source: trunk/src/Scantable.cpp @ 3024

Last change on this file since 3024 was 3024, checked in by Kana Sugimoto, 9 years ago

New Development: No

JIRA Issue: No

Ready for Test: Yes

Interface Changes: No

What Interface Changed:

Test Programs:

Put in Release Notes: Yes

Module(s): scantable, sdbaseline

Description: Fixed *Baseline functions so that FLAGROW is set for spectra in which baseline subtraction is not operated (due to flagged channels).


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 167.5 KB
Line 
1//
2// C++ Implementation: Scantable
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2005-2013
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12#include <map>
13#include <sys/time.h>
14
15#include <atnf/PKSIO/SrcType.h>
16
17#include <casa/aips.h>
18#include <casa/iomanip.h>
19#include <casa/iostream.h>
20#include <casa/OS/File.h>
21#include <casa/OS/Path.h>
22#include <casa/Logging/LogIO.h>
23#include <casa/Arrays/Array.h>
24#include <casa/Arrays/ArrayAccessor.h>
25#include <casa/Arrays/ArrayLogical.h>
26#include <casa/Arrays/ArrayMath.h>
27#include <casa/Arrays/MaskArrMath.h>
28#include <casa/Arrays/Slice.h>
29#include <casa/Arrays/Vector.h>
30#include <casa/Arrays/VectorSTLIterator.h>
31#include <casa/BasicMath/Math.h>
32#include <casa/BasicSL/Constants.h>
33#include <casa/Containers/RecordField.h>
34#include <casa/Logging/LogIO.h>
35#include <casa/Quanta/MVAngle.h>
36#include <casa/Quanta/MVTime.h>
37#include <casa/Utilities/GenSort.h>
38
39#include <coordinates/Coordinates/CoordinateUtil.h>
40
41// needed to avoid error in .tcc
42#include <measures/Measures/MCDirection.h>
43//
44#include <measures/Measures/MDirection.h>
45#include <measures/Measures/MEpoch.h>
46#include <measures/Measures/MFrequency.h>
47#include <measures/Measures/MeasRef.h>
48#include <measures/Measures/MeasTable.h>
49#include <measures/TableMeasures/ScalarMeasColumn.h>
50#include <measures/TableMeasures/TableMeasDesc.h>
51#include <measures/TableMeasures/TableMeasRefDesc.h>
52#include <measures/TableMeasures/TableMeasValueDesc.h>
53
54#include <tables/Tables/ArrColDesc.h>
55#include <tables/Tables/ExprNode.h>
56#include <tables/Tables/ScaColDesc.h>
57#include <tables/Tables/SetupNewTab.h>
58#include <tables/Tables/TableCopy.h>
59#include <tables/Tables/TableDesc.h>
60#include <tables/Tables/TableIter.h>
61#include <tables/Tables/TableParse.h>
62#include <tables/Tables/TableRecord.h>
63#include <tables/Tables/TableRow.h>
64#include <tables/Tables/TableVector.h>
65
66#include "MathUtils.h"
67#include "STAttr.h"
68#include "STBaselineTable.h"
69#include "STLineFinder.h"
70#include "STPolCircular.h"
71#include "STPolLinear.h"
72#include "STPolStokes.h"
73#include "STUpgrade.h"
74#include "STFitter.h"
75#include "Scantable.h"
76
77#define debug 1
78
79using namespace casa;
80
81namespace asap {
82
83std::map<std::string, STPol::STPolFactory *> Scantable::factories_;
84
85void Scantable::initFactories() {
86  if ( factories_.empty() ) {
87    Scantable::factories_["linear"] = &STPolLinear::myFactory;
88    Scantable::factories_["circular"] = &STPolCircular::myFactory;
89    Scantable::factories_["stokes"] = &STPolStokes::myFactory;
90  }
91}
92
93Scantable::Scantable(Table::TableType ttype) :
94  type_(ttype)
95{
96  initFactories();
97  setupMainTable();
98  freqTable_ = STFrequencies(*this);
99  table_.rwKeywordSet().defineTable("FREQUENCIES", freqTable_.table());
100  weatherTable_ = STWeather(*this);
101  table_.rwKeywordSet().defineTable("WEATHER", weatherTable_.table());
102  focusTable_ = STFocus(*this);
103  table_.rwKeywordSet().defineTable("FOCUS", focusTable_.table());
104  tcalTable_ = STTcal(*this);
105  table_.rwKeywordSet().defineTable("TCAL", tcalTable_.table());
106  moleculeTable_ = STMolecules(*this);
107  table_.rwKeywordSet().defineTable("MOLECULES", moleculeTable_.table());
108  historyTable_ = STHistory(*this);
109  table_.rwKeywordSet().defineTable("HISTORY", historyTable_.table());
110  fitTable_ = STFit(*this);
111  table_.rwKeywordSet().defineTable("FIT", fitTable_.table());
112  table_.tableInfo().setType( "Scantable" ) ;
113  originalTable_ = table_;
114  attach();
115}
116
117Scantable::Scantable(const std::string& name, Table::TableType ttype) :
118  type_(ttype)
119{
120  initFactories();
121
122  Table tab(name, Table::Update);
123  uInt version = tab.keywordSet().asuInt("VERSION");
124  if (version != version_) {
125      STUpgrade upgrader(version_);
126      LogIO os( LogOrigin( "Scantable" ) ) ;
127      os << LogIO::WARN
128         << name << " data format version " << version
129         << " is deprecated" << endl
130         << "Running upgrade."<< endl 
131         << LogIO::POST ; 
132      std::string outname = upgrader.upgrade(name);
133      if ( outname != name ) {
134        os << LogIO::WARN
135           << "Data will be loaded from " << outname << " instead of "
136           << name << LogIO::POST ;
137        tab = Table(outname, Table::Update ) ;
138      }
139  }
140  if ( type_ == Table::Memory ) {
141    table_ = tab.copyToMemoryTable(generateName());
142  } else {
143    table_ = tab;
144  }
145  table_.tableInfo().setType( "Scantable" ) ;
146
147  attachSubtables();
148  originalTable_ = table_;
149  attach();
150}
151/*
152Scantable::Scantable(const std::string& name, Table::TableType ttype) :
153  type_(ttype)
154{
155  initFactories();
156  Table tab(name, Table::Update);
157  uInt version = tab.keywordSet().asuInt("VERSION");
158  if (version != version_) {
159    throw(AipsError("Unsupported version of ASAP file."));
160  }
161  if ( type_ == Table::Memory ) {
162    table_ = tab.copyToMemoryTable(generateName());
163  } else {
164    table_ = tab;
165  }
166
167  attachSubtables();
168  originalTable_ = table_;
169  attach();
170}
171*/
172
173Scantable::Scantable( const Scantable& other, bool clear )
174{
175  // with or without data
176  String newname = String(generateName());
177  type_ = other.table_.tableType();
178  if ( other.table_.tableType() == Table::Memory ) {
179      if ( clear ) {
180        table_ = TableCopy::makeEmptyMemoryTable(newname,
181                                                 other.table_, True);
182      } else {
183        table_ = other.table_.copyToMemoryTable(newname);
184      }
185  } else {
186      other.table_.deepCopy(newname, Table::New, False,
187                            other.table_.endianFormat(),
188                            Bool(clear));
189      table_ = Table(newname, Table::Update);
190      table_.markForDelete();
191  }
192  table_.tableInfo().setType( "Scantable" ) ;
193  /// @todo reindex SCANNO, recompute nbeam, nif, npol
194  if ( clear ) copySubtables(other);
195  attachSubtables();
196  originalTable_ = table_;
197  attach();
198}
199
200void Scantable::copySubtables(const Scantable& other) {
201  Table t = table_.rwKeywordSet().asTable("FREQUENCIES");
202  TableCopy::copyRows(t, other.freqTable_.table());
203  t = table_.rwKeywordSet().asTable("FOCUS");
204  TableCopy::copyRows(t, other.focusTable_.table());
205  t = table_.rwKeywordSet().asTable("WEATHER");
206  TableCopy::copyRows(t, other.weatherTable_.table());
207  t = table_.rwKeywordSet().asTable("TCAL");
208  TableCopy::copyRows(t, other.tcalTable_.table());
209  t = table_.rwKeywordSet().asTable("MOLECULES");
210  TableCopy::copyRows(t, other.moleculeTable_.table());
211  t = table_.rwKeywordSet().asTable("HISTORY");
212  TableCopy::copyRows(t, other.historyTable_.table());
213  t = table_.rwKeywordSet().asTable("FIT");
214  TableCopy::copyRows(t, other.fitTable_.table());
215}
216
217void Scantable::attachSubtables()
218{
219  freqTable_ = STFrequencies(table_);
220  focusTable_ = STFocus(table_);
221  weatherTable_ = STWeather(table_);
222  tcalTable_ = STTcal(table_);
223  moleculeTable_ = STMolecules(table_);
224  historyTable_ = STHistory(table_);
225  fitTable_ = STFit(table_);
226}
227
228Scantable::~Scantable()
229{
230}
231
232void Scantable::setupMainTable()
233{
234  TableDesc td("", "1", TableDesc::Scratch);
235  td.comment() = "An ASAP Scantable";
236  td.rwKeywordSet().define("VERSION", uInt(version_));
237
238  // n Cycles
239  td.addColumn(ScalarColumnDesc<uInt>("SCANNO"));
240  // new index every nBeam x nIF x nPol
241  td.addColumn(ScalarColumnDesc<uInt>("CYCLENO"));
242
243  td.addColumn(ScalarColumnDesc<uInt>("BEAMNO"));
244  td.addColumn(ScalarColumnDesc<uInt>("IFNO"));
245  // linear, circular, stokes
246  td.rwKeywordSet().define("POLTYPE", String("linear"));
247  td.addColumn(ScalarColumnDesc<uInt>("POLNO"));
248
249  td.addColumn(ScalarColumnDesc<uInt>("FREQ_ID"));
250  td.addColumn(ScalarColumnDesc<uInt>("MOLECULE_ID"));
251
252  ScalarColumnDesc<Int> refbeamnoColumn("REFBEAMNO");
253  refbeamnoColumn.setDefault(Int(-1));
254  td.addColumn(refbeamnoColumn);
255
256  ScalarColumnDesc<uInt> flagrowColumn("FLAGROW");
257  flagrowColumn.setDefault(uInt(0));
258  td.addColumn(flagrowColumn);
259
260  td.addColumn(ScalarColumnDesc<Double>("TIME"));
261  TableMeasRefDesc measRef(MEpoch::UTC); // UTC as default
262  TableMeasValueDesc measVal(td, "TIME");
263  TableMeasDesc<MEpoch> mepochCol(measVal, measRef);
264  mepochCol.write(td);
265
266  td.addColumn(ScalarColumnDesc<Double>("INTERVAL"));
267
268  td.addColumn(ScalarColumnDesc<String>("SRCNAME"));
269  // Type of source (on=0, off=1, other=-1)
270  ScalarColumnDesc<Int> stypeColumn("SRCTYPE");
271  stypeColumn.setDefault(Int(-1));
272  td.addColumn(stypeColumn);
273  td.addColumn(ScalarColumnDesc<String>("FIELDNAME"));
274
275  //The actual Data Vectors
276  td.addColumn(ArrayColumnDesc<Float>("SPECTRA"));
277  td.addColumn(ArrayColumnDesc<uChar>("FLAGTRA"));
278  td.addColumn(ArrayColumnDesc<Float>("TSYS"));
279
280  td.addColumn(ArrayColumnDesc<Double>("DIRECTION",
281                                       IPosition(1,2),
282                                       ColumnDesc::Direct));
283  TableMeasRefDesc mdirRef(MDirection::J2000); // default
284  TableMeasValueDesc tmvdMDir(td, "DIRECTION");
285  // the TableMeasDesc gives the column a type
286  TableMeasDesc<MDirection> mdirCol(tmvdMDir, mdirRef);
287  // a uder set table type e.g. GALCTIC, B1950 ...
288  td.rwKeywordSet().define("DIRECTIONREF", String("J2000"));
289  // writing create the measure column
290  mdirCol.write(td);
291  td.addColumn(ScalarColumnDesc<Float>("AZIMUTH"));
292  td.addColumn(ScalarColumnDesc<Float>("ELEVATION"));
293  td.addColumn(ScalarColumnDesc<Float>("OPACITY"));
294
295  td.addColumn(ScalarColumnDesc<uInt>("TCAL_ID"));
296  ScalarColumnDesc<Int> fitColumn("FIT_ID");
297  fitColumn.setDefault(Int(-1));
298  td.addColumn(fitColumn);
299
300  td.addColumn(ScalarColumnDesc<uInt>("FOCUS_ID"));
301  td.addColumn(ScalarColumnDesc<uInt>("WEATHER_ID"));
302
303  // columns which just get dragged along, as they aren't used in asap
304  td.addColumn(ScalarColumnDesc<Double>("SRCVELOCITY"));
305  td.addColumn(ArrayColumnDesc<Double>("SRCPROPERMOTION"));
306  td.addColumn(ArrayColumnDesc<Double>("SRCDIRECTION"));
307  td.addColumn(ArrayColumnDesc<Double>("SCANRATE"));
308
309  td.rwKeywordSet().define("OBSMODE", String(""));
310
311  // Now create Table SetUp from the description.
312  SetupNewTable aNewTab(generateName(), td, Table::Scratch);
313  table_ = Table(aNewTab, type_, 0);
314  originalTable_ = table_;
315}
316
317void Scantable::attach()
318{
319  timeCol_.attach(table_, "TIME");
320  srcnCol_.attach(table_, "SRCNAME");
321  srctCol_.attach(table_, "SRCTYPE");
322  specCol_.attach(table_, "SPECTRA");
323  flagsCol_.attach(table_, "FLAGTRA");
324  tsysCol_.attach(table_, "TSYS");
325  cycleCol_.attach(table_,"CYCLENO");
326  scanCol_.attach(table_, "SCANNO");
327  beamCol_.attach(table_, "BEAMNO");
328  ifCol_.attach(table_, "IFNO");
329  polCol_.attach(table_, "POLNO");
330  integrCol_.attach(table_, "INTERVAL");
331  azCol_.attach(table_, "AZIMUTH");
332  elCol_.attach(table_, "ELEVATION");
333  dirCol_.attach(table_, "DIRECTION");
334  fldnCol_.attach(table_, "FIELDNAME");
335  rbeamCol_.attach(table_, "REFBEAMNO");
336
337  mweatheridCol_.attach(table_,"WEATHER_ID");
338  mfitidCol_.attach(table_,"FIT_ID");
339  mfreqidCol_.attach(table_, "FREQ_ID");
340  mtcalidCol_.attach(table_, "TCAL_ID");
341  mfocusidCol_.attach(table_, "FOCUS_ID");
342  mmolidCol_.attach(table_, "MOLECULE_ID");
343
344  //Add auxiliary column for row-based flagging (CAS-1433 Wataru Kawasaki)
345  attachAuxColumnDef(flagrowCol_, "FLAGROW", 0);
346
347}
348
349template<class T, class T2>
350void Scantable::attachAuxColumnDef(ScalarColumn<T>& col,
351                                   const String& colName,
352                                   const T2& defValue)
353{
354  try {
355    col.attach(table_, colName);
356  } catch (TableError& err) {
357    String errMesg = err.getMesg();
358    if (errMesg == "Table column " + colName + " is unknown") {
359      table_.addColumn(ScalarColumnDesc<T>(colName));
360      col.attach(table_, colName);
361      col.fillColumn(static_cast<T>(defValue));
362    } else {
363      throw;
364    }
365  } catch (...) {
366    throw;
367  }
368}
369
370template<class T, class T2>
371void Scantable::attachAuxColumnDef(ArrayColumn<T>& col,
372                                   const String& colName,
373                                   const Array<T2>& defValue)
374{
375  try {
376    col.attach(table_, colName);
377  } catch (TableError& err) {
378    String errMesg = err.getMesg();
379    if (errMesg == "Table column " + colName + " is unknown") {
380      table_.addColumn(ArrayColumnDesc<T>(colName));
381      col.attach(table_, colName);
382
383      int size = 0;
384      ArrayIterator<T2>& it = defValue.begin();
385      while (it != defValue.end()) {
386        ++size;
387        ++it;
388      }
389      IPosition ip(1, size);
390      Array<T>& arr(ip);
391      for (int i = 0; i < size; ++i)
392        arr[i] = static_cast<T>(defValue[i]);
393
394      col.fillColumn(arr);
395    } else {
396      throw;
397    }
398  } catch (...) {
399    throw;
400  }
401}
402
403void Scantable::setHeader(const STHeader& sdh)
404{
405  table_.rwKeywordSet().define("nIF", sdh.nif);
406  table_.rwKeywordSet().define("nBeam", sdh.nbeam);
407  table_.rwKeywordSet().define("nPol", sdh.npol);
408  table_.rwKeywordSet().define("nChan", sdh.nchan);
409  table_.rwKeywordSet().define("Observer", sdh.observer);
410  table_.rwKeywordSet().define("Project", sdh.project);
411  table_.rwKeywordSet().define("Obstype", sdh.obstype);
412  table_.rwKeywordSet().define("AntennaName", sdh.antennaname);
413  table_.rwKeywordSet().define("AntennaPosition", sdh.antennaposition);
414  table_.rwKeywordSet().define("Equinox", sdh.equinox);
415  table_.rwKeywordSet().define("FreqRefFrame", sdh.freqref);
416  table_.rwKeywordSet().define("FreqRefVal", sdh.reffreq);
417  table_.rwKeywordSet().define("Bandwidth", sdh.bandwidth);
418  table_.rwKeywordSet().define("UTC", sdh.utc);
419  table_.rwKeywordSet().define("FluxUnit", sdh.fluxunit);
420  table_.rwKeywordSet().define("Epoch", sdh.epoch);
421  table_.rwKeywordSet().define("POLTYPE", sdh.poltype);
422}
423
424STHeader Scantable::getHeader() const
425{
426  STHeader sdh;
427  table_.keywordSet().get("nBeam",sdh.nbeam);
428  table_.keywordSet().get("nIF",sdh.nif);
429  table_.keywordSet().get("nPol",sdh.npol);
430  table_.keywordSet().get("nChan",sdh.nchan);
431  table_.keywordSet().get("Observer", sdh.observer);
432  table_.keywordSet().get("Project", sdh.project);
433  table_.keywordSet().get("Obstype", sdh.obstype);
434  table_.keywordSet().get("AntennaName", sdh.antennaname);
435  table_.keywordSet().get("AntennaPosition", sdh.antennaposition);
436  table_.keywordSet().get("Equinox", sdh.equinox);
437  table_.keywordSet().get("FreqRefFrame", sdh.freqref);
438  table_.keywordSet().get("FreqRefVal", sdh.reffreq);
439  table_.keywordSet().get("Bandwidth", sdh.bandwidth);
440  table_.keywordSet().get("UTC", sdh.utc);
441  table_.keywordSet().get("FluxUnit", sdh.fluxunit);
442  table_.keywordSet().get("Epoch", sdh.epoch);
443  table_.keywordSet().get("POLTYPE", sdh.poltype);
444  return sdh;
445}
446
447void Scantable::setSourceType( int stype )
448{
449  if ( stype < 0 || stype > 1 )
450    throw(AipsError("Illegal sourcetype."));
451  TableVector<Int> tabvec(table_, "SRCTYPE");
452  tabvec = Int(stype);
453}
454
455void Scantable::setSourceName( const std::string& name )
456{
457  TableVector<String> tabvec(table_, "SRCNAME");
458  tabvec = name;
459}
460
461bool Scantable::conformant( const Scantable& other )
462{
463  return this->getHeader().conformant(other.getHeader());
464}
465
466
467
468std::string Scantable::formatSec(Double x) const
469{
470  Double xcop = x;
471  MVTime mvt(xcop/24./3600.);  // make days
472
473  if (x < 59.95)
474    return  String("      ") + mvt.string(MVTime::TIME_CLEAN_NO_HM, 7)+"s";
475  else if (x < 3599.95)
476    return String("   ") + mvt.string(MVTime::TIME_CLEAN_NO_H,7)+" ";
477  else {
478    ostringstream oss;
479    oss << setw(2) << std::right << setprecision(1) << mvt.hour();
480    oss << ":" << mvt.string(MVTime::TIME_CLEAN_NO_H,7) << " ";
481    return String(oss);
482  }
483};
484
485  std::string Scantable::formatDirection(const MDirection& md, Int prec) const
486{
487  Vector<Double> t = md.getAngle(Unit(String("rad"))).getValue();
488  if (prec<0)
489    prec = 7;
490
491  String ref = md.getRefString();
492  MVAngle mvLon(t[0]);
493  String sLon = mvLon.string(MVAngle::TIME,prec);
494  uInt tp = md.getRef().getType();
495  if (tp == MDirection::GALACTIC ||
496      tp == MDirection::SUPERGAL ) {
497    sLon = mvLon(0.0).string(MVAngle::ANGLE_CLEAN,prec);
498  }
499  MVAngle mvLat(t[1]);
500  String sLat = mvLat.string(MVAngle::ANGLE+MVAngle::DIG2,prec);
501  return  ref + String(" ") + sLon + String(" ") + sLat;
502}
503
504
505std::string Scantable::getFluxUnit() const
506{
507  return table_.keywordSet().asString("FluxUnit");
508}
509
510void Scantable::setFluxUnit(const std::string& unit)
511{
512  String tmp(unit);
513  Unit tU(tmp);
514  if (tU==Unit("K") || tU==Unit("Jy")) {
515     table_.rwKeywordSet().define(String("FluxUnit"), tmp);
516  } else {
517     throw AipsError("Illegal unit - must be compatible with Jy or K");
518  }
519}
520
521void Scantable::setInstrument(const std::string& name)
522{
523  bool throwIt = true;
524  // create an Instrument to see if this is valid
525  STAttr::convertInstrument(name, throwIt);
526  String nameU(name);
527  nameU.upcase();
528  table_.rwKeywordSet().define(String("AntennaName"), nameU);
529}
530
531void Scantable::setFeedType(const std::string& feedtype)
532{
533  if ( Scantable::factories_.find(feedtype) ==  Scantable::factories_.end() ) {
534    std::string msg = "Illegal feed type "+ feedtype;
535    throw(casa::AipsError(msg));
536  }
537  table_.rwKeywordSet().define(String("POLTYPE"), feedtype);
538}
539
540MPosition Scantable::getAntennaPosition() const
541{
542  Vector<Double> antpos;
543  table_.keywordSet().get("AntennaPosition", antpos);
544  MVPosition mvpos(antpos(0),antpos(1),antpos(2));
545  return MPosition(mvpos);
546}
547
548void Scantable::makePersistent(const std::string& filename)
549{
550  String inname(filename);
551  Path path(inname);
552  /// @todo reindex SCANNO, recompute nbeam, nif, npol
553  inname = path.expandedName();
554  // 2011/03/04 TN
555  // We can comment out this workaround since the essential bug is
556  // fixed in casacore (r20889 in google code).
557  table_.deepCopy(inname, Table::New);
558//   // WORKAROUND !!! for Table bug
559//   // Remove when fixed in casacore
560//   if ( table_.tableType() == Table::Memory  && !selector_.empty() ) {
561//     Table tab = table_.copyToMemoryTable(generateName());
562//     tab.deepCopy(inname, Table::New);
563//     tab.markForDelete();
564//
565//   } else {
566//     table_.deepCopy(inname, Table::New);
567//   }
568}
569
570int Scantable::nbeam( int scanno ) const
571{
572  if ( scanno < 0 ) {
573    Int n;
574    table_.keywordSet().get("nBeam",n);
575    return int(n);
576  } else {
577    // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
578    Table t = table_(table_.col("SCANNO") == scanno);
579    ROTableRow row(t);
580    const TableRecord& rec = row.get(0);
581    Table subt = t( t.col("IFNO") == Int(rec.asuInt("IFNO"))
582                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
583                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
584    ROTableVector<uInt> v(subt, "BEAMNO");
585    return int(v.nelements());
586  }
587  return 0;
588}
589
590int Scantable::nif( int scanno ) const
591{
592  if ( scanno < 0 ) {
593    Int n;
594    table_.keywordSet().get("nIF",n);
595    return int(n);
596  } else {
597    // take the first POLNO,BEAMNO,CYCLENO as nbeam shouldn't vary with these
598    Table t = table_(table_.col("SCANNO") == scanno);
599    ROTableRow row(t);
600    const TableRecord& rec = row.get(0);
601    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
602                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
603                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
604    if ( subt.nrow() == 0 ) return 0;
605    ROTableVector<uInt> v(subt, "IFNO");
606    return int(v.nelements());
607  }
608  return 0;
609}
610
611int Scantable::npol( int scanno ) const
612{
613  if ( scanno < 0 ) {
614    Int n;
615    table_.keywordSet().get("nPol",n);
616    return n;
617  } else {
618    // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
619    Table t = table_(table_.col("SCANNO") == scanno);
620    ROTableRow row(t);
621    const TableRecord& rec = row.get(0);
622    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
623                    && t.col("IFNO") == Int(rec.asuInt("IFNO"))
624                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
625    if ( subt.nrow() == 0 ) return 0;
626    ROTableVector<uInt> v(subt, "POLNO");
627    return int(v.nelements());
628  }
629  return 0;
630}
631
632int Scantable::ncycle( int scanno ) const
633{
634  if ( scanno < 0 ) {
635    Block<String> cols(2);
636    cols[0] = "SCANNO";
637    cols[1] = "CYCLENO";
638    TableIterator it(table_, cols);
639    int n = 0;
640    while ( !it.pastEnd() ) {
641      ++n;
642      ++it;
643    }
644    return n;
645  } else {
646    Table t = table_(table_.col("SCANNO") == scanno);
647    ROTableRow row(t);
648    const TableRecord& rec = row.get(0);
649    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
650                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
651                    && t.col("IFNO") == Int(rec.asuInt("IFNO")) );
652    if ( subt.nrow() == 0 ) return 0;
653    return int(subt.nrow());
654  }
655  return 0;
656}
657
658
659int Scantable::nrow( int scanno ) const
660{
661  return int(table_.nrow());
662}
663
664int Scantable::nchan( int ifno ) const
665{
666  if ( ifno < 0 ) {
667    Int n;
668    table_.keywordSet().get("nChan",n);
669    return int(n);
670  } else {
671    // take the first SCANNO,POLNO,BEAMNO,CYCLENO as nbeam shouldn't
672    // vary with these
673    Table t = table_(table_.col("IFNO") == ifno, 1);
674    if ( t.nrow() == 0 ) return 0;
675    ROArrayColumn<Float> v(t, "SPECTRA");
676    return v.shape(0)(0);
677  }
678  return 0;
679}
680
681int Scantable::nscan() const {
682  Vector<uInt> scannos(scanCol_.getColumn());
683  uInt nout = genSort( scannos, Sort::Ascending,
684                       Sort::QuickSort|Sort::NoDuplicates );
685  return int(nout);
686}
687
688int Scantable::getChannels(int whichrow) const
689{
690  return specCol_.shape(whichrow)(0);
691}
692
693int Scantable::getBeam(int whichrow) const
694{
695  return beamCol_(whichrow);
696}
697
698std::vector<uint> Scantable::getNumbers(const ScalarColumn<uInt>& col) const
699{
700  Vector<uInt> nos(col.getColumn());
701  uInt n = genSort( nos, Sort::Ascending, Sort::QuickSort|Sort::NoDuplicates );
702  nos.resize(n, True);
703  std::vector<uint> stlout;
704  nos.tovector(stlout);
705  return stlout;
706}
707
708int Scantable::getIF(int whichrow) const
709{
710  return ifCol_(whichrow);
711}
712
713int Scantable::getPol(int whichrow) const
714{
715  return polCol_(whichrow);
716}
717
718std::string Scantable::formatTime(const MEpoch& me, bool showdate) const
719{
720  return formatTime(me, showdate, 0);
721}
722
723std::string Scantable::formatTime(const MEpoch& me, bool showdate, uInt prec) const
724{
725  MVTime mvt(me.getValue());
726  if (showdate)
727    //mvt.setFormat(MVTime::YMD);
728    mvt.setFormat(MVTime::YMD, prec);
729  else
730    //mvt.setFormat(MVTime::TIME);
731    mvt.setFormat(MVTime::TIME, prec);
732  ostringstream oss;
733  oss << mvt;
734  return String(oss);
735}
736
737void Scantable::calculateAZEL()
738
739  LogIO os( LogOrigin( "Scantable", "calculateAZEL()", WHERE ) ) ;
740  MPosition mp = getAntennaPosition();
741  MEpoch::ROScalarColumn timeCol(table_, "TIME");
742  ostringstream oss;
743  oss << mp;
744  os << "Computed azimuth/elevation using " << endl
745     << String(oss) << endl;
746  for (Int i=0; i<nrow(); ++i) {
747    MEpoch me = timeCol(i);
748    MDirection md = getDirection(i);
749    os  << " Time: " << formatTime(me,False)
750        << " Direction: " << formatDirection(md)
751         << endl << "     => ";
752    MeasFrame frame(mp, me);
753    Vector<Double> azel =
754        MDirection::Convert(md, MDirection::Ref(MDirection::AZEL,
755                                                frame)
756                            )().getAngle("rad").getValue();
757    azCol_.put(i,Float(azel[0]));
758    elCol_.put(i,Float(azel[1]));
759    os << "azel: " << azel[0]/C::pi*180.0 << " "
760       << azel[1]/C::pi*180.0 << " (deg)" << LogIO::POST;
761  }
762}
763
764void Scantable::clip(const Float uthres, const Float dthres, bool clipoutside, bool unflag)
765{
766  Vector<uInt> flagrow = flagrowCol_.getColumn();
767  for (uInt i=0; i<table_.nrow(); ++i) {
768    // apply flag only when specified row is vaild
769    if (flagrow[i] == 0) {
770      Vector<uChar> flgs = flagsCol_(i);
771      srchChannelsToClip(i, uthres, dthres, clipoutside, unflag, flgs);
772      flagsCol_.put(i, flgs);
773    }
774  }
775}
776
777std::vector<bool> Scantable::getClipMask(int whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag)
778{
779  Vector<uChar> flags;
780  flagsCol_.get(uInt(whichrow), flags);
781  srchChannelsToClip(uInt(whichrow), uthres, dthres, clipoutside, unflag, flags);
782  Vector<Bool> bflag(flags.shape());
783  convertArray(bflag, flags);
784  //bflag = !bflag;
785
786  std::vector<bool> mask;
787  bflag.tovector(mask);
788  return mask;
789}
790
791void Scantable::srchChannelsToClip(uInt whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag,
792                                   Vector<uChar> flgs)
793{
794    Vector<Float> spcs = specCol_(whichrow);
795    uInt nchannel = spcs.nelements();
796    if (spcs.nelements() != nchannel) {
797      throw(AipsError("Data has incorrect number of channels"));
798    }
799    uChar userflag = 1 << 7;
800    if (unflag) {
801      userflag = 0 << 7;
802    }
803    if (clipoutside) {
804      for (uInt j = 0; j < nchannel; ++j) {
805        Float spc = spcs(j);
806        if ((spc >= uthres) || (spc <= dthres)) {
807          flgs(j) = userflag;
808        }
809      }
810    } else {
811      for (uInt j = 0; j < nchannel; ++j) {
812        Float spc = spcs(j);
813        if ((spc < uthres) && (spc > dthres)) {
814          flgs(j) = userflag;
815        }
816      }
817    }
818}
819
820
821void Scantable::flag( int whichrow, const std::vector<bool>& msk, bool unflag ) {
822  std::vector<bool>::const_iterator it;
823  uInt ntrue = 0;
824  if (whichrow >= int(table_.nrow()) ) {
825    throw(AipsError("Invalid row number"));
826  }
827  for (it = msk.begin(); it != msk.end(); ++it) {
828    if ( *it ) {
829      ntrue++;
830    }
831  }
832  //if ( selector_.empty()  && (msk.size() == 0 || msk.size() == ntrue) )
833  if ( whichrow == -1 && !unflag && selector_.empty() && (msk.size() == 0 || msk.size() == ntrue) )
834    throw(AipsError("Trying to flag whole scantable."));
835  uChar userflag = 1 << 7;
836  if ( unflag ) {
837    userflag = 0 << 7;
838  }
839  if (whichrow > -1 ) {
840    // apply flag only when specified row is vaild
841    if (flagrowCol_(whichrow) == 0) {
842      applyChanFlag(uInt(whichrow), msk, userflag);
843    }
844  } else {
845    Vector<uInt> flagrow = flagrowCol_.getColumn();
846    for ( uInt i=0; i<table_.nrow(); ++i) {
847      // apply flag only when specified row is vaild
848      if (flagrow[i] == 0) {
849        applyChanFlag(i, msk, userflag);
850      }
851    }
852  }
853}
854
855void Scantable::applyChanFlag( uInt whichrow, const std::vector<bool>& msk, uChar flagval )
856{
857  if (whichrow >= table_.nrow() ) {
858    throw( casa::indexError<int>( whichrow, "asap::Scantable::applyChanFlag: Invalid row number" ) );
859  }
860  Vector<uChar> flgs = flagsCol_(whichrow);
861  if ( msk.size() == 0 ) {
862    flgs = flagval;
863    flagsCol_.put(whichrow, flgs);
864    return;
865  }
866  if ( int(msk.size()) != nchan( getIF(whichrow) ) ) {
867    throw(AipsError("Mask has incorrect number of channels."));
868  }
869  if ( flgs.nelements() != msk.size() ) {
870    throw(AipsError("Mask has incorrect number of channels."
871                    " Probably varying with IF. Please flag per IF"));
872  }
873  std::vector<bool>::const_iterator it;
874  uInt j = 0;
875  for (it = msk.begin(); it != msk.end(); ++it) {
876    if ( *it ) {
877      flgs(j) = flagval;
878    }
879    ++j;
880  }
881  flagsCol_.put(whichrow, flgs);
882}
883
884void Scantable::flagRow(const std::vector<uInt>& rows, bool unflag)
885{
886  if (selector_.empty() && (rows.size() == table_.nrow()) && !unflag)
887    throw(AipsError("Trying to flag whole scantable."));
888
889  uInt rowflag = (unflag ? 0 : 1);
890  std::vector<uInt>::const_iterator it;
891  for (it = rows.begin(); it != rows.end(); ++it)
892    flagrowCol_.put(*it, rowflag);
893}
894
895std::vector<bool> Scantable::getMask(int whichrow) const
896{
897  Vector<uChar> flags;
898  flagsCol_.get(uInt(whichrow), flags);
899  Vector<Bool> bflag(flags.shape());
900  convertArray(bflag, flags);
901  bflag = !bflag;
902  std::vector<bool> mask;
903  bflag.tovector(mask);
904  return mask;
905}
906
907std::vector<float> Scantable::getSpectrum( int whichrow,
908                                           const std::string& poltype ) const
909{
910  LogIO os( LogOrigin( "Scantable", "getSpectrum()", WHERE ) ) ;
911
912  String ptype = poltype;
913  if (poltype == "" ) ptype = getPolType();
914  if ( whichrow  < 0 || whichrow >= nrow() )
915    throw(AipsError("Illegal row number."));
916  std::vector<float> out;
917  Vector<Float> arr;
918  uInt requestedpol = polCol_(whichrow);
919  String basetype = getPolType();
920  if ( ptype == basetype ) {
921    specCol_.get(whichrow, arr);
922  } else {
923    CountedPtr<STPol> stpol(STPol::getPolClass(Scantable::factories_,
924                                               basetype));
925    uInt row = uInt(whichrow);
926    stpol->setSpectra(getPolMatrix(row));
927    Float fang,fhand;
928    fang = focusTable_.getTotalAngle(mfocusidCol_(row));
929    fhand = focusTable_.getFeedHand(mfocusidCol_(row));
930    stpol->setPhaseCorrections(fang, fhand);
931    arr = stpol->getSpectrum(requestedpol, ptype);
932  }
933  if ( arr.nelements() == 0 )
934   
935    os << "Not enough polarisations present to do the conversion."
936       << LogIO::POST;
937  arr.tovector(out);
938  return out;
939}
940
941void Scantable::setSpectrum( const std::vector<float>& spec,
942                                   int whichrow )
943{
944  Vector<Float> spectrum(spec);
945  Vector<Float> arr;
946  specCol_.get(whichrow, arr);
947  if ( spectrum.nelements() != arr.nelements() )
948    throw AipsError("The spectrum has incorrect number of channels.");
949  specCol_.put(whichrow, spectrum);
950}
951
952
953String Scantable::generateName()
954{
955  return (File::newUniqueName("./","temp")).baseName();
956}
957
958const casa::Table& Scantable::table( ) const
959{
960  return table_;
961}
962
963casa::Table& Scantable::table( )
964{
965  return table_;
966}
967
968std::string Scantable::getPolType() const
969{
970  return table_.keywordSet().asString("POLTYPE");
971}
972
973void Scantable::unsetSelection()
974{
975  table_ = originalTable_;
976  attach();
977  selector_.reset();
978}
979
980void Scantable::setSelection( const STSelector& selection )
981{
982  Table tab = const_cast<STSelector&>(selection).apply(originalTable_);
983  if ( tab.nrow() == 0 ) {
984    throw(AipsError("Selection contains no data. Not applying it."));
985  }
986  table_ = tab;
987  attach();
988//   tab.rwKeywordSet().define("nBeam",(Int)(getBeamNos().size())) ;
989//   vector<uint> selectedIFs = getIFNos() ;
990//   Int newnIF = selectedIFs.size() ;
991//   tab.rwKeywordSet().define("nIF",newnIF) ;
992//   if ( newnIF != 0 ) {
993//     Int newnChan = 0 ;
994//     for ( Int i = 0 ; i < newnIF ; i++ ) {
995//       Int nChan = nchan( selectedIFs[i] ) ;
996//       if ( newnChan > nChan )
997//         newnChan = nChan ;
998//     }
999//     tab.rwKeywordSet().define("nChan",newnChan) ;
1000//   }
1001//   tab.rwKeywordSet().define("nPol",(Int)(getPolNos().size())) ;
1002  selector_ = selection;
1003}
1004
1005
1006std::string Scantable::headerSummary()
1007{
1008  // Format header info
1009//   STHeader sdh;
1010//   sdh = getHeader();
1011//   sdh.print();
1012  ostringstream oss;
1013  oss.flags(std::ios_base::left);
1014  String tmp;
1015  // Project
1016  table_.keywordSet().get("Project", tmp);
1017  oss << setw(15) << "Project:" << tmp << endl;
1018  // Observation date
1019  oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1020  // Observer
1021  oss << setw(15) << "Observer:"
1022      << table_.keywordSet().asString("Observer") << endl;
1023  // Antenna Name
1024  table_.keywordSet().get("AntennaName", tmp);
1025  oss << setw(15) << "Antenna Name:" << tmp << endl;
1026  // Obs type
1027  table_.keywordSet().get("Obstype", tmp);
1028  // Records (nrow)
1029  oss << setw(15) << "Data Records:" << table_.nrow() << " rows" << endl;
1030  oss << setw(15) << "Obs. Type:" << tmp << endl;
1031  // Beams, IFs, Polarizations, and Channels
1032  oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1033      << setw(15) << "IFs:" << setw(4) << nif() << endl
1034      << setw(15) << "Polarisations:" << setw(4) << npol()
1035      << "(" << getPolType() << ")" << endl
1036      << setw(15) << "Channels:" << nchan() << endl;
1037  // Flux unit
1038  table_.keywordSet().get("FluxUnit", tmp);
1039  oss << setw(15) << "Flux Unit:" << tmp << endl;
1040  // Abscissa Unit
1041  oss << setw(15) << "Abscissa:" << getAbcissaLabel(0) << endl;
1042  // Selection
1043  oss << selector_.print() << endl;
1044
1045  return String(oss);
1046}
1047
1048void Scantable::summary( const std::string& filename )
1049{
1050  ostringstream oss;
1051  ofstream ofs;
1052  LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1053
1054  if (filename != "")
1055    ofs.open( filename.c_str(),  ios::out );
1056
1057  oss << endl;
1058  oss << asap::SEPERATOR << endl;
1059  oss << " Scan Table Summary" << endl;
1060  oss << asap::SEPERATOR << endl;
1061
1062  // Format header info
1063  oss << headerSummary();
1064  oss << endl;
1065
1066  if (table_.nrow() <= 0){
1067    oss << asap::SEPERATOR << endl;
1068    oss << "The MAIN table is empty: there are no data!!!" << endl;
1069    oss << asap::SEPERATOR << endl;
1070
1071    ols << String(oss) << LogIO::POST;
1072    if (ofs) {
1073      ofs << String(oss) << flush;
1074      ofs.close();
1075    }
1076    return;
1077  }
1078
1079
1080
1081  // main table
1082  String dirtype = "Position ("
1083                  + getDirectionRefString()
1084                  + ")";
1085  oss.flags(std::ios_base::left);
1086  oss << setw(5) << "Scan"
1087      << setw(15) << "Source"
1088      << setw(35) << "Time range"
1089      << setw(2) << "" << setw(7) << "Int[s]"
1090      << setw(7) << "Record"
1091      << setw(8) << "SrcType"
1092      << setw(8) << "FreqIDs"
1093      << setw(7) << "MolIDs" << endl;
1094  oss << setw(7)<< "" << setw(6) << "Beam"
1095      << setw(23) << dirtype << endl;
1096
1097  oss << asap::SEPERATOR << endl;
1098
1099  // Flush summary and clear up the string
1100  ols << String(oss) << LogIO::POST;
1101  if (ofs) ofs << String(oss) << flush;
1102  oss.str("");
1103  oss.clear();
1104
1105
1106  // Get Freq_ID map
1107  ROScalarColumn<uInt> ftabIds(frequencies().table(), "ID");
1108  Int nfid = ftabIds.nrow();
1109  if (nfid <= 0){
1110    oss << "FREQUENCIES subtable is empty: there are no data!!!" << endl;
1111    oss << asap::SEPERATOR << endl;
1112
1113    ols << String(oss) << LogIO::POST;
1114    if (ofs) {
1115      ofs << String(oss) << flush;
1116      ofs.close();
1117    }
1118    return;
1119  }
1120  // Storages of overall IFNO, POLNO, and nchan per FREQ_ID
1121  // the orders are identical to ID in FREQ subtable
1122  Block< Vector<uInt> > ifNos(nfid), polNos(nfid);
1123  Vector<Int> fIdchans(nfid,-1);
1124  Vector<Double> fIdfreq0(nfid,-1);
1125  Vector<Double> fIdfcent(nfid,-1);
1126  map<uInt, Int> fidMap;  // (FREQ_ID, row # in FREQ subtable) pair
1127  for (Int i=0; i < nfid; i++){
1128   // fidMap[freqId] returns row number in FREQ subtable
1129   fidMap.insert(pair<uInt, Int>(ftabIds(i),i));
1130   ifNos[i] = Vector<uInt>();
1131   polNos[i] = Vector<uInt>();
1132  }
1133
1134  TableIterator iter(table_, "SCANNO");
1135
1136  // Vars for keeping track of time, freqids, molIds in a SCANNO
1137  //Vector<uInt> freqids;
1138  //Vector<uInt> molids;
1139  Vector<uInt> beamids(1,0);
1140  Vector<MDirection> beamDirs;
1141  Vector<Int> stypeids(1,0);
1142  Vector<String> stypestrs;
1143  Int nfreq(1);
1144  Int nmol(1);
1145  uInt nbeam(1);
1146  uInt nstype(1);
1147
1148  Double btime(0.0), etime(0.0);
1149  Double meanIntTim(0.0);
1150
1151  uInt currFreqId(0), ftabRow(0);
1152  Int iflen(0), pollen(0);
1153
1154  while (!iter.pastEnd()) {
1155    Table subt = iter.table();
1156    uInt snrow = subt.nrow();
1157    ROTableRow row(subt);
1158    const TableRecord& rec = row.get(0);
1159
1160    // relevant columns
1161    ROScalarColumn<Double> mjdCol(subt,"TIME");
1162    ROScalarColumn<Double> intervalCol(subt,"INTERVAL");
1163    MDirection::ROScalarColumn dirCol(subt,"DIRECTION");
1164
1165    ScalarColumn<uInt> freqIdCol(subt,"FREQ_ID");
1166    ScalarColumn<uInt> molIdCol(subt,"MOLECULE_ID");
1167    ROScalarColumn<uInt> beamCol(subt,"BEAMNO");
1168    ROScalarColumn<Int> stypeCol(subt,"SRCTYPE");
1169
1170    ROScalarColumn<uInt> ifNoCol(subt,"IFNO");
1171    ROScalarColumn<uInt> polNoCol(subt,"POLNO");
1172
1173
1174    // Times
1175    meanIntTim = sum(intervalCol.getColumn()) / (double) snrow;
1176    minMax(btime, etime, mjdCol.getColumn());
1177    double shiftInDay(0.5*meanIntTim/C::day);
1178    btime -= shiftInDay;
1179    etime += shiftInDay;
1180
1181    // MOLECULE_ID and FREQ_ID
1182    Vector<uInt> molids(getNumbers(molIdCol));
1183    molids.shape(nmol);
1184
1185    Vector<uInt> freqids(getNumbers(freqIdCol));
1186    freqids.shape(nfreq);
1187
1188    // Add first beamid, and srcNames
1189    beamids.resize(1,False);
1190    beamDirs.resize(1,False);
1191    beamids(0)=beamCol(0);
1192    beamDirs(0)=dirCol(0);
1193    nbeam = 1;
1194
1195    stypeids.resize(1,False);
1196    stypeids(0)=stypeCol(0);
1197    nstype = 1;
1198
1199    // Global listings of nchan/IFNO/POLNO per FREQ_ID
1200    currFreqId=freqIdCol(0);
1201    ftabRow = fidMap[currFreqId];
1202    // Assumes an identical number of channels per FREQ_ID
1203    if (fIdchans(ftabRow) < 0 ) {
1204      RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1205      fIdchans(ftabRow)=(*spec).shape()(0);
1206    }
1207    if (fIdfreq0(ftabRow) < 0 ) {
1208      SpectralCoordinate spc = frequencies().getSpectralCoordinate(ftabRow);
1209      Double fs, fe;
1210      spc.toWorld(fs, 0);
1211      spc.toWorld(fe, fIdchans(ftabRow)-1);
1212      fIdfreq0(ftabRow) = fs;
1213      fIdfcent(ftabRow) = 0.5 * ( fs + fe );
1214    }
1215    // Should keep ifNos and polNos form the previous SCANNO
1216    if ( !anyEQ(ifNos[ftabRow],ifNoCol(0)) ) {
1217      ifNos[ftabRow].shape(iflen);
1218      iflen++;
1219      ifNos[ftabRow].resize(iflen,True);
1220      ifNos[ftabRow](iflen-1) = ifNoCol(0);
1221    }
1222    if ( !anyEQ(polNos[ftabRow],polNoCol(0)) ) {
1223      polNos[ftabRow].shape(pollen);
1224      pollen++;
1225      polNos[ftabRow].resize(pollen,True);
1226      polNos[ftabRow](pollen-1) = polNoCol(0);
1227    }
1228
1229    for (uInt i=1; i < snrow; i++){
1230      // Need to list BEAMNO and DIRECTION in the same order
1231      if ( !anyEQ(beamids,beamCol(i)) ) {
1232        nbeam++;
1233        beamids.resize(nbeam,True);
1234        beamids(nbeam-1)=beamCol(i);
1235        beamDirs.resize(nbeam,True);
1236        beamDirs(nbeam-1)=dirCol(i);
1237      }
1238
1239      // SRCTYPE is Int (getNumber takes only uInt)
1240      if ( !anyEQ(stypeids,stypeCol(i)) ) {
1241        nstype++;
1242        stypeids.resize(nstype,True);
1243        stypeids(nstype-1)=stypeCol(i);
1244      }
1245
1246      // Global listings of nchan/IFNO/POLNO per FREQ_ID
1247      currFreqId=freqIdCol(i);
1248      ftabRow = fidMap[currFreqId];
1249      if (fIdchans(ftabRow) < 0 ) {
1250        const TableRecord& rec = row.get(i);
1251        RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1252        fIdchans(ftabRow) = (*spec).shape()(0);
1253      }
1254      if (fIdfreq0(ftabRow) < 0 ) {
1255        SpectralCoordinate spc = frequencies().getSpectralCoordinate(ftabRow);
1256        Double fs, fe;
1257        spc.toWorld(fs, 0);
1258        spc.toWorld(fe, fIdchans(ftabRow)-1);
1259        fIdfreq0(ftabRow) = fs;
1260        fIdfcent(ftabRow) = 5.e-1 * ( fs + fe );
1261      }
1262      if ( !anyEQ(ifNos[ftabRow],ifNoCol(i)) ) {
1263        ifNos[ftabRow].shape(iflen);
1264        iflen++;
1265        ifNos[ftabRow].resize(iflen,True);
1266        ifNos[ftabRow](iflen-1) = ifNoCol(i);
1267      }
1268      if ( !anyEQ(polNos[ftabRow],polNoCol(i)) ) {
1269        polNos[ftabRow].shape(pollen);
1270        pollen++;
1271        polNos[ftabRow].resize(pollen,True);
1272        polNos[ftabRow](pollen-1) = polNoCol(i);
1273      }
1274    } // end of row iteration
1275
1276    stypestrs.resize(nstype,False);
1277    for (uInt j=0; j < nstype; j++)
1278      stypestrs(j) = SrcType::getName(stypeids(j));
1279
1280    // Format Scan summary
1281    oss << setw(4) << std::right << rec.asuInt("SCANNO")
1282        << std::left << setw(1) << ""
1283        << setw(15) << rec.asString("SRCNAME")
1284        << setw(21) << MVTime(btime).string(MVTime::YMD,8)
1285        << setw(3) << " - " << MVTime(etime).string(MVTime::TIME,8)
1286        << setw(3) << "" << setw(6) << meanIntTim << setw(1) << ""
1287        << std::right << setw(5) << snrow << setw(2) << ""
1288        << std::left << stypestrs << setw(1) << ""
1289        << freqids << setw(1) << ""
1290        << molids  << endl;
1291    // Format Beam summary
1292    for (uInt j=0; j < nbeam; j++) {
1293      oss << setw(7) << "" << setw(6) << beamids(j) << setw(1) << ""
1294          << formatDirection(beamDirs(j),9) << endl;
1295    }
1296    // Flush summary every scan and clear up the string
1297    ols << String(oss) << LogIO::POST;
1298    if (ofs) ofs << String(oss) << flush;
1299    oss.str("");
1300    oss.clear();
1301
1302    ++iter;
1303  } // end of scan iteration
1304  oss << asap::SEPERATOR << endl;
1305 
1306  // List FRECUENCIES Table (using STFrequencies.print may be slow)
1307  oss << "FREQUENCIES: " << nfreq << endl;
1308//   oss << std::right << setw(5) << "ID" << setw(2) << ""
1309//       << std::left  << setw(5) << "IFNO" << setw(2) << ""
1310//       << setw(8) << "Frame"
1311//       << setw(16) << "RefVal"
1312//       << setw(7) << "RefPix"
1313//       << setw(15) << "Increment"
1314//       << setw(9) << "Channels"
1315//       << setw(6) << "POLNOs" << endl;
1316//   Int tmplen;
1317//   for (Int i=0; i < nfid; i++){
1318//     // List row=i of FREQUENCIES subtable
1319//     ifNos[i].shape(tmplen);
1320//     if (tmplen >= 1) {
1321//       oss << std::right << setw(5) << ftabIds(i) << setw(2) << ""
1322//        << setw(3) << ifNos[i](0) << setw(1) << ""
1323//        << std::left << setw(46) << frequencies().print(ftabIds(i))
1324//        << setw(2) << ""
1325//        << std::right << setw(8) << fIdchans[i] << setw(2) << ""
1326//        << std::left << polNos[i];
1327//       if (tmplen > 1) {
1328//      oss  << " (" << tmplen << " chains)";
1329//       }
1330//       oss << endl;
1331//     }
1332  oss << std::right << setw(4) << "ID" << setw(2) << ""
1333      << std::left  << setw(9) << "IFNO(SPW)" << setw(2) << ""
1334      << setw(8) << "#Chans"
1335      << setw(8) << "Frame"
1336      << setw(12) << "Ch0[MHz]"
1337      << setw(14) << "ChanWid[kHz]"
1338      << setw(14) << "Center[MHz]"
1339      << setw(6) << "POLNOs" << endl;
1340  Int tmplen;
1341  for (Int i=0; i < nfid; i++){
1342    // List row=i of FREQUENCIES subtable
1343    ifNos[i].shape(tmplen);
1344    Double refpix, refval, increment ;
1345    if (tmplen >= 1) {
1346      freqTable_.getEntry( refpix, refval, increment, ftabIds(i) ) ;
1347      oss << std::right << setw(4) << ftabIds(i) << setw(2) << ""
1348          << std::left << setw(9) << ifNos[i](0) << setw(2) << ""
1349          << std::right << setw(6) << fIdchans[i] << setw(2) << ""
1350          << setw(6) << frequencies().getFrameString(true)
1351          << setw(2) << ""
1352          << setw(10) << std::setprecision(9) << (fIdfreq0[i]*1.e-6) << setw(2) << ""
1353          << setw(12) << (increment*1.e-3) << setw(2) << ""
1354          << setw(12) << (fIdfcent[i]*1.e-6) << setw(2) << ""
1355          << std::left << polNos[i];
1356      if (tmplen > 1) {
1357        oss  << " (" << tmplen << " chains)";
1358      }
1359      oss << endl;
1360    }
1361   
1362  }
1363  oss << asap::SEPERATOR << endl;
1364
1365  // List MOLECULES Table (currently lists all rows)
1366  oss << "MOLECULES: " << endl;
1367  if (molecules().nrow() <= 0) {
1368    oss << "   MOLECULES subtable is empty: there are no data" << endl;
1369  } else {
1370    ROTableRow row(molecules().table());
1371    oss << std::right << setw(5) << "ID"
1372        << std::left << setw(3) << ""
1373        << setw(18) << "RestFreq"
1374        << setw(15) << "Name" << endl;
1375    for (Int i=0; i < molecules().nrow(); i++){
1376      const TableRecord& rec=row.get(i);
1377      oss << std::right << setw(5) << rec.asuInt("ID")
1378          << std::left << setw(3) << ""
1379          << rec.asArrayDouble("RESTFREQUENCY") << setw(1) << ""
1380          << rec.asArrayString("NAME") << endl;
1381    }
1382  }
1383  oss << asap::SEPERATOR << endl;
1384  ols << String(oss) << LogIO::POST;
1385  if (ofs) {
1386    ofs << String(oss) << flush;
1387    ofs.close();
1388  }
1389  //  return String(oss);
1390}
1391
1392
1393std::string Scantable::oldheaderSummary()
1394{
1395  // Format header info
1396//   STHeader sdh;
1397//   sdh = getHeader();
1398//   sdh.print();
1399  ostringstream oss;
1400  oss.flags(std::ios_base::left);
1401  oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1402      << setw(15) << "IFs:" << setw(4) << nif() << endl
1403      << setw(15) << "Polarisations:" << setw(4) << npol()
1404      << "(" << getPolType() << ")" << endl
1405      << setw(15) << "Channels:" << nchan() << endl;
1406  String tmp;
1407  oss << setw(15) << "Observer:"
1408      << table_.keywordSet().asString("Observer") << endl;
1409  oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1410  table_.keywordSet().get("Project", tmp);
1411  oss << setw(15) << "Project:" << tmp << endl;
1412  table_.keywordSet().get("Obstype", tmp);
1413  oss << setw(15) << "Obs. Type:" << tmp << endl;
1414  table_.keywordSet().get("AntennaName", tmp);
1415  oss << setw(15) << "Antenna Name:" << tmp << endl;
1416  table_.keywordSet().get("FluxUnit", tmp);
1417  oss << setw(15) << "Flux Unit:" << tmp << endl;
1418  int nid = moleculeTable_.nrow();
1419  Bool firstline = True;
1420  oss << setw(15) << "Rest Freqs:";
1421  for (int i=0; i<nid; i++) {
1422    Table t = table_(table_.col("MOLECULE_ID") == i, 1);
1423      if (t.nrow() >  0) {
1424          Vector<Double> vec(moleculeTable_.getRestFrequency(i));
1425          if (vec.nelements() > 0) {
1426               if (firstline) {
1427                   oss << setprecision(10) << vec << " [Hz]" << endl;
1428                   firstline=False;
1429               }
1430               else{
1431                   oss << setw(15)<<" " << setprecision(10) << vec << " [Hz]" << endl;
1432               }
1433          } else {
1434              oss << "none" << endl;
1435          }
1436      }
1437  }
1438
1439  oss << setw(15) << "Abcissa:" << getAbcissaLabel(0) << endl;
1440  oss << selector_.print() << endl;
1441  return String(oss);
1442}
1443
1444  //std::string Scantable::summary( const std::string& filename )
1445void Scantable::oldsummary( const std::string& filename )
1446{
1447  ostringstream oss;
1448  ofstream ofs;
1449  LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1450
1451  if (filename != "")
1452    ofs.open( filename.c_str(),  ios::out );
1453
1454  oss << endl;
1455  oss << asap::SEPERATOR << endl;
1456  oss << " Scan Table Summary" << endl;
1457  oss << asap::SEPERATOR << endl;
1458
1459  // Format header info
1460  oss << oldheaderSummary();
1461  oss << endl;
1462
1463  // main table
1464  String dirtype = "Position ("
1465                  + getDirectionRefString()
1466                  + ")";
1467  oss.flags(std::ios_base::left);
1468  oss << setw(5) << "Scan" << setw(15) << "Source"
1469      << setw(10) << "Time" << setw(18) << "Integration"
1470      << setw(15) << "Source Type" << endl;
1471  oss << setw(5) << "" << setw(5) << "Beam" << setw(3) << "" << dirtype << endl;
1472  oss << setw(10) << "" << setw(3) << "IF" << setw(3) << ""
1473      << setw(8) << "Frame" << setw(16)
1474      << "RefVal" << setw(10) << "RefPix" << setw(12) << "Increment"
1475      << setw(7) << "Channels"
1476      << endl;
1477  oss << asap::SEPERATOR << endl;
1478
1479  // Flush summary and clear up the string
1480  ols << String(oss) << LogIO::POST;
1481  if (ofs) ofs << String(oss) << flush;
1482  oss.str("");
1483  oss.clear();
1484
1485  TableIterator iter(table_, "SCANNO");
1486  while (!iter.pastEnd()) {
1487    Table subt = iter.table();
1488    ROTableRow row(subt);
1489    MEpoch::ROScalarColumn timeCol(subt,"TIME");
1490    const TableRecord& rec = row.get(0);
1491    oss << setw(4) << std::right << rec.asuInt("SCANNO")
1492        << std::left << setw(1) << ""
1493        << setw(15) << rec.asString("SRCNAME")
1494        << setw(10) << formatTime(timeCol(0), false);
1495    // count the cycles in the scan
1496    TableIterator cyciter(subt, "CYCLENO");
1497    int nint = 0;
1498    while (!cyciter.pastEnd()) {
1499      ++nint;
1500      ++cyciter;
1501    }
1502    oss << setw(3) << std::right << nint  << setw(3) << " x " << std::left
1503        << setw(11) <<  formatSec(rec.asFloat("INTERVAL")) << setw(1) << ""
1504        << setw(15) << SrcType::getName(rec.asInt("SRCTYPE")) << endl;
1505
1506    TableIterator biter(subt, "BEAMNO");
1507    while (!biter.pastEnd()) {
1508      Table bsubt = biter.table();
1509      ROTableRow brow(bsubt);
1510      const TableRecord& brec = brow.get(0);
1511      uInt row0 = bsubt.rowNumbers(table_)[0];
1512      oss << setw(5) << "" <<  setw(4) << std::right << brec.asuInt("BEAMNO")<< std::left;
1513      oss  << setw(4) << ""  << formatDirection(getDirection(row0)) << endl;
1514      TableIterator iiter(bsubt, "IFNO");
1515      while (!iiter.pastEnd()) {
1516        Table isubt = iiter.table();
1517        ROTableRow irow(isubt);
1518        const TableRecord& irec = irow.get(0);
1519        oss << setw(9) << "";
1520        oss << setw(3) << std::right << irec.asuInt("IFNO") << std::left
1521            << setw(1) << "" << frequencies().print(irec.asuInt("FREQ_ID"))
1522            << setw(3) << "" << nchan(irec.asuInt("IFNO"))
1523            << endl;
1524
1525        ++iiter;
1526      }
1527      ++biter;
1528    }
1529    // Flush summary every scan and clear up the string
1530    ols << String(oss) << LogIO::POST;
1531    if (ofs) ofs << String(oss) << flush;
1532    oss.str("");
1533    oss.clear();
1534
1535    ++iter;
1536  }
1537  oss << asap::SEPERATOR << endl;
1538  ols << String(oss) << LogIO::POST;
1539  if (ofs) {
1540    ofs << String(oss) << flush;
1541    ofs.close();
1542  }
1543  //  return String(oss);
1544}
1545
1546// std::string Scantable::getTime(int whichrow, bool showdate) const
1547// {
1548//   MEpoch::ROScalarColumn timeCol(table_, "TIME");
1549//   MEpoch me;
1550//   if (whichrow > -1) {
1551//     me = timeCol(uInt(whichrow));
1552//   } else {
1553//     Double tm;
1554//     table_.keywordSet().get("UTC",tm);
1555//     me = MEpoch(MVEpoch(tm));
1556//   }
1557//   return formatTime(me, showdate);
1558// }
1559
1560std::string Scantable::getTime(int whichrow, bool showdate, uInt prec) const
1561{
1562  MEpoch me;
1563  me = getEpoch(whichrow);
1564  return formatTime(me, showdate, prec);
1565}
1566
1567MEpoch Scantable::getEpoch(int whichrow) const
1568{
1569  if (whichrow > -1) {
1570    return timeCol_(uInt(whichrow));
1571  } else {
1572    Double tm;
1573    table_.keywordSet().get("UTC",tm);
1574    return MEpoch(MVEpoch(tm));
1575  }
1576}
1577
1578std::string Scantable::getDirectionString(int whichrow) const
1579{
1580  return formatDirection(getDirection(uInt(whichrow)));
1581}
1582
1583
1584SpectralCoordinate Scantable::getSpectralCoordinate(int whichrow) const {
1585  const MPosition& mp = getAntennaPosition();
1586  const MDirection& md = getDirection(whichrow);
1587  const MEpoch& me = timeCol_(whichrow);
1588  //Double rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1589  Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1590  return freqTable_.getSpectralCoordinate(md, mp, me, rf,
1591                                          mfreqidCol_(whichrow));
1592}
1593
1594std::vector< double > Scantable::getAbcissa( int whichrow ) const
1595{
1596  if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal row number"));
1597  std::vector<double> stlout;
1598  int nchan = specCol_(whichrow).nelements();
1599  String us = freqTable_.getUnitString();
1600  if ( us == "" || us == "pixel" || us == "channel" ) {
1601    for (int i=0; i<nchan; ++i) {
1602      stlout.push_back(double(i));
1603    }
1604    return stlout;
1605  }
1606  SpectralCoordinate spc = getSpectralCoordinate(whichrow);
1607  Vector<Double> pixel(nchan);
1608  Vector<Double> world;
1609  indgen(pixel);
1610  if ( Unit(us) == Unit("Hz") ) {
1611    for ( int i=0; i < nchan; ++i) {
1612      Double world;
1613      spc.toWorld(world, pixel[i]);
1614      stlout.push_back(double(world));
1615    }
1616  } else if ( Unit(us) == Unit("km/s") ) {
1617    Vector<Double> world;
1618    spc.pixelToVelocity(world, pixel);
1619    world.tovector(stlout);
1620  }
1621  return stlout;
1622}
1623void Scantable::setDirectionRefString( const std::string & refstr )
1624{
1625  MDirection::Types mdt;
1626  if (refstr != "" && !MDirection::getType(mdt, refstr)) {
1627    throw(AipsError("Illegal Direction frame."));
1628  }
1629  if ( refstr == "" ) {
1630    String defaultstr = MDirection::showType(dirCol_.getMeasRef().getType());
1631    table_.rwKeywordSet().define("DIRECTIONREF", defaultstr);
1632  } else {
1633    table_.rwKeywordSet().define("DIRECTIONREF", String(refstr));
1634  }
1635}
1636
1637std::string Scantable::getDirectionRefString( ) const
1638{
1639  return table_.keywordSet().asString("DIRECTIONREF");
1640}
1641
1642MDirection Scantable::getDirection(int whichrow ) const
1643{
1644  String usertype = table_.keywordSet().asString("DIRECTIONREF");
1645  String type = MDirection::showType(dirCol_.getMeasRef().getType());
1646  if ( usertype != type ) {
1647    MDirection::Types mdt;
1648    if (!MDirection::getType(mdt, usertype)) {
1649      throw(AipsError("Illegal Direction frame."));
1650    }
1651    return dirCol_.convert(uInt(whichrow), mdt);
1652  } else {
1653    return dirCol_(uInt(whichrow));
1654  }
1655}
1656
1657std::string Scantable::getAbcissaLabel( int whichrow ) const
1658{
1659  if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal ro number"));
1660  const MPosition& mp = getAntennaPosition();
1661  const MDirection& md = getDirection(whichrow);
1662  const MEpoch& me = timeCol_(whichrow);
1663  //const Double& rf = mmolidCol_(whichrow);
1664  const Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1665  SpectralCoordinate spc =
1666    freqTable_.getSpectralCoordinate(md, mp, me, rf, mfreqidCol_(whichrow));
1667
1668  String s = "Channel";
1669  Unit u = Unit(freqTable_.getUnitString());
1670  if (u == Unit("km/s")) {
1671    s = CoordinateUtil::axisLabel(spc, 0, True,True,  True);
1672  } else if (u == Unit("Hz")) {
1673    Vector<String> wau(1);wau = u.getName();
1674    spc.setWorldAxisUnits(wau);
1675    s = CoordinateUtil::axisLabel(spc, 0, True, True, False);
1676  }
1677  return s;
1678
1679}
1680
1681/**
1682void asap::Scantable::setRestFrequencies( double rf, const std::string& name,
1683                                          const std::string& unit )
1684**/
1685void Scantable::setRestFrequencies( vector<double> rf, const vector<std::string>& name,
1686                                          const std::string& unit )
1687
1688{
1689  ///@todo lookup in line table to fill in name and formattedname
1690  Unit u(unit);
1691  //Quantum<Double> urf(rf, u);
1692  Quantum<Vector<Double> >urf(rf, u);
1693  Vector<String> formattedname(0);
1694  //cerr<<"Scantable::setRestFrequnecies="<<urf<<endl;
1695
1696  //uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), name, "");
1697  uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), mathutil::toVectorString(name), formattedname);
1698  TableVector<uInt> tabvec(table_, "MOLECULE_ID");
1699  tabvec = id;
1700}
1701
1702/**
1703void asap::Scantable::setRestFrequencies( const std::string& name )
1704{
1705  throw(AipsError("setRestFrequencies( const std::string& name ) NYI"));
1706  ///@todo implement
1707}
1708**/
1709
1710void Scantable::setRestFrequencies( const vector<std::string>& name )
1711{
1712  (void) name; // suppress unused warning
1713  throw(AipsError("setRestFrequencies( const vector<std::string>& name ) NYI"));
1714  ///@todo implement
1715}
1716
1717std::vector< unsigned int > Scantable::rownumbers( ) const
1718{
1719  std::vector<unsigned int> stlout;
1720  Vector<uInt> vec = table_.rowNumbers();
1721  vec.tovector(stlout);
1722  return stlout;
1723}
1724
1725
1726Matrix<Float> Scantable::getPolMatrix( uInt whichrow ) const
1727{
1728  ROTableRow row(table_);
1729  const TableRecord& rec = row.get(whichrow);
1730  Table t =
1731    originalTable_( originalTable_.col("SCANNO") == Int(rec.asuInt("SCANNO"))
1732                    && originalTable_.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1733                    && originalTable_.col("IFNO") == Int(rec.asuInt("IFNO"))
1734                    && originalTable_.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
1735  ROArrayColumn<Float> speccol(t, "SPECTRA");
1736  return speccol.getColumn();
1737}
1738
1739std::vector< std::string > Scantable::columnNames( ) const
1740{
1741  Vector<String> vec = table_.tableDesc().columnNames();
1742  return mathutil::tovectorstring(vec);
1743}
1744
1745MEpoch::Types Scantable::getTimeReference( ) const
1746{
1747  return MEpoch::castType(timeCol_.getMeasRef().getType());
1748}
1749
1750void Scantable::addFit( const STFitEntry& fit, int row )
1751{
1752  //cout << mfitidCol_(uInt(row)) << endl;
1753  LogIO os( LogOrigin( "Scantable", "addFit()", WHERE ) ) ;
1754  os << mfitidCol_(uInt(row)) << LogIO::POST ;
1755  uInt id = fitTable_.addEntry(fit, mfitidCol_(uInt(row)));
1756  mfitidCol_.put(uInt(row), id);
1757}
1758
1759void Scantable::shift(int npix)
1760{
1761  Vector<uInt> fids(mfreqidCol_.getColumn());
1762  genSort( fids, Sort::Ascending,
1763           Sort::QuickSort|Sort::NoDuplicates );
1764  for (uInt i=0; i<fids.nelements(); ++i) {
1765    frequencies().shiftRefPix(npix, fids[i]);
1766  }
1767}
1768
1769String Scantable::getAntennaName() const
1770{
1771  String out;
1772  table_.keywordSet().get("AntennaName", out);
1773  String::size_type pos1 = out.find("@") ;
1774  String::size_type pos2 = out.find("//") ;
1775  if ( pos2 != String::npos )
1776    out = out.substr(pos2+2,pos1-pos2-2) ;
1777  else if ( pos1 != String::npos )
1778    out = out.substr(0,pos1) ;
1779  return out;
1780}
1781
1782int Scantable::checkScanInfo(const std::vector<int>& scanlist) const
1783{
1784  String tbpath;
1785  int ret = 0;
1786  if ( table_.keywordSet().isDefined("GBT_GO") ) {
1787    table_.keywordSet().get("GBT_GO", tbpath);
1788    Table t(tbpath,Table::Old);
1789    // check each scan if other scan of the pair exist
1790    int nscan = scanlist.size();
1791    for (int i = 0; i < nscan; i++) {
1792      Table subt = t( t.col("SCAN") == scanlist[i] );
1793      if (subt.nrow()==0) {
1794        //cerr <<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<endl;
1795        LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1796        os <<LogIO::WARN<<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<LogIO::POST;
1797        ret = 1;
1798        break;
1799      }
1800      ROTableRow row(subt);
1801      const TableRecord& rec = row.get(0);
1802      int scan1seqn = rec.asuInt("PROCSEQN");
1803      int laston1 = rec.asuInt("LASTON");
1804      if ( rec.asuInt("PROCSIZE")==2 ) {
1805        if ( i < nscan-1 ) {
1806          Table subt2 = t( t.col("SCAN") == scanlist[i+1] );
1807          if ( subt2.nrow() == 0) {
1808            LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1809
1810            //cerr<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<endl;
1811            os<<LogIO::WARN<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<LogIO::POST;
1812            ret = 1;
1813            break;
1814          }
1815          ROTableRow row2(subt2);
1816          const TableRecord& rec2 = row2.get(0);
1817          int scan2seqn = rec2.asuInt("PROCSEQN");
1818          int laston2 = rec2.asuInt("LASTON");
1819          if (scan1seqn == 1 && scan2seqn == 2) {
1820            if (laston1 == laston2) {
1821              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1822              //cerr<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1823              os<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
1824              i +=1;
1825            }
1826            else {
1827              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1828              //cerr<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1829              os<<LogIO::WARN<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
1830            }
1831          }
1832          else if (scan1seqn==2 && scan2seqn == 1) {
1833            if (laston1 == laston2) {
1834              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1835              //cerr<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<endl;
1836              os<<LogIO::WARN<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<LogIO::POST;
1837              ret = 1;
1838              break;
1839            }
1840          }
1841          else {
1842            LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1843            //cerr<<"The other scan for  "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<endl;
1844            os<<LogIO::WARN<<"The other scan for  "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<LogIO::POST;
1845            ret = 1;
1846            break;
1847          }
1848        }
1849      }
1850      else {
1851        LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1852        //cerr<<"The scan does not appear to be standard obsevation."<<endl;
1853        os<<LogIO::WARN<<"The scan does not appear to be standard obsevation."<<LogIO::POST;
1854      }
1855    //if ( i >= nscan ) break;
1856    }
1857  }
1858  else {
1859    LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1860    //cerr<<"No reference to GBT_GO table."<<endl;
1861    os<<LogIO::WARN<<"No reference to GBT_GO table."<<LogIO::POST;
1862    ret = 1;
1863  }
1864  return ret;
1865}
1866
1867std::vector<double> Scantable::getDirectionVector(int whichrow) const
1868{
1869  Vector<Double> Dir = dirCol_(whichrow).getAngle("rad").getValue();
1870  std::vector<double> dir;
1871  Dir.tovector(dir);
1872  return dir;
1873}
1874
1875void asap::Scantable::reshapeSpectrum( int nmin, int nmax )
1876  throw( casa::AipsError )
1877{
1878  // assumed that all rows have same nChan
1879  Vector<Float> arr = specCol_( 0 ) ;
1880  int nChan = arr.nelements() ;
1881
1882  // if nmin < 0 or nmax < 0, nothing to do
1883  if (  nmin < 0 ) {
1884    throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1885    }
1886  if (  nmax < 0  ) {
1887    throw( casa::indexError<int>( nmax, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1888  }
1889
1890  // if nmin > nmax, exchange values
1891  if ( nmin > nmax ) {
1892    int tmp = nmax ;
1893    nmax = nmin ;
1894    nmin = tmp ;
1895    LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1896    os << "Swap values. Applied range is ["
1897       << nmin << ", " << nmax << "]" << LogIO::POST ;
1898  }
1899
1900  // if nmin exceeds nChan, nothing to do
1901  if ( nmin >= nChan ) {
1902    throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Specified minimum exceeds nChan." ) ) ;
1903  }
1904
1905  // if nmax exceeds nChan, reset nmax to nChan
1906  if ( nmax >= nChan-1 ) {
1907    if ( nmin == 0 ) {
1908      // nothing to do
1909      LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1910      os << "Whole range is selected. Nothing to do." << LogIO::POST ;
1911      return ;
1912    }
1913    else {
1914      LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1915      os << "Specified maximum exceeds nChan. Applied range is ["
1916         << nmin << ", " << nChan-1 << "]." << LogIO::POST ;
1917      nmax = nChan - 1 ;
1918    }
1919  }
1920
1921  // reshape specCol_ and flagCol_
1922  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1923    reshapeSpectrum( nmin, nmax, irow ) ;
1924  }
1925
1926  // update FREQUENCIES subtable
1927  Vector<uInt> freqIdArray = mfreqidCol_.getColumn();
1928  uInt numFreqId = GenSort<uInt>::sort(freqIdArray, Sort::Ascending,
1929                                       Sort::HeapSort | Sort::NoDuplicates);
1930  Double refpix ;
1931  Double refval ;
1932  Double increment ;
1933  for (uInt irow  = 0; irow < numFreqId; irow++) {
1934    freqTable_.getEntry( refpix, refval, increment, freqIdArray[irow] ) ;
1935    /***
1936     * need to shift refpix to nmin
1937     * note that channel nmin in old index will be channel 0 in new one
1938     ***/
1939    refval = refval - ( refpix - nmin ) * increment ;
1940    refpix = 0 ;
1941    freqTable_.setEntry( refpix, refval, increment, freqIdArray[irow] ) ;
1942  }
1943
1944  // update nchan
1945  int newsize = nmax - nmin + 1 ;
1946  table_.rwKeywordSet().define( "nChan", newsize ) ;
1947
1948  // update bandwidth
1949  // assumed all spectra in the scantable have same bandwidth
1950  table_.rwKeywordSet().define( "Bandwidth", increment * newsize ) ;
1951
1952  return ;
1953}
1954
1955void asap::Scantable::reshapeSpectrum( int nmin, int nmax, int irow )
1956{
1957  // reshape specCol_ and flagCol_
1958  Vector<Float> oldspec = specCol_( irow ) ;
1959  Vector<uChar> oldflag = flagsCol_( irow ) ;
1960  Vector<Float> oldtsys = tsysCol_( irow ) ;
1961  uInt newsize = nmax - nmin + 1 ;
1962  Slice slice( nmin, newsize, 1 ) ;
1963  specCol_.put( irow, oldspec( slice ) ) ;
1964  flagsCol_.put( irow, oldflag( slice ) ) ;
1965  if ( oldspec.size() == oldtsys.size() )
1966    tsysCol_.put( irow, oldtsys( slice ) ) ;
1967
1968  return ;
1969}
1970
1971void asap::Scantable::regridSpecChannel( double dnu, int nChan )
1972{
1973  LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
1974  os << "Regrid abcissa with spectral resoultion " << dnu << " " << freqTable_.getUnitString() << " with channel number " << ((nChan>0)? String(nChan) : "covering band width")<< LogIO::POST ;
1975  int freqnrow = freqTable_.table().nrow() ;
1976  Vector<bool> firstTime( freqnrow, true ) ;
1977  double oldincr, factor;
1978  uInt currId;
1979  Double refpix ;
1980  Double refval ;
1981  Double increment ;
1982  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1983    currId = mfreqidCol_(irow);
1984    vector<double> abcissa = getAbcissa( irow ) ;
1985    if (nChan < 0) {
1986      int oldsize = abcissa.size() ;
1987      double bw = (abcissa[oldsize-1]-abcissa[0]) +                     \
1988        0.5 * (abcissa[1]-abcissa[0] + abcissa[oldsize-1]-abcissa[oldsize-2]) ;
1989      nChan = int( ceil( abs(bw/dnu) ) ) ;
1990    }
1991    // actual regridding
1992    regridChannel( nChan, dnu, irow ) ;
1993
1994    // update FREQUENCIES subtable
1995    if (firstTime[currId]) {
1996      oldincr = abcissa[1]-abcissa[0] ;
1997      factor = dnu/oldincr ;
1998      firstTime[currId] = false ;
1999      freqTable_.getEntry( refpix, refval, increment, currId ) ;
2000
2001      //refval = refval - ( refpix + 0.5 * (1 - factor) ) * increment ;
2002      if (factor > 0 ) {
2003        refpix = (refpix + 0.5)/factor - 0.5;
2004      } else {
2005        refpix = (abcissa.size() - 0.5 - refpix)/abs(factor) - 0.5;
2006      }
2007      freqTable_.setEntry( refpix, refval, increment*factor, currId ) ;
2008      //os << "ID" << currId << ": channel width (Orig) = " << oldincr << " [" << freqTable_.getUnitString() << "], scale factor = " << factor << LogIO::POST ;
2009      //os << "     frequency increment (Orig) = " << increment << "-> (New) " << increment*factor << LogIO::POST ;
2010    }
2011  }
2012}
2013
2014void asap::Scantable::regridChannel( int nChan, double dnu )
2015{
2016  LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
2017  os << "Regrid abcissa with channel number " << nChan << " and spectral resoultion " << dnu << "Hz." << LogIO::POST ;
2018  // assumed that all rows have same nChan
2019  Vector<Float> arr = specCol_( 0 ) ;
2020  int oldsize = arr.nelements() ;
2021
2022  // if oldsize == nChan, nothing to do
2023  if ( oldsize == nChan ) {
2024    os << "Specified channel number is same as current one. Nothing to do." << LogIO::POST ;
2025    return ;
2026  }
2027
2028  // if oldChan < nChan, unphysical operation
2029  if ( oldsize < nChan ) {
2030    os << "Unphysical operation. Nothing to do." << LogIO::POST ;
2031    return ;
2032  }
2033
2034  // change channel number for specCol_, flagCol_, and tsysCol_ (if necessary)
2035  vector<string> coordinfo = getCoordInfo() ;
2036  string oldinfo = coordinfo[0] ;
2037  coordinfo[0] = "Hz" ;
2038  setCoordInfo( coordinfo ) ;
2039  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
2040    regridChannel( nChan, dnu, irow ) ;
2041  }
2042  coordinfo[0] = oldinfo ;
2043  setCoordInfo( coordinfo ) ;
2044
2045
2046  // NOTE: this method does not update metadata such as
2047  //       FREQUENCIES subtable, nChan, Bandwidth, etc.
2048
2049  return ;
2050}
2051
2052void asap::Scantable::regridChannel( int nChan, double dnu, int irow )
2053{
2054  // logging
2055  //ofstream ofs( "average.log", std::ios::out | std::ios::app ) ;
2056  //ofs << "IFNO = " << getIF( irow ) << " irow = " << irow << endl ;
2057
2058  Vector<Float> oldspec = specCol_( irow ) ;
2059  Vector<uChar> oldflag = flagsCol_( irow ) ;
2060  Vector<Float> oldtsys = tsysCol_( irow ) ;
2061  Vector<Float> newspec( nChan, 0 ) ;
2062  Vector<uChar> newflag( nChan, true ) ;
2063  Vector<Float> newtsys ;
2064  bool regridTsys = false ;
2065  if (oldtsys.size() == oldspec.size()) {
2066    regridTsys = true ;
2067    newtsys.resize(nChan,false) ;
2068    newtsys = 0 ;
2069  }
2070
2071  // regrid
2072  vector<double> abcissa = getAbcissa( irow ) ;
2073  int oldsize = abcissa.size() ;
2074  double olddnu = abcissa[1] - abcissa[0] ;
2075  //int ichan = 0 ;
2076  double wsum = 0.0 ;
2077  Vector<double> zi( nChan+1 ) ;
2078  Vector<double> yi( oldsize + 1 ) ;
2079  yi[0] = abcissa[0] - 0.5 * olddnu ;
2080  for ( int ii = 1 ; ii < oldsize ; ii++ )
2081    yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ;
2082  yi[oldsize] = abcissa[oldsize-1] \
2083    + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ;
2084  //zi[0] = abcissa[0] - 0.5 * olddnu ;
2085  zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ;
2086  for ( int ii = 1 ; ii < nChan ; ii++ )
2087    zi[ii] = zi[0] + dnu * ii ;
2088  zi[nChan] = zi[nChan-1] + dnu ;
2089  // Access zi and yi in ascending order
2090  int izs = ((dnu > 0) ? 0 : nChan ) ;
2091  int ize = ((dnu > 0) ? nChan : 0 ) ;
2092  int izincr = ((dnu > 0) ? 1 : -1 ) ;
2093  int ichan =  ((olddnu > 0) ? 0 : oldsize ) ;
2094  int iye = ((olddnu > 0) ? oldsize : 0 ) ;
2095  int iyincr = ((olddnu > 0) ? 1 : -1 ) ;
2096  //for ( int ii = izs ; ii != ize ; ii+=izincr ){
2097  int ii = izs ;
2098  while (ii != ize) {
2099    // always zl < zr
2100    double zl = zi[ii] ;
2101    double zr = zi[ii+izincr] ;
2102    // Need to access smaller index for the new spec, flag, and tsys.
2103    // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc.
2104    int i = min(ii, ii+izincr) ;
2105    //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) {
2106    int jj = ichan ;
2107    while (jj != iye) {
2108      // always yl < yr
2109      double yl = yi[jj] ;
2110      double yr = yi[jj+iyincr] ;
2111      // Need to access smaller index for the original spec, flag, and tsys.
2112      // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc.
2113      int j = min(jj, jj+iyincr) ;
2114      if ( yr <= zl ) {
2115        jj += iyincr ;
2116        continue ;
2117      }
2118      else if ( yl <= zl ) {
2119        if ( yr < zr ) {
2120          if (!oldflag[j]) {
2121            newspec[i] += oldspec[j] * ( yr - zl ) ;
2122            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ;
2123            wsum += ( yr - zl ) ;
2124          }
2125          newflag[i] = (newflag[i] && oldflag[j]) ? 1 << 7 : 0 ;
2126        }
2127        else {
2128          if (!oldflag[j]) {
2129            newspec[i] += oldspec[j] * abs(dnu) ;
2130            if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ;
2131            wsum += abs(dnu) ;
2132          }
2133          newflag[i] = (newflag[i] && oldflag[j]) ? 1 << 7 : 0 ;
2134          ichan = jj ;
2135          break ;
2136        }
2137      }
2138      else if ( yl < zr ) {
2139        if ( yr <= zr ) {
2140          if (!oldflag[j]) {
2141            newspec[i] += oldspec[j] * ( yr - yl ) ;
2142            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ;
2143            wsum += ( yr - yl ) ;
2144          }
2145          newflag[i] = (newflag[i] && oldflag[j]) ? 1 << 7 : 0 ;
2146        }
2147        else {
2148          if (!oldflag[j]) {
2149            newspec[i] += oldspec[j] * ( zr - yl ) ;
2150            if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ;
2151            wsum += ( zr - yl ) ;
2152          }
2153          newflag[i] = (newflag[i] && oldflag[j]) ? 1 << 7 : 0 ;
2154          ichan = jj ;
2155          break ;
2156        }
2157      }
2158      else {
2159        ichan = jj - iyincr ;
2160        break ;
2161      }
2162      jj += iyincr ;
2163    }
2164    if ( wsum != 0.0 ) {
2165      newspec[i] /= wsum ;
2166      if (regridTsys) newtsys[i] /= wsum ;
2167    }
2168    wsum = 0.0 ;
2169    ii += izincr ;
2170  }
2171//   if ( dnu > 0.0 ) {
2172//     for ( int ii = 0 ; ii < nChan ; ii++ ) {
2173//       double zl = zi[ii] ;
2174//       double zr = zi[ii+1] ;
2175//       for ( int j = ichan ; j < oldsize ; j++ ) {
2176//         double yl = yi[j] ;
2177//         double yr = yi[j+1] ;
2178//         if ( yl <= zl ) {
2179//           if ( yr <= zl ) {
2180//             continue ;
2181//           }
2182//           else if ( yr <= zr ) {
2183//          if (!oldflag[j]) {
2184//            newspec[ii] += oldspec[j] * ( yr - zl ) ;
2185//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - zl ) ;
2186//            wsum += ( yr - zl ) ;
2187//          }
2188//          newflag[ii] = newflag[ii] && oldflag[j] ;
2189//           }
2190//           else {
2191//          if (!oldflag[j]) {
2192//            newspec[ii] += oldspec[j] * dnu ;
2193//            if (regridTsys) newtsys[ii] += oldtsys[j] * dnu ;
2194//            wsum += dnu ;
2195//          }
2196//          newflag[ii] = newflag[ii] && oldflag[j] ;
2197//             ichan = j ;
2198//             break ;
2199//           }
2200//         }
2201//         else if ( yl < zr ) {
2202//           if ( yr <= zr ) {
2203//          if (!oldflag[j]) {
2204//            newspec[ii] += oldspec[j] * ( yr - yl ) ;
2205//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - yl ) ;
2206//               wsum += ( yr - yl ) ;
2207//          }
2208//          newflag[ii] = newflag[ii] && oldflag[j] ;
2209//           }
2210//           else {
2211//          if (!oldflag[j]) {
2212//            newspec[ii] += oldspec[j] * ( zr - yl ) ;
2213//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( zr - yl ) ;
2214//            wsum += ( zr - yl ) ;
2215//          }
2216//          newflag[ii] = newflag[ii] && oldflag[j] ;
2217//             ichan = j ;
2218//             break ;
2219//           }
2220//         }
2221//         else {
2222//           ichan = j - 1 ;
2223//           break ;
2224//         }
2225//       }
2226//       if ( wsum != 0.0 ) {
2227//         newspec[ii] /= wsum ;
2228//      if (regridTsys) newtsys[ii] /= wsum ;
2229//       }
2230//       wsum = 0.0 ;
2231//     }
2232//   }
2233//   else if ( dnu < 0.0 ) {
2234//     for ( int ii = 0 ; ii < nChan ; ii++ ) {
2235//       double zl = zi[ii] ;
2236//       double zr = zi[ii+1] ;
2237//       for ( int j = ichan ; j < oldsize ; j++ ) {
2238//         double yl = yi[j] ;
2239//         double yr = yi[j+1] ;
2240//         if ( yl >= zl ) {
2241//           if ( yr >= zl ) {
2242//             continue ;
2243//           }
2244//           else if ( yr >= zr ) {
2245//          if (!oldflag[j]) {
2246//            newspec[ii] += oldspec[j] * abs( yr - zl ) ;
2247//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - zl ) ;
2248//            wsum += abs( yr - zl ) ;
2249//          }
2250//          newflag[ii] = newflag[ii] && oldflag[j] ;
2251//           }
2252//           else {
2253//          if (!oldflag[j]) {
2254//            newspec[ii] += oldspec[j] * abs( dnu ) ;
2255//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( dnu ) ;
2256//            wsum += abs( dnu ) ;
2257//          }
2258//          newflag[ii] = newflag[ii] && oldflag[j] ;
2259//             ichan = j ;
2260//             break ;
2261//           }
2262//         }
2263//         else if ( yl > zr ) {
2264//           if ( yr >= zr ) {
2265//          if (!oldflag[j]) {
2266//            newspec[ii] += oldspec[j] * abs( yr - yl ) ;
2267//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - yl ) ;
2268//            wsum += abs( yr - yl ) ;
2269//          }
2270//          newflag[ii] = newflag[ii] && oldflag[j] ;
2271//           }
2272//           else {
2273//          if (!oldflag[j]) {
2274//            newspec[ii] += oldspec[j] * abs( zr - yl ) ;
2275//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( zr - yl ) ;
2276//            wsum += abs( zr - yl ) ;
2277//          }
2278//          newflag[ii] = newflag[ii] && oldflag[j] ;
2279//             ichan = j ;
2280//             break ;
2281//           }
2282//         }
2283//         else {
2284//           ichan = j - 1 ;
2285//           break ;
2286//         }
2287//       }
2288//       if ( wsum != 0.0 ) {
2289//         newspec[ii] /= wsum ;
2290//      if (regridTsys) newtsys[ii] /= wsum ;
2291//       }
2292//       wsum = 0.0 ;
2293//     }
2294//   }
2295// //   //ofs << "olddnu = " << olddnu << ", dnu = " << dnu << endl ;
2296// //   pile += dnu ;
2297// //   wedge = olddnu * ( refChan + 1 ) ;
2298// //   while ( wedge < pile ) {
2299// //     newspec[0] += olddnu * oldspec[refChan] ;
2300// //     newflag[0] = newflag[0] || oldflag[refChan] ;
2301// //     //ofs << "channel " << refChan << " is included in new channel 0" << endl ;
2302// //     refChan++ ;
2303// //     wedge += olddnu ;
2304// //     wsum += olddnu ;
2305// //     //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2306// //   }
2307// //   frac = ( wedge - pile ) / olddnu ;
2308// //   wsum += ( 1.0 - frac ) * olddnu ;
2309// //   newspec[0] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2310// //   newflag[0] = newflag[0] || oldflag[refChan] ;
2311// //   //ofs << "channel " << refChan << " is partly included in new channel 0" << " with fraction of " << ( 1.0 - frac ) << endl ;
2312// //   //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2313// //   newspec[0] /= wsum ;
2314// //   //ofs << "newspec[0] = " << newspec[0] << endl ;
2315// //   //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2316
2317// //   /***
2318// //    * ichan = 1 - nChan-2
2319// //    ***/
2320// //   for ( int ichan = 1 ; ichan < nChan - 1 ; ichan++ ) {
2321// //     pile += dnu ;
2322// //     newspec[ichan] += frac * olddnu * oldspec[refChan] ;
2323// //     newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2324// //     //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << frac << endl ;
2325// //     refChan++ ;
2326// //     wedge += olddnu ;
2327// //     wsum = frac * olddnu ;
2328// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2329// //     while ( wedge < pile ) {
2330// //       newspec[ichan] += olddnu * oldspec[refChan] ;
2331// //       newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2332// //       //ofs << "channel " << refChan << " is included in new channel " << ichan << endl ;
2333// //       refChan++ ;
2334// //       wedge += olddnu ;
2335// //       wsum += olddnu ;
2336// //       //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2337// //     }
2338// //     frac = ( wedge - pile ) / olddnu ;
2339// //     wsum += ( 1.0 - frac ) * olddnu ;
2340// //     newspec[ichan] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2341// //     newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2342// //     //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << ( 1.0 - frac ) << endl ;
2343// //     //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2344// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2345// //     newspec[ichan] /= wsum ;
2346// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << endl ;
2347// //   }
2348
2349// //   /***
2350// //    * ichan = nChan-1
2351// //    ***/
2352// //   // NOTE: Assumed that all spectra have the same bandwidth
2353// //   pile += dnu ;
2354// //   newspec[nChan-1] += frac * olddnu * oldspec[refChan] ;
2355// //   newflag[nChan-1] = newflag[nChan-1] || oldflag[refChan] ;
2356// //   //ofs << "channel " << refChan << " is partly included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2357// //   refChan++ ;
2358// //   wedge += olddnu ;
2359// //   wsum = frac * olddnu ;
2360// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2361// //   for ( int jchan = refChan ; jchan < oldsize ; jchan++ ) {
2362// //     newspec[nChan-1] += olddnu * oldspec[jchan] ;
2363// //     newflag[nChan-1] = newflag[nChan-1] || oldflag[jchan] ;
2364// //     wsum += olddnu ;
2365// //     //ofs << "channel " << jchan << " is included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2366// //     //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2367// //   }
2368// //   //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2369// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2370// //   newspec[nChan-1] /= wsum ;
2371// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << endl ;
2372
2373// //   // ofs.close() ;
2374
2375  specCol_.put( irow, newspec ) ;
2376  flagsCol_.put( irow, newflag ) ;
2377  if (regridTsys) tsysCol_.put( irow, newtsys );
2378
2379  return ;
2380}
2381
2382void Scantable::regridChannel( int nChan, double dnu, double fmin, int irow )
2383{
2384  Vector<Float> oldspec = specCol_( irow ) ;
2385  Vector<uChar> oldflag = flagsCol_( irow ) ;
2386  Vector<Float> oldtsys = tsysCol_( irow ) ;
2387  Vector<Float> newspec( nChan, 0 ) ;
2388  Vector<uChar> newflag( nChan, true ) ;
2389  Vector<Float> newtsys ;
2390  bool regridTsys = false ;
2391  if (oldtsys.size() == oldspec.size()) {
2392    regridTsys = true ;
2393    newtsys.resize(nChan,false) ;
2394    newtsys = 0 ;
2395  }
2396 
2397  // regrid
2398  vector<double> abcissa = getAbcissa( irow ) ;
2399  int oldsize = abcissa.size() ;
2400  double olddnu = abcissa[1] - abcissa[0] ;
2401  //int ichan = 0 ;
2402  double wsum = 0.0 ;
2403  Vector<double> zi( nChan+1 ) ;
2404  Vector<double> yi( oldsize + 1 ) ;
2405  Block<uInt> count( nChan, 0 ) ;
2406  yi[0] = abcissa[0] - 0.5 * olddnu ;
2407  for ( int ii = 1 ; ii < oldsize ; ii++ )
2408    yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ;
2409  yi[oldsize] = abcissa[oldsize-1] \
2410    + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ;
2411//   cout << "olddnu=" << olddnu << ", dnu=" << dnu << " (diff=" << olddnu-dnu << ")" << endl ;
2412//   cout << "yi[0]=" << yi[0] << ", fmin=" << fmin << " (diff=" << yi[0]-fmin << ")" << endl ;
2413//   cout << "oldsize=" << oldsize << ", nChan=" << nChan << endl ;
2414
2415  // do not regrid if input parameters are almost same as current
2416  // spectral setup
2417  double dnuDiff = abs( ( dnu - olddnu ) / olddnu ) ;
2418  double oldfmin = min( yi[0], yi[oldsize] ) ;
2419  double fminDiff = abs( ( fmin - oldfmin ) / oldfmin ) ;
2420  double nChanDiff = nChan - oldsize ;
2421  double eps = 1.0e-8 ;
2422  if ( nChanDiff == 0 && dnuDiff < eps && fminDiff < eps )
2423    return ;
2424
2425  //zi[0] = abcissa[0] - 0.5 * olddnu ;
2426  //zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ;
2427  if ( dnu > 0 )
2428    zi[0] = fmin - 0.5 * dnu ;
2429  else
2430    zi[0] = fmin + nChan * abs(dnu) ;
2431  for ( int ii = 1 ; ii < nChan ; ii++ )
2432    zi[ii] = zi[0] + dnu * ii ;
2433  zi[nChan] = zi[nChan-1] + dnu ;
2434  // Access zi and yi in ascending order
2435  int izs = ((dnu > 0) ? 0 : nChan ) ;
2436  int ize = ((dnu > 0) ? nChan : 0 ) ;
2437  int izincr = ((dnu > 0) ? 1 : -1 ) ;
2438  int ichan =  ((olddnu > 0) ? 0 : oldsize ) ;
2439  int iye = ((olddnu > 0) ? oldsize : 0 ) ;
2440  int iyincr = ((olddnu > 0) ? 1 : -1 ) ;
2441  //for ( int ii = izs ; ii != ize ; ii+=izincr ){
2442  int ii = izs ;
2443  while (ii != ize) {
2444    // always zl < zr
2445    double zl = zi[ii] ;
2446    double zr = zi[ii+izincr] ;
2447    // Need to access smaller index for the new spec, flag, and tsys.
2448    // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc.
2449    int i = min(ii, ii+izincr) ;
2450    //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) {
2451    int jj = ichan ;
2452    while (jj != iye) {
2453      // always yl < yr
2454      double yl = yi[jj] ;
2455      double yr = yi[jj+iyincr] ;
2456      // Need to access smaller index for the original spec, flag, and tsys.
2457      // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc.
2458      int j = min(jj, jj+iyincr) ;
2459      if ( yr <= zl ) {
2460        jj += iyincr ;
2461        continue ;
2462      }
2463      else if ( yl <= zl ) {
2464        if ( yr < zr ) {
2465          if (!oldflag[j]) {
2466            newspec[i] += oldspec[j] * ( yr - zl ) ;
2467            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ;
2468            wsum += ( yr - zl ) ;
2469            count[i]++ ;
2470          }
2471          newflag[i] = newflag[i] && oldflag[j] ;
2472        }
2473        else {
2474          if (!oldflag[j]) {
2475            newspec[i] += oldspec[j] * abs(dnu) ;
2476            if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ;
2477            wsum += abs(dnu) ;
2478            count[i]++ ;
2479          }
2480          newflag[i] = newflag[i] && oldflag[j] ;
2481          ichan = jj ;
2482          break ;
2483        }
2484      }
2485      else if ( yl < zr ) {
2486        if ( yr <= zr ) {
2487          if (!oldflag[j]) {
2488            newspec[i] += oldspec[j] * ( yr - yl ) ;
2489            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ;
2490            wsum += ( yr - yl ) ;
2491            count[i]++ ;
2492          }
2493          newflag[i] = newflag[i] && oldflag[j] ;
2494        }
2495        else {
2496          if (!oldflag[j]) {
2497            newspec[i] += oldspec[j] * ( zr - yl ) ;
2498            if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ;
2499            wsum += ( zr - yl ) ;
2500            count[i]++ ;
2501          }
2502          newflag[i] = newflag[i] && oldflag[j] ;
2503          ichan = jj ;
2504          break ;
2505        }
2506      }
2507      else {
2508        //ichan = jj - iyincr ;
2509        break ;
2510      }
2511      jj += iyincr ;
2512    }
2513    if ( wsum != 0.0 ) {
2514      newspec[i] /= wsum ;
2515      if (regridTsys) newtsys[i] /= wsum ;
2516    }
2517    wsum = 0.0 ;
2518    ii += izincr ;
2519  }
2520
2521  // flag out channels without data
2522  // this is tentative since there is no specific definition
2523  // on bit flag...
2524  uChar noData = 1 << 7 ;
2525  for ( Int i = 0 ; i < nChan ; i++ ) {
2526    if ( count[i] == 0 )
2527      newflag[i] = noData ;
2528  }
2529
2530  specCol_.put( irow, newspec ) ;
2531  flagsCol_.put( irow, newflag ) ;
2532  if (regridTsys) tsysCol_.put( irow, newtsys );
2533
2534  return ;
2535}
2536
2537std::vector<float> Scantable::getWeather(int whichrow) const
2538{
2539  std::vector<float> out(5);
2540  //Float temperature, pressure, humidity, windspeed, windaz;
2541  weatherTable_.getEntry(out[0], out[1], out[2], out[3], out[4],
2542                         mweatheridCol_(uInt(whichrow)));
2543
2544
2545  return out;
2546}
2547
2548bool Scantable::isAllChannelsFlagged(uInt whichrow)
2549{
2550  uInt rflag;
2551  flagrowCol_.get(whichrow, rflag);
2552  if (rflag > 0)
2553    return true;
2554  bool flag;
2555  Vector<uChar> flags;
2556  flagsCol_.get(whichrow, flags);
2557  flag = (flags[0]>0);
2558  for (uInt i = 1; i < flags.size(); ++i) {
2559    flag &= (flags[i]>0);
2560  }
2561  //  return ((flag >> 7) == 1);
2562  return (flag > 0);
2563}
2564
2565std::size_t Scantable::nValidMask(const std::vector<bool>& mask)
2566{
2567  std::size_t nvalid=0;
2568  assert(static_cast<std::size_t>(true)==1);
2569  assert(static_cast<std::size_t>(false)==0);
2570  for (uInt i = 1; i < mask.size(); ++i) {
2571    nvalid += static_cast<std::size_t>(mask[i]);
2572  }
2573  return nvalid;
2574}
2575
2576
2577std::vector<std::string> Scantable::applyBaselineTable(const std::string& bltable, const bool returnfitresult, const std::string& outbltable, const bool outbltableexists, const bool overwrite)
2578{
2579  STBaselineTable btin = STBaselineTable(bltable);
2580
2581  Vector<Bool> applyCol = btin.getApply();
2582  int nRowBl = applyCol.size();
2583  if (nRowBl != nrow()) {
2584    throw(AipsError("Scantable and bltable have different number of rows."));
2585  }
2586
2587  std::vector<std::string> res;
2588  res.clear();
2589
2590  bool outBaselineTable = ((outbltable != "") && (!outbltableexists || overwrite));
2591  bool bltableidentical = (bltable == outbltable);
2592  STBaselineTable btout = STBaselineTable(*this);
2593  ROScalarColumn<Double> tcol = ROScalarColumn<Double>(table_, "TIME");
2594  Vector<Double> timeSecCol = tcol.getColumn();
2595
2596  for (int whichrow = 0; whichrow < nRowBl; ++whichrow) {
2597    if (applyCol[whichrow]) {
2598      std::vector<float> spec = getSpectrum(whichrow);
2599
2600      std::vector<bool> mask = btin.getMask(whichrow);  //use mask_bltable only
2601
2602      STBaselineFunc::FuncName ftype = btin.getFunctionName(whichrow);
2603      std::vector<int> fpar = btin.getFuncParam(whichrow);
2604      std::vector<float> params;
2605      float rms;
2606      std::vector<float> resfit = doApplyBaselineTable(spec, mask, ftype, fpar, params, rms);
2607      setSpectrum(resfit, whichrow);
2608
2609      if (returnfitresult) {
2610        res.push_back(packFittingResults(whichrow, params, rms));
2611      }
2612
2613      if (outBaselineTable) {
2614        if (outbltableexists) {
2615          if (overwrite) {
2616            if (bltableidentical) {
2617              btin.setresult(uInt(whichrow), Vector<Float>(params), Float(rms));
2618            } else {
2619              btout.setresult(uInt(whichrow), Vector<Float>(params), Float(rms));
2620            }
2621          }
2622        } else {
2623          btout.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
2624                           getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
2625                           true, ftype, fpar, std::vector<float>(),
2626                           getMaskListFromMask(mask), params, rms, spec.size(),
2627                           3.0, 0, 0.0, 0, std::vector<int>());
2628        }
2629      }
2630    }
2631  }
2632
2633  if (outBaselineTable) {
2634    if (bltableidentical) {
2635      btin.save(outbltable);
2636    } else {
2637      btout.save(outbltable);
2638    }
2639  }
2640
2641  return res;
2642}
2643
2644std::vector<std::string> Scantable::subBaseline(const std::vector<std::string>& blInfoList, const bool returnfitresult, const std::string& outbltable, const bool outbltableexists, const bool overwrite)
2645{
2646  int nRowBl = blInfoList.size();
2647  int nRowSt = nrow();
2648
2649  std::vector<std::string> res;
2650  res.clear();
2651
2652  bool outBaselineTable = ((outbltable != "") && (!outbltableexists || overwrite));
2653  if ((outbltable != "") && outbltableexists && !overwrite) {
2654    throw(AipsError("Cannot overwrite bltable. Set overwrite=True."));
2655  }
2656
2657  STBaselineTable* btp;
2658  ROScalarColumn<Double> tcol = ROScalarColumn<Double>(table_, "TIME");
2659  Vector<Double> timeSecCol = tcol.getColumn();
2660
2661  if (outBaselineTable) {
2662    if (outbltableexists) {
2663      btp = new STBaselineTable((String)outbltable);
2664    } else {
2665      btp = new STBaselineTable(*this);
2666      // for (int i = 0; i < nRowSt; ++i) {
2667      //   btp->appendbasedata(getScan(i), getCycle(i), getBeam(i), getIF(i), getPol(i),
2668      //                   0, timeSecCol[i]);
2669      //   btp->setApply(i, false);
2670      // }
2671    }
2672    int nrow = btp->nrow();
2673    for (int i = nrow; i < nRowSt; ++i) {
2674      btp->appendbasedata(getScan(i), getCycle(i), getBeam(i), getIF(i), getPol(i),
2675                          0, timeSecCol[i]);
2676      btp->setApply(i, false);
2677    }
2678  }
2679
2680  for (int i = 0; i < nRowBl; ++i) {
2681    int irow;
2682    STBaselineFunc::FuncName ftype;
2683    std::vector<bool> mask;
2684    std::vector<int> fpar;
2685    float clipth;
2686    int clipn;
2687    bool uself;
2688    float lfth;
2689    std::vector<int> lfedge;
2690    int lfavg;
2691    parseBlInfo(blInfoList[i], irow, ftype, fpar, mask, clipth, clipn, uself, lfth, lfedge, lfavg);
2692
2693    if (irow < nRowSt) {
2694      std::vector<float> spec = getSpectrum(irow);
2695      std::vector<float> params;
2696      float rms;
2697      std::vector<bool> finalmask;
2698      Bool doApply = True;
2699     
2700      if (!isAllChannelsFlagged(irow)) {
2701        std::vector<float> resfit = doSubtractBaseline(spec, mask, ftype, fpar, params, rms, finalmask, clipth, clipn, uself, irow, lfth, lfedge, lfavg);
2702        setSpectrum(resfit, irow);
2703      }
2704      else {
2705        doApply = False;
2706      }
2707
2708      if (returnfitresult) {
2709        res.push_back(packFittingResults(irow, params, rms));
2710      }
2711
2712      if (outBaselineTable) {
2713        Vector<Int> fparam(fpar.size());
2714        for (uInt j = 0; j < fparam.size(); ++j) {
2715          fparam[j] = (Int)fpar[j];
2716        }
2717
2718        btp->setdata(uInt(irow),
2719                    uInt(getScan(irow)), uInt(getCycle(irow)),
2720                    uInt(getBeam(irow)), uInt(getIF(irow)), uInt(getPol(irow)),
2721                    uInt(0), timeSecCol[irow], doApply, ftype, fparam,
2722                    Vector<Float>(), getMaskListFromMask(finalmask), Vector<Float>(params),
2723                    Float(rms), uInt(spec.size()), Float(clipth), uInt(clipn),
2724                    Float(0.0), uInt(0), Vector<uInt>());
2725      }
2726
2727    }
2728  }
2729
2730  if (outBaselineTable) {
2731    btp->save(outbltable);
2732  }
2733
2734  delete btp;
2735  return res;
2736}
2737
2738std::vector<float> Scantable::doApplyBaselineTable(std::vector<float>& spec,
2739                                                   std::vector<bool>& mask,
2740                                                   const STBaselineFunc::FuncName ftype,
2741                                                   std::vector<int>& fpar,
2742                                                   std::vector<float>& params,
2743                                                   float&rms)
2744{
2745  std::vector<bool> finalmask;
2746  std::vector<int> lfedge;
2747  return doSubtractBaseline(spec, mask, ftype, fpar, params, rms, finalmask, 0.0, 0, false, 0, 0.0, lfedge, 0);
2748}
2749
2750std::vector<float> Scantable::doSubtractBaseline(std::vector<float>& spec,
2751                                                 std::vector<bool>& mask,
2752                                                 const STBaselineFunc::FuncName ftype,
2753                                                 std::vector<int>& fpar,
2754                                                 std::vector<float>& params,
2755                                                 float&rms,
2756                                                 std::vector<bool>& finalmask,
2757                                                 float clipth,
2758                                                 int clipn,
2759                                                 bool uself,
2760                                                 int irow,
2761                                                 float lfth,
2762                                                 std::vector<int>& lfedge,
2763                                                 int lfavg)
2764{
2765  if (uself) {
2766    STLineFinder lineFinder = STLineFinder();
2767    initLineFinder(lfedge, lfth, lfavg, lineFinder);
2768    std::vector<int> currentEdge;
2769    mask = getCompositeChanMask(irow, mask, lfedge, currentEdge, lineFinder);
2770  } else {
2771    mask = getCompositeChanMask(irow, mask);
2772  }
2773
2774  std::vector<float> res;
2775  if (ftype == STBaselineFunc::Polynomial) {
2776    res = doPolynomialFitting(spec, mask, fpar[0], params, rms, finalmask, clipth, clipn);
2777  } else if (ftype == STBaselineFunc::Chebyshev) {
2778    res = doChebyshevFitting(spec, mask, fpar[0], params, rms, finalmask, clipth, clipn);
2779  } else if (ftype == STBaselineFunc::CSpline) {
2780    if (fpar.size() > 1) { // reading from baseline table in which pieceEdges are already calculated and stored.
2781      res = doCubicSplineFitting(spec, mask, fpar, params, rms, finalmask, clipth, clipn);
2782    } else {               // usual cspline fitting by giving nPiece only. fpar will be replaced with pieceEdges.
2783      res = doCubicSplineFitting(spec, mask, fpar[0], fpar, params, rms, finalmask, clipth, clipn);
2784    }
2785  } else if (ftype == STBaselineFunc::Sinusoid) {
2786    res = doSinusoidFitting(spec, mask, fpar, params, rms, finalmask, clipth, clipn);
2787  }
2788
2789  return res;
2790}
2791
2792std::string Scantable::packFittingResults(const int irow, const std::vector<float>& params, const float rms)
2793{
2794  // returned value: "irow:params[0],params[1],..,params[n-1]:rms"
2795  ostringstream os;
2796  os << irow << ':';
2797  for (uInt i = 0; i < params.size(); ++i) {
2798    if (i > 0) {
2799      os << ',';
2800    }
2801    os << params[i];
2802  }
2803  os << ':' << rms;
2804
2805  return os.str();
2806}
2807
2808void Scantable::parseBlInfo(const std::string& blInfo, int& irow, STBaselineFunc::FuncName& ftype, std::vector<int>& fpar, std::vector<bool>& mask, float& thresClip, int& nIterClip, bool& useLineFinder, float& thresLF, std::vector<int>& edgeLF, int& avgLF)
2809{
2810  // The baseline info to be parsed must be column-delimited string like
2811  // "0:chebyshev:5:3,5,169,174,485,487" where the elements are
2812  // row number, funcType, funcOrder, maskList, clipThreshold, clipNIter,
2813  // useLineFinder, lfThreshold, lfEdge and lfChanAvgLimit.
2814
2815  std::vector<string> res = splitToStringList(blInfo, ':');
2816  if (res.size() < 4) {
2817    throw(AipsError("baseline info has bad format")) ;
2818  }
2819
2820  string ftype0, fpar0, masklist0, uself0, edge0;
2821  std::vector<int> masklist;
2822
2823  stringstream ss;
2824  ss << res[0];
2825  ss >> irow;
2826  ss.clear(); ss.str("");
2827
2828  ss << res[1];
2829  ss >> ftype0;
2830  if (ftype0 == "poly") {
2831    ftype = STBaselineFunc::Polynomial;
2832  } else if (ftype0 == "cspline") {
2833    ftype = STBaselineFunc::CSpline;
2834  } else if (ftype0 == "sinusoid") {
2835    ftype = STBaselineFunc::Sinusoid;
2836  } else if (ftype0 == "chebyshev") {
2837    ftype = STBaselineFunc::Chebyshev;
2838  } else {
2839    throw(AipsError("invalid function type."));
2840  }
2841  ss.clear(); ss.str("");
2842
2843  ss << res[2];
2844  ss >> fpar0;
2845  fpar = splitToIntList(fpar0, ',');
2846  ss.clear(); ss.str("");
2847
2848  ss << res[3];
2849  ss >> masklist0;
2850  mask = getMaskFromMaskList(nchan(getIF(irow)), splitToIntList(masklist0, ','));
2851  ss.clear(); ss.str("");
2852
2853  ss << res[4];
2854  ss >> thresClip;
2855  ss.clear(); ss.str("");
2856
2857  ss << res[5];
2858  ss >> nIterClip;
2859  ss.clear(); ss.str("");
2860
2861  ss << res[6];
2862  ss >> uself0;
2863  if (uself0 == "true") {
2864    useLineFinder = true;
2865  } else {
2866    useLineFinder = false;
2867  }
2868  ss.clear(); ss.str("");
2869
2870  if (useLineFinder) {
2871    ss << res[7];
2872    ss >> thresLF;
2873    ss.clear(); ss.str("");
2874
2875    ss << res[8];
2876    ss >> edge0;
2877    edgeLF = splitToIntList(edge0, ',');
2878    ss.clear(); ss.str("");
2879
2880    ss << res[9];
2881    ss >> avgLF;
2882    ss.clear(); ss.str("");
2883  }
2884
2885}
2886
2887std::vector<int> Scantable::splitToIntList(const std::string& s, const char delim)
2888{
2889  istringstream iss(s);
2890  string tmp;
2891  int tmpi;
2892  std::vector<int> res;
2893  stringstream ss;
2894  while (getline(iss, tmp, delim)) {
2895    ss << tmp;
2896    ss >> tmpi;
2897    res.push_back(tmpi);
2898    ss.clear(); ss.str("");
2899  }
2900
2901  return res;
2902}
2903
2904std::vector<string> Scantable::splitToStringList(const std::string& s, const char delim)
2905{
2906  istringstream iss(s);
2907  std::string tmp;
2908  std::vector<string> res;
2909  while (getline(iss, tmp, delim)) {
2910    res.push_back(tmp);
2911  }
2912
2913  return res;
2914}
2915
2916std::vector<bool> Scantable::getMaskFromMaskList(const int nchan, const std::vector<int>& masklist)
2917{
2918  if (masklist.size() % 2 != 0) {
2919    throw(AipsError("masklist must have even number of elements."));
2920  }
2921
2922  std::vector<bool> res(nchan);
2923
2924  for (int i = 0; i < nchan; ++i) {
2925    res[i] = false;
2926  }
2927  for (uInt j = 0; j < masklist.size(); j += 2) {
2928    for (int i = masklist[j]; i <= min(nchan-1, masklist[j+1]); ++i) {
2929      res[i] = true;
2930    }
2931  }
2932
2933  return res;
2934}
2935
2936Vector<uInt> Scantable::getMaskListFromMask(const std::vector<bool>& mask)
2937{
2938  std::vector<int> masklist;
2939  masklist.clear();
2940
2941  for (uInt i = 0; i < mask.size(); ++i) {
2942    if (mask[i]) {
2943      if ((i == 0)||(i == mask.size()-1)) {
2944        masklist.push_back(i);
2945      } else {
2946        if ((mask[i])&&(!mask[i-1])) {
2947          masklist.push_back(i);
2948        }
2949        if ((mask[i])&&(!mask[i+1])) {
2950          masklist.push_back(i);
2951        }
2952      }
2953    }
2954  }
2955
2956  Vector<uInt> res(masklist.size());
2957  for (uInt i = 0; i < masklist.size(); ++i) {
2958    res[i] = (uInt)masklist[i];
2959  }
2960
2961  return res;
2962}
2963
2964void Scantable::initialiseBaselining(const std::string& blfile,
2965                                     ofstream& ofs,
2966                                     const bool outLogger,
2967                                     bool& outTextFile,
2968                                     bool& csvFormat,
2969                                     String& coordInfo,
2970                                     bool& hasSameNchan,
2971                                     const std::string& progressInfo,
2972                                     bool& showProgress,
2973                                     int& minNRow,
2974                                     Vector<Double>& timeSecCol)
2975{
2976  csvFormat = false;
2977  outTextFile = false;
2978
2979  if (blfile != "") {
2980    csvFormat = (blfile.substr(0, 1) == "T");
2981    ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
2982    if (ofs) outTextFile = true;
2983  }
2984
2985  coordInfo = "";
2986  hasSameNchan = true;
2987
2988  if (outLogger || outTextFile) {
2989    coordInfo = getCoordInfo()[0];
2990    if (coordInfo == "") coordInfo = "channel";
2991    hasSameNchan = hasSameNchanOverIFs();
2992  }
2993
2994  parseProgressInfo(progressInfo, showProgress, minNRow);
2995
2996  ROScalarColumn<Double> tcol = ROScalarColumn<Double>(table_, "TIME");
2997  timeSecCol = tcol.getColumn();
2998}
2999
3000void Scantable::finaliseBaselining(const bool outBaselineTable,
3001                                   STBaselineTable* pbt,
3002                                   const string& bltable,
3003                                   const bool outTextFile,
3004                                   ofstream& ofs)
3005{
3006  if (outBaselineTable) {
3007    pbt->save(bltable);
3008  }
3009
3010  if (outTextFile) ofs.close();
3011}
3012
3013void Scantable::initLineFinder(const std::vector<int>& edge,
3014                               const float threshold,
3015                               const int chanAvgLimit,
3016                               STLineFinder& lineFinder)
3017{
3018  if ((edge.size() > 2) && (edge.size() < getIFNos().size()*2)) {
3019    throw(AipsError("Length of edge element info is less than that of IFs"));
3020  }
3021
3022  lineFinder.setOptions(threshold, 3, chanAvgLimit);
3023}
3024
3025void Scantable::polyBaseline(const std::vector<bool>& mask, int order,
3026                             float thresClip, int nIterClip,
3027                             bool getResidual,
3028                             const std::string& progressInfo,
3029                             const bool outLogger, const std::string& blfile,
3030                             const std::string& bltable)
3031{
3032  /****
3033  double TimeStart = mathutil::gettimeofday_sec();
3034  ****/
3035
3036  try {
3037    ofstream ofs;
3038    String coordInfo;
3039    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3040    int minNRow;
3041    int nRow = nrow();
3042    std::vector<bool> chanMask, finalChanMask;
3043    float rms;
3044    bool outBaselineTable = (bltable != "");
3045    STBaselineTable bt = STBaselineTable(*this);
3046    Vector<Double> timeSecCol;
3047
3048    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3049                         coordInfo, hasSameNchan,
3050                         progressInfo, showProgress, minNRow,
3051                         timeSecCol);
3052
3053    std::vector<int> nChanNos;
3054    std::vector<std::vector<std::vector<double> > > modelReservoir;
3055    modelReservoir = getPolynomialModelReservoir(order,
3056                                                 &Scantable::getNormalPolynomial,
3057                                                 nChanNos);
3058    int nModel = modelReservoir.size();
3059
3060    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3061      std::vector<float> sp = getSpectrum(whichrow);
3062      chanMask = getCompositeChanMask(whichrow, mask);
3063      std::vector<float> params;
3064
3065      //if (flagrowCol_(whichrow) == 0) {
3066      if (flagrowCol_(whichrow)==0 && nValidMask(chanMask)>0) {
3067        int nClipped = 0;
3068        std::vector<float> res;
3069        res = doLeastSquareFitting(sp, chanMask,
3070                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3071                                   params, rms, finalChanMask,
3072                                   nClipped, thresClip, nIterClip, getResidual);
3073
3074        if (outBaselineTable) {
3075          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3076                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3077                        true, STBaselineFunc::Polynomial, order, std::vector<float>(),
3078                        getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3079                        thresClip, nIterClip, 0.0, 0, std::vector<int>());
3080        } else {
3081          setSpectrum(res, whichrow);
3082        }
3083
3084        outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3085                            coordInfo, hasSameNchan, ofs, "polyBaseline()",
3086                            params, nClipped);
3087      } else {
3088        // no valid channels to fit (flag the row)
3089        flagrowCol_.put(whichrow, 1);
3090        if (outBaselineTable) {
3091          params.resize(nModel);
3092          for (uInt i = 0; i < params.size(); ++i) {
3093            params[i] = 0.0;
3094          }
3095          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3096                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3097                        true, STBaselineFunc::Polynomial, order, std::vector<float>(),
3098                        getMaskListFromMask(chanMask), params, 0.0, sp.size(),
3099                        thresClip, nIterClip, 0.0, 0, std::vector<int>());
3100        }
3101      }
3102
3103      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3104    }
3105
3106    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3107
3108  } catch (...) {
3109    throw;
3110  }
3111
3112  /****
3113  double TimeEnd = mathutil::gettimeofday_sec();
3114  double elapse1 = TimeEnd - TimeStart;
3115  std::cout << "poly-new   : " << elapse1 << " (sec.)" << endl;
3116  ****/
3117}
3118
3119void Scantable::autoPolyBaseline(const std::vector<bool>& mask, int order,
3120                                 float thresClip, int nIterClip,
3121                                 const std::vector<int>& edge,
3122                                 float threshold, int chanAvgLimit,
3123                                 bool getResidual,
3124                                 const std::string& progressInfo,
3125                                 const bool outLogger, const std::string& blfile,
3126                                 const std::string& bltable)
3127{
3128  try {
3129    ofstream ofs;
3130    String coordInfo;
3131    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3132    int minNRow;
3133    int nRow = nrow();
3134    std::vector<bool> chanMask, finalChanMask;
3135    float rms;
3136    bool outBaselineTable = (bltable != "");
3137    STBaselineTable bt = STBaselineTable(*this);
3138    Vector<Double> timeSecCol;
3139    STLineFinder lineFinder = STLineFinder();
3140
3141    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3142                         coordInfo, hasSameNchan,
3143                         progressInfo, showProgress, minNRow,
3144                         timeSecCol);
3145
3146    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3147
3148    std::vector<int> nChanNos;
3149    std::vector<std::vector<std::vector<double> > > modelReservoir;
3150    modelReservoir = getPolynomialModelReservoir(order,
3151                                                 &Scantable::getNormalPolynomial,
3152                                                 nChanNos);
3153    int nModel = modelReservoir.size();
3154
3155    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3156      std::vector<float> sp = getSpectrum(whichrow);
3157      std::vector<int> currentEdge;
3158      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
3159      std::vector<float> params;
3160
3161      //if (flagrowCol_(whichrow) == 0) {
3162      if (flagrowCol_(whichrow)==0 && nValidMask(chanMask)>0) {
3163        int nClipped = 0;
3164        std::vector<float> res;
3165        res = doLeastSquareFitting(sp, chanMask,
3166                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3167                                   params, rms, finalChanMask,
3168                                   nClipped, thresClip, nIterClip, getResidual);
3169
3170        if (outBaselineTable) {
3171          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3172                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3173                        true, STBaselineFunc::Polynomial, order, std::vector<float>(),
3174                        getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3175                        thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
3176        } else {
3177          setSpectrum(res, whichrow);
3178        }
3179
3180        outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3181                            coordInfo, hasSameNchan, ofs, "autoPolyBaseline()",
3182                            params, nClipped);
3183      } else {
3184        // no valid channels to fit (flag the row)
3185        flagrowCol_.put(whichrow, 1);
3186        if (outBaselineTable) {
3187          params.resize(nModel);
3188          for (uInt i = 0; i < params.size(); ++i) {
3189            params[i] = 0.0;
3190          }
3191          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3192                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3193                        true, STBaselineFunc::Polynomial, order, std::vector<float>(),
3194                        getMaskListFromMask(chanMask), params, 0.0, sp.size(),
3195                        thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
3196        }
3197      }
3198
3199      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3200    }
3201
3202    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3203
3204  } catch (...) {
3205    throw;
3206  }
3207}
3208
3209void Scantable::chebyshevBaseline(const std::vector<bool>& mask, int order,
3210                                  float thresClip, int nIterClip,
3211                                  bool getResidual,
3212                                  const std::string& progressInfo,
3213                                  const bool outLogger, const std::string& blfile,
3214                                  const std::string& bltable)
3215{
3216  /*
3217  double TimeStart = mathutil::gettimeofday_sec();
3218  */
3219
3220  try {
3221    ofstream ofs;
3222    String coordInfo;
3223    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3224    int minNRow;
3225    int nRow = nrow();
3226    std::vector<bool> chanMask, finalChanMask;
3227    float rms;
3228    bool outBaselineTable = (bltable != "");
3229    STBaselineTable bt = STBaselineTable(*this);
3230    Vector<Double> timeSecCol;
3231
3232    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3233                         coordInfo, hasSameNchan,
3234                         progressInfo, showProgress, minNRow,
3235                         timeSecCol);
3236
3237    std::vector<int> nChanNos;
3238    std::vector<std::vector<std::vector<double> > > modelReservoir;
3239    modelReservoir = getPolynomialModelReservoir(order,
3240                                                 &Scantable::getChebyshevPolynomial,
3241                                                 nChanNos);
3242    int nModel = modelReservoir.size();
3243
3244    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3245      std::vector<float> sp = getSpectrum(whichrow);
3246      chanMask = getCompositeChanMask(whichrow, mask);
3247      std::vector<float> params;
3248
3249      //      if (flagrowCol_(whichrow) == 0) {
3250      if (flagrowCol_(whichrow)==0 && nValidMask(chanMask)>0) {
3251        int nClipped = 0;
3252        std::vector<float> res;
3253        res = doLeastSquareFitting(sp, chanMask,
3254                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3255                                   params, rms, finalChanMask,
3256                                   nClipped, thresClip, nIterClip, getResidual);
3257
3258        if (outBaselineTable) {
3259          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3260                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3261                        true, STBaselineFunc::Chebyshev, order, std::vector<float>(),
3262                        getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3263                        thresClip, nIterClip, 0.0, 0, std::vector<int>());
3264        } else {
3265          setSpectrum(res, whichrow);
3266        }
3267
3268        outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3269                            coordInfo, hasSameNchan, ofs, "chebyshevBaseline()",
3270                            params, nClipped);
3271      } else {
3272        // no valid channels to fit (flag the row)
3273        flagrowCol_.put(whichrow, 1);
3274        if (outBaselineTable) {
3275          params.resize(nModel);
3276          for (uInt i = 0; i < params.size(); ++i) {
3277            params[i] = 0.0;
3278          }
3279          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3280                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3281                        true, STBaselineFunc::Chebyshev, order, std::vector<float>(),
3282                        getMaskListFromMask(chanMask), params, 0.0, sp.size(),
3283                        thresClip, nIterClip, 0.0, 0, std::vector<int>());
3284        }
3285      }
3286
3287      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3288    }
3289   
3290    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3291
3292  } catch (...) {
3293    throw;
3294  }
3295
3296  /*
3297  double TimeEnd = mathutil::gettimeofday_sec();
3298  double elapse1 = TimeEnd - TimeStart;
3299  std::cout << "cheby   : " << elapse1 << " (sec.)" << endl;
3300  */
3301}
3302
3303void Scantable::autoChebyshevBaseline(const std::vector<bool>& mask, int order,
3304                                      float thresClip, int nIterClip,
3305                                      const std::vector<int>& edge,
3306                                      float threshold, int chanAvgLimit,
3307                                      bool getResidual,
3308                                      const std::string& progressInfo,
3309                                      const bool outLogger, const std::string& blfile,
3310                                      const std::string& bltable)
3311{
3312  try {
3313    ofstream ofs;
3314    String coordInfo;
3315    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3316    int minNRow;
3317    int nRow = nrow();
3318    std::vector<bool> chanMask, finalChanMask;
3319    float rms;
3320    bool outBaselineTable = (bltable != "");
3321    STBaselineTable bt = STBaselineTable(*this);
3322    Vector<Double> timeSecCol;
3323    STLineFinder lineFinder = STLineFinder();
3324
3325    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3326                         coordInfo, hasSameNchan,
3327                         progressInfo, showProgress, minNRow,
3328                         timeSecCol);
3329
3330    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3331
3332    std::vector<int> nChanNos;
3333    std::vector<std::vector<std::vector<double> > > modelReservoir;
3334    modelReservoir = getPolynomialModelReservoir(order,
3335                                                 &Scantable::getChebyshevPolynomial,
3336                                                 nChanNos);
3337    int nModel = modelReservoir.size();
3338
3339    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3340      std::vector<float> sp = getSpectrum(whichrow);
3341      std::vector<int> currentEdge;
3342      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
3343      std::vector<float> params;
3344
3345      //      if (flagrowCol_(whichrow) == 0) {
3346      if (flagrowCol_(whichrow)==0 && nValidMask(chanMask)>0) {
3347        int nClipped = 0;
3348        std::vector<float> res;
3349        res = doLeastSquareFitting(sp, chanMask,
3350                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3351                                   params, rms, finalChanMask,
3352                                   nClipped, thresClip, nIterClip, getResidual);
3353
3354        if (outBaselineTable) {
3355          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3356                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3357                        true, STBaselineFunc::Chebyshev, order, std::vector<float>(),
3358                        getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3359                        thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
3360        } else {
3361          setSpectrum(res, whichrow);
3362        }
3363
3364        outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3365                            coordInfo, hasSameNchan, ofs, "autoChebyshevBaseline()",
3366                            params, nClipped);
3367      } else {
3368        // no valid channels to fit (flag the row)
3369        flagrowCol_.put(whichrow, 1);
3370        if (outBaselineTable) {
3371          params.resize(nModel);
3372          for (uInt i = 0; i < params.size(); ++i) {
3373            params[i] = 0.0;
3374          }
3375          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3376                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3377                        true, STBaselineFunc::Chebyshev, order, std::vector<float>(),
3378                        getMaskListFromMask(chanMask), params, 0.0, sp.size(),
3379                        thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
3380        }
3381      }
3382
3383      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3384    }
3385
3386    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3387
3388  } catch (...) {
3389    throw;
3390  }
3391}
3392
3393double Scantable::calculateModelSelectionCriteria(const std::string& valname,
3394                                                  const std::string& blfunc,
3395                                                  int order,
3396                                                  const std::vector<bool>& inMask,
3397                                                  int whichrow,
3398                                                  bool useLineFinder,
3399                                                  const std::vector<int>& edge,
3400                                                  float threshold,
3401                                                  int chanAvgLimit)
3402{
3403  std::vector<float> sp = getSpectrum(whichrow);
3404  std::vector<bool> chanMask;
3405  chanMask.clear();
3406
3407  if (useLineFinder) {
3408    STLineFinder lineFinder = STLineFinder();
3409    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3410    std::vector<int> currentEdge;
3411    chanMask = getCompositeChanMask(whichrow, inMask, edge, currentEdge, lineFinder);
3412  } else {
3413    chanMask = getCompositeChanMask(whichrow, inMask);
3414  }
3415
3416  return doCalculateModelSelectionCriteria(valname, sp, chanMask, blfunc, order);
3417}
3418
3419double Scantable::doCalculateModelSelectionCriteria(const std::string& valname, const std::vector<float>& spec, const std::vector<bool>& mask, const std::string& blfunc, int order)
3420{
3421  int nparam;
3422  std::vector<float> params;
3423  std::vector<bool> finalChanMask;
3424  float rms;
3425  int nClipped = 0;
3426  std::vector<float> res;
3427  if (blfunc == "poly") {
3428    nparam = order + 1;
3429    res = doPolynomialFitting(spec, mask, order, params, rms, finalChanMask, nClipped);
3430  } else if (blfunc == "chebyshev") {
3431    nparam = order + 1;
3432    res = doChebyshevFitting(spec, mask, order, params, rms, finalChanMask, nClipped);
3433  } else if (blfunc == "cspline") {
3434    std::vector<int> pieceEdges;//(order+1);  //order = npiece
3435    nparam = order + 3;
3436    res = doCubicSplineFitting(spec, mask, order, false, pieceEdges, params, rms, finalChanMask, nClipped);
3437  } else if (blfunc == "sinusoid") {
3438    std::vector<int> nWaves;
3439    nWaves.clear();
3440    for (int i = 0; i <= order; ++i) {
3441      nWaves.push_back(i);
3442    }
3443    nparam = 2*order + 1;  // order = nwave
3444    res = doSinusoidFitting(spec, mask, nWaves, params, rms, finalChanMask, nClipped);
3445  } else {
3446    throw(AipsError("blfunc must be poly, chebyshev, cspline or sinusoid."));
3447  }
3448
3449  double msq = 0.0;
3450  int nusedchan = 0;
3451  int nChan = res.size();
3452  for (int i = 0; i < nChan; ++i) {
3453    if (mask[i]) {
3454      msq += (double)res[i]*(double)res[i];
3455      nusedchan++;
3456    }
3457  }
3458  if (nusedchan == 0) {
3459    throw(AipsError("all channels masked."));
3460  }
3461  msq /= (double)nusedchan;
3462
3463  nparam++;  //add 1 for sigma of Gaussian distribution
3464  const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
3465
3466  if (valname.find("aic") == 0) {
3467    // Original Akaike Information Criterion (AIC)
3468    double aic = nusedchan * (log(2.0 * PI * msq) + 1.0) + 2.0 * nparam;
3469
3470    // Corrected AIC by Sugiura(1978) (AICc)
3471    if (valname == "aicc") {
3472      if (nusedchan - nparam - 1 <= 0) {
3473        throw(AipsError("channel size is too small to calculate AICc."));
3474      }
3475      aic += 2.0*nparam*(nparam + 1)/(double)(nusedchan - nparam - 1);
3476    }
3477
3478    return aic;
3479
3480  } else if (valname == "bic") {
3481    // Bayesian Information Criterion (BIC)
3482    double bic = nusedchan * log(msq) + nparam * log((double)nusedchan);
3483    return bic;
3484
3485  } else if (valname == "gcv") {
3486    // Generalised Cross Validation
3487    double x = 1.0 - (double)nparam / (double)nusedchan;
3488    double gcv = msq / (x * x);
3489    return gcv;
3490
3491  } else {
3492    throw(AipsError("valname must be aic, aicc, bic or gcv."));
3493  }
3494}
3495
3496double Scantable::getNormalPolynomial(int n, double x) {
3497  if (n == 0) {
3498    return 1.0;
3499  } else if (n > 0) {
3500    double res = 1.0;
3501    for (int i = 0; i < n; ++i) {
3502      res *= x;
3503    }
3504    return res;
3505  } else {
3506    if (x == 0.0) {
3507      throw(AipsError("infinity result: x=0 given for negative power."));
3508    } else {
3509      return pow(x, (double)n);
3510    }
3511  }
3512}
3513
3514double Scantable::getChebyshevPolynomial(int n, double x) {
3515  if ((x < -1.0)||(x > 1.0)) {
3516    throw(AipsError("out of definition range (-1 <= x <= 1)."));
3517  } else if (x == 1.0) {
3518    return 1.0;
3519  } else if (x == 0.0) {
3520    double res;
3521    if (n%2 == 0) {
3522      if (n%4 == 0) {
3523        res = 1.0;
3524      } else {
3525        res = -1.0;
3526      }
3527    } else {
3528      res = 0.0;
3529    }
3530    return res;
3531  } else if (x == -1.0) {
3532    double res = (n%2 == 0 ? 1.0 : -1.0);
3533    return res;
3534  } else if (n < 0) {
3535    throw(AipsError("the order must be zero or positive."));
3536  } else if (n == 0) {
3537    return 1.0;
3538  } else if (n == 1) {
3539    return x;
3540  } else {
3541    double res[n+1];
3542    for (int i = 0; i < n+1; ++i) {
3543      double res0 = 0.0;
3544      if (i == 0) {
3545        res0 = 1.0;
3546      } else if (i == 1) {
3547        res0 = x;
3548      } else {
3549        res0 = 2.0 * x * res[i-1] - res[i-2];
3550      }
3551      res[i] = res0;
3552    }
3553    return res[n];
3554  }
3555}
3556
3557std::vector<float> Scantable::doPolynomialFitting(const std::vector<float>& data,
3558                                                  const std::vector<bool>& mask,
3559                                                  int order,
3560                                                  std::vector<float>& params,
3561                                                  float& rms,
3562                                                  std::vector<bool>& finalmask,
3563                                                  float clipth,
3564                                                  int clipn)
3565{
3566  int nClipped = 0;
3567  return doPolynomialFitting(data, mask, order, params, rms, finalmask, nClipped, clipth, clipn);
3568}
3569
3570std::vector<float> Scantable::doPolynomialFitting(const std::vector<float>& data,
3571                                                  const std::vector<bool>& mask,
3572                                                  int order,
3573                                                  std::vector<float>& params,
3574                                                  float& rms,
3575                                                  std::vector<bool>& finalMask,
3576                                                  int& nClipped,
3577                                                  float thresClip,
3578                                                  int nIterClip,
3579                                                  bool getResidual)
3580{
3581  return doLeastSquareFitting(data, mask,
3582                              getPolynomialModel(order, data.size(), &Scantable::getNormalPolynomial),
3583                              params, rms, finalMask,
3584                              nClipped, thresClip, nIterClip,
3585                              getResidual);
3586}
3587
3588std::vector<float> Scantable::doChebyshevFitting(const std::vector<float>& data,
3589                                                 const std::vector<bool>& mask,
3590                                                 int order,
3591                                                 std::vector<float>& params,
3592                                                 float& rms,
3593                                                 std::vector<bool>& finalmask,
3594                                                 float clipth,
3595                                                 int clipn)
3596{
3597  int nClipped = 0;
3598  return doChebyshevFitting(data, mask, order, params, rms, finalmask, nClipped, clipth, clipn);
3599}
3600
3601std::vector<float> Scantable::doChebyshevFitting(const std::vector<float>& data,
3602                                                 const std::vector<bool>& mask,
3603                                                 int order,
3604                                                 std::vector<float>& params,
3605                                                 float& rms,
3606                                                 std::vector<bool>& finalMask,
3607                                                 int& nClipped,
3608                                                 float thresClip,
3609                                                 int nIterClip,
3610                                                 bool getResidual)
3611{
3612  return doLeastSquareFitting(data, mask,
3613                              getPolynomialModel(order, data.size(), &Scantable::getChebyshevPolynomial),
3614                              params, rms, finalMask,
3615                              nClipped, thresClip, nIterClip,
3616                              getResidual);
3617}
3618
3619std::vector<std::vector<double> > Scantable::getPolynomialModel(int order, int nchan, double (Scantable::*pfunc)(int, double))
3620{
3621  // model  : contains model values for computing the least-square matrix.
3622  //          model.size() is nmodel and model[*].size() is nchan.
3623  //          Each model element are as follows:
3624  //
3625  //          (for normal polynomials)
3626  //          model[0]   = {1.0,   1.0,   1.0,   ..., 1.0},
3627  //          model[1]   = {0.0,   1.0,   2.0,   ..., (nchan-1)}
3628  //          model[n-1] = ...,
3629  //          model[n]   = {0.0^n, 1.0^n, 2.0^n, ..., (nchan-1)^n}
3630  //          where (0 <= n <= order)
3631  //
3632  //          (for Chebyshev polynomials)
3633  //          model[0]   = {T0(-1), T0(2/(nchan-1)-1), T0(4/(nchan-1)-1), ..., T0(1)},
3634  //          model[n-1] = ...,
3635  //          model[n]   = {Tn(-1), Tn(2/(nchan-1)-1), Tn(4/(nchan-1)-1), ..., Tn(1)}
3636  //          where (0 <= n <= order),
3637
3638  int nmodel = order + 1;
3639  std::vector<std::vector<double> > model(nmodel, std::vector<double>(nchan));
3640
3641  double stretch, shift;
3642  if (pfunc == &Scantable::getChebyshevPolynomial) {
3643    stretch = 2.0/(double)(nchan - 1);
3644    shift   = -1.0;
3645  } else {
3646    stretch = 1.0;
3647    shift   = 0.0;
3648  }
3649
3650  for (int i = 0; i < nmodel; ++i) {
3651    for (int j = 0; j < nchan; ++j) {
3652      model[i][j] = (this->*pfunc)(i, stretch*(double)j + shift);
3653    }
3654  }
3655
3656  return model;
3657}
3658
3659std::vector<std::vector<std::vector<double> > > Scantable::getPolynomialModelReservoir(int order,
3660                                                                                       double (Scantable::*pfunc)(int, double),
3661                                                                                       std::vector<int>& nChanNos)
3662{
3663  std::vector<std::vector<std::vector<double> > > res;
3664  res.clear();
3665  nChanNos.clear();
3666
3667  std::vector<uint> ifNos = getIFNos();
3668  for (uint i = 0; i < ifNos.size(); ++i) {
3669    int currNchan = nchan(ifNos[i]);
3670    bool hasDifferentNchan = (i == 0);
3671    for (uint j = 0; j < i; ++j) {
3672      if (currNchan != nchan(ifNos[j])) {
3673        hasDifferentNchan = true;
3674        break;
3675      }
3676    }
3677    if (hasDifferentNchan) {
3678      res.push_back(getPolynomialModel(order, currNchan, pfunc));
3679      nChanNos.push_back(currNchan);
3680    }
3681  }
3682
3683  return res;
3684}
3685
3686std::vector<float> Scantable::doLeastSquareFitting(const std::vector<float>& data,
3687                                                   const std::vector<bool>& mask,
3688                                                   const std::vector<std::vector<double> >& model,
3689                                                   std::vector<float>& params,
3690                                                   float& rms,
3691                                                   std::vector<bool>& finalMask,
3692                                                   int& nClipped,
3693                                                   float thresClip,
3694                                                   int nIterClip,
3695                                                   bool getResidual)
3696{
3697  int nDOF = model.size();
3698  int nChan = data.size();
3699
3700  if (nDOF == 0) {
3701    throw(AipsError("no model data given"));
3702  }
3703  if (nChan < 2) {
3704    throw(AipsError("data size is too few"));
3705  }
3706  if (nChan != (int)mask.size()) {
3707    throw(AipsError("data and mask sizes are not identical"));
3708  }
3709  for (int i = 0; i < nDOF; ++i) {
3710    if (nChan != (int)model[i].size()) {
3711      throw(AipsError("data and model sizes are not identical"));
3712    }
3713  }
3714
3715  params.clear();
3716  params.resize(nDOF);
3717
3718  finalMask.clear();
3719  finalMask.resize(nChan);
3720
3721  std::vector<int> maskArray(nChan);
3722  int j = 0;
3723  for (int i = 0; i < nChan; ++i) {
3724    maskArray[i] = mask[i] ? 1 : 0;
3725    if (isnan(data[i])) maskArray[i] = 0;
3726    if (isinf(data[i])) maskArray[i] = 0;
3727
3728    finalMask[i] = (maskArray[i] == 1);
3729    if (finalMask[i]) {
3730      j++;
3731    }
3732
3733    /*
3734    maskArray[i] = mask[i] ? 1 : 0;
3735    if (mask[i]) {
3736      j++;
3737    }
3738    finalMask[i] = mask[i];
3739    */
3740  }
3741
3742  int initNData = j;
3743  int nData = initNData;
3744
3745  std::vector<double> z1(nChan), r1(nChan), residual(nChan);
3746  for (int i = 0; i < nChan; ++i) {
3747    z1[i] = (double)data[i];
3748    r1[i] = 0.0;
3749    residual[i] = 0.0;
3750  }
3751
3752  for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
3753    // xMatrix : horizontal concatenation of
3754    //           the least-sq. matrix (left) and an
3755    //           identity matrix (right).
3756    // the right part is used to calculate the inverse matrix of the left part.
3757    double xMatrix[nDOF][2*nDOF];
3758    double zMatrix[nDOF];
3759    for (int i = 0; i < nDOF; ++i) {
3760      for (int j = 0; j < 2*nDOF; ++j) {
3761        xMatrix[i][j] = 0.0;
3762      }
3763      xMatrix[i][nDOF+i] = 1.0;
3764      zMatrix[i] = 0.0;
3765    }
3766
3767    int nUseData = 0;
3768    for (int k = 0; k < nChan; ++k) {
3769      if (maskArray[k] == 0) continue;
3770
3771      for (int i = 0; i < nDOF; ++i) {
3772        for (int j = i; j < nDOF; ++j) {
3773          xMatrix[i][j] += model[i][k] * model[j][k];
3774        }
3775        zMatrix[i] += z1[k] * model[i][k];
3776      }
3777
3778      nUseData++;
3779    }
3780
3781    if (nUseData < 1) {
3782        throw(AipsError("all channels clipped or masked. can't execute fitting anymore."));     
3783    }
3784
3785    for (int i = 0; i < nDOF; ++i) {
3786      for (int j = 0; j < i; ++j) {
3787        xMatrix[i][j] = xMatrix[j][i];
3788      }
3789    }
3790
3791    //compute inverse matrix of the left half of xMatrix
3792    std::vector<double> invDiag(nDOF);
3793    for (int i = 0; i < nDOF; ++i) {
3794      invDiag[i] = 1.0 / xMatrix[i][i];
3795      for (int j = 0; j < nDOF; ++j) {
3796        xMatrix[i][j] *= invDiag[i];
3797      }
3798    }
3799
3800    for (int k = 0; k < nDOF; ++k) {
3801      for (int i = 0; i < nDOF; ++i) {
3802        if (i != k) {
3803          double factor1 = xMatrix[k][k];
3804          double invfactor1 = 1.0 / factor1;
3805          double factor2 = xMatrix[i][k];
3806          for (int j = k; j < 2*nDOF; ++j) {
3807            xMatrix[i][j] *= factor1;
3808            xMatrix[i][j] -= xMatrix[k][j]*factor2;
3809            xMatrix[i][j] *= invfactor1;
3810          }
3811        }
3812      }
3813      double invXDiag = 1.0 / xMatrix[k][k];
3814      for (int j = k; j < 2*nDOF; ++j) {
3815        xMatrix[k][j] *= invXDiag;
3816      }
3817    }
3818   
3819    for (int i = 0; i < nDOF; ++i) {
3820      for (int j = 0; j < nDOF; ++j) {
3821        xMatrix[i][nDOF+j] *= invDiag[j];
3822      }
3823    }
3824    //compute a vector y in which coefficients of the best-fit
3825    //model functions are stored.
3826    //in case of polynomials, y consists of (a0,a1,a2,...)
3827    //where ai is the coefficient of the term x^i.
3828    //in case of sinusoids, y consists of (a0,s1,c1,s2,c2,...)
3829    //where a0 is constant term and s* and c* are of sine
3830    //and cosine functions, respectively.
3831    std::vector<double> y(nDOF);
3832    for (int i = 0; i < nDOF; ++i) {
3833      y[i] = 0.0;
3834      for (int j = 0; j < nDOF; ++j) {
3835        y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
3836      }
3837      params[i] = (float)y[i];
3838    }
3839
3840    for (int i = 0; i < nChan; ++i) {
3841      r1[i] = y[0];
3842      for (int j = 1; j < nDOF; ++j) {
3843        r1[i] += y[j]*model[j][i];
3844      }
3845      residual[i] = z1[i] - r1[i];
3846    }
3847
3848    double stdDev = 0.0;
3849    for (int i = 0; i < nChan; ++i) {
3850      if (maskArray[i] == 0) continue;
3851      stdDev += residual[i]*residual[i];
3852    }
3853    stdDev = sqrt(stdDev/(double)nData);
3854    rms = (float)stdDev;
3855
3856    if ((nClip == nIterClip) || (thresClip <= 0.0)) {
3857      break;
3858    } else {
3859
3860      double thres = stdDev * thresClip;
3861      int newNData = 0;
3862      for (int i = 0; i < nChan; ++i) {
3863        if (abs(residual[i]) >= thres) {
3864          maskArray[i] = 0;
3865          finalMask[i] = false;
3866        }
3867        if (maskArray[i] > 0) {
3868          newNData++;
3869        }
3870      }
3871      if (newNData == nData) {
3872        break; //no more flag to add. stop iteration.
3873      } else {
3874        nData = newNData;
3875      }
3876
3877    }
3878  }
3879
3880  nClipped = initNData - nData;
3881
3882  std::vector<float> result(nChan);
3883  if (getResidual) {
3884    for (int i = 0; i < nChan; ++i) {
3885      result[i] = (float)residual[i];
3886    }
3887  } else {
3888    for (int i = 0; i < nChan; ++i) {
3889      result[i] = (float)r1[i];
3890    }
3891  }
3892
3893  return result;
3894} //xMatrix
3895
3896void Scantable::cubicSplineBaseline(const std::vector<bool>& mask, int nPiece,
3897                                    float thresClip, int nIterClip,
3898                                    bool getResidual,
3899                                    const std::string& progressInfo,
3900                                    const bool outLogger, const std::string& blfile,
3901                                    const std::string& bltable)
3902{
3903  /****
3904  double TimeStart = mathutil::gettimeofday_sec();
3905  ****/
3906
3907  try {
3908    ofstream ofs;
3909    String coordInfo;
3910    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3911    int minNRow;
3912    int nRow = nrow();
3913    std::vector<bool> chanMask, finalChanMask;
3914    float rms;
3915    bool outBaselineTable = (bltable != "");
3916    STBaselineTable bt = STBaselineTable(*this);
3917    Vector<Double> timeSecCol;
3918
3919    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3920                         coordInfo, hasSameNchan,
3921                         progressInfo, showProgress, minNRow,
3922                         timeSecCol);
3923
3924    std::vector<int> nChanNos;
3925    std::vector<std::vector<std::vector<double> > > modelReservoir;
3926    modelReservoir = getPolynomialModelReservoir(3,
3927                                                 &Scantable::getNormalPolynomial,
3928                                                 nChanNos);
3929    int nDOF = nPiece + 3;
3930
3931    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3932      std::vector<float> sp = getSpectrum(whichrow);
3933      chanMask = getCompositeChanMask(whichrow, mask);
3934      std::vector<int> pieceEdges;
3935      std::vector<float> params;
3936
3937      //if (flagrowCol_(whichrow) == 0) {
3938      if (flagrowCol_(whichrow)==0 && nValidMask(chanMask)>0) {
3939        int nClipped = 0;
3940        std::vector<float> res;
3941        res = doCubicSplineLeastSquareFitting(sp, chanMask,
3942                modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3943                nPiece, false, pieceEdges, params, rms, finalChanMask,
3944                nClipped, thresClip, nIterClip, getResidual);
3945
3946        if (outBaselineTable) {
3947          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3948                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3949                        true, STBaselineFunc::CSpline, pieceEdges, std::vector<float>(),
3950                        getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3951                        thresClip, nIterClip, 0.0, 0, std::vector<int>());
3952        } else {
3953          setSpectrum(res, whichrow);
3954        }
3955
3956        outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3957                            coordInfo, hasSameNchan, ofs, "cubicSplineBaseline()",
3958                            pieceEdges, params, nClipped);
3959      } else {
3960        // no valid channels to fit (flag the row)
3961        flagrowCol_.put(whichrow, 1);
3962        if (outBaselineTable) {
3963          pieceEdges.resize(nPiece+1);
3964          for (uInt i = 0; i < pieceEdges.size(); ++i) {
3965            pieceEdges[i] = 0;
3966          }
3967          params.resize(nDOF);
3968          for (uInt i = 0; i < params.size(); ++i) {
3969            params[i] = 0.0;
3970          }
3971          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3972                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3973                        true, STBaselineFunc::CSpline, pieceEdges, std::vector<float>(),
3974                        getMaskListFromMask(chanMask), params, 0.0, sp.size(),
3975                        thresClip, nIterClip, 0.0, 0, std::vector<int>());
3976        }
3977      }
3978
3979      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3980    }
3981   
3982    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3983
3984  } catch (...) {
3985    throw;
3986  }
3987
3988  /****
3989  double TimeEnd = mathutil::gettimeofday_sec();
3990  double elapse1 = TimeEnd - TimeStart;
3991  std::cout << "cspline-new   : " << elapse1 << " (sec.)" << endl;
3992  ****/
3993}
3994
3995void Scantable::autoCubicSplineBaseline(const std::vector<bool>& mask, int nPiece,
3996                                        float thresClip, int nIterClip,
3997                                        const std::vector<int>& edge,
3998                                        float threshold, int chanAvgLimit,
3999                                        bool getResidual,
4000                                        const std::string& progressInfo,
4001                                        const bool outLogger, const std::string& blfile,
4002                                        const std::string& bltable)
4003{
4004  try {
4005    ofstream ofs;
4006    String coordInfo;
4007    bool hasSameNchan, outTextFile, csvFormat, showProgress;
4008    int minNRow;
4009    int nRow = nrow();
4010    std::vector<bool> chanMask, finalChanMask;
4011    float rms;
4012    bool outBaselineTable = (bltable != "");
4013    STBaselineTable bt = STBaselineTable(*this);
4014    Vector<Double> timeSecCol;
4015    STLineFinder lineFinder = STLineFinder();
4016
4017    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
4018                         coordInfo, hasSameNchan,
4019                         progressInfo, showProgress, minNRow,
4020                         timeSecCol);
4021
4022    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
4023
4024    std::vector<int> nChanNos;
4025    std::vector<std::vector<std::vector<double> > > modelReservoir;
4026    modelReservoir = getPolynomialModelReservoir(3,
4027                                                 &Scantable::getNormalPolynomial,
4028                                                 nChanNos);
4029    int nDOF = nPiece + 3;
4030
4031    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
4032      std::vector<float> sp = getSpectrum(whichrow);
4033      std::vector<int> currentEdge;
4034      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
4035      std::vector<int> pieceEdges;
4036      std::vector<float> params;
4037
4038      //if (flagrowCol_(whichrow) == 0) {
4039      if (flagrowCol_(whichrow)==0 && nValidMask(chanMask)>0) {
4040        int nClipped = 0;
4041        std::vector<float> res;
4042        res = doCubicSplineLeastSquareFitting(sp, chanMask,
4043                modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
4044                nPiece, false, pieceEdges, params, rms, finalChanMask,
4045                nClipped, thresClip, nIterClip, getResidual);
4046
4047        if (outBaselineTable) {
4048          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4049                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4050                        true, STBaselineFunc::CSpline, pieceEdges, std::vector<float>(),
4051                        getMaskListFromMask(finalChanMask), params, rms, sp.size(),
4052                        thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
4053        } else {
4054          setSpectrum(res, whichrow);
4055        }
4056
4057        outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
4058                            coordInfo, hasSameNchan, ofs, "autoCubicSplineBaseline()",
4059                            pieceEdges, params, nClipped);
4060      } else {
4061        // no valid channels to fit (flag the row)
4062        flagrowCol_.put(whichrow, 1);
4063        if (outBaselineTable) {
4064          pieceEdges.resize(nPiece+1);
4065          for (uInt i = 0; i < pieceEdges.size(); ++i) {
4066            pieceEdges[i] = 0;
4067          }
4068          params.resize(nDOF);
4069          for (uInt i = 0; i < params.size(); ++i) {
4070            params[i] = 0.0;
4071          }
4072          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4073                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4074                        true, STBaselineFunc::CSpline, pieceEdges, std::vector<float>(),
4075                        getMaskListFromMask(chanMask), params, 0.0, sp.size(),
4076                        thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
4077        }
4078      }
4079
4080      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
4081    }
4082
4083    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
4084
4085  } catch (...) {
4086    throw;
4087  }
4088}
4089
4090std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data,
4091                                                   const std::vector<bool>& mask,
4092                                                   std::vector<int>& idxEdge,
4093                                                   std::vector<float>& params,
4094                                                   float& rms,
4095                                                   std::vector<bool>& finalmask,
4096                                                   float clipth,
4097                                                   int clipn)
4098{
4099  int nClipped = 0;
4100  return doCubicSplineFitting(data, mask, idxEdge.size()-1, true, idxEdge, params, rms, finalmask, nClipped, clipth, clipn);
4101}
4102
4103std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data,
4104                                                   const std::vector<bool>& mask,
4105                                                   int nPiece,
4106                                                   std::vector<int>& idxEdge,
4107                                                   std::vector<float>& params,
4108                                                   float& rms,
4109                                                   std::vector<bool>& finalmask,
4110                                                   float clipth,
4111                                                   int clipn)
4112{
4113  int nClipped = 0;
4114  return doCubicSplineFitting(data, mask, nPiece, false, idxEdge, params, rms, finalmask, nClipped, clipth, clipn);
4115}
4116
4117std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data,
4118                                                   const std::vector<bool>& mask,
4119                                                   int nPiece,
4120                                                   bool useGivenPieceBoundary,
4121                                                   std::vector<int>& idxEdge,
4122                                                   std::vector<float>& params,
4123                                                   float& rms,
4124                                                   std::vector<bool>& finalMask,
4125                                                   int& nClipped,
4126                                                   float thresClip,
4127                                                   int nIterClip,
4128                                                   bool getResidual)
4129{
4130  return doCubicSplineLeastSquareFitting(data, mask,
4131                                         getPolynomialModel(3, data.size(), &Scantable::getNormalPolynomial),
4132                                         nPiece, useGivenPieceBoundary, idxEdge,
4133                                         params, rms, finalMask,
4134                                         nClipped, thresClip, nIterClip,
4135                                         getResidual);
4136}
4137
4138std::vector<float> Scantable::doCubicSplineLeastSquareFitting(const std::vector<float>& data,
4139                                                              const std::vector<bool>& mask,
4140                                                              const std::vector<std::vector<double> >& model,
4141                                                              int nPiece,
4142                                                              bool useGivenPieceBoundary,
4143                                                              std::vector<int>& idxEdge,
4144                                                              std::vector<float>& params,
4145                                                              float& rms,
4146                                                              std::vector<bool>& finalMask,
4147                                                              int& nClipped,
4148                                                              float thresClip,
4149                                                              int nIterClip,
4150                                                              bool getResidual)
4151{
4152  int nDOF = nPiece + 3;  //number of independent parameters to solve, namely, 4+(nPiece-1).
4153  int nModel = model.size();
4154  int nChan = data.size();
4155
4156  if (nModel != 4) {
4157    throw(AipsError("model size must be 4."));
4158  }
4159  if (nPiece < 1) {
4160    throw(AipsError("number of the sections must be one or more"));
4161  }
4162  if (nChan < 2*nPiece) {
4163    throw(AipsError("data size is too few"));
4164  }
4165  if (nChan != (int)mask.size()) {
4166    throw(AipsError("data and mask sizes are not identical"));
4167  }
4168  for (int i = 0; i < nModel; ++i) {
4169    if (nChan != (int)model[i].size()) {
4170      throw(AipsError("data and model sizes are not identical"));
4171    }
4172  }
4173
4174  params.clear();
4175  params.resize(nPiece*nModel);
4176
4177  finalMask.clear();
4178  finalMask.resize(nChan);
4179
4180  std::vector<int> maskArray(nChan);
4181  std::vector<int> x(nChan);
4182  int j = 0;
4183  for (int i = 0; i < nChan; ++i) {
4184    maskArray[i] = mask[i] ? 1 : 0;
4185    if (isnan(data[i])) maskArray[i] = 0;
4186    if (isinf(data[i])) maskArray[i] = 0;
4187
4188    finalMask[i] = (maskArray[i] == 1);
4189    if (finalMask[i]) {
4190      x[j] = i;
4191      j++;
4192    }
4193
4194    /*
4195    maskArray[i] = mask[i] ? 1 : 0;
4196    if (mask[i]) {
4197      x[j] = i;
4198      j++;
4199    }
4200    finalMask[i] = mask[i];
4201    */
4202  }
4203
4204  int initNData = j;
4205  int nData = initNData;
4206
4207  if (initNData < nPiece) {
4208    throw(AipsError("too few non-flagged channels"));
4209  }
4210
4211  int nElement = (int)(floor(floor((double)(initNData/nPiece))+0.5));
4212  std::vector<double> invEdge(nPiece-1);
4213
4214  if (useGivenPieceBoundary) {
4215    if ((int)idxEdge.size() != nPiece+1) {
4216      throw(AipsError("pieceEdge.size() must be equal to nPiece+1."));
4217    }
4218  } else {
4219    idxEdge.clear();
4220    idxEdge.resize(nPiece+1);
4221    idxEdge[0] = x[0];
4222  }
4223  for (int i = 1; i < nPiece; ++i) {
4224    int valX = x[nElement*i];
4225    if (!useGivenPieceBoundary) {
4226      idxEdge[i] = valX;
4227    }
4228    invEdge[i-1] = 1.0/(double)valX;
4229  }
4230  if (!useGivenPieceBoundary) {
4231    idxEdge[nPiece] = x[initNData-1]+1;
4232  }
4233
4234  std::vector<double> z1(nChan), r1(nChan), residual(nChan);
4235  for (int i = 0; i < nChan; ++i) {
4236    z1[i] = (double)data[i];
4237    r1[i] = 0.0;
4238    residual[i] = 0.0;
4239  }
4240
4241  for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
4242    // xMatrix : horizontal concatenation of
4243    //           the least-sq. matrix (left) and an
4244    //           identity matrix (right).
4245    // the right part is used to calculate the inverse matrix of the left part.
4246
4247    double xMatrix[nDOF][2*nDOF];
4248    double zMatrix[nDOF];
4249    for (int i = 0; i < nDOF; ++i) {
4250      for (int j = 0; j < 2*nDOF; ++j) {
4251        xMatrix[i][j] = 0.0;
4252      }
4253      xMatrix[i][nDOF+i] = 1.0;
4254      zMatrix[i] = 0.0;
4255    }
4256
4257    for (int n = 0; n < nPiece; ++n) {
4258      int nUseDataInPiece = 0;
4259      for (int k = idxEdge[n]; k < idxEdge[n+1]; ++k) {
4260
4261        if (maskArray[k] == 0) continue;
4262
4263        for (int i = 0; i < nModel; ++i) {
4264          for (int j = i; j < nModel; ++j) {
4265            xMatrix[i][j] += model[i][k] * model[j][k];
4266          }
4267          zMatrix[i] += z1[k] * model[i][k];
4268        }
4269
4270        for (int i = 0; i < n; ++i) {
4271          double q = 1.0 - model[1][k]*invEdge[i];
4272          q = q*q*q;
4273          for (int j = 0; j < nModel; ++j) {
4274            xMatrix[j][i+nModel] += q * model[j][k];
4275          }
4276          for (int j = 0; j < i; ++j) {
4277            double r = 1.0 - model[1][k]*invEdge[j];
4278            r = r*r*r;
4279            xMatrix[j+nModel][i+nModel] += r*q;
4280          }
4281          xMatrix[i+nModel][i+nModel] += q*q;
4282          zMatrix[i+nModel] += q*z1[k];
4283        }
4284
4285        nUseDataInPiece++;
4286      }
4287
4288      if (nUseDataInPiece < 1) {
4289        std::vector<string> suffixOfPieceNumber(4);
4290        suffixOfPieceNumber[0] = "th";
4291        suffixOfPieceNumber[1] = "st";
4292        suffixOfPieceNumber[2] = "nd";
4293        suffixOfPieceNumber[3] = "rd";
4294        int idxNoDataPiece = (n % 10 <= 3) ? n : 0;
4295        ostringstream oss;
4296        oss << "all channels clipped or masked in " << n << suffixOfPieceNumber[idxNoDataPiece];
4297        oss << " piece of the spectrum. can't execute fitting anymore.";
4298        throw(AipsError(String(oss)));
4299      }
4300    }
4301
4302    for (int i = 0; i < nDOF; ++i) {
4303      for (int j = 0; j < i; ++j) {
4304        xMatrix[i][j] = xMatrix[j][i];
4305      }
4306    }
4307
4308    std::vector<double> invDiag(nDOF);
4309    for (int i = 0; i < nDOF; ++i) {
4310      invDiag[i] = 1.0 / xMatrix[i][i];
4311      for (int j = 0; j < nDOF; ++j) {
4312        xMatrix[i][j] *= invDiag[i];
4313      }
4314    }
4315
4316    for (int k = 0; k < nDOF; ++k) {
4317      for (int i = 0; i < nDOF; ++i) {
4318        if (i != k) {
4319          double factor1 = xMatrix[k][k];
4320          double invfactor1 = 1.0 / factor1;
4321          double factor2 = xMatrix[i][k];
4322          for (int j = k; j < 2*nDOF; ++j) {
4323            xMatrix[i][j] *= factor1;
4324            xMatrix[i][j] -= xMatrix[k][j]*factor2;
4325            xMatrix[i][j] *= invfactor1;
4326          }
4327        }
4328      }
4329      double invXDiag = 1.0 / xMatrix[k][k];
4330      for (int j = k; j < 2*nDOF; ++j) {
4331        xMatrix[k][j] *= invXDiag;
4332      }
4333    }
4334   
4335    for (int i = 0; i < nDOF; ++i) {
4336      for (int j = 0; j < nDOF; ++j) {
4337        xMatrix[i][nDOF+j] *= invDiag[j];
4338      }
4339    }
4340
4341    //compute a vector y which consists of the coefficients of the best-fit spline curves
4342    //(a0,a1,a2,a3(,b3,c3,...)), namely, the ones for the leftmost piece and the ones of
4343    //cubic terms for the other pieces (in case nPiece>1).
4344    std::vector<double> y(nDOF);
4345    for (int i = 0; i < nDOF; ++i) {
4346      y[i] = 0.0;
4347      for (int j = 0; j < nDOF; ++j) {
4348        y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
4349      }
4350    }
4351
4352    std::vector<double> a(nModel);
4353    for (int i = 0; i < nModel; ++i) {
4354      a[i] = y[i];
4355    }
4356
4357    int j = 0;
4358    for (int n = 0; n < nPiece; ++n) {
4359      for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
4360        r1[i] = 0.0;
4361        for (int j = 0; j < nModel; ++j) {
4362          r1[i] += a[j] * model[j][i];
4363        }
4364      }
4365      for (int i = 0; i < nModel; ++i) {
4366        params[j+i] = a[i];
4367      }
4368      j += nModel;
4369
4370      if (n == nPiece-1) break;
4371
4372      double d = y[n+nModel];
4373      double iE = invEdge[n];
4374      a[0] +=       d;
4375      a[1] -= 3.0 * d * iE;
4376      a[2] += 3.0 * d * iE * iE;
4377      a[3] -=       d * iE * iE * iE;
4378    }
4379
4380    //subtract constant value for masked regions at the edge of spectrum
4381    if (idxEdge[0] > 0) {
4382      int n = idxEdge[0];
4383      for (int i = 0; i < idxEdge[0]; ++i) {
4384        //--cubic extrapolate--
4385        //r1[i] = params[0] + params[1]*x1[i] + params[2]*x2[i] + params[3]*x3[i];
4386        //--linear extrapolate--
4387        //r1[i] = (r1[n+1] - r1[n])/(x1[n+1] - x1[n])*(x1[i] - x1[n]) + r1[n];
4388        //--constant--
4389        r1[i] = r1[n];
4390      }
4391    }
4392
4393    if (idxEdge[nPiece] < nChan) {
4394      int n = idxEdge[nPiece]-1;
4395      for (int i = idxEdge[nPiece]; i < nChan; ++i) {
4396        //--cubic extrapolate--
4397        //int m = 4*(nPiece-1);
4398        //r1[i] = params[m] + params[m+1]*x1[i] + params[m+2]*x2[i] + params[m+3]*x3[i];
4399        //--linear extrapolate--
4400        //r1[i] = (r1[n-1] - r1[n])/(x1[n-1] - x1[n])*(x1[i] - x1[n]) + r1[n];
4401        //--constant--
4402        r1[i] = r1[n];
4403      }
4404    }
4405
4406    for (int i = 0; i < nChan; ++i) {
4407      residual[i] = z1[i] - r1[i];
4408    }
4409
4410    double stdDev = 0.0;
4411    for (int i = 0; i < nChan; ++i) {
4412      if (maskArray[i] == 0) continue;
4413      stdDev += residual[i]*residual[i];
4414    }
4415    stdDev = sqrt(stdDev/(double)nData);
4416    rms = (float)stdDev;
4417
4418    if ((nClip == nIterClip) || (thresClip <= 0.0)) {
4419      break;
4420    } else {
4421     
4422      double thres = stdDev * thresClip;
4423      int newNData = 0;
4424      for (int i = 0; i < nChan; ++i) {
4425        if (abs(residual[i]) >= thres) {
4426          maskArray[i] = 0;
4427          finalMask[i] = false;
4428        }
4429        if (maskArray[i] > 0) {
4430          newNData++;
4431        }
4432      }
4433      if (newNData == nData) {
4434        break; //no more flag to add. iteration stops.
4435      } else {
4436        nData = newNData;
4437      }
4438
4439    }
4440  }
4441
4442  nClipped = initNData - nData;
4443
4444  std::vector<float> result(nChan);
4445  if (getResidual) {
4446    for (int i = 0; i < nChan; ++i) {
4447      result[i] = (float)residual[i];
4448    }
4449  } else {
4450    for (int i = 0; i < nChan; ++i) {
4451      result[i] = (float)r1[i];
4452    }
4453  }
4454
4455  return result;
4456}
4457
4458std::vector<int> Scantable::selectWaveNumbers(const std::vector<int>& addNWaves,
4459                                  const std::vector<int>& rejectNWaves)
4460{
4461  std::vector<bool> chanMask;
4462  std::string fftMethod;
4463  std::string fftThresh;
4464
4465  return selectWaveNumbers(0, chanMask, false, fftMethod, fftThresh, addNWaves, rejectNWaves);
4466}
4467
4468std::vector<int> Scantable::selectWaveNumbers(const int whichrow,
4469                                  const std::vector<bool>& chanMask,
4470                                  const bool applyFFT,
4471                                  const std::string& fftMethod,
4472                                  const std::string& fftThresh,
4473                                  const std::vector<int>& addNWaves,
4474                                  const std::vector<int>& rejectNWaves)
4475{
4476  std::vector<int> nWaves;
4477  nWaves.clear();
4478
4479  if (applyFFT) {
4480    string fftThAttr;
4481    float fftThSigma;
4482    int fftThTop;
4483    parseFFTThresholdInfo(fftThresh, fftThAttr, fftThSigma, fftThTop);
4484    doSelectWaveNumbers(whichrow, chanMask, fftMethod, fftThSigma, fftThTop, fftThAttr, nWaves);
4485  }
4486
4487  addAuxWaveNumbers(whichrow, addNWaves, rejectNWaves, nWaves);
4488
4489  return nWaves;
4490}
4491
4492int Scantable::getIdxOfNchan(const int nChan, const std::vector<int>& nChanNos)
4493{
4494  int idx = -1;
4495  for (uint i = 0; i < nChanNos.size(); ++i) {
4496    if (nChan == nChanNos[i]) {
4497      idx = i;
4498      break;
4499    }
4500  }
4501
4502  if (idx < 0) {
4503    throw(AipsError("nChan not found in nChhanNos."));
4504  }
4505
4506  return idx;
4507}
4508
4509void Scantable::parseFFTInfo(const std::string& fftInfo, bool& applyFFT, std::string& fftMethod, std::string& fftThresh)
4510{
4511  istringstream iss(fftInfo);
4512  std::string tmp;
4513  std::vector<string> res;
4514  while (getline(iss, tmp, ',')) {
4515    res.push_back(tmp);
4516  }
4517  if (res.size() < 3) {
4518    throw(AipsError("wrong value in 'fftinfo' parameter")) ;
4519  }
4520  applyFFT = (res[0] == "true");
4521  fftMethod = res[1];
4522  fftThresh = res[2];
4523}
4524
4525void Scantable::parseFFTThresholdInfo(const std::string& fftThresh, std::string& fftThAttr, float& fftThSigma, int& fftThTop)
4526{
4527  uInt idxSigma = fftThresh.find("sigma");
4528  uInt idxTop   = fftThresh.find("top");
4529
4530  if (idxSigma == fftThresh.size() - 5) {
4531    std::istringstream is(fftThresh.substr(0, fftThresh.size() - 5));
4532    is >> fftThSigma;
4533    fftThAttr = "sigma";
4534  } else if (idxTop == 0) {
4535    std::istringstream is(fftThresh.substr(3));
4536    is >> fftThTop;
4537    fftThAttr = "top";
4538  } else {
4539    bool isNumber = true;
4540    for (uInt i = 0; i < fftThresh.size()-1; ++i) {
4541      char ch = (fftThresh.substr(i, 1).c_str())[0];
4542      if (!(isdigit(ch) || (fftThresh.substr(i, 1) == "."))) {
4543        isNumber = false;
4544        break;
4545      }
4546    }
4547    if (isNumber) {
4548      std::istringstream is(fftThresh);
4549      is >> fftThSigma;
4550      fftThAttr = "sigma";
4551    } else {
4552      throw(AipsError("fftthresh has a wrong value"));
4553    }
4554  }
4555}
4556
4557void Scantable::doSelectWaveNumbers(const int whichrow, const std::vector<bool>& chanMask, const std::string& fftMethod, const float fftThSigma, const int fftThTop, const std::string& fftThAttr, std::vector<int>& nWaves)
4558{
4559  std::vector<float> fspec;
4560  if (fftMethod == "fft") {
4561    fspec = execFFT(whichrow, chanMask, false, true);
4562  //} else if (fftMethod == "lsp") {
4563  //  fspec = lombScarglePeriodogram(whichrow);
4564  }
4565
4566  if (fftThAttr == "sigma") {
4567    float mean  = 0.0;
4568    float mean2 = 0.0;
4569    for (uInt i = 0; i < fspec.size(); ++i) {
4570      mean  += fspec[i];
4571      mean2 += fspec[i]*fspec[i];
4572    }
4573    mean  /= float(fspec.size());
4574    mean2 /= float(fspec.size());
4575    float thres = mean + fftThSigma * float(sqrt(mean2 - mean*mean));
4576
4577    for (uInt i = 0; i < fspec.size(); ++i) {
4578      if (fspec[i] >= thres) {
4579        nWaves.push_back(i);
4580      }
4581    }
4582
4583  } else if (fftThAttr == "top") {
4584    for (int i = 0; i < fftThTop; ++i) {
4585      float max = 0.0;
4586      int maxIdx = 0;
4587      for (uInt j = 0; j < fspec.size(); ++j) {
4588        if (fspec[j] > max) {
4589          max = fspec[j];
4590          maxIdx = j;
4591        }
4592      }
4593      nWaves.push_back(maxIdx);
4594      fspec[maxIdx] = 0.0;
4595    }
4596
4597  }
4598
4599  if (nWaves.size() > 1) {
4600    sort(nWaves.begin(), nWaves.end());
4601  }
4602}
4603
4604void Scantable::addAuxWaveNumbers(const int whichrow, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, std::vector<int>& nWaves)
4605{
4606  std::vector<int> tempAddNWaves, tempRejectNWaves;
4607  tempAddNWaves.clear();
4608  tempRejectNWaves.clear();
4609
4610  for (uInt i = 0; i < addNWaves.size(); ++i) {
4611    tempAddNWaves.push_back(addNWaves[i]);
4612  }
4613  if ((tempAddNWaves.size() == 2) && (tempAddNWaves[1] == -999)) {
4614    setWaveNumberListUptoNyquistFreq(whichrow, tempAddNWaves);
4615  }
4616
4617  for (uInt i = 0; i < rejectNWaves.size(); ++i) {
4618    tempRejectNWaves.push_back(rejectNWaves[i]);
4619  }
4620  if ((tempRejectNWaves.size() == 2) && (tempRejectNWaves[1] == -999)) {
4621    setWaveNumberListUptoNyquistFreq(whichrow, tempRejectNWaves);
4622  }
4623
4624  for (uInt i = 0; i < tempAddNWaves.size(); ++i) {
4625    bool found = false;
4626    for (uInt j = 0; j < nWaves.size(); ++j) {
4627      if (nWaves[j] == tempAddNWaves[i]) {
4628        found = true;
4629        break;
4630      }
4631    }
4632    if (!found) nWaves.push_back(tempAddNWaves[i]);
4633  }
4634
4635  for (uInt i = 0; i < tempRejectNWaves.size(); ++i) {
4636    for (std::vector<int>::iterator j = nWaves.begin(); j != nWaves.end(); ) {
4637      if (*j == tempRejectNWaves[i]) {
4638        j = nWaves.erase(j);
4639      } else {
4640        ++j;
4641      }
4642    }
4643  }
4644
4645  if (nWaves.size() > 1) {
4646    sort(nWaves.begin(), nWaves.end());
4647    unique(nWaves.begin(), nWaves.end());
4648  }
4649}
4650
4651void Scantable::setWaveNumberListUptoNyquistFreq(const int whichrow, std::vector<int>& nWaves)
4652{
4653  int val = nWaves[0];
4654  int nyquistFreq = nchan(getIF(whichrow))/2+1;
4655  nWaves.clear();
4656  if (val > nyquistFreq) {  // for safety, at least nWaves contains a constant; CAS-3759
4657    nWaves.push_back(0);
4658  }
4659  while (val <= nyquistFreq) {
4660    nWaves.push_back(val);
4661    val++;
4662  }
4663}
4664
4665void Scantable::sinusoidBaseline(const std::vector<bool>& mask, const std::string& fftInfo,
4666                                 const std::vector<int>& addNWaves,
4667                                 const std::vector<int>& rejectNWaves,
4668                                 float thresClip, int nIterClip,
4669                                 bool getResidual,
4670                                 const std::string& progressInfo,
4671                                 const bool outLogger, const std::string& blfile,
4672                                 const std::string& bltable)
4673{
4674  /****
4675  double TimeStart = mathutil::gettimeofday_sec();
4676  ****/
4677
4678  try {
4679    ofstream ofs;
4680    String coordInfo;
4681    bool hasSameNchan, outTextFile, csvFormat, showProgress;
4682    int minNRow;
4683    int nRow = nrow();
4684    std::vector<bool> chanMask, finalChanMask;
4685    float rms;
4686    bool outBaselineTable = (bltable != "");
4687    STBaselineTable bt = STBaselineTable(*this);
4688    Vector<Double> timeSecCol;
4689
4690    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
4691                         coordInfo, hasSameNchan,
4692                         progressInfo, showProgress, minNRow,
4693                         timeSecCol);
4694
4695    bool applyFFT;
4696    std::string fftMethod, fftThresh;
4697    parseFFTInfo(fftInfo, applyFFT, fftMethod, fftThresh);
4698
4699    std::vector<int> nWaves;
4700    std::vector<int> nChanNos;
4701    std::vector<std::vector<std::vector<double> > > modelReservoir;
4702    if (!applyFFT) {
4703      nWaves = selectWaveNumbers(addNWaves, rejectNWaves);
4704      modelReservoir = getSinusoidModelReservoir(nWaves, nChanNos);
4705    }
4706
4707    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
4708      std::vector<float> sp = getSpectrum(whichrow);
4709      chanMask = getCompositeChanMask(whichrow, mask);
4710      std::vector<std::vector<double> > model;
4711      if (applyFFT) {
4712        nWaves = selectWaveNumbers(whichrow, chanMask, true, fftMethod, fftThresh,
4713                                   addNWaves, rejectNWaves);
4714        model = getSinusoidModel(nWaves, sp.size());
4715      } else {
4716        model = modelReservoir[getIdxOfNchan(sp.size(), nChanNos)];
4717      }
4718      int nModel = modelReservoir.size();
4719
4720      std::vector<float> params;
4721
4722      //if (flagrowCol_(whichrow) == 0) {
4723      if (flagrowCol_(whichrow)==0 && nValidMask(chanMask)>0) {
4724        int nClipped = 0;
4725        std::vector<float> res;
4726        res = doLeastSquareFitting(sp, chanMask, model,
4727                                   params, rms, finalChanMask,
4728                                   nClipped, thresClip, nIterClip, getResidual);
4729
4730        if (outBaselineTable) {
4731          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4732                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4733                        true, STBaselineFunc::Sinusoid, nWaves, std::vector<float>(),
4734                        getMaskListFromMask(finalChanMask), params, rms, sp.size(),
4735                        thresClip, nIterClip, 0.0, 0, std::vector<int>());
4736        } else {
4737          setSpectrum(res, whichrow);
4738        }
4739
4740        outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
4741                            coordInfo, hasSameNchan, ofs, "sinusoidBaseline()",
4742                            params, nClipped);
4743      } else {
4744        // no valid channels to fit (flag the row)
4745        flagrowCol_.put(whichrow, 1);
4746        if (outBaselineTable) {
4747          params.resize(nModel);
4748          for (uInt i = 0; i < params.size(); ++i) {
4749            params[i] = 0.0;
4750          }
4751          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4752                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4753                        true, STBaselineFunc::Sinusoid, nWaves, std::vector<float>(),
4754                        getMaskListFromMask(chanMask), params, 0.0, sp.size(),
4755                        thresClip, nIterClip, 0.0, 0, std::vector<int>());
4756        }
4757      }
4758
4759      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
4760    }
4761
4762    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
4763
4764  } catch (...) {
4765    throw;
4766  }
4767
4768  /****
4769  double TimeEnd = mathutil::gettimeofday_sec();
4770  double elapse1 = TimeEnd - TimeStart;
4771  std::cout << "sinusoid-old   : " << elapse1 << " (sec.)" << endl;
4772  ****/
4773}
4774
4775void Scantable::autoSinusoidBaseline(const std::vector<bool>& mask, const std::string& fftInfo,
4776                                     const std::vector<int>& addNWaves,
4777                                     const std::vector<int>& rejectNWaves,
4778                                     float thresClip, int nIterClip,
4779                                     const std::vector<int>& edge,
4780                                     float threshold, int chanAvgLimit,
4781                                     bool getResidual,
4782                                     const std::string& progressInfo,
4783                                     const bool outLogger, const std::string& blfile,
4784                                     const std::string& bltable)
4785{
4786  try {
4787    ofstream ofs;
4788    String coordInfo;
4789    bool hasSameNchan, outTextFile, csvFormat, showProgress;
4790    int minNRow;
4791    int nRow = nrow();
4792    std::vector<bool> chanMask, finalChanMask;
4793    float rms;
4794    bool outBaselineTable = (bltable != "");
4795    STBaselineTable bt = STBaselineTable(*this);
4796    Vector<Double> timeSecCol;
4797    STLineFinder lineFinder = STLineFinder();
4798
4799    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
4800                         coordInfo, hasSameNchan,
4801                         progressInfo, showProgress, minNRow,
4802                         timeSecCol);
4803
4804    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
4805
4806    bool applyFFT;
4807    string fftMethod, fftThresh;
4808    parseFFTInfo(fftInfo, applyFFT, fftMethod, fftThresh);
4809
4810    std::vector<int> nWaves;
4811    std::vector<int> nChanNos;
4812    std::vector<std::vector<std::vector<double> > > modelReservoir;
4813    if (!applyFFT) {
4814      nWaves = selectWaveNumbers(addNWaves, rejectNWaves);
4815      modelReservoir = getSinusoidModelReservoir(nWaves, nChanNos);
4816    }
4817
4818    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
4819      std::vector<float> sp = getSpectrum(whichrow);
4820      std::vector<int> currentEdge;
4821      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
4822      std::vector<std::vector<double> > model;
4823      if (applyFFT) {
4824        nWaves = selectWaveNumbers(whichrow, chanMask, true, fftMethod, fftThresh,
4825                                   addNWaves, rejectNWaves);
4826        model = getSinusoidModel(nWaves, sp.size());
4827      } else {
4828        model = modelReservoir[getIdxOfNchan(sp.size(), nChanNos)];
4829      }
4830      int nModel = modelReservoir.size();
4831
4832      std::vector<float> params;
4833
4834      //if (flagrowCol_(whichrow) == 0) {
4835      if (flagrowCol_(whichrow)==0 && nValidMask(chanMask)>0) {
4836        int nClipped = 0;
4837        std::vector<float> res;
4838        res = doLeastSquareFitting(sp, chanMask, model,
4839                                   params, rms, finalChanMask,
4840                                   nClipped, thresClip, nIterClip, getResidual);
4841
4842        if (outBaselineTable) {
4843          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4844                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4845                        true, STBaselineFunc::Sinusoid, nWaves, std::vector<float>(),
4846                        getMaskListFromMask(finalChanMask), params, rms, sp.size(),
4847                        thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
4848        } else {
4849          setSpectrum(res, whichrow);
4850        }
4851
4852        outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
4853                            coordInfo, hasSameNchan, ofs, "autoSinusoidBaseline()",
4854                            params, nClipped);
4855      } else {
4856        // no valid channels to fit (flag the row)
4857        flagrowCol_.put(whichrow, 1);
4858        if (outBaselineTable) {
4859          params.resize(nModel);
4860          for (uInt i = 0; i < params.size(); ++i) {
4861            params[i] = 0.0;
4862          }
4863          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4864                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4865                        true, STBaselineFunc::Sinusoid, nWaves, std::vector<float>(),
4866                        getMaskListFromMask(chanMask), params, 0.0, sp.size(),
4867                        thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
4868        }
4869      }
4870
4871      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
4872    }
4873
4874    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
4875
4876  } catch (...) {
4877    throw;
4878  }
4879}
4880
4881std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data,
4882                                                const std::vector<bool>& mask,
4883                                                const std::vector<int>& waveNumbers,
4884                                                std::vector<float>& params,
4885                                                float& rms,
4886                                                std::vector<bool>& finalmask,
4887                                                float clipth,
4888                                                int clipn)
4889{
4890  int nClipped = 0;
4891  return doSinusoidFitting(data, mask, waveNumbers, params, rms, finalmask, nClipped, clipth, clipn);
4892}
4893
4894std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data,
4895                                                const std::vector<bool>& mask,
4896                                                const std::vector<int>& waveNumbers,
4897                                                std::vector<float>& params,
4898                                                float& rms,
4899                                                std::vector<bool>& finalMask,
4900                                                int& nClipped,
4901                                                float thresClip,
4902                                                int nIterClip,
4903                                                bool getResidual)
4904{
4905  return doLeastSquareFitting(data, mask,
4906                              getSinusoidModel(waveNumbers, data.size()),
4907                              params, rms, finalMask,
4908                              nClipped, thresClip, nIterClip,
4909                              getResidual);
4910}
4911
4912std::vector<std::vector<std::vector<double> > > Scantable::getSinusoidModelReservoir(const std::vector<int>& waveNumbers,
4913                                                                                     std::vector<int>& nChanNos)
4914{
4915  std::vector<std::vector<std::vector<double> > > res;
4916  res.clear();
4917  nChanNos.clear();
4918
4919  std::vector<uint> ifNos = getIFNos();
4920  for (uint i = 0; i < ifNos.size(); ++i) {
4921    int currNchan = nchan(ifNos[i]);
4922    bool hasDifferentNchan = (i == 0);
4923    for (uint j = 0; j < i; ++j) {
4924      if (currNchan != nchan(ifNos[j])) {
4925        hasDifferentNchan = true;
4926        break;
4927      }
4928    }
4929    if (hasDifferentNchan) {
4930      res.push_back(getSinusoidModel(waveNumbers, currNchan));
4931      nChanNos.push_back(currNchan);
4932    }
4933  }
4934
4935  return res;
4936}
4937
4938std::vector<std::vector<double> > Scantable::getSinusoidModel(const std::vector<int>& waveNumbers, int nchan)
4939{
4940  // model  : contains elemental values for computing the least-square matrix.
4941  //          model.size() is nmodel and model[*].size() is nchan.
4942  //          Each model element are as follows:
4943  //          model[0]    = {1.0, 1.0, 1.0, ..., 1.0},
4944  //          model[2n-1] = {sin(nPI/L*x[0]), sin(nPI/L*x[1]), ..., sin(nPI/L*x[nchan])},
4945  //          model[2n]   = {cos(nPI/L*x[0]), cos(nPI/L*x[1]), ..., cos(nPI/L*x[nchan])},
4946  //          where (1 <= n <= nMaxWavesInSW),
4947  //          or,
4948  //          model[2n-1] = {sin(wn[n]PI/L*x[0]), sin(wn[n]PI/L*x[1]), ..., sin(wn[n]PI/L*x[nchan])},
4949  //          model[2n]   = {cos(wn[n]PI/L*x[0]), cos(wn[n]PI/L*x[1]), ..., cos(wn[n]PI/L*x[nchan])},
4950  //          where wn[n] denotes waveNumbers[n] (1 <= n <= waveNumbers.size()).
4951
4952  std::vector<int> nWaves;  // sorted and uniqued array of wave numbers
4953  nWaves.reserve(waveNumbers.size());
4954  copy(waveNumbers.begin(), waveNumbers.end(), back_inserter(nWaves));
4955  sort(nWaves.begin(), nWaves.end());
4956  std::vector<int>::iterator end_it = unique(nWaves.begin(), nWaves.end());
4957  nWaves.erase(end_it, nWaves.end());
4958
4959  int minNWaves = nWaves[0];
4960  if (minNWaves < 0) {
4961    throw(AipsError("wave number must be positive or zero (i.e. constant)"));
4962  }
4963  bool hasConstantTerm = (minNWaves == 0);
4964  int nmodel = nWaves.size() * 2 - (hasConstantTerm ? 1 : 0);  //number of parameters to solve.
4965
4966  std::vector<std::vector<double> > model(nmodel, std::vector<double>(nchan));
4967
4968  if (hasConstantTerm) {
4969    for (int j = 0; j < nchan; ++j) {
4970      model[0][j] = 1.0;
4971    }
4972  }
4973
4974  const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
4975  double stretch0 = 2.0*PI/(double)(nchan-1);
4976
4977  for (uInt i = (hasConstantTerm ? 1 : 0); i < nWaves.size(); ++i) {
4978    int sidx = hasConstantTerm ? 2*i-1 : 2*i;
4979    int cidx = sidx + 1;
4980    double stretch = stretch0*(double)nWaves[i];
4981
4982    for (int j = 0; j < nchan; ++j) {
4983      model[sidx][j] = sin(stretch*(double)j);
4984      model[cidx][j] = cos(stretch*(double)j);
4985    }
4986  }
4987
4988  return model;
4989}
4990
4991std::vector<bool> Scantable::getCompositeChanMask(int whichrow,
4992                                                  const std::vector<bool>& inMask)
4993{
4994  std::vector<bool> mask = getMask(whichrow);
4995  uInt maskSize = mask.size();
4996  if (inMask.size() != 0) {
4997    if (maskSize != inMask.size()) {
4998      throw(AipsError("mask sizes are not the same."));
4999    }
5000    for (uInt i = 0; i < maskSize; ++i) {
5001      mask[i] = mask[i] && inMask[i];
5002    }
5003  }
5004
5005  return mask;
5006}
5007
5008std::vector<bool> Scantable::getCompositeChanMask(int whichrow,
5009                                                  const std::vector<bool>& inMask,
5010                                                  const std::vector<int>& edge,
5011                                                  std::vector<int>& currEdge,
5012                                                  STLineFinder& lineFinder)
5013{
5014  if (isAllChannelsFlagged(whichrow)) {//all channels flagged
5015    std::vector<bool> res_mask(inMask.size(),false);
5016    return res_mask;
5017  } else if (nValidMask(inMask)==0){ //no valid mask channels
5018    std::vector<bool> res_mask(inMask);
5019    return res_mask;
5020  }
5021
5022  std::vector<uint> ifNos = getIFNos();
5023  if ((edge.size() > 2) && (edge.size() < ifNos.size()*2)) {
5024    throw(AipsError("Length of edge element info is less than that of IFs"));
5025  }
5026
5027  uint idx = 0;
5028  if (edge.size() > 2) {
5029    int ifVal = getIF(whichrow);
5030    bool foundIF = false;
5031    for (uint i = 0; i < ifNos.size(); ++i) {
5032      if (ifVal == (int)ifNos[i]) {
5033        idx = 2*i;
5034        foundIF = true;
5035        break;
5036      }
5037    }
5038    if (!foundIF) {
5039      throw(AipsError("bad IF number"));
5040    }
5041  }
5042
5043  currEdge.clear();
5044  currEdge.resize(2);
5045  currEdge[0] = edge[idx];
5046  currEdge[1] = edge[idx+1];
5047
5048  lineFinder.setData(getSpectrum(whichrow));
5049  lineFinder.findLines(getCompositeChanMask(whichrow, inMask), currEdge, whichrow);
5050  return lineFinder.getMask();
5051}
5052
5053/* for cspline. will be merged once cspline is available in fitter (2011/3/10 WK) */
5054void Scantable::outputFittingResult(bool outLogger,
5055                                    bool outTextFile,
5056                                    bool csvFormat,
5057                                    const std::vector<bool>& chanMask,
5058                                    int whichrow,
5059                                    const casa::String& coordInfo,
5060                                    bool hasSameNchan,
5061                                    ofstream& ofs,
5062                                    const casa::String& funcName,
5063                                    const std::vector<int>& edge,
5064                                    const std::vector<float>& params,
5065                                    const int nClipped)
5066{
5067  if (outLogger || outTextFile) {
5068    float rms = getRms(chanMask, whichrow);
5069    String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
5070    std::vector<bool> fixed;
5071    fixed.clear();
5072
5073    if (outLogger) {
5074      LogIO ols(LogOrigin("Scantable", funcName, WHERE));
5075      ols << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped,
5076                                           masklist, whichrow, false, csvFormat) << LogIO::POST ;
5077    }
5078    if (outTextFile) {
5079      ofs << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped,
5080                                           masklist, whichrow, true, csvFormat) << flush;
5081    }
5082  }
5083}
5084
5085/* for poly/chebyshev/sinusoid. */
5086void Scantable::outputFittingResult(bool outLogger,
5087                                    bool outTextFile,
5088                                    bool csvFormat,
5089                                    const std::vector<bool>& chanMask,
5090                                    int whichrow,
5091                                    const casa::String& coordInfo,
5092                                    bool hasSameNchan,
5093                                    ofstream& ofs,
5094                                    const casa::String& funcName,
5095                                    const std::vector<float>& params,
5096                                    const int nClipped)
5097{
5098  if (outLogger || outTextFile) {
5099    float rms = getRms(chanMask, whichrow);
5100    String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
5101    std::vector<bool> fixed;
5102    fixed.clear();
5103
5104    if (outLogger) {
5105      LogIO ols(LogOrigin("Scantable", funcName, WHERE));
5106      ols << formatBaselineParams(params, fixed, rms, nClipped,
5107                                  masklist, whichrow, false, csvFormat) << LogIO::POST ;
5108    }
5109    if (outTextFile) {
5110      ofs << formatBaselineParams(params, fixed, rms, nClipped,
5111                                  masklist, whichrow, true, csvFormat) << flush;
5112    }
5113  }
5114}
5115
5116void Scantable::parseProgressInfo(const std::string& progressInfo, bool& showProgress, int& minNRow)
5117{
5118  int idxDelimiter = progressInfo.find(",");
5119  if (idxDelimiter < 0) {
5120    throw(AipsError("wrong value in 'showprogress' parameter")) ;
5121  }
5122  showProgress = (progressInfo.substr(0, idxDelimiter) == "true");
5123  std::istringstream is(progressInfo.substr(idxDelimiter+1));
5124  is >> minNRow;
5125}
5126
5127void Scantable::showProgressOnTerminal(const int nProcessed, const int nTotal, const bool showProgress, const int nTotalThreshold)
5128{
5129  if (showProgress && (nTotal >= nTotalThreshold)) {
5130    int nInterval = int(floor(double(nTotal)/100.0));
5131    if (nInterval == 0) nInterval++;
5132
5133    if (nProcessed % nInterval == 0) {
5134      printf("\r");                          //go to the head of line
5135      printf("\x1b[31m\x1b[1m");             //set red color, highlighted
5136      printf("[%3d%%]", (int)(100.0*(double(nProcessed+1))/(double(nTotal))) );
5137      printf("\x1b[39m\x1b[0m");             //set default attributes
5138      fflush(NULL);
5139    }
5140
5141    if (nProcessed == nTotal - 1) {
5142      printf("\r\x1b[K");                    //clear
5143      fflush(NULL);
5144    }
5145
5146  }
5147}
5148
5149std::vector<float> Scantable::execFFT(const int whichrow, const std::vector<bool>& inMask, bool getRealImag, bool getAmplitudeOnly)
5150{
5151  std::vector<bool>  mask = getMask(whichrow);
5152
5153  if (inMask.size() > 0) {
5154    uInt maskSize = mask.size();
5155    if (maskSize != inMask.size()) {
5156      throw(AipsError("mask sizes are not the same."));
5157    }
5158    for (uInt i = 0; i < maskSize; ++i) {
5159      mask[i] = mask[i] && inMask[i];
5160    }
5161  }
5162
5163  Vector<Float> spec = getSpectrum(whichrow);
5164  mathutil::doZeroOrderInterpolation(spec, mask);
5165
5166  FFTServer<Float,Complex> ffts;
5167  Vector<Complex> fftres;
5168  ffts.fft0(fftres, spec);
5169
5170  std::vector<float> res;
5171  float norm = float(2.0/double(spec.size()));
5172
5173  if (getRealImag) {
5174    for (uInt i = 0; i < fftres.size(); ++i) {
5175      res.push_back(real(fftres[i])*norm);
5176      res.push_back(imag(fftres[i])*norm);
5177    }
5178  } else {
5179    for (uInt i = 0; i < fftres.size(); ++i) {
5180      res.push_back(abs(fftres[i])*norm);
5181      if (!getAmplitudeOnly) res.push_back(arg(fftres[i]));
5182    }
5183  }
5184
5185  return res;
5186}
5187
5188
5189float Scantable::getRms(const std::vector<bool>& mask, int whichrow)
5190{
5191  /****
5192  double ms1TimeStart, ms1TimeEnd;
5193  double elapse1 = 0.0;
5194  ms1TimeStart = mathutil::gettimeofday_sec();
5195  ****/
5196
5197  Vector<Float> spec;
5198  specCol_.get(whichrow, spec);
5199
5200  /****
5201  ms1TimeEnd = mathutil::gettimeofday_sec();
5202  elapse1 = ms1TimeEnd - ms1TimeStart;
5203  std::cout << "rm1   : " << elapse1 << " (sec.)" << endl;
5204  ****/
5205
5206  return (float)doGetRms(mask, spec);
5207}
5208
5209double Scantable::doGetRms(const std::vector<bool>& mask, const Vector<Float>& spec)
5210{
5211  double mean = 0.0;
5212  double smean = 0.0;
5213  int n = 0;
5214  for (uInt i = 0; i < spec.nelements(); ++i) {
5215    if (mask[i]) {
5216      double val = (double)spec[i];
5217      mean += val;
5218      smean += val*val;
5219      n++;
5220    }
5221  }
5222
5223  mean /= (double)n;
5224  smean /= (double)n;
5225
5226  return sqrt(smean - mean*mean);
5227}
5228
5229std::string Scantable::formatBaselineParamsHeader(int whichrow, const std::string& masklist, bool verbose, bool csvformat) const
5230{
5231  if (verbose) {
5232    ostringstream oss;
5233
5234    if (csvformat) {
5235      oss << getScan(whichrow)  << ",";
5236      oss << getBeam(whichrow)  << ",";
5237      oss << getIF(whichrow)    << ",";
5238      oss << getPol(whichrow)   << ",";
5239      oss << getCycle(whichrow) << ",";
5240      String commaReplacedMasklist = masklist;
5241      string::size_type pos = 0;
5242      while (pos = commaReplacedMasklist.find(","), pos != string::npos) {
5243        commaReplacedMasklist.replace(pos, 1, ";");
5244        pos++;
5245      }
5246      oss << commaReplacedMasklist << ",";
5247    } else {
5248      oss <<  " Scan[" << getScan(whichrow)  << "]";
5249      oss <<  " Beam[" << getBeam(whichrow)  << "]";
5250      oss <<    " IF[" << getIF(whichrow)    << "]";
5251      oss <<   " Pol[" << getPol(whichrow)   << "]";
5252      oss << " Cycle[" << getCycle(whichrow) << "]: " << endl;
5253      oss << "Fitter range = " << masklist << endl;
5254      oss << "Baseline parameters" << endl;
5255    }
5256    oss << flush;
5257
5258    return String(oss);
5259  }
5260
5261  return "";
5262}
5263
5264std::string Scantable::formatBaselineParamsFooter(float rms, int nClipped, bool verbose, bool csvformat) const
5265{
5266  if (verbose) {
5267    ostringstream oss;
5268
5269    if (csvformat) {
5270      oss << rms << ",";
5271      if (nClipped >= 0) {
5272        oss << nClipped;
5273      }
5274    } else {
5275      oss << "Results of baseline fit" << endl;
5276      oss << "  rms = " << setprecision(6) << rms << endl;
5277      if (nClipped >= 0) {
5278        oss << "  Number of clipped channels = " << nClipped << endl;
5279      }
5280      for (int i = 0; i < 60; ++i) {
5281        oss << "-";
5282      }
5283    }
5284    oss << endl;
5285    oss << flush;
5286
5287    return String(oss);
5288  }
5289
5290  return "";
5291}
5292
5293std::string Scantable::formatBaselineParams(const std::vector<float>& params,
5294                                            const std::vector<bool>& fixed,
5295                                            float rms,
5296                                            int nClipped,
5297                                            const std::string& masklist,
5298                                            int whichrow,
5299                                            bool verbose,
5300                                            bool csvformat,
5301                                            int start, int count,
5302                                            bool resetparamid) const
5303{
5304  int nParam = (int)(params.size());
5305
5306  if (nParam < 1) {
5307    return("  Not fitted");
5308  } else {
5309
5310    ostringstream oss;
5311    oss << formatBaselineParamsHeader(whichrow, masklist, verbose, csvformat);
5312
5313    if (start < 0) start = 0;
5314    if (count < 0) count = nParam;
5315    int end = start + count;
5316    if (end > nParam) end = nParam;
5317    int paramidoffset = (resetparamid) ? (-start) : 0;
5318
5319    for (int i = start; i < end; ++i) {
5320      if (i > start) {
5321        oss << ",";
5322      }
5323      std::string sFix = ((fixed.size() > 0) && (fixed[i]) && verbose) ? "(fixed)" : "";
5324      if (csvformat) {
5325        oss << params[i] << sFix;
5326      } else {
5327        oss << "  p" << (i+paramidoffset) << sFix << "= " << right << setw(13) << setprecision(6) << params[i];
5328      }
5329    }
5330
5331    if (csvformat) {
5332      oss << ",";
5333    } else {
5334      oss << endl;
5335    }
5336    oss << formatBaselineParamsFooter(rms, nClipped, verbose, csvformat);
5337
5338    return String(oss);
5339  }
5340
5341}
5342
5343std::string Scantable::formatPiecewiseBaselineParams(const std::vector<int>& ranges, const std::vector<float>& params, const std::vector<bool>& fixed, float rms, int nClipped, const std::string& masklist, int whichrow, bool verbose, bool csvformat) const
5344{
5345  int nOutParam = (int)(params.size());
5346  int nPiece = (int)(ranges.size()) - 1;
5347
5348  if (nOutParam < 1) {
5349    return("  Not fitted");
5350  } else if (nPiece < 0) {
5351    return formatBaselineParams(params, fixed, rms, nClipped, masklist, whichrow, verbose, csvformat);
5352  } else if (nPiece < 1) {
5353    return("  Bad count of the piece edge info");
5354  } else if (nOutParam % nPiece != 0) {
5355    return("  Bad count of the output baseline parameters");
5356  } else {
5357
5358    int nParam = nOutParam / nPiece;
5359
5360    ostringstream oss;
5361    oss << formatBaselineParamsHeader(whichrow, masklist, verbose, csvformat);
5362
5363    if (csvformat) {
5364      for (int i = 0; i < nPiece; ++i) {
5365        oss << ranges[i] << "," << (ranges[i+1]-1) << ",";
5366        oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, csvformat, i*nParam, nParam, true);
5367      }
5368    } else {
5369      stringstream ss;
5370      ss << ranges[nPiece] << flush;
5371      int wRange = ss.str().size() * 2 + 5;
5372
5373      for (int i = 0; i < nPiece; ++i) {
5374        ss.str("");
5375        ss << "  [" << ranges[i] << "," << (ranges[i+1]-1) << "]";
5376        oss << left << setw(wRange) << ss.str();
5377        oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, csvformat, i*nParam, nParam, true);
5378        //oss << endl;
5379      }
5380    }
5381
5382    oss << formatBaselineParamsFooter(rms, nClipped, verbose, csvformat);
5383
5384    return String(oss);
5385  }
5386
5387}
5388
5389bool Scantable::hasSameNchanOverIFs()
5390{
5391  int nIF = nif(-1);
5392  int nCh;
5393  int totalPositiveNChan = 0;
5394  int nPositiveNChan = 0;
5395
5396  for (int i = 0; i < nIF; ++i) {
5397    nCh = nchan(i);
5398    if (nCh > 0) {
5399      totalPositiveNChan += nCh;
5400      nPositiveNChan++;
5401    }
5402  }
5403
5404  return (totalPositiveNChan == (nPositiveNChan * nchan(0)));
5405}
5406
5407std::string Scantable::getMaskRangeList(const std::vector<bool>& mask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, bool verbose)
5408{
5409  if (mask.size() <= 0) {
5410    throw(AipsError("The mask elements should be > 0"));
5411  }
5412  int IF = getIF(whichrow);
5413  if (mask.size() != (uInt)nchan(IF)) {
5414    throw(AipsError("Number of channels in scantable != number of mask elements"));
5415  }
5416
5417  if (verbose) {
5418    LogIO logOs(LogOrigin("Scantable", "getMaskRangeList()", WHERE));
5419    logOs << LogIO::WARN << "The current mask window unit is " << coordInfo;
5420    if (!hasSameNchan) {
5421      logOs << endl << "This mask is only valid for IF=" << IF;
5422    }
5423    logOs << LogIO::POST;
5424  }
5425
5426  std::vector<double> abcissa = getAbcissa(whichrow);
5427  std::vector<int> edge = getMaskEdgeIndices(mask);
5428
5429  ostringstream oss;
5430  oss.setf(ios::fixed);
5431  oss << setprecision(1) << "[";
5432  for (uInt i = 0; i < edge.size(); i+=2) {
5433    if (i > 0) oss << ",";
5434    oss << "[" << (float)abcissa[edge[i]] << "," << (float)abcissa[edge[i+1]] << "]";
5435  }
5436  oss << "]" << flush;
5437
5438  return String(oss);
5439}
5440
5441std::vector<int> Scantable::getMaskEdgeIndices(const std::vector<bool>& mask)
5442{
5443  if (mask.size() <= 0) {
5444    throw(AipsError("The mask elements should be > 0"));
5445  }
5446
5447  std::vector<int> out, startIndices, endIndices;
5448  int maskSize = mask.size();
5449
5450  startIndices.clear();
5451  endIndices.clear();
5452
5453  if (mask[0]) {
5454    startIndices.push_back(0);
5455  }
5456  for (int i = 1; i < maskSize; ++i) {
5457    if ((!mask[i-1]) && mask[i]) {
5458      startIndices.push_back(i);
5459    } else if (mask[i-1] && (!mask[i])) {
5460      endIndices.push_back(i-1);
5461    }
5462  }
5463  if (mask[maskSize-1]) {
5464    endIndices.push_back(maskSize-1);
5465  }
5466
5467  if (startIndices.size() != endIndices.size()) {
5468    throw(AipsError("Inconsistent Mask Size: bad data?"));
5469  }
5470  for (uInt i = 0; i < startIndices.size(); ++i) {
5471    if (startIndices[i] > endIndices[i]) {
5472      throw(AipsError("Mask start index > mask end index"));
5473    }
5474  }
5475
5476  out.clear();
5477  for (uInt i = 0; i < startIndices.size(); ++i) {
5478    out.push_back(startIndices[i]);
5479    out.push_back(endIndices[i]);
5480  }
5481
5482  return out;
5483}
5484
5485void Scantable::setTsys(const std::vector<float>& newvals, int whichrow) {
5486  Vector<Float> tsys(newvals);
5487  if (whichrow > -1) {
5488    if (tsysCol_.shape(whichrow) != tsys.shape())
5489      throw(AipsError("Given Tsys values are not of the same shape"));
5490    tsysCol_.put(whichrow, tsys);
5491  } else {
5492    tsysCol_.fillColumn(tsys);
5493  }
5494}
5495
5496vector<float> Scantable::getTsysSpectrum( int whichrow ) const
5497{
5498  Vector<Float> tsys( tsysCol_(whichrow) ) ;
5499  vector<float> stlTsys ;
5500  tsys.tovector( stlTsys ) ;
5501  return stlTsys ;
5502}
5503
5504vector<uint> Scantable::getMoleculeIdColumnData() const
5505{
5506  Vector<uInt> molIds(mmolidCol_.getColumn());
5507  vector<uint> res;
5508  molIds.tovector(res);
5509  return res;
5510}
5511
5512void Scantable::setMoleculeIdColumnData(const std::vector<uint>& molids)
5513{
5514  Vector<uInt> molIds(molids);
5515  Vector<uInt> arr(mmolidCol_.getColumn());
5516  if ( molIds.nelements() != arr.nelements() )
5517    throw AipsError("The input data size must be the number of rows.");
5518  mmolidCol_.putColumn(molIds);
5519}
5520
5521
5522std::vector<uint> Scantable::getRootTableRowNumbers() const
5523{
5524  Vector<uInt> rowIds(table_.rowNumbers());
5525  vector<uint> res;
5526  rowIds.tovector(res);
5527  return res;
5528}
5529
5530
5531void Scantable::dropXPol()
5532{
5533  if (npol() <= 2) {
5534    return;
5535  }
5536  if (!selector_.empty()) {
5537    throw AipsError("Can only operate with empty selection");
5538  }
5539  std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
5540  Table tab = tableCommand(taql, table_);
5541  table_ = tab;
5542  table_.rwKeywordSet().define("nPol", Int(2));
5543  originalTable_ = table_;
5544  attach();
5545}
5546
5547}
5548//namespace asap
Note: See TracBrowser for help on using the repository browser.