// // C++ Implementation: Scantable // // Description: // // // Author: Malte Marquarding , (C) 2005-2013 // // Copyright: See COPYING file that comes with this distribution // // // ASAP // STLineFinder must be included first to avoid compiler warnings related with _XOPEN_SOURCE #include "STLineFinder.h" #include "MathUtils.h" #include "STAttr.h" #include "STBaselineTable.h" #include "STPolCircular.h" #include "STPolLinear.h" #include "STPolStokes.h" #include "STUpgrade.h" #include "STFitter.h" #include "Scantable.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // needed to avoid error in .tcc #include // #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define debug 1 using namespace casa; namespace asap { std::map Scantable::factories_; void Scantable::initFactories() { if ( factories_.empty() ) { Scantable::factories_["linear"] = &STPolLinear::myFactory; Scantable::factories_["circular"] = &STPolCircular::myFactory; Scantable::factories_["stokes"] = &STPolStokes::myFactory; } } Scantable::Scantable(Table::TableType ttype) : type_(ttype), cubicSplineModelPool_() { initFactories(); setupMainTable(); freqTable_ = STFrequencies(*this); table_.rwKeywordSet().defineTable("FREQUENCIES", freqTable_.table()); weatherTable_ = STWeather(*this); table_.rwKeywordSet().defineTable("WEATHER", weatherTable_.table()); focusTable_ = STFocus(*this); table_.rwKeywordSet().defineTable("FOCUS", focusTable_.table()); tcalTable_ = STTcal(*this); table_.rwKeywordSet().defineTable("TCAL", tcalTable_.table()); moleculeTable_ = STMolecules(*this); table_.rwKeywordSet().defineTable("MOLECULES", moleculeTable_.table()); historyTable_ = STHistory(*this); table_.rwKeywordSet().defineTable("HISTORY", historyTable_.table()); fitTable_ = STFit(*this); table_.rwKeywordSet().defineTable("FIT", fitTable_.table()); table_.tableInfo().setType( "Scantable" ) ; originalTable_ = table_; attach(); } Scantable::Scantable(const std::string& name, Table::TableType ttype) : type_(ttype), cubicSplineModelPool_() { initFactories(); Table tab(name, Table::Update); uInt version = tab.keywordSet().asuInt("VERSION"); if (version != version_) { STUpgrade upgrader(version_); LogIO os( LogOrigin( "Scantable" ) ) ; os << LogIO::WARN << name << " data format version " << version << " is deprecated" << endl << "Running upgrade."<< endl << LogIO::POST ; std::string outname = upgrader.upgrade(name); if ( outname != name ) { os << LogIO::WARN << "Data will be loaded from " << outname << " instead of " << name << LogIO::POST ; tab = Table(outname, Table::Update ) ; } } if ( type_ == Table::Memory ) { table_ = tab.copyToMemoryTable(generateName()); } else { table_ = tab; } table_.tableInfo().setType( "Scantable" ) ; attachSubtables(); originalTable_ = table_; attach(); } /* Scantable::Scantable(const std::string& name, Table::TableType ttype) : type_(ttype) { initFactories(); Table tab(name, Table::Update); uInt version = tab.keywordSet().asuInt("VERSION"); if (version != version_) { throw(AipsError("Unsupported version of ASAP file.")); } if ( type_ == Table::Memory ) { table_ = tab.copyToMemoryTable(generateName()); } else { table_ = tab; } attachSubtables(); originalTable_ = table_; attach(); } */ Scantable::Scantable( const Scantable& other, bool clear ) { // with or without data String newname = String(generateName()); type_ = other.table_.tableType(); if ( other.table_.tableType() == Table::Memory ) { if ( clear ) { table_ = TableCopy::makeEmptyMemoryTable(newname, other.table_, True); } else { table_ = other.table_.copyToMemoryTable(newname); } } else { other.table_.deepCopy(newname, Table::New, False, other.table_.endianFormat(), Bool(clear)); table_ = Table(newname, Table::Update); table_.markForDelete(); } table_.tableInfo().setType( "Scantable" ) ; /// @todo reindex SCANNO, recompute nbeam, nif, npol if ( clear ) copySubtables(other); attachSubtables(); originalTable_ = table_; attach(); } void Scantable::copySubtables(const Scantable& other) { Table t = table_.rwKeywordSet().asTable("FREQUENCIES"); TableCopy::copyRows(t, other.freqTable_.table()); t = table_.rwKeywordSet().asTable("FOCUS"); TableCopy::copyRows(t, other.focusTable_.table()); t = table_.rwKeywordSet().asTable("WEATHER"); TableCopy::copyRows(t, other.weatherTable_.table()); t = table_.rwKeywordSet().asTable("TCAL"); TableCopy::copyRows(t, other.tcalTable_.table()); t = table_.rwKeywordSet().asTable("MOLECULES"); TableCopy::copyRows(t, other.moleculeTable_.table()); t = table_.rwKeywordSet().asTable("HISTORY"); TableCopy::copyRows(t, other.historyTable_.table()); t = table_.rwKeywordSet().asTable("FIT"); TableCopy::copyRows(t, other.fitTable_.table()); } void Scantable::attachSubtables() { freqTable_ = STFrequencies(table_); focusTable_ = STFocus(table_); weatherTable_ = STWeather(table_); tcalTable_ = STTcal(table_); moleculeTable_ = STMolecules(table_); historyTable_ = STHistory(table_); fitTable_ = STFit(table_); } Scantable::~Scantable() { } void Scantable::setupMainTable() { TableDesc td("", "1", TableDesc::Scratch); td.comment() = "An ASAP Scantable"; td.rwKeywordSet().define("VERSION", uInt(version_)); // n Cycles td.addColumn(ScalarColumnDesc("SCANNO")); // new index every nBeam x nIF x nPol td.addColumn(ScalarColumnDesc("CYCLENO")); td.addColumn(ScalarColumnDesc("BEAMNO")); td.addColumn(ScalarColumnDesc("IFNO")); // linear, circular, stokes td.rwKeywordSet().define("POLTYPE", String("linear")); td.addColumn(ScalarColumnDesc("POLNO")); td.addColumn(ScalarColumnDesc("FREQ_ID")); td.addColumn(ScalarColumnDesc("MOLECULE_ID")); ScalarColumnDesc refbeamnoColumn("REFBEAMNO"); refbeamnoColumn.setDefault(Int(-1)); td.addColumn(refbeamnoColumn); ScalarColumnDesc flagrowColumn("FLAGROW"); flagrowColumn.setDefault(uInt(0)); td.addColumn(flagrowColumn); td.addColumn(ScalarColumnDesc("TIME")); TableMeasRefDesc measRef(MEpoch::UTC); // UTC as default TableMeasValueDesc measVal(td, "TIME"); TableMeasDesc mepochCol(measVal, measRef); mepochCol.write(td); td.addColumn(ScalarColumnDesc("INTERVAL")); td.addColumn(ScalarColumnDesc("SRCNAME")); // Type of source (on=0, off=1, other=-1) ScalarColumnDesc stypeColumn("SRCTYPE"); stypeColumn.setDefault(Int(-1)); td.addColumn(stypeColumn); td.addColumn(ScalarColumnDesc("FIELDNAME")); //The actual Data Vectors td.addColumn(ArrayColumnDesc("SPECTRA")); td.addColumn(ArrayColumnDesc("FLAGTRA")); td.addColumn(ArrayColumnDesc("TSYS")); td.addColumn(ArrayColumnDesc("DIRECTION", IPosition(1,2), ColumnDesc::Direct)); TableMeasRefDesc mdirRef(MDirection::J2000); // default TableMeasValueDesc tmvdMDir(td, "DIRECTION"); // the TableMeasDesc gives the column a type TableMeasDesc mdirCol(tmvdMDir, mdirRef); // a uder set table type e.g. GALCTIC, B1950 ... td.rwKeywordSet().define("DIRECTIONREF", String("J2000")); // writing create the measure column mdirCol.write(td); td.addColumn(ScalarColumnDesc("AZIMUTH")); td.addColumn(ScalarColumnDesc("ELEVATION")); td.addColumn(ScalarColumnDesc("OPACITY")); td.addColumn(ScalarColumnDesc("TCAL_ID")); ScalarColumnDesc fitColumn("FIT_ID"); fitColumn.setDefault(Int(-1)); td.addColumn(fitColumn); td.addColumn(ScalarColumnDesc("FOCUS_ID")); td.addColumn(ScalarColumnDesc("WEATHER_ID")); // columns which just get dragged along, as they aren't used in asap td.addColumn(ScalarColumnDesc("SRCVELOCITY")); td.addColumn(ArrayColumnDesc("SRCPROPERMOTION")); td.addColumn(ArrayColumnDesc("SRCDIRECTION")); td.addColumn(ArrayColumnDesc("SCANRATE")); td.rwKeywordSet().define("OBSMODE", String("")); // Now create Table SetUp from the description. SetupNewTable aNewTab(generateName(), td, Table::Scratch); table_ = Table(aNewTab, type_, 0); originalTable_ = table_; } void Scantable::attach() { timeCol_.attach(table_, "TIME"); srcnCol_.attach(table_, "SRCNAME"); srctCol_.attach(table_, "SRCTYPE"); specCol_.attach(table_, "SPECTRA"); flagsCol_.attach(table_, "FLAGTRA"); tsysCol_.attach(table_, "TSYS"); cycleCol_.attach(table_,"CYCLENO"); scanCol_.attach(table_, "SCANNO"); beamCol_.attach(table_, "BEAMNO"); ifCol_.attach(table_, "IFNO"); polCol_.attach(table_, "POLNO"); integrCol_.attach(table_, "INTERVAL"); azCol_.attach(table_, "AZIMUTH"); elCol_.attach(table_, "ELEVATION"); dirCol_.attach(table_, "DIRECTION"); fldnCol_.attach(table_, "FIELDNAME"); rbeamCol_.attach(table_, "REFBEAMNO"); mweatheridCol_.attach(table_,"WEATHER_ID"); mfitidCol_.attach(table_,"FIT_ID"); mfreqidCol_.attach(table_, "FREQ_ID"); mtcalidCol_.attach(table_, "TCAL_ID"); mfocusidCol_.attach(table_, "FOCUS_ID"); mmolidCol_.attach(table_, "MOLECULE_ID"); //Add auxiliary column for row-based flagging (CAS-1433 Wataru Kawasaki) attachAuxColumnDef(flagrowCol_, "FLAGROW", 0); } template void Scantable::attachAuxColumnDef(ScalarColumn& col, const String& colName, const T2& defValue) { try { col.attach(table_, colName); } catch (TableError& err) { String errMesg = err.getMesg(); if (errMesg == "Table column " + colName + " is unknown") { table_.addColumn(ScalarColumnDesc(colName)); col.attach(table_, colName); col.fillColumn(static_cast(defValue)); } else { throw; } } catch (...) { throw; } } template void Scantable::attachAuxColumnDef(ArrayColumn& col, const String& colName, const Array& defValue) { try { col.attach(table_, colName); } catch (TableError& err) { String errMesg = err.getMesg(); if (errMesg == "Table column " + colName + " is unknown") { table_.addColumn(ArrayColumnDesc(colName)); col.attach(table_, colName); int size = 0; ArrayIterator& it = defValue.begin(); while (it != defValue.end()) { ++size; ++it; } IPosition ip(1, size); Array& arr(ip); for (int i = 0; i < size; ++i) arr[i] = static_cast(defValue[i]); col.fillColumn(arr); } else { throw; } } catch (...) { throw; } } void Scantable::setHeader(const STHeader& sdh) { table_.rwKeywordSet().define("nIF", sdh.nif); table_.rwKeywordSet().define("nBeam", sdh.nbeam); table_.rwKeywordSet().define("nPol", sdh.npol); table_.rwKeywordSet().define("nChan", sdh.nchan); table_.rwKeywordSet().define("Observer", sdh.observer); table_.rwKeywordSet().define("Project", sdh.project); table_.rwKeywordSet().define("Obstype", sdh.obstype); table_.rwKeywordSet().define("AntennaName", sdh.antennaname); table_.rwKeywordSet().define("AntennaPosition", sdh.antennaposition); table_.rwKeywordSet().define("Equinox", sdh.equinox); table_.rwKeywordSet().define("FreqRefFrame", sdh.freqref); table_.rwKeywordSet().define("FreqRefVal", sdh.reffreq); table_.rwKeywordSet().define("Bandwidth", sdh.bandwidth); table_.rwKeywordSet().define("UTC", sdh.utc); table_.rwKeywordSet().define("FluxUnit", sdh.fluxunit); table_.rwKeywordSet().define("Epoch", sdh.epoch); table_.rwKeywordSet().define("POLTYPE", sdh.poltype); } STHeader Scantable::getHeader() const { STHeader sdh; table_.keywordSet().get("nBeam",sdh.nbeam); table_.keywordSet().get("nIF",sdh.nif); table_.keywordSet().get("nPol",sdh.npol); table_.keywordSet().get("nChan",sdh.nchan); table_.keywordSet().get("Observer", sdh.observer); table_.keywordSet().get("Project", sdh.project); table_.keywordSet().get("Obstype", sdh.obstype); table_.keywordSet().get("AntennaName", sdh.antennaname); table_.keywordSet().get("AntennaPosition", sdh.antennaposition); table_.keywordSet().get("Equinox", sdh.equinox); table_.keywordSet().get("FreqRefFrame", sdh.freqref); table_.keywordSet().get("FreqRefVal", sdh.reffreq); table_.keywordSet().get("Bandwidth", sdh.bandwidth); table_.keywordSet().get("UTC", sdh.utc); table_.keywordSet().get("FluxUnit", sdh.fluxunit); table_.keywordSet().get("Epoch", sdh.epoch); table_.keywordSet().get("POLTYPE", sdh.poltype); return sdh; } void Scantable::setSourceType( int stype ) { if ( stype < 0 || stype > 1 ) throw(AipsError("Illegal sourcetype.")); TableVector tabvec(table_, "SRCTYPE"); tabvec = Int(stype); } void Scantable::setSourceName( const std::string& name ) { TableVector tabvec(table_, "SRCNAME"); tabvec = name; } bool Scantable::conformant( const Scantable& other ) { return this->getHeader().conformant(other.getHeader()); } std::string Scantable::formatSec(Double x) const { Double xcop = x; MVTime mvt(xcop/24./3600.); // make days if (x < 59.95) return String(" ") + mvt.string(MVTime::TIME_CLEAN_NO_HM, 7)+"s"; else if (x < 3599.95) return String(" ") + mvt.string(MVTime::TIME_CLEAN_NO_H,7)+" "; else { ostringstream oss; oss << setw(2) << std::right << setprecision(1) << mvt.hour(); oss << ":" << mvt.string(MVTime::TIME_CLEAN_NO_H,7) << " "; return String(oss); } }; std::string Scantable::formatDirection(const MDirection& md, Int prec) const { Vector t = md.getAngle(Unit(String("rad"))).getValue(); if (prec<0) prec = 7; String ref = md.getRefString(); MVAngle mvLon(t[0]); String sLon = mvLon.string(MVAngle::TIME,prec); uInt tp = md.getRef().getType(); if (tp == MDirection::GALACTIC || tp == MDirection::SUPERGAL ) { sLon = mvLon(0.0).string(MVAngle::ANGLE_CLEAN,prec); } MVAngle mvLat(t[1]); String sLat = mvLat.string(MVAngle::ANGLE+MVAngle::DIG2,prec); return ref + String(" ") + sLon + String(" ") + sLat; } std::string Scantable::getFluxUnit() const { return table_.keywordSet().asString("FluxUnit"); } void Scantable::setFluxUnit(const std::string& unit) { String tmp(unit); Unit tU(tmp); if (tU==Unit("K") || tU==Unit("Jy")) { table_.rwKeywordSet().define(String("FluxUnit"), tmp); } else { throw AipsError("Illegal unit - must be compatible with Jy or K"); } } void Scantable::setInstrument(const std::string& name) { bool throwIt = true; // create an Instrument to see if this is valid STAttr::convertInstrument(name, throwIt); String nameU(name); nameU.upcase(); table_.rwKeywordSet().define(String("AntennaName"), nameU); } void Scantable::setFeedType(const std::string& feedtype) { if ( Scantable::factories_.find(feedtype) == Scantable::factories_.end() ) { std::string msg = "Illegal feed type "+ feedtype; throw(casa::AipsError(msg)); } table_.rwKeywordSet().define(String("POLTYPE"), feedtype); } MPosition Scantable::getAntennaPosition() const { Vector antpos; table_.keywordSet().get("AntennaPosition", antpos); MVPosition mvpos(antpos(0),antpos(1),antpos(2)); return MPosition(mvpos); } void Scantable::makePersistent(const std::string& filename) { String inname(filename); Path path(inname); /// @todo reindex SCANNO, recompute nbeam, nif, npol inname = path.expandedName(); // 2011/03/04 TN // We can comment out this workaround since the essential bug is // fixed in casacore (r20889 in google code). table_.deepCopy(inname, Table::New); // // WORKAROUND !!! for Table bug // // Remove when fixed in casacore // if ( table_.tableType() == Table::Memory && !selector_.empty() ) { // Table tab = table_.copyToMemoryTable(generateName()); // tab.deepCopy(inname, Table::New); // tab.markForDelete(); // // } else { // table_.deepCopy(inname, Table::New); // } } int Scantable::nbeam( int scanno ) const { if ( scanno < 0 ) { Int n; table_.keywordSet().get("nBeam",n); return int(n); } else { // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these Table t = table_(table_.col("SCANNO") == scanno); ROTableRow row(t); const TableRecord& rec = row.get(0); Table subt = t( t.col("IFNO") == Int(rec.asuInt("IFNO")) && t.col("POLNO") == Int(rec.asuInt("POLNO")) && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) ); ROTableVector v(subt, "BEAMNO"); return int(v.nelements()); } return 0; } int Scantable::nif( int scanno ) const { if ( scanno < 0 ) { Int n; table_.keywordSet().get("nIF",n); return int(n); } else { // take the first POLNO,BEAMNO,CYCLENO as nbeam shouldn't vary with these Table t = table_(table_.col("SCANNO") == scanno); ROTableRow row(t); const TableRecord& rec = row.get(0); Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO")) && t.col("POLNO") == Int(rec.asuInt("POLNO")) && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) ); if ( subt.nrow() == 0 ) return 0; ROTableVector v(subt, "IFNO"); return int(v.nelements()); } return 0; } int Scantable::npol( int scanno ) const { if ( scanno < 0 ) { Int n; table_.keywordSet().get("nPol",n); return n; } else { // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these Table t = table_(table_.col("SCANNO") == scanno); ROTableRow row(t); const TableRecord& rec = row.get(0); Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO")) && t.col("IFNO") == Int(rec.asuInt("IFNO")) && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) ); if ( subt.nrow() == 0 ) return 0; ROTableVector v(subt, "POLNO"); return int(v.nelements()); } return 0; } int Scantable::ncycle( int scanno ) const { if ( scanno < 0 ) { Block cols(2); cols[0] = "SCANNO"; cols[1] = "CYCLENO"; TableIterator it(table_, cols); int n = 0; while ( !it.pastEnd() ) { ++n; ++it; } return n; } else { Table t = table_(table_.col("SCANNO") == scanno); ROTableRow row(t); const TableRecord& rec = row.get(0); Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO")) && t.col("POLNO") == Int(rec.asuInt("POLNO")) && t.col("IFNO") == Int(rec.asuInt("IFNO")) ); if ( subt.nrow() == 0 ) return 0; return int(subt.nrow()); } return 0; } int Scantable::nrow( int /*scanno*/ ) const { return int(table_.nrow()); } int Scantable::nchan( int ifno ) const { if ( ifno < 0 ) { Int n; table_.keywordSet().get("nChan",n); return int(n); } else { // take the first SCANNO,POLNO,BEAMNO,CYCLENO as nbeam shouldn't // vary with these Table t = table_(table_.col("IFNO") == ifno, 1); if ( t.nrow() == 0 ) return 0; ROArrayColumn v(t, "SPECTRA"); return v.shape(0)(0); } return 0; } int Scantable::nscan() const { Vector scannos(scanCol_.getColumn()); uInt nout = genSort( scannos, Sort::Ascending, Sort::QuickSort|Sort::NoDuplicates ); return int(nout); } int Scantable::getChannels(int whichrow) const { return specCol_.shape(whichrow)(0); } int Scantable::getBeam(int whichrow) const { return beamCol_(whichrow); } std::vector Scantable::getNumbers(const ScalarColumn& col) const { Vector nos(col.getColumn()); uInt n = genSort( nos, Sort::Ascending, Sort::QuickSort|Sort::NoDuplicates ); nos.resize(n, True); std::vector stlout; nos.tovector(stlout); return stlout; } int Scantable::getIF(int whichrow) const { return ifCol_(whichrow); } int Scantable::getPol(int whichrow) const { return polCol_(whichrow); } std::string Scantable::formatTime(const MEpoch& me, bool showdate) const { return formatTime(me, showdate, 0); } std::string Scantable::formatTime(const MEpoch& me, bool showdate, uInt prec) const { MVTime mvt(me.getValue()); if (showdate) //mvt.setFormat(MVTime::YMD); mvt.setFormat(MVTime::YMD, prec); else //mvt.setFormat(MVTime::TIME); mvt.setFormat(MVTime::TIME, prec); ostringstream oss; oss << mvt; return String(oss); } void Scantable::calculateAZEL() { LogIO os( LogOrigin( "Scantable", "calculateAZEL()", WHERE ) ) ; MPosition mp = getAntennaPosition(); MEpoch::ROScalarColumn timeCol(table_, "TIME"); ostringstream oss; oss << mp; os << "Computed azimuth/elevation using " << endl << String(oss) << endl; for (Int i=0; i "; MeasFrame frame(mp, me); Vector azel = MDirection::Convert(md, MDirection::Ref(MDirection::AZEL, frame) )().getAngle("rad").getValue(); azCol_.put(i,Float(azel[0])); elCol_.put(i,Float(azel[1])); os << "azel: " << azel[0]/C::pi*180.0 << " " << azel[1]/C::pi*180.0 << " (deg)" << LogIO::POST; } } void Scantable::clip(const Float uthres, const Float dthres, bool clipoutside, bool unflag) { Vector flagrow = flagrowCol_.getColumn(); for (uInt i=0; i flgs = flagsCol_(i); srchChannelsToClip(i, uthres, dthres, clipoutside, unflag, flgs); flagsCol_.put(i, flgs); } } } std::vector Scantable::getClipMask(int whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag) { Vector flags; flagsCol_.get(uInt(whichrow), flags); srchChannelsToClip(uInt(whichrow), uthres, dthres, clipoutside, unflag, flags); Vector bflag(flags.shape()); convertArray(bflag, flags); //bflag = !bflag; std::vector mask; bflag.tovector(mask); return mask; } void Scantable::srchChannelsToClip(uInt whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag, Vector flgs) { Vector spcs = specCol_(whichrow); uInt nchannel = spcs.nelements(); if (spcs.nelements() != nchannel) { throw(AipsError("Data has incorrect number of channels")); } uChar userflag = 1 << 7; if (unflag) { userflag = 0 << 7; } if (clipoutside) { for (uInt j = 0; j < nchannel; ++j) { Float spc = spcs(j); if ((spc >= uthres) || (spc <= dthres)) { flgs(j) = userflag; } } } else { for (uInt j = 0; j < nchannel; ++j) { Float spc = spcs(j); if ((spc < uthres) && (spc > dthres)) { flgs(j) = userflag; } } } } void Scantable::flag( int whichrow, const std::vector& msk, bool unflag ) { std::vector::const_iterator it; uInt ntrue = 0; if (whichrow >= int(table_.nrow()) ) { throw(AipsError("Invalid row number")); } for (it = msk.begin(); it != msk.end(); ++it) { if ( *it ) { ntrue++; } } //if ( selector_.empty() && (msk.size() == 0 || msk.size() == ntrue) ) if ( whichrow == -1 && !unflag && selector_.empty() && (msk.size() == 0 || msk.size() == ntrue) ) throw(AipsError("Trying to flag whole scantable.")); uChar userflag = 1 << 7; if ( unflag ) { userflag = 0 << 7; } if (whichrow > -1 ) { // apply flag only when specified row is vaild if (flagrowCol_(whichrow) == 0) { applyChanFlag(uInt(whichrow), msk, userflag); } } else { Vector flagrow = flagrowCol_.getColumn(); for ( uInt i=0; i& msk, uChar flagval ) { if (whichrow >= table_.nrow() ) { throw( casa::indexError( whichrow, "asap::Scantable::applyChanFlag: Invalid row number" ) ); } Vector flgs = flagsCol_(whichrow); if ( msk.size() == 0 ) { flgs = flagval; flagsCol_.put(whichrow, flgs); return; } if ( int(msk.size()) != nchan( getIF(whichrow) ) ) { throw(AipsError("Mask has incorrect number of channels.")); } if ( flgs.nelements() != msk.size() ) { throw(AipsError("Mask has incorrect number of channels." " Probably varying with IF. Please flag per IF")); } std::vector::const_iterator it; uInt j = 0; for (it = msk.begin(); it != msk.end(); ++it) { if ( *it ) { flgs(j) = flagval; } ++j; } flagsCol_.put(whichrow, flgs); } void Scantable::flagRow(const std::vector& rows, bool unflag) { if (selector_.empty() && (rows.size() == table_.nrow()) && !unflag) throw(AipsError("Trying to flag whole scantable.")); uInt rowflag = (unflag ? 0 : 1); std::vector::const_iterator it; for (it = rows.begin(); it != rows.end(); ++it) flagrowCol_.put(*it, rowflag); } std::vector Scantable::getMask(int whichrow) const { Vector flags; flagsCol_.get(uInt(whichrow), flags); Vector bflag(flags.shape()); convertArray(bflag, flags); bflag = !bflag; std::vector mask; bflag.tovector(mask); return mask; } std::vector Scantable::getSpectrum( int whichrow, const std::string& poltype ) const { LogIO os( LogOrigin( "Scantable", "getSpectrum()", WHERE ) ) ; String ptype = poltype; if (poltype == "" ) ptype = getPolType(); if ( whichrow < 0 || whichrow >= nrow() ) throw(AipsError("Illegal row number.")); std::vector out; Vector arr; uInt requestedpol = polCol_(whichrow); String basetype = getPolType(); if ( ptype == basetype ) { specCol_.get(whichrow, arr); } else { CountedPtr stpol(STPol::getPolClass(Scantable::factories_, basetype)); uInt row = uInt(whichrow); stpol->setSpectra(getPolMatrix(row)); Float fang,fhand; fang = focusTable_.getTotalAngle(mfocusidCol_(row)); fhand = focusTable_.getFeedHand(mfocusidCol_(row)); stpol->setPhaseCorrections(fang, fhand); arr = stpol->getSpectrum(requestedpol, ptype); } if ( arr.nelements() == 0 ) os << "Not enough polarisations present to do the conversion." << LogIO::POST; arr.tovector(out); return out; } void Scantable::setSpectrum( const std::vector& spec, int whichrow ) { Vector spectrum(spec); Vector arr; specCol_.get(whichrow, arr); if ( spectrum.nelements() != arr.nelements() ) throw AipsError("The spectrum has incorrect number of channels."); specCol_.put(whichrow, spectrum); } String Scantable::generateName() { return (File::newUniqueName("./","temp")).baseName(); } const casa::Table& Scantable::table( ) const { return table_; } casa::Table& Scantable::table( ) { return table_; } std::string Scantable::getPolType() const { return table_.keywordSet().asString("POLTYPE"); } void Scantable::unsetSelection() { table_ = originalTable_; attach(); selector_.reset(); } void Scantable::setSelection( const STSelector& selection ) { Table tab = const_cast(selection).apply(originalTable_); if ( tab.nrow() == 0 ) { throw(AipsError("Selection contains no data. Not applying it.")); } table_ = tab; attach(); // tab.rwKeywordSet().define("nBeam",(Int)(getBeamNos().size())) ; // vector selectedIFs = getIFNos() ; // Int newnIF = selectedIFs.size() ; // tab.rwKeywordSet().define("nIF",newnIF) ; // if ( newnIF != 0 ) { // Int newnChan = 0 ; // for ( Int i = 0 ; i < newnIF ; i++ ) { // Int nChan = nchan( selectedIFs[i] ) ; // if ( newnChan > nChan ) // newnChan = nChan ; // } // tab.rwKeywordSet().define("nChan",newnChan) ; // } // tab.rwKeywordSet().define("nPol",(Int)(getPolNos().size())) ; selector_ = selection; } std::string Scantable::headerSummary() { // Format header info // STHeader sdh; // sdh = getHeader(); // sdh.print(); ostringstream oss; oss.flags(std::ios_base::left); String tmp; // Project table_.keywordSet().get("Project", tmp); oss << setw(15) << "Project:" << tmp << endl; // Observation date oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl; // Observer oss << setw(15) << "Observer:" << table_.keywordSet().asString("Observer") << endl; // Antenna Name table_.keywordSet().get("AntennaName", tmp); oss << setw(15) << "Antenna Name:" << tmp << endl; // Obs type table_.keywordSet().get("Obstype", tmp); // Records (nrow) oss << setw(15) << "Data Records:" << table_.nrow() << " rows" << endl; oss << setw(15) << "Obs. Type:" << tmp << endl; // Beams, IFs, Polarizations, and Channels oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl << setw(15) << "IFs:" << setw(4) << nif() << endl << setw(15) << "Polarisations:" << setw(4) << npol() << "(" << getPolType() << ")" << endl << setw(15) << "Channels:" << nchan() << endl; // Flux unit table_.keywordSet().get("FluxUnit", tmp); oss << setw(15) << "Flux Unit:" << tmp << endl; // Abscissa Unit oss << setw(15) << "Abscissa:" << getAbcissaLabel(0) << endl; // Selection oss << selector_.print() << endl; return String(oss); } void Scantable::summary( const std::string& filename ) { ostringstream oss; ofstream ofs; LogIO ols(LogOrigin("Scantable", "summary", WHERE)); if (filename != "") ofs.open( filename.c_str(), ios::out ); oss << endl; oss << asap::SEPERATOR << endl; oss << " Scan Table Summary" << endl; oss << asap::SEPERATOR << endl; // Format header info oss << headerSummary(); oss << endl; if (table_.nrow() <= 0){ oss << asap::SEPERATOR << endl; oss << "The MAIN table is empty: there are no data!!!" << endl; oss << asap::SEPERATOR << endl; ols << String(oss) << LogIO::POST; if (ofs) { ofs << String(oss) << flush; ofs.close(); } return; } // main table String dirtype = "Position (" + getDirectionRefString() + ")"; oss.flags(std::ios_base::left); oss << setw(5) << "Scan" << setw(15) << "Source" << setw(35) << "Time range" << setw(2) << "" << setw(7) << "Int[s]" << setw(7) << "Record" << setw(8) << "SrcType" << setw(8) << "FreqIDs" << setw(7) << "MolIDs" << endl; oss << setw(7)<< "" << setw(6) << "Beam" << setw(23) << dirtype << endl; oss << asap::SEPERATOR << endl; // Flush summary and clear up the string ols << String(oss) << LogIO::POST; if (ofs) ofs << String(oss) << flush; oss.str(""); oss.clear(); // Get Freq_ID map ROScalarColumn ftabIds(frequencies().table(), "ID"); Int nfid = ftabIds.nrow(); if (nfid <= 0){ oss << "FREQUENCIES subtable is empty: there are no data!!!" << endl; oss << asap::SEPERATOR << endl; ols << String(oss) << LogIO::POST; if (ofs) { ofs << String(oss) << flush; ofs.close(); } return; } // Storages of overall IFNO, POLNO, and nchan per FREQ_ID // the orders are identical to ID in FREQ subtable Block< Vector > ifNos(nfid), polNos(nfid); Vector fIdchans(nfid,-1); Vector fIdfreq0(nfid,-1); Vector fIdfcent(nfid,-1); map fidMap; // (FREQ_ID, row # in FREQ subtable) pair for (Int i=0; i < nfid; i++){ // fidMap[freqId] returns row number in FREQ subtable fidMap.insert(pair(ftabIds(i),i)); ifNos[i] = Vector(); polNos[i] = Vector(); } TableIterator iter(table_, "SCANNO"); // Vars for keeping track of time, freqids, molIds in a SCANNO //Vector freqids; //Vector molids; Vector beamids(1,0); Vector beamDirs; Vector stypeids(1,0); Vector stypestrs; Int nfreq(1); Int nmol(1); uInt nbeam(1); uInt nstype(1); Double btime(0.0), etime(0.0); Double meanIntTim(0.0); uInt currFreqId(0), ftabRow(0); Int iflen(0), pollen(0); while (!iter.pastEnd()) { Table subt = iter.table(); uInt snrow = subt.nrow(); ROTableRow row(subt); const TableRecord& rec = row.get(0); // relevant columns ROScalarColumn mjdCol(subt,"TIME"); ROScalarColumn intervalCol(subt,"INTERVAL"); MDirection::ROScalarColumn dirCol(subt,"DIRECTION"); ScalarColumn freqIdCol(subt,"FREQ_ID"); ScalarColumn molIdCol(subt,"MOLECULE_ID"); ROScalarColumn beamCol(subt,"BEAMNO"); ROScalarColumn stypeCol(subt,"SRCTYPE"); ROScalarColumn ifNoCol(subt,"IFNO"); ROScalarColumn polNoCol(subt,"POLNO"); // Times meanIntTim = sum(intervalCol.getColumn()) / (double) snrow; minMax(btime, etime, mjdCol.getColumn()); double shiftInDay(0.5*meanIntTim/C::day); btime -= shiftInDay; etime += shiftInDay; // MOLECULE_ID and FREQ_ID Vector molids(getNumbers(molIdCol)); molids.shape(nmol); Vector freqids(getNumbers(freqIdCol)); freqids.shape(nfreq); // Add first beamid, and srcNames beamids.resize(1,False); beamDirs.resize(1,False); beamids(0)=beamCol(0); beamDirs(0)=dirCol(0); nbeam = 1; stypeids.resize(1,False); stypeids(0)=stypeCol(0); nstype = 1; // Global listings of nchan/IFNO/POLNO per FREQ_ID currFreqId=freqIdCol(0); ftabRow = fidMap[currFreqId]; // Assumes an identical number of channels per FREQ_ID if (fIdchans(ftabRow) < 0 ) { RORecordFieldPtr< Array > spec(rec, "SPECTRA"); fIdchans(ftabRow)=(*spec).shape()(0); } if (fIdfreq0(ftabRow) < 0 ) { SpectralCoordinate spc = frequencies().getSpectralCoordinate(ftabRow); Double fs, fe; spc.toWorld(fs, 0); spc.toWorld(fe, fIdchans(ftabRow)-1); fIdfreq0(ftabRow) = fs; fIdfcent(ftabRow) = 0.5 * ( fs + fe ); } // Should keep ifNos and polNos form the previous SCANNO if ( !anyEQ(ifNos[ftabRow],ifNoCol(0)) ) { ifNos[ftabRow].shape(iflen); iflen++; ifNos[ftabRow].resize(iflen,True); ifNos[ftabRow](iflen-1) = ifNoCol(0); } if ( !anyEQ(polNos[ftabRow],polNoCol(0)) ) { polNos[ftabRow].shape(pollen); pollen++; polNos[ftabRow].resize(pollen,True); polNos[ftabRow](pollen-1) = polNoCol(0); } for (uInt i=1; i < snrow; i++){ // Need to list BEAMNO and DIRECTION in the same order if ( !anyEQ(beamids,beamCol(i)) ) { nbeam++; beamids.resize(nbeam,True); beamids(nbeam-1)=beamCol(i); beamDirs.resize(nbeam,True); beamDirs(nbeam-1)=dirCol(i); } // SRCTYPE is Int (getNumber takes only uInt) if ( !anyEQ(stypeids,stypeCol(i)) ) { nstype++; stypeids.resize(nstype,True); stypeids(nstype-1)=stypeCol(i); } // Global listings of nchan/IFNO/POLNO per FREQ_ID currFreqId=freqIdCol(i); ftabRow = fidMap[currFreqId]; if (fIdchans(ftabRow) < 0 ) { const TableRecord& rec = row.get(i); RORecordFieldPtr< Array > spec(rec, "SPECTRA"); fIdchans(ftabRow) = (*spec).shape()(0); } if (fIdfreq0(ftabRow) < 0 ) { SpectralCoordinate spc = frequencies().getSpectralCoordinate(ftabRow); Double fs, fe; spc.toWorld(fs, 0); spc.toWorld(fe, fIdchans(ftabRow)-1); fIdfreq0(ftabRow) = fs; fIdfcent(ftabRow) = 5.e-1 * ( fs + fe ); } if ( !anyEQ(ifNos[ftabRow],ifNoCol(i)) ) { ifNos[ftabRow].shape(iflen); iflen++; ifNos[ftabRow].resize(iflen,True); ifNos[ftabRow](iflen-1) = ifNoCol(i); } if ( !anyEQ(polNos[ftabRow],polNoCol(i)) ) { polNos[ftabRow].shape(pollen); pollen++; polNos[ftabRow].resize(pollen,True); polNos[ftabRow](pollen-1) = polNoCol(i); } } // end of row iteration stypestrs.resize(nstype,False); for (uInt j=0; j < nstype; j++) stypestrs(j) = SrcType::getName(stypeids(j)); // Format Scan summary oss << setw(4) << std::right << rec.asuInt("SCANNO") << std::left << setw(1) << "" << setw(15) << rec.asString("SRCNAME") << setw(21) << MVTime(btime).string(MVTime::YMD,8) << setw(3) << " - " << MVTime(etime).string(MVTime::TIME,8) << setw(3) << "" << setw(6) << meanIntTim << setw(1) << "" << std::right << setw(5) << snrow << setw(2) << "" << std::left << stypestrs << setw(1) << "" << freqids << setw(1) << "" << molids << endl; // Format Beam summary for (uInt j=0; j < nbeam; j++) { oss << setw(7) << "" << setw(6) << beamids(j) << setw(1) << "" << formatDirection(beamDirs(j),9) << endl; } // Flush summary every scan and clear up the string ols << String(oss) << LogIO::POST; if (ofs) ofs << String(oss) << flush; oss.str(""); oss.clear(); ++iter; } // end of scan iteration oss << asap::SEPERATOR << endl; // List FRECUENCIES Table (using STFrequencies.print may be slow) oss << "FREQUENCIES: " << nfreq << endl; // oss << std::right << setw(5) << "ID" << setw(2) << "" // << std::left << setw(5) << "IFNO" << setw(2) << "" // << setw(8) << "Frame" // << setw(16) << "RefVal" // << setw(7) << "RefPix" // << setw(15) << "Increment" // << setw(9) << "Channels" // << setw(6) << "POLNOs" << endl; // Int tmplen; // for (Int i=0; i < nfid; i++){ // // List row=i of FREQUENCIES subtable // ifNos[i].shape(tmplen); // if (tmplen >= 1) { // oss << std::right << setw(5) << ftabIds(i) << setw(2) << "" // << setw(3) << ifNos[i](0) << setw(1) << "" // << std::left << setw(46) << frequencies().print(ftabIds(i)) // << setw(2) << "" // << std::right << setw(8) << fIdchans[i] << setw(2) << "" // << std::left << polNos[i]; // if (tmplen > 1) { // oss << " (" << tmplen << " chains)"; // } // oss << endl; // } oss << std::right << setw(4) << "ID" << setw(2) << "" << std::left << setw(9) << "IFNO(SPW)" << setw(2) << "" << setw(8) << "#Chans" << setw(8) << "Frame" << setw(12) << "Ch0[MHz]" << setw(14) << "ChanWid[kHz]" << setw(14) << "Center[MHz]" << setw(6) << "POLNOs" << endl; Int tmplen; for (Int i=0; i < nfid; i++){ // List row=i of FREQUENCIES subtable ifNos[i].shape(tmplen); Double refpix, refval, increment ; if (tmplen >= 1) { freqTable_.getEntry( refpix, refval, increment, ftabIds(i) ) ; oss << std::right << setw(4) << ftabIds(i) << setw(2) << "" << std::left << setw(9) << ifNos[i](0) << setw(2) << "" << std::right << setw(6) << fIdchans[i] << setw(2) << "" << setw(6) << frequencies().getFrameString(true) << setw(2) << "" << setw(10) << std::setprecision(9) << (fIdfreq0[i]*1.e-6) << setw(2) << "" << setw(12) << (increment*1.e-3) << setw(2) << "" << setw(12) << (fIdfcent[i]*1.e-6) << setw(2) << "" << std::left << polNos[i]; if (tmplen > 1) { oss << " (" << tmplen << " chains)"; } oss << endl; } } oss << asap::SEPERATOR << endl; // List MOLECULES Table (currently lists all rows) oss << "MOLECULES: " << endl; if (molecules().nrow() <= 0) { oss << " MOLECULES subtable is empty: there are no data" << endl; } else { ROTableRow row(molecules().table()); oss << std::right << setw(5) << "ID" << std::left << setw(3) << "" << setw(18) << "RestFreq" << setw(15) << "Name" << endl; for (Int i=0; i < molecules().nrow(); i++){ const TableRecord& rec=row.get(i); oss << std::right << setw(5) << rec.asuInt("ID") << std::left << setw(3) << "" << rec.asArrayDouble("RESTFREQUENCY") << setw(1) << "" << rec.asArrayString("NAME") << endl; } } oss << asap::SEPERATOR << endl; ols << String(oss) << LogIO::POST; if (ofs) { ofs << String(oss) << flush; ofs.close(); } // return String(oss); } std::string Scantable::oldheaderSummary() { // Format header info // STHeader sdh; // sdh = getHeader(); // sdh.print(); ostringstream oss; oss.flags(std::ios_base::left); oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl << setw(15) << "IFs:" << setw(4) << nif() << endl << setw(15) << "Polarisations:" << setw(4) << npol() << "(" << getPolType() << ")" << endl << setw(15) << "Channels:" << nchan() << endl; String tmp; oss << setw(15) << "Observer:" << table_.keywordSet().asString("Observer") << endl; oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl; table_.keywordSet().get("Project", tmp); oss << setw(15) << "Project:" << tmp << endl; table_.keywordSet().get("Obstype", tmp); oss << setw(15) << "Obs. Type:" << tmp << endl; table_.keywordSet().get("AntennaName", tmp); oss << setw(15) << "Antenna Name:" << tmp << endl; table_.keywordSet().get("FluxUnit", tmp); oss << setw(15) << "Flux Unit:" << tmp << endl; int nid = moleculeTable_.nrow(); Bool firstline = True; oss << setw(15) << "Rest Freqs:"; for (int i=0; i 0) { Vector vec(moleculeTable_.getRestFrequency(i)); if (vec.nelements() > 0) { if (firstline) { oss << setprecision(10) << vec << " [Hz]" << endl; firstline=False; } else{ oss << setw(15)<<" " << setprecision(10) << vec << " [Hz]" << endl; } } else { oss << "none" << endl; } } } oss << setw(15) << "Abcissa:" << getAbcissaLabel(0) << endl; oss << selector_.print() << endl; return String(oss); } //std::string Scantable::summary( const std::string& filename ) void Scantable::oldsummary( const std::string& filename ) { ostringstream oss; ofstream ofs; LogIO ols(LogOrigin("Scantable", "summary", WHERE)); if (filename != "") ofs.open( filename.c_str(), ios::out ); oss << endl; oss << asap::SEPERATOR << endl; oss << " Scan Table Summary" << endl; oss << asap::SEPERATOR << endl; // Format header info oss << oldheaderSummary(); oss << endl; // main table String dirtype = "Position (" + getDirectionRefString() + ")"; oss.flags(std::ios_base::left); oss << setw(5) << "Scan" << setw(15) << "Source" << setw(10) << "Time" << setw(18) << "Integration" << setw(15) << "Source Type" << endl; oss << setw(5) << "" << setw(5) << "Beam" << setw(3) << "" << dirtype << endl; oss << setw(10) << "" << setw(3) << "IF" << setw(3) << "" << setw(8) << "Frame" << setw(16) << "RefVal" << setw(10) << "RefPix" << setw(12) << "Increment" << setw(7) << "Channels" << endl; oss << asap::SEPERATOR << endl; // Flush summary and clear up the string ols << String(oss) << LogIO::POST; if (ofs) ofs << String(oss) << flush; oss.str(""); oss.clear(); TableIterator iter(table_, "SCANNO"); while (!iter.pastEnd()) { Table subt = iter.table(); ROTableRow row(subt); MEpoch::ROScalarColumn timeCol(subt,"TIME"); const TableRecord& rec = row.get(0); oss << setw(4) << std::right << rec.asuInt("SCANNO") << std::left << setw(1) << "" << setw(15) << rec.asString("SRCNAME") << setw(10) << formatTime(timeCol(0), false); // count the cycles in the scan TableIterator cyciter(subt, "CYCLENO"); int nint = 0; while (!cyciter.pastEnd()) { ++nint; ++cyciter; } oss << setw(3) << std::right << nint << setw(3) << " x " << std::left << setw(11) << formatSec(rec.asFloat("INTERVAL")) << setw(1) << "" << setw(15) << SrcType::getName(rec.asInt("SRCTYPE")) << endl; TableIterator biter(subt, "BEAMNO"); while (!biter.pastEnd()) { Table bsubt = biter.table(); ROTableRow brow(bsubt); const TableRecord& brec = brow.get(0); uInt row0 = bsubt.rowNumbers(table_)[0]; oss << setw(5) << "" << setw(4) << std::right << brec.asuInt("BEAMNO")<< std::left; oss << setw(4) << "" << formatDirection(getDirection(row0)) << endl; TableIterator iiter(bsubt, "IFNO"); while (!iiter.pastEnd()) { Table isubt = iiter.table(); ROTableRow irow(isubt); const TableRecord& irec = irow.get(0); oss << setw(9) << ""; oss << setw(3) << std::right << irec.asuInt("IFNO") << std::left << setw(1) << "" << frequencies().print(irec.asuInt("FREQ_ID")) << setw(3) << "" << nchan(irec.asuInt("IFNO")) << endl; ++iiter; } ++biter; } // Flush summary every scan and clear up the string ols << String(oss) << LogIO::POST; if (ofs) ofs << String(oss) << flush; oss.str(""); oss.clear(); ++iter; } oss << asap::SEPERATOR << endl; ols << String(oss) << LogIO::POST; if (ofs) { ofs << String(oss) << flush; ofs.close(); } // return String(oss); } // std::string Scantable::getTime(int whichrow, bool showdate) const // { // MEpoch::ROScalarColumn timeCol(table_, "TIME"); // MEpoch me; // if (whichrow > -1) { // me = timeCol(uInt(whichrow)); // } else { // Double tm; // table_.keywordSet().get("UTC",tm); // me = MEpoch(MVEpoch(tm)); // } // return formatTime(me, showdate); // } std::string Scantable::getTime(int whichrow, bool showdate, uInt prec) const { MEpoch me; me = getEpoch(whichrow); return formatTime(me, showdate, prec); } MEpoch Scantable::getEpoch(int whichrow) const { if (whichrow > -1) { return timeCol_(uInt(whichrow)); } else { Double tm; table_.keywordSet().get("UTC",tm); return MEpoch(MVEpoch(tm)); } } std::string Scantable::getDirectionString(int whichrow) const { return formatDirection(getDirection(uInt(whichrow))); } SpectralCoordinate Scantable::getSpectralCoordinate(int whichrow) const { const MPosition& mp = getAntennaPosition(); const MDirection& md = getDirection(whichrow); const MEpoch& me = timeCol_(whichrow); //Double rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow)); Vector rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow)); return freqTable_.getSpectralCoordinate(md, mp, me, rf, mfreqidCol_(whichrow)); } std::vector< double > Scantable::getAbcissa( int whichrow ) const { if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal row number")); std::vector stlout; int nchan = specCol_(whichrow).nelements(); String us = freqTable_.getUnitString(); if ( us == "" || us == "pixel" || us == "channel" ) { for (int i=0; i pixel(nchan); Vector world; indgen(pixel); if ( Unit(us) == Unit("Hz") ) { for ( int i=0; i < nchan; ++i) { Double world; spc.toWorld(world, pixel[i]); stlout.push_back(double(world)); } } else if ( Unit(us) == Unit("km/s") ) { Vector world; spc.pixelToVelocity(world, pixel); world.tovector(stlout); } return stlout; } void Scantable::setDirectionRefString( const std::string & refstr ) { MDirection::Types mdt; if (refstr != "" && !MDirection::getType(mdt, refstr)) { throw(AipsError("Illegal Direction frame.")); } if ( refstr == "" ) { String defaultstr = MDirection::showType(dirCol_.getMeasRef().getType()); table_.rwKeywordSet().define("DIRECTIONREF", defaultstr); } else { table_.rwKeywordSet().define("DIRECTIONREF", String(refstr)); } } std::string Scantable::getDirectionRefString( ) const { return table_.keywordSet().asString("DIRECTIONREF"); } MDirection Scantable::getDirection(int whichrow ) const { String usertype = table_.keywordSet().asString("DIRECTIONREF"); String type = MDirection::showType(dirCol_.getMeasRef().getType()); if ( usertype != type ) { MDirection::Types mdt; if (!MDirection::getType(mdt, usertype)) { throw(AipsError("Illegal Direction frame.")); } return dirCol_.convert(uInt(whichrow), mdt); } else { return dirCol_(uInt(whichrow)); } } std::string Scantable::getAbcissaLabel( int whichrow ) const { if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal ro number")); const MPosition& mp = getAntennaPosition(); const MDirection& md = getDirection(whichrow); const MEpoch& me = timeCol_(whichrow); //const Double& rf = mmolidCol_(whichrow); const Vector rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow)); SpectralCoordinate spc = freqTable_.getSpectralCoordinate(md, mp, me, rf, mfreqidCol_(whichrow)); String s = "Channel"; Unit u = Unit(freqTable_.getUnitString()); if (u == Unit("km/s")) { s = CoordinateUtil::axisLabel(spc, 0, True,True, True); } else if (u == Unit("Hz")) { Vector wau(1);wau = u.getName(); spc.setWorldAxisUnits(wau); s = CoordinateUtil::axisLabel(spc, 0, True, True, False); } return s; } /** void asap::Scantable::setRestFrequencies( double rf, const std::string& name, const std::string& unit ) **/ void Scantable::setRestFrequencies( vector rf, const vector& name, const std::string& unit ) { ///@todo lookup in line table to fill in name and formattedname Unit u(unit); //Quantum urf(rf, u); Quantum >urf(rf, u); Vector formattedname(0); //cerr<<"Scantable::setRestFrequnecies="< tabvec(table_, "MOLECULE_ID"); tabvec = id; } /** void asap::Scantable::setRestFrequencies( const std::string& name ) { throw(AipsError("setRestFrequencies( const std::string& name ) NYI")); ///@todo implement } **/ void Scantable::setRestFrequencies( const vector& name ) { (void) name; // suppress unused warning throw(AipsError("setRestFrequencies( const vector& name ) NYI")); ///@todo implement } std::vector< unsigned int > Scantable::rownumbers( ) const { std::vector stlout; Vector vec = table_.rowNumbers(); vec.tovector(stlout); return stlout; } Matrix Scantable::getPolMatrix( uInt whichrow ) const { ROTableRow row(table_); const TableRecord& rec = row.get(whichrow); Table t = originalTable_( originalTable_.col("SCANNO") == Int(rec.asuInt("SCANNO")) && originalTable_.col("BEAMNO") == Int(rec.asuInt("BEAMNO")) && originalTable_.col("IFNO") == Int(rec.asuInt("IFNO")) && originalTable_.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) ); ROArrayColumn speccol(t, "SPECTRA"); return speccol.getColumn(); } std::vector< std::string > Scantable::columnNames( ) const { Vector vec = table_.tableDesc().columnNames(); return mathutil::tovectorstring(vec); } MEpoch::Types Scantable::getTimeReference( ) const { return MEpoch::castType(timeCol_.getMeasRef().getType()); } void Scantable::addFit( const STFitEntry& fit, int row ) { //cout << mfitidCol_(uInt(row)) << endl; LogIO os( LogOrigin( "Scantable", "addFit()", WHERE ) ) ; os << mfitidCol_(uInt(row)) << LogIO::POST ; uInt id = fitTable_.addEntry(fit, mfitidCol_(uInt(row))); mfitidCol_.put(uInt(row), id); } void Scantable::shift(int npix) { Vector fids(mfreqidCol_.getColumn()); genSort( fids, Sort::Ascending, Sort::QuickSort|Sort::NoDuplicates ); for (uInt i=0; i& scanlist) const { String tbpath; int ret = 0; if ( table_.keywordSet().isDefined("GBT_GO") ) { table_.keywordSet().get("GBT_GO", tbpath); Table t(tbpath,Table::Old); // check each scan if other scan of the pair exist int nscan = scanlist.size(); for (int i = 0; i < nscan; i++) { Table subt = t( t.col("SCAN") == scanlist[i] ); if (subt.nrow()==0) { //cerr <<"Scan "<= nscan ) break; } } else { LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ; //cerr<<"No reference to GBT_GO table."< Scantable::getDirectionVector(int whichrow) const { Vector Dir = dirCol_(whichrow).getAngle("rad").getValue(); std::vector dir; Dir.tovector(dir); return dir; } void asap::Scantable::reshapeSpectrum( int nmin, int nmax ) throw( casa::AipsError ) { // assumed that all rows have same nChan Vector arr = specCol_( 0 ) ; int nChan = arr.nelements() ; // if nmin < 0 or nmax < 0, nothing to do if ( nmin < 0 ) { throw( casa::indexError( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ; } if ( nmax < 0 ) { throw( casa::indexError( nmax, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ; } // if nmin > nmax, exchange values if ( nmin > nmax ) { int tmp = nmax ; nmax = nmin ; nmin = tmp ; LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ; os << "Swap values. Applied range is [" << nmin << ", " << nmax << "]" << LogIO::POST ; } // if nmin exceeds nChan, nothing to do if ( nmin >= nChan ) { throw( casa::indexError( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Specified minimum exceeds nChan." ) ) ; } // if nmax exceeds nChan, reset nmax to nChan if ( nmax >= nChan-1 ) { if ( nmin == 0 ) { // nothing to do LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ; os << "Whole range is selected. Nothing to do." << LogIO::POST ; return ; } else { LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ; os << "Specified maximum exceeds nChan. Applied range is [" << nmin << ", " << nChan-1 << "]." << LogIO::POST ; nmax = nChan - 1 ; } } // reshape specCol_ and flagCol_ for ( int irow = 0 ; irow < nrow() ; irow++ ) { reshapeSpectrum( nmin, nmax, irow ) ; } // update FREQUENCIES subtable Vector freqIdArray = mfreqidCol_.getColumn(); uInt numFreqId = GenSort::sort(freqIdArray, Sort::Ascending, Sort::HeapSort | Sort::NoDuplicates); Double refpix ; Double refval ; Double increment ; for (uInt irow = 0; irow < numFreqId; irow++) { freqTable_.getEntry( refpix, refval, increment, freqIdArray[irow] ) ; /*** * need to shift refpix to nmin * note that channel nmin in old index will be channel 0 in new one ***/ refval = refval - ( refpix - nmin ) * increment ; refpix = 0 ; freqTable_.setEntry( refpix, refval, increment, freqIdArray[irow] ) ; } // update nchan int newsize = nmax - nmin + 1 ; table_.rwKeywordSet().define( "nChan", newsize ) ; // update bandwidth // assumed all spectra in the scantable have same bandwidth table_.rwKeywordSet().define( "Bandwidth", increment * newsize ) ; return ; } void asap::Scantable::reshapeSpectrum( int nmin, int nmax, int irow ) { // reshape specCol_ and flagCol_ Vector oldspec = specCol_( irow ) ; Vector oldflag = flagsCol_( irow ) ; Vector oldtsys = tsysCol_( irow ) ; uInt newsize = nmax - nmin + 1 ; Slice slice( nmin, newsize, 1 ) ; specCol_.put( irow, oldspec( slice ) ) ; flagsCol_.put( irow, oldflag( slice ) ) ; if ( oldspec.size() == oldtsys.size() ) tsysCol_.put( irow, oldtsys( slice ) ) ; return ; } void asap::Scantable::regridSpecChannel( double dnu, int nChan ) { LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ; os << "Regrid abcissa with spectral resoultion " << dnu << " " << freqTable_.getUnitString() << " with channel number " << ((nChan>0)? String(nChan) : "covering band width")<< LogIO::POST ; int freqnrow = freqTable_.table().nrow() ; Vector firstTime( freqnrow, true ) ; double oldincr, factor; uInt currId; Double refpix ; Double refval ; Double increment ; for ( int irow = 0 ; irow < nrow() ; irow++ ) { currId = mfreqidCol_(irow); vector abcissa = getAbcissa( irow ) ; if (nChan < 0) { int oldsize = abcissa.size() ; double bw = (abcissa[oldsize-1]-abcissa[0]) + \ 0.5 * (abcissa[1]-abcissa[0] + abcissa[oldsize-1]-abcissa[oldsize-2]) ; nChan = int( ceil( abs(bw/dnu) ) ) ; } // actual regridding regridChannel( nChan, dnu, irow ) ; // update FREQUENCIES subtable if (firstTime[currId]) { oldincr = abcissa[1]-abcissa[0] ; factor = dnu/oldincr ; firstTime[currId] = false ; freqTable_.getEntry( refpix, refval, increment, currId ) ; //refval = refval - ( refpix + 0.5 * (1 - factor) ) * increment ; if (factor > 0 ) { refpix = (refpix + 0.5)/factor - 0.5; } else { refpix = (abcissa.size() - 0.5 - refpix)/abs(factor) - 0.5; } freqTable_.setEntry( refpix, refval, increment*factor, currId ) ; //os << "ID" << currId << ": channel width (Orig) = " << oldincr << " [" << freqTable_.getUnitString() << "], scale factor = " << factor << LogIO::POST ; //os << " frequency increment (Orig) = " << increment << "-> (New) " << increment*factor << LogIO::POST ; } } } void asap::Scantable::regridChannel( int nChan, double dnu ) { LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ; os << "Regrid abcissa with channel number " << nChan << " and spectral resoultion " << dnu << "Hz." << LogIO::POST ; // assumed that all rows have same nChan Vector arr = specCol_( 0 ) ; int oldsize = arr.nelements() ; // if oldsize == nChan, nothing to do if ( oldsize == nChan ) { os << "Specified channel number is same as current one. Nothing to do." << LogIO::POST ; return ; } // if oldChan < nChan, unphysical operation if ( oldsize < nChan ) { os << "Unphysical operation. Nothing to do." << LogIO::POST ; return ; } // change channel number for specCol_, flagCol_, and tsysCol_ (if necessary) vector coordinfo = getCoordInfo() ; string oldinfo = coordinfo[0] ; coordinfo[0] = "Hz" ; setCoordInfo( coordinfo ) ; for ( int irow = 0 ; irow < nrow() ; irow++ ) { regridChannel( nChan, dnu, irow ) ; } coordinfo[0] = oldinfo ; setCoordInfo( coordinfo ) ; // NOTE: this method does not update metadata such as // FREQUENCIES subtable, nChan, Bandwidth, etc. return ; } void asap::Scantable::regridChannel( int nChan, double dnu, int irow ) { // logging //ofstream ofs( "average.log", std::ios::out | std::ios::app ) ; //ofs << "IFNO = " << getIF( irow ) << " irow = " << irow << endl ; Vector oldspec = specCol_( irow ) ; Vector oldflag = flagsCol_( irow ) ; Vector oldtsys = tsysCol_( irow ) ; Vector newspec( nChan, 0 ) ; Vector newflag( nChan, true ) ; Vector newtsys ; bool regridTsys = false ; if (oldtsys.size() == oldspec.size()) { regridTsys = true ; newtsys.resize(nChan,false) ; newtsys = 0 ; } // regrid vector abcissa = getAbcissa( irow ) ; int oldsize = abcissa.size() ; double olddnu = abcissa[1] - abcissa[0] ; //int ichan = 0 ; double wsum = 0.0 ; Vector zi( nChan+1 ) ; Vector yi( oldsize + 1 ) ; yi[0] = abcissa[0] - 0.5 * olddnu ; for ( int ii = 1 ; ii < oldsize ; ii++ ) yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ; yi[oldsize] = abcissa[oldsize-1] \ + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ; //zi[0] = abcissa[0] - 0.5 * olddnu ; zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ; for ( int ii = 1 ; ii < nChan ; ii++ ) zi[ii] = zi[0] + dnu * ii ; zi[nChan] = zi[nChan-1] + dnu ; // Access zi and yi in ascending order int izs = ((dnu > 0) ? 0 : nChan ) ; int ize = ((dnu > 0) ? nChan : 0 ) ; int izincr = ((dnu > 0) ? 1 : -1 ) ; int ichan = ((olddnu > 0) ? 0 : oldsize ) ; int iye = ((olddnu > 0) ? oldsize : 0 ) ; int iyincr = ((olddnu > 0) ? 1 : -1 ) ; //for ( int ii = izs ; ii != ize ; ii+=izincr ){ int ii = izs ; while (ii != ize) { // always zl < zr double zl = zi[ii] ; double zr = zi[ii+izincr] ; // Need to access smaller index for the new spec, flag, and tsys. // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc. int i = min(ii, ii+izincr) ; //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) { int jj = ichan ; while (jj != iye) { // always yl < yr double yl = yi[jj] ; double yr = yi[jj+iyincr] ; // Need to access smaller index for the original spec, flag, and tsys. // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc. int j = min(jj, jj+iyincr) ; if ( yr <= zl ) { jj += iyincr ; continue ; } else if ( yl <= zl ) { if ( yr < zr ) { if (!oldflag[j]) { newspec[i] += oldspec[j] * ( yr - zl ) ; if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ; wsum += ( yr - zl ) ; } newflag[i] = (newflag[i] && oldflag[j]) ? 1 << 7 : 0 ; } else { if (!oldflag[j]) { newspec[i] += oldspec[j] * abs(dnu) ; if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ; wsum += abs(dnu) ; } newflag[i] = (newflag[i] && oldflag[j]) ? 1 << 7 : 0 ; ichan = jj ; break ; } } else if ( yl < zr ) { if ( yr <= zr ) { if (!oldflag[j]) { newspec[i] += oldspec[j] * ( yr - yl ) ; if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ; wsum += ( yr - yl ) ; } newflag[i] = (newflag[i] && oldflag[j]) ? 1 << 7 : 0 ; } else { if (!oldflag[j]) { newspec[i] += oldspec[j] * ( zr - yl ) ; if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ; wsum += ( zr - yl ) ; } newflag[i] = (newflag[i] && oldflag[j]) ? 1 << 7 : 0 ; ichan = jj ; break ; } } else { ichan = jj - iyincr ; break ; } jj += iyincr ; } if ( wsum != 0.0 ) { newspec[i] /= wsum ; if (regridTsys) newtsys[i] /= wsum ; } wsum = 0.0 ; ii += izincr ; } // if ( dnu > 0.0 ) { // for ( int ii = 0 ; ii < nChan ; ii++ ) { // double zl = zi[ii] ; // double zr = zi[ii+1] ; // for ( int j = ichan ; j < oldsize ; j++ ) { // double yl = yi[j] ; // double yr = yi[j+1] ; // if ( yl <= zl ) { // if ( yr <= zl ) { // continue ; // } // else if ( yr <= zr ) { // if (!oldflag[j]) { // newspec[ii] += oldspec[j] * ( yr - zl ) ; // if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - zl ) ; // wsum += ( yr - zl ) ; // } // newflag[ii] = newflag[ii] && oldflag[j] ; // } // else { // if (!oldflag[j]) { // newspec[ii] += oldspec[j] * dnu ; // if (regridTsys) newtsys[ii] += oldtsys[j] * dnu ; // wsum += dnu ; // } // newflag[ii] = newflag[ii] && oldflag[j] ; // ichan = j ; // break ; // } // } // else if ( yl < zr ) { // if ( yr <= zr ) { // if (!oldflag[j]) { // newspec[ii] += oldspec[j] * ( yr - yl ) ; // if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - yl ) ; // wsum += ( yr - yl ) ; // } // newflag[ii] = newflag[ii] && oldflag[j] ; // } // else { // if (!oldflag[j]) { // newspec[ii] += oldspec[j] * ( zr - yl ) ; // if (regridTsys) newtsys[ii] += oldtsys[j] * ( zr - yl ) ; // wsum += ( zr - yl ) ; // } // newflag[ii] = newflag[ii] && oldflag[j] ; // ichan = j ; // break ; // } // } // else { // ichan = j - 1 ; // break ; // } // } // if ( wsum != 0.0 ) { // newspec[ii] /= wsum ; // if (regridTsys) newtsys[ii] /= wsum ; // } // wsum = 0.0 ; // } // } // else if ( dnu < 0.0 ) { // for ( int ii = 0 ; ii < nChan ; ii++ ) { // double zl = zi[ii] ; // double zr = zi[ii+1] ; // for ( int j = ichan ; j < oldsize ; j++ ) { // double yl = yi[j] ; // double yr = yi[j+1] ; // if ( yl >= zl ) { // if ( yr >= zl ) { // continue ; // } // else if ( yr >= zr ) { // if (!oldflag[j]) { // newspec[ii] += oldspec[j] * abs( yr - zl ) ; // if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - zl ) ; // wsum += abs( yr - zl ) ; // } // newflag[ii] = newflag[ii] && oldflag[j] ; // } // else { // if (!oldflag[j]) { // newspec[ii] += oldspec[j] * abs( dnu ) ; // if (regridTsys) newtsys[ii] += oldtsys[j] * abs( dnu ) ; // wsum += abs( dnu ) ; // } // newflag[ii] = newflag[ii] && oldflag[j] ; // ichan = j ; // break ; // } // } // else if ( yl > zr ) { // if ( yr >= zr ) { // if (!oldflag[j]) { // newspec[ii] += oldspec[j] * abs( yr - yl ) ; // if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - yl ) ; // wsum += abs( yr - yl ) ; // } // newflag[ii] = newflag[ii] && oldflag[j] ; // } // else { // if (!oldflag[j]) { // newspec[ii] += oldspec[j] * abs( zr - yl ) ; // if (regridTsys) newtsys[ii] += oldtsys[j] * abs( zr - yl ) ; // wsum += abs( zr - yl ) ; // } // newflag[ii] = newflag[ii] && oldflag[j] ; // ichan = j ; // break ; // } // } // else { // ichan = j - 1 ; // break ; // } // } // if ( wsum != 0.0 ) { // newspec[ii] /= wsum ; // if (regridTsys) newtsys[ii] /= wsum ; // } // wsum = 0.0 ; // } // } // // //ofs << "olddnu = " << olddnu << ", dnu = " << dnu << endl ; // // pile += dnu ; // // wedge = olddnu * ( refChan + 1 ) ; // // while ( wedge < pile ) { // // newspec[0] += olddnu * oldspec[refChan] ; // // newflag[0] = newflag[0] || oldflag[refChan] ; // // //ofs << "channel " << refChan << " is included in new channel 0" << endl ; // // refChan++ ; // // wedge += olddnu ; // // wsum += olddnu ; // // //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ; // // } // // frac = ( wedge - pile ) / olddnu ; // // wsum += ( 1.0 - frac ) * olddnu ; // // newspec[0] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ; // // newflag[0] = newflag[0] || oldflag[refChan] ; // // //ofs << "channel " << refChan << " is partly included in new channel 0" << " with fraction of " << ( 1.0 - frac ) << endl ; // // //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ; // // newspec[0] /= wsum ; // // //ofs << "newspec[0] = " << newspec[0] << endl ; // // //ofs << "wedge = " << wedge << ", pile = " << pile << endl ; // // /*** // // * ichan = 1 - nChan-2 // // ***/ // // for ( int ichan = 1 ; ichan < nChan - 1 ; ichan++ ) { // // pile += dnu ; // // newspec[ichan] += frac * olddnu * oldspec[refChan] ; // // newflag[ichan] = newflag[ichan] || oldflag[refChan] ; // // //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << frac << endl ; // // refChan++ ; // // wedge += olddnu ; // // wsum = frac * olddnu ; // // //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ; // // while ( wedge < pile ) { // // newspec[ichan] += olddnu * oldspec[refChan] ; // // newflag[ichan] = newflag[ichan] || oldflag[refChan] ; // // //ofs << "channel " << refChan << " is included in new channel " << ichan << endl ; // // refChan++ ; // // wedge += olddnu ; // // wsum += olddnu ; // // //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ; // // } // // frac = ( wedge - pile ) / olddnu ; // // wsum += ( 1.0 - frac ) * olddnu ; // // newspec[ichan] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ; // // newflag[ichan] = newflag[ichan] || oldflag[refChan] ; // // //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << ( 1.0 - frac ) << endl ; // // //ofs << "wedge = " << wedge << ", pile = " << pile << endl ; // // //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ; // // newspec[ichan] /= wsum ; // // //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << endl ; // // } // // /*** // // * ichan = nChan-1 // // ***/ // // // NOTE: Assumed that all spectra have the same bandwidth // // pile += dnu ; // // newspec[nChan-1] += frac * olddnu * oldspec[refChan] ; // // newflag[nChan-1] = newflag[nChan-1] || oldflag[refChan] ; // // //ofs << "channel " << refChan << " is partly included in new channel " << nChan-1 << " with fraction of " << frac << endl ; // // refChan++ ; // // wedge += olddnu ; // // wsum = frac * olddnu ; // // //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ; // // for ( int jchan = refChan ; jchan < oldsize ; jchan++ ) { // // newspec[nChan-1] += olddnu * oldspec[jchan] ; // // newflag[nChan-1] = newflag[nChan-1] || oldflag[jchan] ; // // wsum += olddnu ; // // //ofs << "channel " << jchan << " is included in new channel " << nChan-1 << " with fraction of " << frac << endl ; // // //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ; // // } // // //ofs << "wedge = " << wedge << ", pile = " << pile << endl ; // // //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ; // // newspec[nChan-1] /= wsum ; // // //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << endl ; // // // ofs.close() ; specCol_.put( irow, newspec ) ; flagsCol_.put( irow, newflag ) ; if (regridTsys) tsysCol_.put( irow, newtsys ); return ; } void Scantable::regridChannel( int nChan, double dnu, double fmin, int irow ) { Vector oldspec = specCol_( irow ) ; Vector oldflag = flagsCol_( irow ) ; Vector oldtsys = tsysCol_( irow ) ; Vector newspec( nChan, 0 ) ; Vector newflag( nChan, true ) ; Vector newtsys ; bool regridTsys = false ; if (oldtsys.size() == oldspec.size()) { regridTsys = true ; newtsys.resize(nChan,false) ; newtsys = 0 ; } // regrid vector abcissa = getAbcissa( irow ) ; int oldsize = abcissa.size() ; double olddnu = abcissa[1] - abcissa[0] ; //int ichan = 0 ; double wsum = 0.0 ; Vector zi( nChan+1 ) ; Vector yi( oldsize + 1 ) ; Block count( nChan, 0 ) ; yi[0] = abcissa[0] - 0.5 * olddnu ; for ( int ii = 1 ; ii < oldsize ; ii++ ) yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ; yi[oldsize] = abcissa[oldsize-1] \ + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ; // cout << "olddnu=" << olddnu << ", dnu=" << dnu << " (diff=" << olddnu-dnu << ")" << endl ; // cout << "yi[0]=" << yi[0] << ", fmin=" << fmin << " (diff=" << yi[0]-fmin << ")" << endl ; // cout << "oldsize=" << oldsize << ", nChan=" << nChan << endl ; // do not regrid if input parameters are almost same as current // spectral setup double dnuDiff = abs( ( dnu - olddnu ) / olddnu ) ; double oldfmin = min( yi[0], yi[oldsize] ) ; double fminDiff = abs( ( fmin - oldfmin ) / oldfmin ) ; double nChanDiff = nChan - oldsize ; double eps = 1.0e-8 ; if ( nChanDiff == 0 && dnuDiff < eps && fminDiff < eps ) return ; //zi[0] = abcissa[0] - 0.5 * olddnu ; //zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ; if ( dnu > 0 ) zi[0] = fmin - 0.5 * dnu ; else zi[0] = fmin + nChan * abs(dnu) ; for ( int ii = 1 ; ii < nChan ; ii++ ) zi[ii] = zi[0] + dnu * ii ; zi[nChan] = zi[nChan-1] + dnu ; // Access zi and yi in ascending order int izs = ((dnu > 0) ? 0 : nChan ) ; int ize = ((dnu > 0) ? nChan : 0 ) ; int izincr = ((dnu > 0) ? 1 : -1 ) ; int ichan = ((olddnu > 0) ? 0 : oldsize ) ; int iye = ((olddnu > 0) ? oldsize : 0 ) ; int iyincr = ((olddnu > 0) ? 1 : -1 ) ; //for ( int ii = izs ; ii != ize ; ii+=izincr ){ int ii = izs ; while (ii != ize) { // always zl < zr double zl = zi[ii] ; double zr = zi[ii+izincr] ; // Need to access smaller index for the new spec, flag, and tsys. // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc. int i = min(ii, ii+izincr) ; //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) { int jj = ichan ; while (jj != iye) { // always yl < yr double yl = yi[jj] ; double yr = yi[jj+iyincr] ; // Need to access smaller index for the original spec, flag, and tsys. // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc. int j = min(jj, jj+iyincr) ; if ( yr <= zl ) { jj += iyincr ; continue ; } else if ( yl <= zl ) { if ( yr < zr ) { if (!oldflag[j]) { newspec[i] += oldspec[j] * ( yr - zl ) ; if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ; wsum += ( yr - zl ) ; count[i]++ ; } newflag[i] = newflag[i] && oldflag[j] ; } else { if (!oldflag[j]) { newspec[i] += oldspec[j] * abs(dnu) ; if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ; wsum += abs(dnu) ; count[i]++ ; } newflag[i] = newflag[i] && oldflag[j] ; ichan = jj ; break ; } } else if ( yl < zr ) { if ( yr <= zr ) { if (!oldflag[j]) { newspec[i] += oldspec[j] * ( yr - yl ) ; if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ; wsum += ( yr - yl ) ; count[i]++ ; } newflag[i] = newflag[i] && oldflag[j] ; } else { if (!oldflag[j]) { newspec[i] += oldspec[j] * ( zr - yl ) ; if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ; wsum += ( zr - yl ) ; count[i]++ ; } newflag[i] = newflag[i] && oldflag[j] ; ichan = jj ; break ; } } else { //ichan = jj - iyincr ; break ; } jj += iyincr ; } if ( wsum != 0.0 ) { newspec[i] /= wsum ; if (regridTsys) newtsys[i] /= wsum ; } wsum = 0.0 ; ii += izincr ; } // flag out channels without data // this is tentative since there is no specific definition // on bit flag... uChar noData = 1 << 7 ; for ( Int i = 0 ; i < nChan ; i++ ) { if ( count[i] == 0 ) newflag[i] = noData ; } specCol_.put( irow, newspec ) ; flagsCol_.put( irow, newflag ) ; if (regridTsys) tsysCol_.put( irow, newtsys ); return ; } std::vector Scantable::getWeather(int whichrow) const { std::vector out(5); //Float temperature, pressure, humidity, windspeed, windaz; weatherTable_.getEntry(out[0], out[1], out[2], out[3], out[4], mweatheridCol_(uInt(whichrow))); return out; } bool Scantable::isAllChannelsFlagged(uInt whichrow) { uInt rflag; flagrowCol_.get(whichrow, rflag); if (rflag > 0) return true; bool flag; Vector flags; flagsCol_.get(whichrow, flags); flag = (flags[0]>0); for (uInt i = 1; i < flags.size(); ++i) { flag &= (flags[i]>0); } // return ((flag >> 7) == 1); return (flag > 0); } std::size_t Scantable::nValidMask(const std::vector& mask) { std::size_t nvalid=0; // the assertion lines had better be replaced with static_assert when c++11 is supported AlwaysAssert(static_cast(true)==1, AipsError); AlwaysAssert(static_cast(false)==0, AipsError); for (uInt i = 1; i < mask.size(); ++i) { nvalid += static_cast(mask[i]); } return nvalid; } std::vector Scantable::applyBaselineTable(const std::string& bltable, const bool returnfitresult, const std::string& outbltable, const bool outbltableexists, const bool overwrite) { STBaselineTable btin = STBaselineTable(bltable); Vector applyCol = btin.getApply(); int nRowBl = applyCol.size(); if (nRowBl != nrow()) { throw(AipsError("Scantable and bltable have different number of rows.")); } std::vector res; res.clear(); bool outBaselineTable = ((outbltable != "") && (!outbltableexists || overwrite)); bool bltableidentical = (bltable == outbltable); STBaselineTable btout = STBaselineTable(*this); ROScalarColumn tcol = ROScalarColumn(table_, "TIME"); Vector timeSecCol = tcol.getColumn(); for (int whichrow = 0; whichrow < nRowBl; ++whichrow) { if (applyCol[whichrow]) { std::vector spec = getSpectrum(whichrow); std::vector mask = btin.getMask(whichrow); //use mask_bltable only STBaselineFunc::FuncName ftype = btin.getFunctionName(whichrow); std::vector fpar = btin.getFuncParam(whichrow); std::vector params; float rms; std::vector resfit = doApplyBaselineTable(spec, mask, ftype, fpar, params, rms, whichrow); setSpectrum(resfit, whichrow); if (returnfitresult) { res.push_back(packFittingResults(whichrow, params, rms)); } if (outBaselineTable) { if (outbltableexists) { if (overwrite) { if (bltableidentical) { btin.setresult(uInt(whichrow), Vector(params), Float(rms)); } else { btout.setresult(uInt(whichrow), Vector(params), Float(rms)); } } } else { btout.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow), getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow], true, ftype, fpar, std::vector(), getMaskListFromMask(mask), params, rms, spec.size(), 3.0, 0, 0.0, 0, std::vector()); } } } } if (outBaselineTable) { if (bltableidentical) { btin.save(outbltable); } else { btout.save(outbltable); } } return res; } std::vector Scantable::subBaseline(const std::vector& blInfoList, const bool returnfitresult, const std::string& outbltable, const bool outbltableexists, const bool overwrite) { int nRowBl = blInfoList.size(); int nRowSt = nrow(); std::vector res; res.clear(); bool outBaselineTable = ((outbltable != "") && (!outbltableexists || overwrite)); if ((outbltable != "") && outbltableexists && !overwrite) { throw(AipsError("Cannot overwrite bltable. Set overwrite=True.")); } STBaselineTable* btp = NULL; ROScalarColumn tcol = ROScalarColumn(table_, "TIME"); Vector timeSecCol = tcol.getColumn(); if (outBaselineTable) { if (outbltableexists) { btp = new STBaselineTable((String)outbltable); } else { btp = new STBaselineTable(*this); // for (int i = 0; i < nRowSt; ++i) { // btp->appendbasedata(getScan(i), getCycle(i), getBeam(i), getIF(i), getPol(i), // 0, timeSecCol[i]); // btp->setApply(i, false); // } } int nrow = btp->nrow(); for (int i = nrow; i < nRowSt; ++i) { btp->appendbasedata(getScan(i), getCycle(i), getBeam(i), getIF(i), getPol(i), 0, timeSecCol[i]); btp->setApply(i, false); } } for (int i = 0; i < nRowBl; ++i) { int irow; STBaselineFunc::FuncName ftype; std::vector mask; std::vector fpar; float clipth; int clipn; bool uself; float lfth; std::vector lfedge; int lfavg; parseBlInfo(blInfoList[i], irow, ftype, fpar, mask, clipth, clipn, uself, lfth, lfedge, lfavg); if (irow < nRowSt) { std::vector spec = getSpectrum(irow); std::vector params; float rms; std::vector finalmask; Bool doApply = True; if (!isAllChannelsFlagged(irow)) { std::vector resfit = doSubtractBaseline(spec, mask, ftype, fpar, params, rms, finalmask, clipth, clipn, uself, irow, lfth, lfedge, lfavg); setSpectrum(resfit, irow); } else { doApply = False; } if (returnfitresult) { res.push_back(packFittingResults(irow, params, rms)); } if (outBaselineTable) { Vector fparam(fpar.size()); for (uInt j = 0; j < fparam.size(); ++j) { fparam[j] = (Int)fpar[j]; } btp->setdata(uInt(irow), uInt(getScan(irow)), uInt(getCycle(irow)), uInt(getBeam(irow)), uInt(getIF(irow)), uInt(getPol(irow)), uInt(0), timeSecCol[irow], doApply, ftype, fparam, Vector(), getMaskListFromMask(finalmask), Vector(params), Float(rms), uInt(spec.size()), Float(clipth), uInt(clipn), Float(0.0), uInt(0), Vector()); } } } if (outBaselineTable) { btp->save(outbltable); } if (btp != NULL) { delete btp; } return res; } std::vector Scantable::doApplyBaselineTable(std::vector& spec, std::vector& mask, const STBaselineFunc::FuncName ftype, std::vector& fpar, std::vector& params, float&rms, int irow) { std::vector finalmask; std::vector lfedge; return doSubtractBaseline(spec, mask, ftype, fpar, params, rms, finalmask, 0.0, 0, false, irow, 0.0, lfedge, 0); } std::vector Scantable::doSubtractBaseline(std::vector& spec, std::vector& mask, const STBaselineFunc::FuncName ftype, std::vector& fpar, std::vector& params, float&rms, std::vector& finalmask, float clipth, int clipn, bool uself, int irow, float lfth, std::vector& lfedge, int lfavg) { if (uself) { STLineFinder lineFinder = STLineFinder(); initLineFinder(lfedge, lfth, lfavg, lineFinder); std::vector currentEdge; mask = getCompositeChanMask(irow, mask, lfedge, currentEdge, lineFinder); } else { mask = getCompositeChanMask(irow, mask); } std::vector res; if (ftype == STBaselineFunc::Polynomial) { res = doPolynomialFitting(spec, mask, fpar[0], params, rms, finalmask, clipth, clipn); } else if (ftype == STBaselineFunc::Chebyshev) { res = doChebyshevFitting(spec, mask, fpar[0], params, rms, finalmask, clipth, clipn); } else if (ftype == STBaselineFunc::CSpline) { int nclip = 0; size_t numChan = spec.size(); if (cubicSplineModelPool_.find(numChan) == cubicSplineModelPool_.end()) { cubicSplineModelPool_[numChan] = getPolynomialModel(3, numChan, &Scantable::getNormalPolynomial); } if (fpar.size() > 1) { // reading from baseline table in which pieceEdges are already calculated and stored. //res = doCubicSplineFitting(spec, mask, fpar, params, rms, finalmask, clipth, clipn); res = doCubicSplineLeastSquareFitting(spec, mask, cubicSplineModelPool_[numChan], fpar.size()-1, true, fpar, params, rms, finalmask, nclip, clipth, clipn); } else { // usual cspline fitting by giving nPiece only. fpar will be replaced with pieceEdges. //res = doCubicSplineFitting(spec, mask, fpar[0], fpar, params, rms, finalmask, clipth, clipn); res = doCubicSplineLeastSquareFitting(spec, mask, cubicSplineModelPool_[numChan], fpar[0], false, fpar, params, rms, finalmask, nclip, clipth, clipn); } } else if (ftype == STBaselineFunc::Sinusoid) { res = doSinusoidFitting(spec, mask, fpar, params, rms, finalmask, clipth, clipn); } return res; } std::string Scantable::packFittingResults(const int irow, const std::vector& params, const float rms) { // returned value: "irow:params[0],params[1],..,params[n-1]:rms" ostringstream os; os << irow << ':'; for (uInt i = 0; i < params.size(); ++i) { if (i > 0) { os << ','; } os << params[i]; } os << ':' << rms; return os.str(); } void Scantable::parseBlInfo(const std::string& blInfo, int& irow, STBaselineFunc::FuncName& ftype, std::vector& fpar, std::vector& mask, float& thresClip, int& nIterClip, bool& useLineFinder, float& thresLF, std::vector& edgeLF, int& avgLF) { // The baseline info to be parsed must be column-delimited string like // "0:chebyshev:5:3,5,169,174,485,487" where the elements are // row number, funcType, funcOrder, maskList, clipThreshold, clipNIter, // useLineFinder, lfThreshold, lfEdge and lfChanAvgLimit. std::vector res = splitToStringList(blInfo, ':'); if (res.size() < 4) { throw(AipsError("baseline info has bad format")) ; } string ftype0, fpar0, masklist0, uself0, edge0; std::vector masklist; stringstream ss; ss << res[0]; ss >> irow; ss.clear(); ss.str(""); ss << res[1]; ss >> ftype0; if (ftype0 == "poly") { ftype = STBaselineFunc::Polynomial; } else if (ftype0 == "cspline") { ftype = STBaselineFunc::CSpline; } else if (ftype0 == "sinusoid") { ftype = STBaselineFunc::Sinusoid; } else if (ftype0 == "chebyshev") { ftype = STBaselineFunc::Chebyshev; } else { throw(AipsError("invalid function type.")); } ss.clear(); ss.str(""); ss << res[2]; ss >> fpar0; fpar = splitToIntList(fpar0, ','); ss.clear(); ss.str(""); ss << res[3]; ss >> masklist0; mask = getMaskFromMaskList(nchan(getIF(irow)), splitToIntList(masklist0, ',')); ss.clear(); ss.str(""); ss << res[4]; ss >> thresClip; ss.clear(); ss.str(""); ss << res[5]; ss >> nIterClip; ss.clear(); ss.str(""); ss << res[6]; ss >> uself0; if (uself0 == "true") { useLineFinder = true; } else { useLineFinder = false; } ss.clear(); ss.str(""); if (useLineFinder) { ss << res[7]; ss >> thresLF; ss.clear(); ss.str(""); ss << res[8]; ss >> edge0; edgeLF = splitToIntList(edge0, ','); ss.clear(); ss.str(""); ss << res[9]; ss >> avgLF; ss.clear(); ss.str(""); } } std::vector Scantable::splitToIntList(const std::string& s, const char delim) { istringstream iss(s); string tmp; int tmpi; std::vector res; stringstream ss; while (getline(iss, tmp, delim)) { ss << tmp; ss >> tmpi; res.push_back(tmpi); ss.clear(); ss.str(""); } return res; } std::vector Scantable::splitToStringList(const std::string& s, const char delim) { istringstream iss(s); std::string tmp; std::vector res; while (getline(iss, tmp, delim)) { res.push_back(tmp); } return res; } std::vector Scantable::getMaskFromMaskList(const int nchan, const std::vector& masklist) { if (masklist.size() % 2 != 0) { throw(AipsError("masklist must have even number of elements.")); } std::vector res(nchan); for (int i = 0; i < nchan; ++i) { res[i] = false; } for (uInt j = 0; j < masklist.size(); j += 2) { for (int i = masklist[j]; i <= min(nchan-1, masklist[j+1]); ++i) { res[i] = true; } } return res; } Vector Scantable::getMaskListFromMask(const std::vector& mask) { std::vector masklist; masklist.clear(); for (uInt i = 0; i < mask.size(); ++i) { if (mask[i]) { if ((i == 0)||(i == mask.size()-1)) { masklist.push_back(i); } else { if ((mask[i])&&(!mask[i-1])) { masklist.push_back(i); } if ((mask[i])&&(!mask[i+1])) { masklist.push_back(i); } } } } Vector res(masklist.size()); for (uInt i = 0; i < masklist.size(); ++i) { res[i] = (uInt)masklist[i]; } return res; } void Scantable::initialiseBaselining(const std::string& blfile, ofstream& ofs, const bool outLogger, bool& outTextFile, bool& csvFormat, String& coordInfo, bool& hasSameNchan, const std::string& progressInfo, bool& showProgress, int& minNRow, Vector& timeSecCol) { csvFormat = false; outTextFile = false; if (blfile != "") { csvFormat = (blfile.substr(0, 1) == "T"); ofs.open(blfile.substr(1).c_str(), ios::out | ios::app); if (ofs) outTextFile = true; } coordInfo = ""; hasSameNchan = true; if (outLogger || outTextFile) { coordInfo = getCoordInfo()[0]; if (coordInfo == "") coordInfo = "channel"; hasSameNchan = hasSameNchanOverIFs(); } parseProgressInfo(progressInfo, showProgress, minNRow); ROScalarColumn tcol = ROScalarColumn(table_, "TIME"); timeSecCol = tcol.getColumn(); } void Scantable::finaliseBaselining(const bool outBaselineTable, STBaselineTable* pbt, const string& bltable, const bool outTextFile, ofstream& ofs) { if (outBaselineTable) { pbt->save(bltable); } if (outTextFile) ofs.close(); } void Scantable::initLineFinder(const std::vector& edge, const float threshold, const int chanAvgLimit, STLineFinder& lineFinder) { if ((edge.size() > 2) && (edge.size() < getIFNos().size()*2)) { throw(AipsError("Length of edge element info is less than that of IFs")); } lineFinder.setOptions(threshold, 3, chanAvgLimit); } void Scantable::polyBaseline(const std::vector& mask, int order, float thresClip, int nIterClip, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile, const std::string& bltable) { /**** double TimeStart = mathutil::gettimeofday_sec(); ****/ try { ofstream ofs; String coordInfo; bool hasSameNchan, outTextFile, csvFormat, showProgress; int minNRow; int nRow = nrow(); std::vector chanMask, finalChanMask; float rms; bool outBaselineTable = (bltable != ""); STBaselineTable bt = STBaselineTable(*this); Vector timeSecCol; size_t flagged=0; initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat, coordInfo, hasSameNchan, progressInfo, showProgress, minNRow, timeSecCol); std::vector nChanNos; std::vector > > modelReservoir; modelReservoir = getPolynomialModelReservoir(order, &Scantable::getNormalPolynomial, nChanNos); int nModel = modelReservoir.size(); for (int whichrow = 0; whichrow < nRow; ++whichrow) { std::vector sp = getSpectrum(whichrow); chanMask = getCompositeChanMask(whichrow, mask); std::vector params; //if (flagrowCol_(whichrow) == 0) { if (flagrowCol_(whichrow)==0 && nValidMask(chanMask)>0) { int nClipped = 0; std::vector res; res = doLeastSquareFitting(sp, chanMask, modelReservoir[getIdxOfNchan(sp.size(), nChanNos)], params, rms, finalChanMask, nClipped, thresClip, nIterClip, getResidual); if (outBaselineTable) { bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow), getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow], true, STBaselineFunc::Polynomial, order, std::vector(), getMaskListFromMask(finalChanMask), params, rms, sp.size(), thresClip, nIterClip, 0.0, 0, std::vector()); } else { setSpectrum(res, whichrow); } outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "polyBaseline()", params, nClipped); } else { // no valid channels to fit (flag the row) flagrowCol_.put(whichrow, 1); ++flagged; if (outBaselineTable) { params.resize(nModel); for (uInt i = 0; i < params.size(); ++i) { params[i] = 0.0; } bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow), getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow], true, STBaselineFunc::Polynomial, order, std::vector(), getMaskListFromMask(chanMask), params, 0.0, sp.size(), thresClip, nIterClip, 0.0, 0, std::vector()); } } showProgressOnTerminal(whichrow, nRow, showProgress, minNRow); } finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs); if (flagged > 0) { LogIO os( LogOrigin( "Scantable", "polyBaseline()") ) ; os << LogIO::WARN << "Baseline subtraction is skipped for " << flagged << " spectra due to too few valid channels to operate fit. The spectra will be flagged in output data." << LogIO::POST; } } catch (...) { throw; } /**** double TimeEnd = mathutil::gettimeofday_sec(); double elapse1 = TimeEnd - TimeStart; std::cout << "poly-new : " << elapse1 << " (sec.)" << endl; ****/ } void Scantable::autoPolyBaseline(const std::vector& mask, int order, float thresClip, int nIterClip, const std::vector& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile, const std::string& bltable) { try { ofstream ofs; String coordInfo; bool hasSameNchan, outTextFile, csvFormat, showProgress; int minNRow; int nRow = nrow(); std::vector chanMask, finalChanMask; float rms; bool outBaselineTable = (bltable != ""); STBaselineTable bt = STBaselineTable(*this); Vector timeSecCol; STLineFinder lineFinder = STLineFinder(); size_t flagged=0; initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat, coordInfo, hasSameNchan, progressInfo, showProgress, minNRow, timeSecCol); initLineFinder(edge, threshold, chanAvgLimit, lineFinder); std::vector nChanNos; std::vector > > modelReservoir; modelReservoir = getPolynomialModelReservoir(order, &Scantable::getNormalPolynomial, nChanNos); int nModel = modelReservoir.size(); for (int whichrow = 0; whichrow < nRow; ++whichrow) { std::vector sp = getSpectrum(whichrow); std::vector currentEdge; chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder); std::vector params; //if (flagrowCol_(whichrow) == 0) { if (flagrowCol_(whichrow)==0 && nValidMask(chanMask)>0) { int nClipped = 0; std::vector res; res = doLeastSquareFitting(sp, chanMask, modelReservoir[getIdxOfNchan(sp.size(), nChanNos)], params, rms, finalChanMask, nClipped, thresClip, nIterClip, getResidual); if (outBaselineTable) { bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow), getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow], true, STBaselineFunc::Polynomial, order, std::vector(), getMaskListFromMask(finalChanMask), params, rms, sp.size(), thresClip, nIterClip, threshold, chanAvgLimit, currentEdge); } else { setSpectrum(res, whichrow); } outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoPolyBaseline()", params, nClipped); } else { // no valid channels to fit (flag the row) flagrowCol_.put(whichrow, 1); ++flagged; if (outBaselineTable) { params.resize(nModel); for (uInt i = 0; i < params.size(); ++i) { params[i] = 0.0; } bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow), getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow], true, STBaselineFunc::Polynomial, order, std::vector(), getMaskListFromMask(chanMask), params, 0.0, sp.size(), thresClip, nIterClip, threshold, chanAvgLimit, currentEdge); } } showProgressOnTerminal(whichrow, nRow, showProgress, minNRow); } finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs); if (flagged > 0) { LogIO os( LogOrigin( "Scantable", "autoPolyBaseline()") ) ; os << LogIO::WARN << "Baseline subtraction is skipped for " << flagged << " spectra due to too few valid channels to operate fit. The spectra will be flagged in output data." << LogIO::POST; } } catch (...) { throw; } } void Scantable::chebyshevBaseline(const std::vector& mask, int order, float thresClip, int nIterClip, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile, const std::string& bltable) { /* double TimeStart = mathutil::gettimeofday_sec(); */ try { ofstream ofs; String coordInfo; bool hasSameNchan, outTextFile, csvFormat, showProgress; int minNRow; int nRow = nrow(); std::vector chanMask, finalChanMask; float rms; bool outBaselineTable = (bltable != ""); STBaselineTable bt = STBaselineTable(*this); Vector timeSecCol; size_t flagged=0; initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat, coordInfo, hasSameNchan, progressInfo, showProgress, minNRow, timeSecCol); std::vector nChanNos; std::vector > > modelReservoir; modelReservoir = getPolynomialModelReservoir(order, &Scantable::getChebyshevPolynomial, nChanNos); int nModel = modelReservoir.size(); for (int whichrow = 0; whichrow < nRow; ++whichrow) { std::vector sp = getSpectrum(whichrow); chanMask = getCompositeChanMask(whichrow, mask); std::vector params; // if (flagrowCol_(whichrow) == 0) { if (flagrowCol_(whichrow)==0 && nValidMask(chanMask)>0) { int nClipped = 0; std::vector res; res = doLeastSquareFitting(sp, chanMask, modelReservoir[getIdxOfNchan(sp.size(), nChanNos)], params, rms, finalChanMask, nClipped, thresClip, nIterClip, getResidual); if (outBaselineTable) { bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow), getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow], true, STBaselineFunc::Chebyshev, order, std::vector(), getMaskListFromMask(finalChanMask), params, rms, sp.size(), thresClip, nIterClip, 0.0, 0, std::vector()); } else { setSpectrum(res, whichrow); } outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "chebyshevBaseline()", params, nClipped); } else { // no valid channels to fit (flag the row) flagrowCol_.put(whichrow, 1); ++flagged; if (outBaselineTable) { params.resize(nModel); for (uInt i = 0; i < params.size(); ++i) { params[i] = 0.0; } bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow), getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow], true, STBaselineFunc::Chebyshev, order, std::vector(), getMaskListFromMask(chanMask), params, 0.0, sp.size(), thresClip, nIterClip, 0.0, 0, std::vector()); } } showProgressOnTerminal(whichrow, nRow, showProgress, minNRow); } finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs); if (flagged > 0) { LogIO os( LogOrigin( "Scantable", "chebyshevBaseline()") ) ; os << LogIO::WARN << "Baseline subtraction is skipped for " << flagged << " spectra due to too few valid channels to operate fit. The spectra will be flagged in output data." << LogIO::POST; } } catch (...) { throw; } /* double TimeEnd = mathutil::gettimeofday_sec(); double elapse1 = TimeEnd - TimeStart; std::cout << "cheby : " << elapse1 << " (sec.)" << endl; */ } void Scantable::autoChebyshevBaseline(const std::vector& mask, int order, float thresClip, int nIterClip, const std::vector& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile, const std::string& bltable) { try { ofstream ofs; String coordInfo; bool hasSameNchan, outTextFile, csvFormat, showProgress; int minNRow; int nRow = nrow(); std::vector chanMask, finalChanMask; float rms; bool outBaselineTable = (bltable != ""); STBaselineTable bt = STBaselineTable(*this); Vector timeSecCol; STLineFinder lineFinder = STLineFinder(); size_t flagged=0; initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat, coordInfo, hasSameNchan, progressInfo, showProgress, minNRow, timeSecCol); initLineFinder(edge, threshold, chanAvgLimit, lineFinder); std::vector nChanNos; std::vector > > modelReservoir; modelReservoir = getPolynomialModelReservoir(order, &Scantable::getChebyshevPolynomial, nChanNos); int nModel = modelReservoir.size(); for (int whichrow = 0; whichrow < nRow; ++whichrow) { std::vector sp = getSpectrum(whichrow); std::vector currentEdge; chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder); std::vector params; // if (flagrowCol_(whichrow) == 0) { if (flagrowCol_(whichrow)==0 && nValidMask(chanMask)>0) { int nClipped = 0; std::vector res; res = doLeastSquareFitting(sp, chanMask, modelReservoir[getIdxOfNchan(sp.size(), nChanNos)], params, rms, finalChanMask, nClipped, thresClip, nIterClip, getResidual); if (outBaselineTable) { bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow), getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow], true, STBaselineFunc::Chebyshev, order, std::vector(), getMaskListFromMask(finalChanMask), params, rms, sp.size(), thresClip, nIterClip, threshold, chanAvgLimit, currentEdge); } else { setSpectrum(res, whichrow); } outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoChebyshevBaseline()", params, nClipped); } else { // no valid channels to fit (flag the row) flagrowCol_.put(whichrow, 1); ++flagged; if (outBaselineTable) { params.resize(nModel); for (uInt i = 0; i < params.size(); ++i) { params[i] = 0.0; } bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow), getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow], true, STBaselineFunc::Chebyshev, order, std::vector(), getMaskListFromMask(chanMask), params, 0.0, sp.size(), thresClip, nIterClip, threshold, chanAvgLimit, currentEdge); } } showProgressOnTerminal(whichrow, nRow, showProgress, minNRow); } finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs); if (flagged > 0) { LogIO os( LogOrigin( "Scantable", "autoChebyshevBaseline()") ) ; os << LogIO::WARN << "Baseline subtraction is skipped for " << flagged << " spectra due to too few valid channels to operate fit. The spectra will be flagged in output data." << LogIO::POST; } } catch (...) { throw; } } double Scantable::calculateModelSelectionCriteria(const std::string& valname, const std::string& blfunc, int order, const std::vector& inMask, int whichrow, bool useLineFinder, const std::vector& edge, float threshold, int chanAvgLimit) { std::vector sp = getSpectrum(whichrow); std::vector chanMask; chanMask.clear(); if (useLineFinder) { STLineFinder lineFinder = STLineFinder(); initLineFinder(edge, threshold, chanAvgLimit, lineFinder); std::vector currentEdge; chanMask = getCompositeChanMask(whichrow, inMask, edge, currentEdge, lineFinder); } else { chanMask = getCompositeChanMask(whichrow, inMask); } return doCalculateModelSelectionCriteria(valname, sp, chanMask, blfunc, order); } double Scantable::doCalculateModelSelectionCriteria(const std::string& valname, const std::vector& spec, const std::vector& mask, const std::string& blfunc, int order) { int nparam; std::vector params; std::vector finalChanMask; float rms; int nClipped = 0; std::vector res; if (blfunc == "poly") { nparam = order + 1; res = doPolynomialFitting(spec, mask, order, params, rms, finalChanMask, nClipped); } else if (blfunc == "chebyshev") { nparam = order + 1; res = doChebyshevFitting(spec, mask, order, params, rms, finalChanMask, nClipped); } else if (blfunc == "cspline") { std::vector pieceEdges;//(order+1); //order = npiece nparam = order + 3; res = doCubicSplineFitting(spec, mask, order, false, pieceEdges, params, rms, finalChanMask, nClipped); } else if (blfunc == "sinusoid") { std::vector nWaves; nWaves.clear(); for (int i = 0; i <= order; ++i) { nWaves.push_back(i); } nparam = 2*order + 1; // order = nwave res = doSinusoidFitting(spec, mask, nWaves, params, rms, finalChanMask, nClipped); } else { throw(AipsError("blfunc must be poly, chebyshev, cspline or sinusoid.")); } double msq = 0.0; int nusedchan = 0; int nChan = res.size(); for (int i = 0; i < nChan; ++i) { if (mask[i]) { msq += (double)res[i]*(double)res[i]; nusedchan++; } } if (nusedchan == 0) { throw(AipsError("all channels masked.")); } msq /= (double)nusedchan; nparam++; //add 1 for sigma of Gaussian distribution const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...) if (valname.find("aic") == 0) { // Original Akaike Information Criterion (AIC) double aic = nusedchan * (log(2.0 * PI * msq) + 1.0) + 2.0 * nparam; // Corrected AIC by Sugiura(1978) (AICc) if (valname == "aicc") { if (nusedchan - nparam - 1 <= 0) { throw(AipsError("channel size is too small to calculate AICc.")); } aic += 2.0*nparam*(nparam + 1)/(double)(nusedchan - nparam - 1); } return aic; } else if (valname == "bic") { // Bayesian Information Criterion (BIC) double bic = nusedchan * log(msq) + nparam * log((double)nusedchan); return bic; } else if (valname == "gcv") { // Generalised Cross Validation double x = 1.0 - (double)nparam / (double)nusedchan; double gcv = msq / (x * x); return gcv; } else { throw(AipsError("valname must be aic, aicc, bic or gcv.")); } } double Scantable::getNormalPolynomial(int n, double x) { if (n == 0) { return 1.0; } else if (n > 0) { double res = 1.0; for (int i = 0; i < n; ++i) { res *= x; } return res; } else { if (x == 0.0) { throw(AipsError("infinity result: x=0 given for negative power.")); } else { return pow(x, (double)n); } } } double Scantable::getChebyshevPolynomial(int n, double x) { if ((x < -1.0)||(x > 1.0)) { throw(AipsError("out of definition range (-1 <= x <= 1).")); } else if (x == 1.0) { return 1.0; } else if (x == 0.0) { double res; if (n%2 == 0) { if (n%4 == 0) { res = 1.0; } else { res = -1.0; } } else { res = 0.0; } return res; } else if (x == -1.0) { double res = (n%2 == 0 ? 1.0 : -1.0); return res; } else if (n < 0) { throw(AipsError("the order must be zero or positive.")); } else if (n == 0) { return 1.0; } else if (n == 1) { return x; } else { double res[n+1]; for (int i = 0; i < n+1; ++i) { double res0 = 0.0; if (i == 0) { res0 = 1.0; } else if (i == 1) { res0 = x; } else { res0 = 2.0 * x * res[i-1] - res[i-2]; } res[i] = res0; } return res[n]; } } std::vector Scantable::doPolynomialFitting(const std::vector& data, const std::vector& mask, int order, std::vector& params, float& rms, std::vector& finalmask, float clipth, int clipn) { int nClipped = 0; return doPolynomialFitting(data, mask, order, params, rms, finalmask, nClipped, clipth, clipn); } std::vector Scantable::doPolynomialFitting(const std::vector& data, const std::vector& mask, int order, std::vector& params, float& rms, std::vector& finalMask, int& nClipped, float thresClip, int nIterClip, bool getResidual) { return doLeastSquareFitting(data, mask, getPolynomialModel(order, data.size(), &Scantable::getNormalPolynomial), params, rms, finalMask, nClipped, thresClip, nIterClip, getResidual); } std::vector Scantable::doChebyshevFitting(const std::vector& data, const std::vector& mask, int order, std::vector& params, float& rms, std::vector& finalmask, float clipth, int clipn) { int nClipped = 0; return doChebyshevFitting(data, mask, order, params, rms, finalmask, nClipped, clipth, clipn); } std::vector Scantable::doChebyshevFitting(const std::vector& data, const std::vector& mask, int order, std::vector& params, float& rms, std::vector& finalMask, int& nClipped, float thresClip, int nIterClip, bool getResidual) { return doLeastSquareFitting(data, mask, getPolynomialModel(order, data.size(), &Scantable::getChebyshevPolynomial), params, rms, finalMask, nClipped, thresClip, nIterClip, getResidual); } std::vector > Scantable::getPolynomialModel(int order, int nchan, double (Scantable::*pfunc)(int, double)) { // model : contains model values for computing the least-square matrix. // model.size() is nmodel and model[*].size() is nchan. // Each model element are as follows: // // (for normal polynomials) // model[0] = {1.0, 1.0, 1.0, ..., 1.0}, // model[1] = {0.0, 1.0, 2.0, ..., (nchan-1)} // model[n-1] = ..., // model[n] = {0.0^n, 1.0^n, 2.0^n, ..., (nchan-1)^n} // where (0 <= n <= order) // // (for Chebyshev polynomials) // model[0] = {T0(-1), T0(2/(nchan-1)-1), T0(4/(nchan-1)-1), ..., T0(1)}, // model[n-1] = ..., // model[n] = {Tn(-1), Tn(2/(nchan-1)-1), Tn(4/(nchan-1)-1), ..., Tn(1)} // where (0 <= n <= order), int nmodel = order + 1; std::vector > model(nmodel, std::vector(nchan)); double stretch, shift; if (pfunc == &Scantable::getChebyshevPolynomial) { stretch = 2.0/(double)(nchan - 1); shift = -1.0; } else { stretch = 1.0; shift = 0.0; } for (int i = 0; i < nmodel; ++i) { for (int j = 0; j < nchan; ++j) { model[i][j] = (this->*pfunc)(i, stretch*(double)j + shift); } } return model; } std::vector > > Scantable::getPolynomialModelReservoir(int order, double (Scantable::*pfunc)(int, double), std::vector& nChanNos) { std::vector > > res; res.clear(); nChanNos.clear(); std::vector ifNos = getIFNos(); for (uint i = 0; i < ifNos.size(); ++i) { int currNchan = nchan(ifNos[i]); bool hasDifferentNchan = (i == 0); for (uint j = 0; j < i; ++j) { if (currNchan != nchan(ifNos[j])) { hasDifferentNchan = true; break; } } if (hasDifferentNchan) { res.push_back(getPolynomialModel(order, currNchan, pfunc)); nChanNos.push_back(currNchan); } } return res; } std::vector Scantable::doLeastSquareFitting(const std::vector& data, const std::vector& mask, const std::vector >& model, std::vector& params, float& rms, std::vector& finalMask, int& nClipped, float thresClip, int nIterClip, bool getResidual) { int nDOF = model.size(); int nChan = data.size(); if (nDOF == 0) { throw(AipsError("no model data given")); } if (nChan < 2) { throw(AipsError("data size is too few")); } if (nChan != (int)mask.size()) { throw(AipsError("data and mask sizes are not identical")); } for (int i = 0; i < nDOF; ++i) { if (nChan != (int)model[i].size()) { throw(AipsError("data and model sizes are not identical")); } } params.clear(); params.resize(nDOF); finalMask.clear(); finalMask.resize(nChan); std::vector maskArray(nChan); int j = 0; for (int i = 0; i < nChan; ++i) { maskArray[i] = mask[i] ? 1 : 0; if (isnan(data[i])) maskArray[i] = 0; if (isinf(data[i])) maskArray[i] = 0; finalMask[i] = (maskArray[i] == 1); if (finalMask[i]) { j++; } /* maskArray[i] = mask[i] ? 1 : 0; if (mask[i]) { j++; } finalMask[i] = mask[i]; */ } int initNData = j; int nData = initNData; std::vector z1(nChan), r1(nChan), residual(nChan); for (int i = 0; i < nChan; ++i) { z1[i] = (double)data[i]; r1[i] = 0.0; residual[i] = 0.0; } for (int nClip = 0; nClip < nIterClip+1; ++nClip) { // xMatrix : horizontal concatenation of // the least-sq. matrix (left) and an // identity matrix (right). // the right part is used to calculate the inverse matrix of the left part. double xMatrix[nDOF][2*nDOF]; double zMatrix[nDOF]; for (int i = 0; i < nDOF; ++i) { for (int j = 0; j < 2*nDOF; ++j) { xMatrix[i][j] = 0.0; } xMatrix[i][nDOF+i] = 1.0; zMatrix[i] = 0.0; } int nUseData = 0; for (int k = 0; k < nChan; ++k) { if (maskArray[k] == 0) continue; for (int i = 0; i < nDOF; ++i) { for (int j = i; j < nDOF; ++j) { xMatrix[i][j] += model[i][k] * model[j][k]; } zMatrix[i] += z1[k] * model[i][k]; } nUseData++; } if (nUseData < 1) { throw(AipsError("all channels clipped or masked. can't execute fitting anymore.")); } for (int i = 0; i < nDOF; ++i) { for (int j = 0; j < i; ++j) { xMatrix[i][j] = xMatrix[j][i]; } } //compute inverse matrix of the left half of xMatrix std::vector invDiag(nDOF); for (int i = 0; i < nDOF; ++i) { invDiag[i] = 1.0 / xMatrix[i][i]; for (int j = 0; j < nDOF; ++j) { xMatrix[i][j] *= invDiag[i]; } } for (int k = 0; k < nDOF; ++k) { for (int i = 0; i < nDOF; ++i) { if (i != k) { double factor1 = xMatrix[k][k]; double invfactor1 = 1.0 / factor1; double factor2 = xMatrix[i][k]; for (int j = k; j < 2*nDOF; ++j) { xMatrix[i][j] *= factor1; xMatrix[i][j] -= xMatrix[k][j]*factor2; xMatrix[i][j] *= invfactor1; } } } double invXDiag = 1.0 / xMatrix[k][k]; for (int j = k; j < 2*nDOF; ++j) { xMatrix[k][j] *= invXDiag; } } for (int i = 0; i < nDOF; ++i) { for (int j = 0; j < nDOF; ++j) { xMatrix[i][nDOF+j] *= invDiag[j]; } } //compute a vector y in which coefficients of the best-fit //model functions are stored. //in case of polynomials, y consists of (a0,a1,a2,...) //where ai is the coefficient of the term x^i. //in case of sinusoids, y consists of (a0,s1,c1,s2,c2,...) //where a0 is constant term and s* and c* are of sine //and cosine functions, respectively. std::vector y(nDOF); for (int i = 0; i < nDOF; ++i) { y[i] = 0.0; for (int j = 0; j < nDOF; ++j) { y[i] += xMatrix[i][nDOF+j]*zMatrix[j]; } params[i] = (float)y[i]; } for (int i = 0; i < nChan; ++i) { r1[i] = y[0]; for (int j = 1; j < nDOF; ++j) { r1[i] += y[j]*model[j][i]; } residual[i] = z1[i] - r1[i]; } double mean = 0.0; double mean2 = 0.0; for (int i = 0; i < nChan; ++i) { if (maskArray[i] == 0) continue; mean += residual[i]; mean2 += residual[i]*residual[i]; } mean /= (double)nData; mean2 /= (double)nData; double rmsd = sqrt(mean2 - mean*mean); rms = (float)rmsd; if ((nClip == nIterClip) || (thresClip <= 0.0)) { break; } else { double thres = rmsd * thresClip; int newNData = 0; for (int i = 0; i < nChan; ++i) { if (abs(residual[i]) >= thres) { maskArray[i] = 0; finalMask[i] = false; } if (maskArray[i] > 0) { newNData++; } } if (newNData == nData) { break; //no more flag to add. stop iteration. } else { nData = newNData; } } } nClipped = initNData - nData; std::vector result(nChan); if (getResidual) { for (int i = 0; i < nChan; ++i) { result[i] = (float)residual[i]; } } else { for (int i = 0; i < nChan; ++i) { result[i] = (float)r1[i]; } } return result; } //xMatrix void Scantable::cubicSplineBaseline(const std::vector& mask, int nPiece, float thresClip, int nIterClip, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile, const std::string& bltable) { /**** double TimeStart = mathutil::gettimeofday_sec(); ****/ try { ofstream ofs; String coordInfo; bool hasSameNchan, outTextFile, csvFormat, showProgress; int minNRow; int nRow = nrow(); std::vector chanMask, finalChanMask; float rms; bool outBaselineTable = (bltable != ""); STBaselineTable bt = STBaselineTable(*this); Vector timeSecCol; size_t flagged=0; initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat, coordInfo, hasSameNchan, progressInfo, showProgress, minNRow, timeSecCol); std::vector nChanNos; std::vector > > modelReservoir; modelReservoir = getPolynomialModelReservoir(3, &Scantable::getNormalPolynomial, nChanNos); int nDOF = nPiece + 3; for (int whichrow = 0; whichrow < nRow; ++whichrow) { std::vector sp = getSpectrum(whichrow); chanMask = getCompositeChanMask(whichrow, mask); std::vector pieceEdges; std::vector params; //if (flagrowCol_(whichrow) == 0) { if (flagrowCol_(whichrow)==0 && nValidMask(chanMask)>0) { int nClipped = 0; std::vector res; res = doCubicSplineLeastSquareFitting(sp, chanMask, modelReservoir[getIdxOfNchan(sp.size(), nChanNos)], nPiece, false, pieceEdges, params, rms, finalChanMask, nClipped, thresClip, nIterClip, getResidual); if (outBaselineTable) { bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow), getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow], true, STBaselineFunc::CSpline, pieceEdges, std::vector(), getMaskListFromMask(finalChanMask), params, rms, sp.size(), thresClip, nIterClip, 0.0, 0, std::vector()); } else { setSpectrum(res, whichrow); } outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "cubicSplineBaseline()", pieceEdges, params, nClipped); } else { // no valid channels to fit (flag the row) flagrowCol_.put(whichrow, 1); ++flagged; if (outBaselineTable) { pieceEdges.resize(nPiece+1); for (uInt i = 0; i < pieceEdges.size(); ++i) { pieceEdges[i] = 0; } params.resize(nDOF); for (uInt i = 0; i < params.size(); ++i) { params[i] = 0.0; } bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow), getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow], true, STBaselineFunc::CSpline, pieceEdges, std::vector(), getMaskListFromMask(chanMask), params, 0.0, sp.size(), thresClip, nIterClip, 0.0, 0, std::vector()); } } showProgressOnTerminal(whichrow, nRow, showProgress, minNRow); } finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs); if (flagged > 0) { LogIO os( LogOrigin( "Scantable", "cubicSplineBaseline()") ) ; os << LogIO::WARN << "Baseline subtraction is skipped for " << flagged << " spectra due to too few valid channels to operate fit. The spectra will be flagged in output data." << LogIO::POST; } } catch (...) { throw; } /**** double TimeEnd = mathutil::gettimeofday_sec(); double elapse1 = TimeEnd - TimeStart; std::cout << "cspline-new : " << elapse1 << " (sec.)" << endl; ****/ } void Scantable::autoCubicSplineBaseline(const std::vector& mask, int nPiece, float thresClip, int nIterClip, const std::vector& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile, const std::string& bltable) { try { ofstream ofs; String coordInfo; bool hasSameNchan, outTextFile, csvFormat, showProgress; int minNRow; int nRow = nrow(); std::vector chanMask, finalChanMask; float rms; bool outBaselineTable = (bltable != ""); STBaselineTable bt = STBaselineTable(*this); Vector timeSecCol; STLineFinder lineFinder = STLineFinder(); size_t flagged=0; initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat, coordInfo, hasSameNchan, progressInfo, showProgress, minNRow, timeSecCol); initLineFinder(edge, threshold, chanAvgLimit, lineFinder); std::vector nChanNos; std::vector > > modelReservoir; modelReservoir = getPolynomialModelReservoir(3, &Scantable::getNormalPolynomial, nChanNos); int nDOF = nPiece + 3; for (int whichrow = 0; whichrow < nRow; ++whichrow) { std::vector sp = getSpectrum(whichrow); std::vector currentEdge; chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder); std::vector pieceEdges; std::vector params; //if (flagrowCol_(whichrow) == 0) { if (flagrowCol_(whichrow)==0 && nValidMask(chanMask)>0) { int nClipped = 0; std::vector res; res = doCubicSplineLeastSquareFitting(sp, chanMask, modelReservoir[getIdxOfNchan(sp.size(), nChanNos)], nPiece, false, pieceEdges, params, rms, finalChanMask, nClipped, thresClip, nIterClip, getResidual); if (outBaselineTable) { bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow), getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow], true, STBaselineFunc::CSpline, pieceEdges, std::vector(), getMaskListFromMask(finalChanMask), params, rms, sp.size(), thresClip, nIterClip, threshold, chanAvgLimit, currentEdge); } else { setSpectrum(res, whichrow); } outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoCubicSplineBaseline()", pieceEdges, params, nClipped); } else { // no valid channels to fit (flag the row) flagrowCol_.put(whichrow, 1); ++flagged; if (outBaselineTable) { pieceEdges.resize(nPiece+1); for (uInt i = 0; i < pieceEdges.size(); ++i) { pieceEdges[i] = 0; } params.resize(nDOF); for (uInt i = 0; i < params.size(); ++i) { params[i] = 0.0; } bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow), getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow], true, STBaselineFunc::CSpline, pieceEdges, std::vector(), getMaskListFromMask(chanMask), params, 0.0, sp.size(), thresClip, nIterClip, threshold, chanAvgLimit, currentEdge); } } showProgressOnTerminal(whichrow, nRow, showProgress, minNRow); } finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs); if (flagged > 0) { LogIO os( LogOrigin( "Scantable", "autoCubicSplineBaseline()") ) ; os << LogIO::WARN << "Baseline subtraction is skipped for " << flagged << " spectra due to too few valid channels to operate fit. The spectra will be flagged in output data." << LogIO::POST; } } catch (...) { throw; } } std::vector Scantable::doCubicSplineFitting(const std::vector& data, const std::vector& mask, std::vector& idxEdge, std::vector& params, float& rms, std::vector& finalmask, float clipth, int clipn) { int nClipped = 0; return doCubicSplineFitting(data, mask, idxEdge.size()-1, true, idxEdge, params, rms, finalmask, nClipped, clipth, clipn); } std::vector Scantable::doCubicSplineFitting(const std::vector& data, const std::vector& mask, int nPiece, std::vector& idxEdge, std::vector& params, float& rms, std::vector& finalmask, float clipth, int clipn) { int nClipped = 0; return doCubicSplineFitting(data, mask, nPiece, false, idxEdge, params, rms, finalmask, nClipped, clipth, clipn); } std::vector Scantable::doCubicSplineFitting(const std::vector& data, const std::vector& mask, int nPiece, bool useGivenPieceBoundary, std::vector& idxEdge, std::vector& params, float& rms, std::vector& finalMask, int& nClipped, float thresClip, int nIterClip, bool getResidual) { return doCubicSplineLeastSquareFitting(data, mask, getPolynomialModel(3, data.size(), &Scantable::getNormalPolynomial), nPiece, useGivenPieceBoundary, idxEdge, params, rms, finalMask, nClipped, thresClip, nIterClip, getResidual); } std::vector Scantable::doCubicSplineLeastSquareFitting(const std::vector& data, const std::vector& mask, const std::vector >& model, int nPiece, bool useGivenPieceBoundary, std::vector& idxEdge, std::vector& params, float& rms, std::vector& finalMask, int& nClipped, float thresClip, int nIterClip, bool getResidual) { int nDOF = nPiece + 3; //number of independent parameters to solve, namely, 4+(nPiece-1). int nModel = model.size(); int nChan = data.size(); if (nModel != 4) { throw(AipsError("model size must be 4.")); } if (nPiece < 1) { throw(AipsError("number of the sections must be one or more")); } if (nChan < 2*nPiece) { throw(AipsError("data size is too few")); } if (nChan != (int)mask.size()) { throw(AipsError("data and mask sizes are not identical")); } for (int i = 0; i < nModel; ++i) { if (nChan != (int)model[i].size()) { throw(AipsError("data and model sizes are not identical")); } } params.clear(); params.resize(nPiece*nModel); finalMask.clear(); finalMask.resize(nChan); std::vector maskArray(nChan); std::vector x(nChan); int j = 0; for (int i = 0; i < nChan; ++i) { maskArray[i] = mask[i] ? 1 : 0; if (isnan(data[i])) maskArray[i] = 0; if (isinf(data[i])) maskArray[i] = 0; finalMask[i] = (maskArray[i] == 1); if (finalMask[i]) { x[j] = i; j++; } /* maskArray[i] = mask[i] ? 1 : 0; if (mask[i]) { x[j] = i; j++; } finalMask[i] = mask[i]; */ } int initNData = j; int nData = initNData; if (initNData < nPiece) { throw(AipsError("too few non-flagged channels")); } int nElement = (int)(floor(floor((double)(initNData/nPiece))+0.5)); std::vector invEdge(nPiece-1); if (useGivenPieceBoundary) { if ((int)idxEdge.size() != nPiece+1) { throw(AipsError("pieceEdge.size() must be equal to nPiece+1.")); } } else { idxEdge.clear(); idxEdge.resize(nPiece+1); idxEdge[0] = x[0]; } for (int i = 1; i < nPiece; ++i) { int valX = x[nElement*i]; if (!useGivenPieceBoundary) { idxEdge[i] = valX; } invEdge[i-1] = 1.0/(double)valX; } if (!useGivenPieceBoundary) { idxEdge[nPiece] = x[initNData-1]+1; } std::vector z1(nChan), r1(nChan), residual(nChan); for (int i = 0; i < nChan; ++i) { z1[i] = (double)data[i]; r1[i] = 0.0; residual[i] = 0.0; } for (int nClip = 0; nClip < nIterClip+1; ++nClip) { // xMatrix : horizontal concatenation of // the least-sq. matrix (left) and an // identity matrix (right). // the right part is used to calculate the inverse matrix of the left part. double xMatrix[nDOF][2*nDOF]; double zMatrix[nDOF]; for (int i = 0; i < nDOF; ++i) { for (int j = 0; j < 2*nDOF; ++j) { xMatrix[i][j] = 0.0; } xMatrix[i][nDOF+i] = 1.0; zMatrix[i] = 0.0; } for (int n = 0; n < nPiece; ++n) { int nUseDataInPiece = 0; for (int k = idxEdge[n]; k < idxEdge[n+1]; ++k) { if (maskArray[k] == 0) continue; for (int i = 0; i < nModel; ++i) { for (int j = i; j < nModel; ++j) { xMatrix[i][j] += model[i][k] * model[j][k]; } zMatrix[i] += z1[k] * model[i][k]; } for (int i = 0; i < n; ++i) { double q = 1.0 - model[1][k]*invEdge[i]; q = q*q*q; for (int j = 0; j < nModel; ++j) { xMatrix[j][i+nModel] += q * model[j][k]; } for (int j = 0; j < i; ++j) { double r = 1.0 - model[1][k]*invEdge[j]; r = r*r*r; xMatrix[j+nModel][i+nModel] += r*q; } xMatrix[i+nModel][i+nModel] += q*q; zMatrix[i+nModel] += q*z1[k]; } nUseDataInPiece++; } if (nUseDataInPiece < 1) { std::vector suffixOfPieceNumber(4); suffixOfPieceNumber[0] = "th"; suffixOfPieceNumber[1] = "st"; suffixOfPieceNumber[2] = "nd"; suffixOfPieceNumber[3] = "rd"; int idxNoDataPiece = (n % 10 <= 3) ? n : 0; ostringstream oss; oss << "all channels clipped or masked in " << n << suffixOfPieceNumber[idxNoDataPiece]; oss << " piece of the spectrum. can't execute fitting anymore."; throw(AipsError(String(oss))); } } for (int i = 0; i < nDOF; ++i) { for (int j = 0; j < i; ++j) { xMatrix[i][j] = xMatrix[j][i]; } } std::vector invDiag(nDOF); for (int i = 0; i < nDOF; ++i) { invDiag[i] = 1.0 / xMatrix[i][i]; for (int j = 0; j < nDOF; ++j) { xMatrix[i][j] *= invDiag[i]; } } for (int k = 0; k < nDOF; ++k) { for (int i = 0; i < nDOF; ++i) { if (i != k) { double factor1 = xMatrix[k][k]; double invfactor1 = 1.0 / factor1; double factor2 = xMatrix[i][k]; for (int j = k; j < 2*nDOF; ++j) { xMatrix[i][j] *= factor1; xMatrix[i][j] -= xMatrix[k][j]*factor2; xMatrix[i][j] *= invfactor1; } } } double invXDiag = 1.0 / xMatrix[k][k]; for (int j = k; j < 2*nDOF; ++j) { xMatrix[k][j] *= invXDiag; } } for (int i = 0; i < nDOF; ++i) { for (int j = 0; j < nDOF; ++j) { xMatrix[i][nDOF+j] *= invDiag[j]; } } //compute a vector y which consists of the coefficients of the best-fit spline curves //(a0,a1,a2,a3(,b3,c3,...)), namely, the ones for the leftmost piece and the ones of //cubic terms for the other pieces (in case nPiece>1). std::vector y(nDOF); for (int i = 0; i < nDOF; ++i) { y[i] = 0.0; for (int j = 0; j < nDOF; ++j) { y[i] += xMatrix[i][nDOF+j]*zMatrix[j]; } } std::vector a(nModel); for (int i = 0; i < nModel; ++i) { a[i] = y[i]; } int j = 0; for (int n = 0; n < nPiece; ++n) { for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) { r1[i] = 0.0; for (int j = 0; j < nModel; ++j) { r1[i] += a[j] * model[j][i]; } } for (int i = 0; i < nModel; ++i) { params[j+i] = a[i]; } j += nModel; if (n == nPiece-1) break; double d = y[n+nModel]; double iE = invEdge[n]; a[0] += d; a[1] -= 3.0 * d * iE; a[2] += 3.0 * d * iE * iE; a[3] -= d * iE * iE * iE; } //subtract constant value for masked regions at the edge of spectrum if (idxEdge[0] > 0) { int n = idxEdge[0]; for (int i = 0; i < idxEdge[0]; ++i) { //--cubic extrapolate-- //r1[i] = params[0] + params[1]*x1[i] + params[2]*x2[i] + params[3]*x3[i]; //--linear extrapolate-- //r1[i] = (r1[n+1] - r1[n])/(x1[n+1] - x1[n])*(x1[i] - x1[n]) + r1[n]; //--constant-- r1[i] = r1[n]; } } if (idxEdge[nPiece] < nChan) { int n = idxEdge[nPiece]-1; for (int i = idxEdge[nPiece]; i < nChan; ++i) { //--cubic extrapolate-- //int m = 4*(nPiece-1); //r1[i] = params[m] + params[m+1]*x1[i] + params[m+2]*x2[i] + params[m+3]*x3[i]; //--linear extrapolate-- //r1[i] = (r1[n-1] - r1[n])/(x1[n-1] - x1[n])*(x1[i] - x1[n]) + r1[n]; //--constant-- r1[i] = r1[n]; } } for (int i = 0; i < nChan; ++i) { residual[i] = z1[i] - r1[i]; } double mean = 0.0; double mean2 = 0.0; for (int i = 0; i < nChan; ++i) { if (maskArray[i] == 0) continue; mean += residual[i]; mean2 += residual[i]*residual[i]; } mean /= (double)nData; mean2 /= (double)nData; double rmsd = sqrt(mean2 - mean*mean); rms = (float)rmsd; if ((nClip == nIterClip) || (thresClip <= 0.0)) { break; } else { double thres = rmsd * thresClip; int newNData = 0; for (int i = 0; i < nChan; ++i) { if (abs(residual[i]) >= thres) { maskArray[i] = 0; finalMask[i] = false; } if (maskArray[i] > 0) { newNData++; } } if (newNData == nData) { break; //no more flag to add. iteration stops. } else { nData = newNData; } } } nClipped = initNData - nData; std::vector result(nChan); if (getResidual) { for (int i = 0; i < nChan; ++i) { result[i] = (float)residual[i]; } } else { for (int i = 0; i < nChan; ++i) { result[i] = (float)r1[i]; } } return result; } std::vector Scantable::selectWaveNumbers(const std::vector& addNWaves, const std::vector& rejectNWaves) { std::vector chanMask; std::string fftMethod; std::string fftThresh; return selectWaveNumbers(0, chanMask, false, fftMethod, fftThresh, addNWaves, rejectNWaves); } std::vector Scantable::selectWaveNumbers(const int whichrow, const std::vector& chanMask, const bool applyFFT, const std::string& fftMethod, const std::string& fftThresh, const std::vector& addNWaves, const std::vector& rejectNWaves) { std::vector nWaves; nWaves.clear(); if (applyFFT) { string fftThAttr; float fftThSigma; int fftThTop; parseFFTThresholdInfo(fftThresh, fftThAttr, fftThSigma, fftThTop); doSelectWaveNumbers(whichrow, chanMask, fftMethod, fftThSigma, fftThTop, fftThAttr, nWaves); } addAuxWaveNumbers(whichrow, addNWaves, rejectNWaves, nWaves); return nWaves; } int Scantable::getIdxOfNchan(const int nChan, const std::vector& nChanNos) { int idx = -1; for (uint i = 0; i < nChanNos.size(); ++i) { if (nChan == nChanNos[i]) { idx = i; break; } } if (idx < 0) { throw(AipsError("nChan not found in nChhanNos.")); } return idx; } void Scantable::parseFFTInfo(const std::string& fftInfo, bool& applyFFT, std::string& fftMethod, std::string& fftThresh) { istringstream iss(fftInfo); std::string tmp; std::vector res; while (getline(iss, tmp, ',')) { res.push_back(tmp); } if (res.size() < 3) { throw(AipsError("wrong value in 'fftinfo' parameter")) ; } applyFFT = (res[0] == "true"); fftMethod = res[1]; fftThresh = res[2]; } void Scantable::parseFFTThresholdInfo(const std::string& fftThresh, std::string& fftThAttr, float& fftThSigma, int& fftThTop) { uInt idxSigma = fftThresh.find("sigma"); uInt idxTop = fftThresh.find("top"); if (idxSigma == fftThresh.size() - 5) { std::istringstream is(fftThresh.substr(0, fftThresh.size() - 5)); is >> fftThSigma; fftThAttr = "sigma"; } else if (idxTop == 0) { std::istringstream is(fftThresh.substr(3)); is >> fftThTop; fftThAttr = "top"; } else { bool isNumber = true; for (uInt i = 0; i < fftThresh.size()-1; ++i) { char ch = (fftThresh.substr(i, 1).c_str())[0]; if (!(isdigit(ch) || (fftThresh.substr(i, 1) == "."))) { isNumber = false; break; } } if (isNumber) { std::istringstream is(fftThresh); is >> fftThSigma; fftThAttr = "sigma"; } else { throw(AipsError("fftthresh has a wrong value")); } } } void Scantable::doSelectWaveNumbers(const int whichrow, const std::vector& chanMask, const std::string& fftMethod, const float fftThSigma, const int fftThTop, const std::string& fftThAttr, std::vector& nWaves) { std::vector fspec; if (fftMethod == "fft") { fspec = execFFT(whichrow, chanMask, false, true); //} else if (fftMethod == "lsp") { // fspec = lombScarglePeriodogram(whichrow); } if (fftThAttr == "sigma") { float mean = 0.0; float mean2 = 0.0; for (uInt i = 0; i < fspec.size(); ++i) { mean += fspec[i]; mean2 += fspec[i]*fspec[i]; } mean /= float(fspec.size()); mean2 /= float(fspec.size()); float thres = mean + fftThSigma * float(sqrt(mean2 - mean*mean)); for (uInt i = 0; i < fspec.size(); ++i) { if (fspec[i] >= thres) { nWaves.push_back(i); } } } else if (fftThAttr == "top") { for (int i = 0; i < fftThTop; ++i) { float max = 0.0; int maxIdx = 0; for (uInt j = 0; j < fspec.size(); ++j) { if (fspec[j] > max) { max = fspec[j]; maxIdx = j; } } nWaves.push_back(maxIdx); fspec[maxIdx] = 0.0; } } if (nWaves.size() > 1) { sort(nWaves.begin(), nWaves.end()); } } void Scantable::addAuxWaveNumbers(const int whichrow, const std::vector& addNWaves, const std::vector& rejectNWaves, std::vector& nWaves) { std::vector tempAddNWaves, tempRejectNWaves; tempAddNWaves.clear(); tempRejectNWaves.clear(); for (uInt i = 0; i < addNWaves.size(); ++i) { tempAddNWaves.push_back(addNWaves[i]); } if ((tempAddNWaves.size() == 2) && (tempAddNWaves[1] == -999)) { setWaveNumberListUptoNyquistFreq(whichrow, tempAddNWaves); } for (uInt i = 0; i < rejectNWaves.size(); ++i) { tempRejectNWaves.push_back(rejectNWaves[i]); } if ((tempRejectNWaves.size() == 2) && (tempRejectNWaves[1] == -999)) { setWaveNumberListUptoNyquistFreq(whichrow, tempRejectNWaves); } for (uInt i = 0; i < tempAddNWaves.size(); ++i) { bool found = false; for (uInt j = 0; j < nWaves.size(); ++j) { if (nWaves[j] == tempAddNWaves[i]) { found = true; break; } } if (!found) nWaves.push_back(tempAddNWaves[i]); } for (uInt i = 0; i < tempRejectNWaves.size(); ++i) { for (std::vector::iterator j = nWaves.begin(); j != nWaves.end(); ) { if (*j == tempRejectNWaves[i]) { j = nWaves.erase(j); } else { ++j; } } } if (nWaves.size() > 1) { sort(nWaves.begin(), nWaves.end()); unique(nWaves.begin(), nWaves.end()); } } void Scantable::setWaveNumberListUptoNyquistFreq(const int whichrow, std::vector& nWaves) { int val = nWaves[0]; int nyquistFreq = nchan(getIF(whichrow))/2+1; nWaves.clear(); if (val > nyquistFreq) { // for safety, at least nWaves contains a constant; CAS-3759 nWaves.push_back(0); } while (val <= nyquistFreq) { nWaves.push_back(val); val++; } } void Scantable::sinusoidBaseline(const std::vector& mask, const std::string& fftInfo, const std::vector& addNWaves, const std::vector& rejectNWaves, float thresClip, int nIterClip, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile, const std::string& bltable) { /**** double TimeStart = mathutil::gettimeofday_sec(); ****/ try { ofstream ofs; String coordInfo; bool hasSameNchan, outTextFile, csvFormat, showProgress; int minNRow; int nRow = nrow(); std::vector chanMask, finalChanMask; float rms; bool outBaselineTable = (bltable != ""); STBaselineTable bt = STBaselineTable(*this); Vector timeSecCol; size_t flagged=0; initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat, coordInfo, hasSameNchan, progressInfo, showProgress, minNRow, timeSecCol); bool applyFFT; std::string fftMethod, fftThresh; parseFFTInfo(fftInfo, applyFFT, fftMethod, fftThresh); std::vector nWaves; std::vector nChanNos; std::vector > > modelReservoir; if (!applyFFT) { nWaves = selectWaveNumbers(addNWaves, rejectNWaves); if (nWaves.size()==0) //no wave numbers to fit throw(AipsError("No valid wave numbers to fit")); modelReservoir = getSinusoidModelReservoir(nWaves, nChanNos); } for (int whichrow = 0; whichrow < nRow; ++whichrow) { std::vector sp = getSpectrum(whichrow); chanMask = getCompositeChanMask(whichrow, mask); std::vector > model; bool canfit = true; if (applyFFT) { nWaves = selectWaveNumbers(whichrow, chanMask, true, fftMethod, fftThresh, addNWaves, rejectNWaves); if (nWaves.size()==0) {// no wave numbers to fit. canfit = false; break; } model = getSinusoidModel(nWaves, sp.size()); } else { model = modelReservoir[getIdxOfNchan(sp.size(), nChanNos)]; } int nModel = modelReservoir.size(); std::vector params; //if (flagrowCol_(whichrow) == 0) { if (canfit && flagrowCol_(whichrow)==0 && nValidMask(chanMask)>0) { int nClipped = 0; std::vector res; res = doLeastSquareFitting(sp, chanMask, model, params, rms, finalChanMask, nClipped, thresClip, nIterClip, getResidual); if (outBaselineTable) { bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow), getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow], true, STBaselineFunc::Sinusoid, nWaves, std::vector(), getMaskListFromMask(finalChanMask), params, rms, sp.size(), thresClip, nIterClip, 0.0, 0, std::vector()); } else { setSpectrum(res, whichrow); } outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "sinusoidBaseline()", params, nClipped); } else { // no valid channels to fit (flag the row) flagrowCol_.put(whichrow, 1); ++flagged; if (outBaselineTable) { params.resize(nModel); for (uInt i = 0; i < params.size(); ++i) { params[i] = 0.0; } bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow), getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow], true, STBaselineFunc::Sinusoid, nWaves, std::vector(), getMaskListFromMask(chanMask), params, 0.0, sp.size(), thresClip, nIterClip, 0.0, 0, std::vector()); } } showProgressOnTerminal(whichrow, nRow, showProgress, minNRow); } finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs); if (flagged > 0) { LogIO os( LogOrigin( "Scantable", "sinusoidBaseline()") ) ; os << LogIO::WARN << "Baseline subtraction is skipped for " << flagged << " spectra due to too few valid channels to operate fit. The spectra will be flagged in output data." << LogIO::POST; } } catch (...) { throw; } /**** double TimeEnd = mathutil::gettimeofday_sec(); double elapse1 = TimeEnd - TimeStart; std::cout << "sinusoid-old : " << elapse1 << " (sec.)" << endl; ****/ } void Scantable::autoSinusoidBaseline(const std::vector& mask, const std::string& fftInfo, const std::vector& addNWaves, const std::vector& rejectNWaves, float thresClip, int nIterClip, const std::vector& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile, const std::string& bltable) { try { ofstream ofs; String coordInfo; bool hasSameNchan, outTextFile, csvFormat, showProgress; int minNRow; int nRow = nrow(); std::vector chanMask, finalChanMask; float rms; bool outBaselineTable = (bltable != ""); STBaselineTable bt = STBaselineTable(*this); Vector timeSecCol; STLineFinder lineFinder = STLineFinder(); size_t flagged=0; initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat, coordInfo, hasSameNchan, progressInfo, showProgress, minNRow, timeSecCol); initLineFinder(edge, threshold, chanAvgLimit, lineFinder); bool applyFFT; string fftMethod, fftThresh; parseFFTInfo(fftInfo, applyFFT, fftMethod, fftThresh); std::vector nWaves; std::vector nChanNos; std::vector > > modelReservoir; if (!applyFFT) { nWaves = selectWaveNumbers(addNWaves, rejectNWaves); if (nWaves.size()==0) //no wave numbers to fit throw(AipsError("No valid wave numbers to fit")); modelReservoir = getSinusoidModelReservoir(nWaves, nChanNos); } for (int whichrow = 0; whichrow < nRow; ++whichrow) { std::vector sp = getSpectrum(whichrow); std::vector currentEdge; chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder); std::vector > model; bool canfit=true; if (applyFFT) { nWaves = selectWaveNumbers(whichrow, chanMask, true, fftMethod, fftThresh, addNWaves, rejectNWaves); if (nWaves.size()==0) { // no wave numbers to fit. canfit = false; break; } model = getSinusoidModel(nWaves, sp.size()); } else { model = modelReservoir[getIdxOfNchan(sp.size(), nChanNos)]; } int nModel = modelReservoir.size(); std::vector params; //if (flagrowCol_(whichrow) == 0) { if (canfit && flagrowCol_(whichrow)==0 && nValidMask(chanMask)>0) { int nClipped = 0; std::vector res; res = doLeastSquareFitting(sp, chanMask, model, params, rms, finalChanMask, nClipped, thresClip, nIterClip, getResidual); if (outBaselineTable) { bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow), getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow], true, STBaselineFunc::Sinusoid, nWaves, std::vector(), getMaskListFromMask(finalChanMask), params, rms, sp.size(), thresClip, nIterClip, threshold, chanAvgLimit, currentEdge); } else { setSpectrum(res, whichrow); } outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoSinusoidBaseline()", params, nClipped); } else { // no valid channels to fit (flag the row) flagrowCol_.put(whichrow, 1); ++flagged; if (outBaselineTable) { params.resize(nModel); for (uInt i = 0; i < params.size(); ++i) { params[i] = 0.0; } bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow), getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow], true, STBaselineFunc::Sinusoid, nWaves, std::vector(), getMaskListFromMask(chanMask), params, 0.0, sp.size(), thresClip, nIterClip, threshold, chanAvgLimit, currentEdge); } } showProgressOnTerminal(whichrow, nRow, showProgress, minNRow); } finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs); if (flagged > 0) { LogIO os( LogOrigin( "Scantable", "autoSinusoidBaseline()") ) ; os << LogIO::WARN << "Baseline subtraction is skipped for " << flagged << " spectra due to too few valid channels to operate fit. The spectra will be flagged in output data." << LogIO::POST; } } catch (...) { throw; } } std::vector Scantable::doSinusoidFitting(const std::vector& data, const std::vector& mask, const std::vector& waveNumbers, std::vector& params, float& rms, std::vector& finalmask, float clipth, int clipn) { int nClipped = 0; return doSinusoidFitting(data, mask, waveNumbers, params, rms, finalmask, nClipped, clipth, clipn); } std::vector Scantable::doSinusoidFitting(const std::vector& data, const std::vector& mask, const std::vector& waveNumbers, std::vector& params, float& rms, std::vector& finalMask, int& nClipped, float thresClip, int nIterClip, bool getResidual) { return doLeastSquareFitting(data, mask, getSinusoidModel(waveNumbers, data.size()), params, rms, finalMask, nClipped, thresClip, nIterClip, getResidual); } std::vector > > Scantable::getSinusoidModelReservoir(const std::vector& waveNumbers, std::vector& nChanNos) { std::vector > > res; res.clear(); nChanNos.clear(); std::vector ifNos = getIFNos(); for (uint i = 0; i < ifNos.size(); ++i) { int currNchan = nchan(ifNos[i]); bool hasDifferentNchan = (i == 0); for (uint j = 0; j < i; ++j) { if (currNchan != nchan(ifNos[j])) { hasDifferentNchan = true; break; } } if (hasDifferentNchan) { res.push_back(getSinusoidModel(waveNumbers, currNchan)); nChanNos.push_back(currNchan); } } return res; } std::vector > Scantable::getSinusoidModel(const std::vector& waveNumbers, int nchan) { // model : contains elemental values for computing the least-square matrix. // model.size() is nmodel and model[*].size() is nchan. // Each model element are as follows: // model[0] = {1.0, 1.0, 1.0, ..., 1.0}, // model[2n-1] = {sin(nPI/L*x[0]), sin(nPI/L*x[1]), ..., sin(nPI/L*x[nchan])}, // model[2n] = {cos(nPI/L*x[0]), cos(nPI/L*x[1]), ..., cos(nPI/L*x[nchan])}, // where (1 <= n <= nMaxWavesInSW), // or, // model[2n-1] = {sin(wn[n]PI/L*x[0]), sin(wn[n]PI/L*x[1]), ..., sin(wn[n]PI/L*x[nchan])}, // model[2n] = {cos(wn[n]PI/L*x[0]), cos(wn[n]PI/L*x[1]), ..., cos(wn[n]PI/L*x[nchan])}, // where wn[n] denotes waveNumbers[n] (1 <= n <= waveNumbers.size()). std::vector nWaves; // sorted and uniqued array of wave numbers nWaves.reserve(waveNumbers.size()); copy(waveNumbers.begin(), waveNumbers.end(), back_inserter(nWaves)); sort(nWaves.begin(), nWaves.end()); std::vector::iterator end_it = unique(nWaves.begin(), nWaves.end()); nWaves.erase(end_it, nWaves.end()); if (nWaves.size()==0) throw(AipsError("No valid wavenumbers to fit.")); int minNWaves = nWaves[0]; if (minNWaves < 0) { throw(AipsError("wave number must be positive or zero (i.e. constant)")); } bool hasConstantTerm = (minNWaves == 0); int nmodel = nWaves.size() * 2 - (hasConstantTerm ? 1 : 0); //number of parameters to solve. std::vector > model(nmodel, std::vector(nchan)); if (hasConstantTerm) { for (int j = 0; j < nchan; ++j) { model[0][j] = 1.0; } } const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...) double stretch0 = 2.0*PI/(double)(nchan-1); for (uInt i = (hasConstantTerm ? 1 : 0); i < nWaves.size(); ++i) { int sidx = hasConstantTerm ? 2*i-1 : 2*i; int cidx = sidx + 1; double stretch = stretch0*(double)nWaves[i]; for (int j = 0; j < nchan; ++j) { model[sidx][j] = sin(stretch*(double)j); model[cidx][j] = cos(stretch*(double)j); } } return model; } std::vector Scantable::getCompositeChanMask(int whichrow, const std::vector& inMask) { std::vector mask = getMask(whichrow); uInt maskSize = mask.size(); if (inMask.size() != 0) { if (maskSize != inMask.size()) { throw(AipsError("mask sizes are not the same.")); } for (uInt i = 0; i < maskSize; ++i) { mask[i] = mask[i] && inMask[i]; } } return mask; } std::vector Scantable::getCompositeChanMask(int whichrow, const std::vector& inMask, const std::vector& edge, std::vector& currEdge, STLineFinder& lineFinder) { if (isAllChannelsFlagged(whichrow)) {//all channels flagged std::vector res_mask(nchan(getIF(whichrow)),false); return res_mask; } else if (inMask.size() != 0 && nValidMask(inMask)==0){ //no valid mask channels std::vector res_mask(inMask); return res_mask; } std::vector ifNos = getIFNos(); if ((edge.size() > 2) && (edge.size() < ifNos.size()*2)) { throw(AipsError("Length of edge element info is less than that of IFs")); } uint idx = 0; if (edge.size() > 2) { int ifVal = getIF(whichrow); bool foundIF = false; for (uint i = 0; i < ifNos.size(); ++i) { if (ifVal == (int)ifNos[i]) { idx = 2*i; foundIF = true; break; } } if (!foundIF) { throw(AipsError("bad IF number")); } } currEdge.clear(); currEdge.resize(2); currEdge[0] = edge[idx]; currEdge[1] = edge[idx+1]; lineFinder.setData(getSpectrum(whichrow)); lineFinder.findLines(getCompositeChanMask(whichrow, inMask), currEdge, whichrow); return lineFinder.getMask(); } /* for cspline. will be merged once cspline is available in fitter (2011/3/10 WK) */ void Scantable::outputFittingResult(bool outLogger, bool outTextFile, bool csvFormat, const std::vector& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, const std::vector& edge, const std::vector& params, const int nClipped) { if (outLogger || outTextFile) { float rms = getRms(chanMask, whichrow); String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan); std::vector fixed; fixed.clear(); if (outLogger) { LogIO ols(LogOrigin("Scantable", funcName, WHERE)); ols << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped, masklist, whichrow, false, csvFormat) << LogIO::POST ; } if (outTextFile) { ofs << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped, masklist, whichrow, true, csvFormat) << flush; } } } /* for poly/chebyshev/sinusoid. */ void Scantable::outputFittingResult(bool outLogger, bool outTextFile, bool csvFormat, const std::vector& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, const std::vector& params, const int nClipped) { if (outLogger || outTextFile) { float rms = getRms(chanMask, whichrow); String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan); std::vector fixed; fixed.clear(); if (outLogger) { LogIO ols(LogOrigin("Scantable", funcName, WHERE)); ols << formatBaselineParams(params, fixed, rms, nClipped, masklist, whichrow, false, csvFormat) << LogIO::POST ; } if (outTextFile) { ofs << formatBaselineParams(params, fixed, rms, nClipped, masklist, whichrow, true, csvFormat) << flush; } } } void Scantable::parseProgressInfo(const std::string& progressInfo, bool& showProgress, int& minNRow) { int idxDelimiter = progressInfo.find(","); if (idxDelimiter < 0) { throw(AipsError("wrong value in 'showprogress' parameter")) ; } showProgress = (progressInfo.substr(0, idxDelimiter) == "true"); std::istringstream is(progressInfo.substr(idxDelimiter+1)); is >> minNRow; } void Scantable::showProgressOnTerminal(const int nProcessed, const int nTotal, const bool showProgress, const int nTotalThreshold) { if (showProgress && (nTotal >= nTotalThreshold)) { int nInterval = int(floor(double(nTotal)/100.0)); if (nInterval == 0) nInterval++; if (nProcessed % nInterval == 0) { printf("\r"); //go to the head of line printf("\x1b[31m\x1b[1m"); //set red color, highlighted printf("[%3d%%]", (int)(100.0*(double(nProcessed+1))/(double(nTotal))) ); printf("\x1b[39m\x1b[0m"); //set default attributes fflush(NULL); } if (nProcessed == nTotal - 1) { printf("\r\x1b[K"); //clear fflush(NULL); } } } std::vector Scantable::execFFT(const int whichrow, const std::vector& inMask, bool getRealImag, bool getAmplitudeOnly) { std::vector mask = getMask(whichrow); if (inMask.size() > 0) { uInt maskSize = mask.size(); if (maskSize != inMask.size()) { throw(AipsError("mask sizes are not the same.")); } for (uInt i = 0; i < maskSize; ++i) { mask[i] = mask[i] && inMask[i]; } } Vector spec = getSpectrum(whichrow); mathutil::doZeroOrderInterpolation(spec, mask); FFTServer ffts; Vector fftres; ffts.fft0(fftres, spec); std::vector res; float norm = float(2.0/double(spec.size())); if (getRealImag) { for (uInt i = 0; i < fftres.size(); ++i) { res.push_back(real(fftres[i])*norm); res.push_back(imag(fftres[i])*norm); } } else { for (uInt i = 0; i < fftres.size(); ++i) { res.push_back(abs(fftres[i])*norm); if (!getAmplitudeOnly) res.push_back(arg(fftres[i])); } } return res; } float Scantable::getRms(const std::vector& mask, int whichrow) { /**** double ms1TimeStart, ms1TimeEnd; double elapse1 = 0.0; ms1TimeStart = mathutil::gettimeofday_sec(); ****/ Vector spec; specCol_.get(whichrow, spec); /**** ms1TimeEnd = mathutil::gettimeofday_sec(); elapse1 = ms1TimeEnd - ms1TimeStart; std::cout << "rm1 : " << elapse1 << " (sec.)" << endl; ****/ return (float)doGetRms(mask, spec); } double Scantable::doGetRms(const std::vector& mask, const Vector& spec) { double mean = 0.0; double smean = 0.0; int n = 0; for (uInt i = 0; i < spec.nelements(); ++i) { if (mask[i]) { double val = (double)spec[i]; mean += val; smean += val*val; n++; } } mean /= (double)n; smean /= (double)n; return sqrt(smean - mean*mean); } std::string Scantable::formatBaselineParamsHeader(int whichrow, const std::string& masklist, bool verbose, bool csvformat) const { if (verbose) { ostringstream oss; if (csvformat) { oss << getScan(whichrow) << ","; oss << getBeam(whichrow) << ","; oss << getIF(whichrow) << ","; oss << getPol(whichrow) << ","; oss << getCycle(whichrow) << ","; String commaReplacedMasklist = masklist; string::size_type pos = 0; while (pos = commaReplacedMasklist.find(","), pos != string::npos) { commaReplacedMasklist.replace(pos, 1, ";"); pos++; } oss << commaReplacedMasklist << ","; } else { oss << " Scan[" << getScan(whichrow) << "]"; oss << " Beam[" << getBeam(whichrow) << "]"; oss << " IF[" << getIF(whichrow) << "]"; oss << " Pol[" << getPol(whichrow) << "]"; oss << " Cycle[" << getCycle(whichrow) << "]: " << endl; oss << "Fitter range = " << masklist << endl; oss << "Baseline parameters" << endl; } oss << flush; return String(oss); } return ""; } std::string Scantable::formatBaselineParamsFooter(float rms, int nClipped, bool verbose, bool csvformat) const { if (verbose) { ostringstream oss; if (csvformat) { oss << rms << ","; if (nClipped >= 0) { oss << nClipped; } } else { oss << "Results of baseline fit" << endl; oss << " rms = " << setprecision(6) << rms << endl; if (nClipped >= 0) { oss << " Number of clipped channels = " << nClipped << endl; } for (int i = 0; i < 60; ++i) { oss << "-"; } } oss << endl; oss << flush; return String(oss); } return ""; } std::string Scantable::formatBaselineParams(const std::vector& params, const std::vector& fixed, float rms, int nClipped, const std::string& masklist, int whichrow, bool verbose, bool csvformat, int start, int count, bool resetparamid) const { int nParam = (int)(params.size()); if (nParam < 1) { return(" Not fitted"); } else { ostringstream oss; oss << formatBaselineParamsHeader(whichrow, masklist, verbose, csvformat); if (start < 0) start = 0; if (count < 0) count = nParam; int end = start + count; if (end > nParam) end = nParam; int paramidoffset = (resetparamid) ? (-start) : 0; for (int i = start; i < end; ++i) { if (i > start) { oss << ","; } std::string sFix = ((fixed.size() > 0) && (fixed[i]) && verbose) ? "(fixed)" : ""; if (csvformat) { oss << params[i] << sFix; } else { oss << " p" << (i+paramidoffset) << sFix << "= " << right << setw(13) << setprecision(6) << params[i]; } } if (csvformat) { oss << ","; } else { oss << endl; } oss << formatBaselineParamsFooter(rms, nClipped, verbose, csvformat); return String(oss); } } std::string Scantable::formatPiecewiseBaselineParams(const std::vector& ranges, const std::vector& params, const std::vector& fixed, float rms, int nClipped, const std::string& masklist, int whichrow, bool verbose, bool csvformat) const { int nOutParam = (int)(params.size()); int nPiece = (int)(ranges.size()) - 1; if (nOutParam < 1) { return(" Not fitted"); } else if (nPiece < 0) { return formatBaselineParams(params, fixed, rms, nClipped, masklist, whichrow, verbose, csvformat); } else if (nPiece < 1) { return(" Bad count of the piece edge info"); } else if (nOutParam % nPiece != 0) { return(" Bad count of the output baseline parameters"); } else { int nParam = nOutParam / nPiece; ostringstream oss; oss << formatBaselineParamsHeader(whichrow, masklist, verbose, csvformat); if (csvformat) { for (int i = 0; i < nPiece; ++i) { oss << ranges[i] << "," << (ranges[i+1]-1) << ","; oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, csvformat, i*nParam, nParam, true); } } else { stringstream ss; ss << ranges[nPiece] << flush; int wRange = ss.str().size() * 2 + 5; for (int i = 0; i < nPiece; ++i) { ss.str(""); ss << " [" << ranges[i] << "," << (ranges[i+1]-1) << "]"; oss << left << setw(wRange) << ss.str(); oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, csvformat, i*nParam, nParam, true); //oss << endl; } } oss << formatBaselineParamsFooter(rms, nClipped, verbose, csvformat); return String(oss); } } bool Scantable::hasSameNchanOverIFs() { int nIF = nif(-1); int nCh; int totalPositiveNChan = 0; int nPositiveNChan = 0; for (int i = 0; i < nIF; ++i) { nCh = nchan(i); if (nCh > 0) { totalPositiveNChan += nCh; nPositiveNChan++; } } return (totalPositiveNChan == (nPositiveNChan * nchan(0))); } std::string Scantable::getMaskRangeList(const std::vector& mask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, bool verbose) { if (mask.size() <= 0) { throw(AipsError("The mask elements should be > 0")); } int IF = getIF(whichrow); if (mask.size() != (uInt)nchan(IF)) { throw(AipsError("Number of channels in scantable != number of mask elements")); } if (verbose) { LogIO logOs(LogOrigin("Scantable", "getMaskRangeList()", WHERE)); logOs << LogIO::WARN << "The current mask window unit is " << coordInfo; if (!hasSameNchan) { logOs << endl << "This mask is only valid for IF=" << IF; } logOs << LogIO::POST; } std::vector abcissa = getAbcissa(whichrow); std::vector edge = getMaskEdgeIndices(mask); ostringstream oss; oss.setf(ios::fixed); oss << setprecision(1) << "["; for (uInt i = 0; i < edge.size(); i+=2) { if (i > 0) oss << ","; oss << "[" << (float)abcissa[edge[i]] << "," << (float)abcissa[edge[i+1]] << "]"; } oss << "]" << flush; return String(oss); } std::vector Scantable::getMaskEdgeIndices(const std::vector& mask) { if (mask.size() <= 0) { throw(AipsError("The mask elements should be > 0")); } std::vector out, startIndices, endIndices; int maskSize = mask.size(); startIndices.clear(); endIndices.clear(); if (mask[0]) { startIndices.push_back(0); } for (int i = 1; i < maskSize; ++i) { if ((!mask[i-1]) && mask[i]) { startIndices.push_back(i); } else if (mask[i-1] && (!mask[i])) { endIndices.push_back(i-1); } } if (mask[maskSize-1]) { endIndices.push_back(maskSize-1); } if (startIndices.size() != endIndices.size()) { throw(AipsError("Inconsistent Mask Size: bad data?")); } for (uInt i = 0; i < startIndices.size(); ++i) { if (startIndices[i] > endIndices[i]) { throw(AipsError("Mask start index > mask end index")); } } out.clear(); for (uInt i = 0; i < startIndices.size(); ++i) { out.push_back(startIndices[i]); out.push_back(endIndices[i]); } return out; } void Scantable::setTsys(const std::vector& newvals, int whichrow) { Vector tsys(newvals); if (whichrow > -1) { if (tsysCol_.shape(whichrow) != tsys.shape()) throw(AipsError("Given Tsys values are not of the same shape")); tsysCol_.put(whichrow, tsys); } else { tsysCol_.fillColumn(tsys); } } vector Scantable::getTsysSpectrum( int whichrow ) const { Vector tsys( tsysCol_(whichrow) ) ; vector stlTsys ; tsys.tovector( stlTsys ) ; return stlTsys ; } vector Scantable::getMoleculeIdColumnData() const { Vector molIds(mmolidCol_.getColumn()); vector res; molIds.tovector(res); return res; } void Scantable::setMoleculeIdColumnData(const std::vector& molids) { Vector molIds(molids); Vector arr(mmolidCol_.getColumn()); if ( molIds.nelements() != arr.nelements() ) throw AipsError("The input data size must be the number of rows."); mmolidCol_.putColumn(molIds); } std::vector Scantable::getRootTableRowNumbers() const { Vector rowIds(table_.rowNumbers()); vector res; rowIds.tovector(res); return res; } void Scantable::dropXPol() { if (npol() <= 2) { return; } if (!selector_.empty()) { throw AipsError("Can only operate with empty selection"); } std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]"; Table tab = tableCommand(taql, table_); table_ = tab; table_.rwKeywordSet().define("nPol", Int(2)); originalTable_ = table_; attach(); } } //namespace asap