source: tags/release-1.1.12/src/ATrous/atrous_2d_reconstruct.cc

Last change on this file was 650, checked in by MatthewWhiting, 14 years ago

Cleaning up the use of findMedianStats in the atrous functions (as per ticket #65).

File size: 9.1 KB
Line 
1// -----------------------------------------------------------------------
2// atrous_2d_reconstruct.cc: 2-dimensional wavelet reconstruction.
3// -----------------------------------------------------------------------
4// Copyright (C) 2006, Matthew Whiting, ATNF
5//
6// This program is free software; you can redistribute it and/or modify it
7// under the terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 2 of the License, or (at your
9// option) any later version.
10//
11// Duchamp is distributed in the hope that it will be useful, but WITHOUT
12// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14// for more details.
15//
16// You should have received a copy of the GNU General Public License
17// along with Duchamp; if not, write to the Free Software Foundation,
18// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
19//
20// Correspondence concerning Duchamp may be directed to:
21//    Internet email: Matthew.Whiting [at] atnf.csiro.au
22//    Postal address: Dr. Matthew Whiting
23//                    Australia Telescope National Facility, CSIRO
24//                    PO Box 76
25//                    Epping NSW 1710
26//                    AUSTRALIA
27// -----------------------------------------------------------------------
28#include <iostream>
29#include <iomanip>
30#include <math.h>
31#include <duchamp/duchamp.hh>
32#include <duchamp/param.hh>
33#include <duchamp/ATrous/atrous.hh>
34#include <duchamp/ATrous/filter.hh>
35#include <duchamp/Utils/utils.hh>
36#include <duchamp/Utils/feedback.hh>
37#include <duchamp/Utils/Statistics.hh>
38using Statistics::madfmToSigma;
39
40namespace duchamp
41{
42
43  void atrous2DReconstruct(long &xdim, long &ydim, float *&input, float *&output, Param &par)
44  {
45    ///  A routine that uses the a trous wavelet method to reconstruct a
46    ///   2-dimensional image.
47    ///
48    ///  If there are no non-BLANK pixels (and we are testing for
49    ///  BLANKs), the reconstruction cannot be done, so we return the
50    ///  input array as the output array and give a warning message.
51    ///
52    ///  \param xdim The length of the x-axis of the image.
53    ///  \param ydim The length of the y-axis of the image.
54    ///  \param input The input spectrum.
55    ///  \param output The returned reconstructed spectrum. This array
56    ///  needs to be declared beforehand.
57    ///  \param par The Param set:contains all necessary info about the
58    ///  filter and reconstruction parameters.
59
60    long size = xdim * ydim;
61    long mindim = xdim;
62    if (ydim<mindim) mindim = ydim;
63    int numScales = par.filter().getNumScales(mindim);
64    double *sigmaFactors = new double[numScales+1];
65    for(int i=0;i<=numScales;i++){
66      if(i<=par.filter().maxFactor(2))
67        sigmaFactors[i] = par.filter().sigmaFactor(2,i);
68      else sigmaFactors[i] = sigmaFactors[i-1] / 2.;
69    }
70
71    float mean,sigma,originalSigma,originalMean,oldsigma,newsigma;
72    int goodSize=0;
73    bool *isGood = new bool[size];
74    for(int pos=0;pos<size;pos++){
75      isGood[pos] = !par.isBlank(input[pos]);
76      if(isGood[pos]) goodSize++;
77    }
78
79    if(goodSize == 0){
80      // There are no good pixels -- everything is BLANK for some reason.
81      // Return the input array as the output, and give a warning message.
82
83      for(int pos=0;pos<size; pos++) output[pos] = input[pos];
84
85      duchampWarning("2D Reconstruction","\
86There are no good pixels to be reconstructed -- all are BLANK.\n\
87Returning input array.\n");
88    }
89    else{
90      // Otherwise, all is good, and we continue.
91
92      findMedianStats(input,goodSize,isGood,originalMean,originalSigma);
93      originalSigma = madfmToSigma(originalSigma);
94 
95      float *coeffs    = new float[size];
96      float *wavelet   = new float[size];
97      float *residual  = new float[size];
98
99      for(int pos=0;pos<size;pos++) output[pos]=0.;
100
101      int filterwidth = par.filter().width();
102      int filterHW = filterwidth/2;
103      double *filter = new double[filterwidth*filterwidth];
104      for(int i=0;i<filterwidth;i++){
105        for(int j=0;j<filterwidth;j++){
106          filter[i*filterwidth+j] = par.filter().coeff(i) * par.filter().coeff(j);
107        }
108      }
109
110      int *xLim1 = new int[ydim];
111      for(int i=0;i<ydim;i++) xLim1[i] = 0;
112      int *yLim1 = new int[xdim];
113      for(int i=0;i<xdim;i++) yLim1[i] = 0;
114      int *xLim2 = new int[ydim];
115      for(int i=0;i<ydim;i++) xLim2[i] = xdim-1;
116      int *yLim2 = new int[xdim];
117      for(int i=0;i<xdim;i++) yLim2[i] = ydim-1;
118
119      if(par.getFlagBlankPix()){
120        float avGapX = 0, avGapY = 0;
121        for(int row=0;row<ydim;row++){
122          int ct1 = 0;
123          int ct2 = xdim - 1;
124          while((ct1<ct2)&&(par.isBlank(input[row*xdim+ct1]))) ct1++;
125          while((ct2>ct1)&&(par.isBlank(input[row*xdim+ct2]))) ct2--;
126          xLim1[row] = ct1;
127          xLim2[row] = ct2;
128          avGapX += ct2 - ct1;
129        }
130        avGapX /= float(ydim);
131   
132        for(int col=0;col<xdim;col++){
133          int ct1=0;
134          int ct2=ydim-1;
135          while((ct1<ct2)&&(par.isBlank(input[col+xdim*ct1]))) ct1++;
136          while((ct2>ct1)&&(par.isBlank(input[col+xdim*ct2]))) ct2--;
137          yLim1[col] = ct1;
138          yLim2[col] = ct2;
139          avGapY += ct2 - ct1;
140        }
141        avGapY /= float(xdim);
142   
143        mindim = int(avGapX);
144        if(avGapY < avGapX) mindim = int(avGapY);
145        numScales = par.filter().getNumScales(mindim);
146      }
147
148      float threshold;
149      int iteration=0;
150      newsigma = 1.e9;
151      for(int i=0;i<size;i++) output[i] = 0;
152      do{
153        if(par.isVerbose()) {
154          std::cout << "Iteration #"<<std::setw(2)<<++iteration<<":";
155          printBackSpace(13);
156        }
157
158        // first, get the value of oldsigma and set it to the previous
159        //   newsigma value
160        oldsigma = newsigma;
161        // we are transforming the residual array
162        for(int i=0;i<size;i++)  coeffs[i] = input[i] - output[i]; 
163
164        int spacing = 1;
165        for(int scale = 1; scale<numScales; scale++){
166
167          if(par.isVerbose()){
168            std::cout << "Scale ";
169            std::cout << std::setw(2)<<scale<<" / "<<std::setw(2)<<numScales;
170            printBackSpace(13);
171            std::cout <<std::flush;
172          }
173
174          for(int ypos = 0; ypos<ydim; ypos++){
175            for(int xpos = 0; xpos<xdim; xpos++){
176              // loops over each pixel in the image
177              int pos = ypos*xdim + xpos;
178         
179              wavelet[pos] = coeffs[pos];
180
181              if(!isGood[pos]) wavelet[pos] = 0.;
182              else{
183
184                int filterpos = -1;
185                for(int yoffset=-filterHW; yoffset<=filterHW; yoffset++){
186                  int y = ypos + spacing*yoffset;
187                  // Boundary conditions -- assume reflection at boundaries.
188                  // Use limits as calculated above
189                  //          if(yLim1[xpos]!=yLim2[xpos]){
190                  //            // if these are equal we will get into an infinite loop here
191                  //            while((y<yLim1[xpos])||(y>yLim2[xpos])){
192                  //              if(y<yLim1[xpos]) y = 2*yLim1[xpos] - y;     
193                  //              else if(y>yLim2[xpos]) y = 2*yLim2[xpos] - y;     
194                  //            }
195                  //          }
196                  int oldrow = y * xdim;
197         
198                  for(int xoffset=-filterHW; xoffset<=filterHW; xoffset++){
199                    int x = xpos + spacing*xoffset;
200                    // Boundary conditions -- assume reflection at boundaries.
201                    // Use limits as calculated above
202                    //          if(xLim1[ypos]!=xLim2[ypos]){
203                    //            // if these are equal we will get into an infinite loop here
204                    //            while((x<xLim1[ypos])||(x>xLim2[ypos])){
205                    //              if(x<xLim1[ypos]) x = 2*xLim1[ypos] - x;     
206                    //              else if(x>xLim2[ypos]) x = 2*xLim2[ypos] - x;     
207                    //            }
208                    //          }
209
210                    int oldpos = oldrow + x;
211
212                    float oldCoeff;
213                    if((y>=yLim1[xpos])&&(y<=yLim2[xpos])&&
214                       (x>=xLim1[ypos])&&(x<=xLim2[ypos])  )
215                      oldCoeff = coeffs[oldpos];
216                    else oldCoeff = 0.;
217
218                    filterpos++;
219
220                    if(isGood[pos]) wavelet[pos] -= filter[filterpos] * oldCoeff;
221                    //            wavelet[pos] -= filter[filterpos] * coeffs[oldpos];
222
223                  } //-> end of xoffset loop
224                } //-> end of yoffset loop
225              } //-> end of else{ ( from if(!isGood[pos])  )
226       
227            } //-> end of xpos loop
228          } //-> end of ypos loop
229
230          // Need to do this after we've done *all* the convolving
231          for(int pos=0;pos<size;pos++) coeffs[pos] = coeffs[pos] - wavelet[pos];
232
233          // Have found wavelet coeffs for this scale -- now threshold   
234          if(scale>=par.getMinScale()){
235            findMedianStats(wavelet,goodSize,isGood,mean,sigma);
236
237            threshold = mean +
238              par.getAtrousCut() * originalSigma * sigmaFactors[scale];
239            for(int pos=0;pos<size;pos++){
240              if(!isGood[pos]) output[pos] = input[pos];
241              // preserve the Blank pixel values in the output.
242              else if( fabs(wavelet[pos]) > threshold )
243                output[pos] += wavelet[pos];
244            }
245          }
246          spacing *= 2;
247
248        } // END OF LOOP OVER SCALES
249
250        for(int pos=0;pos<size;pos++) if(isGood[pos]) output[pos] += coeffs[pos];
251
252        for(int i=0;i<size;i++) residual[i] = input[i] - output[i];
253        findMedianStats(residual,goodSize,isGood,mean,newsigma);
254        newsigma = madfmToSigma(newsigma);
255   
256        if(par.isVerbose()) printBackSpace(15);
257
258      } while( (iteration==1) ||
259               (fabs(oldsigma-newsigma)/newsigma > reconTolerance) );
260
261      if(par.isVerbose()) std::cout << "Completed "<<iteration<<" iterations. ";
262
263      delete [] xLim1;
264      delete [] xLim2;
265      delete [] yLim1;
266      delete [] yLim2;
267      delete [] filter;
268      delete [] coeffs;
269      delete [] wavelet;
270      delete [] residual;
271
272    }
273
274    delete [] isGood;
275    delete [] sigmaFactors;
276  }
277   
278}
Note: See TracBrowser for help on using the repository browser.