- Timestamp:
- 09/04/12 18:58:06 (12 years ago)
- Location:
- trunk
- Files:
-
- 5 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/python/scantable.py
r2643 r2645 3007 3007 3008 3008 @asaplog_post_dec 3009 def chebyshev_baseline(self, insitu=None, mask=None, order=None, 3010 clipthresh=None, clipniter=None, plot=None, 3011 getresidual=None, showprogress=None, minnrow=None, 3012 outlog=None, blfile=None, csvformat=None): 3013 """\ 3014 Return a scan which has been baselined (all rows) by Chebyshev polynomials. 3015 3016 Parameters: 3017 insitu: If False a new scantable is returned. 3018 Otherwise, the scaling is done in-situ 3019 The default is taken from .asaprc (False) 3020 mask: An optional mask 3021 order: the maximum order of Chebyshev polynomial (default is 5) 3022 clipthresh: Clipping threshold. (default is 3.0, unit: sigma) 3023 clipniter: maximum number of iteration of 'clipthresh'-sigma 3024 clipping (default is 0) 3025 plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE *** 3026 plot the fit and the residual. In this each 3027 indivual fit has to be approved, by typing 'y' 3028 or 'n' 3029 getresidual: if False, returns best-fit values instead of 3030 residual. (default is True) 3031 showprogress: show progress status for large data. 3032 default is True. 3033 minnrow: minimum number of input spectra to show. 3034 default is 1000. 3035 outlog: Output the coefficients of the best-fit 3036 function to logger (default is False) 3037 blfile: Name of a text file in which the best-fit 3038 parameter values to be written 3039 (default is "": no file/logger output) 3040 csvformat: if True blfile is csv-formatted, default is False. 3041 3042 Example: 3043 # return a scan baselined by a cubic spline consisting of 2 pieces 3044 # (i.e., 1 internal knot), 3045 # also with 3-sigma clipping, iteration up to 4 times 3046 bscan = scan.cspline_baseline(npiece=2,clipthresh=3.0,clipniter=4) 3047 3048 Note: 3049 The best-fit parameter values output in logger and/or blfile are now 3050 based on specunit of 'channel'. 3051 """ 3052 3053 try: 3054 varlist = vars() 3055 3056 if insitu is None: insitu = rcParams['insitu'] 3057 if insitu: 3058 workscan = self 3059 else: 3060 workscan = self.copy() 3061 3062 #if mask is None: mask = [True for i in xrange(workscan.nchan())] 3063 if mask is None: mask = [] 3064 if order is None: order = 5 3065 if clipthresh is None: clipthresh = 3.0 3066 if clipniter is None: clipniter = 0 3067 if plot is None: plot = False 3068 if getresidual is None: getresidual = True 3069 if showprogress is None: showprogress = True 3070 if minnrow is None: minnrow = 1000 3071 if outlog is None: outlog = False 3072 if blfile is None: blfile = '' 3073 if csvformat is None: csvformat = False 3074 3075 if csvformat: 3076 scsvformat = "T" 3077 else: 3078 scsvformat = "F" 3079 3080 #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method. 3081 workscan._chebyshev_baseline(mask, order, clipthresh, clipniter, 3082 getresidual, 3083 pack_progress_params(showprogress, 3084 minnrow), 3085 outlog, scsvformat+blfile) 3086 workscan._add_history("chebyshev_baseline", varlist) 3087 3088 if insitu: 3089 self._assign(workscan) 3090 else: 3091 return workscan 3092 3093 except RuntimeError, e: 3094 raise_fitting_failure_exception(e) 3095 3096 @asaplog_post_dec 3097 def auto_chebyshev_baseline(self, insitu=None, mask=None, order=None, 3098 clipthresh=None, clipniter=None, 3099 edge=None, threshold=None, chan_avg_limit=None, 3100 getresidual=None, plot=None, 3101 showprogress=None, minnrow=None, outlog=None, 3102 blfile=None, csvformat=None): 3103 """\ 3104 Return a scan which has been baselined (all rows) by Chebyshev polynomials. 3105 Spectral lines are detected first using linefinder and masked out 3106 to avoid them affecting the baseline solution. 3107 3108 Parameters: 3109 insitu: if False a new scantable is returned. 3110 Otherwise, the scaling is done in-situ 3111 The default is taken from .asaprc (False) 3112 mask: an optional mask retreived from scantable 3113 order: the maximum order of Chebyshev polynomial (default is 5) 3114 clipthresh: Clipping threshold. (default is 3.0, unit: sigma) 3115 clipniter: maximum number of iteration of 'clipthresh'-sigma 3116 clipping (default is 0) 3117 edge: an optional number of channel to drop at 3118 the edge of spectrum. If only one value is 3119 specified, the same number will be dropped 3120 from both sides of the spectrum. Default 3121 is to keep all channels. Nested tuples 3122 represent individual edge selection for 3123 different IFs (a number of spectral channels 3124 can be different) 3125 threshold: the threshold used by line finder. It is 3126 better to keep it large as only strong lines 3127 affect the baseline solution. 3128 chan_avg_limit: a maximum number of consequtive spectral 3129 channels to average during the search of 3130 weak and broad lines. The default is no 3131 averaging (and no search for weak lines). 3132 If such lines can affect the fitted baseline 3133 (e.g. a high order polynomial is fitted), 3134 increase this parameter (usually values up 3135 to 8 are reasonable). Most users of this 3136 method should find the default value sufficient. 3137 plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE *** 3138 plot the fit and the residual. In this each 3139 indivual fit has to be approved, by typing 'y' 3140 or 'n' 3141 getresidual: if False, returns best-fit values instead of 3142 residual. (default is True) 3143 showprogress: show progress status for large data. 3144 default is True. 3145 minnrow: minimum number of input spectra to show. 3146 default is 1000. 3147 outlog: Output the coefficients of the best-fit 3148 function to logger (default is False) 3149 blfile: Name of a text file in which the best-fit 3150 parameter values to be written 3151 (default is "": no file/logger output) 3152 csvformat: if True blfile is csv-formatted, default is False. 3153 3154 Example: 3155 bscan = scan.auto_cspline_baseline(npiece=3, insitu=False) 3156 3157 Note: 3158 The best-fit parameter values output in logger and/or blfile are now 3159 based on specunit of 'channel'. 3160 """ 3161 3162 try: 3163 varlist = vars() 3164 3165 if insitu is None: insitu = rcParams['insitu'] 3166 if insitu: 3167 workscan = self 3168 else: 3169 workscan = self.copy() 3170 3171 #if mask is None: mask = [True for i in xrange(workscan.nchan())] 3172 if mask is None: mask = [] 3173 if order is None: order = 5 3174 if clipthresh is None: clipthresh = 3.0 3175 if clipniter is None: clipniter = 0 3176 if edge is None: edge = (0, 0) 3177 if threshold is None: threshold = 3 3178 if chan_avg_limit is None: chan_avg_limit = 1 3179 if plot is None: plot = False 3180 if getresidual is None: getresidual = True 3181 if showprogress is None: showprogress = True 3182 if minnrow is None: minnrow = 1000 3183 if outlog is None: outlog = False 3184 if blfile is None: blfile = '' 3185 if csvformat is None: csvformat = False 3186 3187 if csvformat: 3188 scsvformat = "T" 3189 else: 3190 scsvformat = "F" 3191 3192 #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method. 3193 workscan._auto_chebyshev_baseline(mask, order, clipthresh, 3194 clipniter, 3195 normalise_edge_param(edge), 3196 threshold, 3197 chan_avg_limit, getresidual, 3198 pack_progress_params(showprogress, 3199 minnrow), 3200 outlog, scsvformat+blfile) 3201 workscan._add_history("auto_chebyshev_baseline", varlist) 3202 3203 if insitu: 3204 self._assign(workscan) 3205 else: 3206 return workscan 3207 3208 except RuntimeError, e: 3209 raise_fitting_failure_exception(e) 3210 3211 @asaplog_post_dec 3009 3212 def poly_baseline(self, mask=None, order=None, insitu=None, plot=None, 3010 3213 getresidual=None, showprogress=None, minnrow=None, -
trunk/src/Scantable.cpp
r2644 r2645 2602 2602 } 2603 2603 2604 void Scantable::cubicSplineBaseline(const std::vector<bool>& mask, int nPiece, float thresClip, int nIterClip, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile) 2605 { 2606 /************* 2607 double totTimeStart, totTimeEnd, blTimeStart, blTimeEnd, ioTimeStart, ioTimeEnd, msTimeStart, msTimeEnd, seTimeStart, seTimeEnd, otTimeStart, otTimeEnd, prTimeStart, prTimeEnd; 2608 double elapseMs = 0.0; 2609 double elapseSe = 0.0; 2610 double elapseOt = 0.0; 2611 double elapsePr = 0.0; 2612 double elapseBl = 0.0; 2613 double elapseIo = 0.0; 2614 totTimeStart = mathutil::gettimeofday_sec(); 2615 *************/ 2616 2604 void Scantable::chebyshevBaseline(const std::vector<bool>& mask, int order, float thresClip, int nIterClip, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile) 2605 { 2617 2606 try { 2618 2607 ofstream ofs; … … 2634 2623 } 2635 2624 2636 //Fitter fitter = Fitter();2637 //fitter.setExpression("cspline", nPiece);2638 //fitter.setIterClipping(thresClip, nIterClip);2639 2640 2625 bool showProgress; 2641 2626 int minNRow; … … 2645 2630 std::vector<bool> chanMask; 2646 2631 2647 //--------------------------------2648 2632 for (int whichrow = 0; whichrow < nRow; ++whichrow) { 2649 /******************2650 ioTimeStart = mathutil::gettimeofday_sec();2651 **/2652 2633 std::vector<float> sp = getSpectrum(whichrow); 2653 /**2654 ioTimeEnd = mathutil::gettimeofday_sec();2655 elapseIo += (double)(ioTimeEnd - ioTimeStart);2656 msTimeStart = mathutil::gettimeofday_sec();2657 ******************/2658 2659 2634 chanMask = getCompositeChanMask(whichrow, mask); 2660 2661 /** 2662 msTimeEnd = mathutil::gettimeofday_sec(); 2663 elapseMs += (double)(msTimeEnd - msTimeStart); 2664 blTimeStart = mathutil::gettimeofday_sec(); 2665 **/ 2666 2667 //fitBaseline(chanMask, whichrow, fitter); 2668 //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow); 2669 std::vector<int> pieceEdges(nPiece+1); 2670 std::vector<float> params(nPiece*4); 2635 std::vector<float> params(order+1); 2671 2636 int nClipped = 0; 2672 std::vector<float> res = doCubicSplineFitting(sp, chanMask, nPiece, pieceEdges, params, nClipped, thresClip, nIterClip, getResidual); 2673 2674 /** 2675 blTimeEnd = mathutil::gettimeofday_sec(); 2676 elapseBl += (double)(blTimeEnd - blTimeStart); 2677 seTimeStart = mathutil::gettimeofday_sec(); 2678 **/ 2679 2637 std::vector<float> res = doChebyshevFitting(sp, chanMask, order, params, nClipped, thresClip, nIterClip, getResidual); 2680 2638 2681 2639 setSpectrum(res, whichrow); 2682 // 2683 2684 /** 2685 seTimeEnd = mathutil::gettimeofday_sec(); 2686 elapseSe += (double)(seTimeEnd - seTimeStart); 2687 otTimeStart = mathutil::gettimeofday_sec(); 2688 **/ 2689 2690 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "cubicSplineBaseline()", pieceEdges, params, nClipped); 2691 2692 /** 2693 otTimeEnd = mathutil::gettimeofday_sec(); 2694 elapseOt += (double)(otTimeEnd - otTimeStart); 2695 prTimeStart = mathutil::gettimeofday_sec(); 2696 **/ 2697 2640 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "chebyshevBaseline()", params, nClipped); 2698 2641 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow); 2699 2700 /****************** 2701 prTimeEnd = mathutil::gettimeofday_sec(); 2702 elapsePr += (double)(prTimeEnd - prTimeStart); 2703 ******************/ 2704 } 2705 //-------------------------------- 2642 } 2706 2643 2707 2644 if (outTextFile) ofs.close(); … … 2710 2647 throw; 2711 2648 } 2712 /*************** 2713 totTimeEnd = mathutil::gettimeofday_sec(); 2714 std::cout << "io : " << elapseIo << " (sec.)" << endl; 2715 std::cout << "ms : " << elapseMs << " (sec.)" << endl; 2716 std::cout << "bl : " << elapseBl << " (sec.)" << endl; 2717 std::cout << "se : " << elapseSe << " (sec.)" << endl; 2718 std::cout << "ot : " << elapseOt << " (sec.)" << endl; 2719 std::cout << "pr : " << elapsePr << " (sec.)" << endl; 2720 std::cout << "total : " << (double)(totTimeEnd - totTimeStart) << " (sec.)" << endl; 2721 ***************/ 2722 } 2723 2724 void Scantable::autoCubicSplineBaseline(const std::vector<bool>& mask, int nPiece, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile) 2649 } 2650 2651 void Scantable::autoChebyshevBaseline(const std::vector<bool>& mask, int order, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile) 2725 2652 { 2726 2653 try { … … 2742 2669 hasSameNchan = hasSameNchanOverIFs(); 2743 2670 } 2744 2745 //Fitter fitter = Fitter();2746 //fitter.setExpression("cspline", nPiece);2747 //fitter.setIterClipping(thresClip, nIterClip);2748 2671 2749 2672 int nRow = nrow(); … … 2787 2710 //fitBaseline(chanMask, whichrow, fitter); 2788 2711 //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow); 2789 std::vector<int> pieceEdges(nPiece+1); 2790 std::vector<float> params(nPiece*4); 2712 std::vector<float> params(order+1); 2791 2713 int nClipped = 0; 2792 std::vector<float> res = doC ubicSplineFitting(sp, chanMask, nPiece, pieceEdges, params, nClipped, thresClip, nIterClip, getResidual);2714 std::vector<float> res = doChebyshevFitting(sp, chanMask, order, params, nClipped, thresClip, nIterClip, getResidual); 2793 2715 setSpectrum(res, whichrow); 2794 // 2795 2796 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoCubicSplineBaseline()", pieceEdges, params, nClipped); 2716 2717 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoChebyshevBaseline()", params, nClipped); 2797 2718 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow); 2798 2719 } … … 2805 2726 } 2806 2727 2807 std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data, const std::vector<bool>& mask, int nPiece, std::vector<int>& idxEdge, std::vector<float>& params, int& nClipped, float thresClip, int nIterClip, bool getResidual) 2728 /* 2729 double Scantable::getChebyshevPolynomial(int n, double x) { 2730 if ((x < -1.0)||(x > 1.0)) { 2731 throw(AipsError("out of definition range (-1 <= x <= 1).")); 2732 } else if (n < 0) { 2733 throw(AipsError("the order must be zero or positive.")); 2734 } else if (n == 0) { 2735 return 1.0; 2736 } else if (n == 1) { 2737 return x; 2738 } else { 2739 return 2.0*x*getChebyshevPolynomial(n-1, x) - getChebyshevPolynomial(n-2, x); 2740 } 2741 } 2742 */ 2743 double Scantable::getChebyshevPolynomial(int n, double x) { 2744 if ((x < -1.0)||(x > 1.0)) { 2745 throw(AipsError("out of definition range (-1 <= x <= 1).")); 2746 } else if (n < 0) { 2747 throw(AipsError("the order must be zero or positive.")); 2748 } else if (n == 0) { 2749 return 1.0; 2750 } else if (n == 1) { 2751 return x; 2752 } else { 2753 double res = 0.0; 2754 for (int m = 0; m <= n/2; ++m) { 2755 double c = 1.0; 2756 if (m > 0) { 2757 for (int i = 1; i <= m; ++i) { 2758 c *= (double)(n-2*m+i)/(double)i; 2759 } 2760 } 2761 res += (m%2 == 0 ? 1.0 : -1.0)*(double)n/(double)(n-m)*pow(2.0*x, (double)(n-2*m-1))/2.0*c; 2762 } 2763 return res; 2764 } 2765 } 2766 2767 std::vector<float> Scantable::doChebyshevFitting(const std::vector<float>& data, const std::vector<bool>& mask, int order, std::vector<float>& params, int& nClipped, float thresClip, int nIterClip, bool getResidual) 2808 2768 { 2809 2769 if (data.size() != mask.size()) { 2810 2770 throw(AipsError("data and mask sizes are not identical")); 2811 2771 } 2812 if ( nPiece < 1) {2813 throw(AipsError(" number of the sections must be one or more"));2772 if (order < 0) { 2773 throw(AipsError("maximum order of Chebyshev polynomial must not be negative.")); 2814 2774 } 2815 2775 2816 2776 int nChan = data.size(); 2817 std::vector<int> maskArray(nChan); 2818 std::vector<int> x(nChan); 2819 int j = 0; 2777 std::vector<int> maskArray; 2778 std::vector<int> x; 2820 2779 for (int i = 0; i < nChan; ++i) { 2821 maskArray [i] = mask[i] ? 1 : 0;2780 maskArray.push_back(mask[i] ? 1 : 0); 2822 2781 if (mask[i]) { 2823 x[j] = i; 2824 j++; 2825 } 2826 } 2827 int initNData = j; 2828 2829 if (initNData < nPiece) { 2830 throw(AipsError("too few non-flagged channels")); 2831 } 2832 2833 int nElement = (int)(floor(floor((double)(initNData/nPiece))+0.5)); 2834 std::vector<double> invEdge(nPiece-1); 2835 idxEdge[0] = x[0]; 2836 for (int i = 1; i < nPiece; ++i) { 2837 int valX = x[nElement*i]; 2838 idxEdge[i] = valX; 2839 invEdge[i-1] = 1.0/(double)valX; 2840 } 2841 idxEdge[nPiece] = x[initNData-1]+1; 2782 x.push_back(i); 2783 } 2784 } 2785 2786 int initNData = x.size(); 2842 2787 2843 2788 int nData = initNData; 2844 int nDOF = nPiece + 3; //number of parameters to solve, namely, 4+(nPiece-1). 2845 2846 std::vector<double> x1(nChan), x2(nChan), x3(nChan); 2847 std::vector<double> z1(nChan), x1z1(nChan), x2z1(nChan), x3z1(nChan); 2848 std::vector<double> r1(nChan), residual(nChan); 2789 int nDOF = order + 1; //number of parameters to solve. 2790 2791 // xArray : contains elemental values for computing the least-square matrix. 2792 // xArray.size() is nDOF and xArray[*].size() is nChan. 2793 // Each xArray element are as follows: 2794 // xArray[0] = {T0(-1), T0(2/(nChan-1)-1), T0(4/(nChan-1)-1), ..., T0(1)}, 2795 // xArray[n-1] = ..., 2796 // xArray[n] = {Tn(-1), Tn(2/(nChan-1)-1), Tn(4/(nChan-1)-1), ..., Tn(1)} 2797 // where (0 <= n <= order), 2798 std::vector<std::vector<double> > xArray; 2799 for (int i = 0; i < nDOF; ++i) { 2800 double xFactor = 2.0/(double)(nChan - 1); 2801 std::vector<double> xs; 2802 xs.clear(); 2803 for (int j = 0; j < nChan; ++j) { 2804 xs.push_back(getChebyshevPolynomial(i, xFactor*(double)j-1.0)); 2805 } 2806 xArray.push_back(xs); 2807 } 2808 2809 std::vector<double> z1, r1, residual; 2849 2810 for (int i = 0; i < nChan; ++i) { 2850 double di = (double)i; 2851 double dD = (double)data[i]; 2852 x1[i] = di; 2853 x2[i] = di*di; 2854 x3[i] = di*di*di; 2855 z1[i] = dD; 2856 x1z1[i] = dD*di; 2857 x2z1[i] = dD*di*di; 2858 x3z1[i] = dD*di*di*di; 2859 r1[i] = 0.0; 2860 residual[i] = 0.0; 2811 z1.push_back((double)data[i]); 2812 r1.push_back(0.0); 2813 residual.push_back(0.0); 2861 2814 } 2862 2815 … … 2876 2829 } 2877 2830 2878 for (int n = 0; n < nPiece; ++n) { 2879 int nUseDataInPiece = 0; 2880 for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) { 2881 2882 if (maskArray[i] == 0) continue; 2883 2884 xMatrix[0][0] += 1.0; 2885 xMatrix[0][1] += x1[i]; 2886 xMatrix[0][2] += x2[i]; 2887 xMatrix[0][3] += x3[i]; 2888 xMatrix[1][1] += x2[i]; 2889 xMatrix[1][2] += x3[i]; 2890 xMatrix[1][3] += x2[i]*x2[i]; 2891 xMatrix[2][2] += x2[i]*x2[i]; 2892 xMatrix[2][3] += x3[i]*x2[i]; 2893 xMatrix[3][3] += x3[i]*x3[i]; 2894 zMatrix[0] += z1[i]; 2895 zMatrix[1] += x1z1[i]; 2896 zMatrix[2] += x2z1[i]; 2897 zMatrix[3] += x3z1[i]; 2898 2899 for (int j = 0; j < n; ++j) { 2900 double q = 1.0 - x1[i]*invEdge[j]; 2901 q = q*q*q; 2902 xMatrix[0][j+4] += q; 2903 xMatrix[1][j+4] += q*x1[i]; 2904 xMatrix[2][j+4] += q*x2[i]; 2905 xMatrix[3][j+4] += q*x3[i]; 2906 for (int k = 0; k < j; ++k) { 2907 double r = 1.0 - x1[i]*invEdge[k]; 2908 r = r*r*r; 2909 xMatrix[k+4][j+4] += r*q; 2910 } 2911 xMatrix[j+4][j+4] += q*q; 2912 zMatrix[j+4] += q*z1[i]; 2831 int nUseData = 0; 2832 for (int k = 0; k < nChan; ++k) { 2833 if (maskArray[k] == 0) continue; 2834 2835 for (int i = 0; i < nDOF; ++i) { 2836 for (int j = i; j < nDOF; ++j) { 2837 xMatrix[i][j] += xArray[i][k] * xArray[j][k]; 2913 2838 } 2914 2915 nUseDataInPiece++; 2916 } 2917 2918 if (nUseDataInPiece < 1) { 2919 std::vector<string> suffixOfPieceNumber(4); 2920 suffixOfPieceNumber[0] = "th"; 2921 suffixOfPieceNumber[1] = "st"; 2922 suffixOfPieceNumber[2] = "nd"; 2923 suffixOfPieceNumber[3] = "rd"; 2924 int idxNoDataPiece = (n % 10 <= 3) ? n : 0; 2925 ostringstream oss; 2926 oss << "all channels clipped or masked in " << n << suffixOfPieceNumber[idxNoDataPiece]; 2927 oss << " piece of the spectrum. can't execute fitting anymore."; 2928 throw(AipsError(String(oss))); 2929 } 2839 zMatrix[i] += z1[k] * xArray[i][k]; 2840 } 2841 2842 nUseData++; 2843 } 2844 2845 if (nUseData < 1) { 2846 throw(AipsError("all channels clipped or masked. can't execute fitting anymore.")); 2930 2847 } 2931 2848 … … 2936 2853 } 2937 2854 2938 std::vector<double> invDiag (nDOF);2855 std::vector<double> invDiag; 2939 2856 for (int i = 0; i < nDOF; ++i) { 2940 invDiag [i] = 1.0/xMatrix[i][i];2857 invDiag.push_back(1.0/xMatrix[i][i]); 2941 2858 for (int j = 0; j < nDOF; ++j) { 2942 2859 xMatrix[i][j] *= invDiag[i]; … … 2967 2884 } 2968 2885 } 2969 //compute a vector y which consists of the coefficients of the best-fit spline curves 2970 //(a0,a1,a2,a3(,b3,c3,...)), namely, the ones for the leftmost piece and the ones of 2971 //cubic terms for the other pieces (in case nPiece>1). 2972 std::vector<double> y(nDOF); 2886 //compute a vector y which consists of the coefficients of the sinusoids forming the 2887 //best-fit curves (a0,s1,c1,s2,c2,...), where a0 is constant and s* and c* are of sine 2888 //and cosine functions, respectively. 2889 std::vector<double> y; 2890 params.clear(); 2973 2891 for (int i = 0; i < nDOF; ++i) { 2974 y [i] = 0.0;2892 y.push_back(0.0); 2975 2893 for (int j = 0; j < nDOF; ++j) { 2976 2894 y[i] += xMatrix[i][nDOF+j]*zMatrix[j]; 2977 2895 } 2978 } 2979 2980 double a0 = y[0]; 2981 double a1 = y[1]; 2982 double a2 = y[2]; 2983 double a3 = y[3]; 2984 2985 int j = 0; 2986 for (int n = 0; n < nPiece; ++n) { 2987 for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) { 2988 r1[i] = a0 + a1*x1[i] + a2*x2[i] + a3*x3[i]; 2989 } 2990 params[j] = a0; 2991 params[j+1] = a1; 2992 params[j+2] = a2; 2993 params[j+3] = a3; 2994 j += 4; 2995 2996 if (n == nPiece-1) break; 2997 2998 double d = y[4+n]; 2999 double iE = invEdge[n]; 3000 a0 += d; 3001 a1 -= 3.0*d*iE; 3002 a2 += 3.0*d*iE*iE; 3003 a3 -= d*iE*iE*iE; 3004 } 3005 3006 //subtract constant value for masked regions at the edge of spectrum 3007 if (idxEdge[0] > 0) { 3008 int n = idxEdge[0]; 3009 for (int i = 0; i < idxEdge[0]; ++i) { 3010 //--cubic extrapolate-- 3011 //r1[i] = params[0] + params[1]*x1[i] + params[2]*x2[i] + params[3]*x3[i]; 3012 //--linear extrapolate-- 3013 //r1[i] = (r1[n+1] - r1[n])/(x1[n+1] - x1[n])*(x1[i] - x1[n]) + r1[n]; 3014 //--constant-- 3015 r1[i] = r1[n]; 3016 } 3017 } 3018 if (idxEdge[nPiece] < nChan) { 3019 int n = idxEdge[nPiece]-1; 3020 for (int i = idxEdge[nPiece]; i < nChan; ++i) { 3021 //--cubic extrapolate-- 3022 //int m = 4*(nPiece-1); 3023 //r1[i] = params[m] + params[m+1]*x1[i] + params[m+2]*x2[i] + params[m+3]*x3[i]; 3024 //--linear extrapolate-- 3025 //r1[i] = (r1[n-1] - r1[n])/(x1[n-1] - x1[n])*(x1[i] - x1[n]) + r1[n]; 3026 //--constant-- 3027 r1[i] = r1[n]; 3028 } 2896 params.push_back(y[i]); 3029 2897 } 3030 2898 3031 2899 for (int i = 0; i < nChan; ++i) { 2900 r1[i] = y[0]; 2901 for (int j = 1; j < nDOF; ++j) { 2902 r1[i] += y[j]*xArray[j][i]; 2903 } 3032 2904 residual[i] = z1[i] - r1[i]; 3033 2905 } … … 3062 2934 nClipped = initNData - nData; 3063 2935 3064 std::vector<float> result (nChan);2936 std::vector<float> result; 3065 2937 if (getResidual) { 3066 2938 for (int i = 0; i < nChan; ++i) { 3067 result [i] = (float)residual[i];2939 result.push_back((float)residual[i]); 3068 2940 } 3069 2941 } else { 3070 2942 for (int i = 0; i < nChan; ++i) { 3071 result [i] = (float)r1[i];2943 result.push_back((float)r1[i]); 3072 2944 } 3073 2945 } … … 3076 2948 } 3077 2949 3078 void Scantable::selectWaveNumbers(const int whichrow, const std::vector<bool>& chanMask, const bool applyFFT, const std::string& fftMethod, const std::string& fftThresh, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, std::vector<int>& nWaves) 3079 { 3080 nWaves.clear(); 3081 3082 if (applyFFT) { 3083 string fftThAttr; 3084 float fftThSigma; 3085 int fftThTop; 3086 parseThresholdExpression(fftThresh, fftThAttr, fftThSigma, fftThTop); 3087 doSelectWaveNumbers(whichrow, chanMask, fftMethod, fftThSigma, fftThTop, fftThAttr, nWaves); 3088 } 3089 3090 addAuxWaveNumbers(whichrow, addNWaves, rejectNWaves, nWaves); 3091 } 3092 3093 void Scantable::parseThresholdExpression(const std::string& fftThresh, std::string& fftThAttr, float& fftThSigma, int& fftThTop) 3094 { 3095 uInt idxSigma = fftThresh.find("sigma"); 3096 uInt idxTop = fftThresh.find("top"); 3097 3098 if (idxSigma == fftThresh.size() - 5) { 3099 std::istringstream is(fftThresh.substr(0, fftThresh.size() - 5)); 3100 is >> fftThSigma; 3101 fftThAttr = "sigma"; 3102 } else if (idxTop == 0) { 3103 std::istringstream is(fftThresh.substr(3)); 3104 is >> fftThTop; 3105 fftThAttr = "top"; 3106 } else { 3107 bool isNumber = true; 3108 for (uInt i = 0; i < fftThresh.size()-1; ++i) { 3109 char ch = (fftThresh.substr(i, 1).c_str())[0]; 3110 if (!(isdigit(ch) || (fftThresh.substr(i, 1) == "."))) { 3111 isNumber = false; 3112 break; 3113 } 3114 } 3115 if (isNumber) { 3116 std::istringstream is(fftThresh); 3117 is >> fftThSigma; 3118 fftThAttr = "sigma"; 3119 } else { 3120 throw(AipsError("fftthresh has a wrong value")); 3121 } 3122 } 3123 } 3124 3125 void Scantable::doSelectWaveNumbers(const int whichrow, const std::vector<bool>& chanMask, const std::string& fftMethod, const float fftThSigma, const int fftThTop, const std::string& fftThAttr, std::vector<int>& nWaves) 3126 { 3127 std::vector<float> fspec; 3128 if (fftMethod == "fft") { 3129 fspec = execFFT(whichrow, chanMask, false, true); 3130 //} else if (fftMethod == "lsp") { 3131 // fspec = lombScarglePeriodogram(whichrow); 3132 } 3133 3134 if (fftThAttr == "sigma") { 3135 float mean = 0.0; 3136 float mean2 = 0.0; 3137 for (uInt i = 0; i < fspec.size(); ++i) { 3138 mean += fspec[i]; 3139 mean2 += fspec[i]*fspec[i]; 3140 } 3141 mean /= float(fspec.size()); 3142 mean2 /= float(fspec.size()); 3143 float thres = mean + fftThSigma * float(sqrt(mean2 - mean*mean)); 3144 3145 for (uInt i = 0; i < fspec.size(); ++i) { 3146 if (fspec[i] >= thres) { 3147 nWaves.push_back(i); 3148 } 3149 } 3150 3151 } else if (fftThAttr == "top") { 3152 for (int i = 0; i < fftThTop; ++i) { 3153 float max = 0.0; 3154 int maxIdx = 0; 3155 for (uInt j = 0; j < fspec.size(); ++j) { 3156 if (fspec[j] > max) { 3157 max = fspec[j]; 3158 maxIdx = j; 3159 } 3160 } 3161 nWaves.push_back(maxIdx); 3162 fspec[maxIdx] = 0.0; 3163 } 3164 3165 } 3166 3167 if (nWaves.size() > 1) { 3168 sort(nWaves.begin(), nWaves.end()); 3169 } 3170 } 3171 3172 void Scantable::addAuxWaveNumbers(const int whichrow, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, std::vector<int>& nWaves) 3173 { 3174 std::vector<int> tempAddNWaves, tempRejectNWaves; 3175 for (uInt i = 0; i < addNWaves.size(); ++i) { 3176 tempAddNWaves.push_back(addNWaves[i]); 3177 } 3178 if ((tempAddNWaves.size() == 2) && (tempAddNWaves[1] == -999)) { 3179 setWaveNumberListUptoNyquistFreq(whichrow, tempAddNWaves); 3180 } 3181 3182 for (uInt i = 0; i < rejectNWaves.size(); ++i) { 3183 tempRejectNWaves.push_back(rejectNWaves[i]); 3184 } 3185 if ((tempRejectNWaves.size() == 2) && (tempRejectNWaves[1] == -999)) { 3186 setWaveNumberListUptoNyquistFreq(whichrow, tempRejectNWaves); 3187 } 3188 3189 for (uInt i = 0; i < tempAddNWaves.size(); ++i) { 3190 bool found = false; 3191 for (uInt j = 0; j < nWaves.size(); ++j) { 3192 if (nWaves[j] == tempAddNWaves[i]) { 3193 found = true; 3194 break; 3195 } 3196 } 3197 if (!found) nWaves.push_back(tempAddNWaves[i]); 3198 } 3199 3200 for (uInt i = 0; i < tempRejectNWaves.size(); ++i) { 3201 for (std::vector<int>::iterator j = nWaves.begin(); j != nWaves.end(); ) { 3202 if (*j == tempRejectNWaves[i]) { 3203 j = nWaves.erase(j); 3204 } else { 3205 ++j; 3206 } 3207 } 3208 } 3209 3210 if (nWaves.size() > 1) { 3211 sort(nWaves.begin(), nWaves.end()); 3212 unique(nWaves.begin(), nWaves.end()); 3213 } 3214 } 3215 3216 void Scantable::setWaveNumberListUptoNyquistFreq(const int whichrow, std::vector<int>& nWaves) 3217 { 3218 if ((nWaves.size() == 2)&&(nWaves[1] == -999)) { 3219 int val = nWaves[0]; 3220 int nyquistFreq = nchan(getIF(whichrow))/2+1; 3221 nWaves.clear(); 3222 if (val > nyquistFreq) { // for safety, at least nWaves contains a constant; CAS-3759 3223 nWaves.push_back(0); 3224 } 3225 while (val <= nyquistFreq) { 3226 nWaves.push_back(val); 3227 val++; 3228 } 3229 } 3230 } 3231 3232 void Scantable::sinusoidBaseline(const std::vector<bool>& mask, const bool applyFFT, const std::string& fftMethod, const std::string& fftThresh, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, float thresClip, int nIterClip, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile) 3233 { 2950 void Scantable::cubicSplineBaseline(const std::vector<bool>& mask, int nPiece, float thresClip, int nIterClip, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile) 2951 { 2952 /************* 2953 double totTimeStart, totTimeEnd, blTimeStart, blTimeEnd, ioTimeStart, ioTimeEnd, msTimeStart, msTimeEnd, seTimeStart, seTimeEnd, otTimeStart, otTimeEnd, prTimeStart, prTimeEnd; 2954 double elapseMs = 0.0; 2955 double elapseSe = 0.0; 2956 double elapseOt = 0.0; 2957 double elapsePr = 0.0; 2958 double elapseBl = 0.0; 2959 double elapseIo = 0.0; 2960 totTimeStart = mathutil::gettimeofday_sec(); 2961 *************/ 2962 3234 2963 try { 3235 2964 ofstream ofs; … … 3252 2981 3253 2982 //Fitter fitter = Fitter(); 3254 //fitter.setExpression(" sinusoid", nWaves);2983 //fitter.setExpression("cspline", nPiece); 3255 2984 //fitter.setIterClipping(thresClip, nIterClip); 3256 3257 int nRow = nrow();3258 std::vector<bool> chanMask;3259 std::vector<int> nWaves;3260 2985 3261 2986 bool showProgress; … … 3263 2988 parseProgressInfo(progressInfo, showProgress, minNRow); 3264 2989 2990 int nRow = nrow(); 2991 std::vector<bool> chanMask; 2992 2993 //-------------------------------- 3265 2994 for (int whichrow = 0; whichrow < nRow; ++whichrow) { 2995 /****************** 2996 ioTimeStart = mathutil::gettimeofday_sec(); 2997 **/ 2998 std::vector<float> sp = getSpectrum(whichrow); 2999 /** 3000 ioTimeEnd = mathutil::gettimeofday_sec(); 3001 elapseIo += (double)(ioTimeEnd - ioTimeStart); 3002 msTimeStart = mathutil::gettimeofday_sec(); 3003 ******************/ 3004 3266 3005 chanMask = getCompositeChanMask(whichrow, mask); 3267 selectWaveNumbers(whichrow, chanMask, applyFFT, fftMethod, fftThresh, addNWaves, rejectNWaves, nWaves); 3268 3269 //FOR DEBUGGING------------ 3270 /* 3271 if (whichrow < 0) {// == nRow -1) { 3272 cout << "+++ i=" << setw(3) << whichrow << ", IF=" << setw(2) << getIF(whichrow); 3273 if (applyFFT) { 3274 cout << "[ "; 3275 for (uInt j = 0; j < nWaves.size(); ++j) { 3276 cout << nWaves[j] << ", "; 3277 } 3278 cout << " ] " << endl; 3279 } 3280 cout << flush; 3281 } 3282 */ 3283 //------------------------- 3006 3007 /** 3008 msTimeEnd = mathutil::gettimeofday_sec(); 3009 elapseMs += (double)(msTimeEnd - msTimeStart); 3010 blTimeStart = mathutil::gettimeofday_sec(); 3011 **/ 3284 3012 3285 3013 //fitBaseline(chanMask, whichrow, fitter); 3286 3014 //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow); 3287 std::vector<float> params; 3015 std::vector<int> pieceEdges(nPiece+1); 3016 std::vector<float> params(nPiece*4); 3288 3017 int nClipped = 0; 3289 std::vector<float> res = doSinusoidFitting(getSpectrum(whichrow), chanMask, nWaves, params, nClipped, thresClip, nIterClip, getResidual); 3018 std::vector<float> res = doCubicSplineFitting(sp, chanMask, nPiece, pieceEdges, params, nClipped, thresClip, nIterClip, getResidual); 3019 3020 /** 3021 blTimeEnd = mathutil::gettimeofday_sec(); 3022 elapseBl += (double)(blTimeEnd - blTimeStart); 3023 seTimeStart = mathutil::gettimeofday_sec(); 3024 **/ 3025 3026 3290 3027 setSpectrum(res, whichrow); 3291 3028 // 3292 3029 3293 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "sinusoidBaseline()", params, nClipped); 3030 /** 3031 seTimeEnd = mathutil::gettimeofday_sec(); 3032 elapseSe += (double)(seTimeEnd - seTimeStart); 3033 otTimeStart = mathutil::gettimeofday_sec(); 3034 **/ 3035 3036 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "cubicSplineBaseline()", pieceEdges, params, nClipped); 3037 3038 /** 3039 otTimeEnd = mathutil::gettimeofday_sec(); 3040 elapseOt += (double)(otTimeEnd - otTimeStart); 3041 prTimeStart = mathutil::gettimeofday_sec(); 3042 **/ 3043 3294 3044 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow); 3295 } 3296 3045 3046 /****************** 3047 prTimeEnd = mathutil::gettimeofday_sec(); 3048 elapsePr += (double)(prTimeEnd - prTimeStart); 3049 ******************/ 3050 } 3051 //-------------------------------- 3052 3297 3053 if (outTextFile) ofs.close(); 3298 3054 … … 3300 3056 throw; 3301 3057 } 3302 } 3303 3304 void Scantable::autoSinusoidBaseline(const std::vector<bool>& mask, const bool applyFFT, const std::string& fftMethod, const std::string& fftThresh, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile) 3058 /*************** 3059 totTimeEnd = mathutil::gettimeofday_sec(); 3060 std::cout << "io : " << elapseIo << " (sec.)" << endl; 3061 std::cout << "ms : " << elapseMs << " (sec.)" << endl; 3062 std::cout << "bl : " << elapseBl << " (sec.)" << endl; 3063 std::cout << "se : " << elapseSe << " (sec.)" << endl; 3064 std::cout << "ot : " << elapseOt << " (sec.)" << endl; 3065 std::cout << "pr : " << elapsePr << " (sec.)" << endl; 3066 std::cout << "total : " << (double)(totTimeEnd - totTimeStart) << " (sec.)" << endl; 3067 ***************/ 3068 } 3069 3070 void Scantable::autoCubicSplineBaseline(const std::vector<bool>& mask, int nPiece, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile) 3305 3071 { 3306 3072 try { … … 3324 3090 3325 3091 //Fitter fitter = Fitter(); 3326 //fitter.setExpression(" sinusoid", nWaves);3092 //fitter.setExpression("cspline", nPiece); 3327 3093 //fitter.setIterClipping(thresClip, nIterClip); 3328 3094 3329 3095 int nRow = nrow(); 3330 3096 std::vector<bool> chanMask; 3331 std::vector<int> nWaves;3332 3333 3097 int minEdgeSize = getIFNos().size()*2; 3334 3098 STLineFinder lineFinder = STLineFinder(); … … 3340 3104 3341 3105 for (int whichrow = 0; whichrow < nRow; ++whichrow) { 3106 std::vector<float> sp = getSpectrum(whichrow); 3342 3107 3343 3108 //------------------------------------------------------- … … 3359 3124 throw(AipsError("Wrong length of edge element")); 3360 3125 } 3126 //lineFinder.setData(getSpectrum(whichrow)); 3127 lineFinder.setData(sp); 3128 lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow); 3129 chanMask = lineFinder.getMask(); 3130 //------------------------------------------------------- 3131 3132 3133 //fitBaseline(chanMask, whichrow, fitter); 3134 //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow); 3135 std::vector<int> pieceEdges(nPiece+1); 3136 std::vector<float> params(nPiece*4); 3137 int nClipped = 0; 3138 std::vector<float> res = doCubicSplineFitting(sp, chanMask, nPiece, pieceEdges, params, nClipped, thresClip, nIterClip, getResidual); 3139 setSpectrum(res, whichrow); 3140 // 3141 3142 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoCubicSplineBaseline()", pieceEdges, params, nClipped); 3143 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow); 3144 } 3145 3146 if (outTextFile) ofs.close(); 3147 3148 } catch (...) { 3149 throw; 3150 } 3151 } 3152 3153 std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data, const std::vector<bool>& mask, int nPiece, std::vector<int>& idxEdge, std::vector<float>& params, int& nClipped, float thresClip, int nIterClip, bool getResidual) 3154 { 3155 if (data.size() != mask.size()) { 3156 throw(AipsError("data and mask sizes are not identical")); 3157 } 3158 if (nPiece < 1) { 3159 throw(AipsError("number of the sections must be one or more")); 3160 } 3161 3162 int nChan = data.size(); 3163 std::vector<int> maskArray(nChan); 3164 std::vector<int> x(nChan); 3165 int j = 0; 3166 for (int i = 0; i < nChan; ++i) { 3167 maskArray[i] = mask[i] ? 1 : 0; 3168 if (mask[i]) { 3169 x[j] = i; 3170 j++; 3171 } 3172 } 3173 int initNData = j; 3174 3175 if (initNData < nPiece) { 3176 throw(AipsError("too few non-flagged channels")); 3177 } 3178 3179 int nElement = (int)(floor(floor((double)(initNData/nPiece))+0.5)); 3180 std::vector<double> invEdge(nPiece-1); 3181 idxEdge[0] = x[0]; 3182 for (int i = 1; i < nPiece; ++i) { 3183 int valX = x[nElement*i]; 3184 idxEdge[i] = valX; 3185 invEdge[i-1] = 1.0/(double)valX; 3186 } 3187 idxEdge[nPiece] = x[initNData-1]+1; 3188 3189 int nData = initNData; 3190 int nDOF = nPiece + 3; //number of parameters to solve, namely, 4+(nPiece-1). 3191 3192 std::vector<double> x1(nChan), x2(nChan), x3(nChan); 3193 std::vector<double> z1(nChan), x1z1(nChan), x2z1(nChan), x3z1(nChan); 3194 std::vector<double> r1(nChan), residual(nChan); 3195 for (int i = 0; i < nChan; ++i) { 3196 double di = (double)i; 3197 double dD = (double)data[i]; 3198 x1[i] = di; 3199 x2[i] = di*di; 3200 x3[i] = di*di*di; 3201 z1[i] = dD; 3202 x1z1[i] = dD*di; 3203 x2z1[i] = dD*di*di; 3204 x3z1[i] = dD*di*di*di; 3205 r1[i] = 0.0; 3206 residual[i] = 0.0; 3207 } 3208 3209 for (int nClip = 0; nClip < nIterClip+1; ++nClip) { 3210 // xMatrix : horizontal concatenation of 3211 // the least-sq. matrix (left) and an 3212 // identity matrix (right). 3213 // the right part is used to calculate the inverse matrix of the left part. 3214 double xMatrix[nDOF][2*nDOF]; 3215 double zMatrix[nDOF]; 3216 for (int i = 0; i < nDOF; ++i) { 3217 for (int j = 0; j < 2*nDOF; ++j) { 3218 xMatrix[i][j] = 0.0; 3219 } 3220 xMatrix[i][nDOF+i] = 1.0; 3221 zMatrix[i] = 0.0; 3222 } 3223 3224 for (int n = 0; n < nPiece; ++n) { 3225 int nUseDataInPiece = 0; 3226 for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) { 3227 3228 if (maskArray[i] == 0) continue; 3229 3230 xMatrix[0][0] += 1.0; 3231 xMatrix[0][1] += x1[i]; 3232 xMatrix[0][2] += x2[i]; 3233 xMatrix[0][3] += x3[i]; 3234 xMatrix[1][1] += x2[i]; 3235 xMatrix[1][2] += x3[i]; 3236 xMatrix[1][3] += x2[i]*x2[i]; 3237 xMatrix[2][2] += x2[i]*x2[i]; 3238 xMatrix[2][3] += x3[i]*x2[i]; 3239 xMatrix[3][3] += x3[i]*x3[i]; 3240 zMatrix[0] += z1[i]; 3241 zMatrix[1] += x1z1[i]; 3242 zMatrix[2] += x2z1[i]; 3243 zMatrix[3] += x3z1[i]; 3244 3245 for (int j = 0; j < n; ++j) { 3246 double q = 1.0 - x1[i]*invEdge[j]; 3247 q = q*q*q; 3248 xMatrix[0][j+4] += q; 3249 xMatrix[1][j+4] += q*x1[i]; 3250 xMatrix[2][j+4] += q*x2[i]; 3251 xMatrix[3][j+4] += q*x3[i]; 3252 for (int k = 0; k < j; ++k) { 3253 double r = 1.0 - x1[i]*invEdge[k]; 3254 r = r*r*r; 3255 xMatrix[k+4][j+4] += r*q; 3256 } 3257 xMatrix[j+4][j+4] += q*q; 3258 zMatrix[j+4] += q*z1[i]; 3259 } 3260 3261 nUseDataInPiece++; 3262 } 3263 3264 if (nUseDataInPiece < 1) { 3265 std::vector<string> suffixOfPieceNumber(4); 3266 suffixOfPieceNumber[0] = "th"; 3267 suffixOfPieceNumber[1] = "st"; 3268 suffixOfPieceNumber[2] = "nd"; 3269 suffixOfPieceNumber[3] = "rd"; 3270 int idxNoDataPiece = (n % 10 <= 3) ? n : 0; 3271 ostringstream oss; 3272 oss << "all channels clipped or masked in " << n << suffixOfPieceNumber[idxNoDataPiece]; 3273 oss << " piece of the spectrum. can't execute fitting anymore."; 3274 throw(AipsError(String(oss))); 3275 } 3276 } 3277 3278 for (int i = 0; i < nDOF; ++i) { 3279 for (int j = 0; j < i; ++j) { 3280 xMatrix[i][j] = xMatrix[j][i]; 3281 } 3282 } 3283 3284 std::vector<double> invDiag(nDOF); 3285 for (int i = 0; i < nDOF; ++i) { 3286 invDiag[i] = 1.0/xMatrix[i][i]; 3287 for (int j = 0; j < nDOF; ++j) { 3288 xMatrix[i][j] *= invDiag[i]; 3289 } 3290 } 3291 3292 for (int k = 0; k < nDOF; ++k) { 3293 for (int i = 0; i < nDOF; ++i) { 3294 if (i != k) { 3295 double factor1 = xMatrix[k][k]; 3296 double factor2 = xMatrix[i][k]; 3297 for (int j = k; j < 2*nDOF; ++j) { 3298 xMatrix[i][j] *= factor1; 3299 xMatrix[i][j] -= xMatrix[k][j]*factor2; 3300 xMatrix[i][j] /= factor1; 3301 } 3302 } 3303 } 3304 double xDiag = xMatrix[k][k]; 3305 for (int j = k; j < 2*nDOF; ++j) { 3306 xMatrix[k][j] /= xDiag; 3307 } 3308 } 3309 3310 for (int i = 0; i < nDOF; ++i) { 3311 for (int j = 0; j < nDOF; ++j) { 3312 xMatrix[i][nDOF+j] *= invDiag[j]; 3313 } 3314 } 3315 //compute a vector y which consists of the coefficients of the best-fit spline curves 3316 //(a0,a1,a2,a3(,b3,c3,...)), namely, the ones for the leftmost piece and the ones of 3317 //cubic terms for the other pieces (in case nPiece>1). 3318 std::vector<double> y(nDOF); 3319 for (int i = 0; i < nDOF; ++i) { 3320 y[i] = 0.0; 3321 for (int j = 0; j < nDOF; ++j) { 3322 y[i] += xMatrix[i][nDOF+j]*zMatrix[j]; 3323 } 3324 } 3325 3326 double a0 = y[0]; 3327 double a1 = y[1]; 3328 double a2 = y[2]; 3329 double a3 = y[3]; 3330 3331 int j = 0; 3332 for (int n = 0; n < nPiece; ++n) { 3333 for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) { 3334 r1[i] = a0 + a1*x1[i] + a2*x2[i] + a3*x3[i]; 3335 } 3336 params[j] = a0; 3337 params[j+1] = a1; 3338 params[j+2] = a2; 3339 params[j+3] = a3; 3340 j += 4; 3341 3342 if (n == nPiece-1) break; 3343 3344 double d = y[4+n]; 3345 double iE = invEdge[n]; 3346 a0 += d; 3347 a1 -= 3.0*d*iE; 3348 a2 += 3.0*d*iE*iE; 3349 a3 -= d*iE*iE*iE; 3350 } 3351 3352 //subtract constant value for masked regions at the edge of spectrum 3353 if (idxEdge[0] > 0) { 3354 int n = idxEdge[0]; 3355 for (int i = 0; i < idxEdge[0]; ++i) { 3356 //--cubic extrapolate-- 3357 //r1[i] = params[0] + params[1]*x1[i] + params[2]*x2[i] + params[3]*x3[i]; 3358 //--linear extrapolate-- 3359 //r1[i] = (r1[n+1] - r1[n])/(x1[n+1] - x1[n])*(x1[i] - x1[n]) + r1[n]; 3360 //--constant-- 3361 r1[i] = r1[n]; 3362 } 3363 } 3364 if (idxEdge[nPiece] < nChan) { 3365 int n = idxEdge[nPiece]-1; 3366 for (int i = idxEdge[nPiece]; i < nChan; ++i) { 3367 //--cubic extrapolate-- 3368 //int m = 4*(nPiece-1); 3369 //r1[i] = params[m] + params[m+1]*x1[i] + params[m+2]*x2[i] + params[m+3]*x3[i]; 3370 //--linear extrapolate-- 3371 //r1[i] = (r1[n-1] - r1[n])/(x1[n-1] - x1[n])*(x1[i] - x1[n]) + r1[n]; 3372 //--constant-- 3373 r1[i] = r1[n]; 3374 } 3375 } 3376 3377 for (int i = 0; i < nChan; ++i) { 3378 residual[i] = z1[i] - r1[i]; 3379 } 3380 3381 if ((nClip == nIterClip) || (thresClip <= 0.0)) { 3382 break; 3383 } else { 3384 double stdDev = 0.0; 3385 for (int i = 0; i < nChan; ++i) { 3386 stdDev += residual[i]*residual[i]*(double)maskArray[i]; 3387 } 3388 stdDev = sqrt(stdDev/(double)nData); 3389 3390 double thres = stdDev * thresClip; 3391 int newNData = 0; 3392 for (int i = 0; i < nChan; ++i) { 3393 if (abs(residual[i]) >= thres) { 3394 maskArray[i] = 0; 3395 } 3396 if (maskArray[i] > 0) { 3397 newNData++; 3398 } 3399 } 3400 if (newNData == nData) { 3401 break; //no more flag to add. iteration stops. 3402 } else { 3403 nData = newNData; 3404 } 3405 } 3406 } 3407 3408 nClipped = initNData - nData; 3409 3410 std::vector<float> result(nChan); 3411 if (getResidual) { 3412 for (int i = 0; i < nChan; ++i) { 3413 result[i] = (float)residual[i]; 3414 } 3415 } else { 3416 for (int i = 0; i < nChan; ++i) { 3417 result[i] = (float)r1[i]; 3418 } 3419 } 3420 3421 return result; 3422 } 3423 3424 void Scantable::selectWaveNumbers(const int whichrow, const std::vector<bool>& chanMask, const bool applyFFT, const std::string& fftMethod, const std::string& fftThresh, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, std::vector<int>& nWaves) 3425 { 3426 nWaves.clear(); 3427 3428 if (applyFFT) { 3429 string fftThAttr; 3430 float fftThSigma; 3431 int fftThTop; 3432 parseThresholdExpression(fftThresh, fftThAttr, fftThSigma, fftThTop); 3433 doSelectWaveNumbers(whichrow, chanMask, fftMethod, fftThSigma, fftThTop, fftThAttr, nWaves); 3434 } 3435 3436 addAuxWaveNumbers(whichrow, addNWaves, rejectNWaves, nWaves); 3437 } 3438 3439 void Scantable::parseThresholdExpression(const std::string& fftThresh, std::string& fftThAttr, float& fftThSigma, int& fftThTop) 3440 { 3441 uInt idxSigma = fftThresh.find("sigma"); 3442 uInt idxTop = fftThresh.find("top"); 3443 3444 if (idxSigma == fftThresh.size() - 5) { 3445 std::istringstream is(fftThresh.substr(0, fftThresh.size() - 5)); 3446 is >> fftThSigma; 3447 fftThAttr = "sigma"; 3448 } else if (idxTop == 0) { 3449 std::istringstream is(fftThresh.substr(3)); 3450 is >> fftThTop; 3451 fftThAttr = "top"; 3452 } else { 3453 bool isNumber = true; 3454 for (uInt i = 0; i < fftThresh.size()-1; ++i) { 3455 char ch = (fftThresh.substr(i, 1).c_str())[0]; 3456 if (!(isdigit(ch) || (fftThresh.substr(i, 1) == "."))) { 3457 isNumber = false; 3458 break; 3459 } 3460 } 3461 if (isNumber) { 3462 std::istringstream is(fftThresh); 3463 is >> fftThSigma; 3464 fftThAttr = "sigma"; 3465 } else { 3466 throw(AipsError("fftthresh has a wrong value")); 3467 } 3468 } 3469 } 3470 3471 void Scantable::doSelectWaveNumbers(const int whichrow, const std::vector<bool>& chanMask, const std::string& fftMethod, const float fftThSigma, const int fftThTop, const std::string& fftThAttr, std::vector<int>& nWaves) 3472 { 3473 std::vector<float> fspec; 3474 if (fftMethod == "fft") { 3475 fspec = execFFT(whichrow, chanMask, false, true); 3476 //} else if (fftMethod == "lsp") { 3477 // fspec = lombScarglePeriodogram(whichrow); 3478 } 3479 3480 if (fftThAttr == "sigma") { 3481 float mean = 0.0; 3482 float mean2 = 0.0; 3483 for (uInt i = 0; i < fspec.size(); ++i) { 3484 mean += fspec[i]; 3485 mean2 += fspec[i]*fspec[i]; 3486 } 3487 mean /= float(fspec.size()); 3488 mean2 /= float(fspec.size()); 3489 float thres = mean + fftThSigma * float(sqrt(mean2 - mean*mean)); 3490 3491 for (uInt i = 0; i < fspec.size(); ++i) { 3492 if (fspec[i] >= thres) { 3493 nWaves.push_back(i); 3494 } 3495 } 3496 3497 } else if (fftThAttr == "top") { 3498 for (int i = 0; i < fftThTop; ++i) { 3499 float max = 0.0; 3500 int maxIdx = 0; 3501 for (uInt j = 0; j < fspec.size(); ++j) { 3502 if (fspec[j] > max) { 3503 max = fspec[j]; 3504 maxIdx = j; 3505 } 3506 } 3507 nWaves.push_back(maxIdx); 3508 fspec[maxIdx] = 0.0; 3509 } 3510 3511 } 3512 3513 if (nWaves.size() > 1) { 3514 sort(nWaves.begin(), nWaves.end()); 3515 } 3516 } 3517 3518 void Scantable::addAuxWaveNumbers(const int whichrow, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, std::vector<int>& nWaves) 3519 { 3520 std::vector<int> tempAddNWaves, tempRejectNWaves; 3521 for (uInt i = 0; i < addNWaves.size(); ++i) { 3522 tempAddNWaves.push_back(addNWaves[i]); 3523 } 3524 if ((tempAddNWaves.size() == 2) && (tempAddNWaves[1] == -999)) { 3525 setWaveNumberListUptoNyquistFreq(whichrow, tempAddNWaves); 3526 } 3527 3528 for (uInt i = 0; i < rejectNWaves.size(); ++i) { 3529 tempRejectNWaves.push_back(rejectNWaves[i]); 3530 } 3531 if ((tempRejectNWaves.size() == 2) && (tempRejectNWaves[1] == -999)) { 3532 setWaveNumberListUptoNyquistFreq(whichrow, tempRejectNWaves); 3533 } 3534 3535 for (uInt i = 0; i < tempAddNWaves.size(); ++i) { 3536 bool found = false; 3537 for (uInt j = 0; j < nWaves.size(); ++j) { 3538 if (nWaves[j] == tempAddNWaves[i]) { 3539 found = true; 3540 break; 3541 } 3542 } 3543 if (!found) nWaves.push_back(tempAddNWaves[i]); 3544 } 3545 3546 for (uInt i = 0; i < tempRejectNWaves.size(); ++i) { 3547 for (std::vector<int>::iterator j = nWaves.begin(); j != nWaves.end(); ) { 3548 if (*j == tempRejectNWaves[i]) { 3549 j = nWaves.erase(j); 3550 } else { 3551 ++j; 3552 } 3553 } 3554 } 3555 3556 if (nWaves.size() > 1) { 3557 sort(nWaves.begin(), nWaves.end()); 3558 unique(nWaves.begin(), nWaves.end()); 3559 } 3560 } 3561 3562 void Scantable::setWaveNumberListUptoNyquistFreq(const int whichrow, std::vector<int>& nWaves) 3563 { 3564 if ((nWaves.size() == 2)&&(nWaves[1] == -999)) { 3565 int val = nWaves[0]; 3566 int nyquistFreq = nchan(getIF(whichrow))/2+1; 3567 nWaves.clear(); 3568 if (val > nyquistFreq) { // for safety, at least nWaves contains a constant; CAS-3759 3569 nWaves.push_back(0); 3570 } 3571 while (val <= nyquistFreq) { 3572 nWaves.push_back(val); 3573 val++; 3574 } 3575 } 3576 } 3577 3578 void Scantable::sinusoidBaseline(const std::vector<bool>& mask, const bool applyFFT, const std::string& fftMethod, const std::string& fftThresh, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, float thresClip, int nIterClip, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile) 3579 { 3580 try { 3581 ofstream ofs; 3582 String coordInfo = ""; 3583 bool hasSameNchan = true; 3584 bool outTextFile = false; 3585 bool csvFormat = false; 3586 3587 if (blfile != "") { 3588 csvFormat = (blfile.substr(0, 1) == "T"); 3589 ofs.open(blfile.substr(1).c_str(), ios::out | ios::app); 3590 if (ofs) outTextFile = true; 3591 } 3592 3593 if (outLogger || outTextFile) { 3594 coordInfo = getCoordInfo()[0]; 3595 if (coordInfo == "") coordInfo = "channel"; 3596 hasSameNchan = hasSameNchanOverIFs(); 3597 } 3598 3599 //Fitter fitter = Fitter(); 3600 //fitter.setExpression("sinusoid", nWaves); 3601 //fitter.setIterClipping(thresClip, nIterClip); 3602 3603 int nRow = nrow(); 3604 std::vector<bool> chanMask; 3605 std::vector<int> nWaves; 3606 3607 bool showProgress; 3608 int minNRow; 3609 parseProgressInfo(progressInfo, showProgress, minNRow); 3610 3611 for (int whichrow = 0; whichrow < nRow; ++whichrow) { 3612 chanMask = getCompositeChanMask(whichrow, mask); 3613 selectWaveNumbers(whichrow, chanMask, applyFFT, fftMethod, fftThresh, addNWaves, rejectNWaves, nWaves); 3614 3615 //FOR DEBUGGING------------ 3616 /* 3617 if (whichrow < 0) {// == nRow -1) { 3618 cout << "+++ i=" << setw(3) << whichrow << ", IF=" << setw(2) << getIF(whichrow); 3619 if (applyFFT) { 3620 cout << "[ "; 3621 for (uInt j = 0; j < nWaves.size(); ++j) { 3622 cout << nWaves[j] << ", "; 3623 } 3624 cout << " ] " << endl; 3625 } 3626 cout << flush; 3627 } 3628 */ 3629 //------------------------- 3630 3631 //fitBaseline(chanMask, whichrow, fitter); 3632 //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow); 3633 std::vector<float> params; 3634 int nClipped = 0; 3635 std::vector<float> res = doSinusoidFitting(getSpectrum(whichrow), chanMask, nWaves, params, nClipped, thresClip, nIterClip, getResidual); 3636 setSpectrum(res, whichrow); 3637 // 3638 3639 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "sinusoidBaseline()", params, nClipped); 3640 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow); 3641 } 3642 3643 if (outTextFile) ofs.close(); 3644 3645 } catch (...) { 3646 throw; 3647 } 3648 } 3649 3650 void Scantable::autoSinusoidBaseline(const std::vector<bool>& mask, const bool applyFFT, const std::string& fftMethod, const std::string& fftThresh, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile) 3651 { 3652 try { 3653 ofstream ofs; 3654 String coordInfo = ""; 3655 bool hasSameNchan = true; 3656 bool outTextFile = false; 3657 bool csvFormat = false; 3658 3659 if (blfile != "") { 3660 csvFormat = (blfile.substr(0, 1) == "T"); 3661 ofs.open(blfile.substr(1).c_str(), ios::out | ios::app); 3662 if (ofs) outTextFile = true; 3663 } 3664 3665 if (outLogger || outTextFile) { 3666 coordInfo = getCoordInfo()[0]; 3667 if (coordInfo == "") coordInfo = "channel"; 3668 hasSameNchan = hasSameNchanOverIFs(); 3669 } 3670 3671 //Fitter fitter = Fitter(); 3672 //fitter.setExpression("sinusoid", nWaves); 3673 //fitter.setIterClipping(thresClip, nIterClip); 3674 3675 int nRow = nrow(); 3676 std::vector<bool> chanMask; 3677 std::vector<int> nWaves; 3678 3679 int minEdgeSize = getIFNos().size()*2; 3680 STLineFinder lineFinder = STLineFinder(); 3681 lineFinder.setOptions(threshold, 3, chanAvgLimit); 3682 3683 bool showProgress; 3684 int minNRow; 3685 parseProgressInfo(progressInfo, showProgress, minNRow); 3686 3687 for (int whichrow = 0; whichrow < nRow; ++whichrow) { 3688 3689 //------------------------------------------------------- 3690 //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder); 3691 //------------------------------------------------------- 3692 int edgeSize = edge.size(); 3693 std::vector<int> currentEdge; 3694 if (edgeSize >= 2) { 3695 int idx = 0; 3696 if (edgeSize > 2) { 3697 if (edgeSize < minEdgeSize) { 3698 throw(AipsError("Length of edge element info is less than that of IFs")); 3699 } 3700 idx = 2 * getIF(whichrow); 3701 } 3702 currentEdge.push_back(edge[idx]); 3703 currentEdge.push_back(edge[idx+1]); 3704 } else { 3705 throw(AipsError("Wrong length of edge element")); 3706 } 3361 3707 lineFinder.setData(getSpectrum(whichrow)); 3362 3708 lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow); … … 3738 4084 } 3739 4085 3740 /* for sinusoid. will be merged oncesinusoid is available in fitter (2011/3/10 WK) */4086 /* for chebyshev/sinusoid. will be merged once chebyshev/sinusoid is available in fitter (2011/3/10 WK) */ 3741 4087 void Scantable::outputFittingResult(bool outLogger, bool outTextFile, bool csvFormat, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, const std::vector<float>& params, const int nClipped) 3742 4088 { -
trunk/src/Scantable.h
r2641 r2645 522 522 const bool outLogger=false, 523 523 const std::string& blfile=""); 524 void chebyshevBaseline(const std::vector<bool>& mask, 525 int order, 526 float thresClip, 527 int nIterClip, 528 bool getResidual=true, 529 const std::string& progressInfo="true,1000", 530 const bool outLogger=false, 531 const std::string& blfile=""); 532 void autoChebyshevBaseline(const std::vector<bool>& mask, 533 int order, 534 float thresClip, 535 int nIterClip, 536 const std::vector<int>& edge, 537 float threshold=3.0, 538 int chanAvgLimit=1, 539 bool getResidual=true, 540 const std::string& progressInfo="true,1000", 541 const bool outLogger=false, 542 const std::string& blfile=""); 524 543 void cubicSplineBaseline(const std::vector<bool>& mask, 525 544 int nPiece, … … 710 729 711 730 void fitBaseline(const std::vector<bool>& mask, int whichrow, Fitter& fitter); 731 double getChebyshevPolynomial(int n, double x); 732 std::vector<float> doChebyshevFitting(const std::vector<float>& data, 733 const std::vector<bool>& mask, 734 int order, 735 std::vector<float>& params, 736 int& nClipped, 737 float thresClip=3.0, 738 int nIterClip=1, 739 bool getResidual=true); 712 740 std::vector<float> doCubicSplineFitting(const std::vector<float>& data, 713 741 const std::vector<bool>& mask, -
trunk/src/ScantableWrapper.h
r2641 r2645 283 283 { table_->autoPolyBaseline(mask, order, edge, threshold, chan_avg_limit, getresidual, showprogress, outlog, blfile); } 284 284 285 void chebyshevBaseline(const std::vector<bool>& mask, int order, float clipthresh, int clipniter, bool getresidual=true, const std::string& showprogress="true,1000", const bool outlog=false, const std::string& blfile="") 286 { table_->chebyshevBaseline(mask, order, clipthresh, clipniter, getresidual, showprogress, outlog, blfile); } 287 288 void autoChebyshevBaseline(const std::vector<bool>& mask, int order, float clipthresh, int clipniter, const std::vector<int>& edge, float threshold=5.0, int chan_avg_limit=1, bool getresidual=true, const std::string& showprogress="true,1000", const bool outlog=false, const std::string& blfile="") 289 { table_->autoChebyshevBaseline(mask, order, clipthresh, clipniter, edge, threshold, chan_avg_limit, getresidual, showprogress, outlog, blfile); } 290 285 291 void cubicSplineBaseline(const std::vector<bool>& mask, int npiece, float clipthresh, int clipniter, bool getresidual=true, const std::string& showprogress="true,1000", const bool outlog=false, const std::string& blfile="") 286 292 { table_->cubicSplineBaseline(mask, npiece, clipthresh, clipniter, getresidual, showprogress, outlog, blfile); } -
trunk/src/python_Scantable.cpp
r2591 r2645 149 149 .def("_poly_baseline", &ScantableWrapper::polyBaseline) 150 150 .def("_auto_poly_baseline", &ScantableWrapper::autoPolyBaseline) 151 .def("_chebyshev_baseline", &ScantableWrapper::chebyshevBaseline) 152 .def("_auto_chebyshev_baseline", &ScantableWrapper::autoChebyshevBaseline) 151 153 .def("_cspline_baseline", &ScantableWrapper::cubicSplineBaseline) 152 154 .def("_auto_cspline_baseline", &ScantableWrapper::autoCubicSplineBaseline)
Note:
See TracChangeset
for help on using the changeset viewer.