source: trunk/src/ATrous/atrous_3d_reconstruct.cc @ 118

Last change on this file since 118 was 118, checked in by Matthew Whiting, 18 years ago

Improved the use of the Param::isBlank function, adding it to
atrous_2d_reconstruct and 3d, and to find_sources.cc.

File size: 8.1 KB
Line 
1#include <iostream>
2#include <iomanip>
3#include <math.h>
4#include <ATrous/atrous.hh>
5#include <Utils/utils.hh>
6
7using std::endl;
8using std::setw;
9
10void atrous3DReconstruct(long &xdim, long &ydim, long &zdim, float *&input,
11                         float *&output, Param &par)
12{
13  /**
14   *  atrous3DReconstruct(xdim, ydim, zdim, input, output, par)
15   *
16   *  A routine that uses the a trous wavelet method to reconstruct a
17   *   3-dimensional image cube.
18   *  The Param object "par" contains all necessary info about the filter and
19   *   reconstruction parameters, although a Filter object has to be declared
20   *   elsewhere previously.
21   *  The input array is in "input", of dimensions "xdim"x"ydim"x"zdim", and
22   *   the reconstructed array is in "output".
23   */
24
25  extern Filter reconFilter;
26  long size = xdim * ydim * zdim;
27  long spatialSize = xdim * ydim;
28  long mindim = xdim;
29  if (ydim<mindim) mindim = ydim;
30  if (zdim<mindim) mindim = zdim;
31  int numScales = reconFilter.getNumScales(mindim);
32
33  double *sigmaFactors = new double[numScales+1];
34  for(int i=0;i<=numScales;i++){
35    if(i<=reconFilter.maxFactor(3)) sigmaFactors[i] = reconFilter.sigmaFactor(3,i);
36    else sigmaFactors[i] = sigmaFactors[i-1] / sqrt(8.);
37  }
38
39  float mean,sigma,originalSigma,originalMean,oldsigma,newsigma;
40  bool *isGood = new bool[size];
41  float blankPixValue = par.getBlankPixVal();
42  for(int pos=0;pos<size;pos++){
43    isGood[pos] = !par.isBlank(input[pos]);
44  }
45
46  float *array = new float[size];
47  int goodSize=0;
48  for(int i=0;i<size;i++) if(isGood[i]) array[goodSize++] = input[i];
49  findMedianStats(array,goodSize,originalMean,originalSigma);
50  originalSigma /= correctionFactor; // correct from MADFM to sigma estimator.
51  delete [] array;
52
53  float *coeffs = new float[size];
54  float *wavelet = new float[size];
55
56  for(int pos=0;pos<size;pos++) output[pos]=0.;
57
58  // Define the 3-D (separable) filter, using info from reconFilter
59  int filterwidth = reconFilter.width();
60  int filterHW = filterwidth/2;
61  int fsize = filterwidth*filterwidth*filterwidth;
62  double *filter = new double[fsize];
63  for(int i=0;i<filterwidth;i++){
64    for(int j=0;j<filterwidth;j++){
65      for(int k=0;k<filterwidth;k++){
66      filter[i +j*filterwidth + k*filterwidth*filterwidth] =
67        reconFilter.coeff(i) * reconFilter.coeff(j) * reconFilter.coeff(k);
68      }
69    }
70  }
71
72  // locating the borders of the image -- ignoring BLANK pixels
73  //  Only do this if flagBlankPix is true. Otherwise use the full range of x and y.
74  //  No trimming is done in the z-direction at this point.
75  int *xLim1 = new int[ydim];
76  for(int i=0;i<ydim;i++) xLim1[i] = 0;
77  int *xLim2 = new int[ydim];
78  for(int i=0;i<ydim;i++) xLim2[i] = xdim-1;
79  int *yLim1 = new int[xdim];
80  for(int i=0;i<xdim;i++) yLim1[i] = 0;
81  int *yLim2 = new int[xdim];
82  for(int i=0;i<xdim;i++) yLim2[i] = ydim-1;
83
84  if(par.getFlagBlankPix()){
85    float avGapX = 0, avGapY = 0;
86    for(int row=0;row<ydim;row++){
87      int ct1 = 0;
88      int ct2 = xdim - 1;
89//       while((ct1<ct2)&&(input[row*xdim+ct1]==blankPixValue) ) ct1++;
90//       while((ct2>ct1)&&(input[row*xdim+ct2]==blankPixValue) ) ct2--;
91      while((ct1<ct2)&&(par.isBlank(input[row*xdim+ct1]))) ct1++;
92      while((ct2>ct1)&&(par.isBlank(input[row*xdim+ct2]))) ct2--;
93      xLim1[row] = ct1;
94      xLim2[row] = ct2;
95      avGapX += ct2 - ct1 + 1;
96    }
97    avGapX /= float(ydim);
98
99    for(int col=0;col<xdim;col++){
100      int ct1=0;
101      int ct2=ydim-1;
102//       while((ct1<ct2)&&(input[col+xdim*ct1]==blankPixValue) ) ct1++;
103//       while((ct2>ct1)&&(input[col+xdim*ct2]==blankPixValue) ) ct2--;
104      while((ct1<ct2)&&(par.isBlank(input[col+xdim*ct1]))) ct1++;
105      while((ct2>ct1)&&(par.isBlank(input[col+xdim*ct2]))) ct2--;
106      yLim1[col] = ct1;
107      yLim2[col] = ct2;
108      avGapY += ct2 - ct1 + 1;
109    }
110    avGapY /= float(xdim);
111 
112    mindim = int(avGapX);
113    if(avGapY < avGapX) mindim = int(avGapY);
114    numScales = reconFilter.getNumScales(mindim);
115  }
116
117  float threshold;
118  int iteration=0;
119  newsigma = 1.e9;
120  for(int i=0;i<size;i++) output[i] = 0;
121  do{
122    if(par.isVerbose())  std::cout << "Iteration #"<<setw(2)<<++iteration<<": ";
123    // first, get the value of oldsigma, set it to the previous newsigma value
124    oldsigma = newsigma;
125    // we are transforming the residual array (input array first time around)
126    for(int i=0;i<size;i++)  coeffs[i] = input[i] - output[i];
127
128    int spacing = 1;
129    for(int scale = 1; scale<=numScales; scale++){
130
131      if(par.isVerbose()){
132        std::cout << "Scale ";
133        std::cout << setw(2)<<scale<<" / "<<setw(2)<<numScales
134                  << "\b\b\b\b\b\b\b\b\b\b\b\b\b"<<std::flush;
135      }
136
137      int pos = -1;
138      for(int zpos = 0; zpos<zdim; zpos++){
139        for(int ypos = 0; ypos<ydim; ypos++){
140          for(int xpos = 0; xpos<xdim; xpos++){
141            // loops over each pixel in the image
142            pos++;
143
144            wavelet[pos] = coeffs[pos];
145           
146            if(!isGood[pos] )  wavelet[pos] = 0.;
147            else{
148
149              int filterpos = -1;
150              for(int zoffset=-filterHW; zoffset<=filterHW; zoffset++){
151                int z = zpos + spacing*zoffset;
152                if(z<0) z = -z;                 // boundary conditions are
153                if(z>=zdim) z = 2*(zdim-1) - z; //    reflection.
154               
155                int oldchan = z * spatialSize;
156               
157                for(int yoffset=-filterHW; yoffset<=filterHW; yoffset++){
158                  int y = ypos + spacing*yoffset;
159
160                  // Boundary conditions -- assume reflection at boundaries.
161                  // Use limits as calculated above
162                  if(yLim1[xpos]!=yLim2[xpos]){
163                    // if these are equal we will get into an infinite loop here
164                    while((y<yLim1[xpos])||(y>yLim2[xpos])){
165                      if(y<yLim1[xpos]) y = 2*yLim1[xpos] - y;     
166                      else if(y>yLim2[xpos]) y = 2*yLim2[xpos] - y;     
167                    }
168                  }
169                  int oldrow = y * xdim;
170         
171                  for(int xoffset=-filterHW; xoffset<=filterHW; xoffset++){
172                    int x = xpos + spacing*xoffset;
173
174                    // Boundary conditions -- assume reflection at boundaries.
175                    // Use limits as calculated above
176                    if(xLim1[ypos]!=xLim2[ypos]){
177                      // if these are equal we will get into an infinite loop here
178                      while((x<xLim1[ypos])||(x>xLim2[ypos])){
179                        if(x<xLim1[ypos]) x = 2*xLim1[ypos] - x;     
180                        else if(x>xLim2[ypos]) x = 2*xLim2[ypos] - x;     
181                      }
182                    }
183
184//                  int oldpos = z*spatialSize + y*xdim + x;
185                    int oldpos = oldchan + oldrow + x;
186
187                    filterpos++;
188                   
189                    if(isGood[oldpos])
190                      wavelet[pos] -= filter[filterpos]*coeffs[oldpos];
191                     
192                  } //-> end of xoffset loop
193                } //-> end of yoffset loop
194              } //-> end of zoffset loop
195            } //-> end of else{ ( from if(!isGood[pos])  )
196           
197          } //-> end of xpos loop
198        } //-> end of ypos loop
199      } //-> end of zpos loop
200
201      // Need to do this after we've done *all* the convolving
202      for(int pos=0;pos<size;pos++) coeffs[pos] = coeffs[pos] - wavelet[pos];
203
204      // Have found wavelet coeffs for this scale -- now threshold
205      if(scale>=par.getMinScale()){
206        array = new float[size];
207        goodSize=0;
208        for(int pos=0;pos<size;pos++) if(isGood[pos]) array[goodSize++] = wavelet[pos];
209        findMedianStats(array,goodSize,mean,sigma);
210        delete [] array;
211       
212        threshold = mean + par.getAtrousCut() * originalSigma * sigmaFactors[scale];
213        for(int pos=0;pos<size;pos++){
214          if(!isGood[pos]){
215            output[pos] = blankPixValue;
216            // this preserves the Blank pixel values in the output.
217          }
218          else if( fabs(wavelet[pos]) > threshold ){
219            output[pos] += wavelet[pos];
220            // only add to the output if the wavelet coefficient is significant
221          }
222        }
223      }
224 
225      spacing *= 2;  // double the scale of the filter.
226
227    } //-> end of scale loop
228
229    for(int pos=0;pos<size;pos++) if(isGood[pos]) output[pos] += coeffs[pos];
230
231    array = new float[size];
232    goodSize=0;
233    for(int i=0;i<size;i++) if(isGood[i]) array[goodSize++] = input[i] - output[i];
234    findMedianStats(array,goodSize,mean,newsigma);
235    newsigma /= correctionFactor; // correct from MADFM to sigma estimator.
236    delete [] array;
237
238    if(par.isVerbose()) std::cout << "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b";
239
240  } while( (iteration==1) ||
241           (fabsf(oldsigma-newsigma)/newsigma > reconTolerance) );
242
243  if(par.isVerbose()) std::cout << "Completed "<<iteration<<" iterations. ";
244
245  delete [] xLim1,xLim2,yLim1,yLim2;
246  delete [] coeffs;
247  delete [] wavelet;
248  delete [] isGood;
249  delete [] filter;
250  delete [] sigmaFactors;
251}
Note: See TracBrowser for help on using the repository browser.