detection routine. All pixels in the given arry
1071    ///   with Prob less than this value will be considered detections.
1072    ///
1073    ///   Note that the Stats of the cube need to be calculated first.
1074    ///
1075    ///   The Prob here is the probability, assuming a Normal
1076    ///   distribution, of obtaining a value as high or higher than the
1077    ///   pixel value (ie. only the positive tail of the PDF).
1078    ///
1079    ///   The probabilities are calculated using the
1080    ///   StatsContainer::getPValue(), which calculates the z-statistic,
1081    ///   and then the probability via
1082    ///   \f$0.5\operatorname{erfc}(z/\sqrt{2})\f$ -- giving the positive
1083    ///   tail probability.
1084
1085    // first calculate p-value for each pixel -- assume Gaussian for now.
1086
1087    float *orderedP = new float[this->numPixels];
1088    size_t count = 0;
1089    for(size_t x=0;x<this->axisDim[0];x++){
1090      for(size_t y=0;y<this->axisDim[1];y++){
1091        for(size_t z=0;z<this->axisDim[2];z++){
1092          size_t pix = z * this->axisDim[0]*this->axisDim[1] +
1093            y*this->axisDim[0] + x;
1094
1095          if(!(this->par.isBlank(this->array[pix])) && !this->par.isFlaggedChannel(z)){
1096            // only look at non-blank, valid pixels
1097            //            orderedP[count++] = this->Stats.getPValue(this->array[pix]);
1098            orderedP[count++] = this->Stats.getPValue(input[pix]);
1099          }
1100        }
1101      }
1102    }
1103
1104    // now order them
1105    std::stable_sort(orderedP,orderedP+count);
1106 
1107    // now find the maximum P value.
1108    size_t max = 0;
1109    double cN = 0.;
1110    // Calculate number of correlated pixels. Assume all spatial
1111    // pixels within the beam are correlated, and multiply this by the
1112    // number of correlated pixels as determined by the beam
1113    int numVox;
1114    if(this->head.beam().isDefined()) numVox = int(ceil(this->head.beam().area()));
1115    else  numVox = 1;
1116    if(this->head.canUseThirdAxis()) numVox *= this->par.getFDRnumCorChan();
1117    for(int psfCtr=1;psfCtr<=numVox;psfCtr++) cN += 1./float(psfCtr);
1118
1119    double slope = this->par.getAlpha()/cN;
1120    for(size_t loopCtr=0;loopCtr<count;loopCtr++) {
1121      if( orderedP[loopCtr] < (slope * double(loopCtr+1)/ double(count)) ){
1122        max = loopCtr;
1123      }
1124    }
1125
1126    this->Stats.setPThreshold( orderedP[max] );
1127
1128
1129    // Find real value of the P threshold by finding the inverse of the
1130    //  error function -- root finding with brute force technique
1131    //  (relatively slow, but we only do it once).
1132    double zStat     = 0.;
1133    double deltaZ    = 0.1;
1134    double tolerance = 1.e-6;
1135    double initial   = 0.5 * erfc(zStat/M_SQRT2) - this->Stats.getPThreshold();
1136    do{
1137      zStat+=deltaZ;
1138      double current = 0.5 * erfc(zStat/M_SQRT2) - this->Stats.getPThreshold();
1139      if((initial*current)<0.){
1140        zStat-=deltaZ;
1141        deltaZ/=2.;
1142      }
1143    }while(deltaZ>tolerance);
1144    this->Stats.setThreshold( zStat*this->Stats.getSpread() +
1145                              this->Stats.getMiddle() );
1146
1147    ///////////////////////////
1148    //   if(TESTING){
1149    //     std::stringstream ss;
1150    //     float *xplot = new float[2*max];
1151    //     for(int i=0;i<2*max;i++) xplot[i]=float(i)/float(count);
1152    //     cpgopen("latestFDR.ps/vcps");
1153    //     cpgpap(8.,1.);
1154    //     cpgslw(3);
1155    //     cpgenv(0,float(2*max)/float(count),0,orderedP[2*max],0,0);
1156    //     cpglab("i/N (index)", "p-value","");
1157    //     cpgpt(2*max,xplot,orderedP,DOT);
1158
1159    //     ss.str("");
1160    //     ss << "\\gm = " << this->Stats.getMiddle();
1161    //     cpgtext(max/(4.*count),0.9*orderedP[2*max],ss.str().c_str());
1162    //     ss.str("");
1163    //     ss << "\\gs = " << this->Stats.getSpread();
1164    //     cpgtext(max/(4.*count),0.85*orderedP[2*max],ss.str().c_str());
1165    //     ss.str("");
1166    //     ss << "Slope = " << slope;
1167    //     cpgtext(max/(4.*count),0.8*orderedP[2*max],ss.str().c_str());
1168    //     ss.str("");
1169    //     ss << "Alpha = " << this->par.getAlpha();
1170    //     cpgtext(max/(4.*count),0.75*orderedP[2*max],ss.str().c_str());
1171    //     ss.str("");
1172    //     ss << "c\\dN\\u = " << cN;
1173    //     cpgtext(max/(4.*count),0.7*orderedP[2*max],ss.str().c_str());
1174    //     ss.str("");
1175    //     ss << "max = "<<max << " (out of " << count << ")";
1176    //     cpgtext(max/(4.*count),0.65*orderedP[2*max],ss.str().c_str());
1177    //     ss.str("");
1178    //     ss << "Threshold = "<<zStat*this->Stats.getSpread()+this->Stats.getMiddle();
1179    //     cpgtext(max/(4.*count),0.6*orderedP[2*max],ss.str().c_str());
1180 
1181    //     cpgslw(1);
1182    //     cpgsci(RED);
1183    //     cpgmove(0,0);
1184    //     cpgdraw(1,slope);
1185    //     cpgsci(BLUE);
1186    //     cpgsls(DOTTED);
1187    //     cpgmove(0,orderedP[max]);
1188    //     cpgdraw(2*max/float(count),orderedP[max]);
1189    //     cpgmove(max/float(count),0);
1190    //     cpgdraw(max/float(count),orderedP[2*max]);
1191    //     cpgsci(GREEN);
1192    //     cpgsls(SOLID);
1193    //     for(int i=1;i<=10;i++) {
1194    //       ss.str("");
1195    //       ss << float(i)/2. << "\\gs";
1196    //       float prob = 0.5*erfc((float(i)/2.)/M_SQRT2);
1197    //       cpgtick(0, 0, 0, orderedP[2*max],
1198    //        prob/orderedP[2*max],
1199    //        0, 1, 1.5, 90., ss.str().c_str());
1200    //     }
1201    //     cpgend();
1202    //     delete [] xplot;
1203    //   }
1204    delete [] orderedP;
1205
1206  }
1207  //--------------------------------------------------------------------
1208
1209  void Cube::Search()
1210  {
1211    /// @details
1212    /// This acts as a switching function to select the correct searching function based on the user's parameters.
1213    /// @param verboseFlag If true, text is written to stdout describing the search function being used.
1214    if(this->par.getFlagATrous()){
1215      if(this->par.isVerbose()) std::cout<<"Commencing search in reconstructed cube..."<<std::endl;
1216      this->ReconSearch();
1217    } 
1218    else if(this->par.getFlagSmooth()){
1219      if(this->par.isVerbose()) std::cout<<"Commencing search in smoothed cube..."<<std::endl;
1220      this->SmoothSearch();
1221    }
1222    else{
1223      if(this->par.isVerbose()) std::cout<<"Commencing search in cube..."<<std::endl;
1224      this->CubicSearch();
1225    }
1226
1227  }
1228
1229  bool Cube::isDetection(size_t x, size_t y, size_t z)
1230  {
1231    ///  @details
1232    /// Is a given voxel at position (x,y,z) a detection, based on the statistics
1233    ///  in the Cube's StatsContainer?
1234    /// If the pixel lies outside the valid range for the data array,
1235    /// return false.
1236    /// \param x X-value of the Cube's voxel to be tested.
1237    /// \param y Y-value of the Cube's voxel to be tested.
1238    /// \param z Z-value of the Cube's voxel to be tested.
1239
1240    size_t voxel = z*axisDim[0]*axisDim[1] + y*axisDim[0] + x;
1241    return DataArray::isDetection(array[voxel]);
1242  }
1243  //--------------------------------------------------------------------
1244
1245  void Cube::calcObjectFluxes()
1246  {
1247    /// @details
1248    ///  A function to calculate the fluxes and centroids for each
1249    ///  object in the Cube's list of detections. Uses
1250    ///  Detection::calcFluxes() for each object.
1251
1252    std::vector<Detection>::iterator obj;
1253    for(obj=this->objectList->begin();obj<this->objectList->end();obj++){
1254      obj->calcFluxes(this->array, this->axisDim);
1255      if(!this->par.getFlagUserThreshold())
1256          obj->setPeakSNR( (obj->getPeakFlux() - this->Stats.getMiddle()) / this->Stats.getSpread() );
1257    }
1258  }
1259  //--------------------------------------------------------------------
1260
1261  void Cube::calcObjectWCSparams()
1262  {
1263    ///  @details
1264    ///  A function that calculates the WCS parameters for each object in the
1265    ///  Cube's list of detections.
1266    ///  Each object gets an ID number assigned to it (which is simply its order
1267    ///   in the list), and if the WCS is good, the WCS paramters are calculated.
1268
1269    std::vector<Detection>::iterator obj;
1270    int ct=0;
1271    ProgressBar bar;
1272    if(this->par.isVerbose()) bar.init(this->objectList->size());
1273    for(obj=this->objectList->begin();obj<this->objectList->end();obj++){
1274      //      std::cerr << ct << ' ' << this->array << '\n';
1275      if(this->par.isVerbose()) bar.update(ct);
1276      obj->setID(ct++);
1277      if(!obj->hasParams()){
1278        obj->setCentreType(this->par.getPixelCentre());
1279        obj->calcFluxes(this->array,this->axisDim);
1280        obj->findShape(this->array,this->axisDim,this->head);
1281        //      obj->calcWCSparams(this->array,this->axisDim,this->head);
1282        obj->calcWCSparams(this->head);
1283        obj->calcIntegFlux(this->array,this->axisDim,this->head, this->par);
1284
1285        if(!this->par.getFlagUserThreshold()){
1286           
1287            float peak=obj->getPeakFlux();
1288            if(this->par.getFlagATrous() || this->par.getFlagSmooth()) {
1289                // for these situations, need to measure peak flux in the reconstructed array, where we do the searching
1290                Detection *newobj = new Detection(*obj);
1291                newobj->calcFluxes(this->recon,this->axisDim);
1292                peak=newobj->getPeakFlux();
1293            }
1294            obj->setPeakSNR( (peak - this->Stats.getMiddle()) / this->Stats.getSpread() );
1295
1296            if(!this->par.getFlagSmooth()){
1297                obj->setTotalFluxError( sqrt(float(obj->getSize())) * this->Stats.getSpread() );
1298                obj->setIntegFluxError( sqrt(double(obj->getSize())) * this->Stats.getSpread() );
1299            }
1300
1301            if(!this->head.is2D()){
1302                double x=obj->getXcentre(),y=obj->getYcentre(),z1=obj->getZcentre(),z2=z1+1;
1303                double dz=this->head.pixToVel(x,y,z1)-this->head.pixToVel(x,y,z2);
1304                obj->setIntegFluxError( obj->getIntegFluxError() * fabs(dz));
1305            }
1306            if(head.needBeamSize()) obj->setIntegFluxError( obj->getIntegFluxError()  / head.beam().area() );
1307        }
1308
1309
1310      }
1311    } 
1312    if(this->par.isVerbose()) bar.remove();
1313
1314    if(!this->head.isWCS()){
1315      // if the WCS is bad, set the object names to Obj01 etc
1316      int numspaces = int(log10(this->objectList->size())) + 1;
1317      std::stringstream ss;
1318      for(size_t i=0;i<this->objectList->size();i++){
1319        ss.str("");
1320        ss << "Obj" << std::setfill('0') << std::setw(numspaces) << i+1;
1321        this->objectList->at(i).setName(ss.str());
1322      }
1323    }
1324 
1325  }
1326  //--------------------------------------------------------------------
1327
1328  void Cube::calcObjectWCSparams(std::vector< std::vector<PixelInfo::Voxel> > bigVoxList)
1329  {
1330    ///  @details
1331    ///  A function that calculates the WCS parameters for each object in the
1332    ///  Cube's list of detections.
1333    ///  Each object gets an ID number assigned to it (which is simply its order
1334    ///   in the list), and if the WCS is good, the WCS paramters are calculated.
1335    ///
1336    ///  This version uses vectors of Voxels to define the fluxes.
1337    ///
1338    /// \param bigVoxList A vector of vectors of Voxels, with the same
1339    /// number of elements as this->objectList, where each element is a
1340    /// vector of Voxels corresponding to the same voxels in each
1341    /// detection and indicating the flux of each voxel.
1342 
1343    std::vector<Detection>::iterator obj;
1344    int ct=0;
1345    for(obj=this->objectList->begin();obj<this->objectList->end();obj++){
1346      obj->setID(ct+1);
1347      if(!obj->hasParams()){
1348        obj->setCentreType(this->par.getPixelCentre());
1349        obj->calcFluxes(bigVoxList[ct]);
1350        obj->calcWCSparams(this->head);
1351        obj->calcIntegFlux(this->axisDim[2],bigVoxList[ct],this->head);
1352       
1353        if(!this->par.getFlagUserThreshold()){
1354
1355            float peak=obj->getPeakFlux();
1356            if(this->par.getFlagATrous() || this->par.getFlagSmooth()) {
1357                // for these situations, need to measure peak flux in the reconstructed array, where we do the searching
1358                Detection *newobj = new Detection(*obj);
1359                newobj->calcFluxes(this->recon,this->axisDim);
1360                peak=newobj->getPeakFlux();
1361            }
1362            obj->setPeakSNR( (peak - this->Stats.getMiddle()) / this->Stats.getSpread() );
1363
1364            if(!this->par.getFlagSmooth()){
1365                obj->setTotalFluxError( sqrt(float(obj->getSize())) * this->Stats.getSpread() );
1366                obj->setIntegFluxError( sqrt(double(obj->getSize())) * this->Stats.getSpread() );
1367            }
1368
1369          if(!this->head.is2D()){
1370              double x=obj->getXcentre(),y=obj->getYcentre(),z1=obj->getZcentre(),z2=z1+1;
1371              double dz=this->head.pixToVel(x,y,z1)-this->head.pixToVel(x,y,z2);
1372              obj->setIntegFluxError( obj->getIntegFluxError() * fabs(dz));
1373          }
1374          if(head.needBeamSize()) obj->setIntegFluxError( obj->getIntegFluxError()  / head.beam().area() );
1375        }
1376
1377      }
1378      ct++;
1379    } 
1380
1381    if(!this->head.isWCS()){
1382      // if the WCS is bad, set the object names to Obj01 etc
1383      int numspaces = int(log10(this->objectList->size())) + 1;
1384      std::stringstream ss;
1385      for(size_t i=0;i<this->objectList->size();i++){
1386        ss.str("");
1387        ss << "Obj" << std::setfill('0') << std::setw(numspaces) << i+1;
1388        this->objectList->at(i).setName(ss.str());
1389      }
1390    }
1391 
1392  }
1393  //--------------------------------------------------------------------
1394
1395  void Cube::calcObjectWCSparams(std::map<PixelInfo::Voxel,float> &voxelMap)
1396  {
1397    ///  @details
1398    ///  A function that calculates the WCS parameters for each object in the
1399    ///  Cube's list of detections.
1400    ///  Each object gets an ID number assigned to it (which is simply its order
1401    ///   in the list), and if the WCS is good, the WCS paramters are calculated.
1402    ///
1403    ///  This version uses vectors of Voxels to define the fluxes.
1404    ///
1405    /// \param bigVoxList A vector of vectors of Voxels, with the same
1406    /// number of elements as this->objectList, where each element is a
1407    /// vector of Voxels corresponding to the same voxels in each
1408    /// detection and indicating the flux of each voxel.
1409 
1410    std::vector<Detection>::iterator obj;
1411    int ct=0;
1412    for(obj=this->objectList->begin();obj<this->objectList->end();obj++){
1413      obj->setID(ct+1);
1414      if(!obj->hasParams()){
1415        obj->setCentreType(this->par.getPixelCentre());
1416        obj->calcFluxes(voxelMap);
1417        obj->calcWCSparams(this->head);
1418        obj->calcIntegFlux(this->axisDim[2],voxelMap,this->head);
1419       
1420        if(!this->par.getFlagUserThreshold()){
1421           
1422            float peak=obj->getPeakFlux();
1423            if(this->par.getFlagATrous() || this->par.getFlagSmooth()) {
1424                // for these situations, need to measure peak flux in the reconstructed array, where we do the searching
1425                Detection *newobj = new Detection(*obj);
1426                newobj->calcFluxes(this->recon,this->axisDim);
1427                peak=newobj->getPeakFlux();
1428            }
1429            obj->setPeakSNR( (peak - this->Stats.getMiddle()) / this->Stats.getSpread() );
1430
1431            if(!this->par.getFlagSmooth()){
1432                obj->setTotalFluxError( sqrt(float(obj->getSize())) * this->Stats.getSpread() );
1433                obj->setIntegFluxError( sqrt(double(obj->getSize())) * this->Stats.getSpread() );
1434            }
1435
1436          if(!this->head.is2D()){
1437              double x=obj->getXcentre(),y=obj->getYcentre(),z1=obj->getZcentre(),z2=z1+1;
1438              double dz=this->head.pixToVel(x,y,z1)-this->head.pixToVel(x,y,z2);
1439              obj->setIntegFluxError( obj->getIntegFluxError() * fabs(dz));
1440          }
1441          if(head.needBeamSize()) obj->setIntegFluxError( obj->getIntegFluxError()  / head.beam().area() );
1442        }
1443      }
1444      ct++;
1445    } 
1446
1447    if(!this->head.isWCS()){
1448      // if the WCS is bad, set the object names to Obj01 etc
1449      int numspaces = int(log10(this->objectList->size())) + 1;
1450      std::stringstream ss;
1451      for(size_t i=0;i<this->objectList->size();i++){
1452        ss.str("");
1453        ss << "Obj" << std::setfill('0') << std::setw(numspaces) << i+1;
1454        this->objectList->at(i).setName(ss.str());
1455      }
1456    }
1457 
1458  }
1459  //--------------------------------------------------------------------
1460
1461  void Cube::updateDetectMap()
1462  {
1463    /// @details A function that, for each detected object in the
1464    ///  cube's list, increments the cube's detection map by the
1465    ///  required amount at each pixel. Uses
1466    ///  updateDetectMap(Detection).
1467
1468    std::vector<Detection>::iterator obj;
1469    for(obj=this->objectList->begin();obj<this->objectList->end();obj++){
1470      this->updateDetectMap(*obj);
1471    }
1472
1473  }
1474  //--------------------------------------------------------------------
1475
1476  void Cube::updateDetectMap(Detection obj)
1477  {
1478    ///  @details
1479    ///  A function that, for the given object, increments the cube's
1480    ///  detection map by the required amount at each pixel.
1481    ///
1482    ///  \param obj A Detection object that is being incorporated into the map.
1483
1484    std::vector<Voxel> vlist = obj.getPixelSet();
1485    for(std::vector<Voxel>::iterator vox=vlist.begin();vox<vlist.end();vox++) {
1486      if(this->numNondegDim==1)
1487        this->detectMap[vox->getZ()]++;
1488      else
1489        this->detectMap[vox->getX()+vox->getY()*this->axisDim[0]]++;
1490    }
1491  }
1492  //--------------------------------------------------------------------
1493
1494  float Cube::enclosedFlux(Detection obj)
1495  {
1496    ///  @details
1497    ///   A function to calculate the flux enclosed by the range
1498    ///    of pixels detected in the object obj (not necessarily all
1499    ///    pixels will have been detected).
1500    ///
1501    ///   \param obj The Detection under consideration.
1502
1503    obj.calcFluxes(this->array, this->axisDim);
1504    int xsize = obj.getXmax()-obj.getXmin()+1;
1505    int ysize = obj.getYmax()-obj.getYmin()+1;
1506    int zsize = obj.getZmax()-obj.getZmin()+1;
1507    std::vector <float> fluxArray(xsize*ysize*zsize,0.);
1508    for(int x=0;x<xsize;x++){
1509      for(int y=0;y<ysize;y++){
1510        for(int z=0;z<zsize;z++){
1511          fluxArray[x+y*xsize+z*ysize*xsize] =
1512            this->getPixValue(x+obj.getXmin(),
1513                              y+obj.getYmin(),
1514                              z+obj.getZmin());
1515          if(this->par.getFlagNegative())
1516            fluxArray[x+y*xsize+z*ysize*xsize] *= -1.;
1517        }
1518      }
1519    }
1520    float sum = 0.;
1521    for(size_t i=0;i<fluxArray.size();i++)
1522      if(!this->par.isBlank(fluxArray[i])) sum+=fluxArray[i];
1523    return sum;
1524  }
1525  //--------------------------------------------------------------------
1526
1527  void Cube::setupColumns()
1528  {
1529    /// @details
1530    ///  A front-end to the two setup routines in columns.cc. 
1531    ///
1532    ///  This first gets the starting precisions, which may be from
1533    ///  the input parameters. It then sets up the columns (calculates
1534    ///  their widths and precisions and so on based on the values
1535    ///  within). The precisions are also stored in each Detection
1536    ///  object.
1537    ///
1538    ///  Need to have called calcObjectWCSparams() somewhere
1539    ///  beforehand.
1540
1541    std::vector<Detection>::iterator obj;
1542    for(obj=this->objectList->begin();obj<this->objectList->end();obj++){
1543      obj->setVelPrec( this->par.getPrecVel() );
1544      obj->setFpeakPrec( this->par.getPrecFlux() );
1545      obj->setXYZPrec( Catalogues::prXYZ );
1546      obj->setPosPrec( Catalogues::prWPOS );
1547      obj->setFintPrec( this->par.getPrecFlux() );
1548      obj->setSNRPrec( this->par.getPrecSNR() );
1549    }
1550 
1551    this->fullCols = getFullColSet(*(this->objectList), this->head);
1552
1553    if(this->par.getFlagUserThreshold()){
1554        this->fullCols.removeColumn("FTOTERR");
1555        this->fullCols.removeColumn("SNRPEAK");
1556        this->fullCols.removeColumn("FINTERR");
1557    }
1558
1559    if(this->par.getFlagSmooth()){
1560        this->fullCols.removeColumn("FTOTERR");
1561        this->fullCols.removeColumn("FINTERR");
1562    }
1563
1564    if(!this->head.isWCS()){
1565        this->fullCols.removeColumn("RA");
1566        this->fullCols.removeColumn("DEC");
1567        this->fullCols.removeColumn("VEL");
1568        this->fullCols.removeColumn("w_RA");
1569        this->fullCols.removeColumn("w_DEC");
1570    }
1571
1572    int vel,fpeak,fint,pos,xyz,snr;
1573    vel = fullCols.column("VEL").getPrecision();
1574    fpeak = fullCols.column("FPEAK").getPrecision();
1575    if(!this->par.getFlagUserThreshold())
1576        snr = fullCols.column("SNRPEAK").getPrecision();
1577    xyz = fullCols.column("X").getPrecision();
1578    xyz = std::max(xyz, fullCols.column("Y").getPrecision());
1579    xyz = std::max(xyz, fullCols.column("Z").getPrecision());
1580    if(this->head.isWCS()) fint = fullCols.column("FINT").getPrecision();
1581    else fint = fullCols.column("FTOT").getPrecision();
1582    pos = fullCols.column("WRA").getPrecision();
1583    pos = std::max(pos, fullCols.column("WDEC").getPrecision());
1584 
1585    for(obj=this->objectList->begin();obj<this->objectList->end();obj++){
1586      obj->setVelPrec(vel);
1587      obj->setFpeakPrec(fpeak);
1588      obj->setXYZPrec(xyz);
1589      obj->setPosPrec(pos);
1590      obj->setFintPrec(fint);
1591      if(!this->par.getFlagUserThreshold())
1592          obj->setSNRPrec(snr);
1593    }
1594
1595  }
1596  //--------------------------------------------------------------------
1597
1598  bool Cube::objAtSpatialEdge(Detection obj)
1599  {
1600    ///  @details
1601    ///   A function to test whether the object obj
1602    ///    lies at the edge of the cube's spatial field --
1603    ///    either at the boundary, or next to BLANKs.
1604    ///
1605    ///   \param obj The Detection under consideration.
1606
1607    bool atEdge = false;
1608
1609    size_t pix = 0;
1610    std::vector<Voxel> voxlist = obj.getPixelSet();
1611    while(!atEdge && pix<voxlist.size()){
1612      // loop over each pixel in the object, until we find an edge pixel.
1613      for(int dx=-1;dx<=1;dx+=2){
1614        if( ((voxlist[pix].getX()+dx)<0) ||
1615            ((voxlist[pix].getX()+dx)>=int(this->axisDim[0])) )
1616          atEdge = true;
1617        else if(this->isBlank(voxlist[pix].getX()+dx,
1618                              voxlist[pix].getY(),
1619                              voxlist[pix].getZ()))
1620          atEdge = true;
1621      }
1622      for(int dy=-1;dy<=1;dy+=2){
1623        if( ((voxlist[pix].getY()+dy)<0) ||
1624            ((voxlist[pix].getY()+dy)>=int(this->axisDim[1])) )
1625          atEdge = true;
1626        else if(this->isBlank(voxlist[pix].getX(),
1627                              voxlist[pix].getY()+dy,
1628                              voxlist[pix].getZ()))
1629          atEdge = true;
1630      }
1631      pix++;
1632    }
1633
1634    return atEdge;
1635  }
1636  //--------------------------------------------------------------------
1637
1638  bool Cube::objAtSpectralEdge(Detection obj)
1639  {
1640    ///   @details
1641    ///   A function to test whether the object obj
1642    ///    lies at the edge of the cube's spectral extent --
1643    ///    either at the boundary, or next to BLANKs.
1644    ///
1645    ///   \param obj The Detection under consideration.
1646
1647    bool atEdge = false;
1648
1649    size_t pix = 0;
1650    std::vector<Voxel> voxlist = obj.getPixelSet();
1651    while(!atEdge && pix<voxlist.size()){
1652      // loop over each pixel in the object, until we find an edge pixel.
1653      for(int dz=-1;dz<=1;dz+=2){
1654        if( ((voxlist[pix].getZ()+dz)<0) ||
1655            ((voxlist[pix].getZ()+dz)>=int(this->axisDim[2])) )
1656          atEdge = true;
1657        else if(this->isBlank(voxlist[pix].getX(),
1658                              voxlist[pix].getY(),
1659                              voxlist[pix].getZ()+dz))
1660          atEdge = true;
1661      }
1662      pix++;
1663    }
1664
1665    return atEdge;
1666  }
1667  //--------------------------------------------------------------------
1668
1669    bool Cube::objNextToFlaggedChan(Detection &obj)
1670    {
1671   ///   @details A function to test whether the object obj lies
1672    ///   adjacent to a flagged channel or straddles one or more
1673    ///   (conceivably, you could have disconnected channels in your
1674    ///   object that don't touch flagged channels, but lie either side -
1675    ///   in this case we want to flag the object).
1676    ///
1677    ///   We scan across the channel range from one below the 
1678    ///   \param obj The Detection under consideration.
1679
1680        bool isNext=false;
1681        int zstart=std::max(obj.getZmin()-1,0L);
1682        int zend=std::min(obj.getZmax()+1,long(this->axisDim[2]-1));
1683        for(int z=zstart;z<=zend && !isNext; z++)
1684            isNext = isNext || this->par.isFlaggedChannel(z);
1685        return isNext;
1686
1687    }
1688
1689  //--------------------------------------------------------------------
1690
1691  void Cube::setObjectFlags()
1692  {
1693    /// @details
1694    ///   A function to set any warning flags for all the detected objects
1695    ///    associated with the cube.
1696    ///   Flags to be looked for:
1697    ///    <ul><li> Negative enclosed flux (N)
1698    ///        <li> Detection at edge of field (spatially) (E)
1699    ///        <li> Detection at edge of spectral region (S)
1700    ///    </ul>
1701
1702    std::vector<Detection>::iterator obj;
1703    for(obj=this->objectList->begin();obj<this->objectList->end();obj++){
1704
1705      if( this->enclosedFlux(*obj) < 0. ) 
1706        obj->addToFlagText("N");
1707
1708      if( this->objAtSpatialEdge(*obj) )
1709        obj->addToFlagText("E");
1710
1711      if( this->objAtSpectralEdge(*obj) && (this->axisDim[2] > 2))
1712        obj->addToFlagText("S");
1713
1714      if( this->objNextToFlaggedChan(*obj) )
1715        obj->addToFlagText("F");
1716
1717      if(obj->getFlagText()=="") obj->addToFlagText("-");
1718
1719    }
1720
1721  }
1722  //--------------------------------------------------------------------
1723
1724    OUTCOME Cube::saveReconstructedCube()
1725    {
1726        std::string report;
1727        OUTCOME result=SUCCESS;
1728        if(!this->par.getFlagUsePrevious()){
1729            if(this->par.getFlagATrous()){
1730                if(this->par.getFlagOutputRecon()){
1731                    if(this->par.isVerbose())
1732                        std::cout << "  Saving reconstructed cube to " << this->par.outputReconFile() << "... "<<std::flush;
1733                    WriteReconArray writer(this);
1734                    writer.setFilename(this->par.outputReconFile());
1735                    result = writer.write();
1736                    report=(result==FAILURE)?"Failed!":"done.";
1737                    if(this->par.isVerbose()) std::cout << report << "\n";
1738                }
1739                if(result==SUCCESS && this->par.getFlagOutputResid()){
1740                    if(this->par.isVerbose())
1741                        std::cout << "  Saving reconstruction residual cube to " << this->par.outputResidFile() << "... "<<std::flush;
1742                    WriteReconArray writer(this);
1743                    writer.setFilename(this->par.outputResidFile());
1744                    writer.setIsRecon(false);
1745                    result = writer.write();
1746                    report=(result==FAILURE)?"Failed!":"done.";
1747                    if(this->par.isVerbose()) std::cout << report << "\n";
1748                }
1749            }
1750        }
1751        return result;
1752    }
1753
1754    OUTCOME Cube::saveSmoothedCube()
1755    {
1756        std::string report;
1757        OUTCOME result=SUCCESS;
1758        if(!this->par.getFlagUsePrevious()){
1759            if(this->par.getFlagSmooth() && this->par.getFlagOutputSmooth()){
1760                if(this->par.isVerbose())
1761                    std::cout << "  Saving smoothed cube to " << this->par.outputSmoothFile() << "... "<<std::flush;
1762                WriteSmoothArray writer(this);
1763                writer.setFilename(this->par.outputSmoothFile());
1764                result = writer.write();
1765                report=(result==FAILURE)?"Failed!":"done.";
1766                if(this->par.isVerbose()) std::cout << report << "\n";
1767            }
1768        }
1769        return result;
1770    }
1771
1772    OUTCOME Cube::saveMaskCube()
1773    {
1774        std::string report;
1775        OUTCOME result=SUCCESS;
1776        if(this->par.getFlagOutputMask()){
1777            if(this->par.isVerbose())
1778                std::cout << "  Saving mask cube to " << this->par.outputMaskFile() << "... "<<std::flush;
1779            WriteMaskArray writer(this);
1780            writer.setFilename(this->par.outputMaskFile());
1781            OUTCOME result = writer.write();
1782            report=(result==FAILURE)?"Failed!":"done.";
1783            if(this->par.isVerbose()) std::cout << report << "\n";
1784        }
1785        return result;
1786    }
1787
1788    OUTCOME Cube::saveMomentMapImage()
1789    {
1790        std::string report;
1791        OUTCOME result=SUCCESS;
1792        if(this->par.getFlagOutputMomentMap()){
1793            if(this->par.isVerbose())
1794                std::cout << "  Saving moment map to " << this->par.outputMomentMapFile() << "... "<<std::flush;
1795            WriteMomentMapArray writer(this);
1796            writer.setFilename(this->par.outputMomentMapFile());
1797            OUTCOME result = writer.write();
1798            report=(result==FAILURE)?"Failed!":"done.";
1799            if(this->par.isVerbose()) std::cout << report << "\n";
1800        }
1801        return result;
1802    }
1803
1804    OUTCOME Cube::saveMomentMask()
1805    {
1806        std::string report;
1807        OUTCOME result=SUCCESS;
1808        if(this->par.getFlagOutputMomentMask()){
1809            if(this->par.isVerbose())
1810                std::cout << "  Saving moment-0 mask to " << this->par.outputMomentMaskFile() << "... "<<std::flush;
1811            WriteMomentMaskArray writer(this);
1812            writer.setFilename(this->par.outputMomentMaskFile());
1813            OUTCOME result = writer.write();
1814            report=(result==FAILURE)?"Failed!":"done.";
1815            if(this->par.isVerbose()) std::cout << report << "\n";
1816        }
1817        return result;
1818    }
1819
1820    OUTCOME Cube::saveBaselineCube()
1821    {
1822        std::string report;
1823        OUTCOME result=SUCCESS;
1824        if(this->par.getFlagOutputBaseline()){
1825            if(this->par.isVerbose())
1826                std::cout << "  Saving baseline cube to " << this->par.outputBaselineFile() << "... "<<std::flush;
1827            WriteBaselineArray writer(this);
1828            writer.setFilename(this->par.outputBaselineFile());
1829            OUTCOME result = writer.write();
1830            report=(result==FAILURE)?"Failed!":"done.";
1831            if(this->par.isVerbose()) std::cout << report << "\n";
1832        }
1833        return result;
1834    }
1835   
1836    void Cube::writeToFITS()
1837    {
1838        this->saveReconstructedCube();
1839        this->saveSmoothedCube();
1840        this->saveMomentMapImage();
1841        this->saveMomentMask();
1842        this->saveBaselineCube();
1843        this->saveMaskCube();
1844    }
1845
1846
1847  /****************************************************************/
1848  /////////////////////////////////////////////////////////////
1849  //// Functions for Image class
1850  /////////////////////////////////////////////////////////////
1851
1852  Image::Image(size_t size)
1853  {
1854    this->numPixels = this->numDim = 0;
1855    this->minSize = 2;
1856    if(!this->arrayAllocated){
1857        this->array = new float[size];
1858        this->arrayAllocated = true;
1859    }
1860    this->numPixels = size;
1861    this->axisDim = new size_t[2];
1862    this->axisDimAllocated = true;
1863    this->numDim = 2;
1864  }
1865  //--------------------------------------------------------------------
1866
1867  Image::Image(size_t *dimensions)
1868  {
1869    this->numPixels = this->numDim = 0;
1870    this->minSize = 2;
1871    size_t size = dimensions[0] * dimensions[1];
1872    this->numPixels = size;
1873    this->array = new float[size];
1874    this->arrayAllocated = true;
1875    this->numDim=2;
1876    this->axisDim = new size_t[2];
1877    this->axisDimAllocated = true;
1878    for(int i=0;i<2;i++) this->axisDim[i] = dimensions[i];
1879  }
1880  //--------------------------------------------------------------------
1881  Image::Image(const Image &i):
1882    DataArray(i)
1883  {
1884    this->operator=(i);
1885  }
1886
1887  Image& Image::operator=(const Image &i)
1888  {
1889    if(this==&i) return *this;
1890    ((DataArray &) *this) = i;
1891    this->minSize = i.minSize;
1892    return *this;
1893  }
1894
1895  //--------------------------------------------------------------------
1896
1897  void Image::saveArray(float *input, size_t size)
1898  {
1899    /// @details
1900    /// Saves the array in input to the pixel array Image::array.
1901    /// The size of the array given must be the same as the current number of
1902    /// pixels, else an error message is returned and nothing is done.
1903    /// \param input The array of values to be saved.
1904    /// \param size The size of input.
1905
1906    if(size != this->numPixels){
1907      DUCHAMPERROR("Image::saveArray", "Input array different size to existing array. Cannot save.");
1908    }
1909    else {
1910      if(this->numPixels>0 && this->arrayAllocated) delete [] array;
1911      this->numPixels = size;
1912      if(this->numPixels>0){
1913        this->array = new float[size];
1914        this->arrayAllocated = true;
1915        for(size_t i=0;i<size;i++) this->array[i] = input[i];
1916      }
1917    }
1918  }
1919  //--------------------------------------------------------------------
1920
1921  void Image::extractSpectrum(float *Array, size_t *dim, size_t pixel)
1922  {
1923    /// @details
1924    ///  A function to extract a 1-D spectrum from a 3-D array.
1925    ///  The array is assumed to be 3-D with the third dimension the spectral one.
1926    ///  The spectrum extracted is the one lying in the spatial pixel referenced
1927    ///    by the third argument.
1928    ///  The extracted spectrum is stored in the pixel array Image::array.
1929    /// \param Array The array containing the pixel values, from which
1930    ///               the spectrum is extracted.
1931    /// \param dim The array of dimension values.
1932    /// \param pixel The spatial pixel that contains the desired spectrum.
1933
1934    if(pixel>=dim[0]*dim[1]){
1935      DUCHAMPERROR("Image::extractSpectrum", "Requested spatial pixel outside allowed range. Cannot save.");
1936    }
1937    else if(dim[2] != this->numPixels){
1938      DUCHAMPERROR("Image::extractSpectrum", "Input array different size to existing array. Cannot save.");
1939    }
1940    else {
1941      if(this->numPixels>0 && this->arrayAllocated) delete [] array;
1942      this->numPixels = dim[2];
1943      if(this->numPixels>0){
1944        this->array = new float[dim[2]];
1945        this->arrayAllocated = true;
1946        for(size_t z=0;z<dim[2];z++) this->array[z] = Array[z*dim[0]*dim[1] + pixel];
1947      }
1948    }
1949  }
1950  //--------------------------------------------------------------------
1951
1952  void Image::extractSpectrum(Cube &cube, size_t pixel)
1953  {
1954    /// @details
1955    ///  A function to extract a 1-D spectrum from a Cube class
1956    ///  The spectrum extracted is the one lying in the spatial pixel referenced
1957    ///    by the second argument.
1958    ///  The extracted spectrum is stored in the pixel array Image::array.
1959    /// \param cube The Cube containing the pixel values, from which the spectrum is extracted.
1960    /// \param pixel The spatial pixel that contains the desired spectrum.
1961
1962    size_t zdim = cube.getDimZ();
1963    size_t spatSize = cube.getDimX()*cube.getDimY();
1964    if(pixel>=spatSize){
1965      DUCHAMPERROR("Image::extractSpectrum", "Requested spatial pixel outside allowed range. Cannot save.");
1966    }
1967    else if(zdim != this->numPixels){
1968      DUCHAMPERROR("Image::extractSpectrum", "Input array different size to existing array. Cannot save.");
1969    }
1970    else {
1971      if(this->numPixels>0 && this->arrayAllocated) delete [] array;
1972      this->numPixels = zdim;
1973      if(this->numPixels>0){
1974        this->array = new float[zdim];
1975        this->arrayAllocated = true;
1976        for(size_t z=0;z<zdim;z++)
1977          this->array[z] = cube.getPixValue(z*spatSize + pixel);
1978      }
1979    }
1980  }
1981  //--------------------------------------------------------------------
1982
1983  void Image::extractImage(float *Array, size_t *dim, size_t channel)
1984  {
1985    /// @details
1986    ///  A function to extract a 2-D image from a 3-D array.
1987    ///  The array is assumed to be 3-D with the third dimension the spectral one.
1988    ///  The dimensions of the array are in the dim[] array.
1989    ///  The image extracted is the one lying in the channel referenced
1990    ///    by the third argument.
1991    ///  The extracted image is stored in the pixel array Image::array.
1992    /// \param Array The array containing the pixel values, from which the image is extracted.
1993    /// \param dim The array of dimension values.
1994    /// \param channel The spectral channel that contains the desired image.
1995
1996    size_t spatSize = dim[0]*dim[1];
1997    if(channel>=dim[2]){
1998      DUCHAMPERROR("Image::extractImage", "Requested channel outside allowed range. Cannot save.");
1999    }
2000    else if(spatSize != this->numPixels){
2001      DUCHAMPERROR("Image::extractImage", "Input array different size to existing array. Cannot save.");
2002    }
2003    else {
2004      if(this->numPixels>0 && this->arrayAllocated) delete [] array;
2005      this->numPixels = spatSize;
2006      if(this->numPixels>0){
2007        this->array = new float[spatSize];
2008        this->arrayAllocated = true;
2009        for(size_t npix=0; npix<spatSize; npix++)
2010          this->array[npix] = Array[channel*spatSize + npix];
2011      }
2012    }
2013  }
2014  //--------------------------------------------------------------------
2015
2016  void Image::extractImage(Cube &cube, size_t channel)
2017  {
2018    /// @details
2019    ///  A function to extract a 2-D image from Cube class.
2020    ///  The image extracted is the one lying in the channel referenced
2021    ///    by the second argument.
2022    ///  The extracted image is stored in the pixel array Image::array.
2023    /// \param cube The Cube containing the pixel values, from which the image is extracted.
2024    /// \param channel The spectral channel that contains the desired image.
2025
2026    size_t spatSize = cube.getDimX()*cube.getDimY();
2027    if(channel>=cube.getDimZ()){
2028      DUCHAMPERROR("Image::extractImage", "Requested channel outside allowed range. Cannot save.");
2029    }
2030    else if(spatSize != this->numPixels){
2031      DUCHAMPERROR("Image::extractImage", "Input array different size to existing array. Cannot save.");
2032    }
2033    else {
2034      if(this->numPixels>0 && this->arrayAllocated) delete [] array;
2035      this->numPixels = spatSize;
2036      if(this->numPixels>0){
2037        this->array = new float[spatSize];
2038        this->arrayAllocated = true;
2039        for(size_t npix=0; npix<spatSize; npix++)
2040          this->array[npix] = cube.getPixValue(channel*spatSize + npix);
2041      }
2042    }
2043  }
2044  //--------------------------------------------------------------------
2045
2046  void Image::removeFlaggedChannels()
2047  {
2048    /// @details
2049    ///  A function to remove the flagged channels from a 1-D spectrum.
2050    ///  The array in this Image is assumed to be 1-D, with only the first axisDim
2051    ///    equal to 1.
2052    ///  The values of the flagged channels are set to 0, unless they are BLANK.
2053
2054    if(this->axisDim[1]==1) {
2055
2056        std::vector<int> flaggedChans = this->par.getFlaggedChannels();
2057        for(std::vector<int>::iterator chan = flaggedChans.begin();chan!=flaggedChans.end();chan++){
2058            // channels are zero-based
2059            if(!this->isBlank(*chan)) this->array[*chan]=0.;
2060        }
2061
2062    }
2063  }
2064
2065  //--------------------------------------------------------------------
2066
2067  std::vector<Object2D> Image::findSources2D()
2068  {
2069    std::vector<bool> thresholdedArray(this->axisDim[0]*this->axisDim[1]);
2070    for(size_t posY=0;posY<this->axisDim[1];posY++){
2071      for(size_t posX=0;posX<this->axisDim[0];posX++){
2072        size_t loc = posX + this->axisDim[0]*posY;
2073        thresholdedArray[loc] = this->isDetection(posX,posY);
2074      }
2075    }
2076    return lutz_detect(thresholdedArray, this->axisDim[0], this->axisDim[1], this->minSize);
2077  }
2078
2079  std::vector<Scan> Image::findSources1D()
2080  {
2081    std::vector<bool> thresholdedArray(this->axisDim[0]);
2082    for(size_t posX=0;posX<this->axisDim[0];posX++){
2083      thresholdedArray[posX] = this->isDetection(posX,0);
2084    }
2085    return spectrumDetect(thresholdedArray, this->axisDim[0], this->minSize);
2086  }
2087
2088
2089  std::vector< std::vector<PixelInfo::Voxel> > Cube::getObjVoxList()
2090  {
2091   
2092    std::vector< std::vector<PixelInfo::Voxel> > biglist;
2093   
2094    std::vector<Detection>::iterator obj;
2095    for(obj=this->objectList->begin(); obj<this->objectList->end(); obj++) {
2096
2097      Cube *subcube = new Cube;
2098      subcube->pars() = this->par;
2099      subcube->pars().setVerbosity(false);
2100      subcube->pars().setFlagSubsection(true);
2101      duchamp::Section sec = obj->getBoundingSection();
2102      subcube->pars().setSubsection( sec.getSection() );
2103      if(subcube->pars().verifySubsection() == FAILURE)
2104        DUCHAMPERROR("get object voxel list","Unable to verify the subsection - something's wrong!");
2105      if(subcube->getCube() == FAILURE)
2106        DUCHAMPERROR("get object voxel list","Unable to read the FITS file - something's wrong!");
2107      std::vector<PixelInfo::Voxel> voxlist = obj->getPixelSet();
2108      std::vector<PixelInfo::Voxel>::iterator vox;
2109      for(vox=voxlist.begin(); vox<voxlist.end(); vox++){
2110        size_t pix = (vox->getX()-subcube->pars().getXOffset()) +
2111          subcube->getDimX()*(vox->getY()-subcube->pars().getYOffset()) +
2112          subcube->getDimX()*subcube->getDimY()*(vox->getZ()-subcube->pars().getZOffset());
2113        vox->setF( subcube->getPixValue(pix) );
2114      }
2115      biglist.push_back(voxlist);
2116      delete subcube;
2117
2118    }
2119
2120    return biglist;
2121
2122  }
2123
2124}
Note: See TracBrowser for help on using the repository browser.