// ----------------------------------------------------------------------- // plotting.cc: Plot the moment map and detection maps, showing the // location of the detected objects. // ----------------------------------------------------------------------- // Copyright (C) 2006, Matthew Whiting, ATNF // // This program is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by the // Free Software Foundation; either version 2 of the License, or (at your // option) any later version. // // Duchamp is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License // along with Duchamp; if not, write to the Free Software Foundation, // Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA // // Correspondence concerning Duchamp may be directed to: // Internet email: Matthew.Whiting [at] atnf.csiro.au // Postal address: Dr. Matthew Whiting // Australia Telescope National Facility, CSIRO // PO Box 76 // Epping NSW 1710 // AUSTRALIA // ----------------------------------------------------------------------- #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace mycpgplot; using namespace PixelInfo; namespace duchamp { void Cube::plotDetectionMap(std::string pgDestination) { /** * Creates a map of the spatial locations of the detections, which is * written to the PGPlot device given by pgDestination. * The map is done in greyscale, where the scale indicates the number of * velocity channels that each spatial pixel is detected in. * The boundaries of each detection are drawn, and each object is numbered * (to match the output list and spectra). * The primary grid scale is pixel coordinate, and if the WCS is valid, * the correct WCS gridlines are also drawn. * \param pgDestination The PGPLOT device to be opened, in the typical PGPLOT format. */ // These are the minimum values for the X and Y ranges of the box drawn by // pgplot (without the half-pixel difference). // The -1 is necessary because the arrays we are dealing with start at 0 // index, while the ranges given in the subsection start at 1... float boxXmin = this->par.getXOffset() - 1; float boxYmin = this->par.getYOffset() - 1; long xdim=this->axisDim[0]; long ydim=this->axisDim[1]; Plot::ImagePlot newplot; int flag = newplot.setUpPlot(pgDestination.c_str(),float(xdim),float(ydim)); if(flag<=0){ duchampError("Plot Detection Map", "Could not open PGPlot device " + pgDestination + ".\n"); } else{ newplot.makeTitle(this->pars().getImageFile()); newplot.drawMapBox(boxXmin+0.5,boxXmin+xdim+0.5, boxYmin+0.5,boxYmin+ydim+0.5, "X pixel","Y pixel"); // if(this->objectList.size()>0){ // if there are no detections, there will be nothing to plot here float *detectMap = new float[xdim*ydim]; int maxNum = this->detectMap[0]; detectMap[0] = float(maxNum); for(int pix=1;pixdetectMap[pix]); if(this->detectMap[pix] > maxNum) maxNum = this->detectMap[pix]; } if(maxNum>0){ // if there are no detections, it will be 0. maxNum = 5 * ((maxNum-1)/5 + 1); // move to next multiple of 5 float tr[6] = {boxXmin,1.,0.,boxYmin,0.,1.}; cpggray(detectMap,xdim,ydim,1,xdim,1,ydim,maxNum,0,tr); // delete [] detectMap; cpgbox("bcnst",0.,0,"bcnst",0.,0); cpgsch(1.5); cpgwedg("rg",3.2,2,maxNum,0,"Number of detected channels"); } delete [] detectMap; drawBlankEdges(this->array,this->axisDim[0],this->axisDim[1],this->par); if(this->head.isWCS()) this->plotWCSaxes(); if(this->objectList->size()>0){ // now show and label each detection, drawing over the WCS lines. cpgsch(1.0); cpgslw(2); float xoff=0.; float yoff=newplot.cmToCoord(0.5); if(this->par.drawBorders()){ cpgsci(DUCHAMP_OBJECT_OUTLINE_COLOUR); for(int i=0;iobjectList->size();i++) this->objectList->at(i).drawBorders(0,0); } cpgsci(DUCHAMP_ID_TEXT_COLOUR); std::stringstream label; cpgslw(1); for(int i=0;iobjectList->size();i++){ cpgpt1(this->par.getXOffset()+this->objectList->at(i).getXPeak(), this->par.getYOffset()+this->objectList->at(i).getYPeak(), CROSS); label.str(""); label << this->objectList->at(i).getID(); cpgptxt(this->par.getXOffset()+this->objectList->at(i).getXPeak()-xoff, this->par.getYOffset()+this->objectList->at(i).getYPeak()-yoff, 0, 0.5, label.str().c_str()); } } cpgclos(); } } /*********************************************************/ void Cube::plotMomentMap(std::string pgDestination) { /** * Uses the other function * Cube::plotMomentMap(std::vector) to plot the moment * map. * \param pgDestination The PGPLOT device that the map is to be written to. */ std::vector devicelist; devicelist.push_back(pgDestination); this->plotMomentMap(devicelist); } /*********************************************************/ void Cube::plotMomentMap(std::vector pgDestination) { /** * Creates a 0th moment map of the detections, which is written to each * of the PGPlot devices mentioned in pgDestination. * The advantage of this function is that the map is only calculated once, * even if multiple maps are required. * The map is done in greyscale, where the scale indicates the integrated * flux at each spatial pixel. * The boundaries of each detection are drawn, and each object is numbered * (to match the output list and spectra). * The primary grid scale is pixel coordinate, and if the WCS is valid, * the correct WCS gridlines are also drawn. * \param pgDestination A set of PGPLOT devices that are to be * opened, each in the typical PGPLOT format. */ float boxXmin = this->par.getXOffset() - 1; float boxYmin = this->par.getYOffset() - 1; long xdim=this->axisDim[0]; long ydim=this->axisDim[1]; long zdim=this->axisDim[2]; int numPlots = pgDestination.size(); std::vector plotList(numPlots); std::vector plotFlag(numPlots,0); std::vector doPlot(numPlots,false); bool plotNeeded = false; for(int i=0;iobjectList->size()==0){ // if there are no detections, we plot an empty field. for(int iplot=0; iplotpars().getImageFile()); plotList[iplot].drawMapBox(boxXmin+0.5,boxXmin+xdim+0.5, boxYmin+0.5,boxYmin+ydim+0.5, "X pixel","Y pixel"); drawBlankEdges(this->array,this->axisDim[0],this->axisDim[1],this->par); if(this->head.isWCS()) this->plotWCSaxes(); } } else { // if there are some detections, do the calculations first before // plotting anything. for(int iplot=0; iplotpars().getImageFile()); plotList[iplot].drawMapBox(boxXmin+0.5,boxXmin+xdim+0.5, boxYmin+0.5,boxYmin+ydim+0.5, "X pixel","Y pixel"); if(pgDestination[iplot]=="/xs") cpgptxt(boxXmin+0.5+xdim/2., boxYmin+0.5+ydim/2., 0, 0.5, "Calculating map..."); } bool *isObj = new bool[xdim*ydim*zdim]; for(int i=0;iobjectList->size();i++){ std::vector voxlist = this->objectList->at(i).pixels().getPixelSet(); for(int p=0;ppars().getFlagNegative()) sign = -1.; float deltaVel; double x,y; double *zArray = new double[zdim]; for(int z=0; zhead.pixToVel(x,y,zArray,zdim); for(int z=0; zarray[pos] * fabs(deltaVel); } } } delete [] world; delete [] zArray; float *temp = new float[xdim*ydim]; int count=0; for(int i=0;i0.){ bool addPixel = false; for(int z=0;zz2) z2 = temp[i]; } delete [] temp; for(int i=0;i0.); if(!addPixel) momentMap[i] = z1-1.; else momentMap[i] = log10(momentMap[i]); } delete [] isObj; // Have now done all necessary calculations for moment map. // Now produce the plot for(int iplot=0; iplotpar.getFlagNegative()) wedgeLabel = "-1. " + times + " " + wedgeLabel; if(this->head.isWCS()) wedgeLabel += "[" + this->head.getIntFluxUnits() + "]"; else wedgeLabel += "[" + this->head.getFluxUnits() + "]"; cpgwedglog("rg",3.2,2,z2,z1,wedgeLabel.c_str()); drawBlankEdges(this->array,this->axisDim[0],this->axisDim[1],this->par); if(this->head.isWCS()) this->plotWCSaxes(); // now show and label each detection, drawing over the WCS lines. cpgsch(1.0); cpgslw(2); float xoff=0.; float yoff=plotList[iplot].cmToCoord(0.5); if(this->par.drawBorders()){ cpgsci(DUCHAMP_OBJECT_OUTLINE_COLOUR); for(int i=0;iobjectList->size();i++) this->objectList->at(i).drawBorders(0,0); } cpgsci(DUCHAMP_ID_TEXT_COLOUR); std::stringstream label; cpgslw(1); for(int i=0;iobjectList->size();i++){ cpgpt1(this->par.getXOffset()+this->objectList->at(i).getXPeak(), this->par.getYOffset()+this->objectList->at(i).getYPeak(), CROSS); label.str(""); label << this->objectList->at(i).getID(); cpgptxt(this->par.getXOffset()+this->objectList->at(i).getXPeak()-xoff, this->par.getYOffset()+this->objectList->at(i).getYPeak()-yoff, 0, 0.5, label.str().c_str()); } } // end of iplot loop over number of devices delete [] momentMap; } // end of else (from if(numdetections==0) ) for(int iplot=0; iplothead.getWCS(); strcpy(idents[0], tempwcs->lngtyp); strcpy(idents[1], tempwcs->lattyp); strcpy(idents[2], ""); if(strcmp(tempwcs->lngtyp,"RA")==0) opt[0] = 'G'; else opt[0] = 'D'; opt[1] = 'E'; float blc[2], trc[2]; // float scl; // --> unused here. blc[0] = boxXmin + 0.5; blc[1] = boxYmin + 0.5; trc[0] = boxXmin + this->axisDim[0]+0.5; trc[1] = boxYmin + this->axisDim[1]+0.5; int lineWidth; cpgqlw(&lineWidth); int colour; cpgqci(&colour); float size; cpgqch(&size); cpgsci(DUCHAMP_ID_TEXT_COLOUR); cpgsch(0.8); int c0[7], ci[7], gcode[2], ic, ierr; for(int i=0;i<7;i++) c0[i] = -1; /* define the WCS axes colour */ setWCSGreen(); gcode[0] = 2; // type of grid to draw: 0=none, 1=ticks only, 2=full grid gcode[1] = 2; double cache[257][4], grid1[9], grid2[9], nldprm[8]; grid1[0] = 0.0; grid2[0] = 0.0; // Draw the celestial grid with no intermediate tick marks. // Set LABCTL=2100 to write 1st coord on top, and 2nd on right //Colour indices used by cpgsbox: make it all the same colour for thin // line case. ci[0] = DUCHAMP_WCS_AXIS_COLOUR; // grid lines, coord 1 ci[1] = DUCHAMP_WCS_AXIS_COLOUR; // grid lines, coord 2 ci[2] = DUCHAMP_WCS_AXIS_COLOUR; // numeric labels, coord 1 ci[3] = DUCHAMP_WCS_AXIS_COLOUR; // numeric labels, coord 2 ci[4] = DUCHAMP_WCS_AXIS_COLOUR; // axis annotation, coord 1 ci[5] = DUCHAMP_WCS_AXIS_COLOUR; // axis annotation, coord 2 ci[6] = DUCHAMP_WCS_AXIS_COLOUR; // title cpgsbox(blc, trc, idents, opt, 2100, 0, ci, gcode, 0.0, 0, grid1, 0, grid2, 0, pgwcsl_, 1, WCSLEN, 1, nlcprm, (int *)tempwcs, nldprm, 256, &ic, cache, &ierr); wcsfree(tempwcs); free(tempwcs); cpgsci(colour); cpgsch(size); cpgslw(lineWidth); } }