source: trunk/src/Scantable.cpp @ 2969

Last change on this file since 2969 was 2969, checked in by Kana Sugimoto, 10 years ago

New Development: No

JIRA Issue: Yes (CAS-6109)

Ready for Test: Yes

Interface Changes: No

What Interface Changed:

Test Programs: runUnitTest.main(test_sdlist?)

Put in Release Notes: No

Module(s): scantable, sdlist

Description: Fixed a bug in time range calculation in scantable.summary (sdlist).

Also enhanced precision of time and direction listed in the method.
Added a parameter, prec, in a private funtion, Scantable::formatDirection to allow setting precision.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 165.4 KB
Line 
1//
2// C++ Implementation: Scantable
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2005-2013
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12#include <map>
13#include <sys/time.h>
14
15#include <atnf/PKSIO/SrcType.h>
16
17#include <casa/aips.h>
18#include <casa/iomanip.h>
19#include <casa/iostream.h>
20#include <casa/OS/File.h>
21#include <casa/OS/Path.h>
22#include <casa/Logging/LogIO.h>
23#include <casa/Arrays/Array.h>
24#include <casa/Arrays/ArrayAccessor.h>
25#include <casa/Arrays/ArrayLogical.h>
26#include <casa/Arrays/ArrayMath.h>
27#include <casa/Arrays/MaskArrMath.h>
28#include <casa/Arrays/Slice.h>
29#include <casa/Arrays/Vector.h>
30#include <casa/Arrays/VectorSTLIterator.h>
31#include <casa/BasicMath/Math.h>
32#include <casa/BasicSL/Constants.h>
33#include <casa/Containers/RecordField.h>
34#include <casa/Logging/LogIO.h>
35#include <casa/Quanta/MVAngle.h>
36#include <casa/Quanta/MVTime.h>
37#include <casa/Utilities/GenSort.h>
38
39#include <coordinates/Coordinates/CoordinateUtil.h>
40
41// needed to avoid error in .tcc
42#include <measures/Measures/MCDirection.h>
43//
44#include <measures/Measures/MDirection.h>
45#include <measures/Measures/MEpoch.h>
46#include <measures/Measures/MFrequency.h>
47#include <measures/Measures/MeasRef.h>
48#include <measures/Measures/MeasTable.h>
49#include <measures/TableMeasures/ScalarMeasColumn.h>
50#include <measures/TableMeasures/TableMeasDesc.h>
51#include <measures/TableMeasures/TableMeasRefDesc.h>
52#include <measures/TableMeasures/TableMeasValueDesc.h>
53
54#include <tables/Tables/ArrColDesc.h>
55#include <tables/Tables/ExprNode.h>
56#include <tables/Tables/ScaColDesc.h>
57#include <tables/Tables/SetupNewTab.h>
58#include <tables/Tables/TableCopy.h>
59#include <tables/Tables/TableDesc.h>
60#include <tables/Tables/TableIter.h>
61#include <tables/Tables/TableParse.h>
62#include <tables/Tables/TableRecord.h>
63#include <tables/Tables/TableRow.h>
64#include <tables/Tables/TableVector.h>
65
66#include "MathUtils.h"
67#include "STAttr.h"
68#include "STBaselineTable.h"
69#include "STLineFinder.h"
70#include "STPolCircular.h"
71#include "STPolLinear.h"
72#include "STPolStokes.h"
73#include "STUpgrade.h"
74#include "STFitter.h"
75#include "Scantable.h"
76
77#define debug 1
78
79using namespace casa;
80
81namespace asap {
82
83std::map<std::string, STPol::STPolFactory *> Scantable::factories_;
84
85void Scantable::initFactories() {
86  if ( factories_.empty() ) {
87    Scantable::factories_["linear"] = &STPolLinear::myFactory;
88    Scantable::factories_["circular"] = &STPolCircular::myFactory;
89    Scantable::factories_["stokes"] = &STPolStokes::myFactory;
90  }
91}
92
93Scantable::Scantable(Table::TableType ttype) :
94  type_(ttype)
95{
96  initFactories();
97  setupMainTable();
98  freqTable_ = STFrequencies(*this);
99  table_.rwKeywordSet().defineTable("FREQUENCIES", freqTable_.table());
100  weatherTable_ = STWeather(*this);
101  table_.rwKeywordSet().defineTable("WEATHER", weatherTable_.table());
102  focusTable_ = STFocus(*this);
103  table_.rwKeywordSet().defineTable("FOCUS", focusTable_.table());
104  tcalTable_ = STTcal(*this);
105  table_.rwKeywordSet().defineTable("TCAL", tcalTable_.table());
106  moleculeTable_ = STMolecules(*this);
107  table_.rwKeywordSet().defineTable("MOLECULES", moleculeTable_.table());
108  historyTable_ = STHistory(*this);
109  table_.rwKeywordSet().defineTable("HISTORY", historyTable_.table());
110  fitTable_ = STFit(*this);
111  table_.rwKeywordSet().defineTable("FIT", fitTable_.table());
112  table_.tableInfo().setType( "Scantable" ) ;
113  originalTable_ = table_;
114  attach();
115}
116
117Scantable::Scantable(const std::string& name, Table::TableType ttype) :
118  type_(ttype)
119{
120  initFactories();
121
122  Table tab(name, Table::Update);
123  uInt version = tab.keywordSet().asuInt("VERSION");
124  if (version != version_) {
125      STUpgrade upgrader(version_);
126      LogIO os( LogOrigin( "Scantable" ) ) ;
127      os << LogIO::WARN
128         << name << " data format version " << version
129         << " is deprecated" << endl
130         << "Running upgrade."<< endl 
131         << LogIO::POST ; 
132      std::string outname = upgrader.upgrade(name);
133      if ( outname != name ) {
134        os << LogIO::WARN
135           << "Data will be loaded from " << outname << " instead of "
136           << name << LogIO::POST ;
137        tab = Table(outname, Table::Update ) ;
138      }
139  }
140  if ( type_ == Table::Memory ) {
141    table_ = tab.copyToMemoryTable(generateName());
142  } else {
143    table_ = tab;
144  }
145  table_.tableInfo().setType( "Scantable" ) ;
146
147  attachSubtables();
148  originalTable_ = table_;
149  attach();
150}
151/*
152Scantable::Scantable(const std::string& name, Table::TableType ttype) :
153  type_(ttype)
154{
155  initFactories();
156  Table tab(name, Table::Update);
157  uInt version = tab.keywordSet().asuInt("VERSION");
158  if (version != version_) {
159    throw(AipsError("Unsupported version of ASAP file."));
160  }
161  if ( type_ == Table::Memory ) {
162    table_ = tab.copyToMemoryTable(generateName());
163  } else {
164    table_ = tab;
165  }
166
167  attachSubtables();
168  originalTable_ = table_;
169  attach();
170}
171*/
172
173Scantable::Scantable( const Scantable& other, bool clear )
174{
175  // with or without data
176  String newname = String(generateName());
177  type_ = other.table_.tableType();
178  if ( other.table_.tableType() == Table::Memory ) {
179      if ( clear ) {
180        table_ = TableCopy::makeEmptyMemoryTable(newname,
181                                                 other.table_, True);
182      } else {
183        table_ = other.table_.copyToMemoryTable(newname);
184      }
185  } else {
186      other.table_.deepCopy(newname, Table::New, False,
187                            other.table_.endianFormat(),
188                            Bool(clear));
189      table_ = Table(newname, Table::Update);
190      table_.markForDelete();
191  }
192  table_.tableInfo().setType( "Scantable" ) ;
193  /// @todo reindex SCANNO, recompute nbeam, nif, npol
194  if ( clear ) copySubtables(other);
195  attachSubtables();
196  originalTable_ = table_;
197  attach();
198}
199
200void Scantable::copySubtables(const Scantable& other) {
201  Table t = table_.rwKeywordSet().asTable("FREQUENCIES");
202  TableCopy::copyRows(t, other.freqTable_.table());
203  t = table_.rwKeywordSet().asTable("FOCUS");
204  TableCopy::copyRows(t, other.focusTable_.table());
205  t = table_.rwKeywordSet().asTable("WEATHER");
206  TableCopy::copyRows(t, other.weatherTable_.table());
207  t = table_.rwKeywordSet().asTable("TCAL");
208  TableCopy::copyRows(t, other.tcalTable_.table());
209  t = table_.rwKeywordSet().asTable("MOLECULES");
210  TableCopy::copyRows(t, other.moleculeTable_.table());
211  t = table_.rwKeywordSet().asTable("HISTORY");
212  TableCopy::copyRows(t, other.historyTable_.table());
213  t = table_.rwKeywordSet().asTable("FIT");
214  TableCopy::copyRows(t, other.fitTable_.table());
215}
216
217void Scantable::attachSubtables()
218{
219  freqTable_ = STFrequencies(table_);
220  focusTable_ = STFocus(table_);
221  weatherTable_ = STWeather(table_);
222  tcalTable_ = STTcal(table_);
223  moleculeTable_ = STMolecules(table_);
224  historyTable_ = STHistory(table_);
225  fitTable_ = STFit(table_);
226}
227
228Scantable::~Scantable()
229{
230}
231
232void Scantable::setupMainTable()
233{
234  TableDesc td("", "1", TableDesc::Scratch);
235  td.comment() = "An ASAP Scantable";
236  td.rwKeywordSet().define("VERSION", uInt(version_));
237
238  // n Cycles
239  td.addColumn(ScalarColumnDesc<uInt>("SCANNO"));
240  // new index every nBeam x nIF x nPol
241  td.addColumn(ScalarColumnDesc<uInt>("CYCLENO"));
242
243  td.addColumn(ScalarColumnDesc<uInt>("BEAMNO"));
244  td.addColumn(ScalarColumnDesc<uInt>("IFNO"));
245  // linear, circular, stokes
246  td.rwKeywordSet().define("POLTYPE", String("linear"));
247  td.addColumn(ScalarColumnDesc<uInt>("POLNO"));
248
249  td.addColumn(ScalarColumnDesc<uInt>("FREQ_ID"));
250  td.addColumn(ScalarColumnDesc<uInt>("MOLECULE_ID"));
251
252  ScalarColumnDesc<Int> refbeamnoColumn("REFBEAMNO");
253  refbeamnoColumn.setDefault(Int(-1));
254  td.addColumn(refbeamnoColumn);
255
256  ScalarColumnDesc<uInt> flagrowColumn("FLAGROW");
257  flagrowColumn.setDefault(uInt(0));
258  td.addColumn(flagrowColumn);
259
260  td.addColumn(ScalarColumnDesc<Double>("TIME"));
261  TableMeasRefDesc measRef(MEpoch::UTC); // UTC as default
262  TableMeasValueDesc measVal(td, "TIME");
263  TableMeasDesc<MEpoch> mepochCol(measVal, measRef);
264  mepochCol.write(td);
265
266  td.addColumn(ScalarColumnDesc<Double>("INTERVAL"));
267
268  td.addColumn(ScalarColumnDesc<String>("SRCNAME"));
269  // Type of source (on=0, off=1, other=-1)
270  ScalarColumnDesc<Int> stypeColumn("SRCTYPE");
271  stypeColumn.setDefault(Int(-1));
272  td.addColumn(stypeColumn);
273  td.addColumn(ScalarColumnDesc<String>("FIELDNAME"));
274
275  //The actual Data Vectors
276  td.addColumn(ArrayColumnDesc<Float>("SPECTRA"));
277  td.addColumn(ArrayColumnDesc<uChar>("FLAGTRA"));
278  td.addColumn(ArrayColumnDesc<Float>("TSYS"));
279
280  td.addColumn(ArrayColumnDesc<Double>("DIRECTION",
281                                       IPosition(1,2),
282                                       ColumnDesc::Direct));
283  TableMeasRefDesc mdirRef(MDirection::J2000); // default
284  TableMeasValueDesc tmvdMDir(td, "DIRECTION");
285  // the TableMeasDesc gives the column a type
286  TableMeasDesc<MDirection> mdirCol(tmvdMDir, mdirRef);
287  // a uder set table type e.g. GALCTIC, B1950 ...
288  td.rwKeywordSet().define("DIRECTIONREF", String("J2000"));
289  // writing create the measure column
290  mdirCol.write(td);
291  td.addColumn(ScalarColumnDesc<Float>("AZIMUTH"));
292  td.addColumn(ScalarColumnDesc<Float>("ELEVATION"));
293  td.addColumn(ScalarColumnDesc<Float>("OPACITY"));
294
295  td.addColumn(ScalarColumnDesc<uInt>("TCAL_ID"));
296  ScalarColumnDesc<Int> fitColumn("FIT_ID");
297  fitColumn.setDefault(Int(-1));
298  td.addColumn(fitColumn);
299
300  td.addColumn(ScalarColumnDesc<uInt>("FOCUS_ID"));
301  td.addColumn(ScalarColumnDesc<uInt>("WEATHER_ID"));
302
303  // columns which just get dragged along, as they aren't used in asap
304  td.addColumn(ScalarColumnDesc<Double>("SRCVELOCITY"));
305  td.addColumn(ArrayColumnDesc<Double>("SRCPROPERMOTION"));
306  td.addColumn(ArrayColumnDesc<Double>("SRCDIRECTION"));
307  td.addColumn(ArrayColumnDesc<Double>("SCANRATE"));
308
309  td.rwKeywordSet().define("OBSMODE", String(""));
310
311  // Now create Table SetUp from the description.
312  SetupNewTable aNewTab(generateName(), td, Table::Scratch);
313  table_ = Table(aNewTab, type_, 0);
314  originalTable_ = table_;
315}
316
317void Scantable::attach()
318{
319  timeCol_.attach(table_, "TIME");
320  srcnCol_.attach(table_, "SRCNAME");
321  srctCol_.attach(table_, "SRCTYPE");
322  specCol_.attach(table_, "SPECTRA");
323  flagsCol_.attach(table_, "FLAGTRA");
324  tsysCol_.attach(table_, "TSYS");
325  cycleCol_.attach(table_,"CYCLENO");
326  scanCol_.attach(table_, "SCANNO");
327  beamCol_.attach(table_, "BEAMNO");
328  ifCol_.attach(table_, "IFNO");
329  polCol_.attach(table_, "POLNO");
330  integrCol_.attach(table_, "INTERVAL");
331  azCol_.attach(table_, "AZIMUTH");
332  elCol_.attach(table_, "ELEVATION");
333  dirCol_.attach(table_, "DIRECTION");
334  fldnCol_.attach(table_, "FIELDNAME");
335  rbeamCol_.attach(table_, "REFBEAMNO");
336
337  mweatheridCol_.attach(table_,"WEATHER_ID");
338  mfitidCol_.attach(table_,"FIT_ID");
339  mfreqidCol_.attach(table_, "FREQ_ID");
340  mtcalidCol_.attach(table_, "TCAL_ID");
341  mfocusidCol_.attach(table_, "FOCUS_ID");
342  mmolidCol_.attach(table_, "MOLECULE_ID");
343
344  //Add auxiliary column for row-based flagging (CAS-1433 Wataru Kawasaki)
345  attachAuxColumnDef(flagrowCol_, "FLAGROW", 0);
346
347}
348
349template<class T, class T2>
350void Scantable::attachAuxColumnDef(ScalarColumn<T>& col,
351                                   const String& colName,
352                                   const T2& defValue)
353{
354  try {
355    col.attach(table_, colName);
356  } catch (TableError& err) {
357    String errMesg = err.getMesg();
358    if (errMesg == "Table column " + colName + " is unknown") {
359      table_.addColumn(ScalarColumnDesc<T>(colName));
360      col.attach(table_, colName);
361      col.fillColumn(static_cast<T>(defValue));
362    } else {
363      throw;
364    }
365  } catch (...) {
366    throw;
367  }
368}
369
370template<class T, class T2>
371void Scantable::attachAuxColumnDef(ArrayColumn<T>& col,
372                                   const String& colName,
373                                   const Array<T2>& defValue)
374{
375  try {
376    col.attach(table_, colName);
377  } catch (TableError& err) {
378    String errMesg = err.getMesg();
379    if (errMesg == "Table column " + colName + " is unknown") {
380      table_.addColumn(ArrayColumnDesc<T>(colName));
381      col.attach(table_, colName);
382
383      int size = 0;
384      ArrayIterator<T2>& it = defValue.begin();
385      while (it != defValue.end()) {
386        ++size;
387        ++it;
388      }
389      IPosition ip(1, size);
390      Array<T>& arr(ip);
391      for (int i = 0; i < size; ++i)
392        arr[i] = static_cast<T>(defValue[i]);
393
394      col.fillColumn(arr);
395    } else {
396      throw;
397    }
398  } catch (...) {
399    throw;
400  }
401}
402
403void Scantable::setHeader(const STHeader& sdh)
404{
405  table_.rwKeywordSet().define("nIF", sdh.nif);
406  table_.rwKeywordSet().define("nBeam", sdh.nbeam);
407  table_.rwKeywordSet().define("nPol", sdh.npol);
408  table_.rwKeywordSet().define("nChan", sdh.nchan);
409  table_.rwKeywordSet().define("Observer", sdh.observer);
410  table_.rwKeywordSet().define("Project", sdh.project);
411  table_.rwKeywordSet().define("Obstype", sdh.obstype);
412  table_.rwKeywordSet().define("AntennaName", sdh.antennaname);
413  table_.rwKeywordSet().define("AntennaPosition", sdh.antennaposition);
414  table_.rwKeywordSet().define("Equinox", sdh.equinox);
415  table_.rwKeywordSet().define("FreqRefFrame", sdh.freqref);
416  table_.rwKeywordSet().define("FreqRefVal", sdh.reffreq);
417  table_.rwKeywordSet().define("Bandwidth", sdh.bandwidth);
418  table_.rwKeywordSet().define("UTC", sdh.utc);
419  table_.rwKeywordSet().define("FluxUnit", sdh.fluxunit);
420  table_.rwKeywordSet().define("Epoch", sdh.epoch);
421  table_.rwKeywordSet().define("POLTYPE", sdh.poltype);
422}
423
424STHeader Scantable::getHeader() const
425{
426  STHeader sdh;
427  table_.keywordSet().get("nBeam",sdh.nbeam);
428  table_.keywordSet().get("nIF",sdh.nif);
429  table_.keywordSet().get("nPol",sdh.npol);
430  table_.keywordSet().get("nChan",sdh.nchan);
431  table_.keywordSet().get("Observer", sdh.observer);
432  table_.keywordSet().get("Project", sdh.project);
433  table_.keywordSet().get("Obstype", sdh.obstype);
434  table_.keywordSet().get("AntennaName", sdh.antennaname);
435  table_.keywordSet().get("AntennaPosition", sdh.antennaposition);
436  table_.keywordSet().get("Equinox", sdh.equinox);
437  table_.keywordSet().get("FreqRefFrame", sdh.freqref);
438  table_.keywordSet().get("FreqRefVal", sdh.reffreq);
439  table_.keywordSet().get("Bandwidth", sdh.bandwidth);
440  table_.keywordSet().get("UTC", sdh.utc);
441  table_.keywordSet().get("FluxUnit", sdh.fluxunit);
442  table_.keywordSet().get("Epoch", sdh.epoch);
443  table_.keywordSet().get("POLTYPE", sdh.poltype);
444  return sdh;
445}
446
447void Scantable::setSourceType( int stype )
448{
449  if ( stype < 0 || stype > 1 )
450    throw(AipsError("Illegal sourcetype."));
451  TableVector<Int> tabvec(table_, "SRCTYPE");
452  tabvec = Int(stype);
453}
454
455void Scantable::setSourceName( const std::string& name )
456{
457  TableVector<String> tabvec(table_, "SRCNAME");
458  tabvec = name;
459}
460
461bool Scantable::conformant( const Scantable& other )
462{
463  return this->getHeader().conformant(other.getHeader());
464}
465
466
467
468std::string Scantable::formatSec(Double x) const
469{
470  Double xcop = x;
471  MVTime mvt(xcop/24./3600.);  // make days
472
473  if (x < 59.95)
474    return  String("      ") + mvt.string(MVTime::TIME_CLEAN_NO_HM, 7)+"s";
475  else if (x < 3599.95)
476    return String("   ") + mvt.string(MVTime::TIME_CLEAN_NO_H,7)+" ";
477  else {
478    ostringstream oss;
479    oss << setw(2) << std::right << setprecision(1) << mvt.hour();
480    oss << ":" << mvt.string(MVTime::TIME_CLEAN_NO_H,7) << " ";
481    return String(oss);
482  }
483};
484
485  std::string Scantable::formatDirection(const MDirection& md, Int prec) const
486{
487  Vector<Double> t = md.getAngle(Unit(String("rad"))).getValue();
488  if (prec<0)
489    prec = 7;
490
491  String ref = md.getRefString();
492  MVAngle mvLon(t[0]);
493  String sLon = mvLon.string(MVAngle::TIME,prec);
494  uInt tp = md.getRef().getType();
495  if (tp == MDirection::GALACTIC ||
496      tp == MDirection::SUPERGAL ) {
497    sLon = mvLon(0.0).string(MVAngle::ANGLE_CLEAN,prec);
498  }
499  MVAngle mvLat(t[1]);
500  String sLat = mvLat.string(MVAngle::ANGLE+MVAngle::DIG2,prec);
501  return  ref + String(" ") + sLon + String(" ") + sLat;
502}
503
504
505std::string Scantable::getFluxUnit() const
506{
507  return table_.keywordSet().asString("FluxUnit");
508}
509
510void Scantable::setFluxUnit(const std::string& unit)
511{
512  String tmp(unit);
513  Unit tU(tmp);
514  if (tU==Unit("K") || tU==Unit("Jy")) {
515     table_.rwKeywordSet().define(String("FluxUnit"), tmp);
516  } else {
517     throw AipsError("Illegal unit - must be compatible with Jy or K");
518  }
519}
520
521void Scantable::setInstrument(const std::string& name)
522{
523  bool throwIt = true;
524  // create an Instrument to see if this is valid
525  STAttr::convertInstrument(name, throwIt);
526  String nameU(name);
527  nameU.upcase();
528  table_.rwKeywordSet().define(String("AntennaName"), nameU);
529}
530
531void Scantable::setFeedType(const std::string& feedtype)
532{
533  if ( Scantable::factories_.find(feedtype) ==  Scantable::factories_.end() ) {
534    std::string msg = "Illegal feed type "+ feedtype;
535    throw(casa::AipsError(msg));
536  }
537  table_.rwKeywordSet().define(String("POLTYPE"), feedtype);
538}
539
540MPosition Scantable::getAntennaPosition() const
541{
542  Vector<Double> antpos;
543  table_.keywordSet().get("AntennaPosition", antpos);
544  MVPosition mvpos(antpos(0),antpos(1),antpos(2));
545  return MPosition(mvpos);
546}
547
548void Scantable::makePersistent(const std::string& filename)
549{
550  String inname(filename);
551  Path path(inname);
552  /// @todo reindex SCANNO, recompute nbeam, nif, npol
553  inname = path.expandedName();
554  // 2011/03/04 TN
555  // We can comment out this workaround since the essential bug is
556  // fixed in casacore (r20889 in google code).
557  table_.deepCopy(inname, Table::New);
558//   // WORKAROUND !!! for Table bug
559//   // Remove when fixed in casacore
560//   if ( table_.tableType() == Table::Memory  && !selector_.empty() ) {
561//     Table tab = table_.copyToMemoryTable(generateName());
562//     tab.deepCopy(inname, Table::New);
563//     tab.markForDelete();
564//
565//   } else {
566//     table_.deepCopy(inname, Table::New);
567//   }
568}
569
570int Scantable::nbeam( int scanno ) const
571{
572  if ( scanno < 0 ) {
573    Int n;
574    table_.keywordSet().get("nBeam",n);
575    return int(n);
576  } else {
577    // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
578    Table t = table_(table_.col("SCANNO") == scanno);
579    ROTableRow row(t);
580    const TableRecord& rec = row.get(0);
581    Table subt = t( t.col("IFNO") == Int(rec.asuInt("IFNO"))
582                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
583                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
584    ROTableVector<uInt> v(subt, "BEAMNO");
585    return int(v.nelements());
586  }
587  return 0;
588}
589
590int Scantable::nif( int scanno ) const
591{
592  if ( scanno < 0 ) {
593    Int n;
594    table_.keywordSet().get("nIF",n);
595    return int(n);
596  } else {
597    // take the first POLNO,BEAMNO,CYCLENO as nbeam shouldn't vary with these
598    Table t = table_(table_.col("SCANNO") == scanno);
599    ROTableRow row(t);
600    const TableRecord& rec = row.get(0);
601    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
602                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
603                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
604    if ( subt.nrow() == 0 ) return 0;
605    ROTableVector<uInt> v(subt, "IFNO");
606    return int(v.nelements());
607  }
608  return 0;
609}
610
611int Scantable::npol( int scanno ) const
612{
613  if ( scanno < 0 ) {
614    Int n;
615    table_.keywordSet().get("nPol",n);
616    return n;
617  } else {
618    // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
619    Table t = table_(table_.col("SCANNO") == scanno);
620    ROTableRow row(t);
621    const TableRecord& rec = row.get(0);
622    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
623                    && t.col("IFNO") == Int(rec.asuInt("IFNO"))
624                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
625    if ( subt.nrow() == 0 ) return 0;
626    ROTableVector<uInt> v(subt, "POLNO");
627    return int(v.nelements());
628  }
629  return 0;
630}
631
632int Scantable::ncycle( int scanno ) const
633{
634  if ( scanno < 0 ) {
635    Block<String> cols(2);
636    cols[0] = "SCANNO";
637    cols[1] = "CYCLENO";
638    TableIterator it(table_, cols);
639    int n = 0;
640    while ( !it.pastEnd() ) {
641      ++n;
642      ++it;
643    }
644    return n;
645  } else {
646    Table t = table_(table_.col("SCANNO") == scanno);
647    ROTableRow row(t);
648    const TableRecord& rec = row.get(0);
649    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
650                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
651                    && t.col("IFNO") == Int(rec.asuInt("IFNO")) );
652    if ( subt.nrow() == 0 ) return 0;
653    return int(subt.nrow());
654  }
655  return 0;
656}
657
658
659int Scantable::nrow( int scanno ) const
660{
661  return int(table_.nrow());
662}
663
664int Scantable::nchan( int ifno ) const
665{
666  if ( ifno < 0 ) {
667    Int n;
668    table_.keywordSet().get("nChan",n);
669    return int(n);
670  } else {
671    // take the first SCANNO,POLNO,BEAMNO,CYCLENO as nbeam shouldn't
672    // vary with these
673    Table t = table_(table_.col("IFNO") == ifno, 1);
674    if ( t.nrow() == 0 ) return 0;
675    ROArrayColumn<Float> v(t, "SPECTRA");
676    return v.shape(0)(0);
677  }
678  return 0;
679}
680
681int Scantable::nscan() const {
682  Vector<uInt> scannos(scanCol_.getColumn());
683  uInt nout = genSort( scannos, Sort::Ascending,
684                       Sort::QuickSort|Sort::NoDuplicates );
685  return int(nout);
686}
687
688int Scantable::getChannels(int whichrow) const
689{
690  return specCol_.shape(whichrow)(0);
691}
692
693int Scantable::getBeam(int whichrow) const
694{
695  return beamCol_(whichrow);
696}
697
698std::vector<uint> Scantable::getNumbers(const ScalarColumn<uInt>& col) const
699{
700  Vector<uInt> nos(col.getColumn());
701  uInt n = genSort( nos, Sort::Ascending, Sort::QuickSort|Sort::NoDuplicates );
702  nos.resize(n, True);
703  std::vector<uint> stlout;
704  nos.tovector(stlout);
705  return stlout;
706}
707
708int Scantable::getIF(int whichrow) const
709{
710  return ifCol_(whichrow);
711}
712
713int Scantable::getPol(int whichrow) const
714{
715  return polCol_(whichrow);
716}
717
718std::string Scantable::formatTime(const MEpoch& me, bool showdate) const
719{
720  return formatTime(me, showdate, 0);
721}
722
723std::string Scantable::formatTime(const MEpoch& me, bool showdate, uInt prec) const
724{
725  MVTime mvt(me.getValue());
726  if (showdate)
727    //mvt.setFormat(MVTime::YMD);
728    mvt.setFormat(MVTime::YMD, prec);
729  else
730    //mvt.setFormat(MVTime::TIME);
731    mvt.setFormat(MVTime::TIME, prec);
732  ostringstream oss;
733  oss << mvt;
734  return String(oss);
735}
736
737void Scantable::calculateAZEL()
738
739  LogIO os( LogOrigin( "Scantable", "calculateAZEL()", WHERE ) ) ;
740  MPosition mp = getAntennaPosition();
741  MEpoch::ROScalarColumn timeCol(table_, "TIME");
742  ostringstream oss;
743  oss << mp;
744  os << "Computed azimuth/elevation using " << endl
745     << String(oss) << endl;
746  for (Int i=0; i<nrow(); ++i) {
747    MEpoch me = timeCol(i);
748    MDirection md = getDirection(i);
749    os  << " Time: " << formatTime(me,False)
750        << " Direction: " << formatDirection(md)
751         << endl << "     => ";
752    MeasFrame frame(mp, me);
753    Vector<Double> azel =
754        MDirection::Convert(md, MDirection::Ref(MDirection::AZEL,
755                                                frame)
756                            )().getAngle("rad").getValue();
757    azCol_.put(i,Float(azel[0]));
758    elCol_.put(i,Float(azel[1]));
759    os << "azel: " << azel[0]/C::pi*180.0 << " "
760       << azel[1]/C::pi*180.0 << " (deg)" << LogIO::POST;
761  }
762}
763
764void Scantable::clip(const Float uthres, const Float dthres, bool clipoutside, bool unflag)
765{
766  Vector<uInt> flagrow = flagrowCol_.getColumn();
767  for (uInt i=0; i<table_.nrow(); ++i) {
768    // apply flag only when specified row is vaild
769    if (flagrow[i] == 0) {
770      Vector<uChar> flgs = flagsCol_(i);
771      srchChannelsToClip(i, uthres, dthres, clipoutside, unflag, flgs);
772      flagsCol_.put(i, flgs);
773    }
774  }
775}
776
777std::vector<bool> Scantable::getClipMask(int whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag)
778{
779  Vector<uChar> flags;
780  flagsCol_.get(uInt(whichrow), flags);
781  srchChannelsToClip(uInt(whichrow), uthres, dthres, clipoutside, unflag, flags);
782  Vector<Bool> bflag(flags.shape());
783  convertArray(bflag, flags);
784  //bflag = !bflag;
785
786  std::vector<bool> mask;
787  bflag.tovector(mask);
788  return mask;
789}
790
791void Scantable::srchChannelsToClip(uInt whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag,
792                                   Vector<uChar> flgs)
793{
794    Vector<Float> spcs = specCol_(whichrow);
795    uInt nchannel = spcs.nelements();
796    if (spcs.nelements() != nchannel) {
797      throw(AipsError("Data has incorrect number of channels"));
798    }
799    uChar userflag = 1 << 7;
800    if (unflag) {
801      userflag = 0 << 7;
802    }
803    if (clipoutside) {
804      for (uInt j = 0; j < nchannel; ++j) {
805        Float spc = spcs(j);
806        if ((spc >= uthres) || (spc <= dthres)) {
807          flgs(j) = userflag;
808        }
809      }
810    } else {
811      for (uInt j = 0; j < nchannel; ++j) {
812        Float spc = spcs(j);
813        if ((spc < uthres) && (spc > dthres)) {
814          flgs(j) = userflag;
815        }
816      }
817    }
818}
819
820
821void Scantable::flag( int whichrow, const std::vector<bool>& msk, bool unflag ) {
822  std::vector<bool>::const_iterator it;
823  uInt ntrue = 0;
824  if (whichrow >= int(table_.nrow()) ) {
825    throw(AipsError("Invalid row number"));
826  }
827  for (it = msk.begin(); it != msk.end(); ++it) {
828    if ( *it ) {
829      ntrue++;
830    }
831  }
832  //if ( selector_.empty()  && (msk.size() == 0 || msk.size() == ntrue) )
833  if ( whichrow == -1 && !unflag && selector_.empty() && (msk.size() == 0 || msk.size() == ntrue) )
834    throw(AipsError("Trying to flag whole scantable."));
835  uChar userflag = 1 << 7;
836  if ( unflag ) {
837    userflag = 0 << 7;
838  }
839  if (whichrow > -1 ) {
840    // apply flag only when specified row is vaild
841    if (flagrowCol_(whichrow) == 0) {
842      applyChanFlag(uInt(whichrow), msk, userflag);
843    }
844  } else {
845    Vector<uInt> flagrow = flagrowCol_.getColumn();
846    for ( uInt i=0; i<table_.nrow(); ++i) {
847      // apply flag only when specified row is vaild
848      if (flagrow[i] == 0) {
849        applyChanFlag(i, msk, userflag);
850      }
851    }
852  }
853}
854
855void Scantable::applyChanFlag( uInt whichrow, const std::vector<bool>& msk, uChar flagval )
856{
857  if (whichrow >= table_.nrow() ) {
858    throw( casa::indexError<int>( whichrow, "asap::Scantable::applyChanFlag: Invalid row number" ) );
859  }
860  Vector<uChar> flgs = flagsCol_(whichrow);
861  if ( msk.size() == 0 ) {
862    flgs = flagval;
863    flagsCol_.put(whichrow, flgs);
864    return;
865  }
866  if ( int(msk.size()) != nchan( getIF(whichrow) ) ) {
867    throw(AipsError("Mask has incorrect number of channels."));
868  }
869  if ( flgs.nelements() != msk.size() ) {
870    throw(AipsError("Mask has incorrect number of channels."
871                    " Probably varying with IF. Please flag per IF"));
872  }
873  std::vector<bool>::const_iterator it;
874  uInt j = 0;
875  for (it = msk.begin(); it != msk.end(); ++it) {
876    if ( *it ) {
877      flgs(j) = flagval;
878    }
879    ++j;
880  }
881  flagsCol_.put(whichrow, flgs);
882}
883
884void Scantable::flagRow(const std::vector<uInt>& rows, bool unflag)
885{
886  if (selector_.empty() && (rows.size() == table_.nrow()) && !unflag)
887    throw(AipsError("Trying to flag whole scantable."));
888
889  uInt rowflag = (unflag ? 0 : 1);
890  std::vector<uInt>::const_iterator it;
891  for (it = rows.begin(); it != rows.end(); ++it)
892    flagrowCol_.put(*it, rowflag);
893}
894
895std::vector<bool> Scantable::getMask(int whichrow) const
896{
897  Vector<uChar> flags;
898  flagsCol_.get(uInt(whichrow), flags);
899  Vector<Bool> bflag(flags.shape());
900  convertArray(bflag, flags);
901  bflag = !bflag;
902  std::vector<bool> mask;
903  bflag.tovector(mask);
904  return mask;
905}
906
907std::vector<float> Scantable::getSpectrum( int whichrow,
908                                           const std::string& poltype ) const
909{
910  LogIO os( LogOrigin( "Scantable", "getSpectrum()", WHERE ) ) ;
911
912  String ptype = poltype;
913  if (poltype == "" ) ptype = getPolType();
914  if ( whichrow  < 0 || whichrow >= nrow() )
915    throw(AipsError("Illegal row number."));
916  std::vector<float> out;
917  Vector<Float> arr;
918  uInt requestedpol = polCol_(whichrow);
919  String basetype = getPolType();
920  if ( ptype == basetype ) {
921    specCol_.get(whichrow, arr);
922  } else {
923    CountedPtr<STPol> stpol(STPol::getPolClass(Scantable::factories_,
924                                               basetype));
925    uInt row = uInt(whichrow);
926    stpol->setSpectra(getPolMatrix(row));
927    Float fang,fhand;
928    fang = focusTable_.getTotalAngle(mfocusidCol_(row));
929    fhand = focusTable_.getFeedHand(mfocusidCol_(row));
930    stpol->setPhaseCorrections(fang, fhand);
931    arr = stpol->getSpectrum(requestedpol, ptype);
932  }
933  if ( arr.nelements() == 0 )
934   
935    os << "Not enough polarisations present to do the conversion."
936       << LogIO::POST;
937  arr.tovector(out);
938  return out;
939}
940
941void Scantable::setSpectrum( const std::vector<float>& spec,
942                                   int whichrow )
943{
944  Vector<Float> spectrum(spec);
945  Vector<Float> arr;
946  specCol_.get(whichrow, arr);
947  if ( spectrum.nelements() != arr.nelements() )
948    throw AipsError("The spectrum has incorrect number of channels.");
949  specCol_.put(whichrow, spectrum);
950}
951
952
953String Scantable::generateName()
954{
955  return (File::newUniqueName("./","temp")).baseName();
956}
957
958const casa::Table& Scantable::table( ) const
959{
960  return table_;
961}
962
963casa::Table& Scantable::table( )
964{
965  return table_;
966}
967
968std::string Scantable::getPolType() const
969{
970  return table_.keywordSet().asString("POLTYPE");
971}
972
973void Scantable::unsetSelection()
974{
975  table_ = originalTable_;
976  attach();
977  selector_.reset();
978}
979
980void Scantable::setSelection( const STSelector& selection )
981{
982  Table tab = const_cast<STSelector&>(selection).apply(originalTable_);
983  if ( tab.nrow() == 0 ) {
984    throw(AipsError("Selection contains no data. Not applying it."));
985  }
986  table_ = tab;
987  attach();
988//   tab.rwKeywordSet().define("nBeam",(Int)(getBeamNos().size())) ;
989//   vector<uint> selectedIFs = getIFNos() ;
990//   Int newnIF = selectedIFs.size() ;
991//   tab.rwKeywordSet().define("nIF",newnIF) ;
992//   if ( newnIF != 0 ) {
993//     Int newnChan = 0 ;
994//     for ( Int i = 0 ; i < newnIF ; i++ ) {
995//       Int nChan = nchan( selectedIFs[i] ) ;
996//       if ( newnChan > nChan )
997//         newnChan = nChan ;
998//     }
999//     tab.rwKeywordSet().define("nChan",newnChan) ;
1000//   }
1001//   tab.rwKeywordSet().define("nPol",(Int)(getPolNos().size())) ;
1002  selector_ = selection;
1003}
1004
1005
1006std::string Scantable::headerSummary()
1007{
1008  // Format header info
1009//   STHeader sdh;
1010//   sdh = getHeader();
1011//   sdh.print();
1012  ostringstream oss;
1013  oss.flags(std::ios_base::left);
1014  String tmp;
1015  // Project
1016  table_.keywordSet().get("Project", tmp);
1017  oss << setw(15) << "Project:" << tmp << endl;
1018  // Observation date
1019  oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1020  // Observer
1021  oss << setw(15) << "Observer:"
1022      << table_.keywordSet().asString("Observer") << endl;
1023  // Antenna Name
1024  table_.keywordSet().get("AntennaName", tmp);
1025  oss << setw(15) << "Antenna Name:" << tmp << endl;
1026  // Obs type
1027  table_.keywordSet().get("Obstype", tmp);
1028  // Records (nrow)
1029  oss << setw(15) << "Data Records:" << table_.nrow() << " rows" << endl;
1030  oss << setw(15) << "Obs. Type:" << tmp << endl;
1031  // Beams, IFs, Polarizations, and Channels
1032  oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1033      << setw(15) << "IFs:" << setw(4) << nif() << endl
1034      << setw(15) << "Polarisations:" << setw(4) << npol()
1035      << "(" << getPolType() << ")" << endl
1036      << setw(15) << "Channels:" << nchan() << endl;
1037  // Flux unit
1038  table_.keywordSet().get("FluxUnit", tmp);
1039  oss << setw(15) << "Flux Unit:" << tmp << endl;
1040  // Abscissa Unit
1041  oss << setw(15) << "Abscissa:" << getAbcissaLabel(0) << endl;
1042  // Selection
1043  oss << selector_.print() << endl;
1044
1045  return String(oss);
1046}
1047
1048void Scantable::summary( const std::string& filename )
1049{
1050  ostringstream oss;
1051  ofstream ofs;
1052  LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1053
1054  if (filename != "")
1055    ofs.open( filename.c_str(),  ios::out );
1056
1057  oss << endl;
1058  oss << asap::SEPERATOR << endl;
1059  oss << " Scan Table Summary" << endl;
1060  oss << asap::SEPERATOR << endl;
1061
1062  // Format header info
1063  oss << headerSummary();
1064  oss << endl;
1065
1066  if (table_.nrow() <= 0){
1067    oss << asap::SEPERATOR << endl;
1068    oss << "The MAIN table is empty: there are no data!!!" << endl;
1069    oss << asap::SEPERATOR << endl;
1070
1071    ols << String(oss) << LogIO::POST;
1072    if (ofs) {
1073      ofs << String(oss) << flush;
1074      ofs.close();
1075    }
1076    return;
1077  }
1078
1079
1080
1081  // main table
1082  String dirtype = "Position ("
1083                  + getDirectionRefString()
1084                  + ")";
1085  oss.flags(std::ios_base::left);
1086  oss << setw(5) << "Scan"
1087      << setw(15) << "Source"
1088      << setw(35) << "Time range"
1089      << setw(2) << "" << setw(7) << "Int[s]"
1090      << setw(7) << "Record"
1091      << setw(8) << "SrcType"
1092      << setw(8) << "FreqIDs"
1093      << setw(7) << "MolIDs" << endl;
1094  oss << setw(7)<< "" << setw(6) << "Beam"
1095      << setw(23) << dirtype << endl;
1096
1097  oss << asap::SEPERATOR << endl;
1098
1099  // Flush summary and clear up the string
1100  ols << String(oss) << LogIO::POST;
1101  if (ofs) ofs << String(oss) << flush;
1102  oss.str("");
1103  oss.clear();
1104
1105
1106  // Get Freq_ID map
1107  ROScalarColumn<uInt> ftabIds(frequencies().table(), "ID");
1108  Int nfid = ftabIds.nrow();
1109  if (nfid <= 0){
1110    oss << "FREQUENCIES subtable is empty: there are no data!!!" << endl;
1111    oss << asap::SEPERATOR << endl;
1112
1113    ols << String(oss) << LogIO::POST;
1114    if (ofs) {
1115      ofs << String(oss) << flush;
1116      ofs.close();
1117    }
1118    return;
1119  }
1120  // Storages of overall IFNO, POLNO, and nchan per FREQ_ID
1121  // the orders are identical to ID in FREQ subtable
1122  Block< Vector<uInt> > ifNos(nfid), polNos(nfid);
1123  Vector<Int> fIdchans(nfid,-1);
1124  Vector<Double> fIdfreq0(nfid,-1);
1125  Vector<Double> fIdfcent(nfid,-1);
1126  map<uInt, Int> fidMap;  // (FREQ_ID, row # in FREQ subtable) pair
1127  for (Int i=0; i < nfid; i++){
1128   // fidMap[freqId] returns row number in FREQ subtable
1129   fidMap.insert(pair<uInt, Int>(ftabIds(i),i));
1130   ifNos[i] = Vector<uInt>();
1131   polNos[i] = Vector<uInt>();
1132  }
1133
1134  TableIterator iter(table_, "SCANNO");
1135
1136  // Vars for keeping track of time, freqids, molIds in a SCANNO
1137  //Vector<uInt> freqids;
1138  //Vector<uInt> molids;
1139  Vector<uInt> beamids(1,0);
1140  Vector<MDirection> beamDirs;
1141  Vector<Int> stypeids(1,0);
1142  Vector<String> stypestrs;
1143  Int nfreq(1);
1144  Int nmol(1);
1145  uInt nbeam(1);
1146  uInt nstype(1);
1147
1148  Double btime(0.0), etime(0.0);
1149  Double meanIntTim(0.0);
1150
1151  uInt currFreqId(0), ftabRow(0);
1152  Int iflen(0), pollen(0);
1153
1154  while (!iter.pastEnd()) {
1155    Table subt = iter.table();
1156    uInt snrow = subt.nrow();
1157    ROTableRow row(subt);
1158    const TableRecord& rec = row.get(0);
1159
1160    // relevant columns
1161    ROScalarColumn<Double> mjdCol(subt,"TIME");
1162    ROScalarColumn<Double> intervalCol(subt,"INTERVAL");
1163    MDirection::ROScalarColumn dirCol(subt,"DIRECTION");
1164
1165    ScalarColumn<uInt> freqIdCol(subt,"FREQ_ID");
1166    ScalarColumn<uInt> molIdCol(subt,"MOLECULE_ID");
1167    ROScalarColumn<uInt> beamCol(subt,"BEAMNO");
1168    ROScalarColumn<Int> stypeCol(subt,"SRCTYPE");
1169
1170    ROScalarColumn<uInt> ifNoCol(subt,"IFNO");
1171    ROScalarColumn<uInt> polNoCol(subt,"POLNO");
1172
1173
1174    // Times
1175    meanIntTim = sum(intervalCol.getColumn()) / (double) snrow;
1176    minMax(btime, etime, mjdCol.getColumn());
1177    double shiftInDay(0.5*meanIntTim/C::day);
1178    btime -= shiftInDay;
1179    etime += shiftInDay;
1180
1181    // MOLECULE_ID and FREQ_ID
1182    Vector<uInt> molids(getNumbers(molIdCol));
1183    molids.shape(nmol);
1184
1185    Vector<uInt> freqids(getNumbers(freqIdCol));
1186    freqids.shape(nfreq);
1187
1188    // Add first beamid, and srcNames
1189    beamids.resize(1,False);
1190    beamDirs.resize(1,False);
1191    beamids(0)=beamCol(0);
1192    beamDirs(0)=dirCol(0);
1193    nbeam = 1;
1194
1195    stypeids.resize(1,False);
1196    stypeids(0)=stypeCol(0);
1197    nstype = 1;
1198
1199    // Global listings of nchan/IFNO/POLNO per FREQ_ID
1200    currFreqId=freqIdCol(0);
1201    ftabRow = fidMap[currFreqId];
1202    // Assumes an identical number of channels per FREQ_ID
1203    if (fIdchans(ftabRow) < 0 ) {
1204      RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1205      fIdchans(ftabRow)=(*spec).shape()(0);
1206    }
1207    if (fIdfreq0(ftabRow) < 0 ) {
1208      SpectralCoordinate spc = frequencies().getSpectralCoordinate(ftabRow);
1209      Double fs, fe;
1210      spc.toWorld(fs, 0);
1211      spc.toWorld(fe, fIdchans(ftabRow)-1);
1212      fIdfreq0(ftabRow) = fs;
1213      fIdfcent(ftabRow) = 0.5 * ( fs + fe );
1214    }
1215    // Should keep ifNos and polNos form the previous SCANNO
1216    if ( !anyEQ(ifNos[ftabRow],ifNoCol(0)) ) {
1217      ifNos[ftabRow].shape(iflen);
1218      iflen++;
1219      ifNos[ftabRow].resize(iflen,True);
1220      ifNos[ftabRow](iflen-1) = ifNoCol(0);
1221    }
1222    if ( !anyEQ(polNos[ftabRow],polNoCol(0)) ) {
1223      polNos[ftabRow].shape(pollen);
1224      pollen++;
1225      polNos[ftabRow].resize(pollen,True);
1226      polNos[ftabRow](pollen-1) = polNoCol(0);
1227    }
1228
1229    for (uInt i=1; i < snrow; i++){
1230      // Need to list BEAMNO and DIRECTION in the same order
1231      if ( !anyEQ(beamids,beamCol(i)) ) {
1232        nbeam++;
1233        beamids.resize(nbeam,True);
1234        beamids(nbeam-1)=beamCol(i);
1235        beamDirs.resize(nbeam,True);
1236        beamDirs(nbeam-1)=dirCol(i);
1237      }
1238
1239      // SRCTYPE is Int (getNumber takes only uInt)
1240      if ( !anyEQ(stypeids,stypeCol(i)) ) {
1241        nstype++;
1242        stypeids.resize(nstype,True);
1243        stypeids(nstype-1)=stypeCol(i);
1244      }
1245
1246      // Global listings of nchan/IFNO/POLNO per FREQ_ID
1247      currFreqId=freqIdCol(i);
1248      ftabRow = fidMap[currFreqId];
1249      if (fIdchans(ftabRow) < 0 ) {
1250        const TableRecord& rec = row.get(i);
1251        RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1252        fIdchans(ftabRow) = (*spec).shape()(0);
1253      }
1254      if (fIdfreq0(ftabRow) < 0 ) {
1255        SpectralCoordinate spc = frequencies().getSpectralCoordinate(ftabRow);
1256        Double fs, fe;
1257        spc.toWorld(fs, 0);
1258        spc.toWorld(fe, fIdchans(ftabRow)-1);
1259        fIdfreq0(ftabRow) = fs;
1260        fIdfcent(ftabRow) = 5.e-1 * ( fs + fe );
1261      }
1262      if ( !anyEQ(ifNos[ftabRow],ifNoCol(i)) ) {
1263        ifNos[ftabRow].shape(iflen);
1264        iflen++;
1265        ifNos[ftabRow].resize(iflen,True);
1266        ifNos[ftabRow](iflen-1) = ifNoCol(i);
1267      }
1268      if ( !anyEQ(polNos[ftabRow],polNoCol(i)) ) {
1269        polNos[ftabRow].shape(pollen);
1270        pollen++;
1271        polNos[ftabRow].resize(pollen,True);
1272        polNos[ftabRow](pollen-1) = polNoCol(i);
1273      }
1274    } // end of row iteration
1275
1276    stypestrs.resize(nstype,False);
1277    for (uInt j=0; j < nstype; j++)
1278      stypestrs(j) = SrcType::getName(stypeids(j));
1279
1280    // Format Scan summary
1281    oss << setw(4) << std::right << rec.asuInt("SCANNO")
1282        << std::left << setw(1) << ""
1283        << setw(15) << rec.asString("SRCNAME")
1284        << setw(21) << MVTime(btime).string(MVTime::YMD,8)
1285        << setw(3) << " - " << MVTime(etime).string(MVTime::TIME,8)
1286        << setw(3) << "" << setw(6) << meanIntTim << setw(1) << ""
1287        << std::right << setw(5) << snrow << setw(2) << ""
1288        << std::left << stypestrs << setw(1) << ""
1289        << freqids << setw(1) << ""
1290        << molids  << endl;
1291    // Format Beam summary
1292    for (uInt j=0; j < nbeam; j++) {
1293      oss << setw(7) << "" << setw(6) << beamids(j) << setw(1) << ""
1294          << formatDirection(beamDirs(j),9) << endl;
1295    }
1296    // Flush summary every scan and clear up the string
1297    ols << String(oss) << LogIO::POST;
1298    if (ofs) ofs << String(oss) << flush;
1299    oss.str("");
1300    oss.clear();
1301
1302    ++iter;
1303  } // end of scan iteration
1304  oss << asap::SEPERATOR << endl;
1305 
1306  // List FRECUENCIES Table (using STFrequencies.print may be slow)
1307  oss << "FREQUENCIES: " << nfreq << endl;
1308//   oss << std::right << setw(5) << "ID" << setw(2) << ""
1309//       << std::left  << setw(5) << "IFNO" << setw(2) << ""
1310//       << setw(8) << "Frame"
1311//       << setw(16) << "RefVal"
1312//       << setw(7) << "RefPix"
1313//       << setw(15) << "Increment"
1314//       << setw(9) << "Channels"
1315//       << setw(6) << "POLNOs" << endl;
1316//   Int tmplen;
1317//   for (Int i=0; i < nfid; i++){
1318//     // List row=i of FREQUENCIES subtable
1319//     ifNos[i].shape(tmplen);
1320//     if (tmplen >= 1) {
1321//       oss << std::right << setw(5) << ftabIds(i) << setw(2) << ""
1322//        << setw(3) << ifNos[i](0) << setw(1) << ""
1323//        << std::left << setw(46) << frequencies().print(ftabIds(i))
1324//        << setw(2) << ""
1325//        << std::right << setw(8) << fIdchans[i] << setw(2) << ""
1326//        << std::left << polNos[i];
1327//       if (tmplen > 1) {
1328//      oss  << " (" << tmplen << " chains)";
1329//       }
1330//       oss << endl;
1331//     }
1332  oss << std::right << setw(4) << "ID" << setw(2) << ""
1333      << std::left  << setw(9) << "IFNO(SPW)" << setw(2) << ""
1334      << setw(8) << "#Chans"
1335      << setw(8) << "Frame"
1336      << setw(12) << "Ch0[MHz]"
1337      << setw(14) << "ChanWid[kHz]"
1338      << setw(14) << "Center[MHz]"
1339      << setw(6) << "POLNOs" << endl;
1340  Int tmplen;
1341  for (Int i=0; i < nfid; i++){
1342    // List row=i of FREQUENCIES subtable
1343    ifNos[i].shape(tmplen);
1344    Double refpix, refval, increment ;
1345    if (tmplen >= 1) {
1346      freqTable_.getEntry( refpix, refval, increment, ftabIds(i) ) ;
1347      oss << std::right << setw(4) << ftabIds(i) << setw(2) << ""
1348          << std::left << setw(9) << ifNos[i](0) << setw(2) << ""
1349          << std::right << setw(6) << fIdchans[i] << setw(2) << ""
1350          << setw(6) << frequencies().getFrameString(true)
1351          << setw(2) << ""
1352          << setw(10) << std::setprecision(9) << (fIdfreq0[i]*1.e-6) << setw(2) << ""
1353          << setw(12) << (increment*1.e-3) << setw(2) << ""
1354          << setw(12) << (fIdfcent[i]*1.e-6) << setw(2) << ""
1355          << std::left << polNos[i];
1356      if (tmplen > 1) {
1357        oss  << " (" << tmplen << " chains)";
1358      }
1359      oss << endl;
1360    }
1361   
1362  }
1363  oss << asap::SEPERATOR << endl;
1364
1365  // List MOLECULES Table (currently lists all rows)
1366  oss << "MOLECULES: " << endl;
1367  if (molecules().nrow() <= 0) {
1368    oss << "   MOLECULES subtable is empty: there are no data" << endl;
1369  } else {
1370    ROTableRow row(molecules().table());
1371    oss << std::right << setw(5) << "ID"
1372        << std::left << setw(3) << ""
1373        << setw(18) << "RestFreq"
1374        << setw(15) << "Name" << endl;
1375    for (Int i=0; i < molecules().nrow(); i++){
1376      const TableRecord& rec=row.get(i);
1377      oss << std::right << setw(5) << rec.asuInt("ID")
1378          << std::left << setw(3) << ""
1379          << rec.asArrayDouble("RESTFREQUENCY") << setw(1) << ""
1380          << rec.asArrayString("NAME") << endl;
1381    }
1382  }
1383  oss << asap::SEPERATOR << endl;
1384  ols << String(oss) << LogIO::POST;
1385  if (ofs) {
1386    ofs << String(oss) << flush;
1387    ofs.close();
1388  }
1389  //  return String(oss);
1390}
1391
1392
1393std::string Scantable::oldheaderSummary()
1394{
1395  // Format header info
1396//   STHeader sdh;
1397//   sdh = getHeader();
1398//   sdh.print();
1399  ostringstream oss;
1400  oss.flags(std::ios_base::left);
1401  oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1402      << setw(15) << "IFs:" << setw(4) << nif() << endl
1403      << setw(15) << "Polarisations:" << setw(4) << npol()
1404      << "(" << getPolType() << ")" << endl
1405      << setw(15) << "Channels:" << nchan() << endl;
1406  String tmp;
1407  oss << setw(15) << "Observer:"
1408      << table_.keywordSet().asString("Observer") << endl;
1409  oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1410  table_.keywordSet().get("Project", tmp);
1411  oss << setw(15) << "Project:" << tmp << endl;
1412  table_.keywordSet().get("Obstype", tmp);
1413  oss << setw(15) << "Obs. Type:" << tmp << endl;
1414  table_.keywordSet().get("AntennaName", tmp);
1415  oss << setw(15) << "Antenna Name:" << tmp << endl;
1416  table_.keywordSet().get("FluxUnit", tmp);
1417  oss << setw(15) << "Flux Unit:" << tmp << endl;
1418  int nid = moleculeTable_.nrow();
1419  Bool firstline = True;
1420  oss << setw(15) << "Rest Freqs:";
1421  for (int i=0; i<nid; i++) {
1422    Table t = table_(table_.col("MOLECULE_ID") == i, 1);
1423      if (t.nrow() >  0) {
1424          Vector<Double> vec(moleculeTable_.getRestFrequency(i));
1425          if (vec.nelements() > 0) {
1426               if (firstline) {
1427                   oss << setprecision(10) << vec << " [Hz]" << endl;
1428                   firstline=False;
1429               }
1430               else{
1431                   oss << setw(15)<<" " << setprecision(10) << vec << " [Hz]" << endl;
1432               }
1433          } else {
1434              oss << "none" << endl;
1435          }
1436      }
1437  }
1438
1439  oss << setw(15) << "Abcissa:" << getAbcissaLabel(0) << endl;
1440  oss << selector_.print() << endl;
1441  return String(oss);
1442}
1443
1444  //std::string Scantable::summary( const std::string& filename )
1445void Scantable::oldsummary( const std::string& filename )
1446{
1447  ostringstream oss;
1448  ofstream ofs;
1449  LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1450
1451  if (filename != "")
1452    ofs.open( filename.c_str(),  ios::out );
1453
1454  oss << endl;
1455  oss << asap::SEPERATOR << endl;
1456  oss << " Scan Table Summary" << endl;
1457  oss << asap::SEPERATOR << endl;
1458
1459  // Format header info
1460  oss << oldheaderSummary();
1461  oss << endl;
1462
1463  // main table
1464  String dirtype = "Position ("
1465                  + getDirectionRefString()
1466                  + ")";
1467  oss.flags(std::ios_base::left);
1468  oss << setw(5) << "Scan" << setw(15) << "Source"
1469      << setw(10) << "Time" << setw(18) << "Integration"
1470      << setw(15) << "Source Type" << endl;
1471  oss << setw(5) << "" << setw(5) << "Beam" << setw(3) << "" << dirtype << endl;
1472  oss << setw(10) << "" << setw(3) << "IF" << setw(3) << ""
1473      << setw(8) << "Frame" << setw(16)
1474      << "RefVal" << setw(10) << "RefPix" << setw(12) << "Increment"
1475      << setw(7) << "Channels"
1476      << endl;
1477  oss << asap::SEPERATOR << endl;
1478
1479  // Flush summary and clear up the string
1480  ols << String(oss) << LogIO::POST;
1481  if (ofs) ofs << String(oss) << flush;
1482  oss.str("");
1483  oss.clear();
1484
1485  TableIterator iter(table_, "SCANNO");
1486  while (!iter.pastEnd()) {
1487    Table subt = iter.table();
1488    ROTableRow row(subt);
1489    MEpoch::ROScalarColumn timeCol(subt,"TIME");
1490    const TableRecord& rec = row.get(0);
1491    oss << setw(4) << std::right << rec.asuInt("SCANNO")
1492        << std::left << setw(1) << ""
1493        << setw(15) << rec.asString("SRCNAME")
1494        << setw(10) << formatTime(timeCol(0), false);
1495    // count the cycles in the scan
1496    TableIterator cyciter(subt, "CYCLENO");
1497    int nint = 0;
1498    while (!cyciter.pastEnd()) {
1499      ++nint;
1500      ++cyciter;
1501    }
1502    oss << setw(3) << std::right << nint  << setw(3) << " x " << std::left
1503        << setw(11) <<  formatSec(rec.asFloat("INTERVAL")) << setw(1) << ""
1504        << setw(15) << SrcType::getName(rec.asInt("SRCTYPE")) << endl;
1505
1506    TableIterator biter(subt, "BEAMNO");
1507    while (!biter.pastEnd()) {
1508      Table bsubt = biter.table();
1509      ROTableRow brow(bsubt);
1510      const TableRecord& brec = brow.get(0);
1511      uInt row0 = bsubt.rowNumbers(table_)[0];
1512      oss << setw(5) << "" <<  setw(4) << std::right << brec.asuInt("BEAMNO")<< std::left;
1513      oss  << setw(4) << ""  << formatDirection(getDirection(row0)) << endl;
1514      TableIterator iiter(bsubt, "IFNO");
1515      while (!iiter.pastEnd()) {
1516        Table isubt = iiter.table();
1517        ROTableRow irow(isubt);
1518        const TableRecord& irec = irow.get(0);
1519        oss << setw(9) << "";
1520        oss << setw(3) << std::right << irec.asuInt("IFNO") << std::left
1521            << setw(1) << "" << frequencies().print(irec.asuInt("FREQ_ID"))
1522            << setw(3) << "" << nchan(irec.asuInt("IFNO"))
1523            << endl;
1524
1525        ++iiter;
1526      }
1527      ++biter;
1528    }
1529    // Flush summary every scan and clear up the string
1530    ols << String(oss) << LogIO::POST;
1531    if (ofs) ofs << String(oss) << flush;
1532    oss.str("");
1533    oss.clear();
1534
1535    ++iter;
1536  }
1537  oss << asap::SEPERATOR << endl;
1538  ols << String(oss) << LogIO::POST;
1539  if (ofs) {
1540    ofs << String(oss) << flush;
1541    ofs.close();
1542  }
1543  //  return String(oss);
1544}
1545
1546// std::string Scantable::getTime(int whichrow, bool showdate) const
1547// {
1548//   MEpoch::ROScalarColumn timeCol(table_, "TIME");
1549//   MEpoch me;
1550//   if (whichrow > -1) {
1551//     me = timeCol(uInt(whichrow));
1552//   } else {
1553//     Double tm;
1554//     table_.keywordSet().get("UTC",tm);
1555//     me = MEpoch(MVEpoch(tm));
1556//   }
1557//   return formatTime(me, showdate);
1558// }
1559
1560std::string Scantable::getTime(int whichrow, bool showdate, uInt prec) const
1561{
1562  MEpoch me;
1563  me = getEpoch(whichrow);
1564  return formatTime(me, showdate, prec);
1565}
1566
1567MEpoch Scantable::getEpoch(int whichrow) const
1568{
1569  if (whichrow > -1) {
1570    return timeCol_(uInt(whichrow));
1571  } else {
1572    Double tm;
1573    table_.keywordSet().get("UTC",tm);
1574    return MEpoch(MVEpoch(tm));
1575  }
1576}
1577
1578std::string Scantable::getDirectionString(int whichrow) const
1579{
1580  return formatDirection(getDirection(uInt(whichrow)));
1581}
1582
1583
1584SpectralCoordinate Scantable::getSpectralCoordinate(int whichrow) const {
1585  const MPosition& mp = getAntennaPosition();
1586  const MDirection& md = getDirection(whichrow);
1587  const MEpoch& me = timeCol_(whichrow);
1588  //Double rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1589  Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1590  return freqTable_.getSpectralCoordinate(md, mp, me, rf,
1591                                          mfreqidCol_(whichrow));
1592}
1593
1594std::vector< double > Scantable::getAbcissa( int whichrow ) const
1595{
1596  if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal row number"));
1597  std::vector<double> stlout;
1598  int nchan = specCol_(whichrow).nelements();
1599  String us = freqTable_.getUnitString();
1600  if ( us == "" || us == "pixel" || us == "channel" ) {
1601    for (int i=0; i<nchan; ++i) {
1602      stlout.push_back(double(i));
1603    }
1604    return stlout;
1605  }
1606  SpectralCoordinate spc = getSpectralCoordinate(whichrow);
1607  Vector<Double> pixel(nchan);
1608  Vector<Double> world;
1609  indgen(pixel);
1610  if ( Unit(us) == Unit("Hz") ) {
1611    for ( int i=0; i < nchan; ++i) {
1612      Double world;
1613      spc.toWorld(world, pixel[i]);
1614      stlout.push_back(double(world));
1615    }
1616  } else if ( Unit(us) == Unit("km/s") ) {
1617    Vector<Double> world;
1618    spc.pixelToVelocity(world, pixel);
1619    world.tovector(stlout);
1620  }
1621  return stlout;
1622}
1623void Scantable::setDirectionRefString( const std::string & refstr )
1624{
1625  MDirection::Types mdt;
1626  if (refstr != "" && !MDirection::getType(mdt, refstr)) {
1627    throw(AipsError("Illegal Direction frame."));
1628  }
1629  if ( refstr == "" ) {
1630    String defaultstr = MDirection::showType(dirCol_.getMeasRef().getType());
1631    table_.rwKeywordSet().define("DIRECTIONREF", defaultstr);
1632  } else {
1633    table_.rwKeywordSet().define("DIRECTIONREF", String(refstr));
1634  }
1635}
1636
1637std::string Scantable::getDirectionRefString( ) const
1638{
1639  return table_.keywordSet().asString("DIRECTIONREF");
1640}
1641
1642MDirection Scantable::getDirection(int whichrow ) const
1643{
1644  String usertype = table_.keywordSet().asString("DIRECTIONREF");
1645  String type = MDirection::showType(dirCol_.getMeasRef().getType());
1646  if ( usertype != type ) {
1647    MDirection::Types mdt;
1648    if (!MDirection::getType(mdt, usertype)) {
1649      throw(AipsError("Illegal Direction frame."));
1650    }
1651    return dirCol_.convert(uInt(whichrow), mdt);
1652  } else {
1653    return dirCol_(uInt(whichrow));
1654  }
1655}
1656
1657std::string Scantable::getAbcissaLabel( int whichrow ) const
1658{
1659  if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal ro number"));
1660  const MPosition& mp = getAntennaPosition();
1661  const MDirection& md = getDirection(whichrow);
1662  const MEpoch& me = timeCol_(whichrow);
1663  //const Double& rf = mmolidCol_(whichrow);
1664  const Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1665  SpectralCoordinate spc =
1666    freqTable_.getSpectralCoordinate(md, mp, me, rf, mfreqidCol_(whichrow));
1667
1668  String s = "Channel";
1669  Unit u = Unit(freqTable_.getUnitString());
1670  if (u == Unit("km/s")) {
1671    s = CoordinateUtil::axisLabel(spc, 0, True,True,  True);
1672  } else if (u == Unit("Hz")) {
1673    Vector<String> wau(1);wau = u.getName();
1674    spc.setWorldAxisUnits(wau);
1675    s = CoordinateUtil::axisLabel(spc, 0, True, True, False);
1676  }
1677  return s;
1678
1679}
1680
1681/**
1682void asap::Scantable::setRestFrequencies( double rf, const std::string& name,
1683                                          const std::string& unit )
1684**/
1685void Scantable::setRestFrequencies( vector<double> rf, const vector<std::string>& name,
1686                                          const std::string& unit )
1687
1688{
1689  ///@todo lookup in line table to fill in name and formattedname
1690  Unit u(unit);
1691  //Quantum<Double> urf(rf, u);
1692  Quantum<Vector<Double> >urf(rf, u);
1693  Vector<String> formattedname(0);
1694  //cerr<<"Scantable::setRestFrequnecies="<<urf<<endl;
1695
1696  //uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), name, "");
1697  uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), mathutil::toVectorString(name), formattedname);
1698  TableVector<uInt> tabvec(table_, "MOLECULE_ID");
1699  tabvec = id;
1700}
1701
1702/**
1703void asap::Scantable::setRestFrequencies( const std::string& name )
1704{
1705  throw(AipsError("setRestFrequencies( const std::string& name ) NYI"));
1706  ///@todo implement
1707}
1708**/
1709
1710void Scantable::setRestFrequencies( const vector<std::string>& name )
1711{
1712  (void) name; // suppress unused warning
1713  throw(AipsError("setRestFrequencies( const vector<std::string>& name ) NYI"));
1714  ///@todo implement
1715}
1716
1717std::vector< unsigned int > Scantable::rownumbers( ) const
1718{
1719  std::vector<unsigned int> stlout;
1720  Vector<uInt> vec = table_.rowNumbers();
1721  vec.tovector(stlout);
1722  return stlout;
1723}
1724
1725
1726Matrix<Float> Scantable::getPolMatrix( uInt whichrow ) const
1727{
1728  ROTableRow row(table_);
1729  const TableRecord& rec = row.get(whichrow);
1730  Table t =
1731    originalTable_( originalTable_.col("SCANNO") == Int(rec.asuInt("SCANNO"))
1732                    && originalTable_.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1733                    && originalTable_.col("IFNO") == Int(rec.asuInt("IFNO"))
1734                    && originalTable_.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
1735  ROArrayColumn<Float> speccol(t, "SPECTRA");
1736  return speccol.getColumn();
1737}
1738
1739std::vector< std::string > Scantable::columnNames( ) const
1740{
1741  Vector<String> vec = table_.tableDesc().columnNames();
1742  return mathutil::tovectorstring(vec);
1743}
1744
1745MEpoch::Types Scantable::getTimeReference( ) const
1746{
1747  return MEpoch::castType(timeCol_.getMeasRef().getType());
1748}
1749
1750void Scantable::addFit( const STFitEntry& fit, int row )
1751{
1752  //cout << mfitidCol_(uInt(row)) << endl;
1753  LogIO os( LogOrigin( "Scantable", "addFit()", WHERE ) ) ;
1754  os << mfitidCol_(uInt(row)) << LogIO::POST ;
1755  uInt id = fitTable_.addEntry(fit, mfitidCol_(uInt(row)));
1756  mfitidCol_.put(uInt(row), id);
1757}
1758
1759void Scantable::shift(int npix)
1760{
1761  Vector<uInt> fids(mfreqidCol_.getColumn());
1762  genSort( fids, Sort::Ascending,
1763           Sort::QuickSort|Sort::NoDuplicates );
1764  for (uInt i=0; i<fids.nelements(); ++i) {
1765    frequencies().shiftRefPix(npix, fids[i]);
1766  }
1767}
1768
1769String Scantable::getAntennaName() const
1770{
1771  String out;
1772  table_.keywordSet().get("AntennaName", out);
1773  String::size_type pos1 = out.find("@") ;
1774  String::size_type pos2 = out.find("//") ;
1775  if ( pos2 != String::npos )
1776    out = out.substr(pos2+2,pos1-pos2-2) ;
1777  else if ( pos1 != String::npos )
1778    out = out.substr(0,pos1) ;
1779  return out;
1780}
1781
1782int Scantable::checkScanInfo(const std::vector<int>& scanlist) const
1783{
1784  String tbpath;
1785  int ret = 0;
1786  if ( table_.keywordSet().isDefined("GBT_GO") ) {
1787    table_.keywordSet().get("GBT_GO", tbpath);
1788    Table t(tbpath,Table::Old);
1789    // check each scan if other scan of the pair exist
1790    int nscan = scanlist.size();
1791    for (int i = 0; i < nscan; i++) {
1792      Table subt = t( t.col("SCAN") == scanlist[i] );
1793      if (subt.nrow()==0) {
1794        //cerr <<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<endl;
1795        LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1796        os <<LogIO::WARN<<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<LogIO::POST;
1797        ret = 1;
1798        break;
1799      }
1800      ROTableRow row(subt);
1801      const TableRecord& rec = row.get(0);
1802      int scan1seqn = rec.asuInt("PROCSEQN");
1803      int laston1 = rec.asuInt("LASTON");
1804      if ( rec.asuInt("PROCSIZE")==2 ) {
1805        if ( i < nscan-1 ) {
1806          Table subt2 = t( t.col("SCAN") == scanlist[i+1] );
1807          if ( subt2.nrow() == 0) {
1808            LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1809
1810            //cerr<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<endl;
1811            os<<LogIO::WARN<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<LogIO::POST;
1812            ret = 1;
1813            break;
1814          }
1815          ROTableRow row2(subt2);
1816          const TableRecord& rec2 = row2.get(0);
1817          int scan2seqn = rec2.asuInt("PROCSEQN");
1818          int laston2 = rec2.asuInt("LASTON");
1819          if (scan1seqn == 1 && scan2seqn == 2) {
1820            if (laston1 == laston2) {
1821              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1822              //cerr<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1823              os<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
1824              i +=1;
1825            }
1826            else {
1827              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1828              //cerr<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1829              os<<LogIO::WARN<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
1830            }
1831          }
1832          else if (scan1seqn==2 && scan2seqn == 1) {
1833            if (laston1 == laston2) {
1834              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1835              //cerr<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<endl;
1836              os<<LogIO::WARN<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<LogIO::POST;
1837              ret = 1;
1838              break;
1839            }
1840          }
1841          else {
1842            LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1843            //cerr<<"The other scan for  "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<endl;
1844            os<<LogIO::WARN<<"The other scan for  "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<LogIO::POST;
1845            ret = 1;
1846            break;
1847          }
1848        }
1849      }
1850      else {
1851        LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1852        //cerr<<"The scan does not appear to be standard obsevation."<<endl;
1853        os<<LogIO::WARN<<"The scan does not appear to be standard obsevation."<<LogIO::POST;
1854      }
1855    //if ( i >= nscan ) break;
1856    }
1857  }
1858  else {
1859    LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1860    //cerr<<"No reference to GBT_GO table."<<endl;
1861    os<<LogIO::WARN<<"No reference to GBT_GO table."<<LogIO::POST;
1862    ret = 1;
1863  }
1864  return ret;
1865}
1866
1867std::vector<double> Scantable::getDirectionVector(int whichrow) const
1868{
1869  Vector<Double> Dir = dirCol_(whichrow).getAngle("rad").getValue();
1870  std::vector<double> dir;
1871  Dir.tovector(dir);
1872  return dir;
1873}
1874
1875void asap::Scantable::reshapeSpectrum( int nmin, int nmax )
1876  throw( casa::AipsError )
1877{
1878  // assumed that all rows have same nChan
1879  Vector<Float> arr = specCol_( 0 ) ;
1880  int nChan = arr.nelements() ;
1881
1882  // if nmin < 0 or nmax < 0, nothing to do
1883  if (  nmin < 0 ) {
1884    throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1885    }
1886  if (  nmax < 0  ) {
1887    throw( casa::indexError<int>( nmax, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1888  }
1889
1890  // if nmin > nmax, exchange values
1891  if ( nmin > nmax ) {
1892    int tmp = nmax ;
1893    nmax = nmin ;
1894    nmin = tmp ;
1895    LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1896    os << "Swap values. Applied range is ["
1897       << nmin << ", " << nmax << "]" << LogIO::POST ;
1898  }
1899
1900  // if nmin exceeds nChan, nothing to do
1901  if ( nmin >= nChan ) {
1902    throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Specified minimum exceeds nChan." ) ) ;
1903  }
1904
1905  // if nmax exceeds nChan, reset nmax to nChan
1906  if ( nmax >= nChan-1 ) {
1907    if ( nmin == 0 ) {
1908      // nothing to do
1909      LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1910      os << "Whole range is selected. Nothing to do." << LogIO::POST ;
1911      return ;
1912    }
1913    else {
1914      LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1915      os << "Specified maximum exceeds nChan. Applied range is ["
1916         << nmin << ", " << nChan-1 << "]." << LogIO::POST ;
1917      nmax = nChan - 1 ;
1918    }
1919  }
1920
1921  // reshape specCol_ and flagCol_
1922  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1923    reshapeSpectrum( nmin, nmax, irow ) ;
1924  }
1925
1926  // update FREQUENCIES subtable
1927  Vector<uInt> freqIdArray = mfreqidCol_.getColumn();
1928  uInt numFreqId = GenSort<uInt>::sort(freqIdArray, Sort::Ascending,
1929                                       Sort::HeapSort | Sort::NoDuplicates);
1930  Double refpix ;
1931  Double refval ;
1932  Double increment ;
1933  for (uInt irow  = 0; irow < numFreqId; irow++) {
1934    freqTable_.getEntry( refpix, refval, increment, freqIdArray[irow] ) ;
1935    /***
1936     * need to shift refpix to nmin
1937     * note that channel nmin in old index will be channel 0 in new one
1938     ***/
1939    refval = refval - ( refpix - nmin ) * increment ;
1940    refpix = 0 ;
1941    freqTable_.setEntry( refpix, refval, increment, freqIdArray[irow] ) ;
1942  }
1943
1944  // update nchan
1945  int newsize = nmax - nmin + 1 ;
1946  table_.rwKeywordSet().define( "nChan", newsize ) ;
1947
1948  // update bandwidth
1949  // assumed all spectra in the scantable have same bandwidth
1950  table_.rwKeywordSet().define( "Bandwidth", increment * newsize ) ;
1951
1952  return ;
1953}
1954
1955void asap::Scantable::reshapeSpectrum( int nmin, int nmax, int irow )
1956{
1957  // reshape specCol_ and flagCol_
1958  Vector<Float> oldspec = specCol_( irow ) ;
1959  Vector<uChar> oldflag = flagsCol_( irow ) ;
1960  Vector<Float> oldtsys = tsysCol_( irow ) ;
1961  uInt newsize = nmax - nmin + 1 ;
1962  Slice slice( nmin, newsize, 1 ) ;
1963  specCol_.put( irow, oldspec( slice ) ) ;
1964  flagsCol_.put( irow, oldflag( slice ) ) ;
1965  if ( oldspec.size() == oldtsys.size() )
1966    tsysCol_.put( irow, oldtsys( slice ) ) ;
1967
1968  return ;
1969}
1970
1971void asap::Scantable::regridSpecChannel( double dnu, int nChan )
1972{
1973  LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
1974  os << "Regrid abcissa with spectral resoultion " << dnu << " " << freqTable_.getUnitString() << " with channel number " << ((nChan>0)? String(nChan) : "covering band width")<< LogIO::POST ;
1975  int freqnrow = freqTable_.table().nrow() ;
1976  Vector<bool> firstTime( freqnrow, true ) ;
1977  double oldincr, factor;
1978  uInt currId;
1979  Double refpix ;
1980  Double refval ;
1981  Double increment ;
1982  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1983    currId = mfreqidCol_(irow);
1984    vector<double> abcissa = getAbcissa( irow ) ;
1985    if (nChan < 0) {
1986      int oldsize = abcissa.size() ;
1987      double bw = (abcissa[oldsize-1]-abcissa[0]) +                     \
1988        0.5 * (abcissa[1]-abcissa[0] + abcissa[oldsize-1]-abcissa[oldsize-2]) ;
1989      nChan = int( ceil( abs(bw/dnu) ) ) ;
1990    }
1991    // actual regridding
1992    regridChannel( nChan, dnu, irow ) ;
1993
1994    // update FREQUENCIES subtable
1995    if (firstTime[currId]) {
1996      oldincr = abcissa[1]-abcissa[0] ;
1997      factor = dnu/oldincr ;
1998      firstTime[currId] = false ;
1999      freqTable_.getEntry( refpix, refval, increment, currId ) ;
2000
2001      //refval = refval - ( refpix + 0.5 * (1 - factor) ) * increment ;
2002      if (factor > 0 ) {
2003        refpix = (refpix + 0.5)/factor - 0.5;
2004      } else {
2005        refpix = (abcissa.size() - 0.5 - refpix)/abs(factor) - 0.5;
2006      }
2007      freqTable_.setEntry( refpix, refval, increment*factor, currId ) ;
2008      //os << "ID" << currId << ": channel width (Orig) = " << oldincr << " [" << freqTable_.getUnitString() << "], scale factor = " << factor << LogIO::POST ;
2009      //os << "     frequency increment (Orig) = " << increment << "-> (New) " << increment*factor << LogIO::POST ;
2010    }
2011  }
2012}
2013
2014void asap::Scantable::regridChannel( int nChan, double dnu )
2015{
2016  LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
2017  os << "Regrid abcissa with channel number " << nChan << " and spectral resoultion " << dnu << "Hz." << LogIO::POST ;
2018  // assumed that all rows have same nChan
2019  Vector<Float> arr = specCol_( 0 ) ;
2020  int oldsize = arr.nelements() ;
2021
2022  // if oldsize == nChan, nothing to do
2023  if ( oldsize == nChan ) {
2024    os << "Specified channel number is same as current one. Nothing to do." << LogIO::POST ;
2025    return ;
2026  }
2027
2028  // if oldChan < nChan, unphysical operation
2029  if ( oldsize < nChan ) {
2030    os << "Unphysical operation. Nothing to do." << LogIO::POST ;
2031    return ;
2032  }
2033
2034  // change channel number for specCol_, flagCol_, and tsysCol_ (if necessary)
2035  vector<string> coordinfo = getCoordInfo() ;
2036  string oldinfo = coordinfo[0] ;
2037  coordinfo[0] = "Hz" ;
2038  setCoordInfo( coordinfo ) ;
2039  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
2040    regridChannel( nChan, dnu, irow ) ;
2041  }
2042  coordinfo[0] = oldinfo ;
2043  setCoordInfo( coordinfo ) ;
2044
2045
2046  // NOTE: this method does not update metadata such as
2047  //       FREQUENCIES subtable, nChan, Bandwidth, etc.
2048
2049  return ;
2050}
2051
2052void asap::Scantable::regridChannel( int nChan, double dnu, int irow )
2053{
2054  // logging
2055  //ofstream ofs( "average.log", std::ios::out | std::ios::app ) ;
2056  //ofs << "IFNO = " << getIF( irow ) << " irow = " << irow << endl ;
2057
2058  Vector<Float> oldspec = specCol_( irow ) ;
2059  Vector<uChar> oldflag = flagsCol_( irow ) ;
2060  Vector<Float> oldtsys = tsysCol_( irow ) ;
2061  Vector<Float> newspec( nChan, 0 ) ;
2062  Vector<uChar> newflag( nChan, true ) ;
2063  Vector<Float> newtsys ;
2064  bool regridTsys = false ;
2065  if (oldtsys.size() == oldspec.size()) {
2066    regridTsys = true ;
2067    newtsys.resize(nChan,false) ;
2068    newtsys = 0 ;
2069  }
2070
2071  // regrid
2072  vector<double> abcissa = getAbcissa( irow ) ;
2073  int oldsize = abcissa.size() ;
2074  double olddnu = abcissa[1] - abcissa[0] ;
2075  //int ichan = 0 ;
2076  double wsum = 0.0 ;
2077  Vector<double> zi( nChan+1 ) ;
2078  Vector<double> yi( oldsize + 1 ) ;
2079  yi[0] = abcissa[0] - 0.5 * olddnu ;
2080  for ( int ii = 1 ; ii < oldsize ; ii++ )
2081    yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ;
2082  yi[oldsize] = abcissa[oldsize-1] \
2083    + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ;
2084  //zi[0] = abcissa[0] - 0.5 * olddnu ;
2085  zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ;
2086  for ( int ii = 1 ; ii < nChan ; ii++ )
2087    zi[ii] = zi[0] + dnu * ii ;
2088  zi[nChan] = zi[nChan-1] + dnu ;
2089  // Access zi and yi in ascending order
2090  int izs = ((dnu > 0) ? 0 : nChan ) ;
2091  int ize = ((dnu > 0) ? nChan : 0 ) ;
2092  int izincr = ((dnu > 0) ? 1 : -1 ) ;
2093  int ichan =  ((olddnu > 0) ? 0 : oldsize ) ;
2094  int iye = ((olddnu > 0) ? oldsize : 0 ) ;
2095  int iyincr = ((olddnu > 0) ? 1 : -1 ) ;
2096  //for ( int ii = izs ; ii != ize ; ii+=izincr ){
2097  int ii = izs ;
2098  while (ii != ize) {
2099    // always zl < zr
2100    double zl = zi[ii] ;
2101    double zr = zi[ii+izincr] ;
2102    // Need to access smaller index for the new spec, flag, and tsys.
2103    // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc.
2104    int i = min(ii, ii+izincr) ;
2105    //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) {
2106    int jj = ichan ;
2107    while (jj != iye) {
2108      // always yl < yr
2109      double yl = yi[jj] ;
2110      double yr = yi[jj+iyincr] ;
2111      // Need to access smaller index for the original spec, flag, and tsys.
2112      // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc.
2113      int j = min(jj, jj+iyincr) ;
2114      if ( yr <= zl ) {
2115        jj += iyincr ;
2116        continue ;
2117      }
2118      else if ( yl <= zl ) {
2119        if ( yr < zr ) {
2120          if (!oldflag[j]) {
2121            newspec[i] += oldspec[j] * ( yr - zl ) ;
2122            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ;
2123            wsum += ( yr - zl ) ;
2124          }
2125          newflag[i] = (newflag[i] && oldflag[j]) ? 1 << 7 : 0 ;
2126        }
2127        else {
2128          if (!oldflag[j]) {
2129            newspec[i] += oldspec[j] * abs(dnu) ;
2130            if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ;
2131            wsum += abs(dnu) ;
2132          }
2133          newflag[i] = (newflag[i] && oldflag[j]) ? 1 << 7 : 0 ;
2134          ichan = jj ;
2135          break ;
2136        }
2137      }
2138      else if ( yl < zr ) {
2139        if ( yr <= zr ) {
2140          if (!oldflag[j]) {
2141            newspec[i] += oldspec[j] * ( yr - yl ) ;
2142            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ;
2143            wsum += ( yr - yl ) ;
2144          }
2145          newflag[i] = (newflag[i] && oldflag[j]) ? 1 << 7 : 0 ;
2146        }
2147        else {
2148          if (!oldflag[j]) {
2149            newspec[i] += oldspec[j] * ( zr - yl ) ;
2150            if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ;
2151            wsum += ( zr - yl ) ;
2152          }
2153          newflag[i] = (newflag[i] && oldflag[j]) ? 1 << 7 : 0 ;
2154          ichan = jj ;
2155          break ;
2156        }
2157      }
2158      else {
2159        ichan = jj - iyincr ;
2160        break ;
2161      }
2162      jj += iyincr ;
2163    }
2164    if ( wsum != 0.0 ) {
2165      newspec[i] /= wsum ;
2166      if (regridTsys) newtsys[i] /= wsum ;
2167    }
2168    wsum = 0.0 ;
2169    ii += izincr ;
2170  }
2171//   if ( dnu > 0.0 ) {
2172//     for ( int ii = 0 ; ii < nChan ; ii++ ) {
2173//       double zl = zi[ii] ;
2174//       double zr = zi[ii+1] ;
2175//       for ( int j = ichan ; j < oldsize ; j++ ) {
2176//         double yl = yi[j] ;
2177//         double yr = yi[j+1] ;
2178//         if ( yl <= zl ) {
2179//           if ( yr <= zl ) {
2180//             continue ;
2181//           }
2182//           else if ( yr <= zr ) {
2183//          if (!oldflag[j]) {
2184//            newspec[ii] += oldspec[j] * ( yr - zl ) ;
2185//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - zl ) ;
2186//            wsum += ( yr - zl ) ;
2187//          }
2188//          newflag[ii] = newflag[ii] && oldflag[j] ;
2189//           }
2190//           else {
2191//          if (!oldflag[j]) {
2192//            newspec[ii] += oldspec[j] * dnu ;
2193//            if (regridTsys) newtsys[ii] += oldtsys[j] * dnu ;
2194//            wsum += dnu ;
2195//          }
2196//          newflag[ii] = newflag[ii] && oldflag[j] ;
2197//             ichan = j ;
2198//             break ;
2199//           }
2200//         }
2201//         else if ( yl < zr ) {
2202//           if ( yr <= zr ) {
2203//          if (!oldflag[j]) {
2204//            newspec[ii] += oldspec[j] * ( yr - yl ) ;
2205//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - yl ) ;
2206//               wsum += ( yr - yl ) ;
2207//          }
2208//          newflag[ii] = newflag[ii] && oldflag[j] ;
2209//           }
2210//           else {
2211//          if (!oldflag[j]) {
2212//            newspec[ii] += oldspec[j] * ( zr - yl ) ;
2213//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( zr - yl ) ;
2214//            wsum += ( zr - yl ) ;
2215//          }
2216//          newflag[ii] = newflag[ii] && oldflag[j] ;
2217//             ichan = j ;
2218//             break ;
2219//           }
2220//         }
2221//         else {
2222//           ichan = j - 1 ;
2223//           break ;
2224//         }
2225//       }
2226//       if ( wsum != 0.0 ) {
2227//         newspec[ii] /= wsum ;
2228//      if (regridTsys) newtsys[ii] /= wsum ;
2229//       }
2230//       wsum = 0.0 ;
2231//     }
2232//   }
2233//   else if ( dnu < 0.0 ) {
2234//     for ( int ii = 0 ; ii < nChan ; ii++ ) {
2235//       double zl = zi[ii] ;
2236//       double zr = zi[ii+1] ;
2237//       for ( int j = ichan ; j < oldsize ; j++ ) {
2238//         double yl = yi[j] ;
2239//         double yr = yi[j+1] ;
2240//         if ( yl >= zl ) {
2241//           if ( yr >= zl ) {
2242//             continue ;
2243//           }
2244//           else if ( yr >= zr ) {
2245//          if (!oldflag[j]) {
2246//            newspec[ii] += oldspec[j] * abs( yr - zl ) ;
2247//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - zl ) ;
2248//            wsum += abs( yr - zl ) ;
2249//          }
2250//          newflag[ii] = newflag[ii] && oldflag[j] ;
2251//           }
2252//           else {
2253//          if (!oldflag[j]) {
2254//            newspec[ii] += oldspec[j] * abs( dnu ) ;
2255//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( dnu ) ;
2256//            wsum += abs( dnu ) ;
2257//          }
2258//          newflag[ii] = newflag[ii] && oldflag[j] ;
2259//             ichan = j ;
2260//             break ;
2261//           }
2262//         }
2263//         else if ( yl > zr ) {
2264//           if ( yr >= zr ) {
2265//          if (!oldflag[j]) {
2266//            newspec[ii] += oldspec[j] * abs( yr - yl ) ;
2267//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - yl ) ;
2268//            wsum += abs( yr - yl ) ;
2269//          }
2270//          newflag[ii] = newflag[ii] && oldflag[j] ;
2271//           }
2272//           else {
2273//          if (!oldflag[j]) {
2274//            newspec[ii] += oldspec[j] * abs( zr - yl ) ;
2275//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( zr - yl ) ;
2276//            wsum += abs( zr - yl ) ;
2277//          }
2278//          newflag[ii] = newflag[ii] && oldflag[j] ;
2279//             ichan = j ;
2280//             break ;
2281//           }
2282//         }
2283//         else {
2284//           ichan = j - 1 ;
2285//           break ;
2286//         }
2287//       }
2288//       if ( wsum != 0.0 ) {
2289//         newspec[ii] /= wsum ;
2290//      if (regridTsys) newtsys[ii] /= wsum ;
2291//       }
2292//       wsum = 0.0 ;
2293//     }
2294//   }
2295// //   //ofs << "olddnu = " << olddnu << ", dnu = " << dnu << endl ;
2296// //   pile += dnu ;
2297// //   wedge = olddnu * ( refChan + 1 ) ;
2298// //   while ( wedge < pile ) {
2299// //     newspec[0] += olddnu * oldspec[refChan] ;
2300// //     newflag[0] = newflag[0] || oldflag[refChan] ;
2301// //     //ofs << "channel " << refChan << " is included in new channel 0" << endl ;
2302// //     refChan++ ;
2303// //     wedge += olddnu ;
2304// //     wsum += olddnu ;
2305// //     //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2306// //   }
2307// //   frac = ( wedge - pile ) / olddnu ;
2308// //   wsum += ( 1.0 - frac ) * olddnu ;
2309// //   newspec[0] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2310// //   newflag[0] = newflag[0] || oldflag[refChan] ;
2311// //   //ofs << "channel " << refChan << " is partly included in new channel 0" << " with fraction of " << ( 1.0 - frac ) << endl ;
2312// //   //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2313// //   newspec[0] /= wsum ;
2314// //   //ofs << "newspec[0] = " << newspec[0] << endl ;
2315// //   //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2316
2317// //   /***
2318// //    * ichan = 1 - nChan-2
2319// //    ***/
2320// //   for ( int ichan = 1 ; ichan < nChan - 1 ; ichan++ ) {
2321// //     pile += dnu ;
2322// //     newspec[ichan] += frac * olddnu * oldspec[refChan] ;
2323// //     newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2324// //     //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << frac << endl ;
2325// //     refChan++ ;
2326// //     wedge += olddnu ;
2327// //     wsum = frac * olddnu ;
2328// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2329// //     while ( wedge < pile ) {
2330// //       newspec[ichan] += olddnu * oldspec[refChan] ;
2331// //       newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2332// //       //ofs << "channel " << refChan << " is included in new channel " << ichan << endl ;
2333// //       refChan++ ;
2334// //       wedge += olddnu ;
2335// //       wsum += olddnu ;
2336// //       //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2337// //     }
2338// //     frac = ( wedge - pile ) / olddnu ;
2339// //     wsum += ( 1.0 - frac ) * olddnu ;
2340// //     newspec[ichan] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2341// //     newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2342// //     //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << ( 1.0 - frac ) << endl ;
2343// //     //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2344// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2345// //     newspec[ichan] /= wsum ;
2346// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << endl ;
2347// //   }
2348
2349// //   /***
2350// //    * ichan = nChan-1
2351// //    ***/
2352// //   // NOTE: Assumed that all spectra have the same bandwidth
2353// //   pile += dnu ;
2354// //   newspec[nChan-1] += frac * olddnu * oldspec[refChan] ;
2355// //   newflag[nChan-1] = newflag[nChan-1] || oldflag[refChan] ;
2356// //   //ofs << "channel " << refChan << " is partly included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2357// //   refChan++ ;
2358// //   wedge += olddnu ;
2359// //   wsum = frac * olddnu ;
2360// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2361// //   for ( int jchan = refChan ; jchan < oldsize ; jchan++ ) {
2362// //     newspec[nChan-1] += olddnu * oldspec[jchan] ;
2363// //     newflag[nChan-1] = newflag[nChan-1] || oldflag[jchan] ;
2364// //     wsum += olddnu ;
2365// //     //ofs << "channel " << jchan << " is included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2366// //     //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2367// //   }
2368// //   //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2369// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2370// //   newspec[nChan-1] /= wsum ;
2371// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << endl ;
2372
2373// //   // ofs.close() ;
2374
2375  specCol_.put( irow, newspec ) ;
2376  flagsCol_.put( irow, newflag ) ;
2377  if (regridTsys) tsysCol_.put( irow, newtsys );
2378
2379  return ;
2380}
2381
2382void Scantable::regridChannel( int nChan, double dnu, double fmin, int irow )
2383{
2384  Vector<Float> oldspec = specCol_( irow ) ;
2385  Vector<uChar> oldflag = flagsCol_( irow ) ;
2386  Vector<Float> oldtsys = tsysCol_( irow ) ;
2387  Vector<Float> newspec( nChan, 0 ) ;
2388  Vector<uChar> newflag( nChan, true ) ;
2389  Vector<Float> newtsys ;
2390  bool regridTsys = false ;
2391  if (oldtsys.size() == oldspec.size()) {
2392    regridTsys = true ;
2393    newtsys.resize(nChan,false) ;
2394    newtsys = 0 ;
2395  }
2396 
2397  // regrid
2398  vector<double> abcissa = getAbcissa( irow ) ;
2399  int oldsize = abcissa.size() ;
2400  double olddnu = abcissa[1] - abcissa[0] ;
2401  //int ichan = 0 ;
2402  double wsum = 0.0 ;
2403  Vector<double> zi( nChan+1 ) ;
2404  Vector<double> yi( oldsize + 1 ) ;
2405  Block<uInt> count( nChan, 0 ) ;
2406  yi[0] = abcissa[0] - 0.5 * olddnu ;
2407  for ( int ii = 1 ; ii < oldsize ; ii++ )
2408    yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ;
2409  yi[oldsize] = abcissa[oldsize-1] \
2410    + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ;
2411//   cout << "olddnu=" << olddnu << ", dnu=" << dnu << " (diff=" << olddnu-dnu << ")" << endl ;
2412//   cout << "yi[0]=" << yi[0] << ", fmin=" << fmin << " (diff=" << yi[0]-fmin << ")" << endl ;
2413//   cout << "oldsize=" << oldsize << ", nChan=" << nChan << endl ;
2414
2415  // do not regrid if input parameters are almost same as current
2416  // spectral setup
2417  double dnuDiff = abs( ( dnu - olddnu ) / olddnu ) ;
2418  double oldfmin = min( yi[0], yi[oldsize] ) ;
2419  double fminDiff = abs( ( fmin - oldfmin ) / oldfmin ) ;
2420  double nChanDiff = nChan - oldsize ;
2421  double eps = 1.0e-8 ;
2422  if ( nChanDiff == 0 && dnuDiff < eps && fminDiff < eps )
2423    return ;
2424
2425  //zi[0] = abcissa[0] - 0.5 * olddnu ;
2426  //zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ;
2427  if ( dnu > 0 )
2428    zi[0] = fmin - 0.5 * dnu ;
2429  else
2430    zi[0] = fmin + nChan * abs(dnu) ;
2431  for ( int ii = 1 ; ii < nChan ; ii++ )
2432    zi[ii] = zi[0] + dnu * ii ;
2433  zi[nChan] = zi[nChan-1] + dnu ;
2434  // Access zi and yi in ascending order
2435  int izs = ((dnu > 0) ? 0 : nChan ) ;
2436  int ize = ((dnu > 0) ? nChan : 0 ) ;
2437  int izincr = ((dnu > 0) ? 1 : -1 ) ;
2438  int ichan =  ((olddnu > 0) ? 0 : oldsize ) ;
2439  int iye = ((olddnu > 0) ? oldsize : 0 ) ;
2440  int iyincr = ((olddnu > 0) ? 1 : -1 ) ;
2441  //for ( int ii = izs ; ii != ize ; ii+=izincr ){
2442  int ii = izs ;
2443  while (ii != ize) {
2444    // always zl < zr
2445    double zl = zi[ii] ;
2446    double zr = zi[ii+izincr] ;
2447    // Need to access smaller index for the new spec, flag, and tsys.
2448    // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc.
2449    int i = min(ii, ii+izincr) ;
2450    //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) {
2451    int jj = ichan ;
2452    while (jj != iye) {
2453      // always yl < yr
2454      double yl = yi[jj] ;
2455      double yr = yi[jj+iyincr] ;
2456      // Need to access smaller index for the original spec, flag, and tsys.
2457      // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc.
2458      int j = min(jj, jj+iyincr) ;
2459      if ( yr <= zl ) {
2460        jj += iyincr ;
2461        continue ;
2462      }
2463      else if ( yl <= zl ) {
2464        if ( yr < zr ) {
2465          if (!oldflag[j]) {
2466            newspec[i] += oldspec[j] * ( yr - zl ) ;
2467            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ;
2468            wsum += ( yr - zl ) ;
2469            count[i]++ ;
2470          }
2471          newflag[i] = newflag[i] && oldflag[j] ;
2472        }
2473        else {
2474          if (!oldflag[j]) {
2475            newspec[i] += oldspec[j] * abs(dnu) ;
2476            if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ;
2477            wsum += abs(dnu) ;
2478            count[i]++ ;
2479          }
2480          newflag[i] = newflag[i] && oldflag[j] ;
2481          ichan = jj ;
2482          break ;
2483        }
2484      }
2485      else if ( yl < zr ) {
2486        if ( yr <= zr ) {
2487          if (!oldflag[j]) {
2488            newspec[i] += oldspec[j] * ( yr - yl ) ;
2489            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ;
2490            wsum += ( yr - yl ) ;
2491            count[i]++ ;
2492          }
2493          newflag[i] = newflag[i] && oldflag[j] ;
2494        }
2495        else {
2496          if (!oldflag[j]) {
2497            newspec[i] += oldspec[j] * ( zr - yl ) ;
2498            if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ;
2499            wsum += ( zr - yl ) ;
2500            count[i]++ ;
2501          }
2502          newflag[i] = newflag[i] && oldflag[j] ;
2503          ichan = jj ;
2504          break ;
2505        }
2506      }
2507      else {
2508        //ichan = jj - iyincr ;
2509        break ;
2510      }
2511      jj += iyincr ;
2512    }
2513    if ( wsum != 0.0 ) {
2514      newspec[i] /= wsum ;
2515      if (regridTsys) newtsys[i] /= wsum ;
2516    }
2517    wsum = 0.0 ;
2518    ii += izincr ;
2519  }
2520
2521  // flag out channels without data
2522  // this is tentative since there is no specific definition
2523  // on bit flag...
2524  uChar noData = 1 << 7 ;
2525  for ( Int i = 0 ; i < nChan ; i++ ) {
2526    if ( count[i] == 0 )
2527      newflag[i] = noData ;
2528  }
2529
2530  specCol_.put( irow, newspec ) ;
2531  flagsCol_.put( irow, newflag ) ;
2532  if (regridTsys) tsysCol_.put( irow, newtsys );
2533
2534  return ;
2535}
2536
2537std::vector<float> Scantable::getWeather(int whichrow) const
2538{
2539  std::vector<float> out(5);
2540  //Float temperature, pressure, humidity, windspeed, windaz;
2541  weatherTable_.getEntry(out[0], out[1], out[2], out[3], out[4],
2542                         mweatheridCol_(uInt(whichrow)));
2543
2544
2545  return out;
2546}
2547
2548bool Scantable::isAllChannelsFlagged(uInt whichrow)
2549{
2550  uInt rflag;
2551  flagrowCol_.get(whichrow, rflag);
2552  if (rflag > 0)
2553    return true;
2554  uChar flag;
2555  Vector<uChar> flags;
2556  flagsCol_.get(whichrow, flags);
2557  flag = flags[0];
2558  for (uInt i = 1; i < flags.size(); ++i) {
2559    flag &= flags[i];
2560  }
2561  //  return ((flag >> 7) == 1);
2562  return (flag > 0);
2563}
2564
2565std::vector<std::string> Scantable::applyBaselineTable(const std::string& bltable, const bool returnfitresult, const std::string& outbltable, const bool outbltableexists, const bool overwrite)
2566{
2567  STBaselineTable btin = STBaselineTable(bltable);
2568
2569  Vector<Bool> applyCol = btin.getApply();
2570  int nRowBl = applyCol.size();
2571  if (nRowBl != nrow()) {
2572    throw(AipsError("Scantable and bltable have different number of rows."));
2573  }
2574
2575  std::vector<std::string> res;
2576  res.clear();
2577
2578  bool outBaselineTable = ((outbltable != "") && (!outbltableexists || overwrite));
2579  bool bltableidentical = (bltable == outbltable);
2580  STBaselineTable btout = STBaselineTable(*this);
2581  ROScalarColumn<Double> tcol = ROScalarColumn<Double>(table_, "TIME");
2582  Vector<Double> timeSecCol = tcol.getColumn();
2583
2584  for (int whichrow = 0; whichrow < nRowBl; ++whichrow) {
2585    if (applyCol[whichrow]) {
2586      std::vector<float> spec = getSpectrum(whichrow);
2587
2588      std::vector<bool> mask = btin.getMask(whichrow);  //use mask_bltable only
2589
2590      STBaselineFunc::FuncName ftype = btin.getFunctionName(whichrow);
2591      std::vector<int> fpar = btin.getFuncParam(whichrow);
2592      std::vector<float> params;
2593      float rms;
2594      std::vector<float> resfit = doApplyBaselineTable(spec, mask, ftype, fpar, params, rms);
2595      setSpectrum(resfit, whichrow);
2596
2597      if (returnfitresult) {
2598        res.push_back(packFittingResults(whichrow, params, rms));
2599      }
2600
2601      if (outBaselineTable) {
2602        if (outbltableexists) {
2603          if (overwrite) {
2604            if (bltableidentical) {
2605              btin.setresult(uInt(whichrow), Vector<Float>(params), Float(rms));
2606            } else {
2607              btout.setresult(uInt(whichrow), Vector<Float>(params), Float(rms));
2608            }
2609          }
2610        } else {
2611          btout.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
2612                           getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
2613                           true, ftype, fpar, std::vector<float>(),
2614                           getMaskListFromMask(mask), params, rms, spec.size(),
2615                           3.0, 0, 0.0, 0, std::vector<int>());
2616        }
2617      }
2618    }
2619  }
2620
2621  if (outBaselineTable) {
2622    if (bltableidentical) {
2623      btin.save(outbltable);
2624    } else {
2625      btout.save(outbltable);
2626    }
2627  }
2628
2629  return res;
2630}
2631
2632std::vector<std::string> Scantable::subBaseline(const std::vector<std::string>& blInfoList, const bool returnfitresult, const std::string& outbltable, const bool outbltableexists, const bool overwrite)
2633{
2634  int nRowBl = blInfoList.size();
2635  int nRowSt = nrow();
2636
2637  std::vector<std::string> res;
2638  res.clear();
2639
2640  bool outBaselineTable = ((outbltable != "") && (!outbltableexists || overwrite));
2641  if ((outbltable != "") && outbltableexists && !overwrite) {
2642    throw(AipsError("Cannot overwrite bltable. Set overwrite=True."));
2643  }
2644
2645  STBaselineTable* btp;
2646  ROScalarColumn<Double> tcol = ROScalarColumn<Double>(table_, "TIME");
2647  Vector<Double> timeSecCol = tcol.getColumn();
2648
2649  if (outBaselineTable) {
2650    if (outbltableexists) {
2651      btp = new STBaselineTable((String)outbltable);
2652    } else {
2653      btp = new STBaselineTable(*this);
2654      for (int i = 0; i < nRowSt; ++i) {
2655        btp->appendbasedata(getScan(i), getCycle(i), getBeam(i), getIF(i), getPol(i),
2656                           0, timeSecCol[i]);
2657        btp->setApply(i, false);
2658      }
2659    }
2660  }
2661
2662  for (int i = 0; i < nRowBl; ++i) {
2663    int irow;
2664    STBaselineFunc::FuncName ftype;
2665    std::vector<bool> mask;
2666    std::vector<int> fpar;
2667    float clipth;
2668    int clipn;
2669    bool uself;
2670    float lfth;
2671    std::vector<int> lfedge;
2672    int lfavg;
2673    parseBlInfo(blInfoList[i], irow, ftype, fpar, mask, clipth, clipn, uself, lfth, lfedge, lfavg);
2674
2675    if (irow < nRowSt) {
2676      std::vector<float> spec = getSpectrum(irow);
2677      std::vector<float> params;
2678      float rms;
2679      std::vector<bool> finalmask;
2680
2681      std::vector<float> resfit = doSubtractBaseline(spec, mask, ftype, fpar, params, rms, finalmask, clipth, clipn, uself, irow, lfth, lfedge, lfavg);
2682      setSpectrum(resfit, irow);
2683
2684      if (returnfitresult) {
2685        res.push_back(packFittingResults(irow, params, rms));
2686      }
2687
2688      if (outBaselineTable) {
2689        Vector<Int> fparam(fpar.size());
2690        for (uInt j = 0; j < fparam.size(); ++j) {
2691          fparam[j] = (Int)fpar[j];
2692        }
2693
2694        btp->setdata(uInt(irow),
2695                    uInt(getScan(irow)), uInt(getCycle(irow)),
2696                    uInt(getBeam(irow)), uInt(getIF(irow)), uInt(getPol(irow)),
2697                    uInt(0), timeSecCol[irow], Bool(true), ftype, fparam,
2698                    Vector<Float>(), getMaskListFromMask(finalmask), Vector<Float>(params),
2699                    Float(rms), uInt(spec.size()), Float(clipth), uInt(clipn),
2700                    Float(0.0), uInt(0), Vector<uInt>());
2701      }
2702
2703    }
2704  }
2705
2706  if (outBaselineTable) {
2707    btp->save(outbltable);
2708  }
2709
2710  delete btp;
2711  return res;
2712}
2713
2714std::vector<float> Scantable::doApplyBaselineTable(std::vector<float>& spec,
2715                                                   std::vector<bool>& mask,
2716                                                   const STBaselineFunc::FuncName ftype,
2717                                                   std::vector<int>& fpar,
2718                                                   std::vector<float>& params,
2719                                                   float&rms)
2720{
2721  std::vector<bool> finalmask;
2722  std::vector<int> lfedge;
2723  return doSubtractBaseline(spec, mask, ftype, fpar, params, rms, finalmask, 0.0, 0, false, 0, 0.0, lfedge, 0);
2724}
2725
2726std::vector<float> Scantable::doSubtractBaseline(std::vector<float>& spec,
2727                                                 std::vector<bool>& mask,
2728                                                 const STBaselineFunc::FuncName ftype,
2729                                                 std::vector<int>& fpar,
2730                                                 std::vector<float>& params,
2731                                                 float&rms,
2732                                                 std::vector<bool>& finalmask,
2733                                                 float clipth,
2734                                                 int clipn,
2735                                                 bool uself,
2736                                                 int irow,
2737                                                 float lfth,
2738                                                 std::vector<int>& lfedge,
2739                                                 int lfavg)
2740{
2741  if (uself) {
2742    STLineFinder lineFinder = STLineFinder();
2743    initLineFinder(lfedge, lfth, lfavg, lineFinder);
2744    std::vector<int> currentEdge;
2745    mask = getCompositeChanMask(irow, mask, lfedge, currentEdge, lineFinder);
2746  } else {
2747    mask = getCompositeChanMask(irow, mask);
2748  }
2749
2750  std::vector<float> res;
2751  if (ftype == STBaselineFunc::Polynomial) {
2752    res = doPolynomialFitting(spec, mask, fpar[0], params, rms, finalmask, clipth, clipn);
2753  } else if (ftype == STBaselineFunc::Chebyshev) {
2754    res = doChebyshevFitting(spec, mask, fpar[0], params, rms, finalmask, clipth, clipn);
2755  } else if (ftype == STBaselineFunc::CSpline) {
2756    if (fpar.size() > 1) { // reading from baseline table in which pieceEdges are already calculated and stored.
2757      res = doCubicSplineFitting(spec, mask, fpar, params, rms, finalmask, clipth, clipn);
2758    } else {               // usual cspline fitting by giving nPiece only. fpar will be replaced with pieceEdges.
2759      res = doCubicSplineFitting(spec, mask, fpar[0], fpar, params, rms, finalmask, clipth, clipn);
2760    }
2761  } else if (ftype == STBaselineFunc::Sinusoid) {
2762    res = doSinusoidFitting(spec, mask, fpar, params, rms, finalmask, clipth, clipn);
2763  }
2764
2765  return res;
2766}
2767
2768std::string Scantable::packFittingResults(const int irow, const std::vector<float>& params, const float rms)
2769{
2770  // returned value: "irow:params[0],params[1],..,params[n-1]:rms"
2771  ostringstream os;
2772  os << irow << ':';
2773  for (uInt i = 0; i < params.size(); ++i) {
2774    if (i > 0) {
2775      os << ',';
2776    }
2777    os << params[i];
2778  }
2779  os << ':' << rms;
2780
2781  return os.str();
2782}
2783
2784void Scantable::parseBlInfo(const std::string& blInfo, int& irow, STBaselineFunc::FuncName& ftype, std::vector<int>& fpar, std::vector<bool>& mask, float& thresClip, int& nIterClip, bool& useLineFinder, float& thresLF, std::vector<int>& edgeLF, int& avgLF)
2785{
2786  // The baseline info to be parsed must be column-delimited string like
2787  // "0:chebyshev:5:3,5,169,174,485,487" where the elements are
2788  // row number, funcType, funcOrder, maskList, clipThreshold, clipNIter,
2789  // useLineFinder, lfThreshold, lfEdge and lfChanAvgLimit.
2790
2791  std::vector<string> res = splitToStringList(blInfo, ':');
2792  if (res.size() < 4) {
2793    throw(AipsError("baseline info has bad format")) ;
2794  }
2795
2796  string ftype0, fpar0, masklist0, uself0, edge0;
2797  std::vector<int> masklist;
2798
2799  stringstream ss;
2800  ss << res[0];
2801  ss >> irow;
2802  ss.clear(); ss.str("");
2803
2804  ss << res[1];
2805  ss >> ftype0;
2806  if (ftype0 == "poly") {
2807    ftype = STBaselineFunc::Polynomial;
2808  } else if (ftype0 == "cspline") {
2809    ftype = STBaselineFunc::CSpline;
2810  } else if (ftype0 == "sinusoid") {
2811    ftype = STBaselineFunc::Sinusoid;
2812  } else if (ftype0 == "chebyshev") {
2813    ftype = STBaselineFunc::Chebyshev;
2814  } else {
2815    throw(AipsError("invalid function type."));
2816  }
2817  ss.clear(); ss.str("");
2818
2819  ss << res[2];
2820  ss >> fpar0;
2821  fpar = splitToIntList(fpar0, ',');
2822  ss.clear(); ss.str("");
2823
2824  ss << res[3];
2825  ss >> masklist0;
2826  mask = getMaskFromMaskList(nchan(getIF(irow)), splitToIntList(masklist0, ','));
2827  ss.clear(); ss.str("");
2828
2829  ss << res[4];
2830  ss >> thresClip;
2831  ss.clear(); ss.str("");
2832
2833  ss << res[5];
2834  ss >> nIterClip;
2835  ss.clear(); ss.str("");
2836
2837  ss << res[6];
2838  ss >> uself0;
2839  if (uself0 == "true") {
2840    useLineFinder = true;
2841  } else {
2842    useLineFinder = false;
2843  }
2844  ss.clear(); ss.str("");
2845
2846  if (useLineFinder) {
2847    ss << res[7];
2848    ss >> thresLF;
2849    ss.clear(); ss.str("");
2850
2851    ss << res[8];
2852    ss >> edge0;
2853    edgeLF = splitToIntList(edge0, ',');
2854    ss.clear(); ss.str("");
2855
2856    ss << res[9];
2857    ss >> avgLF;
2858    ss.clear(); ss.str("");
2859  }
2860
2861}
2862
2863std::vector<int> Scantable::splitToIntList(const std::string& s, const char delim)
2864{
2865  istringstream iss(s);
2866  string tmp;
2867  int tmpi;
2868  std::vector<int> res;
2869  stringstream ss;
2870  while (getline(iss, tmp, delim)) {
2871    ss << tmp;
2872    ss >> tmpi;
2873    res.push_back(tmpi);
2874    ss.clear(); ss.str("");
2875  }
2876
2877  return res;
2878}
2879
2880std::vector<string> Scantable::splitToStringList(const std::string& s, const char delim)
2881{
2882  istringstream iss(s);
2883  std::string tmp;
2884  std::vector<string> res;
2885  while (getline(iss, tmp, delim)) {
2886    res.push_back(tmp);
2887  }
2888
2889  return res;
2890}
2891
2892std::vector<bool> Scantable::getMaskFromMaskList(const int nchan, const std::vector<int>& masklist)
2893{
2894  if (masklist.size() % 2 != 0) {
2895    throw(AipsError("masklist must have even number of elements."));
2896  }
2897
2898  std::vector<bool> res(nchan);
2899
2900  for (int i = 0; i < nchan; ++i) {
2901    res[i] = false;
2902  }
2903  for (uInt j = 0; j < masklist.size(); j += 2) {
2904    for (int i = masklist[j]; i <= masklist[j+1]; ++i) {
2905      res[i] = true;
2906    }
2907  }
2908
2909  return res;
2910}
2911
2912Vector<uInt> Scantable::getMaskListFromMask(const std::vector<bool>& mask)
2913{
2914  std::vector<int> masklist;
2915  masklist.clear();
2916
2917  for (uInt i = 0; i < mask.size(); ++i) {
2918    if (mask[i]) {
2919      if ((i == 0)||(i == mask.size()-1)) {
2920        masklist.push_back(i);
2921      } else {
2922        if ((mask[i])&&(!mask[i-1])) {
2923          masklist.push_back(i);
2924        }
2925        if ((mask[i])&&(!mask[i+1])) {
2926          masklist.push_back(i);
2927        }
2928      }
2929    }
2930  }
2931
2932  Vector<uInt> res(masklist.size());
2933  for (uInt i = 0; i < masklist.size(); ++i) {
2934    res[i] = (uInt)masklist[i];
2935  }
2936
2937  return res;
2938}
2939
2940void Scantable::initialiseBaselining(const std::string& blfile,
2941                                     ofstream& ofs,
2942                                     const bool outLogger,
2943                                     bool& outTextFile,
2944                                     bool& csvFormat,
2945                                     String& coordInfo,
2946                                     bool& hasSameNchan,
2947                                     const std::string& progressInfo,
2948                                     bool& showProgress,
2949                                     int& minNRow,
2950                                     Vector<Double>& timeSecCol)
2951{
2952  csvFormat = false;
2953  outTextFile = false;
2954
2955  if (blfile != "") {
2956    csvFormat = (blfile.substr(0, 1) == "T");
2957    ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
2958    if (ofs) outTextFile = true;
2959  }
2960
2961  coordInfo = "";
2962  hasSameNchan = true;
2963
2964  if (outLogger || outTextFile) {
2965    coordInfo = getCoordInfo()[0];
2966    if (coordInfo == "") coordInfo = "channel";
2967    hasSameNchan = hasSameNchanOverIFs();
2968  }
2969
2970  parseProgressInfo(progressInfo, showProgress, minNRow);
2971
2972  ROScalarColumn<Double> tcol = ROScalarColumn<Double>(table_, "TIME");
2973  timeSecCol = tcol.getColumn();
2974}
2975
2976void Scantable::finaliseBaselining(const bool outBaselineTable,
2977                                   STBaselineTable* pbt,
2978                                   const string& bltable,
2979                                   const bool outTextFile,
2980                                   ofstream& ofs)
2981{
2982  if (outBaselineTable) {
2983    pbt->save(bltable);
2984  }
2985
2986  if (outTextFile) ofs.close();
2987}
2988
2989void Scantable::initLineFinder(const std::vector<int>& edge,
2990                               const float threshold,
2991                               const int chanAvgLimit,
2992                               STLineFinder& lineFinder)
2993{
2994  if ((edge.size() > 2) && (edge.size() < getIFNos().size()*2)) {
2995    throw(AipsError("Length of edge element info is less than that of IFs"));
2996  }
2997
2998  lineFinder.setOptions(threshold, 3, chanAvgLimit);
2999}
3000
3001void Scantable::polyBaseline(const std::vector<bool>& mask, int order,
3002                             float thresClip, int nIterClip,
3003                             bool getResidual,
3004                             const std::string& progressInfo,
3005                             const bool outLogger, const std::string& blfile,
3006                             const std::string& bltable)
3007{
3008  /****
3009  double TimeStart = mathutil::gettimeofday_sec();
3010  ****/
3011
3012  try {
3013    ofstream ofs;
3014    String coordInfo;
3015    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3016    int minNRow;
3017    int nRow = nrow();
3018    std::vector<bool> chanMask, finalChanMask;
3019    float rms;
3020    bool outBaselineTable = (bltable != "");
3021    STBaselineTable bt = STBaselineTable(*this);
3022    Vector<Double> timeSecCol;
3023
3024    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3025                         coordInfo, hasSameNchan,
3026                         progressInfo, showProgress, minNRow,
3027                         timeSecCol);
3028
3029    std::vector<int> nChanNos;
3030    std::vector<std::vector<std::vector<double> > > modelReservoir;
3031    modelReservoir = getPolynomialModelReservoir(order,
3032                                                 &Scantable::getNormalPolynomial,
3033                                                 nChanNos);
3034    int nModel = modelReservoir.size();
3035
3036    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3037      std::vector<float> sp = getSpectrum(whichrow);
3038      chanMask = getCompositeChanMask(whichrow, mask);
3039      std::vector<float> params;
3040
3041      if (flagrowCol_(whichrow) == 0) {
3042        int nClipped = 0;
3043        std::vector<float> res;
3044        res = doLeastSquareFitting(sp, chanMask,
3045                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3046                                   params, rms, finalChanMask,
3047                                   nClipped, thresClip, nIterClip, getResidual);
3048
3049        if (outBaselineTable) {
3050          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3051                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3052                        true, STBaselineFunc::Polynomial, order, std::vector<float>(),
3053                        getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3054                        thresClip, nIterClip, 0.0, 0, std::vector<int>());
3055        } else {
3056          setSpectrum(res, whichrow);
3057        }
3058
3059        outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3060                            coordInfo, hasSameNchan, ofs, "polyBaseline()",
3061                            params, nClipped);
3062      } else {
3063        if (outBaselineTable) {
3064          params.resize(nModel);
3065          for (uInt i = 0; i < params.size(); ++i) {
3066            params[i] = 0.0;
3067          }
3068          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3069                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3070                        true, STBaselineFunc::Polynomial, order, std::vector<float>(),
3071                        getMaskListFromMask(chanMask), params, 0.0, sp.size(),
3072                        thresClip, nIterClip, 0.0, 0, std::vector<int>());
3073        }
3074      }
3075
3076      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3077    }
3078
3079    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3080
3081  } catch (...) {
3082    throw;
3083  }
3084
3085  /****
3086  double TimeEnd = mathutil::gettimeofday_sec();
3087  double elapse1 = TimeEnd - TimeStart;
3088  std::cout << "poly-new   : " << elapse1 << " (sec.)" << endl;
3089  ****/
3090}
3091
3092void Scantable::autoPolyBaseline(const std::vector<bool>& mask, int order,
3093                                 float thresClip, int nIterClip,
3094                                 const std::vector<int>& edge,
3095                                 float threshold, int chanAvgLimit,
3096                                 bool getResidual,
3097                                 const std::string& progressInfo,
3098                                 const bool outLogger, const std::string& blfile,
3099                                 const std::string& bltable)
3100{
3101  try {
3102    ofstream ofs;
3103    String coordInfo;
3104    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3105    int minNRow;
3106    int nRow = nrow();
3107    std::vector<bool> chanMask, finalChanMask;
3108    float rms;
3109    bool outBaselineTable = (bltable != "");
3110    STBaselineTable bt = STBaselineTable(*this);
3111    Vector<Double> timeSecCol;
3112    STLineFinder lineFinder = STLineFinder();
3113
3114    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3115                         coordInfo, hasSameNchan,
3116                         progressInfo, showProgress, minNRow,
3117                         timeSecCol);
3118
3119    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3120
3121    std::vector<int> nChanNos;
3122    std::vector<std::vector<std::vector<double> > > modelReservoir;
3123    modelReservoir = getPolynomialModelReservoir(order,
3124                                                 &Scantable::getNormalPolynomial,
3125                                                 nChanNos);
3126    int nModel = modelReservoir.size();
3127
3128    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3129      std::vector<float> sp = getSpectrum(whichrow);
3130      std::vector<int> currentEdge;
3131      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
3132      std::vector<float> params;
3133
3134      if (flagrowCol_(whichrow) == 0) {
3135        int nClipped = 0;
3136        std::vector<float> res;
3137        res = doLeastSquareFitting(sp, chanMask,
3138                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3139                                   params, rms, finalChanMask,
3140                                   nClipped, thresClip, nIterClip, getResidual);
3141
3142        if (outBaselineTable) {
3143          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3144                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3145                        true, STBaselineFunc::Polynomial, order, std::vector<float>(),
3146                        getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3147                        thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
3148        } else {
3149          setSpectrum(res, whichrow);
3150        }
3151
3152        outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3153                            coordInfo, hasSameNchan, ofs, "autoPolyBaseline()",
3154                            params, nClipped);
3155      } else {
3156        if (outBaselineTable) {
3157          params.resize(nModel);
3158          for (uInt i = 0; i < params.size(); ++i) {
3159            params[i] = 0.0;
3160          }
3161          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3162                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3163                        true, STBaselineFunc::Polynomial, order, std::vector<float>(),
3164                        getMaskListFromMask(chanMask), params, 0.0, sp.size(),
3165                        thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
3166        }
3167      }
3168
3169      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3170    }
3171
3172    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3173
3174  } catch (...) {
3175    throw;
3176  }
3177}
3178
3179void Scantable::chebyshevBaseline(const std::vector<bool>& mask, int order,
3180                                  float thresClip, int nIterClip,
3181                                  bool getResidual,
3182                                  const std::string& progressInfo,
3183                                  const bool outLogger, const std::string& blfile,
3184                                  const std::string& bltable)
3185{
3186  /*
3187  double TimeStart = mathutil::gettimeofday_sec();
3188  */
3189
3190  try {
3191    ofstream ofs;
3192    String coordInfo;
3193    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3194    int minNRow;
3195    int nRow = nrow();
3196    std::vector<bool> chanMask, finalChanMask;
3197    float rms;
3198    bool outBaselineTable = (bltable != "");
3199    STBaselineTable bt = STBaselineTable(*this);
3200    Vector<Double> timeSecCol;
3201
3202    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3203                         coordInfo, hasSameNchan,
3204                         progressInfo, showProgress, minNRow,
3205                         timeSecCol);
3206
3207    std::vector<int> nChanNos;
3208    std::vector<std::vector<std::vector<double> > > modelReservoir;
3209    modelReservoir = getPolynomialModelReservoir(order,
3210                                                 &Scantable::getChebyshevPolynomial,
3211                                                 nChanNos);
3212    int nModel = modelReservoir.size();
3213
3214    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3215      std::vector<float> sp = getSpectrum(whichrow);
3216      chanMask = getCompositeChanMask(whichrow, mask);
3217      std::vector<float> params;
3218
3219      if (flagrowCol_(whichrow) == 0) {
3220        int nClipped = 0;
3221        std::vector<float> res;
3222        res = doLeastSquareFitting(sp, chanMask,
3223                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3224                                   params, rms, finalChanMask,
3225                                   nClipped, thresClip, nIterClip, getResidual);
3226
3227        if (outBaselineTable) {
3228          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3229                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3230                        true, STBaselineFunc::Chebyshev, order, std::vector<float>(),
3231                        getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3232                        thresClip, nIterClip, 0.0, 0, std::vector<int>());
3233        } else {
3234          setSpectrum(res, whichrow);
3235        }
3236
3237        outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3238                            coordInfo, hasSameNchan, ofs, "chebyshevBaseline()",
3239                            params, nClipped);
3240      } else {
3241        if (outBaselineTable) {
3242          params.resize(nModel);
3243          for (uInt i = 0; i < params.size(); ++i) {
3244            params[i] = 0.0;
3245          }
3246          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3247                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3248                        true, STBaselineFunc::Chebyshev, order, std::vector<float>(),
3249                        getMaskListFromMask(chanMask), params, 0.0, sp.size(),
3250                        thresClip, nIterClip, 0.0, 0, std::vector<int>());
3251        }
3252      }
3253
3254      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3255    }
3256   
3257    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3258
3259  } catch (...) {
3260    throw;
3261  }
3262
3263  /*
3264  double TimeEnd = mathutil::gettimeofday_sec();
3265  double elapse1 = TimeEnd - TimeStart;
3266  std::cout << "cheby   : " << elapse1 << " (sec.)" << endl;
3267  */
3268}
3269
3270void Scantable::autoChebyshevBaseline(const std::vector<bool>& mask, int order,
3271                                      float thresClip, int nIterClip,
3272                                      const std::vector<int>& edge,
3273                                      float threshold, int chanAvgLimit,
3274                                      bool getResidual,
3275                                      const std::string& progressInfo,
3276                                      const bool outLogger, const std::string& blfile,
3277                                      const std::string& bltable)
3278{
3279  try {
3280    ofstream ofs;
3281    String coordInfo;
3282    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3283    int minNRow;
3284    int nRow = nrow();
3285    std::vector<bool> chanMask, finalChanMask;
3286    float rms;
3287    bool outBaselineTable = (bltable != "");
3288    STBaselineTable bt = STBaselineTable(*this);
3289    Vector<Double> timeSecCol;
3290    STLineFinder lineFinder = STLineFinder();
3291
3292    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3293                         coordInfo, hasSameNchan,
3294                         progressInfo, showProgress, minNRow,
3295                         timeSecCol);
3296
3297    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3298
3299    std::vector<int> nChanNos;
3300    std::vector<std::vector<std::vector<double> > > modelReservoir;
3301    modelReservoir = getPolynomialModelReservoir(order,
3302                                                 &Scantable::getChebyshevPolynomial,
3303                                                 nChanNos);
3304    int nModel = modelReservoir.size();
3305
3306    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3307      std::vector<float> sp = getSpectrum(whichrow);
3308      std::vector<int> currentEdge;
3309      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
3310      std::vector<float> params;
3311
3312      if (flagrowCol_(whichrow) == 0) {
3313        int nClipped = 0;
3314        std::vector<float> res;
3315        res = doLeastSquareFitting(sp, chanMask,
3316                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3317                                   params, rms, finalChanMask,
3318                                   nClipped, thresClip, nIterClip, getResidual);
3319
3320        if (outBaselineTable) {
3321          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3322                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3323                        true, STBaselineFunc::Chebyshev, order, std::vector<float>(),
3324                        getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3325                        thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
3326        } else {
3327          setSpectrum(res, whichrow);
3328        }
3329
3330        outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3331                            coordInfo, hasSameNchan, ofs, "autoChebyshevBaseline()",
3332                            params, nClipped);
3333      } else {
3334        if (outBaselineTable) {
3335          params.resize(nModel);
3336          for (uInt i = 0; i < params.size(); ++i) {
3337            params[i] = 0.0;
3338          }
3339          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3340                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3341                        true, STBaselineFunc::Chebyshev, order, std::vector<float>(),
3342                        getMaskListFromMask(chanMask), params, 0.0, sp.size(),
3343                        thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
3344        }
3345      }
3346
3347      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3348    }
3349
3350    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3351
3352  } catch (...) {
3353    throw;
3354  }
3355}
3356
3357double Scantable::calculateModelSelectionCriteria(const std::string& valname,
3358                                                  const std::string& blfunc,
3359                                                  int order,
3360                                                  const std::vector<bool>& inMask,
3361                                                  int whichrow,
3362                                                  bool useLineFinder,
3363                                                  const std::vector<int>& edge,
3364                                                  float threshold,
3365                                                  int chanAvgLimit)
3366{
3367  std::vector<float> sp = getSpectrum(whichrow);
3368  std::vector<bool> chanMask;
3369  chanMask.clear();
3370
3371  if (useLineFinder) {
3372    STLineFinder lineFinder = STLineFinder();
3373    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3374    std::vector<int> currentEdge;
3375    chanMask = getCompositeChanMask(whichrow, inMask, edge, currentEdge, lineFinder);
3376  } else {
3377    chanMask = getCompositeChanMask(whichrow, inMask);
3378  }
3379
3380  return doCalculateModelSelectionCriteria(valname, sp, chanMask, blfunc, order);
3381}
3382
3383double Scantable::doCalculateModelSelectionCriteria(const std::string& valname, const std::vector<float>& spec, const std::vector<bool>& mask, const std::string& blfunc, int order)
3384{
3385  int nparam;
3386  std::vector<float> params;
3387  std::vector<bool> finalChanMask;
3388  float rms;
3389  int nClipped = 0;
3390  std::vector<float> res;
3391  if (blfunc == "poly") {
3392    nparam = order + 1;
3393    res = doPolynomialFitting(spec, mask, order, params, rms, finalChanMask, nClipped);
3394  } else if (blfunc == "chebyshev") {
3395    nparam = order + 1;
3396    res = doChebyshevFitting(spec, mask, order, params, rms, finalChanMask, nClipped);
3397  } else if (blfunc == "cspline") {
3398    std::vector<int> pieceEdges;//(order+1);  //order = npiece
3399    nparam = order + 3;
3400    res = doCubicSplineFitting(spec, mask, order, false, pieceEdges, params, rms, finalChanMask, nClipped);
3401  } else if (blfunc == "sinusoid") {
3402    std::vector<int> nWaves;
3403    nWaves.clear();
3404    for (int i = 0; i <= order; ++i) {
3405      nWaves.push_back(i);
3406    }
3407    nparam = 2*order + 1;  // order = nwave
3408    res = doSinusoidFitting(spec, mask, nWaves, params, rms, finalChanMask, nClipped);
3409  } else {
3410    throw(AipsError("blfunc must be poly, chebyshev, cspline or sinusoid."));
3411  }
3412
3413  double msq = 0.0;
3414  int nusedchan = 0;
3415  int nChan = res.size();
3416  for (int i = 0; i < nChan; ++i) {
3417    if (mask[i]) {
3418      msq += (double)res[i]*(double)res[i];
3419      nusedchan++;
3420    }
3421  }
3422  if (nusedchan == 0) {
3423    throw(AipsError("all channels masked."));
3424  }
3425  msq /= (double)nusedchan;
3426
3427  nparam++;  //add 1 for sigma of Gaussian distribution
3428  const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
3429
3430  if (valname.find("aic") == 0) {
3431    // Original Akaike Information Criterion (AIC)
3432    double aic = nusedchan * (log(2.0 * PI * msq) + 1.0) + 2.0 * nparam;
3433
3434    // Corrected AIC by Sugiura(1978) (AICc)
3435    if (valname == "aicc") {
3436      if (nusedchan - nparam - 1 <= 0) {
3437        throw(AipsError("channel size is too small to calculate AICc."));
3438      }
3439      aic += 2.0*nparam*(nparam + 1)/(double)(nusedchan - nparam - 1);
3440    }
3441
3442    return aic;
3443
3444  } else if (valname == "bic") {
3445    // Bayesian Information Criterion (BIC)
3446    double bic = nusedchan * log(msq) + nparam * log((double)nusedchan);
3447    return bic;
3448
3449  } else if (valname == "gcv") {
3450    // Generalised Cross Validation
3451    double x = 1.0 - (double)nparam / (double)nusedchan;
3452    double gcv = msq / (x * x);
3453    return gcv;
3454
3455  } else {
3456    throw(AipsError("valname must be aic, aicc, bic or gcv."));
3457  }
3458}
3459
3460double Scantable::getNormalPolynomial(int n, double x) {
3461  if (n == 0) {
3462    return 1.0;
3463  } else if (n > 0) {
3464    double res = 1.0;
3465    for (int i = 0; i < n; ++i) {
3466      res *= x;
3467    }
3468    return res;
3469  } else {
3470    if (x == 0.0) {
3471      throw(AipsError("infinity result: x=0 given for negative power."));
3472    } else {
3473      return pow(x, (double)n);
3474    }
3475  }
3476}
3477
3478double Scantable::getChebyshevPolynomial(int n, double x) {
3479  if ((x < -1.0)||(x > 1.0)) {
3480    throw(AipsError("out of definition range (-1 <= x <= 1)."));
3481  } else if (x == 1.0) {
3482    return 1.0;
3483  } else if (x == 0.0) {
3484    double res;
3485    if (n%2 == 0) {
3486      if (n%4 == 0) {
3487        res = 1.0;
3488      } else {
3489        res = -1.0;
3490      }
3491    } else {
3492      res = 0.0;
3493    }
3494    return res;
3495  } else if (x == -1.0) {
3496    double res = (n%2 == 0 ? 1.0 : -1.0);
3497    return res;
3498  } else if (n < 0) {
3499    throw(AipsError("the order must be zero or positive."));
3500  } else if (n == 0) {
3501    return 1.0;
3502  } else if (n == 1) {
3503    return x;
3504  } else {
3505    double res[n+1];
3506    for (int i = 0; i < n+1; ++i) {
3507      double res0 = 0.0;
3508      if (i == 0) {
3509        res0 = 1.0;
3510      } else if (i == 1) {
3511        res0 = x;
3512      } else {
3513        res0 = 2.0 * x * res[i-1] - res[i-2];
3514      }
3515      res[i] = res0;
3516    }
3517    return res[n];
3518  }
3519}
3520
3521std::vector<float> Scantable::doPolynomialFitting(const std::vector<float>& data,
3522                                                  const std::vector<bool>& mask,
3523                                                  int order,
3524                                                  std::vector<float>& params,
3525                                                  float& rms,
3526                                                  std::vector<bool>& finalmask,
3527                                                  float clipth,
3528                                                  int clipn)
3529{
3530  int nClipped = 0;
3531  return doPolynomialFitting(data, mask, order, params, rms, finalmask, nClipped, clipth, clipn);
3532}
3533
3534std::vector<float> Scantable::doPolynomialFitting(const std::vector<float>& data,
3535                                                  const std::vector<bool>& mask,
3536                                                  int order,
3537                                                  std::vector<float>& params,
3538                                                  float& rms,
3539                                                  std::vector<bool>& finalMask,
3540                                                  int& nClipped,
3541                                                  float thresClip,
3542                                                  int nIterClip,
3543                                                  bool getResidual)
3544{
3545  return doLeastSquareFitting(data, mask,
3546                              getPolynomialModel(order, data.size(), &Scantable::getNormalPolynomial),
3547                              params, rms, finalMask,
3548                              nClipped, thresClip, nIterClip,
3549                              getResidual);
3550}
3551
3552std::vector<float> Scantable::doChebyshevFitting(const std::vector<float>& data,
3553                                                 const std::vector<bool>& mask,
3554                                                 int order,
3555                                                 std::vector<float>& params,
3556                                                 float& rms,
3557                                                 std::vector<bool>& finalmask,
3558                                                 float clipth,
3559                                                 int clipn)
3560{
3561  int nClipped = 0;
3562  return doChebyshevFitting(data, mask, order, params, rms, finalmask, nClipped, clipth, clipn);
3563}
3564
3565std::vector<float> Scantable::doChebyshevFitting(const std::vector<float>& data,
3566                                                 const std::vector<bool>& mask,
3567                                                 int order,
3568                                                 std::vector<float>& params,
3569                                                 float& rms,
3570                                                 std::vector<bool>& finalMask,
3571                                                 int& nClipped,
3572                                                 float thresClip,
3573                                                 int nIterClip,
3574                                                 bool getResidual)
3575{
3576  return doLeastSquareFitting(data, mask,
3577                              getPolynomialModel(order, data.size(), &Scantable::getChebyshevPolynomial),
3578                              params, rms, finalMask,
3579                              nClipped, thresClip, nIterClip,
3580                              getResidual);
3581}
3582
3583std::vector<std::vector<double> > Scantable::getPolynomialModel(int order, int nchan, double (Scantable::*pfunc)(int, double))
3584{
3585  // model  : contains model values for computing the least-square matrix.
3586  //          model.size() is nmodel and model[*].size() is nchan.
3587  //          Each model element are as follows:
3588  //
3589  //          (for normal polynomials)
3590  //          model[0]   = {1.0,   1.0,   1.0,   ..., 1.0},
3591  //          model[1]   = {0.0,   1.0,   2.0,   ..., (nchan-1)}
3592  //          model[n-1] = ...,
3593  //          model[n]   = {0.0^n, 1.0^n, 2.0^n, ..., (nchan-1)^n}
3594  //          where (0 <= n <= order)
3595  //
3596  //          (for Chebyshev polynomials)
3597  //          model[0]   = {T0(-1), T0(2/(nchan-1)-1), T0(4/(nchan-1)-1), ..., T0(1)},
3598  //          model[n-1] = ...,
3599  //          model[n]   = {Tn(-1), Tn(2/(nchan-1)-1), Tn(4/(nchan-1)-1), ..., Tn(1)}
3600  //          where (0 <= n <= order),
3601
3602  int nmodel = order + 1;
3603  std::vector<std::vector<double> > model(nmodel, std::vector<double>(nchan));
3604
3605  double stretch, shift;
3606  if (pfunc == &Scantable::getChebyshevPolynomial) {
3607    stretch = 2.0/(double)(nchan - 1);
3608    shift   = -1.0;
3609  } else {
3610    stretch = 1.0;
3611    shift   = 0.0;
3612  }
3613
3614  for (int i = 0; i < nmodel; ++i) {
3615    for (int j = 0; j < nchan; ++j) {
3616      model[i][j] = (this->*pfunc)(i, stretch*(double)j + shift);
3617    }
3618  }
3619
3620  return model;
3621}
3622
3623std::vector<std::vector<std::vector<double> > > Scantable::getPolynomialModelReservoir(int order,
3624                                                                                       double (Scantable::*pfunc)(int, double),
3625                                                                                       std::vector<int>& nChanNos)
3626{
3627  std::vector<std::vector<std::vector<double> > > res;
3628  res.clear();
3629  nChanNos.clear();
3630
3631  std::vector<uint> ifNos = getIFNos();
3632  for (uint i = 0; i < ifNos.size(); ++i) {
3633    int currNchan = nchan(ifNos[i]);
3634    bool hasDifferentNchan = (i == 0);
3635    for (uint j = 0; j < i; ++j) {
3636      if (currNchan != nchan(ifNos[j])) {
3637        hasDifferentNchan = true;
3638        break;
3639      }
3640    }
3641    if (hasDifferentNchan) {
3642      res.push_back(getPolynomialModel(order, currNchan, pfunc));
3643      nChanNos.push_back(currNchan);
3644    }
3645  }
3646
3647  return res;
3648}
3649
3650std::vector<float> Scantable::doLeastSquareFitting(const std::vector<float>& data,
3651                                                   const std::vector<bool>& mask,
3652                                                   const std::vector<std::vector<double> >& model,
3653                                                   std::vector<float>& params,
3654                                                   float& rms,
3655                                                   std::vector<bool>& finalMask,
3656                                                   int& nClipped,
3657                                                   float thresClip,
3658                                                   int nIterClip,
3659                                                   bool getResidual)
3660{
3661  int nDOF = model.size();
3662  int nChan = data.size();
3663
3664  if (nDOF == 0) {
3665    throw(AipsError("no model data given"));
3666  }
3667  if (nChan < 2) {
3668    throw(AipsError("data size is too few"));
3669  }
3670  if (nChan != (int)mask.size()) {
3671    throw(AipsError("data and mask sizes are not identical"));
3672  }
3673  for (int i = 0; i < nDOF; ++i) {
3674    if (nChan != (int)model[i].size()) {
3675      throw(AipsError("data and model sizes are not identical"));
3676    }
3677  }
3678
3679  params.clear();
3680  params.resize(nDOF);
3681
3682  finalMask.clear();
3683  finalMask.resize(nChan);
3684
3685  std::vector<int> maskArray(nChan);
3686  int j = 0;
3687  for (int i = 0; i < nChan; ++i) {
3688    maskArray[i] = mask[i] ? 1 : 0;
3689    if (isnan(data[i])) maskArray[i] = 0;
3690    if (isinf(data[i])) maskArray[i] = 0;
3691
3692    finalMask[i] = (maskArray[i] == 1);
3693    if (finalMask[i]) {
3694      j++;
3695    }
3696
3697    /*
3698    maskArray[i] = mask[i] ? 1 : 0;
3699    if (mask[i]) {
3700      j++;
3701    }
3702    finalMask[i] = mask[i];
3703    */
3704  }
3705
3706  int initNData = j;
3707  int nData = initNData;
3708
3709  std::vector<double> z1(nChan), r1(nChan), residual(nChan);
3710  for (int i = 0; i < nChan; ++i) {
3711    z1[i] = (double)data[i];
3712    r1[i] = 0.0;
3713    residual[i] = 0.0;
3714  }
3715
3716  for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
3717    // xMatrix : horizontal concatenation of
3718    //           the least-sq. matrix (left) and an
3719    //           identity matrix (right).
3720    // the right part is used to calculate the inverse matrix of the left part.
3721    double xMatrix[nDOF][2*nDOF];
3722    double zMatrix[nDOF];
3723    for (int i = 0; i < nDOF; ++i) {
3724      for (int j = 0; j < 2*nDOF; ++j) {
3725        xMatrix[i][j] = 0.0;
3726      }
3727      xMatrix[i][nDOF+i] = 1.0;
3728      zMatrix[i] = 0.0;
3729    }
3730
3731    int nUseData = 0;
3732    for (int k = 0; k < nChan; ++k) {
3733      if (maskArray[k] == 0) continue;
3734
3735      for (int i = 0; i < nDOF; ++i) {
3736        for (int j = i; j < nDOF; ++j) {
3737          xMatrix[i][j] += model[i][k] * model[j][k];
3738        }
3739        zMatrix[i] += z1[k] * model[i][k];
3740      }
3741
3742      nUseData++;
3743    }
3744
3745    if (nUseData < 1) {
3746        throw(AipsError("all channels clipped or masked. can't execute fitting anymore."));     
3747    }
3748
3749    for (int i = 0; i < nDOF; ++i) {
3750      for (int j = 0; j < i; ++j) {
3751        xMatrix[i][j] = xMatrix[j][i];
3752      }
3753    }
3754
3755    //compute inverse matrix of the left half of xMatrix
3756    std::vector<double> invDiag(nDOF);
3757    for (int i = 0; i < nDOF; ++i) {
3758      invDiag[i] = 1.0 / xMatrix[i][i];
3759      for (int j = 0; j < nDOF; ++j) {
3760        xMatrix[i][j] *= invDiag[i];
3761      }
3762    }
3763
3764    for (int k = 0; k < nDOF; ++k) {
3765      for (int i = 0; i < nDOF; ++i) {
3766        if (i != k) {
3767          double factor1 = xMatrix[k][k];
3768          double invfactor1 = 1.0 / factor1;
3769          double factor2 = xMatrix[i][k];
3770          for (int j = k; j < 2*nDOF; ++j) {
3771            xMatrix[i][j] *= factor1;
3772            xMatrix[i][j] -= xMatrix[k][j]*factor2;
3773            xMatrix[i][j] *= invfactor1;
3774          }
3775        }
3776      }
3777      double invXDiag = 1.0 / xMatrix[k][k];
3778      for (int j = k; j < 2*nDOF; ++j) {
3779        xMatrix[k][j] *= invXDiag;
3780      }
3781    }
3782   
3783    for (int i = 0; i < nDOF; ++i) {
3784      for (int j = 0; j < nDOF; ++j) {
3785        xMatrix[i][nDOF+j] *= invDiag[j];
3786      }
3787    }
3788    //compute a vector y in which coefficients of the best-fit
3789    //model functions are stored.
3790    //in case of polynomials, y consists of (a0,a1,a2,...)
3791    //where ai is the coefficient of the term x^i.
3792    //in case of sinusoids, y consists of (a0,s1,c1,s2,c2,...)
3793    //where a0 is constant term and s* and c* are of sine
3794    //and cosine functions, respectively.
3795    std::vector<double> y(nDOF);
3796    for (int i = 0; i < nDOF; ++i) {
3797      y[i] = 0.0;
3798      for (int j = 0; j < nDOF; ++j) {
3799        y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
3800      }
3801      params[i] = (float)y[i];
3802    }
3803
3804    for (int i = 0; i < nChan; ++i) {
3805      r1[i] = y[0];
3806      for (int j = 1; j < nDOF; ++j) {
3807        r1[i] += y[j]*model[j][i];
3808      }
3809      residual[i] = z1[i] - r1[i];
3810    }
3811
3812    double stdDev = 0.0;
3813    for (int i = 0; i < nChan; ++i) {
3814      if (maskArray[i] == 0) continue;
3815      stdDev += residual[i]*residual[i];
3816    }
3817    stdDev = sqrt(stdDev/(double)nData);
3818    rms = (float)stdDev;
3819
3820    if ((nClip == nIterClip) || (thresClip <= 0.0)) {
3821      break;
3822    } else {
3823
3824      double thres = stdDev * thresClip;
3825      int newNData = 0;
3826      for (int i = 0; i < nChan; ++i) {
3827        if (abs(residual[i]) >= thres) {
3828          maskArray[i] = 0;
3829          finalMask[i] = false;
3830        }
3831        if (maskArray[i] > 0) {
3832          newNData++;
3833        }
3834      }
3835      if (newNData == nData) {
3836        break; //no more flag to add. stop iteration.
3837      } else {
3838        nData = newNData;
3839      }
3840
3841    }
3842  }
3843
3844  nClipped = initNData - nData;
3845
3846  std::vector<float> result(nChan);
3847  if (getResidual) {
3848    for (int i = 0; i < nChan; ++i) {
3849      result[i] = (float)residual[i];
3850    }
3851  } else {
3852    for (int i = 0; i < nChan; ++i) {
3853      result[i] = (float)r1[i];
3854    }
3855  }
3856
3857  return result;
3858} //xMatrix
3859
3860void Scantable::cubicSplineBaseline(const std::vector<bool>& mask, int nPiece,
3861                                    float thresClip, int nIterClip,
3862                                    bool getResidual,
3863                                    const std::string& progressInfo,
3864                                    const bool outLogger, const std::string& blfile,
3865                                    const std::string& bltable)
3866{
3867  /****
3868  double TimeStart = mathutil::gettimeofday_sec();
3869  ****/
3870
3871  try {
3872    ofstream ofs;
3873    String coordInfo;
3874    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3875    int minNRow;
3876    int nRow = nrow();
3877    std::vector<bool> chanMask, finalChanMask;
3878    float rms;
3879    bool outBaselineTable = (bltable != "");
3880    STBaselineTable bt = STBaselineTable(*this);
3881    Vector<Double> timeSecCol;
3882
3883    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3884                         coordInfo, hasSameNchan,
3885                         progressInfo, showProgress, minNRow,
3886                         timeSecCol);
3887
3888    std::vector<int> nChanNos;
3889    std::vector<std::vector<std::vector<double> > > modelReservoir;
3890    modelReservoir = getPolynomialModelReservoir(3,
3891                                                 &Scantable::getNormalPolynomial,
3892                                                 nChanNos);
3893    int nDOF = nPiece + 3;
3894
3895    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3896      std::vector<float> sp = getSpectrum(whichrow);
3897      chanMask = getCompositeChanMask(whichrow, mask);
3898      std::vector<int> pieceEdges;
3899      std::vector<float> params;
3900
3901      if (flagrowCol_(whichrow) == 0) {
3902        int nClipped = 0;
3903        std::vector<float> res;
3904        res = doCubicSplineLeastSquareFitting(sp, chanMask,
3905                modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3906                nPiece, false, pieceEdges, params, rms, finalChanMask,
3907                nClipped, thresClip, nIterClip, getResidual);
3908
3909        if (outBaselineTable) {
3910          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3911                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3912                        true, STBaselineFunc::CSpline, pieceEdges, std::vector<float>(),
3913                        getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3914                        thresClip, nIterClip, 0.0, 0, std::vector<int>());
3915        } else {
3916          setSpectrum(res, whichrow);
3917        }
3918
3919        outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3920                            coordInfo, hasSameNchan, ofs, "cubicSplineBaseline()",
3921                            pieceEdges, params, nClipped);
3922      } else {
3923        if (outBaselineTable) {
3924          pieceEdges.resize(nPiece+1);
3925          for (uInt i = 0; i < pieceEdges.size(); ++i) {
3926            pieceEdges[i] = 0;
3927          }
3928          params.resize(nDOF);
3929          for (uInt i = 0; i < params.size(); ++i) {
3930            params[i] = 0.0;
3931          }
3932          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3933                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3934                        true, STBaselineFunc::CSpline, pieceEdges, std::vector<float>(),
3935                        getMaskListFromMask(chanMask), params, 0.0, sp.size(),
3936                        thresClip, nIterClip, 0.0, 0, std::vector<int>());
3937        }
3938      }
3939
3940      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3941    }
3942   
3943    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3944
3945  } catch (...) {
3946    throw;
3947  }
3948
3949  /****
3950  double TimeEnd = mathutil::gettimeofday_sec();
3951  double elapse1 = TimeEnd - TimeStart;
3952  std::cout << "cspline-new   : " << elapse1 << " (sec.)" << endl;
3953  ****/
3954}
3955
3956void Scantable::autoCubicSplineBaseline(const std::vector<bool>& mask, int nPiece,
3957                                        float thresClip, int nIterClip,
3958                                        const std::vector<int>& edge,
3959                                        float threshold, int chanAvgLimit,
3960                                        bool getResidual,
3961                                        const std::string& progressInfo,
3962                                        const bool outLogger, const std::string& blfile,
3963                                        const std::string& bltable)
3964{
3965  try {
3966    ofstream ofs;
3967    String coordInfo;
3968    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3969    int minNRow;
3970    int nRow = nrow();
3971    std::vector<bool> chanMask, finalChanMask;
3972    float rms;
3973    bool outBaselineTable = (bltable != "");
3974    STBaselineTable bt = STBaselineTable(*this);
3975    Vector<Double> timeSecCol;
3976    STLineFinder lineFinder = STLineFinder();
3977
3978    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3979                         coordInfo, hasSameNchan,
3980                         progressInfo, showProgress, minNRow,
3981                         timeSecCol);
3982
3983    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3984
3985    std::vector<int> nChanNos;
3986    std::vector<std::vector<std::vector<double> > > modelReservoir;
3987    modelReservoir = getPolynomialModelReservoir(3,
3988                                                 &Scantable::getNormalPolynomial,
3989                                                 nChanNos);
3990    int nDOF = nPiece + 3;
3991
3992    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3993      std::vector<float> sp = getSpectrum(whichrow);
3994      std::vector<int> currentEdge;
3995      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
3996      std::vector<int> pieceEdges;
3997      std::vector<float> params;
3998
3999      if (flagrowCol_(whichrow) == 0) {
4000        int nClipped = 0;
4001        std::vector<float> res;
4002        res = doCubicSplineLeastSquareFitting(sp, chanMask,
4003                modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
4004                nPiece, false, pieceEdges, params, rms, finalChanMask,
4005                nClipped, thresClip, nIterClip, getResidual);
4006
4007        if (outBaselineTable) {
4008          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4009                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4010                        true, STBaselineFunc::CSpline, pieceEdges, std::vector<float>(),
4011                        getMaskListFromMask(finalChanMask), params, rms, sp.size(),
4012                        thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
4013        } else {
4014          setSpectrum(res, whichrow);
4015        }
4016
4017        outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
4018                            coordInfo, hasSameNchan, ofs, "autoCubicSplineBaseline()",
4019                            pieceEdges, params, nClipped);
4020      } else {
4021        if (outBaselineTable) {
4022          pieceEdges.resize(nPiece+1);
4023          for (uInt i = 0; i < pieceEdges.size(); ++i) {
4024            pieceEdges[i] = 0;
4025          }
4026          params.resize(nDOF);
4027          for (uInt i = 0; i < params.size(); ++i) {
4028            params[i] = 0.0;
4029          }
4030          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4031                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4032                        true, STBaselineFunc::CSpline, pieceEdges, std::vector<float>(),
4033                        getMaskListFromMask(chanMask), params, 0.0, sp.size(),
4034                        thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
4035        }
4036      }
4037
4038      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
4039    }
4040
4041    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
4042
4043  } catch (...) {
4044    throw;
4045  }
4046}
4047
4048std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data,
4049                                                   const std::vector<bool>& mask,
4050                                                   std::vector<int>& idxEdge,
4051                                                   std::vector<float>& params,
4052                                                   float& rms,
4053                                                   std::vector<bool>& finalmask,
4054                                                   float clipth,
4055                                                   int clipn)
4056{
4057  int nClipped = 0;
4058  return doCubicSplineFitting(data, mask, idxEdge.size()-1, true, idxEdge, params, rms, finalmask, nClipped, clipth, clipn);
4059}
4060
4061std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data,
4062                                                   const std::vector<bool>& mask,
4063                                                   int nPiece,
4064                                                   std::vector<int>& idxEdge,
4065                                                   std::vector<float>& params,
4066                                                   float& rms,
4067                                                   std::vector<bool>& finalmask,
4068                                                   float clipth,
4069                                                   int clipn)
4070{
4071  int nClipped = 0;
4072  return doCubicSplineFitting(data, mask, nPiece, false, idxEdge, params, rms, finalmask, nClipped, clipth, clipn);
4073}
4074
4075std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data,
4076                                                   const std::vector<bool>& mask,
4077                                                   int nPiece,
4078                                                   bool useGivenPieceBoundary,
4079                                                   std::vector<int>& idxEdge,
4080                                                   std::vector<float>& params,
4081                                                   float& rms,
4082                                                   std::vector<bool>& finalMask,
4083                                                   int& nClipped,
4084                                                   float thresClip,
4085                                                   int nIterClip,
4086                                                   bool getResidual)
4087{
4088  return doCubicSplineLeastSquareFitting(data, mask,
4089                                         getPolynomialModel(3, data.size(), &Scantable::getNormalPolynomial),
4090                                         nPiece, useGivenPieceBoundary, idxEdge,
4091                                         params, rms, finalMask,
4092                                         nClipped, thresClip, nIterClip,
4093                                         getResidual);
4094}
4095
4096std::vector<float> Scantable::doCubicSplineLeastSquareFitting(const std::vector<float>& data,
4097                                                              const std::vector<bool>& mask,
4098                                                              const std::vector<std::vector<double> >& model,
4099                                                              int nPiece,
4100                                                              bool useGivenPieceBoundary,
4101                                                              std::vector<int>& idxEdge,
4102                                                              std::vector<float>& params,
4103                                                              float& rms,
4104                                                              std::vector<bool>& finalMask,
4105                                                              int& nClipped,
4106                                                              float thresClip,
4107                                                              int nIterClip,
4108                                                              bool getResidual)
4109{
4110  int nDOF = nPiece + 3;  //number of independent parameters to solve, namely, 4+(nPiece-1).
4111  int nModel = model.size();
4112  int nChan = data.size();
4113
4114  if (nModel != 4) {
4115    throw(AipsError("model size must be 4."));
4116  }
4117  if (nPiece < 1) {
4118    throw(AipsError("number of the sections must be one or more"));
4119  }
4120  if (nChan < 2*nPiece) {
4121    throw(AipsError("data size is too few"));
4122  }
4123  if (nChan != (int)mask.size()) {
4124    throw(AipsError("data and mask sizes are not identical"));
4125  }
4126  for (int i = 0; i < nModel; ++i) {
4127    if (nChan != (int)model[i].size()) {
4128      throw(AipsError("data and model sizes are not identical"));
4129    }
4130  }
4131
4132  params.clear();
4133  params.resize(nPiece*nModel);
4134
4135  finalMask.clear();
4136  finalMask.resize(nChan);
4137
4138  std::vector<int> maskArray(nChan);
4139  std::vector<int> x(nChan);
4140  int j = 0;
4141  for (int i = 0; i < nChan; ++i) {
4142    maskArray[i] = mask[i] ? 1 : 0;
4143    if (isnan(data[i])) maskArray[i] = 0;
4144    if (isinf(data[i])) maskArray[i] = 0;
4145
4146    finalMask[i] = (maskArray[i] == 1);
4147    if (finalMask[i]) {
4148      x[j] = i;
4149      j++;
4150    }
4151
4152    /*
4153    maskArray[i] = mask[i] ? 1 : 0;
4154    if (mask[i]) {
4155      x[j] = i;
4156      j++;
4157    }
4158    finalMask[i] = mask[i];
4159    */
4160  }
4161
4162  int initNData = j;
4163  int nData = initNData;
4164
4165  if (initNData < nPiece) {
4166    throw(AipsError("too few non-flagged channels"));
4167  }
4168
4169  int nElement = (int)(floor(floor((double)(initNData/nPiece))+0.5));
4170  std::vector<double> invEdge(nPiece-1);
4171
4172  if (useGivenPieceBoundary) {
4173    if ((int)idxEdge.size() != nPiece+1) {
4174      throw(AipsError("pieceEdge.size() must be equal to nPiece+1."));
4175    }
4176  } else {
4177    idxEdge.clear();
4178    idxEdge.resize(nPiece+1);
4179    idxEdge[0] = x[0];
4180  }
4181  for (int i = 1; i < nPiece; ++i) {
4182    int valX = x[nElement*i];
4183    if (!useGivenPieceBoundary) {
4184      idxEdge[i] = valX;
4185    }
4186    invEdge[i-1] = 1.0/(double)valX;
4187  }
4188  if (!useGivenPieceBoundary) {
4189    idxEdge[nPiece] = x[initNData-1]+1;
4190  }
4191
4192  std::vector<double> z1(nChan), r1(nChan), residual(nChan);
4193  for (int i = 0; i < nChan; ++i) {
4194    z1[i] = (double)data[i];
4195    r1[i] = 0.0;
4196    residual[i] = 0.0;
4197  }
4198
4199  for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
4200    // xMatrix : horizontal concatenation of
4201    //           the least-sq. matrix (left) and an
4202    //           identity matrix (right).
4203    // the right part is used to calculate the inverse matrix of the left part.
4204
4205    double xMatrix[nDOF][2*nDOF];
4206    double zMatrix[nDOF];
4207    for (int i = 0; i < nDOF; ++i) {
4208      for (int j = 0; j < 2*nDOF; ++j) {
4209        xMatrix[i][j] = 0.0;
4210      }
4211      xMatrix[i][nDOF+i] = 1.0;
4212      zMatrix[i] = 0.0;
4213    }
4214
4215    for (int n = 0; n < nPiece; ++n) {
4216      int nUseDataInPiece = 0;
4217      for (int k = idxEdge[n]; k < idxEdge[n+1]; ++k) {
4218
4219        if (maskArray[k] == 0) continue;
4220
4221        for (int i = 0; i < nModel; ++i) {
4222          for (int j = i; j < nModel; ++j) {
4223            xMatrix[i][j] += model[i][k] * model[j][k];
4224          }
4225          zMatrix[i] += z1[k] * model[i][k];
4226        }
4227
4228        for (int i = 0; i < n; ++i) {
4229          double q = 1.0 - model[1][k]*invEdge[i];
4230          q = q*q*q;
4231          for (int j = 0; j < nModel; ++j) {
4232            xMatrix[j][i+nModel] += q * model[j][k];
4233          }
4234          for (int j = 0; j < i; ++j) {
4235            double r = 1.0 - model[1][k]*invEdge[j];
4236            r = r*r*r;
4237            xMatrix[j+nModel][i+nModel] += r*q;
4238          }
4239          xMatrix[i+nModel][i+nModel] += q*q;
4240          zMatrix[i+nModel] += q*z1[k];
4241        }
4242
4243        nUseDataInPiece++;
4244      }
4245
4246      if (nUseDataInPiece < 1) {
4247        std::vector<string> suffixOfPieceNumber(4);
4248        suffixOfPieceNumber[0] = "th";
4249        suffixOfPieceNumber[1] = "st";
4250        suffixOfPieceNumber[2] = "nd";
4251        suffixOfPieceNumber[3] = "rd";
4252        int idxNoDataPiece = (n % 10 <= 3) ? n : 0;
4253        ostringstream oss;
4254        oss << "all channels clipped or masked in " << n << suffixOfPieceNumber[idxNoDataPiece];
4255        oss << " piece of the spectrum. can't execute fitting anymore.";
4256        throw(AipsError(String(oss)));
4257      }
4258    }
4259
4260    for (int i = 0; i < nDOF; ++i) {
4261      for (int j = 0; j < i; ++j) {
4262        xMatrix[i][j] = xMatrix[j][i];
4263      }
4264    }
4265
4266    std::vector<double> invDiag(nDOF);
4267    for (int i = 0; i < nDOF; ++i) {
4268      invDiag[i] = 1.0 / xMatrix[i][i];
4269      for (int j = 0; j < nDOF; ++j) {
4270        xMatrix[i][j] *= invDiag[i];
4271      }
4272    }
4273
4274    for (int k = 0; k < nDOF; ++k) {
4275      for (int i = 0; i < nDOF; ++i) {
4276        if (i != k) {
4277          double factor1 = xMatrix[k][k];
4278          double invfactor1 = 1.0 / factor1;
4279          double factor2 = xMatrix[i][k];
4280          for (int j = k; j < 2*nDOF; ++j) {
4281            xMatrix[i][j] *= factor1;
4282            xMatrix[i][j] -= xMatrix[k][j]*factor2;
4283            xMatrix[i][j] *= invfactor1;
4284          }
4285        }
4286      }
4287      double invXDiag = 1.0 / xMatrix[k][k];
4288      for (int j = k; j < 2*nDOF; ++j) {
4289        xMatrix[k][j] *= invXDiag;
4290      }
4291    }
4292   
4293    for (int i = 0; i < nDOF; ++i) {
4294      for (int j = 0; j < nDOF; ++j) {
4295        xMatrix[i][nDOF+j] *= invDiag[j];
4296      }
4297    }
4298
4299    //compute a vector y which consists of the coefficients of the best-fit spline curves
4300    //(a0,a1,a2,a3(,b3,c3,...)), namely, the ones for the leftmost piece and the ones of
4301    //cubic terms for the other pieces (in case nPiece>1).
4302    std::vector<double> y(nDOF);
4303    for (int i = 0; i < nDOF; ++i) {
4304      y[i] = 0.0;
4305      for (int j = 0; j < nDOF; ++j) {
4306        y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
4307      }
4308    }
4309
4310    std::vector<double> a(nModel);
4311    for (int i = 0; i < nModel; ++i) {
4312      a[i] = y[i];
4313    }
4314
4315    int j = 0;
4316    for (int n = 0; n < nPiece; ++n) {
4317      for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
4318        r1[i] = 0.0;
4319        for (int j = 0; j < nModel; ++j) {
4320          r1[i] += a[j] * model[j][i];
4321        }
4322      }
4323      for (int i = 0; i < nModel; ++i) {
4324        params[j+i] = a[i];
4325      }
4326      j += nModel;
4327
4328      if (n == nPiece-1) break;
4329
4330      double d = y[n+nModel];
4331      double iE = invEdge[n];
4332      a[0] +=       d;
4333      a[1] -= 3.0 * d * iE;
4334      a[2] += 3.0 * d * iE * iE;
4335      a[3] -=       d * iE * iE * iE;
4336    }
4337
4338    //subtract constant value for masked regions at the edge of spectrum
4339    if (idxEdge[0] > 0) {
4340      int n = idxEdge[0];
4341      for (int i = 0; i < idxEdge[0]; ++i) {
4342        //--cubic extrapolate--
4343        //r1[i] = params[0] + params[1]*x1[i] + params[2]*x2[i] + params[3]*x3[i];
4344        //--linear extrapolate--
4345        //r1[i] = (r1[n+1] - r1[n])/(x1[n+1] - x1[n])*(x1[i] - x1[n]) + r1[n];
4346        //--constant--
4347        r1[i] = r1[n];
4348      }
4349    }
4350
4351    if (idxEdge[nPiece] < nChan) {
4352      int n = idxEdge[nPiece]-1;
4353      for (int i = idxEdge[nPiece]; i < nChan; ++i) {
4354        //--cubic extrapolate--
4355        //int m = 4*(nPiece-1);
4356        //r1[i] = params[m] + params[m+1]*x1[i] + params[m+2]*x2[i] + params[m+3]*x3[i];
4357        //--linear extrapolate--
4358        //r1[i] = (r1[n-1] - r1[n])/(x1[n-1] - x1[n])*(x1[i] - x1[n]) + r1[n];
4359        //--constant--
4360        r1[i] = r1[n];
4361      }
4362    }
4363
4364    for (int i = 0; i < nChan; ++i) {
4365      residual[i] = z1[i] - r1[i];
4366    }
4367
4368    double stdDev = 0.0;
4369    for (int i = 0; i < nChan; ++i) {
4370      if (maskArray[i] == 0) continue;
4371      stdDev += residual[i]*residual[i];
4372    }
4373    stdDev = sqrt(stdDev/(double)nData);
4374    rms = (float)stdDev;
4375
4376    if ((nClip == nIterClip) || (thresClip <= 0.0)) {
4377      break;
4378    } else {
4379     
4380      double thres = stdDev * thresClip;
4381      int newNData = 0;
4382      for (int i = 0; i < nChan; ++i) {
4383        if (abs(residual[i]) >= thres) {
4384          maskArray[i] = 0;
4385          finalMask[i] = false;
4386        }
4387        if (maskArray[i] > 0) {
4388          newNData++;
4389        }
4390      }
4391      if (newNData == nData) {
4392        break; //no more flag to add. iteration stops.
4393      } else {
4394        nData = newNData;
4395      }
4396
4397    }
4398  }
4399
4400  nClipped = initNData - nData;
4401
4402  std::vector<float> result(nChan);
4403  if (getResidual) {
4404    for (int i = 0; i < nChan; ++i) {
4405      result[i] = (float)residual[i];
4406    }
4407  } else {
4408    for (int i = 0; i < nChan; ++i) {
4409      result[i] = (float)r1[i];
4410    }
4411  }
4412
4413  return result;
4414}
4415
4416std::vector<int> Scantable::selectWaveNumbers(const std::vector<int>& addNWaves,
4417                                  const std::vector<int>& rejectNWaves)
4418{
4419  std::vector<bool> chanMask;
4420  std::string fftMethod;
4421  std::string fftThresh;
4422
4423  return selectWaveNumbers(0, chanMask, false, fftMethod, fftThresh, addNWaves, rejectNWaves);
4424}
4425
4426std::vector<int> Scantable::selectWaveNumbers(const int whichrow,
4427                                  const std::vector<bool>& chanMask,
4428                                  const bool applyFFT,
4429                                  const std::string& fftMethod,
4430                                  const std::string& fftThresh,
4431                                  const std::vector<int>& addNWaves,
4432                                  const std::vector<int>& rejectNWaves)
4433{
4434  std::vector<int> nWaves;
4435  nWaves.clear();
4436
4437  if (applyFFT) {
4438    string fftThAttr;
4439    float fftThSigma;
4440    int fftThTop;
4441    parseFFTThresholdInfo(fftThresh, fftThAttr, fftThSigma, fftThTop);
4442    doSelectWaveNumbers(whichrow, chanMask, fftMethod, fftThSigma, fftThTop, fftThAttr, nWaves);
4443  }
4444
4445  addAuxWaveNumbers(whichrow, addNWaves, rejectNWaves, nWaves);
4446
4447  return nWaves;
4448}
4449
4450int Scantable::getIdxOfNchan(const int nChan, const std::vector<int>& nChanNos)
4451{
4452  int idx = -1;
4453  for (uint i = 0; i < nChanNos.size(); ++i) {
4454    if (nChan == nChanNos[i]) {
4455      idx = i;
4456      break;
4457    }
4458  }
4459
4460  if (idx < 0) {
4461    throw(AipsError("nChan not found in nChhanNos."));
4462  }
4463
4464  return idx;
4465}
4466
4467void Scantable::parseFFTInfo(const std::string& fftInfo, bool& applyFFT, std::string& fftMethod, std::string& fftThresh)
4468{
4469  istringstream iss(fftInfo);
4470  std::string tmp;
4471  std::vector<string> res;
4472  while (getline(iss, tmp, ',')) {
4473    res.push_back(tmp);
4474  }
4475  if (res.size() < 3) {
4476    throw(AipsError("wrong value in 'fftinfo' parameter")) ;
4477  }
4478  applyFFT = (res[0] == "true");
4479  fftMethod = res[1];
4480  fftThresh = res[2];
4481}
4482
4483void Scantable::parseFFTThresholdInfo(const std::string& fftThresh, std::string& fftThAttr, float& fftThSigma, int& fftThTop)
4484{
4485  uInt idxSigma = fftThresh.find("sigma");
4486  uInt idxTop   = fftThresh.find("top");
4487
4488  if (idxSigma == fftThresh.size() - 5) {
4489    std::istringstream is(fftThresh.substr(0, fftThresh.size() - 5));
4490    is >> fftThSigma;
4491    fftThAttr = "sigma";
4492  } else if (idxTop == 0) {
4493    std::istringstream is(fftThresh.substr(3));
4494    is >> fftThTop;
4495    fftThAttr = "top";
4496  } else {
4497    bool isNumber = true;
4498    for (uInt i = 0; i < fftThresh.size()-1; ++i) {
4499      char ch = (fftThresh.substr(i, 1).c_str())[0];
4500      if (!(isdigit(ch) || (fftThresh.substr(i, 1) == "."))) {
4501        isNumber = false;
4502        break;
4503      }
4504    }
4505    if (isNumber) {
4506      std::istringstream is(fftThresh);
4507      is >> fftThSigma;
4508      fftThAttr = "sigma";
4509    } else {
4510      throw(AipsError("fftthresh has a wrong value"));
4511    }
4512  }
4513}
4514
4515void Scantable::doSelectWaveNumbers(const int whichrow, const std::vector<bool>& chanMask, const std::string& fftMethod, const float fftThSigma, const int fftThTop, const std::string& fftThAttr, std::vector<int>& nWaves)
4516{
4517  std::vector<float> fspec;
4518  if (fftMethod == "fft") {
4519    fspec = execFFT(whichrow, chanMask, false, true);
4520  //} else if (fftMethod == "lsp") {
4521  //  fspec = lombScarglePeriodogram(whichrow);
4522  }
4523
4524  if (fftThAttr == "sigma") {
4525    float mean  = 0.0;
4526    float mean2 = 0.0;
4527    for (uInt i = 0; i < fspec.size(); ++i) {
4528      mean  += fspec[i];
4529      mean2 += fspec[i]*fspec[i];
4530    }
4531    mean  /= float(fspec.size());
4532    mean2 /= float(fspec.size());
4533    float thres = mean + fftThSigma * float(sqrt(mean2 - mean*mean));
4534
4535    for (uInt i = 0; i < fspec.size(); ++i) {
4536      if (fspec[i] >= thres) {
4537        nWaves.push_back(i);
4538      }
4539    }
4540
4541  } else if (fftThAttr == "top") {
4542    for (int i = 0; i < fftThTop; ++i) {
4543      float max = 0.0;
4544      int maxIdx = 0;
4545      for (uInt j = 0; j < fspec.size(); ++j) {
4546        if (fspec[j] > max) {
4547          max = fspec[j];
4548          maxIdx = j;
4549        }
4550      }
4551      nWaves.push_back(maxIdx);
4552      fspec[maxIdx] = 0.0;
4553    }
4554
4555  }
4556
4557  if (nWaves.size() > 1) {
4558    sort(nWaves.begin(), nWaves.end());
4559  }
4560}
4561
4562void Scantable::addAuxWaveNumbers(const int whichrow, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, std::vector<int>& nWaves)
4563{
4564  std::vector<int> tempAddNWaves, tempRejectNWaves;
4565  tempAddNWaves.clear();
4566  tempRejectNWaves.clear();
4567
4568  for (uInt i = 0; i < addNWaves.size(); ++i) {
4569    tempAddNWaves.push_back(addNWaves[i]);
4570  }
4571  if ((tempAddNWaves.size() == 2) && (tempAddNWaves[1] == -999)) {
4572    setWaveNumberListUptoNyquistFreq(whichrow, tempAddNWaves);
4573  }
4574
4575  for (uInt i = 0; i < rejectNWaves.size(); ++i) {
4576    tempRejectNWaves.push_back(rejectNWaves[i]);
4577  }
4578  if ((tempRejectNWaves.size() == 2) && (tempRejectNWaves[1] == -999)) {
4579    setWaveNumberListUptoNyquistFreq(whichrow, tempRejectNWaves);
4580  }
4581
4582  for (uInt i = 0; i < tempAddNWaves.size(); ++i) {
4583    bool found = false;
4584    for (uInt j = 0; j < nWaves.size(); ++j) {
4585      if (nWaves[j] == tempAddNWaves[i]) {
4586        found = true;
4587        break;
4588      }
4589    }
4590    if (!found) nWaves.push_back(tempAddNWaves[i]);
4591  }
4592
4593  for (uInt i = 0; i < tempRejectNWaves.size(); ++i) {
4594    for (std::vector<int>::iterator j = nWaves.begin(); j != nWaves.end(); ) {
4595      if (*j == tempRejectNWaves[i]) {
4596        j = nWaves.erase(j);
4597      } else {
4598        ++j;
4599      }
4600    }
4601  }
4602
4603  if (nWaves.size() > 1) {
4604    sort(nWaves.begin(), nWaves.end());
4605    unique(nWaves.begin(), nWaves.end());
4606  }
4607}
4608
4609void Scantable::setWaveNumberListUptoNyquistFreq(const int whichrow, std::vector<int>& nWaves)
4610{
4611  int val = nWaves[0];
4612  int nyquistFreq = nchan(getIF(whichrow))/2+1;
4613  nWaves.clear();
4614  if (val > nyquistFreq) {  // for safety, at least nWaves contains a constant; CAS-3759
4615    nWaves.push_back(0);
4616  }
4617  while (val <= nyquistFreq) {
4618    nWaves.push_back(val);
4619    val++;
4620  }
4621}
4622
4623void Scantable::sinusoidBaseline(const std::vector<bool>& mask, const std::string& fftInfo,
4624                                 const std::vector<int>& addNWaves,
4625                                 const std::vector<int>& rejectNWaves,
4626                                 float thresClip, int nIterClip,
4627                                 bool getResidual,
4628                                 const std::string& progressInfo,
4629                                 const bool outLogger, const std::string& blfile,
4630                                 const std::string& bltable)
4631{
4632  /****
4633  double TimeStart = mathutil::gettimeofday_sec();
4634  ****/
4635
4636  try {
4637    ofstream ofs;
4638    String coordInfo;
4639    bool hasSameNchan, outTextFile, csvFormat, showProgress;
4640    int minNRow;
4641    int nRow = nrow();
4642    std::vector<bool> chanMask, finalChanMask;
4643    float rms;
4644    bool outBaselineTable = (bltable != "");
4645    STBaselineTable bt = STBaselineTable(*this);
4646    Vector<Double> timeSecCol;
4647
4648    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
4649                         coordInfo, hasSameNchan,
4650                         progressInfo, showProgress, minNRow,
4651                         timeSecCol);
4652
4653    bool applyFFT;
4654    std::string fftMethod, fftThresh;
4655    parseFFTInfo(fftInfo, applyFFT, fftMethod, fftThresh);
4656
4657    std::vector<int> nWaves;
4658    std::vector<int> nChanNos;
4659    std::vector<std::vector<std::vector<double> > > modelReservoir;
4660    if (!applyFFT) {
4661      nWaves = selectWaveNumbers(addNWaves, rejectNWaves);
4662      modelReservoir = getSinusoidModelReservoir(nWaves, nChanNos);
4663    }
4664
4665    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
4666      std::vector<float> sp = getSpectrum(whichrow);
4667      chanMask = getCompositeChanMask(whichrow, mask);
4668      std::vector<std::vector<double> > model;
4669      if (applyFFT) {
4670        nWaves = selectWaveNumbers(whichrow, chanMask, true, fftMethod, fftThresh,
4671                                   addNWaves, rejectNWaves);
4672        model = getSinusoidModel(nWaves, sp.size());
4673      } else {
4674        model = modelReservoir[getIdxOfNchan(sp.size(), nChanNos)];
4675      }
4676      int nModel = modelReservoir.size();
4677
4678      std::vector<float> params;
4679
4680      if (flagrowCol_(whichrow) == 0) {
4681        int nClipped = 0;
4682        std::vector<float> res;
4683        res = doLeastSquareFitting(sp, chanMask, model,
4684                                   params, rms, finalChanMask,
4685                                   nClipped, thresClip, nIterClip, getResidual);
4686
4687        if (outBaselineTable) {
4688          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4689                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4690                        true, STBaselineFunc::Sinusoid, nWaves, std::vector<float>(),
4691                        getMaskListFromMask(finalChanMask), params, rms, sp.size(),
4692                        thresClip, nIterClip, 0.0, 0, std::vector<int>());
4693        } else {
4694          setSpectrum(res, whichrow);
4695        }
4696
4697        outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
4698                            coordInfo, hasSameNchan, ofs, "sinusoidBaseline()",
4699                            params, nClipped);
4700      } else {
4701        if (outBaselineTable) {
4702          params.resize(nModel);
4703          for (uInt i = 0; i < params.size(); ++i) {
4704            params[i] = 0.0;
4705          }
4706          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4707                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4708                        true, STBaselineFunc::Sinusoid, nWaves, std::vector<float>(),
4709                        getMaskListFromMask(chanMask), params, 0.0, sp.size(),
4710                        thresClip, nIterClip, 0.0, 0, std::vector<int>());
4711        }
4712      }
4713
4714      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
4715    }
4716
4717    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
4718
4719  } catch (...) {
4720    throw;
4721  }
4722
4723  /****
4724  double TimeEnd = mathutil::gettimeofday_sec();
4725  double elapse1 = TimeEnd - TimeStart;
4726  std::cout << "sinusoid-old   : " << elapse1 << " (sec.)" << endl;
4727  ****/
4728}
4729
4730void Scantable::autoSinusoidBaseline(const std::vector<bool>& mask, const std::string& fftInfo,
4731                                     const std::vector<int>& addNWaves,
4732                                     const std::vector<int>& rejectNWaves,
4733                                     float thresClip, int nIterClip,
4734                                     const std::vector<int>& edge,
4735                                     float threshold, int chanAvgLimit,
4736                                     bool getResidual,
4737                                     const std::string& progressInfo,
4738                                     const bool outLogger, const std::string& blfile,
4739                                     const std::string& bltable)
4740{
4741  try {
4742    ofstream ofs;
4743    String coordInfo;
4744    bool hasSameNchan, outTextFile, csvFormat, showProgress;
4745    int minNRow;
4746    int nRow = nrow();
4747    std::vector<bool> chanMask, finalChanMask;
4748    float rms;
4749    bool outBaselineTable = (bltable != "");
4750    STBaselineTable bt = STBaselineTable(*this);
4751    Vector<Double> timeSecCol;
4752    STLineFinder lineFinder = STLineFinder();
4753
4754    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
4755                         coordInfo, hasSameNchan,
4756                         progressInfo, showProgress, minNRow,
4757                         timeSecCol);
4758
4759    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
4760
4761    bool applyFFT;
4762    string fftMethod, fftThresh;
4763    parseFFTInfo(fftInfo, applyFFT, fftMethod, fftThresh);
4764
4765    std::vector<int> nWaves;
4766    std::vector<int> nChanNos;
4767    std::vector<std::vector<std::vector<double> > > modelReservoir;
4768    if (!applyFFT) {
4769      nWaves = selectWaveNumbers(addNWaves, rejectNWaves);
4770      modelReservoir = getSinusoidModelReservoir(nWaves, nChanNos);
4771    }
4772
4773    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
4774      std::vector<float> sp = getSpectrum(whichrow);
4775      std::vector<int> currentEdge;
4776      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
4777      std::vector<std::vector<double> > model;
4778      if (applyFFT) {
4779        nWaves = selectWaveNumbers(whichrow, chanMask, true, fftMethod, fftThresh,
4780                                   addNWaves, rejectNWaves);
4781        model = getSinusoidModel(nWaves, sp.size());
4782      } else {
4783        model = modelReservoir[getIdxOfNchan(sp.size(), nChanNos)];
4784      }
4785      int nModel = modelReservoir.size();
4786
4787      std::vector<float> params;
4788
4789      if (flagrowCol_(whichrow) == 0) {
4790        int nClipped = 0;
4791        std::vector<float> res;
4792        res = doLeastSquareFitting(sp, chanMask, model,
4793                                   params, rms, finalChanMask,
4794                                   nClipped, thresClip, nIterClip, getResidual);
4795
4796        if (outBaselineTable) {
4797          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4798                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4799                        true, STBaselineFunc::Sinusoid, nWaves, std::vector<float>(),
4800                        getMaskListFromMask(finalChanMask), params, rms, sp.size(),
4801                        thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
4802        } else {
4803          setSpectrum(res, whichrow);
4804        }
4805
4806        outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
4807                            coordInfo, hasSameNchan, ofs, "autoSinusoidBaseline()",
4808                            params, nClipped);
4809      } else {
4810        if (outBaselineTable) {
4811          params.resize(nModel);
4812          for (uInt i = 0; i < params.size(); ++i) {
4813            params[i] = 0.0;
4814          }
4815          bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4816                        getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4817                        true, STBaselineFunc::Sinusoid, nWaves, std::vector<float>(),
4818                        getMaskListFromMask(chanMask), params, 0.0, sp.size(),
4819                        thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
4820        }
4821      }
4822
4823      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
4824    }
4825
4826    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
4827
4828  } catch (...) {
4829    throw;
4830  }
4831}
4832
4833std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data,
4834                                                const std::vector<bool>& mask,
4835                                                const std::vector<int>& waveNumbers,
4836                                                std::vector<float>& params,
4837                                                float& rms,
4838                                                std::vector<bool>& finalmask,
4839                                                float clipth,
4840                                                int clipn)
4841{
4842  int nClipped = 0;
4843  return doSinusoidFitting(data, mask, waveNumbers, params, rms, finalmask, nClipped, clipth, clipn);
4844}
4845
4846std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data,
4847                                                const std::vector<bool>& mask,
4848                                                const std::vector<int>& waveNumbers,
4849                                                std::vector<float>& params,
4850                                                float& rms,
4851                                                std::vector<bool>& finalMask,
4852                                                int& nClipped,
4853                                                float thresClip,
4854                                                int nIterClip,
4855                                                bool getResidual)
4856{
4857  return doLeastSquareFitting(data, mask,
4858                              getSinusoidModel(waveNumbers, data.size()),
4859                              params, rms, finalMask,
4860                              nClipped, thresClip, nIterClip,
4861                              getResidual);
4862}
4863
4864std::vector<std::vector<std::vector<double> > > Scantable::getSinusoidModelReservoir(const std::vector<int>& waveNumbers,
4865                                                                                     std::vector<int>& nChanNos)
4866{
4867  std::vector<std::vector<std::vector<double> > > res;
4868  res.clear();
4869  nChanNos.clear();
4870
4871  std::vector<uint> ifNos = getIFNos();
4872  for (uint i = 0; i < ifNos.size(); ++i) {
4873    int currNchan = nchan(ifNos[i]);
4874    bool hasDifferentNchan = (i == 0);
4875    for (uint j = 0; j < i; ++j) {
4876      if (currNchan != nchan(ifNos[j])) {
4877        hasDifferentNchan = true;
4878        break;
4879      }
4880    }
4881    if (hasDifferentNchan) {
4882      res.push_back(getSinusoidModel(waveNumbers, currNchan));
4883      nChanNos.push_back(currNchan);
4884    }
4885  }
4886
4887  return res;
4888}
4889
4890std::vector<std::vector<double> > Scantable::getSinusoidModel(const std::vector<int>& waveNumbers, int nchan)
4891{
4892  // model  : contains elemental values for computing the least-square matrix.
4893  //          model.size() is nmodel and model[*].size() is nchan.
4894  //          Each model element are as follows:
4895  //          model[0]    = {1.0, 1.0, 1.0, ..., 1.0},
4896  //          model[2n-1] = {sin(nPI/L*x[0]), sin(nPI/L*x[1]), ..., sin(nPI/L*x[nchan])},
4897  //          model[2n]   = {cos(nPI/L*x[0]), cos(nPI/L*x[1]), ..., cos(nPI/L*x[nchan])},
4898  //          where (1 <= n <= nMaxWavesInSW),
4899  //          or,
4900  //          model[2n-1] = {sin(wn[n]PI/L*x[0]), sin(wn[n]PI/L*x[1]), ..., sin(wn[n]PI/L*x[nchan])},
4901  //          model[2n]   = {cos(wn[n]PI/L*x[0]), cos(wn[n]PI/L*x[1]), ..., cos(wn[n]PI/L*x[nchan])},
4902  //          where wn[n] denotes waveNumbers[n] (1 <= n <= waveNumbers.size()).
4903
4904  std::vector<int> nWaves;  // sorted and uniqued array of wave numbers
4905  nWaves.reserve(waveNumbers.size());
4906  copy(waveNumbers.begin(), waveNumbers.end(), back_inserter(nWaves));
4907  sort(nWaves.begin(), nWaves.end());
4908  std::vector<int>::iterator end_it = unique(nWaves.begin(), nWaves.end());
4909  nWaves.erase(end_it, nWaves.end());
4910
4911  int minNWaves = nWaves[0];
4912  if (minNWaves < 0) {
4913    throw(AipsError("wave number must be positive or zero (i.e. constant)"));
4914  }
4915  bool hasConstantTerm = (minNWaves == 0);
4916  int nmodel = nWaves.size() * 2 - (hasConstantTerm ? 1 : 0);  //number of parameters to solve.
4917
4918  std::vector<std::vector<double> > model(nmodel, std::vector<double>(nchan));
4919
4920  if (hasConstantTerm) {
4921    for (int j = 0; j < nchan; ++j) {
4922      model[0][j] = 1.0;
4923    }
4924  }
4925
4926  const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
4927  double stretch0 = 2.0*PI/(double)(nchan-1);
4928
4929  for (uInt i = (hasConstantTerm ? 1 : 0); i < nWaves.size(); ++i) {
4930    int sidx = hasConstantTerm ? 2*i-1 : 2*i;
4931    int cidx = sidx + 1;
4932    double stretch = stretch0*(double)nWaves[i];
4933
4934    for (int j = 0; j < nchan; ++j) {
4935      model[sidx][j] = sin(stretch*(double)j);
4936      model[cidx][j] = cos(stretch*(double)j);
4937    }
4938  }
4939
4940  return model;
4941}
4942
4943std::vector<bool> Scantable::getCompositeChanMask(int whichrow,
4944                                                  const std::vector<bool>& inMask)
4945{
4946  std::vector<bool> mask = getMask(whichrow);
4947  uInt maskSize = mask.size();
4948  if (inMask.size() != 0) {
4949    if (maskSize != inMask.size()) {
4950      throw(AipsError("mask sizes are not the same."));
4951    }
4952    for (uInt i = 0; i < maskSize; ++i) {
4953      mask[i] = mask[i] && inMask[i];
4954    }
4955  }
4956
4957  return mask;
4958}
4959
4960std::vector<bool> Scantable::getCompositeChanMask(int whichrow,
4961                                                  const std::vector<bool>& inMask,
4962                                                  const std::vector<int>& edge,
4963                                                  std::vector<int>& currEdge,
4964                                                  STLineFinder& lineFinder)
4965{
4966  std::vector<uint> ifNos = getIFNos();
4967  if ((edge.size() > 2) && (edge.size() < ifNos.size()*2)) {
4968    throw(AipsError("Length of edge element info is less than that of IFs"));
4969  }
4970
4971  uint idx = 0;
4972  if (edge.size() > 2) {
4973    int ifVal = getIF(whichrow);
4974    bool foundIF = false;
4975    for (uint i = 0; i < ifNos.size(); ++i) {
4976      if (ifVal == (int)ifNos[i]) {
4977        idx = 2*i;
4978        foundIF = true;
4979        break;
4980      }
4981    }
4982    if (!foundIF) {
4983      throw(AipsError("bad IF number"));
4984    }
4985  }
4986
4987  currEdge.clear();
4988  currEdge.resize(2);
4989  currEdge[0] = edge[idx];
4990  currEdge[1] = edge[idx+1];
4991
4992  lineFinder.setData(getSpectrum(whichrow));
4993  lineFinder.findLines(getCompositeChanMask(whichrow, inMask), currEdge, whichrow);
4994
4995  return lineFinder.getMask();
4996}
4997
4998/* for cspline. will be merged once cspline is available in fitter (2011/3/10 WK) */
4999void Scantable::outputFittingResult(bool outLogger,
5000                                    bool outTextFile,
5001                                    bool csvFormat,
5002                                    const std::vector<bool>& chanMask,
5003                                    int whichrow,
5004                                    const casa::String& coordInfo,
5005                                    bool hasSameNchan,
5006                                    ofstream& ofs,
5007                                    const casa::String& funcName,
5008                                    const std::vector<int>& edge,
5009                                    const std::vector<float>& params,
5010                                    const int nClipped)
5011{
5012  if (outLogger || outTextFile) {
5013    float rms = getRms(chanMask, whichrow);
5014    String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
5015    std::vector<bool> fixed;
5016    fixed.clear();
5017
5018    if (outLogger) {
5019      LogIO ols(LogOrigin("Scantable", funcName, WHERE));
5020      ols << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped,
5021                                           masklist, whichrow, false, csvFormat) << LogIO::POST ;
5022    }
5023    if (outTextFile) {
5024      ofs << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped,
5025                                           masklist, whichrow, true, csvFormat) << flush;
5026    }
5027  }
5028}
5029
5030/* for poly/chebyshev/sinusoid. */
5031void Scantable::outputFittingResult(bool outLogger,
5032                                    bool outTextFile,
5033                                    bool csvFormat,
5034                                    const std::vector<bool>& chanMask,
5035                                    int whichrow,
5036                                    const casa::String& coordInfo,
5037                                    bool hasSameNchan,
5038                                    ofstream& ofs,
5039                                    const casa::String& funcName,
5040                                    const std::vector<float>& params,
5041                                    const int nClipped)
5042{
5043  if (outLogger || outTextFile) {
5044    float rms = getRms(chanMask, whichrow);
5045    String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
5046    std::vector<bool> fixed;
5047    fixed.clear();
5048
5049    if (outLogger) {
5050      LogIO ols(LogOrigin("Scantable", funcName, WHERE));
5051      ols << formatBaselineParams(params, fixed, rms, nClipped,
5052                                  masklist, whichrow, false, csvFormat) << LogIO::POST ;
5053    }
5054    if (outTextFile) {
5055      ofs << formatBaselineParams(params, fixed, rms, nClipped,
5056                                  masklist, whichrow, true, csvFormat) << flush;
5057    }
5058  }
5059}
5060
5061void Scantable::parseProgressInfo(const std::string& progressInfo, bool& showProgress, int& minNRow)
5062{
5063  int idxDelimiter = progressInfo.find(",");
5064  if (idxDelimiter < 0) {
5065    throw(AipsError("wrong value in 'showprogress' parameter")) ;
5066  }
5067  showProgress = (progressInfo.substr(0, idxDelimiter) == "true");
5068  std::istringstream is(progressInfo.substr(idxDelimiter+1));
5069  is >> minNRow;
5070}
5071
5072void Scantable::showProgressOnTerminal(const int nProcessed, const int nTotal, const bool showProgress, const int nTotalThreshold)
5073{
5074  if (showProgress && (nTotal >= nTotalThreshold)) {
5075    int nInterval = int(floor(double(nTotal)/100.0));
5076    if (nInterval == 0) nInterval++;
5077
5078    if (nProcessed % nInterval == 0) {
5079      printf("\r");                          //go to the head of line
5080      printf("\x1b[31m\x1b[1m");             //set red color, highlighted
5081      printf("[%3d%%]", (int)(100.0*(double(nProcessed+1))/(double(nTotal))) );
5082      printf("\x1b[39m\x1b[0m");             //set default attributes
5083      fflush(NULL);
5084    }
5085
5086    if (nProcessed == nTotal - 1) {
5087      printf("\r\x1b[K");                    //clear
5088      fflush(NULL);
5089    }
5090
5091  }
5092}
5093
5094std::vector<float> Scantable::execFFT(const int whichrow, const std::vector<bool>& inMask, bool getRealImag, bool getAmplitudeOnly)
5095{
5096  std::vector<bool>  mask = getMask(whichrow);
5097
5098  if (inMask.size() > 0) {
5099    uInt maskSize = mask.size();
5100    if (maskSize != inMask.size()) {
5101      throw(AipsError("mask sizes are not the same."));
5102    }
5103    for (uInt i = 0; i < maskSize; ++i) {
5104      mask[i] = mask[i] && inMask[i];
5105    }
5106  }
5107
5108  Vector<Float> spec = getSpectrum(whichrow);
5109  mathutil::doZeroOrderInterpolation(spec, mask);
5110
5111  FFTServer<Float,Complex> ffts;
5112  Vector<Complex> fftres;
5113  ffts.fft0(fftres, spec);
5114
5115  std::vector<float> res;
5116  float norm = float(2.0/double(spec.size()));
5117
5118  if (getRealImag) {
5119    for (uInt i = 0; i < fftres.size(); ++i) {
5120      res.push_back(real(fftres[i])*norm);
5121      res.push_back(imag(fftres[i])*norm);
5122    }
5123  } else {
5124    for (uInt i = 0; i < fftres.size(); ++i) {
5125      res.push_back(abs(fftres[i])*norm);
5126      if (!getAmplitudeOnly) res.push_back(arg(fftres[i]));
5127    }
5128  }
5129
5130  return res;
5131}
5132
5133
5134float Scantable::getRms(const std::vector<bool>& mask, int whichrow)
5135{
5136  /****
5137  double ms1TimeStart, ms1TimeEnd;
5138  double elapse1 = 0.0;
5139  ms1TimeStart = mathutil::gettimeofday_sec();
5140  ****/
5141
5142  Vector<Float> spec;
5143  specCol_.get(whichrow, spec);
5144
5145  /****
5146  ms1TimeEnd = mathutil::gettimeofday_sec();
5147  elapse1 = ms1TimeEnd - ms1TimeStart;
5148  std::cout << "rm1   : " << elapse1 << " (sec.)" << endl;
5149  ****/
5150
5151  return (float)doGetRms(mask, spec);
5152}
5153
5154double Scantable::doGetRms(const std::vector<bool>& mask, const Vector<Float>& spec)
5155{
5156  double mean = 0.0;
5157  double smean = 0.0;
5158  int n = 0;
5159  for (uInt i = 0; i < spec.nelements(); ++i) {
5160    if (mask[i]) {
5161      double val = (double)spec[i];
5162      mean += val;
5163      smean += val*val;
5164      n++;
5165    }
5166  }
5167
5168  mean /= (double)n;
5169  smean /= (double)n;
5170
5171  return sqrt(smean - mean*mean);
5172}
5173
5174std::string Scantable::formatBaselineParamsHeader(int whichrow, const std::string& masklist, bool verbose, bool csvformat) const
5175{
5176  if (verbose) {
5177    ostringstream oss;
5178
5179    if (csvformat) {
5180      oss << getScan(whichrow)  << ",";
5181      oss << getBeam(whichrow)  << ",";
5182      oss << getIF(whichrow)    << ",";
5183      oss << getPol(whichrow)   << ",";
5184      oss << getCycle(whichrow) << ",";
5185      String commaReplacedMasklist = masklist;
5186      string::size_type pos = 0;
5187      while (pos = commaReplacedMasklist.find(","), pos != string::npos) {
5188        commaReplacedMasklist.replace(pos, 1, ";");
5189        pos++;
5190      }
5191      oss << commaReplacedMasklist << ",";
5192    } else {
5193      oss <<  " Scan[" << getScan(whichrow)  << "]";
5194      oss <<  " Beam[" << getBeam(whichrow)  << "]";
5195      oss <<    " IF[" << getIF(whichrow)    << "]";
5196      oss <<   " Pol[" << getPol(whichrow)   << "]";
5197      oss << " Cycle[" << getCycle(whichrow) << "]: " << endl;
5198      oss << "Fitter range = " << masklist << endl;
5199      oss << "Baseline parameters" << endl;
5200    }
5201    oss << flush;
5202
5203    return String(oss);
5204  }
5205
5206  return "";
5207}
5208
5209std::string Scantable::formatBaselineParamsFooter(float rms, int nClipped, bool verbose, bool csvformat) const
5210{
5211  if (verbose) {
5212    ostringstream oss;
5213
5214    if (csvformat) {
5215      oss << rms << ",";
5216      if (nClipped >= 0) {
5217        oss << nClipped;
5218      }
5219    } else {
5220      oss << "Results of baseline fit" << endl;
5221      oss << "  rms = " << setprecision(6) << rms << endl;
5222      if (nClipped >= 0) {
5223        oss << "  Number of clipped channels = " << nClipped << endl;
5224      }
5225      for (int i = 0; i < 60; ++i) {
5226        oss << "-";
5227      }
5228    }
5229    oss << endl;
5230    oss << flush;
5231
5232    return String(oss);
5233  }
5234
5235  return "";
5236}
5237
5238std::string Scantable::formatBaselineParams(const std::vector<float>& params,
5239                                            const std::vector<bool>& fixed,
5240                                            float rms,
5241                                            int nClipped,
5242                                            const std::string& masklist,
5243                                            int whichrow,
5244                                            bool verbose,
5245                                            bool csvformat,
5246                                            int start, int count,
5247                                            bool resetparamid) const
5248{
5249  int nParam = (int)(params.size());
5250
5251  if (nParam < 1) {
5252    return("  Not fitted");
5253  } else {
5254
5255    ostringstream oss;
5256    oss << formatBaselineParamsHeader(whichrow, masklist, verbose, csvformat);
5257
5258    if (start < 0) start = 0;
5259    if (count < 0) count = nParam;
5260    int end = start + count;
5261    if (end > nParam) end = nParam;
5262    int paramidoffset = (resetparamid) ? (-start) : 0;
5263
5264    for (int i = start; i < end; ++i) {
5265      if (i > start) {
5266        oss << ",";
5267      }
5268      std::string sFix = ((fixed.size() > 0) && (fixed[i]) && verbose) ? "(fixed)" : "";
5269      if (csvformat) {
5270        oss << params[i] << sFix;
5271      } else {
5272        oss << "  p" << (i+paramidoffset) << sFix << "= " << right << setw(13) << setprecision(6) << params[i];
5273      }
5274    }
5275
5276    if (csvformat) {
5277      oss << ",";
5278    } else {
5279      oss << endl;
5280    }
5281    oss << formatBaselineParamsFooter(rms, nClipped, verbose, csvformat);
5282
5283    return String(oss);
5284  }
5285
5286}
5287
5288std::string Scantable::formatPiecewiseBaselineParams(const std::vector<int>& ranges, const std::vector<float>& params, const std::vector<bool>& fixed, float rms, int nClipped, const std::string& masklist, int whichrow, bool verbose, bool csvformat) const
5289{
5290  int nOutParam = (int)(params.size());
5291  int nPiece = (int)(ranges.size()) - 1;
5292
5293  if (nOutParam < 1) {
5294    return("  Not fitted");
5295  } else if (nPiece < 0) {
5296    return formatBaselineParams(params, fixed, rms, nClipped, masklist, whichrow, verbose, csvformat);
5297  } else if (nPiece < 1) {
5298    return("  Bad count of the piece edge info");
5299  } else if (nOutParam % nPiece != 0) {
5300    return("  Bad count of the output baseline parameters");
5301  } else {
5302
5303    int nParam = nOutParam / nPiece;
5304
5305    ostringstream oss;
5306    oss << formatBaselineParamsHeader(whichrow, masklist, verbose, csvformat);
5307
5308    if (csvformat) {
5309      for (int i = 0; i < nPiece; ++i) {
5310        oss << ranges[i] << "," << (ranges[i+1]-1) << ",";
5311        oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, csvformat, i*nParam, nParam, true);
5312      }
5313    } else {
5314      stringstream ss;
5315      ss << ranges[nPiece] << flush;
5316      int wRange = ss.str().size() * 2 + 5;
5317
5318      for (int i = 0; i < nPiece; ++i) {
5319        ss.str("");
5320        ss << "  [" << ranges[i] << "," << (ranges[i+1]-1) << "]";
5321        oss << left << setw(wRange) << ss.str();
5322        oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, csvformat, i*nParam, nParam, true);
5323        //oss << endl;
5324      }
5325    }
5326
5327    oss << formatBaselineParamsFooter(rms, nClipped, verbose, csvformat);
5328
5329    return String(oss);
5330  }
5331
5332}
5333
5334bool Scantable::hasSameNchanOverIFs()
5335{
5336  int nIF = nif(-1);
5337  int nCh;
5338  int totalPositiveNChan = 0;
5339  int nPositiveNChan = 0;
5340
5341  for (int i = 0; i < nIF; ++i) {
5342    nCh = nchan(i);
5343    if (nCh > 0) {
5344      totalPositiveNChan += nCh;
5345      nPositiveNChan++;
5346    }
5347  }
5348
5349  return (totalPositiveNChan == (nPositiveNChan * nchan(0)));
5350}
5351
5352std::string Scantable::getMaskRangeList(const std::vector<bool>& mask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, bool verbose)
5353{
5354  if (mask.size() <= 0) {
5355    throw(AipsError("The mask elements should be > 0"));
5356  }
5357  int IF = getIF(whichrow);
5358  if (mask.size() != (uInt)nchan(IF)) {
5359    throw(AipsError("Number of channels in scantable != number of mask elements"));
5360  }
5361
5362  if (verbose) {
5363    LogIO logOs(LogOrigin("Scantable", "getMaskRangeList()", WHERE));
5364    logOs << LogIO::WARN << "The current mask window unit is " << coordInfo;
5365    if (!hasSameNchan) {
5366      logOs << endl << "This mask is only valid for IF=" << IF;
5367    }
5368    logOs << LogIO::POST;
5369  }
5370
5371  std::vector<double> abcissa = getAbcissa(whichrow);
5372  std::vector<int> edge = getMaskEdgeIndices(mask);
5373
5374  ostringstream oss;
5375  oss.setf(ios::fixed);
5376  oss << setprecision(1) << "[";
5377  for (uInt i = 0; i < edge.size(); i+=2) {
5378    if (i > 0) oss << ",";
5379    oss << "[" << (float)abcissa[edge[i]] << "," << (float)abcissa[edge[i+1]] << "]";
5380  }
5381  oss << "]" << flush;
5382
5383  return String(oss);
5384}
5385
5386std::vector<int> Scantable::getMaskEdgeIndices(const std::vector<bool>& mask)
5387{
5388  if (mask.size() <= 0) {
5389    throw(AipsError("The mask elements should be > 0"));
5390  }
5391
5392  std::vector<int> out, startIndices, endIndices;
5393  int maskSize = mask.size();
5394
5395  startIndices.clear();
5396  endIndices.clear();
5397
5398  if (mask[0]) {
5399    startIndices.push_back(0);
5400  }
5401  for (int i = 1; i < maskSize; ++i) {
5402    if ((!mask[i-1]) && mask[i]) {
5403      startIndices.push_back(i);
5404    } else if (mask[i-1] && (!mask[i])) {
5405      endIndices.push_back(i-1);
5406    }
5407  }
5408  if (mask[maskSize-1]) {
5409    endIndices.push_back(maskSize-1);
5410  }
5411
5412  if (startIndices.size() != endIndices.size()) {
5413    throw(AipsError("Inconsistent Mask Size: bad data?"));
5414  }
5415  for (uInt i = 0; i < startIndices.size(); ++i) {
5416    if (startIndices[i] > endIndices[i]) {
5417      throw(AipsError("Mask start index > mask end index"));
5418    }
5419  }
5420
5421  out.clear();
5422  for (uInt i = 0; i < startIndices.size(); ++i) {
5423    out.push_back(startIndices[i]);
5424    out.push_back(endIndices[i]);
5425  }
5426
5427  return out;
5428}
5429
5430void Scantable::setTsys(const std::vector<float>& newvals, int whichrow) {
5431  Vector<Float> tsys(newvals);
5432  if (whichrow > -1) {
5433    if (tsysCol_.shape(whichrow) != tsys.shape())
5434      throw(AipsError("Given Tsys values are not of the same shape"));
5435    tsysCol_.put(whichrow, tsys);
5436  } else {
5437    tsysCol_.fillColumn(tsys);
5438  }
5439}
5440
5441vector<float> Scantable::getTsysSpectrum( int whichrow ) const
5442{
5443  Vector<Float> tsys( tsysCol_(whichrow) ) ;
5444  vector<float> stlTsys ;
5445  tsys.tovector( stlTsys ) ;
5446  return stlTsys ;
5447}
5448
5449vector<uint> Scantable::getMoleculeIdColumnData() const
5450{
5451  Vector<uInt> molIds(mmolidCol_.getColumn());
5452  vector<uint> res;
5453  molIds.tovector(res);
5454  return res;
5455}
5456
5457void Scantable::setMoleculeIdColumnData(const std::vector<uint>& molids)
5458{
5459  Vector<uInt> molIds(molids);
5460  Vector<uInt> arr(mmolidCol_.getColumn());
5461  if ( molIds.nelements() != arr.nelements() )
5462    throw AipsError("The input data size must be the number of rows.");
5463  mmolidCol_.putColumn(molIds);
5464}
5465
5466
5467std::vector<uint> Scantable::getRootTableRowNumbers() const
5468{
5469  Vector<uInt> rowIds(table_.rowNumbers());
5470  vector<uint> res;
5471  rowIds.tovector(res);
5472  return res;
5473}
5474
5475
5476void Scantable::dropXPol()
5477{
5478  if (npol() <= 2) {
5479    return;
5480  }
5481  if (!selector_.empty()) {
5482    throw AipsError("Can only operate with empty selection");
5483  }
5484  std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
5485  Table tab = tableCommand(taql, table_);
5486  table_ = tab;
5487  table_.rwKeywordSet().define("nPol", Int(2));
5488  originalTable_ = table_;
5489  attach();
5490}
5491
5492}
5493//namespace asap
Note: See TracBrowser for help on using the repository browser.