source: tags/release-1.1.12/src/ATrous/atrous_3d_reconstruct.cc

Last change on this file was 650, checked in by MatthewWhiting, 14 years ago

Cleaning up the use of findMedianStats in the atrous functions (as per ticket #65).

File size: 9.9 KB
Line 
1// -----------------------------------------------------------------------
2// atrous_3d_reconstruct.cc: 3-dimensional wavelet reconstruction.
3// -----------------------------------------------------------------------
4// Copyright (C) 2006, Matthew Whiting, ATNF
5//
6// This program is free software; you can redistribute it and/or modify it
7// under the terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 2 of the License, or (at your
9// option) any later version.
10//
11// Duchamp is distributed in the hope that it will be useful, but WITHOUT
12// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14// for more details.
15//
16// You should have received a copy of the GNU General Public License
17// along with Duchamp; if not, write to the Free Software Foundation,
18// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
19//
20// Correspondence concerning Duchamp may be directed to:
21//    Internet email: Matthew.Whiting [at] atnf.csiro.au
22//    Postal address: Dr. Matthew Whiting
23//                    Australia Telescope National Facility, CSIRO
24//                    PO Box 76
25//                    Epping NSW 1710
26//                    AUSTRALIA
27// -----------------------------------------------------------------------
28#include <iostream>
29#include <iomanip>
30#include <math.h>
31#include <duchamp/duchamp.hh>
32#include <duchamp/param.hh>
33#include <duchamp/ATrous/atrous.hh>
34#include <duchamp/ATrous/filter.hh>
35#include <duchamp/Utils/utils.hh>
36#include <duchamp/Utils/feedback.hh>
37#include <duchamp/Utils/Statistics.hh>
38using Statistics::madfmToSigma;
39
40using std::endl;
41using std::setw;
42
43namespace duchamp
44{
45
46  void atrous3DReconstruct(long &xdim, long &ydim, long &zdim, float *&input,
47                           float *&output, Param &par)
48  {
49    ///  A routine that uses the a trous wavelet method to reconstruct a
50    ///   3-dimensional image cube.
51    ///  The Param object "par" contains all necessary info about the filter and
52    ///   reconstruction parameters.
53    ///
54    ///  If there are no non-BLANK pixels (and we are testing for
55    ///  BLANKs), the reconstruction cannot be done, so we return the
56    ///  input array as the output array and give a warning message.
57    ///
58    ///  \param xdim The length of the x-axis.
59    ///  \param ydim The length of the y-axis.
60    ///  \param zdim The length of the z-axis.
61    ///  \param input The input spectrum.
62    ///  \param output The returned reconstructed spectrum. This array needs to be declared beforehand.
63    ///  \param par The Param set.
64
65    long size = xdim * ydim * zdim;
66    long spatialSize = xdim * ydim;
67    long mindim = xdim;
68    if (ydim<mindim) mindim = ydim;
69    if (zdim<mindim) mindim = zdim;
70    int numScales = par.filter().getNumScales(mindim);
71
72    double *sigmaFactors = new double[numScales+1];
73    for(int i=0;i<=numScales;i++){
74      if(i<=par.filter().maxFactor(3))
75        sigmaFactors[i] = par.filter().sigmaFactor(3,i);
76      else sigmaFactors[i] = sigmaFactors[i-1] / sqrt(8.);
77    }
78
79    float mean,sigma,originalSigma,originalMean,oldsigma,newsigma;
80    bool *isGood = new bool[size];
81    int goodSize=0;
82    for(int pos=0;pos<size;pos++){
83      isGood[pos] = !par.isBlank(input[pos]);
84      if(isGood[pos]) goodSize++;
85    }
86
87    if(goodSize == 0){
88      // There are no good pixels -- everything is BLANK for some reason.
89      // Return the input array as the output, and give a warning message.
90
91      for(int pos=0;pos<xdim; pos++) output[pos] = input[pos];
92
93      duchampWarning("3D Reconstruction",
94                     "There are no good pixels to be reconstructed -- all are BLANK.\nPerhaps you need to try this with flagTrim=false.\nReturning input array.\n");
95    }
96    else{
97      // Otherwise, all is good, and we continue.
98
99
100      findMedianStats(input,goodSize,isGood,originalMean,originalSigma);
101      originalSigma = madfmToSigma(originalSigma);
102
103      float *coeffs = new float[size];
104      float *wavelet = new float[size];
105      float *residual = new float[size];
106
107      for(int pos=0;pos<size;pos++) output[pos]=0.;
108
109      // Define the 3-D (separable) filter, using info from par.filter()
110      int filterwidth = par.filter().width();
111      int filterHW = filterwidth/2;
112      int fsize = filterwidth*filterwidth*filterwidth;
113      double *filter = new double[fsize];
114      for(int i=0;i<filterwidth;i++){
115        for(int j=0;j<filterwidth;j++){
116          for(int k=0;k<filterwidth;k++){
117            filter[i +j*filterwidth + k*filterwidth*filterwidth] =
118              par.filter().coeff(i) * par.filter().coeff(j) * par.filter().coeff(k);
119          }
120        }
121      }
122
123      // Locating the borders of the image -- ignoring BLANK pixels
124      //  Only do this if flagBlankPix is true.
125      //  Otherwise use the full range of x and y.
126      //  No trimming is done in the z-direction at this point.
127      int *xLim1 = new int[ydim];
128      for(int i=0;i<ydim;i++) xLim1[i] = 0;
129      int *xLim2 = new int[ydim];
130      for(int i=0;i<ydim;i++) xLim2[i] = xdim-1;
131      int *yLim1 = new int[xdim];
132      for(int i=0;i<xdim;i++) yLim1[i] = 0;
133      int *yLim2 = new int[xdim];
134      for(int i=0;i<xdim;i++) yLim2[i] = ydim-1;
135
136      if(par.getFlagBlankPix()){
137        float avGapX = 0, avGapY = 0;
138        for(int row=0;row<ydim;row++){
139          int ct1 = 0;
140          int ct2 = xdim - 1;
141          while((ct1<ct2)&&(par.isBlank(input[row*xdim+ct1]))) ct1++;
142          while((ct2>ct1)&&(par.isBlank(input[row*xdim+ct2]))) ct2--;
143          xLim1[row] = ct1;
144          xLim2[row] = ct2;
145          avGapX += ct2 - ct1 + 1;
146        }
147        avGapX /= float(ydim);
148
149        for(int col=0;col<xdim;col++){
150          int ct1=0;
151          int ct2=ydim-1;
152          while((ct1<ct2)&&(par.isBlank(input[col+xdim*ct1]))) ct1++;
153          while((ct2>ct1)&&(par.isBlank(input[col+xdim*ct2]))) ct2--;
154          yLim1[col] = ct1;
155          yLim2[col] = ct2;
156          avGapY += ct2 - ct1 + 1;
157        }
158        avGapY /= float(xdim);
159 
160        mindim = int(avGapX);
161        if(avGapY < avGapX) mindim = int(avGapY);
162        numScales = par.filter().getNumScales(mindim);
163      }
164
165      float threshold;
166      int iteration=0;
167      newsigma = 1.e9;
168      for(int i=0;i<size;i++) output[i] = 0;
169      do{
170        if(par.isVerbose()) std::cout << "Iteration #"<<setw(2)<<++iteration<<": ";
171        // first, get the value of oldsigma, set it to the previous newsigma value
172        oldsigma = newsigma;
173        // we are transforming the residual array (input array first time around)
174        for(int i=0;i<size;i++)  coeffs[i] = input[i] - output[i];
175
176        int spacing = 1;
177        for(int scale = 1; scale<=numScales; scale++){
178
179          if(par.isVerbose()){
180            std::cout << "Scale ";
181            std::cout << setw(2)<<scale<<" / "<<setw(2)<<numScales;
182            printBackSpace(13);
183            std::cout << std::flush;
184          }
185
186          int pos = -1;
187          for(int zpos = 0; zpos<zdim; zpos++){
188            for(int ypos = 0; ypos<ydim; ypos++){
189              for(int xpos = 0; xpos<xdim; xpos++){
190                // loops over each pixel in the image
191                pos++;
192
193                wavelet[pos] = coeffs[pos];
194           
195                if(!isGood[pos] )  wavelet[pos] = 0.;
196                else{
197
198                  int filterpos = -1;
199                  for(int zoffset=-filterHW; zoffset<=filterHW; zoffset++){
200                    int z = zpos + spacing*zoffset;
201                    if(z<0) z = -z;                 // boundary conditions are
202                    if(z>=zdim) z = 2*(zdim-1) - z; //    reflection.
203               
204                    int oldchan = z * spatialSize;
205               
206                    for(int yoffset=-filterHW; yoffset<=filterHW; yoffset++){
207                      int y = ypos + spacing*yoffset;
208
209                      // Boundary conditions -- assume reflection at boundaries.
210                      // Use limits as calculated above
211                      if(yLim1[xpos]!=yLim2[xpos]){
212                        // if these are equal we will get into an infinite loop
213                        while((y<yLim1[xpos])||(y>yLim2[xpos])){
214                          if(y<yLim1[xpos]) y = 2*yLim1[xpos] - y;     
215                          else if(y>yLim2[xpos]) y = 2*yLim2[xpos] - y;     
216                        }
217                      }
218                      int oldrow = y * xdim;
219         
220                      for(int xoffset=-filterHW; xoffset<=filterHW; xoffset++){
221                        int x = xpos + spacing*xoffset;
222
223                        // Boundary conditions -- assume reflection at boundaries.
224                        // Use limits as calculated above
225                        if(xLim1[ypos]!=xLim2[ypos]){
226                          // if these are equal we will get into an infinite loop
227                          while((x<xLim1[ypos])||(x>xLim2[ypos])){
228                            if(x<xLim1[ypos]) x = 2*xLim1[ypos] - x;     
229                            else if(x>xLim2[ypos]) x = 2*xLim2[ypos] - x;     
230                          }
231                        }
232
233                        int oldpos = oldchan + oldrow + x;
234
235                        filterpos++;
236                   
237                        if(isGood[oldpos])
238                          wavelet[pos] -= filter[filterpos]*coeffs[oldpos];
239                     
240                      } //-> end of xoffset loop
241                    } //-> end of yoffset loop
242                  } //-> end of zoffset loop
243                } //-> end of else{ ( from if(!isGood[pos])  )
244           
245              } //-> end of xpos loop
246            } //-> end of ypos loop
247          } //-> end of zpos loop
248
249          // Need to do this after we've done *all* the convolving
250          for(int pos=0;pos<size;pos++) coeffs[pos] = coeffs[pos] - wavelet[pos];
251
252          // Have found wavelet coeffs for this scale -- now threshold
253          if(scale>=par.getMinScale()){
254            findMedianStats(wavelet,goodSize,isGood,mean,sigma);
255       
256            threshold = mean +
257              par.getAtrousCut()*originalSigma*sigmaFactors[scale];
258            for(int pos=0;pos<size;pos++){
259              if(!isGood[pos]){
260                output[pos] = input[pos];
261                // this preserves the Blank pixel values in the output.
262              }
263              else if( fabs(wavelet[pos]) > threshold ){
264                output[pos] += wavelet[pos];
265                // only add to the output if the wavelet coefficient is significant
266              }
267            }
268          }
269 
270          spacing *= 2;  // double the scale of the filter.
271
272        } //-> end of scale loop
273
274        for(int pos=0;pos<size;pos++) if(isGood[pos]) output[pos] += coeffs[pos];
275
276        for(int i=0;i<size;i++) residual[i] = input[i] - output[i];
277        findMedianStats(residual,goodSize,isGood,mean,newsigma);
278        newsigma = madfmToSigma(newsigma);
279
280        if(par.isVerbose()) printBackSpace(15);
281
282      } while( (iteration==1) ||
283               (fabs(oldsigma-newsigma)/newsigma > reconTolerance) );
284
285      if(par.isVerbose()) std::cout << "Completed "<<iteration<<" iterations. ";
286
287      delete [] xLim1;
288      delete [] xLim2;
289      delete [] yLim1;
290      delete [] yLim2;
291      delete [] filter;
292      delete [] residual;
293      delete [] coeffs;
294      delete [] wavelet;
295
296    }
297
298    delete [] isGood;
299    delete [] sigmaFactors;
300  }
301
302}
Note: See TracBrowser for help on using the repository browser.