- Timestamp:
- 02/28/05 15:32:29 (20 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/python/asapfitter.py
r302 r515 25 25 self.mask = None 26 26 self.fitfunc = None 27 self.fitfuncs = None 27 28 self.fitted = False 28 29 self.data = None 30 self.components = 0 31 self._fittedrow = 0 29 32 self._p = None 30 33 self._vb = True 34 self._selection = None 31 35 32 36 def set_data(self, xdat, ydat, mask=None): … … 80 84 fitter.set_function(poly=3) # will fit a 3rd order polynomial 81 85 """ 82 #default poly order 0 83 84 86 #default poly order 0 87 n=0 85 88 if kwargs.has_key('poly'): 86 89 self.fitfunc = 'poly' 87 90 n = kwargs.get('poly') 91 self.components = [n] 88 92 elif kwargs.has_key('gauss'): 89 93 n = kwargs.get('gauss') 90 94 self.fitfunc = 'gauss' 91 95 self.fitfuncs = [ 'gauss' for i in range(n) ] 96 self.components = [ 3 for i in range(n) ] 97 else: 98 print "Invalid function type." 99 return 92 100 self.fitter.setexpression(self.fitfunc,n) 93 101 return 94 102 95 def fit(self ):103 def fit(self, row=0): 96 104 """ 97 105 Execute the actual fitting process. All the state has to be set. … … 99 107 none 100 108 Example: 101 s= scantable('myscan.asap') 109 s = scantable('myscan.asap') 110 s.set_cursor(thepol=1) # select second pol 102 111 f = fitter() 103 112 f.set_scan(s) 104 113 f.set_function(poly=0) 105 f.fit( )114 f.fit(row=0) # fit first row 106 115 """ 107 116 if ((self.x is None or self.y is None) and self.data is None) \ … … 111 120 else: 112 121 if self.data is not None: 113 self.x = self.data._getabcissa( )114 self.y = self.data._getspectrum( )122 self.x = self.data._getabcissa(row) 123 self.y = self.data._getspectrum(row) 115 124 print "Fitting:" 116 125 vb = self.data._vb 117 126 self.data._vb = True 118 s = self.data.get_cursor()127 self.selection = self.data.get_cursor() 119 128 self.data._vb = vb 120 121 self.fitter.setdata(self.x,self.y,self.mask) 129 self.fitter.setdata(self.x, self.y, self.mask) 122 130 if self.fitfunc == 'gauss': 123 131 ps = self.fitter.getparameters() … … 125 133 self.fitter.estimate() 126 134 self.fitter.fit() 135 self._fittedrow = row 127 136 self.fitted = True 128 137 return 129 138 130 def set_parameters(self, params, fixed=None): 139 def store_fit(self): 140 if self.fitted and self.data is not None: 141 pars = list(self.fitter.getparameters()) 142 fixed = list(self.fitter.getfixedparameters()) 143 self.data._addfit(self._fittedrow, pars, fixed, 144 self.fitfuncs, self.components) 145 146 def set_parameters(self, params, fixed=None, component=None): 147 if self.fitfunc is None: 148 print "Please specify a fitting function first." 149 return 150 if self.fitfunc == "gauss" and component is not None: 151 if not self.fitted: 152 from numarray import zeros 153 pars = list(zeros(len(self.components)*3)) 154 fxd = list(zeros(len(pars))) 155 else: 156 pars = list(self.fitter.getparameters()) 157 fxd = list(self.fitter.getfixedparameters()) 158 i = 3*component 159 pars[i:i+3] = params 160 fxd[i:i+3] = fixed 161 params = pars 162 fixed = fxd 131 163 self.fitter.setparameters(params) 132 164 if fixed is not None: 133 165 self.fitter.setfixedparameters(fixed) 134 166 return 135 136 def get_parameters(self): 167 168 def set_gauss_parameters(self, peak, centre, fhwm, 169 peakfixed=False, centerfixed=False, 170 fhwmfixed=False, 171 component=0): 172 """ 173 Set the Parameters of a 'Gaussian' component, set with set_function. 174 Parameters: 175 component: The number of the component (Default is the 176 first component. 177 peak, centre, fhwm: The gaussian parameters 178 peakfixed, 179 centerfixed, 180 fhwmfixed: Optional parameters to indicate if 181 the paramters should be held fixed during 182 the fitting process. The default is to keep 183 all parameters flexible. 184 """ 185 if self.fitfunc != "gauss": 186 print "Function only operates on Gaussian components." 187 return 188 if 0 <= component < len(self.components): 189 self.set_parameters([peak, centre, fhwm], 190 [peakfixed, centerfixed, fhwmfixed], 191 component) 192 else: 193 print "Please select a valid component." 194 return 195 196 def get_parameters(self, component=None): 137 197 """ 138 198 Return the fit paramters. … … 143 203 pars = list(self.fitter.getparameters()) 144 204 fixed = list(self.fitter.getfixedparameters()) 205 if component is not None: 206 if self.fitfunc == "gauss": 207 i = 3*component 208 cpars = pars[i:i+3] 209 cfixed = fixed[i:i+3] 210 else: 211 cpars = pars 212 cfixed = fixed 213 else: 214 cpars = pars 215 cfixed = fixed 216 fpars = self._format_pars(cpars, cfixed) 145 217 if self._vb: 146 print self._format_pars(pars)147 return pars,fixed218 print fpars 219 return cpars, cfixed, fpars 148 220 149 def _format_pars(self, pars ):221 def _format_pars(self, pars, fixed): 150 222 out = '' 151 223 if self.fitfunc == 'poly': 152 224 c = 0 153 for i in pars: 154 out += ' p%d = %3.3f, ' % (c,i) 225 for i in range(len(pars)): 226 fix = "" 227 if fixed[i]: fix = "(fixed)" 228 out += ' p%d%s= %3.3f,' % (c,fix,pars[i]) 155 229 c+=1 230 out = out[:-1] # remove trailing ',' 156 231 elif self.fitfunc == 'gauss': 157 232 i = 0 158 233 c = 0 159 unit = '' 234 aunit = '' 235 ounit = '' 160 236 if self.data: 161 unit = self.data.get_unit() 237 aunit = self.data.get_unit() 238 ounit = self.data.get_fluxunit() 162 239 while i < len(pars): 163 out += ' %d: peak = %3.3f , centre = %3.3f %s, FWHM = %3.3f %s \n' % (c,pars[i],pars[i+1],unit,pars[i+2],unit)240 out += ' %d: peak = %3.3f %s , centre = %3.3f %s, FWHM = %3.3f %s \n' % (c,pars[i],ounit,pars[i+1],aunit,pars[i+2],aunit) 164 241 c+=1 165 242 i+=3 … … 168 245 def get_estimate(self): 169 246 """ 170 Return the param ter estimates (for non-linear functions).247 Return the parameter estimates (for non-linear functions). 171 248 """ 172 249 pars = self.fitter.getestimate() … … 188 265 Return chi^2. 189 266 """ 190 191 267 if not self.fitted: 192 268 print "Not yet fitted." … … 206 282 def commit(self): 207 283 """ 208 Return a new scan where t ehfits have been commited.284 Return a new scan where the fits have been commited. 209 285 """ 210 286 if not self.fitted: … … 216 292 scan._setspectrum(self.fitter.getresidual()) 217 293 218 def plot(self, residual=False): 294 def plot(self, residual=False, components=None, plotparms=False, 295 plotrange=None): 219 296 """ 220 297 Plot the last fit. … … 232 309 self._p = ASAPlot() 233 310 self._p.clear() 311 self._p.set_panels() 312 self._p.palette(1) 234 313 tlab = 'Spectrum' 235 xlab = 'Abcissa' 314 xlab = 'Abcissa' 315 m = () 236 316 if self.data: 237 tlab = self.data._getsourcename(0) 238 xlab = self.data._getabcissalabel(0) 239 ylab = r'Flux' 240 m = self.data._getmask(0) 241 self._p.set_line(colour='blue',label='Spectrum') 317 tlab = self.data._getsourcename(self._fittedrow) 318 xlab = self.data._getabcissalabel(self._fittedrow) 319 m = self.data._getmask(self._fittedrow) 320 ylab = r'Flux' 321 322 colours = ["grey60","grey80","red","orange","purple","yellow","magenta", "cyan"] 323 self._p.palette(1,colours) 324 self._p.set_line(label='Spectrum') 242 325 self._p.plot(self.x, self.y, m) 243 326 if residual: 244 self._p.set_line(colour='green',label='Residual') 327 self._p.palette(2) 328 self._p.set_line(label='Residual') 245 329 self._p.plot(self.x, self.get_residual(), m) 246 self._p.set_line(colour='red',label='Fit') 247 self._p.plot(self.x, self.get_fit(), m) 248 330 self._p.palette(3) 331 if components is not None: 332 cs = components 333 if isinstance(components,int): cs = [components] 334 self._p.text(0.15,0.15,str(self.get_parameters()[2]),size=8) 335 n = len(self.components) 336 self._p.palette(4) 337 for c in cs: 338 if 0 <= c < n: 339 lab = self.fitfuncs[c]+str(c) 340 self._p.set_line(label=lab) 341 self._p.plot(self.x, self.fitter.evaluate(c), m) 342 elif c == -1: 343 self._p.palette(3) 344 self._p.set_line(label="Total Fit") 345 self._p.plot(self.x, self.get_fit(), m) 346 else: 347 self._p.palette(3) 348 self._p.set_line(label='Fit') 349 self._p.plot(self.x, self.get_fit(), m) 249 350 self._p.set_axes('xlabel',xlab) 250 351 self._p.set_axes('ylabel',ylab) … … 252 353 self._p.release() 253 354 254 255 355 def auto_fit(self, insitu=None): 256 356 """ 257 Return a scan where the function is applied to all rows for all Beams/IFs/Pols. 357 Return a scan where the function is applied to all rows for 358 all Beams/IFs/Pols. 258 359 259 360 """ 260 361 from asap import scantable 261 if not isinstance(self.data, scantable) :362 if not isinstance(self.data, scantable) : 262 363 print "Only works with scantables" 263 364 return
Note:
See TracChangeset
for help on using the changeset viewer.