#include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace mycpgplot; void Cube::plotDetectionMap(string pgDestination) { /** * Cube::plotDetectionMap(string) * Creates a map of the spatial locations of the detections, which is * written to the PGPlot device given by pgDestination. * The map is done in greyscale, where the scale indicates the number of * velocity channels that each spatial pixel is detected in. * The boundaries of each detection are drawn, and each object is numbered * (to match the output list and spectra). * The primary grid scale is pixel coordinate, and if the WCS is valid, * the correct WCS gridlines are also drawn. */ // These are the minimum values for the X and Y ranges of the box drawn by // pgplot (without the half-pixel difference). // The -1 is necessary because the arrays we are dealing with start at 0 // index, while the ranges given in the subsection start at 1... float boxXmin = this->par.getXOffset() - 1; float boxYmin = this->par.getYOffset() - 1; long xdim=this->axisDim[0]; long ydim=this->axisDim[1]; Plot::ImagePlot newplot; int flag = newplot.setUpPlot(pgDestination.c_str(),float(xdim),float(ydim)); if(flag<=0){ duchampError("plotDetectionMap", "Could not open PGPlot device " + pgDestination + ".\n"); } else{ newplot.makeTitle(this->pars().getImageFile()); newplot.drawMapBox(boxXmin+0.5,boxXmin+xdim+0.5, boxYmin+0.5,boxYmin+ydim+0.5, "X pixel","Y pixel"); // if(this->objectList.size()>0){ // if there are no detections, there will be nothing to plot here float *detectMap = new float[xdim*ydim]; int maxNum = this->detectMap[0]; detectMap[0] = float(maxNum); for(int pix=1;pixdetectMap[pix]); if(this->detectMap[pix] > maxNum) maxNum = this->detectMap[pix]; } if(maxNum>0){ // if there are no detections, it will be 0. maxNum = 5 * ((maxNum-1)/5 + 1); // move to next multiple of 5 float tr[6] = {boxXmin,1.,0.,boxYmin,0.,1.}; cpggray(detectMap,xdim,ydim,1,xdim,1,ydim,maxNum,0,tr); // delete [] detectMap; cpgbox("bcnst",0.,0,"bcnst",0.,0); cpgsch(1.5); cpgwedg("rg",3.2,2,maxNum,0,"Number of detected channels"); } delete [] detectMap; this->plotBlankEdges(); if(this->head.isWCS()) this->plotWCSaxes(); if(this->objectList.size()>0){ // now show and label each detection, drawing over the WCS lines. cpgsch(1.0); cpgslw(2); float xoff=0.; float yoff=newplot.cmToCoord(0.5); if(this->par.drawBorders()){ cpgsci(BLUE); for(int i=0;iobjectList.size();i++) this->objectList[i].drawBorders(0,0); } cpgsci(RED); std::stringstream label; cpgslw(1); for(int i=0;iobjectList.size();i++){ cpgpt1(this->par.getXOffset()+this->objectList[i].getXcentre(), this->par.getYOffset()+this->objectList[i].getYcentre(), CROSS); label.str(""); label << this->objectList[i].getID(); cpgptxt(this->par.getXOffset()+this->objectList[i].getXcentre()-xoff, this->par.getYOffset()+this->objectList[i].getYcentre()-yoff, 0, 0.5, label.str().c_str()); } } cpgclos(); } } /*********************************************************/ void Cube::plotMomentMap(string pgDestination) { /** * Cube::plotMomentMap(string) * Creates a 0th moment map of the detections, which is written to the * PGPlot device given by pgDestination. * The map is done in greyscale, where the scale indicates the integrated * flux at each spatial pixel. * The boundaries of each detection are drawn, and each object is numbered * (to match the output list and spectra). * The primary grid scale is pixel coordinate, and if the WCS is valid, * the correct WCS gridlines are also drawn. */ float boxXmin = this->par.getXOffset() - 1; float boxYmin = this->par.getYOffset() - 1; long xdim=this->axisDim[0]; long ydim=this->axisDim[1]; long zdim=this->axisDim[2]; Plot::ImagePlot newplot; int flag = newplot.setUpPlot(pgDestination.c_str(),float(xdim),float(ydim)); if(flag<=0){ duchampError("plotMomentMap", "Could not open PGPlot device " + pgDestination + ".\n"); } else{ if(this->objectList.size()==0){ // if there are no detections, we plot an empty field. newplot.makeTitle(this->pars().getImageFile()); newplot.drawMapBox(boxXmin+0.5,boxXmin+xdim+0.5, boxYmin+0.5,boxYmin+ydim+0.5, "X pixel","Y pixel"); this->plotBlankEdges(); if(this->head.isWCS()) this->plotWCSaxes(); } else { // if there are some detections, do the calculations first before // plotting anything. newplot.makeTitle(this->pars().getImageFile()); newplot.drawMapBox(boxXmin+0.5,boxXmin+xdim+0.5, boxYmin+0.5,boxYmin+ydim+0.5, "X pixel","Y pixel"); if(pgDestination=="/xs") cpgptxt(boxXmin+0.5+xdim/2., boxYmin+0.5+ydim/2., 0, 0.5, "Calculating map..."); bool *isObj = new bool[xdim*ydim*zdim]; for(int i=0;iobjectList.size();i++){ for(int p=0;pobjectList[i].getSize();p++){ int pixelpos = this->objectList[i].getX(p) + xdim*this->objectList[i].getY(p) + xdim*ydim*this->objectList[i].getZ(p); isObj[pixelpos] = true; } } float *momentMap = new float[xdim*ydim]; // Initialise to zero for(int i=0;ipars().getFlagNegative()) sign = -1.; float deltaVel; double x,y; double *zArray = new double[zdim]; for(int z=0; zhead.pixToVel(x,y,zArray,zdim); for(int z=0; zarray[pos] * fabs(deltaVel); } } } delete [] world; delete [] zArray; float *temp = new float[xdim*ydim]; int count=0; for(int i=0;i0.){ bool addPixel = false; for(int z=0;zz2) z2 = temp[i]; } for(int i=0;i0.); if(!addPixel) momentMap[i] = z1-1.; else momentMap[i] = log10(momentMap[i]); } // Have now done all necessary calculations for moment map. // Now produce the plot float tr[6] = {boxXmin,1.,0.,boxYmin,0.,1.}; cpggray(momentMap,xdim,ydim,1,xdim,1,ydim,z2,z1,tr); cpgbox("bcnst",0.,0,"bcnst",0.,0); cpgsch(1.5); string wedgeLabel = "Integrated Flux "; if(this->par.getFlagNegative()) wedgeLabel = "-1. " + times + " " + wedgeLabel; if(this->head.isWCS()) wedgeLabel += "[" + this->head.getIntFluxUnits() + "]"; else wedgeLabel += "[" + this->head.getFluxUnits() + "]"; cpgwedglog("rg",3.2,2,z2,z1,wedgeLabel.c_str()); delete [] momentMap; delete [] temp; delete [] isObj; this->plotBlankEdges(); if(this->head.isWCS()) this->plotWCSaxes(); // now show and label each detection, drawing over the WCS lines. cpgsch(1.0); cpgslw(2); float xoff=0.; float yoff=newplot.cmToCoord(0.5); if(this->par.drawBorders()){ cpgsci(BLUE); for(int i=0;iobjectList.size();i++) this->objectList[i].drawBorders(0,0); } cpgsci(RED); std::stringstream label; cpgslw(1); for(int i=0;iobjectList.size();i++){ cpgpt1(this->par.getXOffset()+this->objectList[i].getXcentre(), this->par.getYOffset()+this->objectList[i].getYcentre(), CROSS); label.str(""); label << this->objectList[i].getID(); cpgptxt(this->par.getXOffset()+this->objectList[i].getXcentre()-xoff, this->par.getYOffset()+this->objectList[i].getYcentre()-yoff, 0, 0.5, label.str().c_str()); } } cpgclos(); } } /*********************************************************/ void Cube::plotMomentMap(vector pgDestination) { /** * Cube::plotMomentMap(vector) * Creates a 0th moment map of the detections, which is written to each * of the PGPlot devices mentioned in pgDestination. * The advantage of this function is that the map is only calculated once, * even if multiple maps are required. * The map is done in greyscale, where the scale indicates the integrated * flux at each spatial pixel. * The boundaries of each detection are drawn, and each object is numbered * (to match the output list and spectra). * The primary grid scale is pixel coordinate, and if the WCS is valid, * the correct WCS gridlines are also drawn. */ float boxXmin = this->par.getXOffset() - 1; float boxYmin = this->par.getYOffset() - 1; long xdim=this->axisDim[0]; long ydim=this->axisDim[1]; long zdim=this->axisDim[2]; int numPlots = pgDestination.size(); vector plotList(numPlots); vector plotFlag(numPlots,0); vector doPlot(numPlots,false); bool plotNeeded = false; for(int i=0;iobjectList.size()==0){ // if there are no detections, we plot an empty field. for(int iplot=0; iplotpars().getImageFile()); plotList[iplot].drawMapBox(boxXmin+0.5,boxXmin+xdim+0.5, boxYmin+0.5,boxYmin+ydim+0.5, "X pixel","Y pixel"); this->plotBlankEdges(); if(this->head.isWCS()) this->plotWCSaxes(); } } else { // if there are some detections, do the calculations first before // plotting anything. for(int iplot=0; iplotpars().getImageFile()); plotList[iplot].drawMapBox(boxXmin+0.5,boxXmin+xdim+0.5, boxYmin+0.5,boxYmin+ydim+0.5, "X pixel","Y pixel"); if(pgDestination[iplot]=="/xs") cpgptxt(boxXmin+0.5+xdim/2., boxYmin+0.5+ydim/2., 0, 0.5, "Calculating map..."); } bool *isObj = new bool[xdim*ydim*zdim]; for(int i=0;iobjectList.size();i++){ for(int p=0;pobjectList[i].getSize();p++){ int pixelpos = this->objectList[i].getX(p) + xdim*this->objectList[i].getY(p) + xdim*ydim*this->objectList[i].getZ(p); isObj[pixelpos] = true; } } float *momentMap = new float[xdim*ydim]; // Initialise to zero for(int i=0;ipars().getFlagNegative()) sign = -1.; float deltaVel; double x,y; double *zArray = new double[zdim]; for(int z=0; zhead.pixToVel(x,y,zArray,zdim); for(int z=0; zarray[pos] * fabs(deltaVel); } } } delete [] world; delete [] zArray; float *temp = new float[xdim*ydim]; int count=0; for(int i=0;i0.){ bool addPixel = false; for(int z=0;zz2) z2 = temp[i]; } delete [] temp; for(int i=0;i0.); if(!addPixel) momentMap[i] = z1-1.; else momentMap[i] = log10(momentMap[i]); } delete [] isObj; // Have now done all necessary calculations for moment map. // Now produce the plot for(int iplot=0; iplotpar.getFlagNegative()) wedgeLabel = "-1. " + times + " " + wedgeLabel; if(this->head.isWCS()) wedgeLabel += "[" + this->head.getIntFluxUnits() + "]"; else wedgeLabel += "[" + this->head.getFluxUnits() + "]"; cpgwedglog("rg",3.2,2,z2,z1,wedgeLabel.c_str()); this->plotBlankEdges(); if(this->head.isWCS()) this->plotWCSaxes(); // now show and label each detection, drawing over the WCS lines. cpgsch(1.0); cpgslw(2); float xoff=0.; float yoff=plotList[iplot].cmToCoord(0.5); if(this->par.drawBorders()){ cpgsci(BLUE); for(int i=0;iobjectList.size();i++) this->objectList[i].drawBorders(0,0); } cpgsci(RED); std::stringstream label; cpgslw(1); for(int i=0;iobjectList.size();i++){ cpgpt1(this->par.getXOffset()+this->objectList[i].getXcentre(), this->par.getYOffset()+this->objectList[i].getYcentre(), CROSS); label.str(""); label << this->objectList[i].getID(); cpgptxt(this->par.getXOffset()+this->objectList[i].getXcentre()-xoff, this->par.getYOffset()+this->objectList[i].getYcentre()-yoff, 0, 0.5, label.str().c_str()); } } // end of iplot loop over number of devices delete [] momentMap; } // end of else (from if(numdetections==0) ) for(int iplot=0; iplothead.getWCS(); strcpy(idents[0], tempwcs->lngtyp); strcpy(idents[1], tempwcs->lattyp); strcpy(idents[2], ""); if(strcmp(tempwcs->lngtyp,"RA")==0) opt[0] = 'G'; else opt[0] = 'D'; opt[1] = 'E'; float blc[2], scl, trc[2]; blc[0] = boxXmin + 0.5; blc[1] = boxYmin + 0.5; trc[0] = boxXmin + this->axisDim[0]+0.5; trc[1] = boxYmin + this->axisDim[1]+0.5; int lineWidth; cpgqlw(&lineWidth); int colour; cpgqci(&colour); float size; cpgqch(&size); cpgsci(GREEN); cpgsch(0.8); int c0[7], ci[7], gcode[2], ic, ierr; for(int i=0;i<7;i++) c0[i] = -1; /* define a Dark Green colour. */ cpgscr(17, 0.3, 0.5, 0.3); gcode[0] = 2; // type of grid to draw: 0=none, 1=ticks only, 2=full grid gcode[1] = 2; double cache[257][4], grid1[9], grid2[9], nldprm[8]; grid1[0] = 0.0; grid2[0] = 0.0; // Draw the celestial grid with no intermediate tick marks. // Set LABCTL=2100 to write 1st coord on top, and 2nd on right //Colour indices used by cpgsbox: make it all the same colour for thin // line case. ci[0] = 17; // grid lines, coord 1 ci[1] = 17; // grid lines, coord 2 ci[2] = 17; // numeric labels, coord 1 ci[3] = 17; // numeric labels, coord 2 ci[4] = 17; // axis annotation, coord 1 ci[5] = 17; // axis annotation, coord 2 ci[6] = 17; // title cpgsbox(blc, trc, idents, opt, 2100, 0, ci, gcode, 0.0, 0, grid1, 0, grid2, 0, pgwcsl_, 1, WCSLEN, 1, nlcprm, (int *)tempwcs, nldprm, 256, &ic, cache, &ierr); wcsfree(tempwcs); cpgsci(colour); cpgsch(size); cpgslw(lineWidth); }