source: trunk/src/Scantable.cpp@ 3046

Last change on this file since 3046 was 3045, checked in by Takeshi Nakazato, 10 years ago

New Development: No

JIRA Issue: No

Ready for Test: Yes/No

Interface Changes: Yes/No

What Interface Changed: Please list interface changes

Test Programs: List test programs

Put in Release Notes: Yes/No

Module(s): Module Names change impacts.

Description: Explicitly initialize cubicSplineModelPool_

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 171.8 KB
Line 
1//
2// C++ Implementation: Scantable
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2005-2013
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12#include <map>
13#include <sys/time.h>
14
15#include <atnf/PKSIO/SrcType.h>
16
17#include <casa/aips.h>
18#include <casa/iomanip.h>
19#include <casa/iostream.h>
20#include <casa/OS/File.h>
21#include <casa/OS/Path.h>
22#include <casa/Logging/LogIO.h>
23#include <casa/Arrays/Array.h>
24#include <casa/Arrays/ArrayAccessor.h>
25#include <casa/Arrays/ArrayLogical.h>
26#include <casa/Arrays/ArrayMath.h>
27#include <casa/Arrays/MaskArrMath.h>
28#include <casa/Arrays/Slice.h>
29#include <casa/Arrays/Vector.h>
30#include <casa/Arrays/VectorSTLIterator.h>
31#include <casa/BasicMath/Math.h>
32#include <casa/BasicSL/Constants.h>
33#include <casa/Containers/RecordField.h>
34#include <casa/Logging/LogIO.h>
35#include <casa/Quanta/MVAngle.h>
36#include <casa/Quanta/MVTime.h>
37#include <casa/Utilities/GenSort.h>
38#include <casa/Utilities/Assert.h>
39
40#include <coordinates/Coordinates/CoordinateUtil.h>
41
42// needed to avoid error in .tcc
43#include <measures/Measures/MCDirection.h>
44//
45#include <measures/Measures/MDirection.h>
46#include <measures/Measures/MEpoch.h>
47#include <measures/Measures/MFrequency.h>
48#include <measures/Measures/MeasRef.h>
49#include <measures/Measures/MeasTable.h>
50#include <measures/TableMeasures/ScalarMeasColumn.h>
51#include <measures/TableMeasures/TableMeasDesc.h>
52#include <measures/TableMeasures/TableMeasRefDesc.h>
53#include <measures/TableMeasures/TableMeasValueDesc.h>
54
55#include <tables/Tables/ArrColDesc.h>
56#include <tables/Tables/ExprNode.h>
57#include <tables/Tables/ScaColDesc.h>
58#include <tables/Tables/SetupNewTab.h>
59#include <tables/Tables/TableCopy.h>
60#include <tables/Tables/TableDesc.h>
61#include <tables/Tables/TableIter.h>
62#include <tables/Tables/TableParse.h>
63#include <tables/Tables/TableRecord.h>
64#include <tables/Tables/TableRow.h>
65#include <tables/Tables/TableVector.h>
66
67#include "MathUtils.h"
68#include "STAttr.h"
69#include "STBaselineTable.h"
70#include "STLineFinder.h"
71#include "STPolCircular.h"
72#include "STPolLinear.h"
73#include "STPolStokes.h"
74#include "STUpgrade.h"
75#include "STFitter.h"
76#include "Scantable.h"
77
78#define debug 1
79
80using namespace casa;
81
82namespace asap {
83
84std::map<std::string, STPol::STPolFactory *> Scantable::factories_;
85
86void Scantable::initFactories() {
87 if ( factories_.empty() ) {
88 Scantable::factories_["linear"] = &STPolLinear::myFactory;
89 Scantable::factories_["circular"] = &STPolCircular::myFactory;
90 Scantable::factories_["stokes"] = &STPolStokes::myFactory;
91 }
92}
93
94Scantable::Scantable(Table::TableType ttype) :
95 type_(ttype),
96 cubicSplineModelPool_()
97{
98 initFactories();
99 setupMainTable();
100 freqTable_ = STFrequencies(*this);
101 table_.rwKeywordSet().defineTable("FREQUENCIES", freqTable_.table());
102 weatherTable_ = STWeather(*this);
103 table_.rwKeywordSet().defineTable("WEATHER", weatherTable_.table());
104 focusTable_ = STFocus(*this);
105 table_.rwKeywordSet().defineTable("FOCUS", focusTable_.table());
106 tcalTable_ = STTcal(*this);
107 table_.rwKeywordSet().defineTable("TCAL", tcalTable_.table());
108 moleculeTable_ = STMolecules(*this);
109 table_.rwKeywordSet().defineTable("MOLECULES", moleculeTable_.table());
110 historyTable_ = STHistory(*this);
111 table_.rwKeywordSet().defineTable("HISTORY", historyTable_.table());
112 fitTable_ = STFit(*this);
113 table_.rwKeywordSet().defineTable("FIT", fitTable_.table());
114 table_.tableInfo().setType( "Scantable" ) ;
115 originalTable_ = table_;
116 attach();
117}
118
119Scantable::Scantable(const std::string& name, Table::TableType ttype) :
120 type_(ttype),
121 cubicSplineModelPool_()
122{
123 initFactories();
124
125 Table tab(name, Table::Update);
126 uInt version = tab.keywordSet().asuInt("VERSION");
127 if (version != version_) {
128 STUpgrade upgrader(version_);
129 LogIO os( LogOrigin( "Scantable" ) ) ;
130 os << LogIO::WARN
131 << name << " data format version " << version
132 << " is deprecated" << endl
133 << "Running upgrade."<< endl
134 << LogIO::POST ;
135 std::string outname = upgrader.upgrade(name);
136 if ( outname != name ) {
137 os << LogIO::WARN
138 << "Data will be loaded from " << outname << " instead of "
139 << name << LogIO::POST ;
140 tab = Table(outname, Table::Update ) ;
141 }
142 }
143 if ( type_ == Table::Memory ) {
144 table_ = tab.copyToMemoryTable(generateName());
145 } else {
146 table_ = tab;
147 }
148 table_.tableInfo().setType( "Scantable" ) ;
149
150 attachSubtables();
151 originalTable_ = table_;
152 attach();
153}
154/*
155Scantable::Scantable(const std::string& name, Table::TableType ttype) :
156 type_(ttype)
157{
158 initFactories();
159 Table tab(name, Table::Update);
160 uInt version = tab.keywordSet().asuInt("VERSION");
161 if (version != version_) {
162 throw(AipsError("Unsupported version of ASAP file."));
163 }
164 if ( type_ == Table::Memory ) {
165 table_ = tab.copyToMemoryTable(generateName());
166 } else {
167 table_ = tab;
168 }
169
170 attachSubtables();
171 originalTable_ = table_;
172 attach();
173}
174*/
175
176Scantable::Scantable( const Scantable& other, bool clear )
177{
178 // with or without data
179 String newname = String(generateName());
180 type_ = other.table_.tableType();
181 if ( other.table_.tableType() == Table::Memory ) {
182 if ( clear ) {
183 table_ = TableCopy::makeEmptyMemoryTable(newname,
184 other.table_, True);
185 } else {
186 table_ = other.table_.copyToMemoryTable(newname);
187 }
188 } else {
189 other.table_.deepCopy(newname, Table::New, False,
190 other.table_.endianFormat(),
191 Bool(clear));
192 table_ = Table(newname, Table::Update);
193 table_.markForDelete();
194 }
195 table_.tableInfo().setType( "Scantable" ) ;
196 /// @todo reindex SCANNO, recompute nbeam, nif, npol
197 if ( clear ) copySubtables(other);
198 attachSubtables();
199 originalTable_ = table_;
200 attach();
201}
202
203void Scantable::copySubtables(const Scantable& other) {
204 Table t = table_.rwKeywordSet().asTable("FREQUENCIES");
205 TableCopy::copyRows(t, other.freqTable_.table());
206 t = table_.rwKeywordSet().asTable("FOCUS");
207 TableCopy::copyRows(t, other.focusTable_.table());
208 t = table_.rwKeywordSet().asTable("WEATHER");
209 TableCopy::copyRows(t, other.weatherTable_.table());
210 t = table_.rwKeywordSet().asTable("TCAL");
211 TableCopy::copyRows(t, other.tcalTable_.table());
212 t = table_.rwKeywordSet().asTable("MOLECULES");
213 TableCopy::copyRows(t, other.moleculeTable_.table());
214 t = table_.rwKeywordSet().asTable("HISTORY");
215 TableCopy::copyRows(t, other.historyTable_.table());
216 t = table_.rwKeywordSet().asTable("FIT");
217 TableCopy::copyRows(t, other.fitTable_.table());
218}
219
220void Scantable::attachSubtables()
221{
222 freqTable_ = STFrequencies(table_);
223 focusTable_ = STFocus(table_);
224 weatherTable_ = STWeather(table_);
225 tcalTable_ = STTcal(table_);
226 moleculeTable_ = STMolecules(table_);
227 historyTable_ = STHistory(table_);
228 fitTable_ = STFit(table_);
229}
230
231Scantable::~Scantable()
232{
233}
234
235void Scantable::setupMainTable()
236{
237 TableDesc td("", "1", TableDesc::Scratch);
238 td.comment() = "An ASAP Scantable";
239 td.rwKeywordSet().define("VERSION", uInt(version_));
240
241 // n Cycles
242 td.addColumn(ScalarColumnDesc<uInt>("SCANNO"));
243 // new index every nBeam x nIF x nPol
244 td.addColumn(ScalarColumnDesc<uInt>("CYCLENO"));
245
246 td.addColumn(ScalarColumnDesc<uInt>("BEAMNO"));
247 td.addColumn(ScalarColumnDesc<uInt>("IFNO"));
248 // linear, circular, stokes
249 td.rwKeywordSet().define("POLTYPE", String("linear"));
250 td.addColumn(ScalarColumnDesc<uInt>("POLNO"));
251
252 td.addColumn(ScalarColumnDesc<uInt>("FREQ_ID"));
253 td.addColumn(ScalarColumnDesc<uInt>("MOLECULE_ID"));
254
255 ScalarColumnDesc<Int> refbeamnoColumn("REFBEAMNO");
256 refbeamnoColumn.setDefault(Int(-1));
257 td.addColumn(refbeamnoColumn);
258
259 ScalarColumnDesc<uInt> flagrowColumn("FLAGROW");
260 flagrowColumn.setDefault(uInt(0));
261 td.addColumn(flagrowColumn);
262
263 td.addColumn(ScalarColumnDesc<Double>("TIME"));
264 TableMeasRefDesc measRef(MEpoch::UTC); // UTC as default
265 TableMeasValueDesc measVal(td, "TIME");
266 TableMeasDesc<MEpoch> mepochCol(measVal, measRef);
267 mepochCol.write(td);
268
269 td.addColumn(ScalarColumnDesc<Double>("INTERVAL"));
270
271 td.addColumn(ScalarColumnDesc<String>("SRCNAME"));
272 // Type of source (on=0, off=1, other=-1)
273 ScalarColumnDesc<Int> stypeColumn("SRCTYPE");
274 stypeColumn.setDefault(Int(-1));
275 td.addColumn(stypeColumn);
276 td.addColumn(ScalarColumnDesc<String>("FIELDNAME"));
277
278 //The actual Data Vectors
279 td.addColumn(ArrayColumnDesc<Float>("SPECTRA"));
280 td.addColumn(ArrayColumnDesc<uChar>("FLAGTRA"));
281 td.addColumn(ArrayColumnDesc<Float>("TSYS"));
282
283 td.addColumn(ArrayColumnDesc<Double>("DIRECTION",
284 IPosition(1,2),
285 ColumnDesc::Direct));
286 TableMeasRefDesc mdirRef(MDirection::J2000); // default
287 TableMeasValueDesc tmvdMDir(td, "DIRECTION");
288 // the TableMeasDesc gives the column a type
289 TableMeasDesc<MDirection> mdirCol(tmvdMDir, mdirRef);
290 // a uder set table type e.g. GALCTIC, B1950 ...
291 td.rwKeywordSet().define("DIRECTIONREF", String("J2000"));
292 // writing create the measure column
293 mdirCol.write(td);
294 td.addColumn(ScalarColumnDesc<Float>("AZIMUTH"));
295 td.addColumn(ScalarColumnDesc<Float>("ELEVATION"));
296 td.addColumn(ScalarColumnDesc<Float>("OPACITY"));
297
298 td.addColumn(ScalarColumnDesc<uInt>("TCAL_ID"));
299 ScalarColumnDesc<Int> fitColumn("FIT_ID");
300 fitColumn.setDefault(Int(-1));
301 td.addColumn(fitColumn);
302
303 td.addColumn(ScalarColumnDesc<uInt>("FOCUS_ID"));
304 td.addColumn(ScalarColumnDesc<uInt>("WEATHER_ID"));
305
306 // columns which just get dragged along, as they aren't used in asap
307 td.addColumn(ScalarColumnDesc<Double>("SRCVELOCITY"));
308 td.addColumn(ArrayColumnDesc<Double>("SRCPROPERMOTION"));
309 td.addColumn(ArrayColumnDesc<Double>("SRCDIRECTION"));
310 td.addColumn(ArrayColumnDesc<Double>("SCANRATE"));
311
312 td.rwKeywordSet().define("OBSMODE", String(""));
313
314 // Now create Table SetUp from the description.
315 SetupNewTable aNewTab(generateName(), td, Table::Scratch);
316 table_ = Table(aNewTab, type_, 0);
317 originalTable_ = table_;
318}
319
320void Scantable::attach()
321{
322 timeCol_.attach(table_, "TIME");
323 srcnCol_.attach(table_, "SRCNAME");
324 srctCol_.attach(table_, "SRCTYPE");
325 specCol_.attach(table_, "SPECTRA");
326 flagsCol_.attach(table_, "FLAGTRA");
327 tsysCol_.attach(table_, "TSYS");
328 cycleCol_.attach(table_,"CYCLENO");
329 scanCol_.attach(table_, "SCANNO");
330 beamCol_.attach(table_, "BEAMNO");
331 ifCol_.attach(table_, "IFNO");
332 polCol_.attach(table_, "POLNO");
333 integrCol_.attach(table_, "INTERVAL");
334 azCol_.attach(table_, "AZIMUTH");
335 elCol_.attach(table_, "ELEVATION");
336 dirCol_.attach(table_, "DIRECTION");
337 fldnCol_.attach(table_, "FIELDNAME");
338 rbeamCol_.attach(table_, "REFBEAMNO");
339
340 mweatheridCol_.attach(table_,"WEATHER_ID");
341 mfitidCol_.attach(table_,"FIT_ID");
342 mfreqidCol_.attach(table_, "FREQ_ID");
343 mtcalidCol_.attach(table_, "TCAL_ID");
344 mfocusidCol_.attach(table_, "FOCUS_ID");
345 mmolidCol_.attach(table_, "MOLECULE_ID");
346
347 //Add auxiliary column for row-based flagging (CAS-1433 Wataru Kawasaki)
348 attachAuxColumnDef(flagrowCol_, "FLAGROW", 0);
349
350}
351
352template<class T, class T2>
353void Scantable::attachAuxColumnDef(ScalarColumn<T>& col,
354 const String& colName,
355 const T2& defValue)
356{
357 try {
358 col.attach(table_, colName);
359 } catch (TableError& err) {
360 String errMesg = err.getMesg();
361 if (errMesg == "Table column " + colName + " is unknown") {
362 table_.addColumn(ScalarColumnDesc<T>(colName));
363 col.attach(table_, colName);
364 col.fillColumn(static_cast<T>(defValue));
365 } else {
366 throw;
367 }
368 } catch (...) {
369 throw;
370 }
371}
372
373template<class T, class T2>
374void Scantable::attachAuxColumnDef(ArrayColumn<T>& col,
375 const String& colName,
376 const Array<T2>& defValue)
377{
378 try {
379 col.attach(table_, colName);
380 } catch (TableError& err) {
381 String errMesg = err.getMesg();
382 if (errMesg == "Table column " + colName + " is unknown") {
383 table_.addColumn(ArrayColumnDesc<T>(colName));
384 col.attach(table_, colName);
385
386 int size = 0;
387 ArrayIterator<T2>& it = defValue.begin();
388 while (it != defValue.end()) {
389 ++size;
390 ++it;
391 }
392 IPosition ip(1, size);
393 Array<T>& arr(ip);
394 for (int i = 0; i < size; ++i)
395 arr[i] = static_cast<T>(defValue[i]);
396
397 col.fillColumn(arr);
398 } else {
399 throw;
400 }
401 } catch (...) {
402 throw;
403 }
404}
405
406void Scantable::setHeader(const STHeader& sdh)
407{
408 table_.rwKeywordSet().define("nIF", sdh.nif);
409 table_.rwKeywordSet().define("nBeam", sdh.nbeam);
410 table_.rwKeywordSet().define("nPol", sdh.npol);
411 table_.rwKeywordSet().define("nChan", sdh.nchan);
412 table_.rwKeywordSet().define("Observer", sdh.observer);
413 table_.rwKeywordSet().define("Project", sdh.project);
414 table_.rwKeywordSet().define("Obstype", sdh.obstype);
415 table_.rwKeywordSet().define("AntennaName", sdh.antennaname);
416 table_.rwKeywordSet().define("AntennaPosition", sdh.antennaposition);
417 table_.rwKeywordSet().define("Equinox", sdh.equinox);
418 table_.rwKeywordSet().define("FreqRefFrame", sdh.freqref);
419 table_.rwKeywordSet().define("FreqRefVal", sdh.reffreq);
420 table_.rwKeywordSet().define("Bandwidth", sdh.bandwidth);
421 table_.rwKeywordSet().define("UTC", sdh.utc);
422 table_.rwKeywordSet().define("FluxUnit", sdh.fluxunit);
423 table_.rwKeywordSet().define("Epoch", sdh.epoch);
424 table_.rwKeywordSet().define("POLTYPE", sdh.poltype);
425}
426
427STHeader Scantable::getHeader() const
428{
429 STHeader sdh;
430 table_.keywordSet().get("nBeam",sdh.nbeam);
431 table_.keywordSet().get("nIF",sdh.nif);
432 table_.keywordSet().get("nPol",sdh.npol);
433 table_.keywordSet().get("nChan",sdh.nchan);
434 table_.keywordSet().get("Observer", sdh.observer);
435 table_.keywordSet().get("Project", sdh.project);
436 table_.keywordSet().get("Obstype", sdh.obstype);
437 table_.keywordSet().get("AntennaName", sdh.antennaname);
438 table_.keywordSet().get("AntennaPosition", sdh.antennaposition);
439 table_.keywordSet().get("Equinox", sdh.equinox);
440 table_.keywordSet().get("FreqRefFrame", sdh.freqref);
441 table_.keywordSet().get("FreqRefVal", sdh.reffreq);
442 table_.keywordSet().get("Bandwidth", sdh.bandwidth);
443 table_.keywordSet().get("UTC", sdh.utc);
444 table_.keywordSet().get("FluxUnit", sdh.fluxunit);
445 table_.keywordSet().get("Epoch", sdh.epoch);
446 table_.keywordSet().get("POLTYPE", sdh.poltype);
447 return sdh;
448}
449
450void Scantable::setSourceType( int stype )
451{
452 if ( stype < 0 || stype > 1 )
453 throw(AipsError("Illegal sourcetype."));
454 TableVector<Int> tabvec(table_, "SRCTYPE");
455 tabvec = Int(stype);
456}
457
458void Scantable::setSourceName( const std::string& name )
459{
460 TableVector<String> tabvec(table_, "SRCNAME");
461 tabvec = name;
462}
463
464bool Scantable::conformant( const Scantable& other )
465{
466 return this->getHeader().conformant(other.getHeader());
467}
468
469
470
471std::string Scantable::formatSec(Double x) const
472{
473 Double xcop = x;
474 MVTime mvt(xcop/24./3600.); // make days
475
476 if (x < 59.95)
477 return String(" ") + mvt.string(MVTime::TIME_CLEAN_NO_HM, 7)+"s";
478 else if (x < 3599.95)
479 return String(" ") + mvt.string(MVTime::TIME_CLEAN_NO_H,7)+" ";
480 else {
481 ostringstream oss;
482 oss << setw(2) << std::right << setprecision(1) << mvt.hour();
483 oss << ":" << mvt.string(MVTime::TIME_CLEAN_NO_H,7) << " ";
484 return String(oss);
485 }
486};
487
488 std::string Scantable::formatDirection(const MDirection& md, Int prec) const
489{
490 Vector<Double> t = md.getAngle(Unit(String("rad"))).getValue();
491 if (prec<0)
492 prec = 7;
493
494 String ref = md.getRefString();
495 MVAngle mvLon(t[0]);
496 String sLon = mvLon.string(MVAngle::TIME,prec);
497 uInt tp = md.getRef().getType();
498 if (tp == MDirection::GALACTIC ||
499 tp == MDirection::SUPERGAL ) {
500 sLon = mvLon(0.0).string(MVAngle::ANGLE_CLEAN,prec);
501 }
502 MVAngle mvLat(t[1]);
503 String sLat = mvLat.string(MVAngle::ANGLE+MVAngle::DIG2,prec);
504 return ref + String(" ") + sLon + String(" ") + sLat;
505}
506
507
508std::string Scantable::getFluxUnit() const
509{
510 return table_.keywordSet().asString("FluxUnit");
511}
512
513void Scantable::setFluxUnit(const std::string& unit)
514{
515 String tmp(unit);
516 Unit tU(tmp);
517 if (tU==Unit("K") || tU==Unit("Jy")) {
518 table_.rwKeywordSet().define(String("FluxUnit"), tmp);
519 } else {
520 throw AipsError("Illegal unit - must be compatible with Jy or K");
521 }
522}
523
524void Scantable::setInstrument(const std::string& name)
525{
526 bool throwIt = true;
527 // create an Instrument to see if this is valid
528 STAttr::convertInstrument(name, throwIt);
529 String nameU(name);
530 nameU.upcase();
531 table_.rwKeywordSet().define(String("AntennaName"), nameU);
532}
533
534void Scantable::setFeedType(const std::string& feedtype)
535{
536 if ( Scantable::factories_.find(feedtype) == Scantable::factories_.end() ) {
537 std::string msg = "Illegal feed type "+ feedtype;
538 throw(casa::AipsError(msg));
539 }
540 table_.rwKeywordSet().define(String("POLTYPE"), feedtype);
541}
542
543MPosition Scantable::getAntennaPosition() const
544{
545 Vector<Double> antpos;
546 table_.keywordSet().get("AntennaPosition", antpos);
547 MVPosition mvpos(antpos(0),antpos(1),antpos(2));
548 return MPosition(mvpos);
549}
550
551void Scantable::makePersistent(const std::string& filename)
552{
553 String inname(filename);
554 Path path(inname);
555 /// @todo reindex SCANNO, recompute nbeam, nif, npol
556 inname = path.expandedName();
557 // 2011/03/04 TN
558 // We can comment out this workaround since the essential bug is
559 // fixed in casacore (r20889 in google code).
560 table_.deepCopy(inname, Table::New);
561// // WORKAROUND !!! for Table bug
562// // Remove when fixed in casacore
563// if ( table_.tableType() == Table::Memory && !selector_.empty() ) {
564// Table tab = table_.copyToMemoryTable(generateName());
565// tab.deepCopy(inname, Table::New);
566// tab.markForDelete();
567//
568// } else {
569// table_.deepCopy(inname, Table::New);
570// }
571}
572
573int Scantable::nbeam( int scanno ) const
574{
575 if ( scanno < 0 ) {
576 Int n;
577 table_.keywordSet().get("nBeam",n);
578 return int(n);
579 } else {
580 // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
581 Table t = table_(table_.col("SCANNO") == scanno);
582 ROTableRow row(t);
583 const TableRecord& rec = row.get(0);
584 Table subt = t( t.col("IFNO") == Int(rec.asuInt("IFNO"))
585 && t.col("POLNO") == Int(rec.asuInt("POLNO"))
586 && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
587 ROTableVector<uInt> v(subt, "BEAMNO");
588 return int(v.nelements());
589 }
590 return 0;
591}
592
593int Scantable::nif( int scanno ) const
594{
595 if ( scanno < 0 ) {
596 Int n;
597 table_.keywordSet().get("nIF",n);
598 return int(n);
599 } else {
600 // take the first POLNO,BEAMNO,CYCLENO as nbeam shouldn't vary with these
601 Table t = table_(table_.col("SCANNO") == scanno);
602 ROTableRow row(t);
603 const TableRecord& rec = row.get(0);
604 Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
605 && t.col("POLNO") == Int(rec.asuInt("POLNO"))
606 && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
607 if ( subt.nrow() == 0 ) return 0;
608 ROTableVector<uInt> v(subt, "IFNO");
609 return int(v.nelements());
610 }
611 return 0;
612}
613
614int Scantable::npol( int scanno ) const
615{
616 if ( scanno < 0 ) {
617 Int n;
618 table_.keywordSet().get("nPol",n);
619 return n;
620 } else {
621 // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
622 Table t = table_(table_.col("SCANNO") == scanno);
623 ROTableRow row(t);
624 const TableRecord& rec = row.get(0);
625 Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
626 && t.col("IFNO") == Int(rec.asuInt("IFNO"))
627 && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
628 if ( subt.nrow() == 0 ) return 0;
629 ROTableVector<uInt> v(subt, "POLNO");
630 return int(v.nelements());
631 }
632 return 0;
633}
634
635int Scantable::ncycle( int scanno ) const
636{
637 if ( scanno < 0 ) {
638 Block<String> cols(2);
639 cols[0] = "SCANNO";
640 cols[1] = "CYCLENO";
641 TableIterator it(table_, cols);
642 int n = 0;
643 while ( !it.pastEnd() ) {
644 ++n;
645 ++it;
646 }
647 return n;
648 } else {
649 Table t = table_(table_.col("SCANNO") == scanno);
650 ROTableRow row(t);
651 const TableRecord& rec = row.get(0);
652 Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
653 && t.col("POLNO") == Int(rec.asuInt("POLNO"))
654 && t.col("IFNO") == Int(rec.asuInt("IFNO")) );
655 if ( subt.nrow() == 0 ) return 0;
656 return int(subt.nrow());
657 }
658 return 0;
659}
660
661
662int Scantable::nrow( int scanno ) const
663{
664 return int(table_.nrow());
665}
666
667int Scantable::nchan( int ifno ) const
668{
669 if ( ifno < 0 ) {
670 Int n;
671 table_.keywordSet().get("nChan",n);
672 return int(n);
673 } else {
674 // take the first SCANNO,POLNO,BEAMNO,CYCLENO as nbeam shouldn't
675 // vary with these
676 Table t = table_(table_.col("IFNO") == ifno, 1);
677 if ( t.nrow() == 0 ) return 0;
678 ROArrayColumn<Float> v(t, "SPECTRA");
679 return v.shape(0)(0);
680 }
681 return 0;
682}
683
684int Scantable::nscan() const {
685 Vector<uInt> scannos(scanCol_.getColumn());
686 uInt nout = genSort( scannos, Sort::Ascending,
687 Sort::QuickSort|Sort::NoDuplicates );
688 return int(nout);
689}
690
691int Scantable::getChannels(int whichrow) const
692{
693 return specCol_.shape(whichrow)(0);
694}
695
696int Scantable::getBeam(int whichrow) const
697{
698 return beamCol_(whichrow);
699}
700
701std::vector<uint> Scantable::getNumbers(const ScalarColumn<uInt>& col) const
702{
703 Vector<uInt> nos(col.getColumn());
704 uInt n = genSort( nos, Sort::Ascending, Sort::QuickSort|Sort::NoDuplicates );
705 nos.resize(n, True);
706 std::vector<uint> stlout;
707 nos.tovector(stlout);
708 return stlout;
709}
710
711int Scantable::getIF(int whichrow) const
712{
713 return ifCol_(whichrow);
714}
715
716int Scantable::getPol(int whichrow) const
717{
718 return polCol_(whichrow);
719}
720
721std::string Scantable::formatTime(const MEpoch& me, bool showdate) const
722{
723 return formatTime(me, showdate, 0);
724}
725
726std::string Scantable::formatTime(const MEpoch& me, bool showdate, uInt prec) const
727{
728 MVTime mvt(me.getValue());
729 if (showdate)
730 //mvt.setFormat(MVTime::YMD);
731 mvt.setFormat(MVTime::YMD, prec);
732 else
733 //mvt.setFormat(MVTime::TIME);
734 mvt.setFormat(MVTime::TIME, prec);
735 ostringstream oss;
736 oss << mvt;
737 return String(oss);
738}
739
740void Scantable::calculateAZEL()
741{
742 LogIO os( LogOrigin( "Scantable", "calculateAZEL()", WHERE ) ) ;
743 MPosition mp = getAntennaPosition();
744 MEpoch::ROScalarColumn timeCol(table_, "TIME");
745 ostringstream oss;
746 oss << mp;
747 os << "Computed azimuth/elevation using " << endl
748 << String(oss) << endl;
749 for (Int i=0; i<nrow(); ++i) {
750 MEpoch me = timeCol(i);
751 MDirection md = getDirection(i);
752 os << " Time: " << formatTime(me,False)
753 << " Direction: " << formatDirection(md)
754 << endl << " => ";
755 MeasFrame frame(mp, me);
756 Vector<Double> azel =
757 MDirection::Convert(md, MDirection::Ref(MDirection::AZEL,
758 frame)
759 )().getAngle("rad").getValue();
760 azCol_.put(i,Float(azel[0]));
761 elCol_.put(i,Float(azel[1]));
762 os << "azel: " << azel[0]/C::pi*180.0 << " "
763 << azel[1]/C::pi*180.0 << " (deg)" << LogIO::POST;
764 }
765}
766
767void Scantable::clip(const Float uthres, const Float dthres, bool clipoutside, bool unflag)
768{
769 Vector<uInt> flagrow = flagrowCol_.getColumn();
770 for (uInt i=0; i<table_.nrow(); ++i) {
771 // apply flag only when specified row is vaild
772 if (flagrow[i] == 0) {
773 Vector<uChar> flgs = flagsCol_(i);
774 srchChannelsToClip(i, uthres, dthres, clipoutside, unflag, flgs);
775 flagsCol_.put(i, flgs);
776 }
777 }
778}
779
780std::vector<bool> Scantable::getClipMask(int whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag)
781{
782 Vector<uChar> flags;
783 flagsCol_.get(uInt(whichrow), flags);
784 srchChannelsToClip(uInt(whichrow), uthres, dthres, clipoutside, unflag, flags);
785 Vector<Bool> bflag(flags.shape());
786 convertArray(bflag, flags);
787 //bflag = !bflag;
788
789 std::vector<bool> mask;
790 bflag.tovector(mask);
791 return mask;
792}
793
794void Scantable::srchChannelsToClip(uInt whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag,
795 Vector<uChar> flgs)
796{
797 Vector<Float> spcs = specCol_(whichrow);
798 uInt nchannel = spcs.nelements();
799 if (spcs.nelements() != nchannel) {
800 throw(AipsError("Data has incorrect number of channels"));
801 }
802 uChar userflag = 1 << 7;
803 if (unflag) {
804 userflag = 0 << 7;
805 }
806 if (clipoutside) {
807 for (uInt j = 0; j < nchannel; ++j) {
808 Float spc = spcs(j);
809 if ((spc >= uthres) || (spc <= dthres)) {
810 flgs(j) = userflag;
811 }
812 }
813 } else {
814 for (uInt j = 0; j < nchannel; ++j) {
815 Float spc = spcs(j);
816 if ((spc < uthres) && (spc > dthres)) {
817 flgs(j) = userflag;
818 }
819 }
820 }
821}
822
823
824void Scantable::flag( int whichrow, const std::vector<bool>& msk, bool unflag ) {
825 std::vector<bool>::const_iterator it;
826 uInt ntrue = 0;
827 if (whichrow >= int(table_.nrow()) ) {
828 throw(AipsError("Invalid row number"));
829 }
830 for (it = msk.begin(); it != msk.end(); ++it) {
831 if ( *it ) {
832 ntrue++;
833 }
834 }
835 //if ( selector_.empty() && (msk.size() == 0 || msk.size() == ntrue) )
836 if ( whichrow == -1 && !unflag && selector_.empty() && (msk.size() == 0 || msk.size() == ntrue) )
837 throw(AipsError("Trying to flag whole scantable."));
838 uChar userflag = 1 << 7;
839 if ( unflag ) {
840 userflag = 0 << 7;
841 }
842 if (whichrow > -1 ) {
843 // apply flag only when specified row is vaild
844 if (flagrowCol_(whichrow) == 0) {
845 applyChanFlag(uInt(whichrow), msk, userflag);
846 }
847 } else {
848 Vector<uInt> flagrow = flagrowCol_.getColumn();
849 for ( uInt i=0; i<table_.nrow(); ++i) {
850 // apply flag only when specified row is vaild
851 if (flagrow[i] == 0) {
852 applyChanFlag(i, msk, userflag);
853 }
854 }
855 }
856}
857
858void Scantable::applyChanFlag( uInt whichrow, const std::vector<bool>& msk, uChar flagval )
859{
860 if (whichrow >= table_.nrow() ) {
861 throw( casa::indexError<int>( whichrow, "asap::Scantable::applyChanFlag: Invalid row number" ) );
862 }
863 Vector<uChar> flgs = flagsCol_(whichrow);
864 if ( msk.size() == 0 ) {
865 flgs = flagval;
866 flagsCol_.put(whichrow, flgs);
867 return;
868 }
869 if ( int(msk.size()) != nchan( getIF(whichrow) ) ) {
870 throw(AipsError("Mask has incorrect number of channels."));
871 }
872 if ( flgs.nelements() != msk.size() ) {
873 throw(AipsError("Mask has incorrect number of channels."
874 " Probably varying with IF. Please flag per IF"));
875 }
876 std::vector<bool>::const_iterator it;
877 uInt j = 0;
878 for (it = msk.begin(); it != msk.end(); ++it) {
879 if ( *it ) {
880 flgs(j) = flagval;
881 }
882 ++j;
883 }
884 flagsCol_.put(whichrow, flgs);
885}
886
887void Scantable::flagRow(const std::vector<uInt>& rows, bool unflag)
888{
889 if (selector_.empty() && (rows.size() == table_.nrow()) && !unflag)
890 throw(AipsError("Trying to flag whole scantable."));
891
892 uInt rowflag = (unflag ? 0 : 1);
893 std::vector<uInt>::const_iterator it;
894 for (it = rows.begin(); it != rows.end(); ++it)
895 flagrowCol_.put(*it, rowflag);
896}
897
898std::vector<bool> Scantable::getMask(int whichrow) const
899{
900 Vector<uChar> flags;
901 flagsCol_.get(uInt(whichrow), flags);
902 Vector<Bool> bflag(flags.shape());
903 convertArray(bflag, flags);
904 bflag = !bflag;
905 std::vector<bool> mask;
906 bflag.tovector(mask);
907 return mask;
908}
909
910std::vector<float> Scantable::getSpectrum( int whichrow,
911 const std::string& poltype ) const
912{
913 LogIO os( LogOrigin( "Scantable", "getSpectrum()", WHERE ) ) ;
914
915 String ptype = poltype;
916 if (poltype == "" ) ptype = getPolType();
917 if ( whichrow < 0 || whichrow >= nrow() )
918 throw(AipsError("Illegal row number."));
919 std::vector<float> out;
920 Vector<Float> arr;
921 uInt requestedpol = polCol_(whichrow);
922 String basetype = getPolType();
923 if ( ptype == basetype ) {
924 specCol_.get(whichrow, arr);
925 } else {
926 CountedPtr<STPol> stpol(STPol::getPolClass(Scantable::factories_,
927 basetype));
928 uInt row = uInt(whichrow);
929 stpol->setSpectra(getPolMatrix(row));
930 Float fang,fhand;
931 fang = focusTable_.getTotalAngle(mfocusidCol_(row));
932 fhand = focusTable_.getFeedHand(mfocusidCol_(row));
933 stpol->setPhaseCorrections(fang, fhand);
934 arr = stpol->getSpectrum(requestedpol, ptype);
935 }
936 if ( arr.nelements() == 0 )
937
938 os << "Not enough polarisations present to do the conversion."
939 << LogIO::POST;
940 arr.tovector(out);
941 return out;
942}
943
944void Scantable::setSpectrum( const std::vector<float>& spec,
945 int whichrow )
946{
947 Vector<Float> spectrum(spec);
948 Vector<Float> arr;
949 specCol_.get(whichrow, arr);
950 if ( spectrum.nelements() != arr.nelements() )
951 throw AipsError("The spectrum has incorrect number of channels.");
952 specCol_.put(whichrow, spectrum);
953}
954
955
956String Scantable::generateName()
957{
958 return (File::newUniqueName("./","temp")).baseName();
959}
960
961const casa::Table& Scantable::table( ) const
962{
963 return table_;
964}
965
966casa::Table& Scantable::table( )
967{
968 return table_;
969}
970
971std::string Scantable::getPolType() const
972{
973 return table_.keywordSet().asString("POLTYPE");
974}
975
976void Scantable::unsetSelection()
977{
978 table_ = originalTable_;
979 attach();
980 selector_.reset();
981}
982
983void Scantable::setSelection( const STSelector& selection )
984{
985 Table tab = const_cast<STSelector&>(selection).apply(originalTable_);
986 if ( tab.nrow() == 0 ) {
987 throw(AipsError("Selection contains no data. Not applying it."));
988 }
989 table_ = tab;
990 attach();
991// tab.rwKeywordSet().define("nBeam",(Int)(getBeamNos().size())) ;
992// vector<uint> selectedIFs = getIFNos() ;
993// Int newnIF = selectedIFs.size() ;
994// tab.rwKeywordSet().define("nIF",newnIF) ;
995// if ( newnIF != 0 ) {
996// Int newnChan = 0 ;
997// for ( Int i = 0 ; i < newnIF ; i++ ) {
998// Int nChan = nchan( selectedIFs[i] ) ;
999// if ( newnChan > nChan )
1000// newnChan = nChan ;
1001// }
1002// tab.rwKeywordSet().define("nChan",newnChan) ;
1003// }
1004// tab.rwKeywordSet().define("nPol",(Int)(getPolNos().size())) ;
1005 selector_ = selection;
1006}
1007
1008
1009std::string Scantable::headerSummary()
1010{
1011 // Format header info
1012// STHeader sdh;
1013// sdh = getHeader();
1014// sdh.print();
1015 ostringstream oss;
1016 oss.flags(std::ios_base::left);
1017 String tmp;
1018 // Project
1019 table_.keywordSet().get("Project", tmp);
1020 oss << setw(15) << "Project:" << tmp << endl;
1021 // Observation date
1022 oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1023 // Observer
1024 oss << setw(15) << "Observer:"
1025 << table_.keywordSet().asString("Observer") << endl;
1026 // Antenna Name
1027 table_.keywordSet().get("AntennaName", tmp);
1028 oss << setw(15) << "Antenna Name:" << tmp << endl;
1029 // Obs type
1030 table_.keywordSet().get("Obstype", tmp);
1031 // Records (nrow)
1032 oss << setw(15) << "Data Records:" << table_.nrow() << " rows" << endl;
1033 oss << setw(15) << "Obs. Type:" << tmp << endl;
1034 // Beams, IFs, Polarizations, and Channels
1035 oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1036 << setw(15) << "IFs:" << setw(4) << nif() << endl
1037 << setw(15) << "Polarisations:" << setw(4) << npol()
1038 << "(" << getPolType() << ")" << endl
1039 << setw(15) << "Channels:" << nchan() << endl;
1040 // Flux unit
1041 table_.keywordSet().get("FluxUnit", tmp);
1042 oss << setw(15) << "Flux Unit:" << tmp << endl;
1043 // Abscissa Unit
1044 oss << setw(15) << "Abscissa:" << getAbcissaLabel(0) << endl;
1045 // Selection
1046 oss << selector_.print() << endl;
1047
1048 return String(oss);
1049}
1050
1051void Scantable::summary( const std::string& filename )
1052{
1053 ostringstream oss;
1054 ofstream ofs;
1055 LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1056
1057 if (filename != "")
1058 ofs.open( filename.c_str(), ios::out );
1059
1060 oss << endl;
1061 oss << asap::SEPERATOR << endl;
1062 oss << " Scan Table Summary" << endl;
1063 oss << asap::SEPERATOR << endl;
1064
1065 // Format header info
1066 oss << headerSummary();
1067 oss << endl;
1068
1069 if (table_.nrow() <= 0){
1070 oss << asap::SEPERATOR << endl;
1071 oss << "The MAIN table is empty: there are no data!!!" << endl;
1072 oss << asap::SEPERATOR << endl;
1073
1074 ols << String(oss) << LogIO::POST;
1075 if (ofs) {
1076 ofs << String(oss) << flush;
1077 ofs.close();
1078 }
1079 return;
1080 }
1081
1082
1083
1084 // main table
1085 String dirtype = "Position ("
1086 + getDirectionRefString()
1087 + ")";
1088 oss.flags(std::ios_base::left);
1089 oss << setw(5) << "Scan"
1090 << setw(15) << "Source"
1091 << setw(35) << "Time range"
1092 << setw(2) << "" << setw(7) << "Int[s]"
1093 << setw(7) << "Record"
1094 << setw(8) << "SrcType"
1095 << setw(8) << "FreqIDs"
1096 << setw(7) << "MolIDs" << endl;
1097 oss << setw(7)<< "" << setw(6) << "Beam"
1098 << setw(23) << dirtype << endl;
1099
1100 oss << asap::SEPERATOR << endl;
1101
1102 // Flush summary and clear up the string
1103 ols << String(oss) << LogIO::POST;
1104 if (ofs) ofs << String(oss) << flush;
1105 oss.str("");
1106 oss.clear();
1107
1108
1109 // Get Freq_ID map
1110 ROScalarColumn<uInt> ftabIds(frequencies().table(), "ID");
1111 Int nfid = ftabIds.nrow();
1112 if (nfid <= 0){
1113 oss << "FREQUENCIES subtable is empty: there are no data!!!" << endl;
1114 oss << asap::SEPERATOR << endl;
1115
1116 ols << String(oss) << LogIO::POST;
1117 if (ofs) {
1118 ofs << String(oss) << flush;
1119 ofs.close();
1120 }
1121 return;
1122 }
1123 // Storages of overall IFNO, POLNO, and nchan per FREQ_ID
1124 // the orders are identical to ID in FREQ subtable
1125 Block< Vector<uInt> > ifNos(nfid), polNos(nfid);
1126 Vector<Int> fIdchans(nfid,-1);
1127 Vector<Double> fIdfreq0(nfid,-1);
1128 Vector<Double> fIdfcent(nfid,-1);
1129 map<uInt, Int> fidMap; // (FREQ_ID, row # in FREQ subtable) pair
1130 for (Int i=0; i < nfid; i++){
1131 // fidMap[freqId] returns row number in FREQ subtable
1132 fidMap.insert(pair<uInt, Int>(ftabIds(i),i));
1133 ifNos[i] = Vector<uInt>();
1134 polNos[i] = Vector<uInt>();
1135 }
1136
1137 TableIterator iter(table_, "SCANNO");
1138
1139 // Vars for keeping track of time, freqids, molIds in a SCANNO
1140 //Vector<uInt> freqids;
1141 //Vector<uInt> molids;
1142 Vector<uInt> beamids(1,0);
1143 Vector<MDirection> beamDirs;
1144 Vector<Int> stypeids(1,0);
1145 Vector<String> stypestrs;
1146 Int nfreq(1);
1147 Int nmol(1);
1148 uInt nbeam(1);
1149 uInt nstype(1);
1150
1151 Double btime(0.0), etime(0.0);
1152 Double meanIntTim(0.0);
1153
1154 uInt currFreqId(0), ftabRow(0);
1155 Int iflen(0), pollen(0);
1156
1157 while (!iter.pastEnd()) {
1158 Table subt = iter.table();
1159 uInt snrow = subt.nrow();
1160 ROTableRow row(subt);
1161 const TableRecord& rec = row.get(0);
1162
1163 // relevant columns
1164 ROScalarColumn<Double> mjdCol(subt,"TIME");
1165 ROScalarColumn<Double> intervalCol(subt,"INTERVAL");
1166 MDirection::ROScalarColumn dirCol(subt,"DIRECTION");
1167
1168 ScalarColumn<uInt> freqIdCol(subt,"FREQ_ID");
1169 ScalarColumn<uInt> molIdCol(subt,"MOLECULE_ID");
1170 ROScalarColumn<uInt> beamCol(subt,"BEAMNO");
1171 ROScalarColumn<Int> stypeCol(subt,"SRCTYPE");
1172
1173 ROScalarColumn<uInt> ifNoCol(subt,"IFNO");
1174 ROScalarColumn<uInt> polNoCol(subt,"POLNO");
1175
1176
1177 // Times
1178 meanIntTim = sum(intervalCol.getColumn()) / (double) snrow;
1179 minMax(btime, etime, mjdCol.getColumn());
1180 double shiftInDay(0.5*meanIntTim/C::day);
1181 btime -= shiftInDay;
1182 etime += shiftInDay;
1183
1184 // MOLECULE_ID and FREQ_ID
1185 Vector<uInt> molids(getNumbers(molIdCol));
1186 molids.shape(nmol);
1187
1188 Vector<uInt> freqids(getNumbers(freqIdCol));
1189 freqids.shape(nfreq);
1190
1191 // Add first beamid, and srcNames
1192 beamids.resize(1,False);
1193 beamDirs.resize(1,False);
1194 beamids(0)=beamCol(0);
1195 beamDirs(0)=dirCol(0);
1196 nbeam = 1;
1197
1198 stypeids.resize(1,False);
1199 stypeids(0)=stypeCol(0);
1200 nstype = 1;
1201
1202 // Global listings of nchan/IFNO/POLNO per FREQ_ID
1203 currFreqId=freqIdCol(0);
1204 ftabRow = fidMap[currFreqId];
1205 // Assumes an identical number of channels per FREQ_ID
1206 if (fIdchans(ftabRow) < 0 ) {
1207 RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1208 fIdchans(ftabRow)=(*spec).shape()(0);
1209 }
1210 if (fIdfreq0(ftabRow) < 0 ) {
1211 SpectralCoordinate spc = frequencies().getSpectralCoordinate(ftabRow);
1212 Double fs, fe;
1213 spc.toWorld(fs, 0);
1214 spc.toWorld(fe, fIdchans(ftabRow)-1);
1215 fIdfreq0(ftabRow) = fs;
1216 fIdfcent(ftabRow) = 0.5 * ( fs + fe );
1217 }
1218 // Should keep ifNos and polNos form the previous SCANNO
1219 if ( !anyEQ(ifNos[ftabRow],ifNoCol(0)) ) {
1220 ifNos[ftabRow].shape(iflen);
1221 iflen++;
1222 ifNos[ftabRow].resize(iflen,True);
1223 ifNos[ftabRow](iflen-1) = ifNoCol(0);
1224 }
1225 if ( !anyEQ(polNos[ftabRow],polNoCol(0)) ) {
1226 polNos[ftabRow].shape(pollen);
1227 pollen++;
1228 polNos[ftabRow].resize(pollen,True);
1229 polNos[ftabRow](pollen-1) = polNoCol(0);
1230 }
1231
1232 for (uInt i=1; i < snrow; i++){
1233 // Need to list BEAMNO and DIRECTION in the same order
1234 if ( !anyEQ(beamids,beamCol(i)) ) {
1235 nbeam++;
1236 beamids.resize(nbeam,True);
1237 beamids(nbeam-1)=beamCol(i);
1238 beamDirs.resize(nbeam,True);
1239 beamDirs(nbeam-1)=dirCol(i);
1240 }
1241
1242 // SRCTYPE is Int (getNumber takes only uInt)
1243 if ( !anyEQ(stypeids,stypeCol(i)) ) {
1244 nstype++;
1245 stypeids.resize(nstype,True);
1246 stypeids(nstype-1)=stypeCol(i);
1247 }
1248
1249 // Global listings of nchan/IFNO/POLNO per FREQ_ID
1250 currFreqId=freqIdCol(i);
1251 ftabRow = fidMap[currFreqId];
1252 if (fIdchans(ftabRow) < 0 ) {
1253 const TableRecord& rec = row.get(i);
1254 RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1255 fIdchans(ftabRow) = (*spec).shape()(0);
1256 }
1257 if (fIdfreq0(ftabRow) < 0 ) {
1258 SpectralCoordinate spc = frequencies().getSpectralCoordinate(ftabRow);
1259 Double fs, fe;
1260 spc.toWorld(fs, 0);
1261 spc.toWorld(fe, fIdchans(ftabRow)-1);
1262 fIdfreq0(ftabRow) = fs;
1263 fIdfcent(ftabRow) = 5.e-1 * ( fs + fe );
1264 }
1265 if ( !anyEQ(ifNos[ftabRow],ifNoCol(i)) ) {
1266 ifNos[ftabRow].shape(iflen);
1267 iflen++;
1268 ifNos[ftabRow].resize(iflen,True);
1269 ifNos[ftabRow](iflen-1) = ifNoCol(i);
1270 }
1271 if ( !anyEQ(polNos[ftabRow],polNoCol(i)) ) {
1272 polNos[ftabRow].shape(pollen);
1273 pollen++;
1274 polNos[ftabRow].resize(pollen,True);
1275 polNos[ftabRow](pollen-1) = polNoCol(i);
1276 }
1277 } // end of row iteration
1278
1279 stypestrs.resize(nstype,False);
1280 for (uInt j=0; j < nstype; j++)
1281 stypestrs(j) = SrcType::getName(stypeids(j));
1282
1283 // Format Scan summary
1284 oss << setw(4) << std::right << rec.asuInt("SCANNO")
1285 << std::left << setw(1) << ""
1286 << setw(15) << rec.asString("SRCNAME")
1287 << setw(21) << MVTime(btime).string(MVTime::YMD,8)
1288 << setw(3) << " - " << MVTime(etime).string(MVTime::TIME,8)
1289 << setw(3) << "" << setw(6) << meanIntTim << setw(1) << ""
1290 << std::right << setw(5) << snrow << setw(2) << ""
1291 << std::left << stypestrs << setw(1) << ""
1292 << freqids << setw(1) << ""
1293 << molids << endl;
1294 // Format Beam summary
1295 for (uInt j=0; j < nbeam; j++) {
1296 oss << setw(7) << "" << setw(6) << beamids(j) << setw(1) << ""
1297 << formatDirection(beamDirs(j),9) << endl;
1298 }
1299 // Flush summary every scan and clear up the string
1300 ols << String(oss) << LogIO::POST;
1301 if (ofs) ofs << String(oss) << flush;
1302 oss.str("");
1303 oss.clear();
1304
1305 ++iter;
1306 } // end of scan iteration
1307 oss << asap::SEPERATOR << endl;
1308
1309 // List FRECUENCIES Table (using STFrequencies.print may be slow)
1310 oss << "FREQUENCIES: " << nfreq << endl;
1311// oss << std::right << setw(5) << "ID" << setw(2) << ""
1312// << std::left << setw(5) << "IFNO" << setw(2) << ""
1313// << setw(8) << "Frame"
1314// << setw(16) << "RefVal"
1315// << setw(7) << "RefPix"
1316// << setw(15) << "Increment"
1317// << setw(9) << "Channels"
1318// << setw(6) << "POLNOs" << endl;
1319// Int tmplen;
1320// for (Int i=0; i < nfid; i++){
1321// // List row=i of FREQUENCIES subtable
1322// ifNos[i].shape(tmplen);
1323// if (tmplen >= 1) {
1324// oss << std::right << setw(5) << ftabIds(i) << setw(2) << ""
1325// << setw(3) << ifNos[i](0) << setw(1) << ""
1326// << std::left << setw(46) << frequencies().print(ftabIds(i))
1327// << setw(2) << ""
1328// << std::right << setw(8) << fIdchans[i] << setw(2) << ""
1329// << std::left << polNos[i];
1330// if (tmplen > 1) {
1331// oss << " (" << tmplen << " chains)";
1332// }
1333// oss << endl;
1334// }
1335 oss << std::right << setw(4) << "ID" << setw(2) << ""
1336 << std::left << setw(9) << "IFNO(SPW)" << setw(2) << ""
1337 << setw(8) << "#Chans"
1338 << setw(8) << "Frame"
1339 << setw(12) << "Ch0[MHz]"
1340 << setw(14) << "ChanWid[kHz]"
1341 << setw(14) << "Center[MHz]"
1342 << setw(6) << "POLNOs" << endl;
1343 Int tmplen;
1344 for (Int i=0; i < nfid; i++){
1345 // List row=i of FREQUENCIES subtable
1346 ifNos[i].shape(tmplen);
1347 Double refpix, refval, increment ;
1348 if (tmplen >= 1) {
1349 freqTable_.getEntry( refpix, refval, increment, ftabIds(i) ) ;
1350 oss << std::right << setw(4) << ftabIds(i) << setw(2) << ""
1351 << std::left << setw(9) << ifNos[i](0) << setw(2) << ""
1352 << std::right << setw(6) << fIdchans[i] << setw(2) << ""
1353 << setw(6) << frequencies().getFrameString(true)
1354 << setw(2) << ""
1355 << setw(10) << std::setprecision(9) << (fIdfreq0[i]*1.e-6) << setw(2) << ""
1356 << setw(12) << (increment*1.e-3) << setw(2) << ""
1357 << setw(12) << (fIdfcent[i]*1.e-6) << setw(2) << ""
1358 << std::left << polNos[i];
1359 if (tmplen > 1) {
1360 oss << " (" << tmplen << " chains)";
1361 }
1362 oss << endl;
1363 }
1364
1365 }
1366 oss << asap::SEPERATOR << endl;
1367
1368 // List MOLECULES Table (currently lists all rows)
1369 oss << "MOLECULES: " << endl;
1370 if (molecules().nrow() <= 0) {
1371 oss << " MOLECULES subtable is empty: there are no data" << endl;
1372 } else {
1373 ROTableRow row(molecules().table());
1374 oss << std::right << setw(5) << "ID"
1375 << std::left << setw(3) << ""
1376 << setw(18) << "RestFreq"
1377 << setw(15) << "Name" << endl;
1378 for (Int i=0; i < molecules().nrow(); i++){
1379 const TableRecord& rec=row.get(i);
1380 oss << std::right << setw(5) << rec.asuInt("ID")
1381 << std::left << setw(3) << ""
1382 << rec.asArrayDouble("RESTFREQUENCY") << setw(1) << ""
1383 << rec.asArrayString("NAME") << endl;
1384 }
1385 }
1386 oss << asap::SEPERATOR << endl;
1387 ols << String(oss) << LogIO::POST;
1388 if (ofs) {
1389 ofs << String(oss) << flush;
1390 ofs.close();
1391 }
1392 // return String(oss);
1393}
1394
1395
1396std::string Scantable::oldheaderSummary()
1397{
1398 // Format header info
1399// STHeader sdh;
1400// sdh = getHeader();
1401// sdh.print();
1402 ostringstream oss;
1403 oss.flags(std::ios_base::left);
1404 oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1405 << setw(15) << "IFs:" << setw(4) << nif() << endl
1406 << setw(15) << "Polarisations:" << setw(4) << npol()
1407 << "(" << getPolType() << ")" << endl
1408 << setw(15) << "Channels:" << nchan() << endl;
1409 String tmp;
1410 oss << setw(15) << "Observer:"
1411 << table_.keywordSet().asString("Observer") << endl;
1412 oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1413 table_.keywordSet().get("Project", tmp);
1414 oss << setw(15) << "Project:" << tmp << endl;
1415 table_.keywordSet().get("Obstype", tmp);
1416 oss << setw(15) << "Obs. Type:" << tmp << endl;
1417 table_.keywordSet().get("AntennaName", tmp);
1418 oss << setw(15) << "Antenna Name:" << tmp << endl;
1419 table_.keywordSet().get("FluxUnit", tmp);
1420 oss << setw(15) << "Flux Unit:" << tmp << endl;
1421 int nid = moleculeTable_.nrow();
1422 Bool firstline = True;
1423 oss << setw(15) << "Rest Freqs:";
1424 for (int i=0; i<nid; i++) {
1425 Table t = table_(table_.col("MOLECULE_ID") == i, 1);
1426 if (t.nrow() > 0) {
1427 Vector<Double> vec(moleculeTable_.getRestFrequency(i));
1428 if (vec.nelements() > 0) {
1429 if (firstline) {
1430 oss << setprecision(10) << vec << " [Hz]" << endl;
1431 firstline=False;
1432 }
1433 else{
1434 oss << setw(15)<<" " << setprecision(10) << vec << " [Hz]" << endl;
1435 }
1436 } else {
1437 oss << "none" << endl;
1438 }
1439 }
1440 }
1441
1442 oss << setw(15) << "Abcissa:" << getAbcissaLabel(0) << endl;
1443 oss << selector_.print() << endl;
1444 return String(oss);
1445}
1446
1447 //std::string Scantable::summary( const std::string& filename )
1448void Scantable::oldsummary( const std::string& filename )
1449{
1450 ostringstream oss;
1451 ofstream ofs;
1452 LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1453
1454 if (filename != "")
1455 ofs.open( filename.c_str(), ios::out );
1456
1457 oss << endl;
1458 oss << asap::SEPERATOR << endl;
1459 oss << " Scan Table Summary" << endl;
1460 oss << asap::SEPERATOR << endl;
1461
1462 // Format header info
1463 oss << oldheaderSummary();
1464 oss << endl;
1465
1466 // main table
1467 String dirtype = "Position ("
1468 + getDirectionRefString()
1469 + ")";
1470 oss.flags(std::ios_base::left);
1471 oss << setw(5) << "Scan" << setw(15) << "Source"
1472 << setw(10) << "Time" << setw(18) << "Integration"
1473 << setw(15) << "Source Type" << endl;
1474 oss << setw(5) << "" << setw(5) << "Beam" << setw(3) << "" << dirtype << endl;
1475 oss << setw(10) << "" << setw(3) << "IF" << setw(3) << ""
1476 << setw(8) << "Frame" << setw(16)
1477 << "RefVal" << setw(10) << "RefPix" << setw(12) << "Increment"
1478 << setw(7) << "Channels"
1479 << endl;
1480 oss << asap::SEPERATOR << endl;
1481
1482 // Flush summary and clear up the string
1483 ols << String(oss) << LogIO::POST;
1484 if (ofs) ofs << String(oss) << flush;
1485 oss.str("");
1486 oss.clear();
1487
1488 TableIterator iter(table_, "SCANNO");
1489 while (!iter.pastEnd()) {
1490 Table subt = iter.table();
1491 ROTableRow row(subt);
1492 MEpoch::ROScalarColumn timeCol(subt,"TIME");
1493 const TableRecord& rec = row.get(0);
1494 oss << setw(4) << std::right << rec.asuInt("SCANNO")
1495 << std::left << setw(1) << ""
1496 << setw(15) << rec.asString("SRCNAME")
1497 << setw(10) << formatTime(timeCol(0), false);
1498 // count the cycles in the scan
1499 TableIterator cyciter(subt, "CYCLENO");
1500 int nint = 0;
1501 while (!cyciter.pastEnd()) {
1502 ++nint;
1503 ++cyciter;
1504 }
1505 oss << setw(3) << std::right << nint << setw(3) << " x " << std::left
1506 << setw(11) << formatSec(rec.asFloat("INTERVAL")) << setw(1) << ""
1507 << setw(15) << SrcType::getName(rec.asInt("SRCTYPE")) << endl;
1508
1509 TableIterator biter(subt, "BEAMNO");
1510 while (!biter.pastEnd()) {
1511 Table bsubt = biter.table();
1512 ROTableRow brow(bsubt);
1513 const TableRecord& brec = brow.get(0);
1514 uInt row0 = bsubt.rowNumbers(table_)[0];
1515 oss << setw(5) << "" << setw(4) << std::right << brec.asuInt("BEAMNO")<< std::left;
1516 oss << setw(4) << "" << formatDirection(getDirection(row0)) << endl;
1517 TableIterator iiter(bsubt, "IFNO");
1518 while (!iiter.pastEnd()) {
1519 Table isubt = iiter.table();
1520 ROTableRow irow(isubt);
1521 const TableRecord& irec = irow.get(0);
1522 oss << setw(9) << "";
1523 oss << setw(3) << std::right << irec.asuInt("IFNO") << std::left
1524 << setw(1) << "" << frequencies().print(irec.asuInt("FREQ_ID"))
1525 << setw(3) << "" << nchan(irec.asuInt("IFNO"))
1526 << endl;
1527
1528 ++iiter;
1529 }
1530 ++biter;
1531 }
1532 // Flush summary every scan and clear up the string
1533 ols << String(oss) << LogIO::POST;
1534 if (ofs) ofs << String(oss) << flush;
1535 oss.str("");
1536 oss.clear();
1537
1538 ++iter;
1539 }
1540 oss << asap::SEPERATOR << endl;
1541 ols << String(oss) << LogIO::POST;
1542 if (ofs) {
1543 ofs << String(oss) << flush;
1544 ofs.close();
1545 }
1546 // return String(oss);
1547}
1548
1549// std::string Scantable::getTime(int whichrow, bool showdate) const
1550// {
1551// MEpoch::ROScalarColumn timeCol(table_, "TIME");
1552// MEpoch me;
1553// if (whichrow > -1) {
1554// me = timeCol(uInt(whichrow));
1555// } else {
1556// Double tm;
1557// table_.keywordSet().get("UTC",tm);
1558// me = MEpoch(MVEpoch(tm));
1559// }
1560// return formatTime(me, showdate);
1561// }
1562
1563std::string Scantable::getTime(int whichrow, bool showdate, uInt prec) const
1564{
1565 MEpoch me;
1566 me = getEpoch(whichrow);
1567 return formatTime(me, showdate, prec);
1568}
1569
1570MEpoch Scantable::getEpoch(int whichrow) const
1571{
1572 if (whichrow > -1) {
1573 return timeCol_(uInt(whichrow));
1574 } else {
1575 Double tm;
1576 table_.keywordSet().get("UTC",tm);
1577 return MEpoch(MVEpoch(tm));
1578 }
1579}
1580
1581std::string Scantable::getDirectionString(int whichrow) const
1582{
1583 return formatDirection(getDirection(uInt(whichrow)));
1584}
1585
1586
1587SpectralCoordinate Scantable::getSpectralCoordinate(int whichrow) const {
1588 const MPosition& mp = getAntennaPosition();
1589 const MDirection& md = getDirection(whichrow);
1590 const MEpoch& me = timeCol_(whichrow);
1591 //Double rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1592 Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1593 return freqTable_.getSpectralCoordinate(md, mp, me, rf,
1594 mfreqidCol_(whichrow));
1595}
1596
1597std::vector< double > Scantable::getAbcissa( int whichrow ) const
1598{
1599 if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal row number"));
1600 std::vector<double> stlout;
1601 int nchan = specCol_(whichrow).nelements();
1602 String us = freqTable_.getUnitString();
1603 if ( us == "" || us == "pixel" || us == "channel" ) {
1604 for (int i=0; i<nchan; ++i) {
1605 stlout.push_back(double(i));
1606 }
1607 return stlout;
1608 }
1609 SpectralCoordinate spc = getSpectralCoordinate(whichrow);
1610 Vector<Double> pixel(nchan);
1611 Vector<Double> world;
1612 indgen(pixel);
1613 if ( Unit(us) == Unit("Hz") ) {
1614 for ( int i=0; i < nchan; ++i) {
1615 Double world;
1616 spc.toWorld(world, pixel[i]);
1617 stlout.push_back(double(world));
1618 }
1619 } else if ( Unit(us) == Unit("km/s") ) {
1620 Vector<Double> world;
1621 spc.pixelToVelocity(world, pixel);
1622 world.tovector(stlout);
1623 }
1624 return stlout;
1625}
1626void Scantable::setDirectionRefString( const std::string & refstr )
1627{
1628 MDirection::Types mdt;
1629 if (refstr != "" && !MDirection::getType(mdt, refstr)) {
1630 throw(AipsError("Illegal Direction frame."));
1631 }
1632 if ( refstr == "" ) {
1633 String defaultstr = MDirection::showType(dirCol_.getMeasRef().getType());
1634 table_.rwKeywordSet().define("DIRECTIONREF", defaultstr);
1635 } else {
1636 table_.rwKeywordSet().define("DIRECTIONREF", String(refstr));
1637 }
1638}
1639
1640std::string Scantable::getDirectionRefString( ) const
1641{
1642 return table_.keywordSet().asString("DIRECTIONREF");
1643}
1644
1645MDirection Scantable::getDirection(int whichrow ) const
1646{
1647 String usertype = table_.keywordSet().asString("DIRECTIONREF");
1648 String type = MDirection::showType(dirCol_.getMeasRef().getType());
1649 if ( usertype != type ) {
1650 MDirection::Types mdt;
1651 if (!MDirection::getType(mdt, usertype)) {
1652 throw(AipsError("Illegal Direction frame."));
1653 }
1654 return dirCol_.convert(uInt(whichrow), mdt);
1655 } else {
1656 return dirCol_(uInt(whichrow));
1657 }
1658}
1659
1660std::string Scantable::getAbcissaLabel( int whichrow ) const
1661{
1662 if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal ro number"));
1663 const MPosition& mp = getAntennaPosition();
1664 const MDirection& md = getDirection(whichrow);
1665 const MEpoch& me = timeCol_(whichrow);
1666 //const Double& rf = mmolidCol_(whichrow);
1667 const Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1668 SpectralCoordinate spc =
1669 freqTable_.getSpectralCoordinate(md, mp, me, rf, mfreqidCol_(whichrow));
1670
1671 String s = "Channel";
1672 Unit u = Unit(freqTable_.getUnitString());
1673 if (u == Unit("km/s")) {
1674 s = CoordinateUtil::axisLabel(spc, 0, True,True, True);
1675 } else if (u == Unit("Hz")) {
1676 Vector<String> wau(1);wau = u.getName();
1677 spc.setWorldAxisUnits(wau);
1678 s = CoordinateUtil::axisLabel(spc, 0, True, True, False);
1679 }
1680 return s;
1681
1682}
1683
1684/**
1685void asap::Scantable::setRestFrequencies( double rf, const std::string& name,
1686 const std::string& unit )
1687**/
1688void Scantable::setRestFrequencies( vector<double> rf, const vector<std::string>& name,
1689 const std::string& unit )
1690
1691{
1692 ///@todo lookup in line table to fill in name and formattedname
1693 Unit u(unit);
1694 //Quantum<Double> urf(rf, u);
1695 Quantum<Vector<Double> >urf(rf, u);
1696 Vector<String> formattedname(0);
1697 //cerr<<"Scantable::setRestFrequnecies="<<urf<<endl;
1698
1699 //uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), name, "");
1700 uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), mathutil::toVectorString(name), formattedname);
1701 TableVector<uInt> tabvec(table_, "MOLECULE_ID");
1702 tabvec = id;
1703}
1704
1705/**
1706void asap::Scantable::setRestFrequencies( const std::string& name )
1707{
1708 throw(AipsError("setRestFrequencies( const std::string& name ) NYI"));
1709 ///@todo implement
1710}
1711**/
1712
1713void Scantable::setRestFrequencies( const vector<std::string>& name )
1714{
1715 (void) name; // suppress unused warning
1716 throw(AipsError("setRestFrequencies( const vector<std::string>& name ) NYI"));
1717 ///@todo implement
1718}
1719
1720std::vector< unsigned int > Scantable::rownumbers( ) const
1721{
1722 std::vector<unsigned int> stlout;
1723 Vector<uInt> vec = table_.rowNumbers();
1724 vec.tovector(stlout);
1725 return stlout;
1726}
1727
1728
1729Matrix<Float> Scantable::getPolMatrix( uInt whichrow ) const
1730{
1731 ROTableRow row(table_);
1732 const TableRecord& rec = row.get(whichrow);
1733 Table t =
1734 originalTable_( originalTable_.col("SCANNO") == Int(rec.asuInt("SCANNO"))
1735 && originalTable_.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1736 && originalTable_.col("IFNO") == Int(rec.asuInt("IFNO"))
1737 && originalTable_.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
1738 ROArrayColumn<Float> speccol(t, "SPECTRA");
1739 return speccol.getColumn();
1740}
1741
1742std::vector< std::string > Scantable::columnNames( ) const
1743{
1744 Vector<String> vec = table_.tableDesc().columnNames();
1745 return mathutil::tovectorstring(vec);
1746}
1747
1748MEpoch::Types Scantable::getTimeReference( ) const
1749{
1750 return MEpoch::castType(timeCol_.getMeasRef().getType());
1751}
1752
1753void Scantable::addFit( const STFitEntry& fit, int row )
1754{
1755 //cout << mfitidCol_(uInt(row)) << endl;
1756 LogIO os( LogOrigin( "Scantable", "addFit()", WHERE ) ) ;
1757 os << mfitidCol_(uInt(row)) << LogIO::POST ;
1758 uInt id = fitTable_.addEntry(fit, mfitidCol_(uInt(row)));
1759 mfitidCol_.put(uInt(row), id);
1760}
1761
1762void Scantable::shift(int npix)
1763{
1764 Vector<uInt> fids(mfreqidCol_.getColumn());
1765 genSort( fids, Sort::Ascending,
1766 Sort::QuickSort|Sort::NoDuplicates );
1767 for (uInt i=0; i<fids.nelements(); ++i) {
1768 frequencies().shiftRefPix(npix, fids[i]);
1769 }
1770}
1771
1772String Scantable::getAntennaName() const
1773{
1774 String out;
1775 table_.keywordSet().get("AntennaName", out);
1776 String::size_type pos1 = out.find("@") ;
1777 String::size_type pos2 = out.find("//") ;
1778 if ( pos2 != String::npos )
1779 out = out.substr(pos2+2,pos1-pos2-2) ;
1780 else if ( pos1 != String::npos )
1781 out = out.substr(0,pos1) ;
1782 return out;
1783}
1784
1785int Scantable::checkScanInfo(const std::vector<int>& scanlist) const
1786{
1787 String tbpath;
1788 int ret = 0;
1789 if ( table_.keywordSet().isDefined("GBT_GO") ) {
1790 table_.keywordSet().get("GBT_GO", tbpath);
1791 Table t(tbpath,Table::Old);
1792 // check each scan if other scan of the pair exist
1793 int nscan = scanlist.size();
1794 for (int i = 0; i < nscan; i++) {
1795 Table subt = t( t.col("SCAN") == scanlist[i] );
1796 if (subt.nrow()==0) {
1797 //cerr <<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<endl;
1798 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1799 os <<LogIO::WARN<<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<LogIO::POST;
1800 ret = 1;
1801 break;
1802 }
1803 ROTableRow row(subt);
1804 const TableRecord& rec = row.get(0);
1805 int scan1seqn = rec.asuInt("PROCSEQN");
1806 int laston1 = rec.asuInt("LASTON");
1807 if ( rec.asuInt("PROCSIZE")==2 ) {
1808 if ( i < nscan-1 ) {
1809 Table subt2 = t( t.col("SCAN") == scanlist[i+1] );
1810 if ( subt2.nrow() == 0) {
1811 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1812
1813 //cerr<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<endl;
1814 os<<LogIO::WARN<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<LogIO::POST;
1815 ret = 1;
1816 break;
1817 }
1818 ROTableRow row2(subt2);
1819 const TableRecord& rec2 = row2.get(0);
1820 int scan2seqn = rec2.asuInt("PROCSEQN");
1821 int laston2 = rec2.asuInt("LASTON");
1822 if (scan1seqn == 1 && scan2seqn == 2) {
1823 if (laston1 == laston2) {
1824 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1825 //cerr<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1826 os<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
1827 i +=1;
1828 }
1829 else {
1830 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1831 //cerr<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1832 os<<LogIO::WARN<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
1833 }
1834 }
1835 else if (scan1seqn==2 && scan2seqn == 1) {
1836 if (laston1 == laston2) {
1837 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1838 //cerr<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<endl;
1839 os<<LogIO::WARN<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<LogIO::POST;
1840 ret = 1;
1841 break;
1842 }
1843 }
1844 else {
1845 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1846 //cerr<<"The other scan for "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<endl;
1847 os<<LogIO::WARN<<"The other scan for "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<LogIO::POST;
1848 ret = 1;
1849 break;
1850 }
1851 }
1852 }
1853 else {
1854 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1855 //cerr<<"The scan does not appear to be standard obsevation."<<endl;
1856 os<<LogIO::WARN<<"The scan does not appear to be standard obsevation."<<LogIO::POST;
1857 }
1858 //if ( i >= nscan ) break;
1859 }
1860 }
1861 else {
1862 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1863 //cerr<<"No reference to GBT_GO table."<<endl;
1864 os<<LogIO::WARN<<"No reference to GBT_GO table."<<LogIO::POST;
1865 ret = 1;
1866 }
1867 return ret;
1868}
1869
1870std::vector<double> Scantable::getDirectionVector(int whichrow) const
1871{
1872 Vector<Double> Dir = dirCol_(whichrow).getAngle("rad").getValue();
1873 std::vector<double> dir;
1874 Dir.tovector(dir);
1875 return dir;
1876}
1877
1878void asap::Scantable::reshapeSpectrum( int nmin, int nmax )
1879 throw( casa::AipsError )
1880{
1881 // assumed that all rows have same nChan
1882 Vector<Float> arr = specCol_( 0 ) ;
1883 int nChan = arr.nelements() ;
1884
1885 // if nmin < 0 or nmax < 0, nothing to do
1886 if ( nmin < 0 ) {
1887 throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1888 }
1889 if ( nmax < 0 ) {
1890 throw( casa::indexError<int>( nmax, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1891 }
1892
1893 // if nmin > nmax, exchange values
1894 if ( nmin > nmax ) {
1895 int tmp = nmax ;
1896 nmax = nmin ;
1897 nmin = tmp ;
1898 LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1899 os << "Swap values. Applied range is ["
1900 << nmin << ", " << nmax << "]" << LogIO::POST ;
1901 }
1902
1903 // if nmin exceeds nChan, nothing to do
1904 if ( nmin >= nChan ) {
1905 throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Specified minimum exceeds nChan." ) ) ;
1906 }
1907
1908 // if nmax exceeds nChan, reset nmax to nChan
1909 if ( nmax >= nChan-1 ) {
1910 if ( nmin == 0 ) {
1911 // nothing to do
1912 LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1913 os << "Whole range is selected. Nothing to do." << LogIO::POST ;
1914 return ;
1915 }
1916 else {
1917 LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1918 os << "Specified maximum exceeds nChan. Applied range is ["
1919 << nmin << ", " << nChan-1 << "]." << LogIO::POST ;
1920 nmax = nChan - 1 ;
1921 }
1922 }
1923
1924 // reshape specCol_ and flagCol_
1925 for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1926 reshapeSpectrum( nmin, nmax, irow ) ;
1927 }
1928
1929 // update FREQUENCIES subtable
1930 Vector<uInt> freqIdArray = mfreqidCol_.getColumn();
1931 uInt numFreqId = GenSort<uInt>::sort(freqIdArray, Sort::Ascending,
1932 Sort::HeapSort | Sort::NoDuplicates);
1933 Double refpix ;
1934 Double refval ;
1935 Double increment ;
1936 for (uInt irow = 0; irow < numFreqId; irow++) {
1937 freqTable_.getEntry( refpix, refval, increment, freqIdArray[irow] ) ;
1938 /***
1939 * need to shift refpix to nmin
1940 * note that channel nmin in old index will be channel 0 in new one
1941 ***/
1942 refval = refval - ( refpix - nmin ) * increment ;
1943 refpix = 0 ;
1944 freqTable_.setEntry( refpix, refval, increment, freqIdArray[irow] ) ;
1945 }
1946
1947 // update nchan
1948 int newsize = nmax - nmin + 1 ;
1949 table_.rwKeywordSet().define( "nChan", newsize ) ;
1950
1951 // update bandwidth
1952 // assumed all spectra in the scantable have same bandwidth
1953 table_.rwKeywordSet().define( "Bandwidth", increment * newsize ) ;
1954
1955 return ;
1956}
1957
1958void asap::Scantable::reshapeSpectrum( int nmin, int nmax, int irow )
1959{
1960 // reshape specCol_ and flagCol_
1961 Vector<Float> oldspec = specCol_( irow ) ;
1962 Vector<uChar> oldflag = flagsCol_( irow ) ;
1963 Vector<Float> oldtsys = tsysCol_( irow ) ;
1964 uInt newsize = nmax - nmin + 1 ;
1965 Slice slice( nmin, newsize, 1 ) ;
1966 specCol_.put( irow, oldspec( slice ) ) ;
1967 flagsCol_.put( irow, oldflag( slice ) ) ;
1968 if ( oldspec.size() == oldtsys.size() )
1969 tsysCol_.put( irow, oldtsys( slice ) ) ;
1970
1971 return ;
1972}
1973
1974void asap::Scantable::regridSpecChannel( double dnu, int nChan )
1975{
1976 LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
1977 os << "Regrid abcissa with spectral resoultion " << dnu << " " << freqTable_.getUnitString() << " with channel number " << ((nChan>0)? String(nChan) : "covering band width")<< LogIO::POST ;
1978 int freqnrow = freqTable_.table().nrow() ;
1979 Vector<bool> firstTime( freqnrow, true ) ;
1980 double oldincr, factor;
1981 uInt currId;
1982 Double refpix ;
1983 Double refval ;
1984 Double increment ;
1985 for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1986 currId = mfreqidCol_(irow);
1987 vector<double> abcissa = getAbcissa( irow ) ;
1988 if (nChan < 0) {
1989 int oldsize = abcissa.size() ;
1990 double bw = (abcissa[oldsize-1]-abcissa[0]) + \
1991 0.5 * (abcissa[1]-abcissa[0] + abcissa[oldsize-1]-abcissa[oldsize-2]) ;
1992 nChan = int( ceil( abs(bw/dnu) ) ) ;
1993 }
1994 // actual regridding
1995 regridChannel( nChan, dnu, irow ) ;
1996
1997 // update FREQUENCIES subtable
1998 if (firstTime[currId]) {
1999 oldincr = abcissa[1]-abcissa[0] ;
2000 factor = dnu/oldincr ;
2001 firstTime[currId] = false ;
2002 freqTable_.getEntry( refpix, refval, increment, currId ) ;
2003
2004 //refval = refval - ( refpix + 0.5 * (1 - factor) ) * increment ;
2005 if (factor > 0 ) {
2006 refpix = (refpix + 0.5)/factor - 0.5;
2007 } else {
2008 refpix = (abcissa.size() - 0.5 - refpix)/abs(factor) - 0.5;
2009 }
2010 freqTable_.setEntry( refpix, refval, increment*factor, currId ) ;
2011 //os << "ID" << currId << ": channel width (Orig) = " << oldincr << " [" << freqTable_.getUnitString() << "], scale factor = " << factor << LogIO::POST ;
2012 //os << " frequency increment (Orig) = " << increment << "-> (New) " << increment*factor << LogIO::POST ;
2013 }
2014 }
2015}
2016
2017void asap::Scantable::regridChannel( int nChan, double dnu )
2018{
2019 LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
2020 os << "Regrid abcissa with channel number " << nChan << " and spectral resoultion " << dnu << "Hz." << LogIO::POST ;
2021 // assumed that all rows have same nChan
2022 Vector<Float> arr = specCol_( 0 ) ;
2023 int oldsize = arr.nelements() ;
2024
2025 // if oldsize == nChan, nothing to do
2026 if ( oldsize == nChan ) {
2027 os << "Specified channel number is same as current one. Nothing to do." << LogIO::POST ;
2028 return ;
2029 }
2030
2031 // if oldChan < nChan, unphysical operation
2032 if ( oldsize < nChan ) {
2033 os << "Unphysical operation. Nothing to do." << LogIO::POST ;
2034 return ;
2035 }
2036
2037 // change channel number for specCol_, flagCol_, and tsysCol_ (if necessary)
2038 vector<string> coordinfo = getCoordInfo() ;
2039 string oldinfo = coordinfo[0] ;
2040 coordinfo[0] = "Hz" ;
2041 setCoordInfo( coordinfo ) ;
2042 for ( int irow = 0 ; irow < nrow() ; irow++ ) {
2043 regridChannel( nChan, dnu, irow ) ;
2044 }
2045 coordinfo[0] = oldinfo ;
2046 setCoordInfo( coordinfo ) ;
2047
2048
2049 // NOTE: this method does not update metadata such as
2050 // FREQUENCIES subtable, nChan, Bandwidth, etc.
2051
2052 return ;
2053}
2054
2055void asap::Scantable::regridChannel( int nChan, double dnu, int irow )
2056{
2057 // logging
2058 //ofstream ofs( "average.log", std::ios::out | std::ios::app ) ;
2059 //ofs << "IFNO = " << getIF( irow ) << " irow = " << irow << endl ;
2060
2061 Vector<Float> oldspec = specCol_( irow ) ;
2062 Vector<uChar> oldflag = flagsCol_( irow ) ;
2063 Vector<Float> oldtsys = tsysCol_( irow ) ;
2064 Vector<Float> newspec( nChan, 0 ) ;
2065 Vector<uChar> newflag( nChan, true ) ;
2066 Vector<Float> newtsys ;
2067 bool regridTsys = false ;
2068 if (oldtsys.size() == oldspec.size()) {
2069 regridTsys = true ;
2070 newtsys.resize(nChan,false) ;
2071 newtsys = 0 ;
2072 }
2073
2074 // regrid
2075 vector<double> abcissa = getAbcissa( irow ) ;
2076 int oldsize = abcissa.size() ;
2077 double olddnu = abcissa[1] - abcissa[0] ;
2078 //int ichan = 0 ;
2079 double wsum = 0.0 ;
2080 Vector<double> zi( nChan+1 ) ;
2081 Vector<double> yi( oldsize + 1 ) ;
2082 yi[0] = abcissa[0] - 0.5 * olddnu ;
2083 for ( int ii = 1 ; ii < oldsize ; ii++ )
2084 yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ;
2085 yi[oldsize] = abcissa[oldsize-1] \
2086 + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ;
2087 //zi[0] = abcissa[0] - 0.5 * olddnu ;
2088 zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ;
2089 for ( int ii = 1 ; ii < nChan ; ii++ )
2090 zi[ii] = zi[0] + dnu * ii ;
2091 zi[nChan] = zi[nChan-1] + dnu ;
2092 // Access zi and yi in ascending order
2093 int izs = ((dnu > 0) ? 0 : nChan ) ;
2094 int ize = ((dnu > 0) ? nChan : 0 ) ;
2095 int izincr = ((dnu > 0) ? 1 : -1 ) ;
2096 int ichan = ((olddnu > 0) ? 0 : oldsize ) ;
2097 int iye = ((olddnu > 0) ? oldsize : 0 ) ;
2098 int iyincr = ((olddnu > 0) ? 1 : -1 ) ;
2099 //for ( int ii = izs ; ii != ize ; ii+=izincr ){
2100 int ii = izs ;
2101 while (ii != ize) {
2102 // always zl < zr
2103 double zl = zi[ii] ;
2104 double zr = zi[ii+izincr] ;
2105 // Need to access smaller index for the new spec, flag, and tsys.
2106 // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc.
2107 int i = min(ii, ii+izincr) ;
2108 //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) {
2109 int jj = ichan ;
2110 while (jj != iye) {
2111 // always yl < yr
2112 double yl = yi[jj] ;
2113 double yr = yi[jj+iyincr] ;
2114 // Need to access smaller index for the original spec, flag, and tsys.
2115 // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc.
2116 int j = min(jj, jj+iyincr) ;
2117 if ( yr <= zl ) {
2118 jj += iyincr ;
2119 continue ;
2120 }
2121 else if ( yl <= zl ) {
2122 if ( yr < zr ) {
2123 if (!oldflag[j]) {
2124 newspec[i] += oldspec[j] * ( yr - zl ) ;
2125 if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ;
2126 wsum += ( yr - zl ) ;
2127 }
2128 newflag[i] = (newflag[i] && oldflag[j]) ? 1 << 7 : 0 ;
2129 }
2130 else {
2131 if (!oldflag[j]) {
2132 newspec[i] += oldspec[j] * abs(dnu) ;
2133 if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ;
2134 wsum += abs(dnu) ;
2135 }
2136 newflag[i] = (newflag[i] && oldflag[j]) ? 1 << 7 : 0 ;
2137 ichan = jj ;
2138 break ;
2139 }
2140 }
2141 else if ( yl < zr ) {
2142 if ( yr <= zr ) {
2143 if (!oldflag[j]) {
2144 newspec[i] += oldspec[j] * ( yr - yl ) ;
2145 if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ;
2146 wsum += ( yr - yl ) ;
2147 }
2148 newflag[i] = (newflag[i] && oldflag[j]) ? 1 << 7 : 0 ;
2149 }
2150 else {
2151 if (!oldflag[j]) {
2152 newspec[i] += oldspec[j] * ( zr - yl ) ;
2153 if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ;
2154 wsum += ( zr - yl ) ;
2155 }
2156 newflag[i] = (newflag[i] && oldflag[j]) ? 1 << 7 : 0 ;
2157 ichan = jj ;
2158 break ;
2159 }
2160 }
2161 else {
2162 ichan = jj - iyincr ;
2163 break ;
2164 }
2165 jj += iyincr ;
2166 }
2167 if ( wsum != 0.0 ) {
2168 newspec[i] /= wsum ;
2169 if (regridTsys) newtsys[i] /= wsum ;
2170 }
2171 wsum = 0.0 ;
2172 ii += izincr ;
2173 }
2174// if ( dnu > 0.0 ) {
2175// for ( int ii = 0 ; ii < nChan ; ii++ ) {
2176// double zl = zi[ii] ;
2177// double zr = zi[ii+1] ;
2178// for ( int j = ichan ; j < oldsize ; j++ ) {
2179// double yl = yi[j] ;
2180// double yr = yi[j+1] ;
2181// if ( yl <= zl ) {
2182// if ( yr <= zl ) {
2183// continue ;
2184// }
2185// else if ( yr <= zr ) {
2186// if (!oldflag[j]) {
2187// newspec[ii] += oldspec[j] * ( yr - zl ) ;
2188// if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - zl ) ;
2189// wsum += ( yr - zl ) ;
2190// }
2191// newflag[ii] = newflag[ii] && oldflag[j] ;
2192// }
2193// else {
2194// if (!oldflag[j]) {
2195// newspec[ii] += oldspec[j] * dnu ;
2196// if (regridTsys) newtsys[ii] += oldtsys[j] * dnu ;
2197// wsum += dnu ;
2198// }
2199// newflag[ii] = newflag[ii] && oldflag[j] ;
2200// ichan = j ;
2201// break ;
2202// }
2203// }
2204// else if ( yl < zr ) {
2205// if ( yr <= zr ) {
2206// if (!oldflag[j]) {
2207// newspec[ii] += oldspec[j] * ( yr - yl ) ;
2208// if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - yl ) ;
2209// wsum += ( yr - yl ) ;
2210// }
2211// newflag[ii] = newflag[ii] && oldflag[j] ;
2212// }
2213// else {
2214// if (!oldflag[j]) {
2215// newspec[ii] += oldspec[j] * ( zr - yl ) ;
2216// if (regridTsys) newtsys[ii] += oldtsys[j] * ( zr - yl ) ;
2217// wsum += ( zr - yl ) ;
2218// }
2219// newflag[ii] = newflag[ii] && oldflag[j] ;
2220// ichan = j ;
2221// break ;
2222// }
2223// }
2224// else {
2225// ichan = j - 1 ;
2226// break ;
2227// }
2228// }
2229// if ( wsum != 0.0 ) {
2230// newspec[ii] /= wsum ;
2231// if (regridTsys) newtsys[ii] /= wsum ;
2232// }
2233// wsum = 0.0 ;
2234// }
2235// }
2236// else if ( dnu < 0.0 ) {
2237// for ( int ii = 0 ; ii < nChan ; ii++ ) {
2238// double zl = zi[ii] ;
2239// double zr = zi[ii+1] ;
2240// for ( int j = ichan ; j < oldsize ; j++ ) {
2241// double yl = yi[j] ;
2242// double yr = yi[j+1] ;
2243// if ( yl >= zl ) {
2244// if ( yr >= zl ) {
2245// continue ;
2246// }
2247// else if ( yr >= zr ) {
2248// if (!oldflag[j]) {
2249// newspec[ii] += oldspec[j] * abs( yr - zl ) ;
2250// if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - zl ) ;
2251// wsum += abs( yr - zl ) ;
2252// }
2253// newflag[ii] = newflag[ii] && oldflag[j] ;
2254// }
2255// else {
2256// if (!oldflag[j]) {
2257// newspec[ii] += oldspec[j] * abs( dnu ) ;
2258// if (regridTsys) newtsys[ii] += oldtsys[j] * abs( dnu ) ;
2259// wsum += abs( dnu ) ;
2260// }
2261// newflag[ii] = newflag[ii] && oldflag[j] ;
2262// ichan = j ;
2263// break ;
2264// }
2265// }
2266// else if ( yl > zr ) {
2267// if ( yr >= zr ) {
2268// if (!oldflag[j]) {
2269// newspec[ii] += oldspec[j] * abs( yr - yl ) ;
2270// if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - yl ) ;
2271// wsum += abs( yr - yl ) ;
2272// }
2273// newflag[ii] = newflag[ii] && oldflag[j] ;
2274// }
2275// else {
2276// if (!oldflag[j]) {
2277// newspec[ii] += oldspec[j] * abs( zr - yl ) ;
2278// if (regridTsys) newtsys[ii] += oldtsys[j] * abs( zr - yl ) ;
2279// wsum += abs( zr - yl ) ;
2280// }
2281// newflag[ii] = newflag[ii] && oldflag[j] ;
2282// ichan = j ;
2283// break ;
2284// }
2285// }
2286// else {
2287// ichan = j - 1 ;
2288// break ;
2289// }
2290// }
2291// if ( wsum != 0.0 ) {
2292// newspec[ii] /= wsum ;
2293// if (regridTsys) newtsys[ii] /= wsum ;
2294// }
2295// wsum = 0.0 ;
2296// }
2297// }
2298// // //ofs << "olddnu = " << olddnu << ", dnu = " << dnu << endl ;
2299// // pile += dnu ;
2300// // wedge = olddnu * ( refChan + 1 ) ;
2301// // while ( wedge < pile ) {
2302// // newspec[0] += olddnu * oldspec[refChan] ;
2303// // newflag[0] = newflag[0] || oldflag[refChan] ;
2304// // //ofs << "channel " << refChan << " is included in new channel 0" << endl ;
2305// // refChan++ ;
2306// // wedge += olddnu ;
2307// // wsum += olddnu ;
2308// // //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2309// // }
2310// // frac = ( wedge - pile ) / olddnu ;
2311// // wsum += ( 1.0 - frac ) * olddnu ;
2312// // newspec[0] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2313// // newflag[0] = newflag[0] || oldflag[refChan] ;
2314// // //ofs << "channel " << refChan << " is partly included in new channel 0" << " with fraction of " << ( 1.0 - frac ) << endl ;
2315// // //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2316// // newspec[0] /= wsum ;
2317// // //ofs << "newspec[0] = " << newspec[0] << endl ;
2318// // //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2319
2320// // /***
2321// // * ichan = 1 - nChan-2
2322// // ***/
2323// // for ( int ichan = 1 ; ichan < nChan - 1 ; ichan++ ) {
2324// // pile += dnu ;
2325// // newspec[ichan] += frac * olddnu * oldspec[refChan] ;
2326// // newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2327// // //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << frac << endl ;
2328// // refChan++ ;
2329// // wedge += olddnu ;
2330// // wsum = frac * olddnu ;
2331// // //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2332// // while ( wedge < pile ) {
2333// // newspec[ichan] += olddnu * oldspec[refChan] ;
2334// // newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2335// // //ofs << "channel " << refChan << " is included in new channel " << ichan << endl ;
2336// // refChan++ ;
2337// // wedge += olddnu ;
2338// // wsum += olddnu ;
2339// // //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2340// // }
2341// // frac = ( wedge - pile ) / olddnu ;
2342// // wsum += ( 1.0 - frac ) * olddnu ;
2343// // newspec[ichan] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2344// // newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2345// // //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << ( 1.0 - frac ) << endl ;
2346// // //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2347// // //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2348// // newspec[ichan] /= wsum ;
2349// // //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << endl ;
2350// // }
2351
2352// // /***
2353// // * ichan = nChan-1
2354// // ***/
2355// // // NOTE: Assumed that all spectra have the same bandwidth
2356// // pile += dnu ;
2357// // newspec[nChan-1] += frac * olddnu * oldspec[refChan] ;
2358// // newflag[nChan-1] = newflag[nChan-1] || oldflag[refChan] ;
2359// // //ofs << "channel " << refChan << " is partly included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2360// // refChan++ ;
2361// // wedge += olddnu ;
2362// // wsum = frac * olddnu ;
2363// // //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2364// // for ( int jchan = refChan ; jchan < oldsize ; jchan++ ) {
2365// // newspec[nChan-1] += olddnu * oldspec[jchan] ;
2366// // newflag[nChan-1] = newflag[nChan-1] || oldflag[jchan] ;
2367// // wsum += olddnu ;
2368// // //ofs << "channel " << jchan << " is included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2369// // //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2370// // }
2371// // //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2372// // //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2373// // newspec[nChan-1] /= wsum ;
2374// // //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << endl ;
2375
2376// // // ofs.close() ;
2377
2378 specCol_.put( irow, newspec ) ;
2379 flagsCol_.put( irow, newflag ) ;
2380 if (regridTsys) tsysCol_.put( irow, newtsys );
2381
2382 return ;
2383}
2384
2385void Scantable::regridChannel( int nChan, double dnu, double fmin, int irow )
2386{
2387 Vector<Float> oldspec = specCol_( irow ) ;
2388 Vector<uChar> oldflag = flagsCol_( irow ) ;
2389 Vector<Float> oldtsys = tsysCol_( irow ) ;
2390 Vector<Float> newspec( nChan, 0 ) ;
2391 Vector<uChar> newflag( nChan, true ) ;
2392 Vector<Float> newtsys ;
2393 bool regridTsys = false ;
2394 if (oldtsys.size() == oldspec.size()) {
2395 regridTsys = true ;
2396 newtsys.resize(nChan,false) ;
2397 newtsys = 0 ;
2398 }
2399
2400 // regrid
2401 vector<double> abcissa = getAbcissa( irow ) ;
2402 int oldsize = abcissa.size() ;
2403 double olddnu = abcissa[1] - abcissa[0] ;
2404 //int ichan = 0 ;
2405 double wsum = 0.0 ;
2406 Vector<double> zi( nChan+1 ) ;
2407 Vector<double> yi( oldsize + 1 ) ;
2408 Block<uInt> count( nChan, 0 ) ;
2409 yi[0] = abcissa[0] - 0.5 * olddnu ;
2410 for ( int ii = 1 ; ii < oldsize ; ii++ )
2411 yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ;
2412 yi[oldsize] = abcissa[oldsize-1] \
2413 + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ;
2414// cout << "olddnu=" << olddnu << ", dnu=" << dnu << " (diff=" << olddnu-dnu << ")" << endl ;
2415// cout << "yi[0]=" << yi[0] << ", fmin=" << fmin << " (diff=" << yi[0]-fmin << ")" << endl ;
2416// cout << "oldsize=" << oldsize << ", nChan=" << nChan << endl ;
2417
2418 // do not regrid if input parameters are almost same as current
2419 // spectral setup
2420 double dnuDiff = abs( ( dnu - olddnu ) / olddnu ) ;
2421 double oldfmin = min( yi[0], yi[oldsize] ) ;
2422 double fminDiff = abs( ( fmin - oldfmin ) / oldfmin ) ;
2423 double nChanDiff = nChan - oldsize ;
2424 double eps = 1.0e-8 ;
2425 if ( nChanDiff == 0 && dnuDiff < eps && fminDiff < eps )
2426 return ;
2427
2428 //zi[0] = abcissa[0] - 0.5 * olddnu ;
2429 //zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ;
2430 if ( dnu > 0 )
2431 zi[0] = fmin - 0.5 * dnu ;
2432 else
2433 zi[0] = fmin + nChan * abs(dnu) ;
2434 for ( int ii = 1 ; ii < nChan ; ii++ )
2435 zi[ii] = zi[0] + dnu * ii ;
2436 zi[nChan] = zi[nChan-1] + dnu ;
2437 // Access zi and yi in ascending order
2438 int izs = ((dnu > 0) ? 0 : nChan ) ;
2439 int ize = ((dnu > 0) ? nChan : 0 ) ;
2440 int izincr = ((dnu > 0) ? 1 : -1 ) ;
2441 int ichan = ((olddnu > 0) ? 0 : oldsize ) ;
2442 int iye = ((olddnu > 0) ? oldsize : 0 ) ;
2443 int iyincr = ((olddnu > 0) ? 1 : -1 ) ;
2444 //for ( int ii = izs ; ii != ize ; ii+=izincr ){
2445 int ii = izs ;
2446 while (ii != ize) {
2447 // always zl < zr
2448 double zl = zi[ii] ;
2449 double zr = zi[ii+izincr] ;
2450 // Need to access smaller index for the new spec, flag, and tsys.
2451 // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc.
2452 int i = min(ii, ii+izincr) ;
2453 //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) {
2454 int jj = ichan ;
2455 while (jj != iye) {
2456 // always yl < yr
2457 double yl = yi[jj] ;
2458 double yr = yi[jj+iyincr] ;
2459 // Need to access smaller index for the original spec, flag, and tsys.
2460 // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc.
2461 int j = min(jj, jj+iyincr) ;
2462 if ( yr <= zl ) {
2463 jj += iyincr ;
2464 continue ;
2465 }
2466 else if ( yl <= zl ) {
2467 if ( yr < zr ) {
2468 if (!oldflag[j]) {
2469 newspec[i] += oldspec[j] * ( yr - zl ) ;
2470 if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ;
2471 wsum += ( yr - zl ) ;
2472 count[i]++ ;
2473 }
2474 newflag[i] = newflag[i] && oldflag[j] ;
2475 }
2476 else {
2477 if (!oldflag[j]) {
2478 newspec[i] += oldspec[j] * abs(dnu) ;
2479 if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ;
2480 wsum += abs(dnu) ;
2481 count[i]++ ;
2482 }
2483 newflag[i] = newflag[i] && oldflag[j] ;
2484 ichan = jj ;
2485 break ;
2486 }
2487 }
2488 else if ( yl < zr ) {
2489 if ( yr <= zr ) {
2490 if (!oldflag[j]) {
2491 newspec[i] += oldspec[j] * ( yr - yl ) ;
2492 if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ;
2493 wsum += ( yr - yl ) ;
2494 count[i]++ ;
2495 }
2496 newflag[i] = newflag[i] && oldflag[j] ;
2497 }
2498 else {
2499 if (!oldflag[j]) {
2500 newspec[i] += oldspec[j] * ( zr - yl ) ;
2501 if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ;
2502 wsum += ( zr - yl ) ;
2503 count[i]++ ;
2504 }
2505 newflag[i] = newflag[i] && oldflag[j] ;
2506 ichan = jj ;
2507 break ;
2508 }
2509 }
2510 else {
2511 //ichan = jj - iyincr ;
2512 break ;
2513 }
2514 jj += iyincr ;
2515 }
2516 if ( wsum != 0.0 ) {
2517 newspec[i] /= wsum ;
2518 if (regridTsys) newtsys[i] /= wsum ;
2519 }
2520 wsum = 0.0 ;
2521 ii += izincr ;
2522 }
2523
2524 // flag out channels without data
2525 // this is tentative since there is no specific definition
2526 // on bit flag...
2527 uChar noData = 1 << 7 ;
2528 for ( Int i = 0 ; i < nChan ; i++ ) {
2529 if ( count[i] == 0 )
2530 newflag[i] = noData ;
2531 }
2532
2533 specCol_.put( irow, newspec ) ;
2534 flagsCol_.put( irow, newflag ) ;
2535 if (regridTsys) tsysCol_.put( irow, newtsys );
2536
2537 return ;
2538}
2539
2540std::vector<float> Scantable::getWeather(int whichrow) const
2541{
2542 std::vector<float> out(5);
2543 //Float temperature, pressure, humidity, windspeed, windaz;
2544 weatherTable_.getEntry(out[0], out[1], out[2], out[3], out[4],
2545 mweatheridCol_(uInt(whichrow)));
2546
2547
2548 return out;
2549}
2550
2551bool Scantable::isAllChannelsFlagged(uInt whichrow)
2552{
2553 uInt rflag;
2554 flagrowCol_.get(whichrow, rflag);
2555 if (rflag > 0)
2556 return true;
2557 bool flag;
2558 Vector<uChar> flags;
2559 flagsCol_.get(whichrow, flags);
2560 flag = (flags[0]>0);
2561 for (uInt i = 1; i < flags.size(); ++i) {
2562 flag &= (flags[i]>0);
2563 }
2564 // return ((flag >> 7) == 1);
2565 return (flag > 0);
2566}
2567
2568std::size_t Scantable::nValidMask(const std::vector<bool>& mask)
2569{
2570 std::size_t nvalid=0;
2571 // the assertion lines had better be replaced with static_assert when c++11 is supported
2572 AlwaysAssert(static_cast<std::size_t>(true)==1, AipsError);
2573 AlwaysAssert(static_cast<std::size_t>(false)==0, AipsError);
2574 for (uInt i = 1; i < mask.size(); ++i) {
2575 nvalid += static_cast<std::size_t>(mask[i]);
2576 }
2577 return nvalid;
2578}
2579
2580
2581std::vector<std::string> Scantable::applyBaselineTable(const std::string& bltable, const bool returnfitresult, const std::string& outbltable, const bool outbltableexists, const bool overwrite)
2582{
2583 STBaselineTable btin = STBaselineTable(bltable);
2584
2585 Vector<Bool> applyCol = btin.getApply();
2586 int nRowBl = applyCol.size();
2587 if (nRowBl != nrow()) {
2588 throw(AipsError("Scantable and bltable have different number of rows."));
2589 }
2590
2591 std::vector<std::string> res;
2592 res.clear();
2593
2594 bool outBaselineTable = ((outbltable != "") && (!outbltableexists || overwrite));
2595 bool bltableidentical = (bltable == outbltable);
2596 STBaselineTable btout = STBaselineTable(*this);
2597 ROScalarColumn<Double> tcol = ROScalarColumn<Double>(table_, "TIME");
2598 Vector<Double> timeSecCol = tcol.getColumn();
2599
2600 for (int whichrow = 0; whichrow < nRowBl; ++whichrow) {
2601 if (applyCol[whichrow]) {
2602 std::vector<float> spec = getSpectrum(whichrow);
2603
2604 std::vector<bool> mask = btin.getMask(whichrow); //use mask_bltable only
2605
2606 STBaselineFunc::FuncName ftype = btin.getFunctionName(whichrow);
2607 std::vector<int> fpar = btin.getFuncParam(whichrow);
2608 std::vector<float> params;
2609 float rms;
2610 std::vector<float> resfit = doApplyBaselineTable(spec, mask, ftype, fpar, params, rms);
2611 setSpectrum(resfit, whichrow);
2612
2613 if (returnfitresult) {
2614 res.push_back(packFittingResults(whichrow, params, rms));
2615 }
2616
2617 if (outBaselineTable) {
2618 if (outbltableexists) {
2619 if (overwrite) {
2620 if (bltableidentical) {
2621 btin.setresult(uInt(whichrow), Vector<Float>(params), Float(rms));
2622 } else {
2623 btout.setresult(uInt(whichrow), Vector<Float>(params), Float(rms));
2624 }
2625 }
2626 } else {
2627 btout.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
2628 getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
2629 true, ftype, fpar, std::vector<float>(),
2630 getMaskListFromMask(mask), params, rms, spec.size(),
2631 3.0, 0, 0.0, 0, std::vector<int>());
2632 }
2633 }
2634 }
2635 }
2636
2637 if (outBaselineTable) {
2638 if (bltableidentical) {
2639 btin.save(outbltable);
2640 } else {
2641 btout.save(outbltable);
2642 }
2643 }
2644
2645 return res;
2646}
2647
2648std::vector<std::string> Scantable::subBaseline(const std::vector<std::string>& blInfoList, const bool returnfitresult, const std::string& outbltable, const bool outbltableexists, const bool overwrite)
2649{
2650 int nRowBl = blInfoList.size();
2651 int nRowSt = nrow();
2652
2653 std::vector<std::string> res;
2654 res.clear();
2655
2656 bool outBaselineTable = ((outbltable != "") && (!outbltableexists || overwrite));
2657 if ((outbltable != "") && outbltableexists && !overwrite) {
2658 throw(AipsError("Cannot overwrite bltable. Set overwrite=True."));
2659 }
2660
2661 STBaselineTable* btp = NULL;
2662 ROScalarColumn<Double> tcol = ROScalarColumn<Double>(table_, "TIME");
2663 Vector<Double> timeSecCol = tcol.getColumn();
2664
2665 if (outBaselineTable) {
2666 if (outbltableexists) {
2667 btp = new STBaselineTable((String)outbltable);
2668 } else {
2669 btp = new STBaselineTable(*this);
2670 // for (int i = 0; i < nRowSt; ++i) {
2671 // btp->appendbasedata(getScan(i), getCycle(i), getBeam(i), getIF(i), getPol(i),
2672 // 0, timeSecCol[i]);
2673 // btp->setApply(i, false);
2674 // }
2675 }
2676 int nrow = btp->nrow();
2677 for (int i = nrow; i < nRowSt; ++i) {
2678 btp->appendbasedata(getScan(i), getCycle(i), getBeam(i), getIF(i), getPol(i),
2679 0, timeSecCol[i]);
2680 btp->setApply(i, false);
2681 }
2682 }
2683
2684 for (int i = 0; i < nRowBl; ++i) {
2685 int irow;
2686 STBaselineFunc::FuncName ftype;
2687 std::vector<bool> mask;
2688 std::vector<int> fpar;
2689 float clipth;
2690 int clipn;
2691 bool uself;
2692 float lfth;
2693 std::vector<int> lfedge;
2694 int lfavg;
2695 parseBlInfo(blInfoList[i], irow, ftype, fpar, mask, clipth, clipn, uself, lfth, lfedge, lfavg);
2696
2697 if (irow < nRowSt) {
2698 std::vector<float> spec = getSpectrum(irow);
2699 std::vector<float> params;
2700 float rms;
2701 std::vector<bool> finalmask;
2702 Bool doApply = True;
2703
2704 if (!isAllChannelsFlagged(irow)) {
2705 std::vector<float> resfit = doSubtractBaseline(spec, mask, ftype, fpar, params, rms, finalmask, clipth, clipn, uself, irow, lfth, lfedge, lfavg);
2706 setSpectrum(resfit, irow);
2707 }
2708 else {
2709 doApply = False;
2710 }
2711
2712 if (returnfitresult) {
2713 res.push_back(packFittingResults(irow, params, rms));
2714 }
2715
2716 if (outBaselineTable) {
2717 Vector<Int> fparam(fpar.size());
2718 for (uInt j = 0; j < fparam.size(); ++j) {
2719 fparam[j] = (Int)fpar[j];
2720 }
2721
2722 btp->setdata(uInt(irow),
2723 uInt(getScan(irow)), uInt(getCycle(irow)),
2724 uInt(getBeam(irow)), uInt(getIF(irow)), uInt(getPol(irow)),
2725 uInt(0), timeSecCol[irow], doApply, ftype, fparam,
2726 Vector<Float>(), getMaskListFromMask(finalmask), Vector<Float>(params),
2727 Float(rms), uInt(spec.size()), Float(clipth), uInt(clipn),
2728 Float(0.0), uInt(0), Vector<uInt>());
2729 }
2730
2731 }
2732 }
2733
2734 if (outBaselineTable) {
2735 btp->save(outbltable);
2736 }
2737
2738 if (btp != NULL) {
2739 delete btp;
2740 }
2741
2742 return res;
2743}
2744
2745std::vector<float> Scantable::doApplyBaselineTable(std::vector<float>& spec,
2746 std::vector<bool>& mask,
2747 const STBaselineFunc::FuncName ftype,
2748 std::vector<int>& fpar,
2749 std::vector<float>& params,
2750 float&rms)
2751{
2752 std::vector<bool> finalmask;
2753 std::vector<int> lfedge;
2754 return doSubtractBaseline(spec, mask, ftype, fpar, params, rms, finalmask, 0.0, 0, false, 0, 0.0, lfedge, 0);
2755}
2756
2757std::vector<float> Scantable::doSubtractBaseline(std::vector<float>& spec,
2758 std::vector<bool>& mask,
2759 const STBaselineFunc::FuncName ftype,
2760 std::vector<int>& fpar,
2761 std::vector<float>& params,
2762 float&rms,
2763 std::vector<bool>& finalmask,
2764 float clipth,
2765 int clipn,
2766 bool uself,
2767 int irow,
2768 float lfth,
2769 std::vector<int>& lfedge,
2770 int lfavg)
2771{
2772 if (uself) {
2773 STLineFinder lineFinder = STLineFinder();
2774 initLineFinder(lfedge, lfth, lfavg, lineFinder);
2775 std::vector<int> currentEdge;
2776 mask = getCompositeChanMask(irow, mask, lfedge, currentEdge, lineFinder);
2777 } else {
2778 mask = getCompositeChanMask(irow, mask);
2779 }
2780
2781 std::vector<float> res;
2782 if (ftype == STBaselineFunc::Polynomial) {
2783 res = doPolynomialFitting(spec, mask, fpar[0], params, rms, finalmask, clipth, clipn);
2784 } else if (ftype == STBaselineFunc::Chebyshev) {
2785 res = doChebyshevFitting(spec, mask, fpar[0], params, rms, finalmask, clipth, clipn);
2786 } else if (ftype == STBaselineFunc::CSpline) {
2787 int nclip = 0;
2788 size_t numChan = spec.size();
2789 if (cubicSplineModelPool_.find(numChan) == cubicSplineModelPool_.end()) {
2790 cubicSplineModelPool_[numChan] = getPolynomialModel(3, numChan, &Scantable::getNormalPolynomial);
2791 }
2792 if (fpar.size() > 1) { // reading from baseline table in which pieceEdges are already calculated and stored.
2793 //res = doCubicSplineFitting(spec, mask, fpar, params, rms, finalmask, clipth, clipn);
2794 res = doCubicSplineLeastSquareFitting(spec, mask,
2795 cubicSplineModelPool_[numChan],
2796 fpar.size()-1, true, fpar, params,
2797 rms, finalmask, nclip, clipth,
2798 clipn);
2799 } else { // usual cspline fitting by giving nPiece only. fpar will be replaced with pieceEdges.
2800 //res = doCubicSplineFitting(spec, mask, fpar[0], fpar, params, rms, finalmask, clipth, clipn);
2801 res = doCubicSplineLeastSquareFitting(spec, mask,
2802 cubicSplineModelPool_[numChan],
2803 fpar[0], false, fpar, params,
2804 rms, finalmask, nclip, clipth,
2805 clipn);
2806 }
2807 } else if (ftype == STBaselineFunc::Sinusoid) {
2808 res = doSinusoidFitting(spec, mask, fpar, params, rms, finalmask, clipth, clipn);
2809 }
2810
2811 return res;
2812}
2813
2814std::string Scantable::packFittingResults(const int irow, const std::vector<float>& params, const float rms)
2815{
2816 // returned value: "irow:params[0],params[1],..,params[n-1]:rms"
2817 ostringstream os;
2818 os << irow << ':';
2819 for (uInt i = 0; i < params.size(); ++i) {
2820 if (i > 0) {
2821 os << ',';
2822 }
2823 os << params[i];
2824 }
2825 os << ':' << rms;
2826
2827 return os.str();
2828}
2829
2830void Scantable::parseBlInfo(const std::string& blInfo, int& irow, STBaselineFunc::FuncName& ftype, std::vector<int>& fpar, std::vector<bool>& mask, float& thresClip, int& nIterClip, bool& useLineFinder, float& thresLF, std::vector<int>& edgeLF, int& avgLF)
2831{
2832 // The baseline info to be parsed must be column-delimited string like
2833 // "0:chebyshev:5:3,5,169,174,485,487" where the elements are
2834 // row number, funcType, funcOrder, maskList, clipThreshold, clipNIter,
2835 // useLineFinder, lfThreshold, lfEdge and lfChanAvgLimit.
2836
2837 std::vector<string> res = splitToStringList(blInfo, ':');
2838 if (res.size() < 4) {
2839 throw(AipsError("baseline info has bad format")) ;
2840 }
2841
2842 string ftype0, fpar0, masklist0, uself0, edge0;
2843 std::vector<int> masklist;
2844
2845 stringstream ss;
2846 ss << res[0];
2847 ss >> irow;
2848 ss.clear(); ss.str("");
2849
2850 ss << res[1];
2851 ss >> ftype0;
2852 if (ftype0 == "poly") {
2853 ftype = STBaselineFunc::Polynomial;
2854 } else if (ftype0 == "cspline") {
2855 ftype = STBaselineFunc::CSpline;
2856 } else if (ftype0 == "sinusoid") {
2857 ftype = STBaselineFunc::Sinusoid;
2858 } else if (ftype0 == "chebyshev") {
2859 ftype = STBaselineFunc::Chebyshev;
2860 } else {
2861 throw(AipsError("invalid function type."));
2862 }
2863 ss.clear(); ss.str("");
2864
2865 ss << res[2];
2866 ss >> fpar0;
2867 fpar = splitToIntList(fpar0, ',');
2868 ss.clear(); ss.str("");
2869
2870 ss << res[3];
2871 ss >> masklist0;
2872 mask = getMaskFromMaskList(nchan(getIF(irow)), splitToIntList(masklist0, ','));
2873 ss.clear(); ss.str("");
2874
2875 ss << res[4];
2876 ss >> thresClip;
2877 ss.clear(); ss.str("");
2878
2879 ss << res[5];
2880 ss >> nIterClip;
2881 ss.clear(); ss.str("");
2882
2883 ss << res[6];
2884 ss >> uself0;
2885 if (uself0 == "true") {
2886 useLineFinder = true;
2887 } else {
2888 useLineFinder = false;
2889 }
2890 ss.clear(); ss.str("");
2891
2892 if (useLineFinder) {
2893 ss << res[7];
2894 ss >> thresLF;
2895 ss.clear(); ss.str("");
2896
2897 ss << res[8];
2898 ss >> edge0;
2899 edgeLF = splitToIntList(edge0, ',');
2900 ss.clear(); ss.str("");
2901
2902 ss << res[9];
2903 ss >> avgLF;
2904 ss.clear(); ss.str("");
2905 }
2906
2907}
2908
2909std::vector<int> Scantable::splitToIntList(const std::string& s, const char delim)
2910{
2911 istringstream iss(s);
2912 string tmp;
2913 int tmpi;
2914 std::vector<int> res;
2915 stringstream ss;
2916 while (getline(iss, tmp, delim)) {
2917 ss << tmp;
2918 ss >> tmpi;
2919 res.push_back(tmpi);
2920 ss.clear(); ss.str("");
2921 }
2922
2923 return res;
2924}
2925
2926std::vector<string> Scantable::splitToStringList(const std::string& s, const char delim)
2927{
2928 istringstream iss(s);
2929 std::string tmp;
2930 std::vector<string> res;
2931 while (getline(iss, tmp, delim)) {
2932 res.push_back(tmp);
2933 }
2934
2935 return res;
2936}
2937
2938std::vector<bool> Scantable::getMaskFromMaskList(const int nchan, const std::vector<int>& masklist)
2939{
2940 if (masklist.size() % 2 != 0) {
2941 throw(AipsError("masklist must have even number of elements."));
2942 }
2943
2944 std::vector<bool> res(nchan);
2945
2946 for (int i = 0; i < nchan; ++i) {
2947 res[i] = false;
2948 }
2949 for (uInt j = 0; j < masklist.size(); j += 2) {
2950 for (int i = masklist[j]; i <= min(nchan-1, masklist[j+1]); ++i) {
2951 res[i] = true;
2952 }
2953 }
2954
2955 return res;
2956}
2957
2958Vector<uInt> Scantable::getMaskListFromMask(const std::vector<bool>& mask)
2959{
2960 std::vector<int> masklist;
2961 masklist.clear();
2962
2963 for (uInt i = 0; i < mask.size(); ++i) {
2964 if (mask[i]) {
2965 if ((i == 0)||(i == mask.size()-1)) {
2966 masklist.push_back(i);
2967 } else {
2968 if ((mask[i])&&(!mask[i-1])) {
2969 masklist.push_back(i);
2970 }
2971 if ((mask[i])&&(!mask[i+1])) {
2972 masklist.push_back(i);
2973 }
2974 }
2975 }
2976 }
2977
2978 Vector<uInt> res(masklist.size());
2979 for (uInt i = 0; i < masklist.size(); ++i) {
2980 res[i] = (uInt)masklist[i];
2981 }
2982
2983 return res;
2984}
2985
2986void Scantable::initialiseBaselining(const std::string& blfile,
2987 ofstream& ofs,
2988 const bool outLogger,
2989 bool& outTextFile,
2990 bool& csvFormat,
2991 String& coordInfo,
2992 bool& hasSameNchan,
2993 const std::string& progressInfo,
2994 bool& showProgress,
2995 int& minNRow,
2996 Vector<Double>& timeSecCol)
2997{
2998 csvFormat = false;
2999 outTextFile = false;
3000
3001 if (blfile != "") {
3002 csvFormat = (blfile.substr(0, 1) == "T");
3003 ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
3004 if (ofs) outTextFile = true;
3005 }
3006
3007 coordInfo = "";
3008 hasSameNchan = true;
3009
3010 if (outLogger || outTextFile) {
3011 coordInfo = getCoordInfo()[0];
3012 if (coordInfo == "") coordInfo = "channel";
3013 hasSameNchan = hasSameNchanOverIFs();
3014 }
3015
3016 parseProgressInfo(progressInfo, showProgress, minNRow);
3017
3018 ROScalarColumn<Double> tcol = ROScalarColumn<Double>(table_, "TIME");
3019 timeSecCol = tcol.getColumn();
3020}
3021
3022void Scantable::finaliseBaselining(const bool outBaselineTable,
3023 STBaselineTable* pbt,
3024 const string& bltable,
3025 const bool outTextFile,
3026 ofstream& ofs)
3027{
3028 if (outBaselineTable) {
3029 pbt->save(bltable);
3030 }
3031
3032 if (outTextFile) ofs.close();
3033}
3034
3035void Scantable::initLineFinder(const std::vector<int>& edge,
3036 const float threshold,
3037 const int chanAvgLimit,
3038 STLineFinder& lineFinder)
3039{
3040 if ((edge.size() > 2) && (edge.size() < getIFNos().size()*2)) {
3041 throw(AipsError("Length of edge element info is less than that of IFs"));
3042 }
3043
3044 lineFinder.setOptions(threshold, 3, chanAvgLimit);
3045}
3046
3047void Scantable::polyBaseline(const std::vector<bool>& mask, int order,
3048 float thresClip, int nIterClip,
3049 bool getResidual,
3050 const std::string& progressInfo,
3051 const bool outLogger, const std::string& blfile,
3052 const std::string& bltable)
3053{
3054 /****
3055 double TimeStart = mathutil::gettimeofday_sec();
3056 ****/
3057
3058 try {
3059 ofstream ofs;
3060 String coordInfo;
3061 bool hasSameNchan, outTextFile, csvFormat, showProgress;
3062 int minNRow;
3063 int nRow = nrow();
3064 std::vector<bool> chanMask, finalChanMask;
3065 float rms;
3066 bool outBaselineTable = (bltable != "");
3067 STBaselineTable bt = STBaselineTable(*this);
3068 Vector<Double> timeSecCol;
3069 size_t flagged=0;
3070
3071 initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3072 coordInfo, hasSameNchan,
3073 progressInfo, showProgress, minNRow,
3074 timeSecCol);
3075
3076 std::vector<int> nChanNos;
3077 std::vector<std::vector<std::vector<double> > > modelReservoir;
3078 modelReservoir = getPolynomialModelReservoir(order,
3079 &Scantable::getNormalPolynomial,
3080 nChanNos);
3081 int nModel = modelReservoir.size();
3082
3083 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3084 std::vector<float> sp = getSpectrum(whichrow);
3085 chanMask = getCompositeChanMask(whichrow, mask);
3086 std::vector<float> params;
3087
3088 //if (flagrowCol_(whichrow) == 0) {
3089 if (flagrowCol_(whichrow)==0 && nValidMask(chanMask)>0) {
3090 int nClipped = 0;
3091 std::vector<float> res;
3092 res = doLeastSquareFitting(sp, chanMask,
3093 modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3094 params, rms, finalChanMask,
3095 nClipped, thresClip, nIterClip, getResidual);
3096
3097 if (outBaselineTable) {
3098 bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3099 getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3100 true, STBaselineFunc::Polynomial, order, std::vector<float>(),
3101 getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3102 thresClip, nIterClip, 0.0, 0, std::vector<int>());
3103 } else {
3104 setSpectrum(res, whichrow);
3105 }
3106
3107 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3108 coordInfo, hasSameNchan, ofs, "polyBaseline()",
3109 params, nClipped);
3110 } else {
3111 // no valid channels to fit (flag the row)
3112 flagrowCol_.put(whichrow, 1);
3113 ++flagged;
3114 if (outBaselineTable) {
3115 params.resize(nModel);
3116 for (uInt i = 0; i < params.size(); ++i) {
3117 params[i] = 0.0;
3118 }
3119 bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3120 getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3121 true, STBaselineFunc::Polynomial, order, std::vector<float>(),
3122 getMaskListFromMask(chanMask), params, 0.0, sp.size(),
3123 thresClip, nIterClip, 0.0, 0, std::vector<int>());
3124 }
3125 }
3126
3127 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3128 }
3129
3130 finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3131 if (flagged > 0) {
3132 LogIO os( LogOrigin( "Scantable", "polyBaseline()") ) ;
3133 os << LogIO::WARN << "Baseline subtraction is skipped for " << flagged << " spectra due to too few valid channels to operate fit. The spectra will be flagged in output data." << LogIO::POST;
3134 }
3135 } catch (...) {
3136 throw;
3137 }
3138
3139 /****
3140 double TimeEnd = mathutil::gettimeofday_sec();
3141 double elapse1 = TimeEnd - TimeStart;
3142 std::cout << "poly-new : " << elapse1 << " (sec.)" << endl;
3143 ****/
3144}
3145
3146void Scantable::autoPolyBaseline(const std::vector<bool>& mask, int order,
3147 float thresClip, int nIterClip,
3148 const std::vector<int>& edge,
3149 float threshold, int chanAvgLimit,
3150 bool getResidual,
3151 const std::string& progressInfo,
3152 const bool outLogger, const std::string& blfile,
3153 const std::string& bltable)
3154{
3155 try {
3156 ofstream ofs;
3157 String coordInfo;
3158 bool hasSameNchan, outTextFile, csvFormat, showProgress;
3159 int minNRow;
3160 int nRow = nrow();
3161 std::vector<bool> chanMask, finalChanMask;
3162 float rms;
3163 bool outBaselineTable = (bltable != "");
3164 STBaselineTable bt = STBaselineTable(*this);
3165 Vector<Double> timeSecCol;
3166 STLineFinder lineFinder = STLineFinder();
3167 size_t flagged=0;
3168
3169 initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3170 coordInfo, hasSameNchan,
3171 progressInfo, showProgress, minNRow,
3172 timeSecCol);
3173
3174 initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3175
3176 std::vector<int> nChanNos;
3177 std::vector<std::vector<std::vector<double> > > modelReservoir;
3178 modelReservoir = getPolynomialModelReservoir(order,
3179 &Scantable::getNormalPolynomial,
3180 nChanNos);
3181 int nModel = modelReservoir.size();
3182
3183 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3184 std::vector<float> sp = getSpectrum(whichrow);
3185 std::vector<int> currentEdge;
3186 chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
3187 std::vector<float> params;
3188
3189 //if (flagrowCol_(whichrow) == 0) {
3190 if (flagrowCol_(whichrow)==0 && nValidMask(chanMask)>0) {
3191 int nClipped = 0;
3192 std::vector<float> res;
3193 res = doLeastSquareFitting(sp, chanMask,
3194 modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3195 params, rms, finalChanMask,
3196 nClipped, thresClip, nIterClip, getResidual);
3197
3198 if (outBaselineTable) {
3199 bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3200 getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3201 true, STBaselineFunc::Polynomial, order, std::vector<float>(),
3202 getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3203 thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
3204 } else {
3205 setSpectrum(res, whichrow);
3206 }
3207
3208 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3209 coordInfo, hasSameNchan, ofs, "autoPolyBaseline()",
3210 params, nClipped);
3211 } else {
3212 // no valid channels to fit (flag the row)
3213 flagrowCol_.put(whichrow, 1);
3214 ++flagged;
3215 if (outBaselineTable) {
3216 params.resize(nModel);
3217 for (uInt i = 0; i < params.size(); ++i) {
3218 params[i] = 0.0;
3219 }
3220 bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3221 getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3222 true, STBaselineFunc::Polynomial, order, std::vector<float>(),
3223 getMaskListFromMask(chanMask), params, 0.0, sp.size(),
3224 thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
3225 }
3226 }
3227
3228 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3229 }
3230
3231 finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3232 if (flagged > 0) {
3233 LogIO os( LogOrigin( "Scantable", "autoPolyBaseline()") ) ;
3234 os << LogIO::WARN << "Baseline subtraction is skipped for " << flagged << " spectra due to too few valid channels to operate fit. The spectra will be flagged in output data." << LogIO::POST;
3235 }
3236 } catch (...) {
3237 throw;
3238 }
3239}
3240
3241void Scantable::chebyshevBaseline(const std::vector<bool>& mask, int order,
3242 float thresClip, int nIterClip,
3243 bool getResidual,
3244 const std::string& progressInfo,
3245 const bool outLogger, const std::string& blfile,
3246 const std::string& bltable)
3247{
3248 /*
3249 double TimeStart = mathutil::gettimeofday_sec();
3250 */
3251
3252 try {
3253 ofstream ofs;
3254 String coordInfo;
3255 bool hasSameNchan, outTextFile, csvFormat, showProgress;
3256 int minNRow;
3257 int nRow = nrow();
3258 std::vector<bool> chanMask, finalChanMask;
3259 float rms;
3260 bool outBaselineTable = (bltable != "");
3261 STBaselineTable bt = STBaselineTable(*this);
3262 Vector<Double> timeSecCol;
3263 size_t flagged=0;
3264
3265 initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3266 coordInfo, hasSameNchan,
3267 progressInfo, showProgress, minNRow,
3268 timeSecCol);
3269
3270 std::vector<int> nChanNos;
3271 std::vector<std::vector<std::vector<double> > > modelReservoir;
3272 modelReservoir = getPolynomialModelReservoir(order,
3273 &Scantable::getChebyshevPolynomial,
3274 nChanNos);
3275 int nModel = modelReservoir.size();
3276
3277 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3278 std::vector<float> sp = getSpectrum(whichrow);
3279 chanMask = getCompositeChanMask(whichrow, mask);
3280 std::vector<float> params;
3281
3282 // if (flagrowCol_(whichrow) == 0) {
3283 if (flagrowCol_(whichrow)==0 && nValidMask(chanMask)>0) {
3284 int nClipped = 0;
3285 std::vector<float> res;
3286 res = doLeastSquareFitting(sp, chanMask,
3287 modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3288 params, rms, finalChanMask,
3289 nClipped, thresClip, nIterClip, getResidual);
3290
3291 if (outBaselineTable) {
3292 bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3293 getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3294 true, STBaselineFunc::Chebyshev, order, std::vector<float>(),
3295 getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3296 thresClip, nIterClip, 0.0, 0, std::vector<int>());
3297 } else {
3298 setSpectrum(res, whichrow);
3299 }
3300
3301 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3302 coordInfo, hasSameNchan, ofs, "chebyshevBaseline()",
3303 params, nClipped);
3304 } else {
3305 // no valid channels to fit (flag the row)
3306 flagrowCol_.put(whichrow, 1);
3307 ++flagged;
3308 if (outBaselineTable) {
3309 params.resize(nModel);
3310 for (uInt i = 0; i < params.size(); ++i) {
3311 params[i] = 0.0;
3312 }
3313 bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3314 getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3315 true, STBaselineFunc::Chebyshev, order, std::vector<float>(),
3316 getMaskListFromMask(chanMask), params, 0.0, sp.size(),
3317 thresClip, nIterClip, 0.0, 0, std::vector<int>());
3318 }
3319 }
3320
3321 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3322 }
3323
3324 finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3325
3326 if (flagged > 0) {
3327 LogIO os( LogOrigin( "Scantable", "chebyshevBaseline()") ) ;
3328 os << LogIO::WARN << "Baseline subtraction is skipped for " << flagged << " spectra due to too few valid channels to operate fit. The spectra will be flagged in output data." << LogIO::POST;
3329 }
3330 } catch (...) {
3331 throw;
3332 }
3333
3334 /*
3335 double TimeEnd = mathutil::gettimeofday_sec();
3336 double elapse1 = TimeEnd - TimeStart;
3337 std::cout << "cheby : " << elapse1 << " (sec.)" << endl;
3338 */
3339}
3340
3341void Scantable::autoChebyshevBaseline(const std::vector<bool>& mask, int order,
3342 float thresClip, int nIterClip,
3343 const std::vector<int>& edge,
3344 float threshold, int chanAvgLimit,
3345 bool getResidual,
3346 const std::string& progressInfo,
3347 const bool outLogger, const std::string& blfile,
3348 const std::string& bltable)
3349{
3350 try {
3351 ofstream ofs;
3352 String coordInfo;
3353 bool hasSameNchan, outTextFile, csvFormat, showProgress;
3354 int minNRow;
3355 int nRow = nrow();
3356 std::vector<bool> chanMask, finalChanMask;
3357 float rms;
3358 bool outBaselineTable = (bltable != "");
3359 STBaselineTable bt = STBaselineTable(*this);
3360 Vector<Double> timeSecCol;
3361 STLineFinder lineFinder = STLineFinder();
3362 size_t flagged=0;
3363
3364 initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3365 coordInfo, hasSameNchan,
3366 progressInfo, showProgress, minNRow,
3367 timeSecCol);
3368
3369 initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3370
3371 std::vector<int> nChanNos;
3372 std::vector<std::vector<std::vector<double> > > modelReservoir;
3373 modelReservoir = getPolynomialModelReservoir(order,
3374 &Scantable::getChebyshevPolynomial,
3375 nChanNos);
3376 int nModel = modelReservoir.size();
3377
3378 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3379 std::vector<float> sp = getSpectrum(whichrow);
3380 std::vector<int> currentEdge;
3381 chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
3382 std::vector<float> params;
3383
3384 // if (flagrowCol_(whichrow) == 0) {
3385 if (flagrowCol_(whichrow)==0 && nValidMask(chanMask)>0) {
3386 int nClipped = 0;
3387 std::vector<float> res;
3388 res = doLeastSquareFitting(sp, chanMask,
3389 modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3390 params, rms, finalChanMask,
3391 nClipped, thresClip, nIterClip, getResidual);
3392
3393 if (outBaselineTable) {
3394 bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3395 getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3396 true, STBaselineFunc::Chebyshev, order, std::vector<float>(),
3397 getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3398 thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
3399 } else {
3400 setSpectrum(res, whichrow);
3401 }
3402
3403 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3404 coordInfo, hasSameNchan, ofs, "autoChebyshevBaseline()",
3405 params, nClipped);
3406 } else {
3407 // no valid channels to fit (flag the row)
3408 flagrowCol_.put(whichrow, 1);
3409 ++flagged;
3410 if (outBaselineTable) {
3411 params.resize(nModel);
3412 for (uInt i = 0; i < params.size(); ++i) {
3413 params[i] = 0.0;
3414 }
3415 bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3416 getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3417 true, STBaselineFunc::Chebyshev, order, std::vector<float>(),
3418 getMaskListFromMask(chanMask), params, 0.0, sp.size(),
3419 thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
3420 }
3421 }
3422
3423 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3424 }
3425
3426 finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3427
3428 if (flagged > 0) {
3429 LogIO os( LogOrigin( "Scantable", "autoChebyshevBaseline()") ) ;
3430 os << LogIO::WARN << "Baseline subtraction is skipped for " << flagged << " spectra due to too few valid channels to operate fit. The spectra will be flagged in output data." << LogIO::POST;
3431 }
3432 } catch (...) {
3433 throw;
3434 }
3435}
3436
3437double Scantable::calculateModelSelectionCriteria(const std::string& valname,
3438 const std::string& blfunc,
3439 int order,
3440 const std::vector<bool>& inMask,
3441 int whichrow,
3442 bool useLineFinder,
3443 const std::vector<int>& edge,
3444 float threshold,
3445 int chanAvgLimit)
3446{
3447 std::vector<float> sp = getSpectrum(whichrow);
3448 std::vector<bool> chanMask;
3449 chanMask.clear();
3450
3451 if (useLineFinder) {
3452 STLineFinder lineFinder = STLineFinder();
3453 initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3454 std::vector<int> currentEdge;
3455 chanMask = getCompositeChanMask(whichrow, inMask, edge, currentEdge, lineFinder);
3456 } else {
3457 chanMask = getCompositeChanMask(whichrow, inMask);
3458 }
3459
3460 return doCalculateModelSelectionCriteria(valname, sp, chanMask, blfunc, order);
3461}
3462
3463double Scantable::doCalculateModelSelectionCriteria(const std::string& valname, const std::vector<float>& spec, const std::vector<bool>& mask, const std::string& blfunc, int order)
3464{
3465 int nparam;
3466 std::vector<float> params;
3467 std::vector<bool> finalChanMask;
3468 float rms;
3469 int nClipped = 0;
3470 std::vector<float> res;
3471 if (blfunc == "poly") {
3472 nparam = order + 1;
3473 res = doPolynomialFitting(spec, mask, order, params, rms, finalChanMask, nClipped);
3474 } else if (blfunc == "chebyshev") {
3475 nparam = order + 1;
3476 res = doChebyshevFitting(spec, mask, order, params, rms, finalChanMask, nClipped);
3477 } else if (blfunc == "cspline") {
3478 std::vector<int> pieceEdges;//(order+1); //order = npiece
3479 nparam = order + 3;
3480 res = doCubicSplineFitting(spec, mask, order, false, pieceEdges, params, rms, finalChanMask, nClipped);
3481 } else if (blfunc == "sinusoid") {
3482 std::vector<int> nWaves;
3483 nWaves.clear();
3484 for (int i = 0; i <= order; ++i) {
3485 nWaves.push_back(i);
3486 }
3487 nparam = 2*order + 1; // order = nwave
3488 res = doSinusoidFitting(spec, mask, nWaves, params, rms, finalChanMask, nClipped);
3489 } else {
3490 throw(AipsError("blfunc must be poly, chebyshev, cspline or sinusoid."));
3491 }
3492
3493 double msq = 0.0;
3494 int nusedchan = 0;
3495 int nChan = res.size();
3496 for (int i = 0; i < nChan; ++i) {
3497 if (mask[i]) {
3498 msq += (double)res[i]*(double)res[i];
3499 nusedchan++;
3500 }
3501 }
3502 if (nusedchan == 0) {
3503 throw(AipsError("all channels masked."));
3504 }
3505 msq /= (double)nusedchan;
3506
3507 nparam++; //add 1 for sigma of Gaussian distribution
3508 const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
3509
3510 if (valname.find("aic") == 0) {
3511 // Original Akaike Information Criterion (AIC)
3512 double aic = nusedchan * (log(2.0 * PI * msq) + 1.0) + 2.0 * nparam;
3513
3514 // Corrected AIC by Sugiura(1978) (AICc)
3515 if (valname == "aicc") {
3516 if (nusedchan - nparam - 1 <= 0) {
3517 throw(AipsError("channel size is too small to calculate AICc."));
3518 }
3519 aic += 2.0*nparam*(nparam + 1)/(double)(nusedchan - nparam - 1);
3520 }
3521
3522 return aic;
3523
3524 } else if (valname == "bic") {
3525 // Bayesian Information Criterion (BIC)
3526 double bic = nusedchan * log(msq) + nparam * log((double)nusedchan);
3527 return bic;
3528
3529 } else if (valname == "gcv") {
3530 // Generalised Cross Validation
3531 double x = 1.0 - (double)nparam / (double)nusedchan;
3532 double gcv = msq / (x * x);
3533 return gcv;
3534
3535 } else {
3536 throw(AipsError("valname must be aic, aicc, bic or gcv."));
3537 }
3538}
3539
3540double Scantable::getNormalPolynomial(int n, double x) {
3541 if (n == 0) {
3542 return 1.0;
3543 } else if (n > 0) {
3544 double res = 1.0;
3545 for (int i = 0; i < n; ++i) {
3546 res *= x;
3547 }
3548 return res;
3549 } else {
3550 if (x == 0.0) {
3551 throw(AipsError("infinity result: x=0 given for negative power."));
3552 } else {
3553 return pow(x, (double)n);
3554 }
3555 }
3556}
3557
3558double Scantable::getChebyshevPolynomial(int n, double x) {
3559 if ((x < -1.0)||(x > 1.0)) {
3560 throw(AipsError("out of definition range (-1 <= x <= 1)."));
3561 } else if (x == 1.0) {
3562 return 1.0;
3563 } else if (x == 0.0) {
3564 double res;
3565 if (n%2 == 0) {
3566 if (n%4 == 0) {
3567 res = 1.0;
3568 } else {
3569 res = -1.0;
3570 }
3571 } else {
3572 res = 0.0;
3573 }
3574 return res;
3575 } else if (x == -1.0) {
3576 double res = (n%2 == 0 ? 1.0 : -1.0);
3577 return res;
3578 } else if (n < 0) {
3579 throw(AipsError("the order must be zero or positive."));
3580 } else if (n == 0) {
3581 return 1.0;
3582 } else if (n == 1) {
3583 return x;
3584 } else {
3585 double res[n+1];
3586 for (int i = 0; i < n+1; ++i) {
3587 double res0 = 0.0;
3588 if (i == 0) {
3589 res0 = 1.0;
3590 } else if (i == 1) {
3591 res0 = x;
3592 } else {
3593 res0 = 2.0 * x * res[i-1] - res[i-2];
3594 }
3595 res[i] = res0;
3596 }
3597 return res[n];
3598 }
3599}
3600
3601std::vector<float> Scantable::doPolynomialFitting(const std::vector<float>& data,
3602 const std::vector<bool>& mask,
3603 int order,
3604 std::vector<float>& params,
3605 float& rms,
3606 std::vector<bool>& finalmask,
3607 float clipth,
3608 int clipn)
3609{
3610 int nClipped = 0;
3611 return doPolynomialFitting(data, mask, order, params, rms, finalmask, nClipped, clipth, clipn);
3612}
3613
3614std::vector<float> Scantable::doPolynomialFitting(const std::vector<float>& data,
3615 const std::vector<bool>& mask,
3616 int order,
3617 std::vector<float>& params,
3618 float& rms,
3619 std::vector<bool>& finalMask,
3620 int& nClipped,
3621 float thresClip,
3622 int nIterClip,
3623 bool getResidual)
3624{
3625 return doLeastSquareFitting(data, mask,
3626 getPolynomialModel(order, data.size(), &Scantable::getNormalPolynomial),
3627 params, rms, finalMask,
3628 nClipped, thresClip, nIterClip,
3629 getResidual);
3630}
3631
3632std::vector<float> Scantable::doChebyshevFitting(const std::vector<float>& data,
3633 const std::vector<bool>& mask,
3634 int order,
3635 std::vector<float>& params,
3636 float& rms,
3637 std::vector<bool>& finalmask,
3638 float clipth,
3639 int clipn)
3640{
3641 int nClipped = 0;
3642 return doChebyshevFitting(data, mask, order, params, rms, finalmask, nClipped, clipth, clipn);
3643}
3644
3645std::vector<float> Scantable::doChebyshevFitting(const std::vector<float>& data,
3646 const std::vector<bool>& mask,
3647 int order,
3648 std::vector<float>& params,
3649 float& rms,
3650 std::vector<bool>& finalMask,
3651 int& nClipped,
3652 float thresClip,
3653 int nIterClip,
3654 bool getResidual)
3655{
3656 return doLeastSquareFitting(data, mask,
3657 getPolynomialModel(order, data.size(), &Scantable::getChebyshevPolynomial),
3658 params, rms, finalMask,
3659 nClipped, thresClip, nIterClip,
3660 getResidual);
3661}
3662
3663std::vector<std::vector<double> > Scantable::getPolynomialModel(int order, int nchan, double (Scantable::*pfunc)(int, double))
3664{
3665 // model : contains model values for computing the least-square matrix.
3666 // model.size() is nmodel and model[*].size() is nchan.
3667 // Each model element are as follows:
3668 //
3669 // (for normal polynomials)
3670 // model[0] = {1.0, 1.0, 1.0, ..., 1.0},
3671 // model[1] = {0.0, 1.0, 2.0, ..., (nchan-1)}
3672 // model[n-1] = ...,
3673 // model[n] = {0.0^n, 1.0^n, 2.0^n, ..., (nchan-1)^n}
3674 // where (0 <= n <= order)
3675 //
3676 // (for Chebyshev polynomials)
3677 // model[0] = {T0(-1), T0(2/(nchan-1)-1), T0(4/(nchan-1)-1), ..., T0(1)},
3678 // model[n-1] = ...,
3679 // model[n] = {Tn(-1), Tn(2/(nchan-1)-1), Tn(4/(nchan-1)-1), ..., Tn(1)}
3680 // where (0 <= n <= order),
3681
3682 int nmodel = order + 1;
3683 std::vector<std::vector<double> > model(nmodel, std::vector<double>(nchan));
3684
3685 double stretch, shift;
3686 if (pfunc == &Scantable::getChebyshevPolynomial) {
3687 stretch = 2.0/(double)(nchan - 1);
3688 shift = -1.0;
3689 } else {
3690 stretch = 1.0;
3691 shift = 0.0;
3692 }
3693
3694 for (int i = 0; i < nmodel; ++i) {
3695 for (int j = 0; j < nchan; ++j) {
3696 model[i][j] = (this->*pfunc)(i, stretch*(double)j + shift);
3697 }
3698 }
3699
3700 return model;
3701}
3702
3703std::vector<std::vector<std::vector<double> > > Scantable::getPolynomialModelReservoir(int order,
3704 double (Scantable::*pfunc)(int, double),
3705 std::vector<int>& nChanNos)
3706{
3707 std::vector<std::vector<std::vector<double> > > res;
3708 res.clear();
3709 nChanNos.clear();
3710
3711 std::vector<uint> ifNos = getIFNos();
3712 for (uint i = 0; i < ifNos.size(); ++i) {
3713 int currNchan = nchan(ifNos[i]);
3714 bool hasDifferentNchan = (i == 0);
3715 for (uint j = 0; j < i; ++j) {
3716 if (currNchan != nchan(ifNos[j])) {
3717 hasDifferentNchan = true;
3718 break;
3719 }
3720 }
3721 if (hasDifferentNchan) {
3722 res.push_back(getPolynomialModel(order, currNchan, pfunc));
3723 nChanNos.push_back(currNchan);
3724 }
3725 }
3726
3727 return res;
3728}
3729
3730std::vector<float> Scantable::doLeastSquareFitting(const std::vector<float>& data,
3731 const std::vector<bool>& mask,
3732 const std::vector<std::vector<double> >& model,
3733 std::vector<float>& params,
3734 float& rms,
3735 std::vector<bool>& finalMask,
3736 int& nClipped,
3737 float thresClip,
3738 int nIterClip,
3739 bool getResidual)
3740{
3741 int nDOF = model.size();
3742 int nChan = data.size();
3743
3744 if (nDOF == 0) {
3745 throw(AipsError("no model data given"));
3746 }
3747 if (nChan < 2) {
3748 throw(AipsError("data size is too few"));
3749 }
3750 if (nChan != (int)mask.size()) {
3751 throw(AipsError("data and mask sizes are not identical"));
3752 }
3753 for (int i = 0; i < nDOF; ++i) {
3754 if (nChan != (int)model[i].size()) {
3755 throw(AipsError("data and model sizes are not identical"));
3756 }
3757 }
3758
3759 params.clear();
3760 params.resize(nDOF);
3761
3762 finalMask.clear();
3763 finalMask.resize(nChan);
3764
3765 std::vector<int> maskArray(nChan);
3766 int j = 0;
3767 for (int i = 0; i < nChan; ++i) {
3768 maskArray[i] = mask[i] ? 1 : 0;
3769 if (isnan(data[i])) maskArray[i] = 0;
3770 if (isinf(data[i])) maskArray[i] = 0;
3771
3772 finalMask[i] = (maskArray[i] == 1);
3773 if (finalMask[i]) {
3774 j++;
3775 }
3776
3777 /*
3778 maskArray[i] = mask[i] ? 1 : 0;
3779 if (mask[i]) {
3780 j++;
3781 }
3782 finalMask[i] = mask[i];
3783 */
3784 }
3785
3786 int initNData = j;
3787 int nData = initNData;
3788
3789 std::vector<double> z1(nChan), r1(nChan), residual(nChan);
3790 for (int i = 0; i < nChan; ++i) {
3791 z1[i] = (double)data[i];
3792 r1[i] = 0.0;
3793 residual[i] = 0.0;
3794 }
3795
3796 for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
3797 // xMatrix : horizontal concatenation of
3798 // the least-sq. matrix (left) and an
3799 // identity matrix (right).
3800 // the right part is used to calculate the inverse matrix of the left part.
3801 double xMatrix[nDOF][2*nDOF];
3802 double zMatrix[nDOF];
3803 for (int i = 0; i < nDOF; ++i) {
3804 for (int j = 0; j < 2*nDOF; ++j) {
3805 xMatrix[i][j] = 0.0;
3806 }
3807 xMatrix[i][nDOF+i] = 1.0;
3808 zMatrix[i] = 0.0;
3809 }
3810
3811 int nUseData = 0;
3812 for (int k = 0; k < nChan; ++k) {
3813 if (maskArray[k] == 0) continue;
3814
3815 for (int i = 0; i < nDOF; ++i) {
3816 for (int j = i; j < nDOF; ++j) {
3817 xMatrix[i][j] += model[i][k] * model[j][k];
3818 }
3819 zMatrix[i] += z1[k] * model[i][k];
3820 }
3821
3822 nUseData++;
3823 }
3824
3825 if (nUseData < 1) {
3826 throw(AipsError("all channels clipped or masked. can't execute fitting anymore."));
3827 }
3828
3829 for (int i = 0; i < nDOF; ++i) {
3830 for (int j = 0; j < i; ++j) {
3831 xMatrix[i][j] = xMatrix[j][i];
3832 }
3833 }
3834
3835 //compute inverse matrix of the left half of xMatrix
3836 std::vector<double> invDiag(nDOF);
3837 for (int i = 0; i < nDOF; ++i) {
3838 invDiag[i] = 1.0 / xMatrix[i][i];
3839 for (int j = 0; j < nDOF; ++j) {
3840 xMatrix[i][j] *= invDiag[i];
3841 }
3842 }
3843
3844 for (int k = 0; k < nDOF; ++k) {
3845 for (int i = 0; i < nDOF; ++i) {
3846 if (i != k) {
3847 double factor1 = xMatrix[k][k];
3848 double invfactor1 = 1.0 / factor1;
3849 double factor2 = xMatrix[i][k];
3850 for (int j = k; j < 2*nDOF; ++j) {
3851 xMatrix[i][j] *= factor1;
3852 xMatrix[i][j] -= xMatrix[k][j]*factor2;
3853 xMatrix[i][j] *= invfactor1;
3854 }
3855 }
3856 }
3857 double invXDiag = 1.0 / xMatrix[k][k];
3858 for (int j = k; j < 2*nDOF; ++j) {
3859 xMatrix[k][j] *= invXDiag;
3860 }
3861 }
3862
3863 for (int i = 0; i < nDOF; ++i) {
3864 for (int j = 0; j < nDOF; ++j) {
3865 xMatrix[i][nDOF+j] *= invDiag[j];
3866 }
3867 }
3868 //compute a vector y in which coefficients of the best-fit
3869 //model functions are stored.
3870 //in case of polynomials, y consists of (a0,a1,a2,...)
3871 //where ai is the coefficient of the term x^i.
3872 //in case of sinusoids, y consists of (a0,s1,c1,s2,c2,...)
3873 //where a0 is constant term and s* and c* are of sine
3874 //and cosine functions, respectively.
3875 std::vector<double> y(nDOF);
3876 for (int i = 0; i < nDOF; ++i) {
3877 y[i] = 0.0;
3878 for (int j = 0; j < nDOF; ++j) {
3879 y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
3880 }
3881 params[i] = (float)y[i];
3882 }
3883
3884 for (int i = 0; i < nChan; ++i) {
3885 r1[i] = y[0];
3886 for (int j = 1; j < nDOF; ++j) {
3887 r1[i] += y[j]*model[j][i];
3888 }
3889 residual[i] = z1[i] - r1[i];
3890 }
3891
3892 double mean = 0.0;
3893 double mean2 = 0.0;
3894 for (int i = 0; i < nChan; ++i) {
3895 if (maskArray[i] == 0) continue;
3896 mean += residual[i];
3897 mean2 += residual[i]*residual[i];
3898 }
3899 mean /= (double)nData;
3900 mean2 /= (double)nData;
3901 double rmsd = sqrt(mean2 - mean*mean);
3902 rms = (float)rmsd;
3903
3904 if ((nClip == nIterClip) || (thresClip <= 0.0)) {
3905 break;
3906 } else {
3907
3908 double thres = rmsd * thresClip;
3909 int newNData = 0;
3910 for (int i = 0; i < nChan; ++i) {
3911 if (abs(residual[i]) >= thres) {
3912 maskArray[i] = 0;
3913 finalMask[i] = false;
3914 }
3915 if (maskArray[i] > 0) {
3916 newNData++;
3917 }
3918 }
3919 if (newNData == nData) {
3920 break; //no more flag to add. stop iteration.
3921 } else {
3922 nData = newNData;
3923 }
3924
3925 }
3926 }
3927
3928 nClipped = initNData - nData;
3929
3930 std::vector<float> result(nChan);
3931 if (getResidual) {
3932 for (int i = 0; i < nChan; ++i) {
3933 result[i] = (float)residual[i];
3934 }
3935 } else {
3936 for (int i = 0; i < nChan; ++i) {
3937 result[i] = (float)r1[i];
3938 }
3939 }
3940
3941 return result;
3942} //xMatrix
3943
3944void Scantable::cubicSplineBaseline(const std::vector<bool>& mask, int nPiece,
3945 float thresClip, int nIterClip,
3946 bool getResidual,
3947 const std::string& progressInfo,
3948 const bool outLogger, const std::string& blfile,
3949 const std::string& bltable)
3950{
3951 /****
3952 double TimeStart = mathutil::gettimeofday_sec();
3953 ****/
3954
3955 try {
3956 ofstream ofs;
3957 String coordInfo;
3958 bool hasSameNchan, outTextFile, csvFormat, showProgress;
3959 int minNRow;
3960 int nRow = nrow();
3961 std::vector<bool> chanMask, finalChanMask;
3962 float rms;
3963 bool outBaselineTable = (bltable != "");
3964 STBaselineTable bt = STBaselineTable(*this);
3965 Vector<Double> timeSecCol;
3966 size_t flagged=0;
3967
3968 initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3969 coordInfo, hasSameNchan,
3970 progressInfo, showProgress, minNRow,
3971 timeSecCol);
3972
3973 std::vector<int> nChanNos;
3974 std::vector<std::vector<std::vector<double> > > modelReservoir;
3975 modelReservoir = getPolynomialModelReservoir(3,
3976 &Scantable::getNormalPolynomial,
3977 nChanNos);
3978 int nDOF = nPiece + 3;
3979
3980 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3981 std::vector<float> sp = getSpectrum(whichrow);
3982 chanMask = getCompositeChanMask(whichrow, mask);
3983 std::vector<int> pieceEdges;
3984 std::vector<float> params;
3985
3986 //if (flagrowCol_(whichrow) == 0) {
3987 if (flagrowCol_(whichrow)==0 && nValidMask(chanMask)>0) {
3988 int nClipped = 0;
3989 std::vector<float> res;
3990 res = doCubicSplineLeastSquareFitting(sp, chanMask,
3991 modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3992 nPiece, false, pieceEdges, params, rms, finalChanMask,
3993 nClipped, thresClip, nIterClip, getResidual);
3994
3995 if (outBaselineTable) {
3996 bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3997 getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3998 true, STBaselineFunc::CSpline, pieceEdges, std::vector<float>(),
3999 getMaskListFromMask(finalChanMask), params, rms, sp.size(),
4000 thresClip, nIterClip, 0.0, 0, std::vector<int>());
4001 } else {
4002 setSpectrum(res, whichrow);
4003 }
4004
4005 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
4006 coordInfo, hasSameNchan, ofs, "cubicSplineBaseline()",
4007 pieceEdges, params, nClipped);
4008 } else {
4009 // no valid channels to fit (flag the row)
4010 flagrowCol_.put(whichrow, 1);
4011 ++flagged;
4012 if (outBaselineTable) {
4013 pieceEdges.resize(nPiece+1);
4014 for (uInt i = 0; i < pieceEdges.size(); ++i) {
4015 pieceEdges[i] = 0;
4016 }
4017 params.resize(nDOF);
4018 for (uInt i = 0; i < params.size(); ++i) {
4019 params[i] = 0.0;
4020 }
4021 bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4022 getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4023 true, STBaselineFunc::CSpline, pieceEdges, std::vector<float>(),
4024 getMaskListFromMask(chanMask), params, 0.0, sp.size(),
4025 thresClip, nIterClip, 0.0, 0, std::vector<int>());
4026 }
4027 }
4028
4029 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
4030 }
4031
4032 finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
4033
4034 if (flagged > 0) {
4035 LogIO os( LogOrigin( "Scantable", "cubicSplineBaseline()") ) ;
4036 os << LogIO::WARN << "Baseline subtraction is skipped for " << flagged << " spectra due to too few valid channels to operate fit. The spectra will be flagged in output data." << LogIO::POST;
4037 }
4038 } catch (...) {
4039 throw;
4040 }
4041
4042 /****
4043 double TimeEnd = mathutil::gettimeofday_sec();
4044 double elapse1 = TimeEnd - TimeStart;
4045 std::cout << "cspline-new : " << elapse1 << " (sec.)" << endl;
4046 ****/
4047}
4048
4049void Scantable::autoCubicSplineBaseline(const std::vector<bool>& mask, int nPiece,
4050 float thresClip, int nIterClip,
4051 const std::vector<int>& edge,
4052 float threshold, int chanAvgLimit,
4053 bool getResidual,
4054 const std::string& progressInfo,
4055 const bool outLogger, const std::string& blfile,
4056 const std::string& bltable)
4057{
4058 try {
4059 ofstream ofs;
4060 String coordInfo;
4061 bool hasSameNchan, outTextFile, csvFormat, showProgress;
4062 int minNRow;
4063 int nRow = nrow();
4064 std::vector<bool> chanMask, finalChanMask;
4065 float rms;
4066 bool outBaselineTable = (bltable != "");
4067 STBaselineTable bt = STBaselineTable(*this);
4068 Vector<Double> timeSecCol;
4069 STLineFinder lineFinder = STLineFinder();
4070 size_t flagged=0;
4071
4072 initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
4073 coordInfo, hasSameNchan,
4074 progressInfo, showProgress, minNRow,
4075 timeSecCol);
4076
4077 initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
4078
4079 std::vector<int> nChanNos;
4080 std::vector<std::vector<std::vector<double> > > modelReservoir;
4081 modelReservoir = getPolynomialModelReservoir(3,
4082 &Scantable::getNormalPolynomial,
4083 nChanNos);
4084 int nDOF = nPiece + 3;
4085
4086 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
4087 std::vector<float> sp = getSpectrum(whichrow);
4088 std::vector<int> currentEdge;
4089 chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
4090 std::vector<int> pieceEdges;
4091 std::vector<float> params;
4092
4093 //if (flagrowCol_(whichrow) == 0) {
4094 if (flagrowCol_(whichrow)==0 && nValidMask(chanMask)>0) {
4095 int nClipped = 0;
4096 std::vector<float> res;
4097 res = doCubicSplineLeastSquareFitting(sp, chanMask,
4098 modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
4099 nPiece, false, pieceEdges, params, rms, finalChanMask,
4100 nClipped, thresClip, nIterClip, getResidual);
4101
4102 if (outBaselineTable) {
4103 bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4104 getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4105 true, STBaselineFunc::CSpline, pieceEdges, std::vector<float>(),
4106 getMaskListFromMask(finalChanMask), params, rms, sp.size(),
4107 thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
4108 } else {
4109 setSpectrum(res, whichrow);
4110 }
4111
4112 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
4113 coordInfo, hasSameNchan, ofs, "autoCubicSplineBaseline()",
4114 pieceEdges, params, nClipped);
4115 } else {
4116 // no valid channels to fit (flag the row)
4117 flagrowCol_.put(whichrow, 1);
4118 ++flagged;
4119 if (outBaselineTable) {
4120 pieceEdges.resize(nPiece+1);
4121 for (uInt i = 0; i < pieceEdges.size(); ++i) {
4122 pieceEdges[i] = 0;
4123 }
4124 params.resize(nDOF);
4125 for (uInt i = 0; i < params.size(); ++i) {
4126 params[i] = 0.0;
4127 }
4128 bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4129 getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4130 true, STBaselineFunc::CSpline, pieceEdges, std::vector<float>(),
4131 getMaskListFromMask(chanMask), params, 0.0, sp.size(),
4132 thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
4133 }
4134 }
4135
4136 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
4137 }
4138
4139 finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
4140
4141 if (flagged > 0) {
4142 LogIO os( LogOrigin( "Scantable", "autoCubicSplineBaseline()") ) ;
4143 os << LogIO::WARN << "Baseline subtraction is skipped for " << flagged << " spectra due to too few valid channels to operate fit. The spectra will be flagged in output data." << LogIO::POST;
4144 }
4145 } catch (...) {
4146 throw;
4147 }
4148}
4149
4150std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data,
4151 const std::vector<bool>& mask,
4152 std::vector<int>& idxEdge,
4153 std::vector<float>& params,
4154 float& rms,
4155 std::vector<bool>& finalmask,
4156 float clipth,
4157 int clipn)
4158{
4159 int nClipped = 0;
4160 return doCubicSplineFitting(data, mask, idxEdge.size()-1, true, idxEdge, params, rms, finalmask, nClipped, clipth, clipn);
4161}
4162
4163std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data,
4164 const std::vector<bool>& mask,
4165 int nPiece,
4166 std::vector<int>& idxEdge,
4167 std::vector<float>& params,
4168 float& rms,
4169 std::vector<bool>& finalmask,
4170 float clipth,
4171 int clipn)
4172{
4173 int nClipped = 0;
4174 return doCubicSplineFitting(data, mask, nPiece, false, idxEdge, params, rms, finalmask, nClipped, clipth, clipn);
4175}
4176
4177std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data,
4178 const std::vector<bool>& mask,
4179 int nPiece,
4180 bool useGivenPieceBoundary,
4181 std::vector<int>& idxEdge,
4182 std::vector<float>& params,
4183 float& rms,
4184 std::vector<bool>& finalMask,
4185 int& nClipped,
4186 float thresClip,
4187 int nIterClip,
4188 bool getResidual)
4189{
4190 return doCubicSplineLeastSquareFitting(data, mask,
4191 getPolynomialModel(3, data.size(), &Scantable::getNormalPolynomial),
4192 nPiece, useGivenPieceBoundary, idxEdge,
4193 params, rms, finalMask,
4194 nClipped, thresClip, nIterClip,
4195 getResidual);
4196}
4197
4198std::vector<float> Scantable::doCubicSplineLeastSquareFitting(const std::vector<float>& data,
4199 const std::vector<bool>& mask,
4200 const std::vector<std::vector<double> >& model,
4201 int nPiece,
4202 bool useGivenPieceBoundary,
4203 std::vector<int>& idxEdge,
4204 std::vector<float>& params,
4205 float& rms,
4206 std::vector<bool>& finalMask,
4207 int& nClipped,
4208 float thresClip,
4209 int nIterClip,
4210 bool getResidual)
4211{
4212 int nDOF = nPiece + 3; //number of independent parameters to solve, namely, 4+(nPiece-1).
4213 int nModel = model.size();
4214 int nChan = data.size();
4215
4216 if (nModel != 4) {
4217 throw(AipsError("model size must be 4."));
4218 }
4219 if (nPiece < 1) {
4220 throw(AipsError("number of the sections must be one or more"));
4221 }
4222 if (nChan < 2*nPiece) {
4223 throw(AipsError("data size is too few"));
4224 }
4225 if (nChan != (int)mask.size()) {
4226 throw(AipsError("data and mask sizes are not identical"));
4227 }
4228 for (int i = 0; i < nModel; ++i) {
4229 if (nChan != (int)model[i].size()) {
4230 throw(AipsError("data and model sizes are not identical"));
4231 }
4232 }
4233
4234 params.clear();
4235 params.resize(nPiece*nModel);
4236
4237 finalMask.clear();
4238 finalMask.resize(nChan);
4239
4240 std::vector<int> maskArray(nChan);
4241 std::vector<int> x(nChan);
4242 int j = 0;
4243 for (int i = 0; i < nChan; ++i) {
4244 maskArray[i] = mask[i] ? 1 : 0;
4245 if (isnan(data[i])) maskArray[i] = 0;
4246 if (isinf(data[i])) maskArray[i] = 0;
4247
4248 finalMask[i] = (maskArray[i] == 1);
4249 if (finalMask[i]) {
4250 x[j] = i;
4251 j++;
4252 }
4253
4254 /*
4255 maskArray[i] = mask[i] ? 1 : 0;
4256 if (mask[i]) {
4257 x[j] = i;
4258 j++;
4259 }
4260 finalMask[i] = mask[i];
4261 */
4262 }
4263
4264 int initNData = j;
4265 int nData = initNData;
4266
4267 if (initNData < nPiece) {
4268 throw(AipsError("too few non-flagged channels"));
4269 }
4270
4271 int nElement = (int)(floor(floor((double)(initNData/nPiece))+0.5));
4272 std::vector<double> invEdge(nPiece-1);
4273
4274 if (useGivenPieceBoundary) {
4275 if ((int)idxEdge.size() != nPiece+1) {
4276 throw(AipsError("pieceEdge.size() must be equal to nPiece+1."));
4277 }
4278 } else {
4279 idxEdge.clear();
4280 idxEdge.resize(nPiece+1);
4281 idxEdge[0] = x[0];
4282 }
4283 for (int i = 1; i < nPiece; ++i) {
4284 int valX = x[nElement*i];
4285 if (!useGivenPieceBoundary) {
4286 idxEdge[i] = valX;
4287 }
4288 invEdge[i-1] = 1.0/(double)valX;
4289 }
4290 if (!useGivenPieceBoundary) {
4291 idxEdge[nPiece] = x[initNData-1]+1;
4292 }
4293
4294 std::vector<double> z1(nChan), r1(nChan), residual(nChan);
4295 for (int i = 0; i < nChan; ++i) {
4296 z1[i] = (double)data[i];
4297 r1[i] = 0.0;
4298 residual[i] = 0.0;
4299 }
4300
4301 for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
4302 // xMatrix : horizontal concatenation of
4303 // the least-sq. matrix (left) and an
4304 // identity matrix (right).
4305 // the right part is used to calculate the inverse matrix of the left part.
4306
4307 double xMatrix[nDOF][2*nDOF];
4308 double zMatrix[nDOF];
4309 for (int i = 0; i < nDOF; ++i) {
4310 for (int j = 0; j < 2*nDOF; ++j) {
4311 xMatrix[i][j] = 0.0;
4312 }
4313 xMatrix[i][nDOF+i] = 1.0;
4314 zMatrix[i] = 0.0;
4315 }
4316
4317 for (int n = 0; n < nPiece; ++n) {
4318 int nUseDataInPiece = 0;
4319 for (int k = idxEdge[n]; k < idxEdge[n+1]; ++k) {
4320
4321 if (maskArray[k] == 0) continue;
4322
4323 for (int i = 0; i < nModel; ++i) {
4324 for (int j = i; j < nModel; ++j) {
4325 xMatrix[i][j] += model[i][k] * model[j][k];
4326 }
4327 zMatrix[i] += z1[k] * model[i][k];
4328 }
4329
4330 for (int i = 0; i < n; ++i) {
4331 double q = 1.0 - model[1][k]*invEdge[i];
4332 q = q*q*q;
4333 for (int j = 0; j < nModel; ++j) {
4334 xMatrix[j][i+nModel] += q * model[j][k];
4335 }
4336 for (int j = 0; j < i; ++j) {
4337 double r = 1.0 - model[1][k]*invEdge[j];
4338 r = r*r*r;
4339 xMatrix[j+nModel][i+nModel] += r*q;
4340 }
4341 xMatrix[i+nModel][i+nModel] += q*q;
4342 zMatrix[i+nModel] += q*z1[k];
4343 }
4344
4345 nUseDataInPiece++;
4346 }
4347
4348 if (nUseDataInPiece < 1) {
4349 std::vector<string> suffixOfPieceNumber(4);
4350 suffixOfPieceNumber[0] = "th";
4351 suffixOfPieceNumber[1] = "st";
4352 suffixOfPieceNumber[2] = "nd";
4353 suffixOfPieceNumber[3] = "rd";
4354 int idxNoDataPiece = (n % 10 <= 3) ? n : 0;
4355 ostringstream oss;
4356 oss << "all channels clipped or masked in " << n << suffixOfPieceNumber[idxNoDataPiece];
4357 oss << " piece of the spectrum. can't execute fitting anymore.";
4358 throw(AipsError(String(oss)));
4359 }
4360 }
4361
4362 for (int i = 0; i < nDOF; ++i) {
4363 for (int j = 0; j < i; ++j) {
4364 xMatrix[i][j] = xMatrix[j][i];
4365 }
4366 }
4367
4368 std::vector<double> invDiag(nDOF);
4369 for (int i = 0; i < nDOF; ++i) {
4370 invDiag[i] = 1.0 / xMatrix[i][i];
4371 for (int j = 0; j < nDOF; ++j) {
4372 xMatrix[i][j] *= invDiag[i];
4373 }
4374 }
4375
4376 for (int k = 0; k < nDOF; ++k) {
4377 for (int i = 0; i < nDOF; ++i) {
4378 if (i != k) {
4379 double factor1 = xMatrix[k][k];
4380 double invfactor1 = 1.0 / factor1;
4381 double factor2 = xMatrix[i][k];
4382 for (int j = k; j < 2*nDOF; ++j) {
4383 xMatrix[i][j] *= factor1;
4384 xMatrix[i][j] -= xMatrix[k][j]*factor2;
4385 xMatrix[i][j] *= invfactor1;
4386 }
4387 }
4388 }
4389 double invXDiag = 1.0 / xMatrix[k][k];
4390 for (int j = k; j < 2*nDOF; ++j) {
4391 xMatrix[k][j] *= invXDiag;
4392 }
4393 }
4394
4395 for (int i = 0; i < nDOF; ++i) {
4396 for (int j = 0; j < nDOF; ++j) {
4397 xMatrix[i][nDOF+j] *= invDiag[j];
4398 }
4399 }
4400
4401 //compute a vector y which consists of the coefficients of the best-fit spline curves
4402 //(a0,a1,a2,a3(,b3,c3,...)), namely, the ones for the leftmost piece and the ones of
4403 //cubic terms for the other pieces (in case nPiece>1).
4404 std::vector<double> y(nDOF);
4405 for (int i = 0; i < nDOF; ++i) {
4406 y[i] = 0.0;
4407 for (int j = 0; j < nDOF; ++j) {
4408 y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
4409 }
4410 }
4411
4412 std::vector<double> a(nModel);
4413 for (int i = 0; i < nModel; ++i) {
4414 a[i] = y[i];
4415 }
4416
4417 int j = 0;
4418 for (int n = 0; n < nPiece; ++n) {
4419 for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
4420 r1[i] = 0.0;
4421 for (int j = 0; j < nModel; ++j) {
4422 r1[i] += a[j] * model[j][i];
4423 }
4424 }
4425 for (int i = 0; i < nModel; ++i) {
4426 params[j+i] = a[i];
4427 }
4428 j += nModel;
4429
4430 if (n == nPiece-1) break;
4431
4432 double d = y[n+nModel];
4433 double iE = invEdge[n];
4434 a[0] += d;
4435 a[1] -= 3.0 * d * iE;
4436 a[2] += 3.0 * d * iE * iE;
4437 a[3] -= d * iE * iE * iE;
4438 }
4439
4440 //subtract constant value for masked regions at the edge of spectrum
4441 if (idxEdge[0] > 0) {
4442 int n = idxEdge[0];
4443 for (int i = 0; i < idxEdge[0]; ++i) {
4444 //--cubic extrapolate--
4445 //r1[i] = params[0] + params[1]*x1[i] + params[2]*x2[i] + params[3]*x3[i];
4446 //--linear extrapolate--
4447 //r1[i] = (r1[n+1] - r1[n])/(x1[n+1] - x1[n])*(x1[i] - x1[n]) + r1[n];
4448 //--constant--
4449 r1[i] = r1[n];
4450 }
4451 }
4452
4453 if (idxEdge[nPiece] < nChan) {
4454 int n = idxEdge[nPiece]-1;
4455 for (int i = idxEdge[nPiece]; i < nChan; ++i) {
4456 //--cubic extrapolate--
4457 //int m = 4*(nPiece-1);
4458 //r1[i] = params[m] + params[m+1]*x1[i] + params[m+2]*x2[i] + params[m+3]*x3[i];
4459 //--linear extrapolate--
4460 //r1[i] = (r1[n-1] - r1[n])/(x1[n-1] - x1[n])*(x1[i] - x1[n]) + r1[n];
4461 //--constant--
4462 r1[i] = r1[n];
4463 }
4464 }
4465
4466 for (int i = 0; i < nChan; ++i) {
4467 residual[i] = z1[i] - r1[i];
4468 }
4469
4470 double mean = 0.0;
4471 double mean2 = 0.0;
4472 for (int i = 0; i < nChan; ++i) {
4473 if (maskArray[i] == 0) continue;
4474 mean += residual[i];
4475 mean2 += residual[i]*residual[i];
4476 }
4477 mean /= (double)nData;
4478 mean2 /= (double)nData;
4479 double rmsd = sqrt(mean2 - mean*mean);
4480 rms = (float)rmsd;
4481
4482 if ((nClip == nIterClip) || (thresClip <= 0.0)) {
4483 break;
4484 } else {
4485
4486 double thres = rmsd * thresClip;
4487 int newNData = 0;
4488 for (int i = 0; i < nChan; ++i) {
4489 if (abs(residual[i]) >= thres) {
4490 maskArray[i] = 0;
4491 finalMask[i] = false;
4492 }
4493 if (maskArray[i] > 0) {
4494 newNData++;
4495 }
4496 }
4497 if (newNData == nData) {
4498 break; //no more flag to add. iteration stops.
4499 } else {
4500 nData = newNData;
4501 }
4502
4503 }
4504 }
4505
4506 nClipped = initNData - nData;
4507
4508 std::vector<float> result(nChan);
4509 if (getResidual) {
4510 for (int i = 0; i < nChan; ++i) {
4511 result[i] = (float)residual[i];
4512 }
4513 } else {
4514 for (int i = 0; i < nChan; ++i) {
4515 result[i] = (float)r1[i];
4516 }
4517 }
4518
4519 return result;
4520}
4521
4522std::vector<int> Scantable::selectWaveNumbers(const std::vector<int>& addNWaves,
4523 const std::vector<int>& rejectNWaves)
4524{
4525 std::vector<bool> chanMask;
4526 std::string fftMethod;
4527 std::string fftThresh;
4528
4529 return selectWaveNumbers(0, chanMask, false, fftMethod, fftThresh, addNWaves, rejectNWaves);
4530}
4531
4532std::vector<int> Scantable::selectWaveNumbers(const int whichrow,
4533 const std::vector<bool>& chanMask,
4534 const bool applyFFT,
4535 const std::string& fftMethod,
4536 const std::string& fftThresh,
4537 const std::vector<int>& addNWaves,
4538 const std::vector<int>& rejectNWaves)
4539{
4540 std::vector<int> nWaves;
4541 nWaves.clear();
4542
4543 if (applyFFT) {
4544 string fftThAttr;
4545 float fftThSigma;
4546 int fftThTop;
4547 parseFFTThresholdInfo(fftThresh, fftThAttr, fftThSigma, fftThTop);
4548 doSelectWaveNumbers(whichrow, chanMask, fftMethod, fftThSigma, fftThTop, fftThAttr, nWaves);
4549 }
4550
4551 addAuxWaveNumbers(whichrow, addNWaves, rejectNWaves, nWaves);
4552
4553 return nWaves;
4554}
4555
4556int Scantable::getIdxOfNchan(const int nChan, const std::vector<int>& nChanNos)
4557{
4558 int idx = -1;
4559 for (uint i = 0; i < nChanNos.size(); ++i) {
4560 if (nChan == nChanNos[i]) {
4561 idx = i;
4562 break;
4563 }
4564 }
4565
4566 if (idx < 0) {
4567 throw(AipsError("nChan not found in nChhanNos."));
4568 }
4569
4570 return idx;
4571}
4572
4573void Scantable::parseFFTInfo(const std::string& fftInfo, bool& applyFFT, std::string& fftMethod, std::string& fftThresh)
4574{
4575 istringstream iss(fftInfo);
4576 std::string tmp;
4577 std::vector<string> res;
4578 while (getline(iss, tmp, ',')) {
4579 res.push_back(tmp);
4580 }
4581 if (res.size() < 3) {
4582 throw(AipsError("wrong value in 'fftinfo' parameter")) ;
4583 }
4584 applyFFT = (res[0] == "true");
4585 fftMethod = res[1];
4586 fftThresh = res[2];
4587}
4588
4589void Scantable::parseFFTThresholdInfo(const std::string& fftThresh, std::string& fftThAttr, float& fftThSigma, int& fftThTop)
4590{
4591 uInt idxSigma = fftThresh.find("sigma");
4592 uInt idxTop = fftThresh.find("top");
4593
4594 if (idxSigma == fftThresh.size() - 5) {
4595 std::istringstream is(fftThresh.substr(0, fftThresh.size() - 5));
4596 is >> fftThSigma;
4597 fftThAttr = "sigma";
4598 } else if (idxTop == 0) {
4599 std::istringstream is(fftThresh.substr(3));
4600 is >> fftThTop;
4601 fftThAttr = "top";
4602 } else {
4603 bool isNumber = true;
4604 for (uInt i = 0; i < fftThresh.size()-1; ++i) {
4605 char ch = (fftThresh.substr(i, 1).c_str())[0];
4606 if (!(isdigit(ch) || (fftThresh.substr(i, 1) == "."))) {
4607 isNumber = false;
4608 break;
4609 }
4610 }
4611 if (isNumber) {
4612 std::istringstream is(fftThresh);
4613 is >> fftThSigma;
4614 fftThAttr = "sigma";
4615 } else {
4616 throw(AipsError("fftthresh has a wrong value"));
4617 }
4618 }
4619}
4620
4621void Scantable::doSelectWaveNumbers(const int whichrow, const std::vector<bool>& chanMask, const std::string& fftMethod, const float fftThSigma, const int fftThTop, const std::string& fftThAttr, std::vector<int>& nWaves)
4622{
4623 std::vector<float> fspec;
4624 if (fftMethod == "fft") {
4625 fspec = execFFT(whichrow, chanMask, false, true);
4626 //} else if (fftMethod == "lsp") {
4627 // fspec = lombScarglePeriodogram(whichrow);
4628 }
4629
4630 if (fftThAttr == "sigma") {
4631 float mean = 0.0;
4632 float mean2 = 0.0;
4633 for (uInt i = 0; i < fspec.size(); ++i) {
4634 mean += fspec[i];
4635 mean2 += fspec[i]*fspec[i];
4636 }
4637 mean /= float(fspec.size());
4638 mean2 /= float(fspec.size());
4639 float thres = mean + fftThSigma * float(sqrt(mean2 - mean*mean));
4640
4641 for (uInt i = 0; i < fspec.size(); ++i) {
4642 if (fspec[i] >= thres) {
4643 nWaves.push_back(i);
4644 }
4645 }
4646
4647 } else if (fftThAttr == "top") {
4648 for (int i = 0; i < fftThTop; ++i) {
4649 float max = 0.0;
4650 int maxIdx = 0;
4651 for (uInt j = 0; j < fspec.size(); ++j) {
4652 if (fspec[j] > max) {
4653 max = fspec[j];
4654 maxIdx = j;
4655 }
4656 }
4657 nWaves.push_back(maxIdx);
4658 fspec[maxIdx] = 0.0;
4659 }
4660
4661 }
4662
4663 if (nWaves.size() > 1) {
4664 sort(nWaves.begin(), nWaves.end());
4665 }
4666}
4667
4668void Scantable::addAuxWaveNumbers(const int whichrow, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, std::vector<int>& nWaves)
4669{
4670 std::vector<int> tempAddNWaves, tempRejectNWaves;
4671 tempAddNWaves.clear();
4672 tempRejectNWaves.clear();
4673
4674 for (uInt i = 0; i < addNWaves.size(); ++i) {
4675 tempAddNWaves.push_back(addNWaves[i]);
4676 }
4677 if ((tempAddNWaves.size() == 2) && (tempAddNWaves[1] == -999)) {
4678 setWaveNumberListUptoNyquistFreq(whichrow, tempAddNWaves);
4679 }
4680
4681 for (uInt i = 0; i < rejectNWaves.size(); ++i) {
4682 tempRejectNWaves.push_back(rejectNWaves[i]);
4683 }
4684 if ((tempRejectNWaves.size() == 2) && (tempRejectNWaves[1] == -999)) {
4685 setWaveNumberListUptoNyquistFreq(whichrow, tempRejectNWaves);
4686 }
4687
4688 for (uInt i = 0; i < tempAddNWaves.size(); ++i) {
4689 bool found = false;
4690 for (uInt j = 0; j < nWaves.size(); ++j) {
4691 if (nWaves[j] == tempAddNWaves[i]) {
4692 found = true;
4693 break;
4694 }
4695 }
4696 if (!found) nWaves.push_back(tempAddNWaves[i]);
4697 }
4698
4699 for (uInt i = 0; i < tempRejectNWaves.size(); ++i) {
4700 for (std::vector<int>::iterator j = nWaves.begin(); j != nWaves.end(); ) {
4701 if (*j == tempRejectNWaves[i]) {
4702 j = nWaves.erase(j);
4703 } else {
4704 ++j;
4705 }
4706 }
4707 }
4708
4709 if (nWaves.size() > 1) {
4710 sort(nWaves.begin(), nWaves.end());
4711 unique(nWaves.begin(), nWaves.end());
4712 }
4713}
4714
4715void Scantable::setWaveNumberListUptoNyquistFreq(const int whichrow, std::vector<int>& nWaves)
4716{
4717 int val = nWaves[0];
4718 int nyquistFreq = nchan(getIF(whichrow))/2+1;
4719 nWaves.clear();
4720 if (val > nyquistFreq) { // for safety, at least nWaves contains a constant; CAS-3759
4721 nWaves.push_back(0);
4722 }
4723 while (val <= nyquistFreq) {
4724 nWaves.push_back(val);
4725 val++;
4726 }
4727}
4728
4729void Scantable::sinusoidBaseline(const std::vector<bool>& mask, const std::string& fftInfo,
4730 const std::vector<int>& addNWaves,
4731 const std::vector<int>& rejectNWaves,
4732 float thresClip, int nIterClip,
4733 bool getResidual,
4734 const std::string& progressInfo,
4735 const bool outLogger, const std::string& blfile,
4736 const std::string& bltable)
4737{
4738 /****
4739 double TimeStart = mathutil::gettimeofday_sec();
4740 ****/
4741
4742 try {
4743 ofstream ofs;
4744 String coordInfo;
4745 bool hasSameNchan, outTextFile, csvFormat, showProgress;
4746 int minNRow;
4747 int nRow = nrow();
4748 std::vector<bool> chanMask, finalChanMask;
4749 float rms;
4750 bool outBaselineTable = (bltable != "");
4751 STBaselineTable bt = STBaselineTable(*this);
4752 Vector<Double> timeSecCol;
4753 size_t flagged=0;
4754
4755 initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
4756 coordInfo, hasSameNchan,
4757 progressInfo, showProgress, minNRow,
4758 timeSecCol);
4759
4760 bool applyFFT;
4761 std::string fftMethod, fftThresh;
4762 parseFFTInfo(fftInfo, applyFFT, fftMethod, fftThresh);
4763
4764 std::vector<int> nWaves;
4765 std::vector<int> nChanNos;
4766 std::vector<std::vector<std::vector<double> > > modelReservoir;
4767 if (!applyFFT) {
4768 nWaves = selectWaveNumbers(addNWaves, rejectNWaves);
4769 if (nWaves.size()==0) //no wave numbers to fit
4770 throw(AipsError("No valid wave numbers to fit"));
4771 modelReservoir = getSinusoidModelReservoir(nWaves, nChanNos);
4772 }
4773
4774 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
4775 std::vector<float> sp = getSpectrum(whichrow);
4776 chanMask = getCompositeChanMask(whichrow, mask);
4777 std::vector<std::vector<double> > model;
4778 bool canfit = true;
4779 if (applyFFT) {
4780 nWaves = selectWaveNumbers(whichrow, chanMask, true, fftMethod, fftThresh,
4781 addNWaves, rejectNWaves);
4782 if (nWaves.size()==0) {// no wave numbers to fit.
4783 canfit = false;
4784 break;
4785 }
4786 model = getSinusoidModel(nWaves, sp.size());
4787 } else {
4788 model = modelReservoir[getIdxOfNchan(sp.size(), nChanNos)];
4789 }
4790 int nModel = modelReservoir.size();
4791
4792 std::vector<float> params;
4793
4794 //if (flagrowCol_(whichrow) == 0) {
4795 if (canfit && flagrowCol_(whichrow)==0 && nValidMask(chanMask)>0) {
4796 int nClipped = 0;
4797 std::vector<float> res;
4798 res = doLeastSquareFitting(sp, chanMask, model,
4799 params, rms, finalChanMask,
4800 nClipped, thresClip, nIterClip, getResidual);
4801
4802 if (outBaselineTable) {
4803 bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4804 getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4805 true, STBaselineFunc::Sinusoid, nWaves, std::vector<float>(),
4806 getMaskListFromMask(finalChanMask), params, rms, sp.size(),
4807 thresClip, nIterClip, 0.0, 0, std::vector<int>());
4808 } else {
4809 setSpectrum(res, whichrow);
4810 }
4811
4812 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
4813 coordInfo, hasSameNchan, ofs, "sinusoidBaseline()",
4814 params, nClipped);
4815 } else {
4816 // no valid channels to fit (flag the row)
4817 flagrowCol_.put(whichrow, 1);
4818 ++flagged;
4819 if (outBaselineTable) {
4820 params.resize(nModel);
4821 for (uInt i = 0; i < params.size(); ++i) {
4822 params[i] = 0.0;
4823 }
4824 bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4825 getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4826 true, STBaselineFunc::Sinusoid, nWaves, std::vector<float>(),
4827 getMaskListFromMask(chanMask), params, 0.0, sp.size(),
4828 thresClip, nIterClip, 0.0, 0, std::vector<int>());
4829 }
4830 }
4831
4832 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
4833 }
4834
4835 finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
4836
4837 if (flagged > 0) {
4838 LogIO os( LogOrigin( "Scantable", "sinusoidBaseline()") ) ;
4839 os << LogIO::WARN << "Baseline subtraction is skipped for " << flagged << " spectra due to too few valid channels to operate fit. The spectra will be flagged in output data." << LogIO::POST;
4840 }
4841 } catch (...) {
4842 throw;
4843 }
4844
4845 /****
4846 double TimeEnd = mathutil::gettimeofday_sec();
4847 double elapse1 = TimeEnd - TimeStart;
4848 std::cout << "sinusoid-old : " << elapse1 << " (sec.)" << endl;
4849 ****/
4850}
4851
4852void Scantable::autoSinusoidBaseline(const std::vector<bool>& mask, const std::string& fftInfo,
4853 const std::vector<int>& addNWaves,
4854 const std::vector<int>& rejectNWaves,
4855 float thresClip, int nIterClip,
4856 const std::vector<int>& edge,
4857 float threshold, int chanAvgLimit,
4858 bool getResidual,
4859 const std::string& progressInfo,
4860 const bool outLogger, const std::string& blfile,
4861 const std::string& bltable)
4862{
4863 try {
4864 ofstream ofs;
4865 String coordInfo;
4866 bool hasSameNchan, outTextFile, csvFormat, showProgress;
4867 int minNRow;
4868 int nRow = nrow();
4869 std::vector<bool> chanMask, finalChanMask;
4870 float rms;
4871 bool outBaselineTable = (bltable != "");
4872 STBaselineTable bt = STBaselineTable(*this);
4873 Vector<Double> timeSecCol;
4874 STLineFinder lineFinder = STLineFinder();
4875 size_t flagged=0;
4876
4877 initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
4878 coordInfo, hasSameNchan,
4879 progressInfo, showProgress, minNRow,
4880 timeSecCol);
4881
4882 initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
4883
4884 bool applyFFT;
4885 string fftMethod, fftThresh;
4886 parseFFTInfo(fftInfo, applyFFT, fftMethod, fftThresh);
4887
4888 std::vector<int> nWaves;
4889 std::vector<int> nChanNos;
4890 std::vector<std::vector<std::vector<double> > > modelReservoir;
4891 if (!applyFFT) {
4892 nWaves = selectWaveNumbers(addNWaves, rejectNWaves);
4893 if (nWaves.size()==0) //no wave numbers to fit
4894 throw(AipsError("No valid wave numbers to fit"));
4895 modelReservoir = getSinusoidModelReservoir(nWaves, nChanNos);
4896 }
4897
4898 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
4899 std::vector<float> sp = getSpectrum(whichrow);
4900 std::vector<int> currentEdge;
4901 chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
4902 std::vector<std::vector<double> > model;
4903 bool canfit=true;
4904 if (applyFFT) {
4905 nWaves = selectWaveNumbers(whichrow, chanMask, true, fftMethod, fftThresh,
4906 addNWaves, rejectNWaves);
4907 if (nWaves.size()==0) { // no wave numbers to fit.
4908 canfit = false;
4909 break;
4910 }
4911 model = getSinusoidModel(nWaves, sp.size());
4912 } else {
4913 model = modelReservoir[getIdxOfNchan(sp.size(), nChanNos)];
4914 }
4915 int nModel = modelReservoir.size();
4916
4917 std::vector<float> params;
4918
4919 //if (flagrowCol_(whichrow) == 0) {
4920 if (canfit && flagrowCol_(whichrow)==0 && nValidMask(chanMask)>0) {
4921 int nClipped = 0;
4922 std::vector<float> res;
4923 res = doLeastSquareFitting(sp, chanMask, model,
4924 params, rms, finalChanMask,
4925 nClipped, thresClip, nIterClip, getResidual);
4926
4927 if (outBaselineTable) {
4928 bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4929 getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4930 true, STBaselineFunc::Sinusoid, nWaves, std::vector<float>(),
4931 getMaskListFromMask(finalChanMask), params, rms, sp.size(),
4932 thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
4933 } else {
4934 setSpectrum(res, whichrow);
4935 }
4936
4937 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
4938 coordInfo, hasSameNchan, ofs, "autoSinusoidBaseline()",
4939 params, nClipped);
4940 } else {
4941 // no valid channels to fit (flag the row)
4942 flagrowCol_.put(whichrow, 1);
4943 ++flagged;
4944 if (outBaselineTable) {
4945 params.resize(nModel);
4946 for (uInt i = 0; i < params.size(); ++i) {
4947 params[i] = 0.0;
4948 }
4949 bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4950 getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4951 true, STBaselineFunc::Sinusoid, nWaves, std::vector<float>(),
4952 getMaskListFromMask(chanMask), params, 0.0, sp.size(),
4953 thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
4954 }
4955 }
4956
4957 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
4958 }
4959
4960 finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
4961
4962 if (flagged > 0) {
4963 LogIO os( LogOrigin( "Scantable", "autoSinusoidBaseline()") ) ;
4964 os << LogIO::WARN << "Baseline subtraction is skipped for " << flagged << " spectra due to too few valid channels to operate fit. The spectra will be flagged in output data." << LogIO::POST;
4965 }
4966 } catch (...) {
4967 throw;
4968 }
4969}
4970
4971std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data,
4972 const std::vector<bool>& mask,
4973 const std::vector<int>& waveNumbers,
4974 std::vector<float>& params,
4975 float& rms,
4976 std::vector<bool>& finalmask,
4977 float clipth,
4978 int clipn)
4979{
4980 int nClipped = 0;
4981 return doSinusoidFitting(data, mask, waveNumbers, params, rms, finalmask, nClipped, clipth, clipn);
4982}
4983
4984std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data,
4985 const std::vector<bool>& mask,
4986 const std::vector<int>& waveNumbers,
4987 std::vector<float>& params,
4988 float& rms,
4989 std::vector<bool>& finalMask,
4990 int& nClipped,
4991 float thresClip,
4992 int nIterClip,
4993 bool getResidual)
4994{
4995 return doLeastSquareFitting(data, mask,
4996 getSinusoidModel(waveNumbers, data.size()),
4997 params, rms, finalMask,
4998 nClipped, thresClip, nIterClip,
4999 getResidual);
5000}
5001
5002std::vector<std::vector<std::vector<double> > > Scantable::getSinusoidModelReservoir(const std::vector<int>& waveNumbers,
5003 std::vector<int>& nChanNos)
5004{
5005 std::vector<std::vector<std::vector<double> > > res;
5006 res.clear();
5007 nChanNos.clear();
5008
5009 std::vector<uint> ifNos = getIFNos();
5010 for (uint i = 0; i < ifNos.size(); ++i) {
5011 int currNchan = nchan(ifNos[i]);
5012 bool hasDifferentNchan = (i == 0);
5013 for (uint j = 0; j < i; ++j) {
5014 if (currNchan != nchan(ifNos[j])) {
5015 hasDifferentNchan = true;
5016 break;
5017 }
5018 }
5019 if (hasDifferentNchan) {
5020 res.push_back(getSinusoidModel(waveNumbers, currNchan));
5021 nChanNos.push_back(currNchan);
5022 }
5023 }
5024
5025 return res;
5026}
5027
5028std::vector<std::vector<double> > Scantable::getSinusoidModel(const std::vector<int>& waveNumbers, int nchan)
5029{
5030 // model : contains elemental values for computing the least-square matrix.
5031 // model.size() is nmodel and model[*].size() is nchan.
5032 // Each model element are as follows:
5033 // model[0] = {1.0, 1.0, 1.0, ..., 1.0},
5034 // model[2n-1] = {sin(nPI/L*x[0]), sin(nPI/L*x[1]), ..., sin(nPI/L*x[nchan])},
5035 // model[2n] = {cos(nPI/L*x[0]), cos(nPI/L*x[1]), ..., cos(nPI/L*x[nchan])},
5036 // where (1 <= n <= nMaxWavesInSW),
5037 // or,
5038 // model[2n-1] = {sin(wn[n]PI/L*x[0]), sin(wn[n]PI/L*x[1]), ..., sin(wn[n]PI/L*x[nchan])},
5039 // model[2n] = {cos(wn[n]PI/L*x[0]), cos(wn[n]PI/L*x[1]), ..., cos(wn[n]PI/L*x[nchan])},
5040 // where wn[n] denotes waveNumbers[n] (1 <= n <= waveNumbers.size()).
5041
5042 std::vector<int> nWaves; // sorted and uniqued array of wave numbers
5043 nWaves.reserve(waveNumbers.size());
5044 copy(waveNumbers.begin(), waveNumbers.end(), back_inserter(nWaves));
5045 sort(nWaves.begin(), nWaves.end());
5046 std::vector<int>::iterator end_it = unique(nWaves.begin(), nWaves.end());
5047 nWaves.erase(end_it, nWaves.end());
5048
5049 int minNWaves = nWaves[0];
5050 if (minNWaves < 0) {
5051 throw(AipsError("wave number must be positive or zero (i.e. constant)"));
5052 }
5053 bool hasConstantTerm = (minNWaves == 0);
5054 int nmodel = nWaves.size() * 2 - (hasConstantTerm ? 1 : 0); //number of parameters to solve.
5055
5056 std::vector<std::vector<double> > model(nmodel, std::vector<double>(nchan));
5057
5058 if (hasConstantTerm) {
5059 for (int j = 0; j < nchan; ++j) {
5060 model[0][j] = 1.0;
5061 }
5062 }
5063
5064 const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
5065 double stretch0 = 2.0*PI/(double)(nchan-1);
5066
5067 for (uInt i = (hasConstantTerm ? 1 : 0); i < nWaves.size(); ++i) {
5068 int sidx = hasConstantTerm ? 2*i-1 : 2*i;
5069 int cidx = sidx + 1;
5070 double stretch = stretch0*(double)nWaves[i];
5071
5072 for (int j = 0; j < nchan; ++j) {
5073 model[sidx][j] = sin(stretch*(double)j);
5074 model[cidx][j] = cos(stretch*(double)j);
5075 }
5076 }
5077
5078 return model;
5079}
5080
5081std::vector<bool> Scantable::getCompositeChanMask(int whichrow,
5082 const std::vector<bool>& inMask)
5083{
5084 std::vector<bool> mask = getMask(whichrow);
5085 uInt maskSize = mask.size();
5086 if (inMask.size() != 0) {
5087 if (maskSize != inMask.size()) {
5088 throw(AipsError("mask sizes are not the same."));
5089 }
5090 for (uInt i = 0; i < maskSize; ++i) {
5091 mask[i] = mask[i] && inMask[i];
5092 }
5093 }
5094
5095 return mask;
5096}
5097
5098std::vector<bool> Scantable::getCompositeChanMask(int whichrow,
5099 const std::vector<bool>& inMask,
5100 const std::vector<int>& edge,
5101 std::vector<int>& currEdge,
5102 STLineFinder& lineFinder)
5103{
5104 if (isAllChannelsFlagged(whichrow)) {//all channels flagged
5105 std::vector<bool> res_mask(nchan(getIF(whichrow)),false);
5106 return res_mask;
5107 } else if (inMask.size() != 0 && nValidMask(inMask)==0){ //no valid mask channels
5108 std::vector<bool> res_mask(inMask);
5109 return res_mask;
5110 }
5111
5112 std::vector<uint> ifNos = getIFNos();
5113 if ((edge.size() > 2) && (edge.size() < ifNos.size()*2)) {
5114 throw(AipsError("Length of edge element info is less than that of IFs"));
5115 }
5116
5117 uint idx = 0;
5118 if (edge.size() > 2) {
5119 int ifVal = getIF(whichrow);
5120 bool foundIF = false;
5121 for (uint i = 0; i < ifNos.size(); ++i) {
5122 if (ifVal == (int)ifNos[i]) {
5123 idx = 2*i;
5124 foundIF = true;
5125 break;
5126 }
5127 }
5128 if (!foundIF) {
5129 throw(AipsError("bad IF number"));
5130 }
5131 }
5132
5133 currEdge.clear();
5134 currEdge.resize(2);
5135 currEdge[0] = edge[idx];
5136 currEdge[1] = edge[idx+1];
5137
5138 lineFinder.setData(getSpectrum(whichrow));
5139 lineFinder.findLines(getCompositeChanMask(whichrow, inMask), currEdge, whichrow);
5140 return lineFinder.getMask();
5141}
5142
5143/* for cspline. will be merged once cspline is available in fitter (2011/3/10 WK) */
5144void Scantable::outputFittingResult(bool outLogger,
5145 bool outTextFile,
5146 bool csvFormat,
5147 const std::vector<bool>& chanMask,
5148 int whichrow,
5149 const casa::String& coordInfo,
5150 bool hasSameNchan,
5151 ofstream& ofs,
5152 const casa::String& funcName,
5153 const std::vector<int>& edge,
5154 const std::vector<float>& params,
5155 const int nClipped)
5156{
5157 if (outLogger || outTextFile) {
5158 float rms = getRms(chanMask, whichrow);
5159 String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
5160 std::vector<bool> fixed;
5161 fixed.clear();
5162
5163 if (outLogger) {
5164 LogIO ols(LogOrigin("Scantable", funcName, WHERE));
5165 ols << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped,
5166 masklist, whichrow, false, csvFormat) << LogIO::POST ;
5167 }
5168 if (outTextFile) {
5169 ofs << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped,
5170 masklist, whichrow, true, csvFormat) << flush;
5171 }
5172 }
5173}
5174
5175/* for poly/chebyshev/sinusoid. */
5176void Scantable::outputFittingResult(bool outLogger,
5177 bool outTextFile,
5178 bool csvFormat,
5179 const std::vector<bool>& chanMask,
5180 int whichrow,
5181 const casa::String& coordInfo,
5182 bool hasSameNchan,
5183 ofstream& ofs,
5184 const casa::String& funcName,
5185 const std::vector<float>& params,
5186 const int nClipped)
5187{
5188 if (outLogger || outTextFile) {
5189 float rms = getRms(chanMask, whichrow);
5190 String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
5191 std::vector<bool> fixed;
5192 fixed.clear();
5193
5194 if (outLogger) {
5195 LogIO ols(LogOrigin("Scantable", funcName, WHERE));
5196 ols << formatBaselineParams(params, fixed, rms, nClipped,
5197 masklist, whichrow, false, csvFormat) << LogIO::POST ;
5198 }
5199 if (outTextFile) {
5200 ofs << formatBaselineParams(params, fixed, rms, nClipped,
5201 masklist, whichrow, true, csvFormat) << flush;
5202 }
5203 }
5204}
5205
5206void Scantable::parseProgressInfo(const std::string& progressInfo, bool& showProgress, int& minNRow)
5207{
5208 int idxDelimiter = progressInfo.find(",");
5209 if (idxDelimiter < 0) {
5210 throw(AipsError("wrong value in 'showprogress' parameter")) ;
5211 }
5212 showProgress = (progressInfo.substr(0, idxDelimiter) == "true");
5213 std::istringstream is(progressInfo.substr(idxDelimiter+1));
5214 is >> minNRow;
5215}
5216
5217void Scantable::showProgressOnTerminal(const int nProcessed, const int nTotal, const bool showProgress, const int nTotalThreshold)
5218{
5219 if (showProgress && (nTotal >= nTotalThreshold)) {
5220 int nInterval = int(floor(double(nTotal)/100.0));
5221 if (nInterval == 0) nInterval++;
5222
5223 if (nProcessed % nInterval == 0) {
5224 printf("\r"); //go to the head of line
5225 printf("\x1b[31m\x1b[1m"); //set red color, highlighted
5226 printf("[%3d%%]", (int)(100.0*(double(nProcessed+1))/(double(nTotal))) );
5227 printf("\x1b[39m\x1b[0m"); //set default attributes
5228 fflush(NULL);
5229 }
5230
5231 if (nProcessed == nTotal - 1) {
5232 printf("\r\x1b[K"); //clear
5233 fflush(NULL);
5234 }
5235
5236 }
5237}
5238
5239std::vector<float> Scantable::execFFT(const int whichrow, const std::vector<bool>& inMask, bool getRealImag, bool getAmplitudeOnly)
5240{
5241 std::vector<bool> mask = getMask(whichrow);
5242
5243 if (inMask.size() > 0) {
5244 uInt maskSize = mask.size();
5245 if (maskSize != inMask.size()) {
5246 throw(AipsError("mask sizes are not the same."));
5247 }
5248 for (uInt i = 0; i < maskSize; ++i) {
5249 mask[i] = mask[i] && inMask[i];
5250 }
5251 }
5252
5253 Vector<Float> spec = getSpectrum(whichrow);
5254 mathutil::doZeroOrderInterpolation(spec, mask);
5255
5256 FFTServer<Float,Complex> ffts;
5257 Vector<Complex> fftres;
5258 ffts.fft0(fftres, spec);
5259
5260 std::vector<float> res;
5261 float norm = float(2.0/double(spec.size()));
5262
5263 if (getRealImag) {
5264 for (uInt i = 0; i < fftres.size(); ++i) {
5265 res.push_back(real(fftres[i])*norm);
5266 res.push_back(imag(fftres[i])*norm);
5267 }
5268 } else {
5269 for (uInt i = 0; i < fftres.size(); ++i) {
5270 res.push_back(abs(fftres[i])*norm);
5271 if (!getAmplitudeOnly) res.push_back(arg(fftres[i]));
5272 }
5273 }
5274
5275 return res;
5276}
5277
5278
5279float Scantable::getRms(const std::vector<bool>& mask, int whichrow)
5280{
5281 /****
5282 double ms1TimeStart, ms1TimeEnd;
5283 double elapse1 = 0.0;
5284 ms1TimeStart = mathutil::gettimeofday_sec();
5285 ****/
5286
5287 Vector<Float> spec;
5288 specCol_.get(whichrow, spec);
5289
5290 /****
5291 ms1TimeEnd = mathutil::gettimeofday_sec();
5292 elapse1 = ms1TimeEnd - ms1TimeStart;
5293 std::cout << "rm1 : " << elapse1 << " (sec.)" << endl;
5294 ****/
5295
5296 return (float)doGetRms(mask, spec);
5297}
5298
5299double Scantable::doGetRms(const std::vector<bool>& mask, const Vector<Float>& spec)
5300{
5301 double mean = 0.0;
5302 double smean = 0.0;
5303 int n = 0;
5304 for (uInt i = 0; i < spec.nelements(); ++i) {
5305 if (mask[i]) {
5306 double val = (double)spec[i];
5307 mean += val;
5308 smean += val*val;
5309 n++;
5310 }
5311 }
5312
5313 mean /= (double)n;
5314 smean /= (double)n;
5315
5316 return sqrt(smean - mean*mean);
5317}
5318
5319std::string Scantable::formatBaselineParamsHeader(int whichrow, const std::string& masklist, bool verbose, bool csvformat) const
5320{
5321 if (verbose) {
5322 ostringstream oss;
5323
5324 if (csvformat) {
5325 oss << getScan(whichrow) << ",";
5326 oss << getBeam(whichrow) << ",";
5327 oss << getIF(whichrow) << ",";
5328 oss << getPol(whichrow) << ",";
5329 oss << getCycle(whichrow) << ",";
5330 String commaReplacedMasklist = masklist;
5331 string::size_type pos = 0;
5332 while (pos = commaReplacedMasklist.find(","), pos != string::npos) {
5333 commaReplacedMasklist.replace(pos, 1, ";");
5334 pos++;
5335 }
5336 oss << commaReplacedMasklist << ",";
5337 } else {
5338 oss << " Scan[" << getScan(whichrow) << "]";
5339 oss << " Beam[" << getBeam(whichrow) << "]";
5340 oss << " IF[" << getIF(whichrow) << "]";
5341 oss << " Pol[" << getPol(whichrow) << "]";
5342 oss << " Cycle[" << getCycle(whichrow) << "]: " << endl;
5343 oss << "Fitter range = " << masklist << endl;
5344 oss << "Baseline parameters" << endl;
5345 }
5346 oss << flush;
5347
5348 return String(oss);
5349 }
5350
5351 return "";
5352}
5353
5354std::string Scantable::formatBaselineParamsFooter(float rms, int nClipped, bool verbose, bool csvformat) const
5355{
5356 if (verbose) {
5357 ostringstream oss;
5358
5359 if (csvformat) {
5360 oss << rms << ",";
5361 if (nClipped >= 0) {
5362 oss << nClipped;
5363 }
5364 } else {
5365 oss << "Results of baseline fit" << endl;
5366 oss << " rms = " << setprecision(6) << rms << endl;
5367 if (nClipped >= 0) {
5368 oss << " Number of clipped channels = " << nClipped << endl;
5369 }
5370 for (int i = 0; i < 60; ++i) {
5371 oss << "-";
5372 }
5373 }
5374 oss << endl;
5375 oss << flush;
5376
5377 return String(oss);
5378 }
5379
5380 return "";
5381}
5382
5383std::string Scantable::formatBaselineParams(const std::vector<float>& params,
5384 const std::vector<bool>& fixed,
5385 float rms,
5386 int nClipped,
5387 const std::string& masklist,
5388 int whichrow,
5389 bool verbose,
5390 bool csvformat,
5391 int start, int count,
5392 bool resetparamid) const
5393{
5394 int nParam = (int)(params.size());
5395
5396 if (nParam < 1) {
5397 return(" Not fitted");
5398 } else {
5399
5400 ostringstream oss;
5401 oss << formatBaselineParamsHeader(whichrow, masklist, verbose, csvformat);
5402
5403 if (start < 0) start = 0;
5404 if (count < 0) count = nParam;
5405 int end = start + count;
5406 if (end > nParam) end = nParam;
5407 int paramidoffset = (resetparamid) ? (-start) : 0;
5408
5409 for (int i = start; i < end; ++i) {
5410 if (i > start) {
5411 oss << ",";
5412 }
5413 std::string sFix = ((fixed.size() > 0) && (fixed[i]) && verbose) ? "(fixed)" : "";
5414 if (csvformat) {
5415 oss << params[i] << sFix;
5416 } else {
5417 oss << " p" << (i+paramidoffset) << sFix << "= " << right << setw(13) << setprecision(6) << params[i];
5418 }
5419 }
5420
5421 if (csvformat) {
5422 oss << ",";
5423 } else {
5424 oss << endl;
5425 }
5426 oss << formatBaselineParamsFooter(rms, nClipped, verbose, csvformat);
5427
5428 return String(oss);
5429 }
5430
5431}
5432
5433std::string Scantable::formatPiecewiseBaselineParams(const std::vector<int>& ranges, const std::vector<float>& params, const std::vector<bool>& fixed, float rms, int nClipped, const std::string& masklist, int whichrow, bool verbose, bool csvformat) const
5434{
5435 int nOutParam = (int)(params.size());
5436 int nPiece = (int)(ranges.size()) - 1;
5437
5438 if (nOutParam < 1) {
5439 return(" Not fitted");
5440 } else if (nPiece < 0) {
5441 return formatBaselineParams(params, fixed, rms, nClipped, masklist, whichrow, verbose, csvformat);
5442 } else if (nPiece < 1) {
5443 return(" Bad count of the piece edge info");
5444 } else if (nOutParam % nPiece != 0) {
5445 return(" Bad count of the output baseline parameters");
5446 } else {
5447
5448 int nParam = nOutParam / nPiece;
5449
5450 ostringstream oss;
5451 oss << formatBaselineParamsHeader(whichrow, masklist, verbose, csvformat);
5452
5453 if (csvformat) {
5454 for (int i = 0; i < nPiece; ++i) {
5455 oss << ranges[i] << "," << (ranges[i+1]-1) << ",";
5456 oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, csvformat, i*nParam, nParam, true);
5457 }
5458 } else {
5459 stringstream ss;
5460 ss << ranges[nPiece] << flush;
5461 int wRange = ss.str().size() * 2 + 5;
5462
5463 for (int i = 0; i < nPiece; ++i) {
5464 ss.str("");
5465 ss << " [" << ranges[i] << "," << (ranges[i+1]-1) << "]";
5466 oss << left << setw(wRange) << ss.str();
5467 oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, csvformat, i*nParam, nParam, true);
5468 //oss << endl;
5469 }
5470 }
5471
5472 oss << formatBaselineParamsFooter(rms, nClipped, verbose, csvformat);
5473
5474 return String(oss);
5475 }
5476
5477}
5478
5479bool Scantable::hasSameNchanOverIFs()
5480{
5481 int nIF = nif(-1);
5482 int nCh;
5483 int totalPositiveNChan = 0;
5484 int nPositiveNChan = 0;
5485
5486 for (int i = 0; i < nIF; ++i) {
5487 nCh = nchan(i);
5488 if (nCh > 0) {
5489 totalPositiveNChan += nCh;
5490 nPositiveNChan++;
5491 }
5492 }
5493
5494 return (totalPositiveNChan == (nPositiveNChan * nchan(0)));
5495}
5496
5497std::string Scantable::getMaskRangeList(const std::vector<bool>& mask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, bool verbose)
5498{
5499 if (mask.size() <= 0) {
5500 throw(AipsError("The mask elements should be > 0"));
5501 }
5502 int IF = getIF(whichrow);
5503 if (mask.size() != (uInt)nchan(IF)) {
5504 throw(AipsError("Number of channels in scantable != number of mask elements"));
5505 }
5506
5507 if (verbose) {
5508 LogIO logOs(LogOrigin("Scantable", "getMaskRangeList()", WHERE));
5509 logOs << LogIO::WARN << "The current mask window unit is " << coordInfo;
5510 if (!hasSameNchan) {
5511 logOs << endl << "This mask is only valid for IF=" << IF;
5512 }
5513 logOs << LogIO::POST;
5514 }
5515
5516 std::vector<double> abcissa = getAbcissa(whichrow);
5517 std::vector<int> edge = getMaskEdgeIndices(mask);
5518
5519 ostringstream oss;
5520 oss.setf(ios::fixed);
5521 oss << setprecision(1) << "[";
5522 for (uInt i = 0; i < edge.size(); i+=2) {
5523 if (i > 0) oss << ",";
5524 oss << "[" << (float)abcissa[edge[i]] << "," << (float)abcissa[edge[i+1]] << "]";
5525 }
5526 oss << "]" << flush;
5527
5528 return String(oss);
5529}
5530
5531std::vector<int> Scantable::getMaskEdgeIndices(const std::vector<bool>& mask)
5532{
5533 if (mask.size() <= 0) {
5534 throw(AipsError("The mask elements should be > 0"));
5535 }
5536
5537 std::vector<int> out, startIndices, endIndices;
5538 int maskSize = mask.size();
5539
5540 startIndices.clear();
5541 endIndices.clear();
5542
5543 if (mask[0]) {
5544 startIndices.push_back(0);
5545 }
5546 for (int i = 1; i < maskSize; ++i) {
5547 if ((!mask[i-1]) && mask[i]) {
5548 startIndices.push_back(i);
5549 } else if (mask[i-1] && (!mask[i])) {
5550 endIndices.push_back(i-1);
5551 }
5552 }
5553 if (mask[maskSize-1]) {
5554 endIndices.push_back(maskSize-1);
5555 }
5556
5557 if (startIndices.size() != endIndices.size()) {
5558 throw(AipsError("Inconsistent Mask Size: bad data?"));
5559 }
5560 for (uInt i = 0; i < startIndices.size(); ++i) {
5561 if (startIndices[i] > endIndices[i]) {
5562 throw(AipsError("Mask start index > mask end index"));
5563 }
5564 }
5565
5566 out.clear();
5567 for (uInt i = 0; i < startIndices.size(); ++i) {
5568 out.push_back(startIndices[i]);
5569 out.push_back(endIndices[i]);
5570 }
5571
5572 return out;
5573}
5574
5575void Scantable::setTsys(const std::vector<float>& newvals, int whichrow) {
5576 Vector<Float> tsys(newvals);
5577 if (whichrow > -1) {
5578 if (tsysCol_.shape(whichrow) != tsys.shape())
5579 throw(AipsError("Given Tsys values are not of the same shape"));
5580 tsysCol_.put(whichrow, tsys);
5581 } else {
5582 tsysCol_.fillColumn(tsys);
5583 }
5584}
5585
5586vector<float> Scantable::getTsysSpectrum( int whichrow ) const
5587{
5588 Vector<Float> tsys( tsysCol_(whichrow) ) ;
5589 vector<float> stlTsys ;
5590 tsys.tovector( stlTsys ) ;
5591 return stlTsys ;
5592}
5593
5594vector<uint> Scantable::getMoleculeIdColumnData() const
5595{
5596 Vector<uInt> molIds(mmolidCol_.getColumn());
5597 vector<uint> res;
5598 molIds.tovector(res);
5599 return res;
5600}
5601
5602void Scantable::setMoleculeIdColumnData(const std::vector<uint>& molids)
5603{
5604 Vector<uInt> molIds(molids);
5605 Vector<uInt> arr(mmolidCol_.getColumn());
5606 if ( molIds.nelements() != arr.nelements() )
5607 throw AipsError("The input data size must be the number of rows.");
5608 mmolidCol_.putColumn(molIds);
5609}
5610
5611
5612std::vector<uint> Scantable::getRootTableRowNumbers() const
5613{
5614 Vector<uInt> rowIds(table_.rowNumbers());
5615 vector<uint> res;
5616 rowIds.tovector(res);
5617 return res;
5618}
5619
5620
5621void Scantable::dropXPol()
5622{
5623 if (npol() <= 2) {
5624 return;
5625 }
5626 if (!selector_.empty()) {
5627 throw AipsError("Can only operate with empty selection");
5628 }
5629 std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
5630 Table tab = tableCommand(taql, table_);
5631 table_ = tab;
5632 table_.rwKeywordSet().define("nPol", Int(2));
5633 originalTable_ = table_;
5634 attach();
5635}
5636
5637}
5638//namespace asap
Note: See TracBrowser for help on using the repository browser.