// ----------------------------------------------------------------------- // fitsHeader.cc: Information about the FITS file's header. // ----------------------------------------------------------------------- // Copyright (C) 2006, Matthew Whiting, ATNF // // This program is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by the // Free Software Foundation; either version 2 of the License, or (at your // option) any later version. // // Duchamp is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License // along with Duchamp; if not, write to the Free Software Foundation, // Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA // // Correspondence concerning Duchamp may be directed to: // Internet email: Matthew.Whiting [at] atnf.csiro.au // Postal address: Dr. Matthew Whiting // Australia Telescope National Facility, CSIRO // PO Box 76 // Epping NSW 1710 // AUSTRALIA // ----------------------------------------------------------------------- #include #include #include #include #include #include #include #include #include namespace duchamp { FitsHeader::FitsHeader() { this->wcs = (struct wcsprm *)calloc(1,sizeof(struct wcsprm)); this->wcs->flag=-1; wcsini(true, 3, this->wcs); this->wcsIsGood = false; this->nwcs = 0; this->scale=1.; this->offset=0.; this->power=1.; this->fluxUnits="counts"; this->intFluxUnits="counts"; } FitsHeader::~FitsHeader() { /** * Uses the WCSLIB function wcsvfree to clear the wcsprm struct. */ wcsvfree(&nwcs,&wcs); } FitsHeader::FitsHeader(const FitsHeader& h) { operator=(h); } FitsHeader& FitsHeader::operator= (const FitsHeader& h) { if(this == &h) return *this; this->wcs = (struct wcsprm *)calloc(1,sizeof(struct wcsprm)); this->wcs->flag = -1; wcsini(true, h.wcs->naxis, this->wcs); wcscopy(true, h.wcs, this->wcs); wcsset(this->wcs); this->nwcs = h.nwcs; this->wcsIsGood = h.wcsIsGood; this->spectralUnits = h.spectralUnits; this->fluxUnits = h.fluxUnits; this->intFluxUnits = h.intFluxUnits; this->beamSize = h.beamSize; this->bmajKeyword = h.bmajKeyword; this->bminKeyword = h.bminKeyword; this->bpaKeyword = h.bpaKeyword; this->blankKeyword = h.blankKeyword; this->bzeroKeyword = h.bzeroKeyword; this->bscaleKeyword = h.bscaleKeyword; this->scale = h.scale; this->offset = h.offset; this->power = h.power; return *this; } void FitsHeader::setWCS(struct wcsprm *w) { /** * A function that assigns the wcs parameters, and runs * wcsset to set it up correctly. * Performs a check to see if the WCS is good (by looking at * the lng and lat wcsprm parameters), and sets the wcsIsGood * flag accordingly. * \param w A WCSLIB wcsprm struct with the correct parameters. */ wcscopy(true, w, this->wcs); wcsset(this->wcs); if( (w->lng!=-1) && (w->lat!=-1) ) this->wcsIsGood = true; } struct wcsprm *FitsHeader::getWCS() { /** * A function that returns a properly initilized wcsprm object * corresponding to the WCS. */ struct wcsprm *wNew = (struct wcsprm *)calloc(1,sizeof(struct wcsprm)); wNew->flag=-1; wcsini(true, this->wcs->naxis, wNew); wcscopy(true, this->wcs, wNew); wcsset(wNew); return wNew; } int FitsHeader::wcsToPix(const double *world, double *pix) { return wcsToPixSingle(this->wcs, world, pix); }; int FitsHeader::wcsToPix(const double *world, double *pix, const int npts) { return wcsToPixMulti(this->wcs, world, pix, npts); }; int FitsHeader::pixToWCS(const double *pix, double *world) { return pixToWCSSingle(this->wcs, pix, world); }; int FitsHeader::pixToWCS(const double *pix, double *world, const int npts) { return pixToWCSMulti(this->wcs, pix,world, npts); }; double FitsHeader::pixToVel(double &x, double &y, double &z) { double vel; if(this->wcsIsGood){ double *pix = new double[3]; double *world = new double[3]; pix[0] = x; pix[1] = y; pix[2] = z; pixToWCSSingle(this->wcs,pix,world); vel = this->specToVel(world[2]); delete [] pix; delete [] world; } else vel = z; return vel; } double* FitsHeader::pixToVel(double &x, double &y, double *zarray, int size) { double *newzarray = new double[size]; if(this->wcsIsGood){ double *pix = new double[size*3]; for(int i=0;iwcs,pix,world,size); delete [] pix; for(int i=0;ispecToVel(world[3*i+2]); delete [] world; } else{ for(int i=0;iscale + this->offset; else vel = pow( (coord*this->scale + this->offset), this->power); return vel; } double FitsHeader::velToSpec(const float &velocity) { // return velToCoord(this->wcs,velocity,this->spectralUnits);}; return (pow(velocity, 1./this->power) - this->offset) / this->scale; } std::string FitsHeader::getIAUName(double ra, double dec) { if(strcmp(this->wcs->lngtyp,"RA")==0) return getIAUNameEQ(ra, dec, this->wcs->equinox); else return getIAUNameGAL(ra, dec); } bool FitsHeader::needBeamSize() { /** * A function that tells you whether the beam correction is * needed. It checks to see whether the flux units string ends in * "/beam" (in which case the beam size etc is needed and * integrated fluxes need to be corrected). * /return True if FitsHeader::fluxUnits ends in "/beam". False * otherwise. */ int size = this->fluxUnits.size(); std::string tailOfFluxUnits = this->fluxUnits.substr(size-5,size); return (tailOfFluxUnits == "/beam"); } void FitsHeader::fixUnits(Param &par) { /** * Put the units for the FITS header into some sort of standard form. * * We first get the desired spectral units from the Parameter set, * and then transform the spectral units of the wcsprm struct to * those units. If this doesn't work, we leave them as they are. If * they are blank, we make them SPC and give an error message -- * this should hopefully NOT happen. * * We also work out the units for the integrated flux. If there are * three axes, we just append the spectral units to the flux units * (removing "/beam" if it is present). If there are just two, we * simply keep it the same, removing the "/beam". * * \param par The parameter set telling us what the desired * spectral units are. */ // define spectral units from the param set this->spectralUnits = par.getSpectralUnits(); double sc=1.; double of=0.; double po=1.; // if((this->wcsIsGood) && (this->naxis>2)){ if(this->wcsIsGood){ int status = wcsunits( this->wcs->cunit[this->wcs->spec], (char *)this->spectralUnits.c_str(), &sc, &of, &po); if(status > 0){ std::stringstream errmsg; errmsg << "WCSUNITS Error, Code = " << status << ": " << wcsunits_errmsg[status] << "\n"; if(status == 10) errmsg << "Tried to get conversion from \"" << this->wcs->cunit[this->wcs->spec] << "\" to \"" << this->spectralUnits.c_str() << "\".\n"; this->spectralUnits = this->wcs->cunit[this->wcs->spec]; if(this->spectralUnits==""){ errmsg << "Spectral units not specified. " << "For data presentation, we will use dummy units of \"SPC\"." << "\n" << "Please report this occurence -- it should not happen now! " << "In the meantime, you may want to set the CUNIT" << this->wcs->spec + 1 <<" keyword to make this work.\n"; this->spectralUnits = "SPC"; } duchampError("fixUnits", errmsg.str()); } } this->scale = sc; this->offset= of; this->power = po; // Work out the integrated flux units, based on the spectral units. // If flux is per beam, trim the /beam from the flux units and multiply // by the spectral units. // Otherwise, just muliply by the spectral units. if(this->fluxUnits.size()>0){ if(makelower(this->fluxUnits.substr(this->fluxUnits.size()-5, this->fluxUnits.size() )) == "/beam"){ this->intFluxUnits = this->fluxUnits.substr(0,this->fluxUnits.size()-5); } else this->intFluxUnits = this->fluxUnits; if(this->naxis>2) this->intFluxUnits += " " + this->spectralUnits; } } }