source: trunk/src/Scantable.cpp @ 2846

Last change on this file since 2846 was 2846, checked in by Kana Sugimoto, 11 years ago

New Development: No

JIRA Issue: No

Ready for Test: Yes

Interface Changes: No

What Interface Changed:

Test Programs:

asap.rcParamsscantable.storage? = 'disk'
scan = asap.scantable(SOME_SCANTABLE, average=True)
scan.save('test.asap')
# make sure sub-tables of test.asap are not empty.

Put in Release Notes: No

Module(s): asap.scantable

Description: Reverted a change in r2819. It caused an issue when the scantable storage is set to disk and averaging scantable. The subtables of averaged scantable were empty except for HISTORY table.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 156.8 KB
Line 
1//
2// C++ Implementation: Scantable
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2005-2013
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12#include <map>
13#include <sys/time.h>
14
15#include <atnf/PKSIO/SrcType.h>
16
17#include <casa/aips.h>
18#include <casa/iomanip.h>
19#include <casa/iostream.h>
20#include <casa/OS/File.h>
21#include <casa/OS/Path.h>
22#include <casa/Logging/LogIO.h>
23#include <casa/Arrays/Array.h>
24#include <casa/Arrays/ArrayAccessor.h>
25#include <casa/Arrays/ArrayLogical.h>
26#include <casa/Arrays/ArrayMath.h>
27#include <casa/Arrays/MaskArrMath.h>
28#include <casa/Arrays/Slice.h>
29#include <casa/Arrays/Vector.h>
30#include <casa/Arrays/VectorSTLIterator.h>
31#include <casa/BasicMath/Math.h>
32#include <casa/BasicSL/Constants.h>
33#include <casa/Containers/RecordField.h>
34#include <casa/Logging/LogIO.h>
35#include <casa/Quanta/MVAngle.h>
36#include <casa/Quanta/MVTime.h>
37#include <casa/Utilities/GenSort.h>
38
39#include <coordinates/Coordinates/CoordinateUtil.h>
40
41// needed to avoid error in .tcc
42#include <measures/Measures/MCDirection.h>
43//
44#include <measures/Measures/MDirection.h>
45#include <measures/Measures/MEpoch.h>
46#include <measures/Measures/MFrequency.h>
47#include <measures/Measures/MeasRef.h>
48#include <measures/Measures/MeasTable.h>
49#include <measures/TableMeasures/ScalarMeasColumn.h>
50#include <measures/TableMeasures/TableMeasDesc.h>
51#include <measures/TableMeasures/TableMeasRefDesc.h>
52#include <measures/TableMeasures/TableMeasValueDesc.h>
53
54#include <tables/Tables/ArrColDesc.h>
55#include <tables/Tables/ExprNode.h>
56#include <tables/Tables/ScaColDesc.h>
57#include <tables/Tables/SetupNewTab.h>
58#include <tables/Tables/TableCopy.h>
59#include <tables/Tables/TableDesc.h>
60#include <tables/Tables/TableIter.h>
61#include <tables/Tables/TableParse.h>
62#include <tables/Tables/TableRecord.h>
63#include <tables/Tables/TableRow.h>
64#include <tables/Tables/TableVector.h>
65
66#include "MathUtils.h"
67#include "STAttr.h"
68#include "STBaselineTable.h"
69#include "STLineFinder.h"
70#include "STPolCircular.h"
71#include "STPolLinear.h"
72#include "STPolStokes.h"
73#include "STUpgrade.h"
74#include "STFitter.h"
75#include "Scantable.h"
76
77#define debug 1
78
79using namespace casa;
80
81namespace asap {
82
83std::map<std::string, STPol::STPolFactory *> Scantable::factories_;
84
85void Scantable::initFactories() {
86  if ( factories_.empty() ) {
87    Scantable::factories_["linear"] = &STPolLinear::myFactory;
88    Scantable::factories_["circular"] = &STPolCircular::myFactory;
89    Scantable::factories_["stokes"] = &STPolStokes::myFactory;
90  }
91}
92
93Scantable::Scantable(Table::TableType ttype) :
94  type_(ttype)
95{
96  initFactories();
97  setupMainTable();
98  freqTable_ = STFrequencies(*this);
99  table_.rwKeywordSet().defineTable("FREQUENCIES", freqTable_.table());
100  weatherTable_ = STWeather(*this);
101  table_.rwKeywordSet().defineTable("WEATHER", weatherTable_.table());
102  focusTable_ = STFocus(*this);
103  table_.rwKeywordSet().defineTable("FOCUS", focusTable_.table());
104  tcalTable_ = STTcal(*this);
105  table_.rwKeywordSet().defineTable("TCAL", tcalTable_.table());
106  moleculeTable_ = STMolecules(*this);
107  table_.rwKeywordSet().defineTable("MOLECULES", moleculeTable_.table());
108  historyTable_ = STHistory(*this);
109  table_.rwKeywordSet().defineTable("HISTORY", historyTable_.table());
110  fitTable_ = STFit(*this);
111  table_.rwKeywordSet().defineTable("FIT", fitTable_.table());
112  table_.tableInfo().setType( "Scantable" ) ;
113  originalTable_ = table_;
114  attach();
115}
116
117Scantable::Scantable(const std::string& name, Table::TableType ttype) :
118  type_(ttype)
119{
120  initFactories();
121
122  Table tab(name, Table::Update);
123  uInt version = tab.keywordSet().asuInt("VERSION");
124  if (version != version_) {
125      STUpgrade upgrader(version_);
126      LogIO os( LogOrigin( "Scantable" ) ) ;
127      os << LogIO::WARN
128         << name << " data format version " << version
129         << " is deprecated" << endl
130         << "Running upgrade."<< endl 
131         << LogIO::POST ; 
132      std::string outname = upgrader.upgrade(name);
133      if ( outname != name ) {
134        os << LogIO::WARN
135           << "Data will be loaded from " << outname << " instead of "
136           << name << LogIO::POST ;
137        tab = Table(outname, Table::Update ) ;
138      }
139  }
140  if ( type_ == Table::Memory ) {
141    table_ = tab.copyToMemoryTable(generateName());
142  } else {
143    table_ = tab;
144  }
145  table_.tableInfo().setType( "Scantable" ) ;
146
147  attachSubtables();
148  originalTable_ = table_;
149  attach();
150}
151/*
152Scantable::Scantable(const std::string& name, Table::TableType ttype) :
153  type_(ttype)
154{
155  initFactories();
156  Table tab(name, Table::Update);
157  uInt version = tab.keywordSet().asuInt("VERSION");
158  if (version != version_) {
159    throw(AipsError("Unsupported version of ASAP file."));
160  }
161  if ( type_ == Table::Memory ) {
162    table_ = tab.copyToMemoryTable(generateName());
163  } else {
164    table_ = tab;
165  }
166
167  attachSubtables();
168  originalTable_ = table_;
169  attach();
170}
171*/
172
173Scantable::Scantable( const Scantable& other, bool clear )
174{
175  // with or without data
176  String newname = String(generateName());
177  type_ = other.table_.tableType();
178  if ( other.table_.tableType() == Table::Memory ) {
179      if ( clear ) {
180        table_ = TableCopy::makeEmptyMemoryTable(newname,
181                                                 other.table_, True);
182      } else {
183        table_ = other.table_.copyToMemoryTable(newname);
184      }
185  } else {
186      other.table_.deepCopy(newname, Table::New, False,
187                            other.table_.endianFormat(),
188                            Bool(clear));
189      table_ = Table(newname, Table::Update);
190      table_.markForDelete();
191  }
192  table_.tableInfo().setType( "Scantable" ) ;
193  /// @todo reindex SCANNO, recompute nbeam, nif, npol
194  if ( clear ) copySubtables(other);
195  attachSubtables();
196  originalTable_ = table_;
197  attach();
198}
199
200void Scantable::copySubtables(const Scantable& other) {
201  Table t = table_.rwKeywordSet().asTable("FREQUENCIES");
202  TableCopy::copyRows(t, other.freqTable_.table());
203  t = table_.rwKeywordSet().asTable("FOCUS");
204  TableCopy::copyRows(t, other.focusTable_.table());
205  t = table_.rwKeywordSet().asTable("WEATHER");
206  TableCopy::copyRows(t, other.weatherTable_.table());
207  t = table_.rwKeywordSet().asTable("TCAL");
208  TableCopy::copyRows(t, other.tcalTable_.table());
209  t = table_.rwKeywordSet().asTable("MOLECULES");
210  TableCopy::copyRows(t, other.moleculeTable_.table());
211  t = table_.rwKeywordSet().asTable("HISTORY");
212  TableCopy::copyRows(t, other.historyTable_.table());
213  t = table_.rwKeywordSet().asTable("FIT");
214  TableCopy::copyRows(t, other.fitTable_.table());
215}
216
217void Scantable::attachSubtables()
218{
219  freqTable_ = STFrequencies(table_);
220  focusTable_ = STFocus(table_);
221  weatherTable_ = STWeather(table_);
222  tcalTable_ = STTcal(table_);
223  moleculeTable_ = STMolecules(table_);
224  historyTable_ = STHistory(table_);
225  fitTable_ = STFit(table_);
226}
227
228Scantable::~Scantable()
229{
230}
231
232void Scantable::setupMainTable()
233{
234  TableDesc td("", "1", TableDesc::Scratch);
235  td.comment() = "An ASAP Scantable";
236  td.rwKeywordSet().define("VERSION", uInt(version_));
237
238  // n Cycles
239  td.addColumn(ScalarColumnDesc<uInt>("SCANNO"));
240  // new index every nBeam x nIF x nPol
241  td.addColumn(ScalarColumnDesc<uInt>("CYCLENO"));
242
243  td.addColumn(ScalarColumnDesc<uInt>("BEAMNO"));
244  td.addColumn(ScalarColumnDesc<uInt>("IFNO"));
245  // linear, circular, stokes
246  td.rwKeywordSet().define("POLTYPE", String("linear"));
247  td.addColumn(ScalarColumnDesc<uInt>("POLNO"));
248
249  td.addColumn(ScalarColumnDesc<uInt>("FREQ_ID"));
250  td.addColumn(ScalarColumnDesc<uInt>("MOLECULE_ID"));
251
252  ScalarColumnDesc<Int> refbeamnoColumn("REFBEAMNO");
253  refbeamnoColumn.setDefault(Int(-1));
254  td.addColumn(refbeamnoColumn);
255
256  ScalarColumnDesc<uInt> flagrowColumn("FLAGROW");
257  flagrowColumn.setDefault(uInt(0));
258  td.addColumn(flagrowColumn);
259
260  td.addColumn(ScalarColumnDesc<Double>("TIME"));
261  TableMeasRefDesc measRef(MEpoch::UTC); // UTC as default
262  TableMeasValueDesc measVal(td, "TIME");
263  TableMeasDesc<MEpoch> mepochCol(measVal, measRef);
264  mepochCol.write(td);
265
266  td.addColumn(ScalarColumnDesc<Double>("INTERVAL"));
267
268  td.addColumn(ScalarColumnDesc<String>("SRCNAME"));
269  // Type of source (on=0, off=1, other=-1)
270  ScalarColumnDesc<Int> stypeColumn("SRCTYPE");
271  stypeColumn.setDefault(Int(-1));
272  td.addColumn(stypeColumn);
273  td.addColumn(ScalarColumnDesc<String>("FIELDNAME"));
274
275  //The actual Data Vectors
276  td.addColumn(ArrayColumnDesc<Float>("SPECTRA"));
277  td.addColumn(ArrayColumnDesc<uChar>("FLAGTRA"));
278  td.addColumn(ArrayColumnDesc<Float>("TSYS"));
279
280  td.addColumn(ArrayColumnDesc<Double>("DIRECTION",
281                                       IPosition(1,2),
282                                       ColumnDesc::Direct));
283  TableMeasRefDesc mdirRef(MDirection::J2000); // default
284  TableMeasValueDesc tmvdMDir(td, "DIRECTION");
285  // the TableMeasDesc gives the column a type
286  TableMeasDesc<MDirection> mdirCol(tmvdMDir, mdirRef);
287  // a uder set table type e.g. GALCTIC, B1950 ...
288  td.rwKeywordSet().define("DIRECTIONREF", String("J2000"));
289  // writing create the measure column
290  mdirCol.write(td);
291  td.addColumn(ScalarColumnDesc<Float>("AZIMUTH"));
292  td.addColumn(ScalarColumnDesc<Float>("ELEVATION"));
293  td.addColumn(ScalarColumnDesc<Float>("OPACITY"));
294
295  td.addColumn(ScalarColumnDesc<uInt>("TCAL_ID"));
296  ScalarColumnDesc<Int> fitColumn("FIT_ID");
297  fitColumn.setDefault(Int(-1));
298  td.addColumn(fitColumn);
299
300  td.addColumn(ScalarColumnDesc<uInt>("FOCUS_ID"));
301  td.addColumn(ScalarColumnDesc<uInt>("WEATHER_ID"));
302
303  // columns which just get dragged along, as they aren't used in asap
304  td.addColumn(ScalarColumnDesc<Double>("SRCVELOCITY"));
305  td.addColumn(ArrayColumnDesc<Double>("SRCPROPERMOTION"));
306  td.addColumn(ArrayColumnDesc<Double>("SRCDIRECTION"));
307  td.addColumn(ArrayColumnDesc<Double>("SCANRATE"));
308
309  td.rwKeywordSet().define("OBSMODE", String(""));
310
311  // Now create Table SetUp from the description.
312  SetupNewTable aNewTab(generateName(), td, Table::Scratch);
313  table_ = Table(aNewTab, type_, 0);
314  originalTable_ = table_;
315}
316
317void Scantable::attach()
318{
319  timeCol_.attach(table_, "TIME");
320  srcnCol_.attach(table_, "SRCNAME");
321  srctCol_.attach(table_, "SRCTYPE");
322  specCol_.attach(table_, "SPECTRA");
323  flagsCol_.attach(table_, "FLAGTRA");
324  tsysCol_.attach(table_, "TSYS");
325  cycleCol_.attach(table_,"CYCLENO");
326  scanCol_.attach(table_, "SCANNO");
327  beamCol_.attach(table_, "BEAMNO");
328  ifCol_.attach(table_, "IFNO");
329  polCol_.attach(table_, "POLNO");
330  integrCol_.attach(table_, "INTERVAL");
331  azCol_.attach(table_, "AZIMUTH");
332  elCol_.attach(table_, "ELEVATION");
333  dirCol_.attach(table_, "DIRECTION");
334  fldnCol_.attach(table_, "FIELDNAME");
335  rbeamCol_.attach(table_, "REFBEAMNO");
336
337  mweatheridCol_.attach(table_,"WEATHER_ID");
338  mfitidCol_.attach(table_,"FIT_ID");
339  mfreqidCol_.attach(table_, "FREQ_ID");
340  mtcalidCol_.attach(table_, "TCAL_ID");
341  mfocusidCol_.attach(table_, "FOCUS_ID");
342  mmolidCol_.attach(table_, "MOLECULE_ID");
343
344  //Add auxiliary column for row-based flagging (CAS-1433 Wataru Kawasaki)
345  attachAuxColumnDef(flagrowCol_, "FLAGROW", 0);
346
347}
348
349template<class T, class T2>
350void Scantable::attachAuxColumnDef(ScalarColumn<T>& col,
351                                   const String& colName,
352                                   const T2& defValue)
353{
354  try {
355    col.attach(table_, colName);
356  } catch (TableError& err) {
357    String errMesg = err.getMesg();
358    if (errMesg == "Table column " + colName + " is unknown") {
359      table_.addColumn(ScalarColumnDesc<T>(colName));
360      col.attach(table_, colName);
361      col.fillColumn(static_cast<T>(defValue));
362    } else {
363      throw;
364    }
365  } catch (...) {
366    throw;
367  }
368}
369
370template<class T, class T2>
371void Scantable::attachAuxColumnDef(ArrayColumn<T>& col,
372                                   const String& colName,
373                                   const Array<T2>& defValue)
374{
375  try {
376    col.attach(table_, colName);
377  } catch (TableError& err) {
378    String errMesg = err.getMesg();
379    if (errMesg == "Table column " + colName + " is unknown") {
380      table_.addColumn(ArrayColumnDesc<T>(colName));
381      col.attach(table_, colName);
382
383      int size = 0;
384      ArrayIterator<T2>& it = defValue.begin();
385      while (it != defValue.end()) {
386        ++size;
387        ++it;
388      }
389      IPosition ip(1, size);
390      Array<T>& arr(ip);
391      for (int i = 0; i < size; ++i)
392        arr[i] = static_cast<T>(defValue[i]);
393
394      col.fillColumn(arr);
395    } else {
396      throw;
397    }
398  } catch (...) {
399    throw;
400  }
401}
402
403void Scantable::setHeader(const STHeader& sdh)
404{
405  table_.rwKeywordSet().define("nIF", sdh.nif);
406  table_.rwKeywordSet().define("nBeam", sdh.nbeam);
407  table_.rwKeywordSet().define("nPol", sdh.npol);
408  table_.rwKeywordSet().define("nChan", sdh.nchan);
409  table_.rwKeywordSet().define("Observer", sdh.observer);
410  table_.rwKeywordSet().define("Project", sdh.project);
411  table_.rwKeywordSet().define("Obstype", sdh.obstype);
412  table_.rwKeywordSet().define("AntennaName", sdh.antennaname);
413  table_.rwKeywordSet().define("AntennaPosition", sdh.antennaposition);
414  table_.rwKeywordSet().define("Equinox", sdh.equinox);
415  table_.rwKeywordSet().define("FreqRefFrame", sdh.freqref);
416  table_.rwKeywordSet().define("FreqRefVal", sdh.reffreq);
417  table_.rwKeywordSet().define("Bandwidth", sdh.bandwidth);
418  table_.rwKeywordSet().define("UTC", sdh.utc);
419  table_.rwKeywordSet().define("FluxUnit", sdh.fluxunit);
420  table_.rwKeywordSet().define("Epoch", sdh.epoch);
421  table_.rwKeywordSet().define("POLTYPE", sdh.poltype);
422}
423
424STHeader Scantable::getHeader() const
425{
426  STHeader sdh;
427  table_.keywordSet().get("nBeam",sdh.nbeam);
428  table_.keywordSet().get("nIF",sdh.nif);
429  table_.keywordSet().get("nPol",sdh.npol);
430  table_.keywordSet().get("nChan",sdh.nchan);
431  table_.keywordSet().get("Observer", sdh.observer);
432  table_.keywordSet().get("Project", sdh.project);
433  table_.keywordSet().get("Obstype", sdh.obstype);
434  table_.keywordSet().get("AntennaName", sdh.antennaname);
435  table_.keywordSet().get("AntennaPosition", sdh.antennaposition);
436  table_.keywordSet().get("Equinox", sdh.equinox);
437  table_.keywordSet().get("FreqRefFrame", sdh.freqref);
438  table_.keywordSet().get("FreqRefVal", sdh.reffreq);
439  table_.keywordSet().get("Bandwidth", sdh.bandwidth);
440  table_.keywordSet().get("UTC", sdh.utc);
441  table_.keywordSet().get("FluxUnit", sdh.fluxunit);
442  table_.keywordSet().get("Epoch", sdh.epoch);
443  table_.keywordSet().get("POLTYPE", sdh.poltype);
444  return sdh;
445}
446
447void Scantable::setSourceType( int stype )
448{
449  if ( stype < 0 || stype > 1 )
450    throw(AipsError("Illegal sourcetype."));
451  TableVector<Int> tabvec(table_, "SRCTYPE");
452  tabvec = Int(stype);
453}
454
455void Scantable::setSourceName( const std::string& name )
456{
457  TableVector<String> tabvec(table_, "SRCNAME");
458  tabvec = name;
459}
460
461bool Scantable::conformant( const Scantable& other )
462{
463  return this->getHeader().conformant(other.getHeader());
464}
465
466
467
468std::string Scantable::formatSec(Double x) const
469{
470  Double xcop = x;
471  MVTime mvt(xcop/24./3600.);  // make days
472
473  if (x < 59.95)
474    return  String("      ") + mvt.string(MVTime::TIME_CLEAN_NO_HM, 7)+"s";
475  else if (x < 3599.95)
476    return String("   ") + mvt.string(MVTime::TIME_CLEAN_NO_H,7)+" ";
477  else {
478    ostringstream oss;
479    oss << setw(2) << std::right << setprecision(1) << mvt.hour();
480    oss << ":" << mvt.string(MVTime::TIME_CLEAN_NO_H,7) << " ";
481    return String(oss);
482  }
483};
484
485std::string Scantable::formatDirection(const MDirection& md) const
486{
487  Vector<Double> t = md.getAngle(Unit(String("rad"))).getValue();
488  Int prec = 7;
489
490  String ref = md.getRefString();
491  MVAngle mvLon(t[0]);
492  String sLon = mvLon.string(MVAngle::TIME,prec);
493  uInt tp = md.getRef().getType();
494  if (tp == MDirection::GALACTIC ||
495      tp == MDirection::SUPERGAL ) {
496    sLon = mvLon(0.0).string(MVAngle::ANGLE_CLEAN,prec);
497  }
498  MVAngle mvLat(t[1]);
499  String sLat = mvLat.string(MVAngle::ANGLE+MVAngle::DIG2,prec);
500  return  ref + String(" ") + sLon + String(" ") + sLat;
501}
502
503
504std::string Scantable::getFluxUnit() const
505{
506  return table_.keywordSet().asString("FluxUnit");
507}
508
509void Scantable::setFluxUnit(const std::string& unit)
510{
511  String tmp(unit);
512  Unit tU(tmp);
513  if (tU==Unit("K") || tU==Unit("Jy")) {
514     table_.rwKeywordSet().define(String("FluxUnit"), tmp);
515  } else {
516     throw AipsError("Illegal unit - must be compatible with Jy or K");
517  }
518}
519
520void Scantable::setInstrument(const std::string& name)
521{
522  bool throwIt = true;
523  // create an Instrument to see if this is valid
524  STAttr::convertInstrument(name, throwIt);
525  String nameU(name);
526  nameU.upcase();
527  table_.rwKeywordSet().define(String("AntennaName"), nameU);
528}
529
530void Scantable::setFeedType(const std::string& feedtype)
531{
532  if ( Scantable::factories_.find(feedtype) ==  Scantable::factories_.end() ) {
533    std::string msg = "Illegal feed type "+ feedtype;
534    throw(casa::AipsError(msg));
535  }
536  table_.rwKeywordSet().define(String("POLTYPE"), feedtype);
537}
538
539MPosition Scantable::getAntennaPosition() const
540{
541  Vector<Double> antpos;
542  table_.keywordSet().get("AntennaPosition", antpos);
543  MVPosition mvpos(antpos(0),antpos(1),antpos(2));
544  return MPosition(mvpos);
545}
546
547void Scantable::makePersistent(const std::string& filename)
548{
549  String inname(filename);
550  Path path(inname);
551  /// @todo reindex SCANNO, recompute nbeam, nif, npol
552  inname = path.expandedName();
553  // 2011/03/04 TN
554  // We can comment out this workaround since the essential bug is
555  // fixed in casacore (r20889 in google code).
556  table_.deepCopy(inname, Table::New);
557//   // WORKAROUND !!! for Table bug
558//   // Remove when fixed in casacore
559//   if ( table_.tableType() == Table::Memory  && !selector_.empty() ) {
560//     Table tab = table_.copyToMemoryTable(generateName());
561//     tab.deepCopy(inname, Table::New);
562//     tab.markForDelete();
563//
564//   } else {
565//     table_.deepCopy(inname, Table::New);
566//   }
567}
568
569int Scantable::nbeam( int scanno ) const
570{
571  if ( scanno < 0 ) {
572    Int n;
573    table_.keywordSet().get("nBeam",n);
574    return int(n);
575  } else {
576    // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
577    Table t = table_(table_.col("SCANNO") == scanno);
578    ROTableRow row(t);
579    const TableRecord& rec = row.get(0);
580    Table subt = t( t.col("IFNO") == Int(rec.asuInt("IFNO"))
581                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
582                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
583    ROTableVector<uInt> v(subt, "BEAMNO");
584    return int(v.nelements());
585  }
586  return 0;
587}
588
589int Scantable::nif( int scanno ) const
590{
591  if ( scanno < 0 ) {
592    Int n;
593    table_.keywordSet().get("nIF",n);
594    return int(n);
595  } else {
596    // take the first POLNO,BEAMNO,CYCLENO as nbeam shouldn't vary with these
597    Table t = table_(table_.col("SCANNO") == scanno);
598    ROTableRow row(t);
599    const TableRecord& rec = row.get(0);
600    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
601                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
602                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
603    if ( subt.nrow() == 0 ) return 0;
604    ROTableVector<uInt> v(subt, "IFNO");
605    return int(v.nelements());
606  }
607  return 0;
608}
609
610int Scantable::npol( int scanno ) const
611{
612  if ( scanno < 0 ) {
613    Int n;
614    table_.keywordSet().get("nPol",n);
615    return n;
616  } else {
617    // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
618    Table t = table_(table_.col("SCANNO") == scanno);
619    ROTableRow row(t);
620    const TableRecord& rec = row.get(0);
621    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
622                    && t.col("IFNO") == Int(rec.asuInt("IFNO"))
623                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
624    if ( subt.nrow() == 0 ) return 0;
625    ROTableVector<uInt> v(subt, "POLNO");
626    return int(v.nelements());
627  }
628  return 0;
629}
630
631int Scantable::ncycle( int scanno ) const
632{
633  if ( scanno < 0 ) {
634    Block<String> cols(2);
635    cols[0] = "SCANNO";
636    cols[1] = "CYCLENO";
637    TableIterator it(table_, cols);
638    int n = 0;
639    while ( !it.pastEnd() ) {
640      ++n;
641      ++it;
642    }
643    return n;
644  } else {
645    Table t = table_(table_.col("SCANNO") == scanno);
646    ROTableRow row(t);
647    const TableRecord& rec = row.get(0);
648    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
649                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
650                    && t.col("IFNO") == Int(rec.asuInt("IFNO")) );
651    if ( subt.nrow() == 0 ) return 0;
652    return int(subt.nrow());
653  }
654  return 0;
655}
656
657
658int Scantable::nrow( int scanno ) const
659{
660  return int(table_.nrow());
661}
662
663int Scantable::nchan( int ifno ) const
664{
665  if ( ifno < 0 ) {
666    Int n;
667    table_.keywordSet().get("nChan",n);
668    return int(n);
669  } else {
670    // take the first SCANNO,POLNO,BEAMNO,CYCLENO as nbeam shouldn't
671    // vary with these
672    Table t = table_(table_.col("IFNO") == ifno, 1);
673    if ( t.nrow() == 0 ) return 0;
674    ROArrayColumn<Float> v(t, "SPECTRA");
675    return v.shape(0)(0);
676  }
677  return 0;
678}
679
680int Scantable::nscan() const {
681  Vector<uInt> scannos(scanCol_.getColumn());
682  uInt nout = genSort( scannos, Sort::Ascending,
683                       Sort::QuickSort|Sort::NoDuplicates );
684  return int(nout);
685}
686
687int Scantable::getChannels(int whichrow) const
688{
689  return specCol_.shape(whichrow)(0);
690}
691
692int Scantable::getBeam(int whichrow) const
693{
694  return beamCol_(whichrow);
695}
696
697std::vector<uint> Scantable::getNumbers(const ScalarColumn<uInt>& col) const
698{
699  Vector<uInt> nos(col.getColumn());
700  uInt n = genSort( nos, Sort::Ascending, Sort::QuickSort|Sort::NoDuplicates );
701  nos.resize(n, True);
702  std::vector<uint> stlout;
703  nos.tovector(stlout);
704  return stlout;
705}
706
707int Scantable::getIF(int whichrow) const
708{
709  return ifCol_(whichrow);
710}
711
712int Scantable::getPol(int whichrow) const
713{
714  return polCol_(whichrow);
715}
716
717std::string Scantable::formatTime(const MEpoch& me, bool showdate) const
718{
719  return formatTime(me, showdate, 0);
720}
721
722std::string Scantable::formatTime(const MEpoch& me, bool showdate, uInt prec) const
723{
724  MVTime mvt(me.getValue());
725  if (showdate)
726    //mvt.setFormat(MVTime::YMD);
727    mvt.setFormat(MVTime::YMD, prec);
728  else
729    //mvt.setFormat(MVTime::TIME);
730    mvt.setFormat(MVTime::TIME, prec);
731  ostringstream oss;
732  oss << mvt;
733  return String(oss);
734}
735
736void Scantable::calculateAZEL()
737
738  LogIO os( LogOrigin( "Scantable", "calculateAZEL()", WHERE ) ) ;
739  MPosition mp = getAntennaPosition();
740  MEpoch::ROScalarColumn timeCol(table_, "TIME");
741  ostringstream oss;
742  oss << mp;
743  os << "Computed azimuth/elevation using " << endl
744     << String(oss) << endl;
745  for (Int i=0; i<nrow(); ++i) {
746    MEpoch me = timeCol(i);
747    MDirection md = getDirection(i);
748    os  << " Time: " << formatTime(me,False)
749        << " Direction: " << formatDirection(md)
750         << endl << "     => ";
751    MeasFrame frame(mp, me);
752    Vector<Double> azel =
753        MDirection::Convert(md, MDirection::Ref(MDirection::AZEL,
754                                                frame)
755                            )().getAngle("rad").getValue();
756    azCol_.put(i,Float(azel[0]));
757    elCol_.put(i,Float(azel[1]));
758    os << "azel: " << azel[0]/C::pi*180.0 << " "
759       << azel[1]/C::pi*180.0 << " (deg)" << LogIO::POST;
760  }
761}
762
763void Scantable::clip(const Float uthres, const Float dthres, bool clipoutside, bool unflag)
764{
765  for (uInt i=0; i<table_.nrow(); ++i) {
766    Vector<uChar> flgs = flagsCol_(i);
767    srchChannelsToClip(i, uthres, dthres, clipoutside, unflag, flgs);
768    flagsCol_.put(i, flgs);
769  }
770}
771
772std::vector<bool> Scantable::getClipMask(int whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag)
773{
774  Vector<uChar> flags;
775  flagsCol_.get(uInt(whichrow), flags);
776  srchChannelsToClip(uInt(whichrow), uthres, dthres, clipoutside, unflag, flags);
777  Vector<Bool> bflag(flags.shape());
778  convertArray(bflag, flags);
779  //bflag = !bflag;
780
781  std::vector<bool> mask;
782  bflag.tovector(mask);
783  return mask;
784}
785
786void Scantable::srchChannelsToClip(uInt whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag,
787                                   Vector<uChar> flgs)
788{
789    Vector<Float> spcs = specCol_(whichrow);
790    uInt nchannel = spcs.nelements();
791    if (spcs.nelements() != nchannel) {
792      throw(AipsError("Data has incorrect number of channels"));
793    }
794    uChar userflag = 1 << 7;
795    if (unflag) {
796      userflag = 0 << 7;
797    }
798    if (clipoutside) {
799      for (uInt j = 0; j < nchannel; ++j) {
800        Float spc = spcs(j);
801        if ((spc >= uthres) || (spc <= dthres)) {
802          flgs(j) = userflag;
803        }
804      }
805    } else {
806      for (uInt j = 0; j < nchannel; ++j) {
807        Float spc = spcs(j);
808        if ((spc < uthres) && (spc > dthres)) {
809          flgs(j) = userflag;
810        }
811      }
812    }
813}
814
815
816void Scantable::flag( int whichrow, const std::vector<bool>& msk, bool unflag ) {
817  std::vector<bool>::const_iterator it;
818  uInt ntrue = 0;
819  if (whichrow >= int(table_.nrow()) ) {
820    throw(AipsError("Invalid row number"));
821  }
822  for (it = msk.begin(); it != msk.end(); ++it) {
823    if ( *it ) {
824      ntrue++;
825    }
826  }
827  //if ( selector_.empty()  && (msk.size() == 0 || msk.size() == ntrue) )
828  if ( whichrow == -1 && !unflag && selector_.empty() && (msk.size() == 0 || msk.size() == ntrue) )
829    throw(AipsError("Trying to flag whole scantable."));
830  uChar userflag = 1 << 7;
831  if ( unflag ) {
832    userflag = 0 << 7;
833  }
834  if (whichrow > -1 ) {
835    applyChanFlag(uInt(whichrow), msk, userflag);
836  } else {
837    for ( uInt i=0; i<table_.nrow(); ++i) {
838      applyChanFlag(i, msk, userflag);
839    }
840  }
841}
842
843void Scantable::applyChanFlag( uInt whichrow, const std::vector<bool>& msk, uChar flagval )
844{
845  if (whichrow >= table_.nrow() ) {
846    throw( casa::indexError<int>( whichrow, "asap::Scantable::applyChanFlag: Invalid row number" ) );
847  }
848  Vector<uChar> flgs = flagsCol_(whichrow);
849  if ( msk.size() == 0 ) {
850    flgs = flagval;
851    flagsCol_.put(whichrow, flgs);
852    return;
853  }
854  if ( int(msk.size()) != nchan( getIF(whichrow) ) ) {
855    throw(AipsError("Mask has incorrect number of channels."));
856  }
857  if ( flgs.nelements() != msk.size() ) {
858    throw(AipsError("Mask has incorrect number of channels."
859                    " Probably varying with IF. Please flag per IF"));
860  }
861  std::vector<bool>::const_iterator it;
862  uInt j = 0;
863  for (it = msk.begin(); it != msk.end(); ++it) {
864    if ( *it ) {
865      flgs(j) = flagval;
866    }
867    ++j;
868  }
869  flagsCol_.put(whichrow, flgs);
870}
871
872void Scantable::flagRow(const std::vector<uInt>& rows, bool unflag)
873{
874  if (selector_.empty() && (rows.size() == table_.nrow()) && !unflag)
875    throw(AipsError("Trying to flag whole scantable."));
876
877  uInt rowflag = (unflag ? 0 : 1);
878  std::vector<uInt>::const_iterator it;
879  for (it = rows.begin(); it != rows.end(); ++it)
880    flagrowCol_.put(*it, rowflag);
881}
882
883std::vector<bool> Scantable::getMask(int whichrow) const
884{
885  Vector<uChar> flags;
886  flagsCol_.get(uInt(whichrow), flags);
887  Vector<Bool> bflag(flags.shape());
888  convertArray(bflag, flags);
889  bflag = !bflag;
890  std::vector<bool> mask;
891  bflag.tovector(mask);
892  return mask;
893}
894
895std::vector<float> Scantable::getSpectrum( int whichrow,
896                                           const std::string& poltype ) const
897{
898  LogIO os( LogOrigin( "Scantable", "getSpectrum()", WHERE ) ) ;
899
900  String ptype = poltype;
901  if (poltype == "" ) ptype = getPolType();
902  if ( whichrow  < 0 || whichrow >= nrow() )
903    throw(AipsError("Illegal row number."));
904  std::vector<float> out;
905  Vector<Float> arr;
906  uInt requestedpol = polCol_(whichrow);
907  String basetype = getPolType();
908  if ( ptype == basetype ) {
909    specCol_.get(whichrow, arr);
910  } else {
911    CountedPtr<STPol> stpol(STPol::getPolClass(Scantable::factories_,
912                                               basetype));
913    uInt row = uInt(whichrow);
914    stpol->setSpectra(getPolMatrix(row));
915    Float fang,fhand;
916    fang = focusTable_.getTotalAngle(mfocusidCol_(row));
917    fhand = focusTable_.getFeedHand(mfocusidCol_(row));
918    stpol->setPhaseCorrections(fang, fhand);
919    arr = stpol->getSpectrum(requestedpol, ptype);
920  }
921  if ( arr.nelements() == 0 )
922   
923    os << "Not enough polarisations present to do the conversion."
924       << LogIO::POST;
925  arr.tovector(out);
926  return out;
927}
928
929void Scantable::setSpectrum( const std::vector<float>& spec,
930                                   int whichrow )
931{
932  Vector<Float> spectrum(spec);
933  Vector<Float> arr;
934  specCol_.get(whichrow, arr);
935  if ( spectrum.nelements() != arr.nelements() )
936    throw AipsError("The spectrum has incorrect number of channels.");
937  specCol_.put(whichrow, spectrum);
938}
939
940
941String Scantable::generateName()
942{
943  return (File::newUniqueName("./","temp")).baseName();
944}
945
946const casa::Table& Scantable::table( ) const
947{
948  return table_;
949}
950
951casa::Table& Scantable::table( )
952{
953  return table_;
954}
955
956std::string Scantable::getPolType() const
957{
958  return table_.keywordSet().asString("POLTYPE");
959}
960
961void Scantable::unsetSelection()
962{
963  table_ = originalTable_;
964  attach();
965  selector_.reset();
966}
967
968void Scantable::setSelection( const STSelector& selection )
969{
970  Table tab = const_cast<STSelector&>(selection).apply(originalTable_);
971  if ( tab.nrow() == 0 ) {
972    throw(AipsError("Selection contains no data. Not applying it."));
973  }
974  table_ = tab;
975  attach();
976//   tab.rwKeywordSet().define("nBeam",(Int)(getBeamNos().size())) ;
977//   vector<uint> selectedIFs = getIFNos() ;
978//   Int newnIF = selectedIFs.size() ;
979//   tab.rwKeywordSet().define("nIF",newnIF) ;
980//   if ( newnIF != 0 ) {
981//     Int newnChan = 0 ;
982//     for ( Int i = 0 ; i < newnIF ; i++ ) {
983//       Int nChan = nchan( selectedIFs[i] ) ;
984//       if ( newnChan > nChan )
985//         newnChan = nChan ;
986//     }
987//     tab.rwKeywordSet().define("nChan",newnChan) ;
988//   }
989//   tab.rwKeywordSet().define("nPol",(Int)(getPolNos().size())) ;
990  selector_ = selection;
991}
992
993
994std::string Scantable::headerSummary()
995{
996  // Format header info
997//   STHeader sdh;
998//   sdh = getHeader();
999//   sdh.print();
1000  ostringstream oss;
1001  oss.flags(std::ios_base::left);
1002  String tmp;
1003  // Project
1004  table_.keywordSet().get("Project", tmp);
1005  oss << setw(15) << "Project:" << tmp << endl;
1006  // Observation date
1007  oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1008  // Observer
1009  oss << setw(15) << "Observer:"
1010      << table_.keywordSet().asString("Observer") << endl;
1011  // Antenna Name
1012  table_.keywordSet().get("AntennaName", tmp);
1013  oss << setw(15) << "Antenna Name:" << tmp << endl;
1014  // Obs type
1015  table_.keywordSet().get("Obstype", tmp);
1016  // Records (nrow)
1017  oss << setw(15) << "Data Records:" << table_.nrow() << " rows" << endl;
1018  oss << setw(15) << "Obs. Type:" << tmp << endl;
1019  // Beams, IFs, Polarizations, and Channels
1020  oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1021      << setw(15) << "IFs:" << setw(4) << nif() << endl
1022      << setw(15) << "Polarisations:" << setw(4) << npol()
1023      << "(" << getPolType() << ")" << endl
1024      << setw(15) << "Channels:" << nchan() << endl;
1025  // Flux unit
1026  table_.keywordSet().get("FluxUnit", tmp);
1027  oss << setw(15) << "Flux Unit:" << tmp << endl;
1028  // Abscissa Unit
1029  oss << setw(15) << "Abscissa:" << getAbcissaLabel(0) << endl;
1030  // Selection
1031  oss << selector_.print() << endl;
1032
1033  return String(oss);
1034}
1035
1036void Scantable::summary( const std::string& filename )
1037{
1038  ostringstream oss;
1039  ofstream ofs;
1040  LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1041
1042  if (filename != "")
1043    ofs.open( filename.c_str(),  ios::out );
1044
1045  oss << endl;
1046  oss << asap::SEPERATOR << endl;
1047  oss << " Scan Table Summary" << endl;
1048  oss << asap::SEPERATOR << endl;
1049
1050  // Format header info
1051  oss << headerSummary();
1052  oss << endl;
1053
1054  if (table_.nrow() <= 0){
1055    oss << asap::SEPERATOR << endl;
1056    oss << "The MAIN table is empty: there are no data!!!" << endl;
1057    oss << asap::SEPERATOR << endl;
1058
1059    ols << String(oss) << LogIO::POST;
1060    if (ofs) {
1061      ofs << String(oss) << flush;
1062      ofs.close();
1063    }
1064    return;
1065  }
1066
1067
1068
1069  // main table
1070  String dirtype = "Position ("
1071                  + getDirectionRefString()
1072                  + ")";
1073  oss.flags(std::ios_base::left);
1074  oss << setw(5) << "Scan"
1075      << setw(15) << "Source"
1076      << setw(35) << "Time range"
1077      << setw(2) << "" << setw(7) << "Int[s]"
1078      << setw(7) << "Record"
1079      << setw(8) << "SrcType"
1080      << setw(8) << "FreqIDs"
1081      << setw(7) << "MolIDs" << endl;
1082  oss << setw(7)<< "" << setw(6) << "Beam"
1083      << setw(23) << dirtype << endl;
1084
1085  oss << asap::SEPERATOR << endl;
1086
1087  // Flush summary and clear up the string
1088  ols << String(oss) << LogIO::POST;
1089  if (ofs) ofs << String(oss) << flush;
1090  oss.str("");
1091  oss.clear();
1092
1093
1094  // Get Freq_ID map
1095  ROScalarColumn<uInt> ftabIds(frequencies().table(), "ID");
1096  Int nfid = ftabIds.nrow();
1097  if (nfid <= 0){
1098    oss << "FREQUENCIES subtable is empty: there are no data!!!" << endl;
1099    oss << asap::SEPERATOR << endl;
1100
1101    ols << String(oss) << LogIO::POST;
1102    if (ofs) {
1103      ofs << String(oss) << flush;
1104      ofs.close();
1105    }
1106    return;
1107  }
1108  // Storages of overall IFNO, POLNO, and nchan per FREQ_ID
1109  // the orders are identical to ID in FREQ subtable
1110  Block< Vector<uInt> > ifNos(nfid), polNos(nfid);
1111  Vector<Int> fIdchans(nfid,-1);
1112  map<uInt, Int> fidMap;  // (FREQ_ID, row # in FREQ subtable) pair
1113  for (Int i=0; i < nfid; i++){
1114   // fidMap[freqId] returns row number in FREQ subtable
1115   fidMap.insert(pair<uInt, Int>(ftabIds(i),i));
1116   ifNos[i] = Vector<uInt>();
1117   polNos[i] = Vector<uInt>();
1118  }
1119
1120  TableIterator iter(table_, "SCANNO");
1121
1122  // Vars for keeping track of time, freqids, molIds in a SCANNO
1123  //Vector<uInt> freqids;
1124  //Vector<uInt> molids;
1125  Vector<uInt> beamids(1,0);
1126  Vector<MDirection> beamDirs;
1127  Vector<Int> stypeids(1,0);
1128  Vector<String> stypestrs;
1129  Int nfreq(1);
1130  Int nmol(1);
1131  uInt nbeam(1);
1132  uInt nstype(1);
1133
1134  Double btime(0.0), etime(0.0);
1135  Double meanIntTim(0.0);
1136
1137  uInt currFreqId(0), ftabRow(0);
1138  Int iflen(0), pollen(0);
1139
1140  while (!iter.pastEnd()) {
1141    Table subt = iter.table();
1142    uInt snrow = subt.nrow();
1143    ROTableRow row(subt);
1144    const TableRecord& rec = row.get(0);
1145
1146    // relevant columns
1147    ROScalarColumn<Double> mjdCol(subt,"TIME");
1148    ROScalarColumn<Double> intervalCol(subt,"INTERVAL");
1149    MDirection::ROScalarColumn dirCol(subt,"DIRECTION");
1150
1151    ScalarColumn<uInt> freqIdCol(subt,"FREQ_ID");
1152    ScalarColumn<uInt> molIdCol(subt,"MOLECULE_ID");
1153    ROScalarColumn<uInt> beamCol(subt,"BEAMNO");
1154    ROScalarColumn<Int> stypeCol(subt,"SRCTYPE");
1155
1156    ROScalarColumn<uInt> ifNoCol(subt,"IFNO");
1157    ROScalarColumn<uInt> polNoCol(subt,"POLNO");
1158
1159
1160    // Times
1161    meanIntTim = sum(intervalCol.getColumn()) / (double) snrow;
1162    minMax(btime, etime, mjdCol.getColumn());
1163    etime += meanIntTim/C::day;
1164
1165    // MOLECULE_ID and FREQ_ID
1166    Vector<uInt> molids(getNumbers(molIdCol));
1167    molids.shape(nmol);
1168
1169    Vector<uInt> freqids(getNumbers(freqIdCol));
1170    freqids.shape(nfreq);
1171
1172    // Add first beamid, and srcNames
1173    beamids.resize(1,False);
1174    beamDirs.resize(1,False);
1175    beamids(0)=beamCol(0);
1176    beamDirs(0)=dirCol(0);
1177    nbeam = 1;
1178
1179    stypeids.resize(1,False);
1180    stypeids(0)=stypeCol(0);
1181    nstype = 1;
1182
1183    // Global listings of nchan/IFNO/POLNO per FREQ_ID
1184    currFreqId=freqIdCol(0);
1185    ftabRow = fidMap[currFreqId];
1186    // Assumes an identical number of channels per FREQ_ID
1187    if (fIdchans(ftabRow) < 0 ) {
1188      RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1189      fIdchans(ftabRow)=(*spec).shape()(0);
1190    }
1191    // Should keep ifNos and polNos form the previous SCANNO
1192    if ( !anyEQ(ifNos[ftabRow],ifNoCol(0)) ) {
1193      ifNos[ftabRow].shape(iflen);
1194      iflen++;
1195      ifNos[ftabRow].resize(iflen,True);
1196      ifNos[ftabRow](iflen-1) = ifNoCol(0);
1197    }
1198    if ( !anyEQ(polNos[ftabRow],polNoCol(0)) ) {
1199      polNos[ftabRow].shape(pollen);
1200      pollen++;
1201      polNos[ftabRow].resize(pollen,True);
1202      polNos[ftabRow](pollen-1) = polNoCol(0);
1203    }
1204
1205    for (uInt i=1; i < snrow; i++){
1206      // Need to list BEAMNO and DIRECTION in the same order
1207      if ( !anyEQ(beamids,beamCol(i)) ) {
1208        nbeam++;
1209        beamids.resize(nbeam,True);
1210        beamids(nbeam-1)=beamCol(i);
1211        beamDirs.resize(nbeam,True);
1212        beamDirs(nbeam-1)=dirCol(i);
1213      }
1214
1215      // SRCTYPE is Int (getNumber takes only uInt)
1216      if ( !anyEQ(stypeids,stypeCol(i)) ) {
1217        nstype++;
1218        stypeids.resize(nstype,True);
1219        stypeids(nstype-1)=stypeCol(i);
1220      }
1221
1222      // Global listings of nchan/IFNO/POLNO per FREQ_ID
1223      currFreqId=freqIdCol(i);
1224      ftabRow = fidMap[currFreqId];
1225      if (fIdchans(ftabRow) < 0 ) {
1226        const TableRecord& rec = row.get(i);
1227        RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1228        fIdchans(ftabRow) = (*spec).shape()(0);
1229      }
1230      if ( !anyEQ(ifNos[ftabRow],ifNoCol(i)) ) {
1231        ifNos[ftabRow].shape(iflen);
1232        iflen++;
1233        ifNos[ftabRow].resize(iflen,True);
1234        ifNos[ftabRow](iflen-1) = ifNoCol(i);
1235      }
1236      if ( !anyEQ(polNos[ftabRow],polNoCol(i)) ) {
1237        polNos[ftabRow].shape(pollen);
1238        pollen++;
1239        polNos[ftabRow].resize(pollen,True);
1240        polNos[ftabRow](pollen-1) = polNoCol(i);
1241      }
1242    } // end of row iteration
1243
1244    stypestrs.resize(nstype,False);
1245    for (uInt j=0; j < nstype; j++)
1246      stypestrs(j) = SrcType::getName(stypeids(j));
1247
1248    // Format Scan summary
1249    oss << setw(4) << std::right << rec.asuInt("SCANNO")
1250        << std::left << setw(1) << ""
1251        << setw(15) << rec.asString("SRCNAME")
1252        << setw(21) << MVTime(btime).string(MVTime::YMD,7)
1253        << setw(3) << " - " << MVTime(etime).string(MVTime::TIME,7)
1254        << setw(3) << "" << setw(6) << meanIntTim << setw(1) << ""
1255        << std::right << setw(5) << snrow << setw(2) << ""
1256        << std::left << stypestrs << setw(1) << ""
1257        << freqids << setw(1) << ""
1258        << molids  << endl;
1259    // Format Beam summary
1260    for (uInt j=0; j < nbeam; j++) {
1261      oss << setw(7) << "" << setw(6) << beamids(j) << setw(1) << ""
1262          << formatDirection(beamDirs(j)) << endl;
1263    }
1264    // Flush summary every scan and clear up the string
1265    ols << String(oss) << LogIO::POST;
1266    if (ofs) ofs << String(oss) << flush;
1267    oss.str("");
1268    oss.clear();
1269
1270    ++iter;
1271  } // end of scan iteration
1272  oss << asap::SEPERATOR << endl;
1273 
1274  // List FRECUENCIES Table (using STFrequencies.print may be slow)
1275  oss << "FREQUENCIES: " << nfreq << endl;
1276  oss << std::right << setw(5) << "ID" << setw(2) << ""
1277      << std::left  << setw(5) << "IFNO" << setw(2) << ""
1278      << setw(8) << "Frame"
1279      << setw(16) << "RefVal"
1280      << setw(7) << "RefPix"
1281      << setw(15) << "Increment"
1282      << setw(9) << "Channels"
1283      << setw(6) << "POLNOs" << endl;
1284  Int tmplen;
1285  for (Int i=0; i < nfid; i++){
1286    // List row=i of FREQUENCIES subtable
1287    ifNos[i].shape(tmplen);
1288    if (tmplen >= 1) {
1289      oss << std::right << setw(5) << ftabIds(i) << setw(2) << ""
1290          << setw(3) << ifNos[i](0) << setw(1) << ""
1291          << std::left << setw(46) << frequencies().print(ftabIds(i))
1292          << setw(2) << ""
1293          << std::right << setw(8) << fIdchans[i] << setw(2) << ""
1294          << std::left << polNos[i];
1295      if (tmplen > 1) {
1296        oss  << " (" << tmplen << " chains)";
1297      }
1298      oss << endl;
1299    }
1300   
1301  }
1302  oss << asap::SEPERATOR << endl;
1303
1304  // List MOLECULES Table (currently lists all rows)
1305  oss << "MOLECULES: " << endl;
1306  if (molecules().nrow() <= 0) {
1307    oss << "   MOLECULES subtable is empty: there are no data" << endl;
1308  } else {
1309    ROTableRow row(molecules().table());
1310    oss << std::right << setw(5) << "ID"
1311        << std::left << setw(3) << ""
1312        << setw(18) << "RestFreq"
1313        << setw(15) << "Name" << endl;
1314    for (Int i=0; i < molecules().nrow(); i++){
1315      const TableRecord& rec=row.get(i);
1316      oss << std::right << setw(5) << rec.asuInt("ID")
1317          << std::left << setw(3) << ""
1318          << rec.asArrayDouble("RESTFREQUENCY") << setw(1) << ""
1319          << rec.asArrayString("NAME") << endl;
1320    }
1321  }
1322  oss << asap::SEPERATOR << endl;
1323  ols << String(oss) << LogIO::POST;
1324  if (ofs) {
1325    ofs << String(oss) << flush;
1326    ofs.close();
1327  }
1328  //  return String(oss);
1329}
1330
1331
1332std::string Scantable::oldheaderSummary()
1333{
1334  // Format header info
1335//   STHeader sdh;
1336//   sdh = getHeader();
1337//   sdh.print();
1338  ostringstream oss;
1339  oss.flags(std::ios_base::left);
1340  oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1341      << setw(15) << "IFs:" << setw(4) << nif() << endl
1342      << setw(15) << "Polarisations:" << setw(4) << npol()
1343      << "(" << getPolType() << ")" << endl
1344      << setw(15) << "Channels:" << nchan() << endl;
1345  String tmp;
1346  oss << setw(15) << "Observer:"
1347      << table_.keywordSet().asString("Observer") << endl;
1348  oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1349  table_.keywordSet().get("Project", tmp);
1350  oss << setw(15) << "Project:" << tmp << endl;
1351  table_.keywordSet().get("Obstype", tmp);
1352  oss << setw(15) << "Obs. Type:" << tmp << endl;
1353  table_.keywordSet().get("AntennaName", tmp);
1354  oss << setw(15) << "Antenna Name:" << tmp << endl;
1355  table_.keywordSet().get("FluxUnit", tmp);
1356  oss << setw(15) << "Flux Unit:" << tmp << endl;
1357  int nid = moleculeTable_.nrow();
1358  Bool firstline = True;
1359  oss << setw(15) << "Rest Freqs:";
1360  for (int i=0; i<nid; i++) {
1361    Table t = table_(table_.col("MOLECULE_ID") == i, 1);
1362      if (t.nrow() >  0) {
1363          Vector<Double> vec(moleculeTable_.getRestFrequency(i));
1364          if (vec.nelements() > 0) {
1365               if (firstline) {
1366                   oss << setprecision(10) << vec << " [Hz]" << endl;
1367                   firstline=False;
1368               }
1369               else{
1370                   oss << setw(15)<<" " << setprecision(10) << vec << " [Hz]" << endl;
1371               }
1372          } else {
1373              oss << "none" << endl;
1374          }
1375      }
1376  }
1377
1378  oss << setw(15) << "Abcissa:" << getAbcissaLabel(0) << endl;
1379  oss << selector_.print() << endl;
1380  return String(oss);
1381}
1382
1383  //std::string Scantable::summary( const std::string& filename )
1384void Scantable::oldsummary( const std::string& filename )
1385{
1386  ostringstream oss;
1387  ofstream ofs;
1388  LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1389
1390  if (filename != "")
1391    ofs.open( filename.c_str(),  ios::out );
1392
1393  oss << endl;
1394  oss << asap::SEPERATOR << endl;
1395  oss << " Scan Table Summary" << endl;
1396  oss << asap::SEPERATOR << endl;
1397
1398  // Format header info
1399  oss << oldheaderSummary();
1400  oss << endl;
1401
1402  // main table
1403  String dirtype = "Position ("
1404                  + getDirectionRefString()
1405                  + ")";
1406  oss.flags(std::ios_base::left);
1407  oss << setw(5) << "Scan" << setw(15) << "Source"
1408      << setw(10) << "Time" << setw(18) << "Integration"
1409      << setw(15) << "Source Type" << endl;
1410  oss << setw(5) << "" << setw(5) << "Beam" << setw(3) << "" << dirtype << endl;
1411  oss << setw(10) << "" << setw(3) << "IF" << setw(3) << ""
1412      << setw(8) << "Frame" << setw(16)
1413      << "RefVal" << setw(10) << "RefPix" << setw(12) << "Increment"
1414      << setw(7) << "Channels"
1415      << endl;
1416  oss << asap::SEPERATOR << endl;
1417
1418  // Flush summary and clear up the string
1419  ols << String(oss) << LogIO::POST;
1420  if (ofs) ofs << String(oss) << flush;
1421  oss.str("");
1422  oss.clear();
1423
1424  TableIterator iter(table_, "SCANNO");
1425  while (!iter.pastEnd()) {
1426    Table subt = iter.table();
1427    ROTableRow row(subt);
1428    MEpoch::ROScalarColumn timeCol(subt,"TIME");
1429    const TableRecord& rec = row.get(0);
1430    oss << setw(4) << std::right << rec.asuInt("SCANNO")
1431        << std::left << setw(1) << ""
1432        << setw(15) << rec.asString("SRCNAME")
1433        << setw(10) << formatTime(timeCol(0), false);
1434    // count the cycles in the scan
1435    TableIterator cyciter(subt, "CYCLENO");
1436    int nint = 0;
1437    while (!cyciter.pastEnd()) {
1438      ++nint;
1439      ++cyciter;
1440    }
1441    oss << setw(3) << std::right << nint  << setw(3) << " x " << std::left
1442        << setw(11) <<  formatSec(rec.asFloat("INTERVAL")) << setw(1) << ""
1443        << setw(15) << SrcType::getName(rec.asInt("SRCTYPE")) << endl;
1444
1445    TableIterator biter(subt, "BEAMNO");
1446    while (!biter.pastEnd()) {
1447      Table bsubt = biter.table();
1448      ROTableRow brow(bsubt);
1449      const TableRecord& brec = brow.get(0);
1450      uInt row0 = bsubt.rowNumbers(table_)[0];
1451      oss << setw(5) << "" <<  setw(4) << std::right << brec.asuInt("BEAMNO")<< std::left;
1452      oss  << setw(4) << ""  << formatDirection(getDirection(row0)) << endl;
1453      TableIterator iiter(bsubt, "IFNO");
1454      while (!iiter.pastEnd()) {
1455        Table isubt = iiter.table();
1456        ROTableRow irow(isubt);
1457        const TableRecord& irec = irow.get(0);
1458        oss << setw(9) << "";
1459        oss << setw(3) << std::right << irec.asuInt("IFNO") << std::left
1460            << setw(1) << "" << frequencies().print(irec.asuInt("FREQ_ID"))
1461            << setw(3) << "" << nchan(irec.asuInt("IFNO"))
1462            << endl;
1463
1464        ++iiter;
1465      }
1466      ++biter;
1467    }
1468    // Flush summary every scan and clear up the string
1469    ols << String(oss) << LogIO::POST;
1470    if (ofs) ofs << String(oss) << flush;
1471    oss.str("");
1472    oss.clear();
1473
1474    ++iter;
1475  }
1476  oss << asap::SEPERATOR << endl;
1477  ols << String(oss) << LogIO::POST;
1478  if (ofs) {
1479    ofs << String(oss) << flush;
1480    ofs.close();
1481  }
1482  //  return String(oss);
1483}
1484
1485// std::string Scantable::getTime(int whichrow, bool showdate) const
1486// {
1487//   MEpoch::ROScalarColumn timeCol(table_, "TIME");
1488//   MEpoch me;
1489//   if (whichrow > -1) {
1490//     me = timeCol(uInt(whichrow));
1491//   } else {
1492//     Double tm;
1493//     table_.keywordSet().get("UTC",tm);
1494//     me = MEpoch(MVEpoch(tm));
1495//   }
1496//   return formatTime(me, showdate);
1497// }
1498
1499std::string Scantable::getTime(int whichrow, bool showdate, uInt prec) const
1500{
1501  MEpoch me;
1502  me = getEpoch(whichrow);
1503  return formatTime(me, showdate, prec);
1504}
1505
1506MEpoch Scantable::getEpoch(int whichrow) const
1507{
1508  if (whichrow > -1) {
1509    return timeCol_(uInt(whichrow));
1510  } else {
1511    Double tm;
1512    table_.keywordSet().get("UTC",tm);
1513    return MEpoch(MVEpoch(tm));
1514  }
1515}
1516
1517std::string Scantable::getDirectionString(int whichrow) const
1518{
1519  return formatDirection(getDirection(uInt(whichrow)));
1520}
1521
1522
1523SpectralCoordinate Scantable::getSpectralCoordinate(int whichrow) const {
1524  const MPosition& mp = getAntennaPosition();
1525  const MDirection& md = getDirection(whichrow);
1526  const MEpoch& me = timeCol_(whichrow);
1527  //Double rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1528  Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1529  return freqTable_.getSpectralCoordinate(md, mp, me, rf,
1530                                          mfreqidCol_(whichrow));
1531}
1532
1533std::vector< double > Scantable::getAbcissa( int whichrow ) const
1534{
1535  if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal row number"));
1536  std::vector<double> stlout;
1537  int nchan = specCol_(whichrow).nelements();
1538  String us = freqTable_.getUnitString();
1539  if ( us == "" || us == "pixel" || us == "channel" ) {
1540    for (int i=0; i<nchan; ++i) {
1541      stlout.push_back(double(i));
1542    }
1543    return stlout;
1544  }
1545  SpectralCoordinate spc = getSpectralCoordinate(whichrow);
1546  Vector<Double> pixel(nchan);
1547  Vector<Double> world;
1548  indgen(pixel);
1549  if ( Unit(us) == Unit("Hz") ) {
1550    for ( int i=0; i < nchan; ++i) {
1551      Double world;
1552      spc.toWorld(world, pixel[i]);
1553      stlout.push_back(double(world));
1554    }
1555  } else if ( Unit(us) == Unit("km/s") ) {
1556    Vector<Double> world;
1557    spc.pixelToVelocity(world, pixel);
1558    world.tovector(stlout);
1559  }
1560  return stlout;
1561}
1562void Scantable::setDirectionRefString( const std::string & refstr )
1563{
1564  MDirection::Types mdt;
1565  if (refstr != "" && !MDirection::getType(mdt, refstr)) {
1566    throw(AipsError("Illegal Direction frame."));
1567  }
1568  if ( refstr == "" ) {
1569    String defaultstr = MDirection::showType(dirCol_.getMeasRef().getType());
1570    table_.rwKeywordSet().define("DIRECTIONREF", defaultstr);
1571  } else {
1572    table_.rwKeywordSet().define("DIRECTIONREF", String(refstr));
1573  }
1574}
1575
1576std::string Scantable::getDirectionRefString( ) const
1577{
1578  return table_.keywordSet().asString("DIRECTIONREF");
1579}
1580
1581MDirection Scantable::getDirection(int whichrow ) const
1582{
1583  String usertype = table_.keywordSet().asString("DIRECTIONREF");
1584  String type = MDirection::showType(dirCol_.getMeasRef().getType());
1585  if ( usertype != type ) {
1586    MDirection::Types mdt;
1587    if (!MDirection::getType(mdt, usertype)) {
1588      throw(AipsError("Illegal Direction frame."));
1589    }
1590    return dirCol_.convert(uInt(whichrow), mdt);
1591  } else {
1592    return dirCol_(uInt(whichrow));
1593  }
1594}
1595
1596std::string Scantable::getAbcissaLabel( int whichrow ) const
1597{
1598  if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal ro number"));
1599  const MPosition& mp = getAntennaPosition();
1600  const MDirection& md = getDirection(whichrow);
1601  const MEpoch& me = timeCol_(whichrow);
1602  //const Double& rf = mmolidCol_(whichrow);
1603  const Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1604  SpectralCoordinate spc =
1605    freqTable_.getSpectralCoordinate(md, mp, me, rf, mfreqidCol_(whichrow));
1606
1607  String s = "Channel";
1608  Unit u = Unit(freqTable_.getUnitString());
1609  if (u == Unit("km/s")) {
1610    s = CoordinateUtil::axisLabel(spc, 0, True,True,  True);
1611  } else if (u == Unit("Hz")) {
1612    Vector<String> wau(1);wau = u.getName();
1613    spc.setWorldAxisUnits(wau);
1614    s = CoordinateUtil::axisLabel(spc, 0, True, True, False);
1615  }
1616  return s;
1617
1618}
1619
1620/**
1621void asap::Scantable::setRestFrequencies( double rf, const std::string& name,
1622                                          const std::string& unit )
1623**/
1624void Scantable::setRestFrequencies( vector<double> rf, const vector<std::string>& name,
1625                                          const std::string& unit )
1626
1627{
1628  ///@todo lookup in line table to fill in name and formattedname
1629  Unit u(unit);
1630  //Quantum<Double> urf(rf, u);
1631  Quantum<Vector<Double> >urf(rf, u);
1632  Vector<String> formattedname(0);
1633  //cerr<<"Scantable::setRestFrequnecies="<<urf<<endl;
1634
1635  //uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), name, "");
1636  uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), mathutil::toVectorString(name), formattedname);
1637  TableVector<uInt> tabvec(table_, "MOLECULE_ID");
1638  tabvec = id;
1639}
1640
1641/**
1642void asap::Scantable::setRestFrequencies( const std::string& name )
1643{
1644  throw(AipsError("setRestFrequencies( const std::string& name ) NYI"));
1645  ///@todo implement
1646}
1647**/
1648
1649void Scantable::setRestFrequencies( const vector<std::string>& name )
1650{
1651  (void) name; // suppress unused warning
1652  throw(AipsError("setRestFrequencies( const vector<std::string>& name ) NYI"));
1653  ///@todo implement
1654}
1655
1656std::vector< unsigned int > Scantable::rownumbers( ) const
1657{
1658  std::vector<unsigned int> stlout;
1659  Vector<uInt> vec = table_.rowNumbers();
1660  vec.tovector(stlout);
1661  return stlout;
1662}
1663
1664
1665Matrix<Float> Scantable::getPolMatrix( uInt whichrow ) const
1666{
1667  ROTableRow row(table_);
1668  const TableRecord& rec = row.get(whichrow);
1669  Table t =
1670    originalTable_( originalTable_.col("SCANNO") == Int(rec.asuInt("SCANNO"))
1671                    && originalTable_.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1672                    && originalTable_.col("IFNO") == Int(rec.asuInt("IFNO"))
1673                    && originalTable_.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
1674  ROArrayColumn<Float> speccol(t, "SPECTRA");
1675  return speccol.getColumn();
1676}
1677
1678std::vector< std::string > Scantable::columnNames( ) const
1679{
1680  Vector<String> vec = table_.tableDesc().columnNames();
1681  return mathutil::tovectorstring(vec);
1682}
1683
1684MEpoch::Types Scantable::getTimeReference( ) const
1685{
1686  return MEpoch::castType(timeCol_.getMeasRef().getType());
1687}
1688
1689void Scantable::addFit( const STFitEntry& fit, int row )
1690{
1691  //cout << mfitidCol_(uInt(row)) << endl;
1692  LogIO os( LogOrigin( "Scantable", "addFit()", WHERE ) ) ;
1693  os << mfitidCol_(uInt(row)) << LogIO::POST ;
1694  uInt id = fitTable_.addEntry(fit, mfitidCol_(uInt(row)));
1695  mfitidCol_.put(uInt(row), id);
1696}
1697
1698void Scantable::shift(int npix)
1699{
1700  Vector<uInt> fids(mfreqidCol_.getColumn());
1701  genSort( fids, Sort::Ascending,
1702           Sort::QuickSort|Sort::NoDuplicates );
1703  for (uInt i=0; i<fids.nelements(); ++i) {
1704    frequencies().shiftRefPix(npix, fids[i]);
1705  }
1706}
1707
1708String Scantable::getAntennaName() const
1709{
1710  String out;
1711  table_.keywordSet().get("AntennaName", out);
1712  String::size_type pos1 = out.find("@") ;
1713  String::size_type pos2 = out.find("//") ;
1714  if ( pos2 != String::npos )
1715    out = out.substr(pos2+2,pos1-pos2-2) ;
1716  else if ( pos1 != String::npos )
1717    out = out.substr(0,pos1) ;
1718  return out;
1719}
1720
1721int Scantable::checkScanInfo(const std::vector<int>& scanlist) const
1722{
1723  String tbpath;
1724  int ret = 0;
1725  if ( table_.keywordSet().isDefined("GBT_GO") ) {
1726    table_.keywordSet().get("GBT_GO", tbpath);
1727    Table t(tbpath,Table::Old);
1728    // check each scan if other scan of the pair exist
1729    int nscan = scanlist.size();
1730    for (int i = 0; i < nscan; i++) {
1731      Table subt = t( t.col("SCAN") == scanlist[i]+1 );
1732      if (subt.nrow()==0) {
1733        //cerr <<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<endl;
1734        LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1735        os <<LogIO::WARN<<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<LogIO::POST;
1736        ret = 1;
1737        break;
1738      }
1739      ROTableRow row(subt);
1740      const TableRecord& rec = row.get(0);
1741      int scan1seqn = rec.asuInt("PROCSEQN");
1742      int laston1 = rec.asuInt("LASTON");
1743      if ( rec.asuInt("PROCSIZE")==2 ) {
1744        if ( i < nscan-1 ) {
1745          Table subt2 = t( t.col("SCAN") == scanlist[i+1]+1 );
1746          if ( subt2.nrow() == 0) {
1747            LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1748
1749            //cerr<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<endl;
1750            os<<LogIO::WARN<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<LogIO::POST;
1751            ret = 1;
1752            break;
1753          }
1754          ROTableRow row2(subt2);
1755          const TableRecord& rec2 = row2.get(0);
1756          int scan2seqn = rec2.asuInt("PROCSEQN");
1757          int laston2 = rec2.asuInt("LASTON");
1758          if (scan1seqn == 1 && scan2seqn == 2) {
1759            if (laston1 == laston2) {
1760              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1761              //cerr<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1762              os<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
1763              i +=1;
1764            }
1765            else {
1766              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1767              //cerr<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1768              os<<LogIO::WARN<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
1769            }
1770          }
1771          else if (scan1seqn==2 && scan2seqn == 1) {
1772            if (laston1 == laston2) {
1773              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1774              //cerr<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<endl;
1775              os<<LogIO::WARN<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<LogIO::POST;
1776              ret = 1;
1777              break;
1778            }
1779          }
1780          else {
1781            LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1782            //cerr<<"The other scan for  "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<endl;
1783            os<<LogIO::WARN<<"The other scan for  "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<LogIO::POST;
1784            ret = 1;
1785            break;
1786          }
1787        }
1788      }
1789      else {
1790        LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1791        //cerr<<"The scan does not appear to be standard obsevation."<<endl;
1792        os<<LogIO::WARN<<"The scan does not appear to be standard obsevation."<<LogIO::POST;
1793      }
1794    //if ( i >= nscan ) break;
1795    }
1796  }
1797  else {
1798    LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1799    //cerr<<"No reference to GBT_GO table."<<endl;
1800    os<<LogIO::WARN<<"No reference to GBT_GO table."<<LogIO::POST;
1801    ret = 1;
1802  }
1803  return ret;
1804}
1805
1806std::vector<double> Scantable::getDirectionVector(int whichrow) const
1807{
1808  Vector<Double> Dir = dirCol_(whichrow).getAngle("rad").getValue();
1809  std::vector<double> dir;
1810  Dir.tovector(dir);
1811  return dir;
1812}
1813
1814void asap::Scantable::reshapeSpectrum( int nmin, int nmax )
1815  throw( casa::AipsError )
1816{
1817  // assumed that all rows have same nChan
1818  Vector<Float> arr = specCol_( 0 ) ;
1819  int nChan = arr.nelements() ;
1820
1821  // if nmin < 0 or nmax < 0, nothing to do
1822  if (  nmin < 0 ) {
1823    throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1824    }
1825  if (  nmax < 0  ) {
1826    throw( casa::indexError<int>( nmax, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1827  }
1828
1829  // if nmin > nmax, exchange values
1830  if ( nmin > nmax ) {
1831    int tmp = nmax ;
1832    nmax = nmin ;
1833    nmin = tmp ;
1834    LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1835    os << "Swap values. Applied range is ["
1836       << nmin << ", " << nmax << "]" << LogIO::POST ;
1837  }
1838
1839  // if nmin exceeds nChan, nothing to do
1840  if ( nmin >= nChan ) {
1841    throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Specified minimum exceeds nChan." ) ) ;
1842  }
1843
1844  // if nmax exceeds nChan, reset nmax to nChan
1845  if ( nmax >= nChan-1 ) {
1846    if ( nmin == 0 ) {
1847      // nothing to do
1848      LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1849      os << "Whole range is selected. Nothing to do." << LogIO::POST ;
1850      return ;
1851    }
1852    else {
1853      LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1854      os << "Specified maximum exceeds nChan. Applied range is ["
1855         << nmin << ", " << nChan-1 << "]." << LogIO::POST ;
1856      nmax = nChan - 1 ;
1857    }
1858  }
1859
1860  // reshape specCol_ and flagCol_
1861  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1862    reshapeSpectrum( nmin, nmax, irow ) ;
1863  }
1864
1865  // update FREQUENCIES subtable
1866  Double refpix ;
1867  Double refval ;
1868  Double increment ;
1869  int freqnrow = freqTable_.table().nrow() ;
1870  Vector<uInt> oldId( freqnrow ) ;
1871  Vector<uInt> newId( freqnrow ) ;
1872  for ( int irow = 0 ; irow < freqnrow ; irow++ ) {
1873    freqTable_.getEntry( refpix, refval, increment, irow ) ;
1874    /***
1875     * need to shift refpix to nmin
1876     * note that channel nmin in old index will be channel 0 in new one
1877     ***/
1878    refval = refval - ( refpix - nmin ) * increment ;
1879    refpix = 0 ;
1880    freqTable_.setEntry( refpix, refval, increment, irow ) ;
1881  }
1882
1883  // update nchan
1884  int newsize = nmax - nmin + 1 ;
1885  table_.rwKeywordSet().define( "nChan", newsize ) ;
1886
1887  // update bandwidth
1888  // assumed all spectra in the scantable have same bandwidth
1889  table_.rwKeywordSet().define( "Bandwidth", increment * newsize ) ;
1890
1891  return ;
1892}
1893
1894void asap::Scantable::reshapeSpectrum( int nmin, int nmax, int irow )
1895{
1896  // reshape specCol_ and flagCol_
1897  Vector<Float> oldspec = specCol_( irow ) ;
1898  Vector<uChar> oldflag = flagsCol_( irow ) ;
1899  Vector<Float> oldtsys = tsysCol_( irow ) ;
1900  uInt newsize = nmax - nmin + 1 ;
1901  Slice slice( nmin, newsize, 1 ) ;
1902  specCol_.put( irow, oldspec( slice ) ) ;
1903  flagsCol_.put( irow, oldflag( slice ) ) ;
1904  if ( oldspec.size() == oldtsys.size() )
1905    tsysCol_.put( irow, oldtsys( slice ) ) ;
1906
1907  return ;
1908}
1909
1910void asap::Scantable::regridSpecChannel( double dnu, int nChan )
1911{
1912  LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
1913  os << "Regrid abcissa with spectral resoultion " << dnu << " " << freqTable_.getUnitString() << " with channel number " << ((nChan>0)? String(nChan) : "covering band width")<< LogIO::POST ;
1914  int freqnrow = freqTable_.table().nrow() ;
1915  Vector<bool> firstTime( freqnrow, true ) ;
1916  double oldincr, factor;
1917  uInt currId;
1918  Double refpix ;
1919  Double refval ;
1920  Double increment ;
1921  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1922    currId = mfreqidCol_(irow);
1923    vector<double> abcissa = getAbcissa( irow ) ;
1924    if (nChan < 0) {
1925      int oldsize = abcissa.size() ;
1926      double bw = (abcissa[oldsize-1]-abcissa[0]) +                     \
1927        0.5 * (abcissa[1]-abcissa[0] + abcissa[oldsize-1]-abcissa[oldsize-2]) ;
1928      nChan = int( ceil( abs(bw/dnu) ) ) ;
1929    }
1930    // actual regridding
1931    regridChannel( nChan, dnu, irow ) ;
1932
1933    // update FREQUENCIES subtable
1934    if (firstTime[currId]) {
1935      oldincr = abcissa[1]-abcissa[0] ;
1936      factor = dnu/oldincr ;
1937      firstTime[currId] = false ;
1938      freqTable_.getEntry( refpix, refval, increment, currId ) ;
1939
1940      //refval = refval - ( refpix + 0.5 * (1 - factor) ) * increment ;
1941      if (factor > 0 ) {
1942        refpix = (refpix + 0.5)/factor - 0.5;
1943      } else {
1944        refpix = (abcissa.size() - 0.5 - refpix)/abs(factor) - 0.5;
1945      }
1946      freqTable_.setEntry( refpix, refval, increment*factor, currId ) ;
1947      //os << "ID" << currId << ": channel width (Orig) = " << oldincr << " [" << freqTable_.getUnitString() << "], scale factor = " << factor << LogIO::POST ;
1948      //os << "     frequency increment (Orig) = " << increment << "-> (New) " << increment*factor << LogIO::POST ;
1949    }
1950  }
1951}
1952
1953void asap::Scantable::regridChannel( int nChan, double dnu )
1954{
1955  LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
1956  os << "Regrid abcissa with channel number " << nChan << " and spectral resoultion " << dnu << "Hz." << LogIO::POST ;
1957  // assumed that all rows have same nChan
1958  Vector<Float> arr = specCol_( 0 ) ;
1959  int oldsize = arr.nelements() ;
1960
1961  // if oldsize == nChan, nothing to do
1962  if ( oldsize == nChan ) {
1963    os << "Specified channel number is same as current one. Nothing to do." << LogIO::POST ;
1964    return ;
1965  }
1966
1967  // if oldChan < nChan, unphysical operation
1968  if ( oldsize < nChan ) {
1969    os << "Unphysical operation. Nothing to do." << LogIO::POST ;
1970    return ;
1971  }
1972
1973  // change channel number for specCol_, flagCol_, and tsysCol_ (if necessary)
1974  vector<string> coordinfo = getCoordInfo() ;
1975  string oldinfo = coordinfo[0] ;
1976  coordinfo[0] = "Hz" ;
1977  setCoordInfo( coordinfo ) ;
1978  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1979    regridChannel( nChan, dnu, irow ) ;
1980  }
1981  coordinfo[0] = oldinfo ;
1982  setCoordInfo( coordinfo ) ;
1983
1984
1985  // NOTE: this method does not update metadata such as
1986  //       FREQUENCIES subtable, nChan, Bandwidth, etc.
1987
1988  return ;
1989}
1990
1991void asap::Scantable::regridChannel( int nChan, double dnu, int irow )
1992{
1993  // logging
1994  //ofstream ofs( "average.log", std::ios::out | std::ios::app ) ;
1995  //ofs << "IFNO = " << getIF( irow ) << " irow = " << irow << endl ;
1996
1997  Vector<Float> oldspec = specCol_( irow ) ;
1998  Vector<uChar> oldflag = flagsCol_( irow ) ;
1999  Vector<Float> oldtsys = tsysCol_( irow ) ;
2000  Vector<Float> newspec( nChan, 0 ) ;
2001  Vector<uChar> newflag( nChan, true ) ;
2002  Vector<Float> newtsys ;
2003  bool regridTsys = false ;
2004  if (oldtsys.size() == oldspec.size()) {
2005    regridTsys = true ;
2006    newtsys.resize(nChan,false) ;
2007    newtsys = 0 ;
2008  }
2009
2010  // regrid
2011  vector<double> abcissa = getAbcissa( irow ) ;
2012  int oldsize = abcissa.size() ;
2013  double olddnu = abcissa[1] - abcissa[0] ;
2014  //int ichan = 0 ;
2015  double wsum = 0.0 ;
2016  Vector<double> zi( nChan+1 ) ;
2017  Vector<double> yi( oldsize + 1 ) ;
2018  yi[0] = abcissa[0] - 0.5 * olddnu ;
2019  for ( int ii = 1 ; ii < oldsize ; ii++ )
2020    yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ;
2021  yi[oldsize] = abcissa[oldsize-1] \
2022    + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ;
2023  //zi[0] = abcissa[0] - 0.5 * olddnu ;
2024  zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ;
2025  for ( int ii = 1 ; ii < nChan ; ii++ )
2026    zi[ii] = zi[0] + dnu * ii ;
2027  zi[nChan] = zi[nChan-1] + dnu ;
2028  // Access zi and yi in ascending order
2029  int izs = ((dnu > 0) ? 0 : nChan ) ;
2030  int ize = ((dnu > 0) ? nChan : 0 ) ;
2031  int izincr = ((dnu > 0) ? 1 : -1 ) ;
2032  int ichan =  ((olddnu > 0) ? 0 : oldsize ) ;
2033  int iye = ((olddnu > 0) ? oldsize : 0 ) ;
2034  int iyincr = ((olddnu > 0) ? 1 : -1 ) ;
2035  //for ( int ii = izs ; ii != ize ; ii+=izincr ){
2036  int ii = izs ;
2037  while (ii != ize) {
2038    // always zl < zr
2039    double zl = zi[ii] ;
2040    double zr = zi[ii+izincr] ;
2041    // Need to access smaller index for the new spec, flag, and tsys.
2042    // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc.
2043    int i = min(ii, ii+izincr) ;
2044    //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) {
2045    int jj = ichan ;
2046    while (jj != iye) {
2047      // always yl < yr
2048      double yl = yi[jj] ;
2049      double yr = yi[jj+iyincr] ;
2050      // Need to access smaller index for the original spec, flag, and tsys.
2051      // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc.
2052      int j = min(jj, jj+iyincr) ;
2053      if ( yr <= zl ) {
2054        jj += iyincr ;
2055        continue ;
2056      }
2057      else if ( yl <= zl ) {
2058        if ( yr < zr ) {
2059          if (!oldflag[j]) {
2060            newspec[i] += oldspec[j] * ( yr - zl ) ;
2061            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ;
2062            wsum += ( yr - zl ) ;
2063          }
2064          newflag[i] = newflag[i] && oldflag[j] ;
2065        }
2066        else {
2067          if (!oldflag[j]) {
2068            newspec[i] += oldspec[j] * abs(dnu) ;
2069            if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ;
2070            wsum += abs(dnu) ;
2071          }
2072          newflag[i] = newflag[i] && oldflag[j] ;
2073          ichan = jj ;
2074          break ;
2075        }
2076      }
2077      else if ( yl < zr ) {
2078        if ( yr <= zr ) {
2079          if (!oldflag[j]) {
2080            newspec[i] += oldspec[j] * ( yr - yl ) ;
2081            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ;
2082            wsum += ( yr - yl ) ;
2083          }
2084          newflag[i] = newflag[i] && oldflag[j] ;
2085        }
2086        else {
2087          if (!oldflag[j]) {
2088            newspec[i] += oldspec[j] * ( zr - yl ) ;
2089            if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ;
2090            wsum += ( zr - yl ) ;
2091          }
2092          newflag[i] = newflag[i] && oldflag[j] ;
2093          ichan = jj ;
2094          break ;
2095        }
2096      }
2097      else {
2098        ichan = jj - iyincr ;
2099        break ;
2100      }
2101      jj += iyincr ;
2102    }
2103    if ( wsum != 0.0 ) {
2104      newspec[i] /= wsum ;
2105      if (regridTsys) newtsys[i] /= wsum ;
2106    }
2107    wsum = 0.0 ;
2108    ii += izincr ;
2109  }
2110//   if ( dnu > 0.0 ) {
2111//     for ( int ii = 0 ; ii < nChan ; ii++ ) {
2112//       double zl = zi[ii] ;
2113//       double zr = zi[ii+1] ;
2114//       for ( int j = ichan ; j < oldsize ; j++ ) {
2115//         double yl = yi[j] ;
2116//         double yr = yi[j+1] ;
2117//         if ( yl <= zl ) {
2118//           if ( yr <= zl ) {
2119//             continue ;
2120//           }
2121//           else if ( yr <= zr ) {
2122//          if (!oldflag[j]) {
2123//            newspec[ii] += oldspec[j] * ( yr - zl ) ;
2124//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - zl ) ;
2125//            wsum += ( yr - zl ) ;
2126//          }
2127//          newflag[ii] = newflag[ii] && oldflag[j] ;
2128//           }
2129//           else {
2130//          if (!oldflag[j]) {
2131//            newspec[ii] += oldspec[j] * dnu ;
2132//            if (regridTsys) newtsys[ii] += oldtsys[j] * dnu ;
2133//            wsum += dnu ;
2134//          }
2135//          newflag[ii] = newflag[ii] && oldflag[j] ;
2136//             ichan = j ;
2137//             break ;
2138//           }
2139//         }
2140//         else if ( yl < zr ) {
2141//           if ( yr <= zr ) {
2142//          if (!oldflag[j]) {
2143//            newspec[ii] += oldspec[j] * ( yr - yl ) ;
2144//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - yl ) ;
2145//               wsum += ( yr - yl ) ;
2146//          }
2147//          newflag[ii] = newflag[ii] && oldflag[j] ;
2148//           }
2149//           else {
2150//          if (!oldflag[j]) {
2151//            newspec[ii] += oldspec[j] * ( zr - yl ) ;
2152//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( zr - yl ) ;
2153//            wsum += ( zr - yl ) ;
2154//          }
2155//          newflag[ii] = newflag[ii] && oldflag[j] ;
2156//             ichan = j ;
2157//             break ;
2158//           }
2159//         }
2160//         else {
2161//           ichan = j - 1 ;
2162//           break ;
2163//         }
2164//       }
2165//       if ( wsum != 0.0 ) {
2166//         newspec[ii] /= wsum ;
2167//      if (regridTsys) newtsys[ii] /= wsum ;
2168//       }
2169//       wsum = 0.0 ;
2170//     }
2171//   }
2172//   else if ( dnu < 0.0 ) {
2173//     for ( int ii = 0 ; ii < nChan ; ii++ ) {
2174//       double zl = zi[ii] ;
2175//       double zr = zi[ii+1] ;
2176//       for ( int j = ichan ; j < oldsize ; j++ ) {
2177//         double yl = yi[j] ;
2178//         double yr = yi[j+1] ;
2179//         if ( yl >= zl ) {
2180//           if ( yr >= zl ) {
2181//             continue ;
2182//           }
2183//           else if ( yr >= zr ) {
2184//          if (!oldflag[j]) {
2185//            newspec[ii] += oldspec[j] * abs( yr - zl ) ;
2186//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - zl ) ;
2187//            wsum += abs( yr - zl ) ;
2188//          }
2189//          newflag[ii] = newflag[ii] && oldflag[j] ;
2190//           }
2191//           else {
2192//          if (!oldflag[j]) {
2193//            newspec[ii] += oldspec[j] * abs( dnu ) ;
2194//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( dnu ) ;
2195//            wsum += abs( dnu ) ;
2196//          }
2197//          newflag[ii] = newflag[ii] && oldflag[j] ;
2198//             ichan = j ;
2199//             break ;
2200//           }
2201//         }
2202//         else if ( yl > zr ) {
2203//           if ( yr >= zr ) {
2204//          if (!oldflag[j]) {
2205//            newspec[ii] += oldspec[j] * abs( yr - yl ) ;
2206//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - yl ) ;
2207//            wsum += abs( yr - yl ) ;
2208//          }
2209//          newflag[ii] = newflag[ii] && oldflag[j] ;
2210//           }
2211//           else {
2212//          if (!oldflag[j]) {
2213//            newspec[ii] += oldspec[j] * abs( zr - yl ) ;
2214//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( zr - yl ) ;
2215//            wsum += abs( zr - yl ) ;
2216//          }
2217//          newflag[ii] = newflag[ii] && oldflag[j] ;
2218//             ichan = j ;
2219//             break ;
2220//           }
2221//         }
2222//         else {
2223//           ichan = j - 1 ;
2224//           break ;
2225//         }
2226//       }
2227//       if ( wsum != 0.0 ) {
2228//         newspec[ii] /= wsum ;
2229//      if (regridTsys) newtsys[ii] /= wsum ;
2230//       }
2231//       wsum = 0.0 ;
2232//     }
2233//   }
2234// //   //ofs << "olddnu = " << olddnu << ", dnu = " << dnu << endl ;
2235// //   pile += dnu ;
2236// //   wedge = olddnu * ( refChan + 1 ) ;
2237// //   while ( wedge < pile ) {
2238// //     newspec[0] += olddnu * oldspec[refChan] ;
2239// //     newflag[0] = newflag[0] || oldflag[refChan] ;
2240// //     //ofs << "channel " << refChan << " is included in new channel 0" << endl ;
2241// //     refChan++ ;
2242// //     wedge += olddnu ;
2243// //     wsum += olddnu ;
2244// //     //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2245// //   }
2246// //   frac = ( wedge - pile ) / olddnu ;
2247// //   wsum += ( 1.0 - frac ) * olddnu ;
2248// //   newspec[0] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2249// //   newflag[0] = newflag[0] || oldflag[refChan] ;
2250// //   //ofs << "channel " << refChan << " is partly included in new channel 0" << " with fraction of " << ( 1.0 - frac ) << endl ;
2251// //   //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2252// //   newspec[0] /= wsum ;
2253// //   //ofs << "newspec[0] = " << newspec[0] << endl ;
2254// //   //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2255
2256// //   /***
2257// //    * ichan = 1 - nChan-2
2258// //    ***/
2259// //   for ( int ichan = 1 ; ichan < nChan - 1 ; ichan++ ) {
2260// //     pile += dnu ;
2261// //     newspec[ichan] += frac * olddnu * oldspec[refChan] ;
2262// //     newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2263// //     //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << frac << endl ;
2264// //     refChan++ ;
2265// //     wedge += olddnu ;
2266// //     wsum = frac * olddnu ;
2267// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2268// //     while ( wedge < pile ) {
2269// //       newspec[ichan] += olddnu * oldspec[refChan] ;
2270// //       newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2271// //       //ofs << "channel " << refChan << " is included in new channel " << ichan << endl ;
2272// //       refChan++ ;
2273// //       wedge += olddnu ;
2274// //       wsum += olddnu ;
2275// //       //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2276// //     }
2277// //     frac = ( wedge - pile ) / olddnu ;
2278// //     wsum += ( 1.0 - frac ) * olddnu ;
2279// //     newspec[ichan] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2280// //     newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2281// //     //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << ( 1.0 - frac ) << endl ;
2282// //     //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2283// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2284// //     newspec[ichan] /= wsum ;
2285// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << endl ;
2286// //   }
2287
2288// //   /***
2289// //    * ichan = nChan-1
2290// //    ***/
2291// //   // NOTE: Assumed that all spectra have the same bandwidth
2292// //   pile += dnu ;
2293// //   newspec[nChan-1] += frac * olddnu * oldspec[refChan] ;
2294// //   newflag[nChan-1] = newflag[nChan-1] || oldflag[refChan] ;
2295// //   //ofs << "channel " << refChan << " is partly included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2296// //   refChan++ ;
2297// //   wedge += olddnu ;
2298// //   wsum = frac * olddnu ;
2299// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2300// //   for ( int jchan = refChan ; jchan < oldsize ; jchan++ ) {
2301// //     newspec[nChan-1] += olddnu * oldspec[jchan] ;
2302// //     newflag[nChan-1] = newflag[nChan-1] || oldflag[jchan] ;
2303// //     wsum += olddnu ;
2304// //     //ofs << "channel " << jchan << " is included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2305// //     //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2306// //   }
2307// //   //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2308// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2309// //   newspec[nChan-1] /= wsum ;
2310// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << endl ;
2311
2312// //   // ofs.close() ;
2313
2314  specCol_.put( irow, newspec ) ;
2315  flagsCol_.put( irow, newflag ) ;
2316  if (regridTsys) tsysCol_.put( irow, newtsys );
2317
2318  return ;
2319}
2320
2321void Scantable::regridChannel( int nChan, double dnu, double fmin, int irow )
2322{
2323  Vector<Float> oldspec = specCol_( irow ) ;
2324  Vector<uChar> oldflag = flagsCol_( irow ) ;
2325  Vector<Float> oldtsys = tsysCol_( irow ) ;
2326  Vector<Float> newspec( nChan, 0 ) ;
2327  Vector<uChar> newflag( nChan, true ) ;
2328  Vector<Float> newtsys ;
2329  bool regridTsys = false ;
2330  if (oldtsys.size() == oldspec.size()) {
2331    regridTsys = true ;
2332    newtsys.resize(nChan,false) ;
2333    newtsys = 0 ;
2334  }
2335 
2336  // regrid
2337  vector<double> abcissa = getAbcissa( irow ) ;
2338  int oldsize = abcissa.size() ;
2339  double olddnu = abcissa[1] - abcissa[0] ;
2340  //int ichan = 0 ;
2341  double wsum = 0.0 ;
2342  Vector<double> zi( nChan+1 ) ;
2343  Vector<double> yi( oldsize + 1 ) ;
2344  Block<uInt> count( nChan, 0 ) ;
2345  yi[0] = abcissa[0] - 0.5 * olddnu ;
2346  for ( int ii = 1 ; ii < oldsize ; ii++ )
2347    yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ;
2348  yi[oldsize] = abcissa[oldsize-1] \
2349    + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ;
2350//   cout << "olddnu=" << olddnu << ", dnu=" << dnu << " (diff=" << olddnu-dnu << ")" << endl ;
2351//   cout << "yi[0]=" << yi[0] << ", fmin=" << fmin << " (diff=" << yi[0]-fmin << ")" << endl ;
2352//   cout << "oldsize=" << oldsize << ", nChan=" << nChan << endl ;
2353
2354  // do not regrid if input parameters are almost same as current
2355  // spectral setup
2356  double dnuDiff = abs( ( dnu - olddnu ) / olddnu ) ;
2357  double oldfmin = min( yi[0], yi[oldsize] ) ;
2358  double fminDiff = abs( ( fmin - oldfmin ) / oldfmin ) ;
2359  double nChanDiff = nChan - oldsize ;
2360  double eps = 1.0e-8 ;
2361  if ( nChanDiff == 0 && dnuDiff < eps && fminDiff < eps )
2362    return ;
2363
2364  //zi[0] = abcissa[0] - 0.5 * olddnu ;
2365  //zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ;
2366  if ( dnu > 0 )
2367    zi[0] = fmin - 0.5 * dnu ;
2368  else
2369    zi[0] = fmin + nChan * abs(dnu) ;
2370  for ( int ii = 1 ; ii < nChan ; ii++ )
2371    zi[ii] = zi[0] + dnu * ii ;
2372  zi[nChan] = zi[nChan-1] + dnu ;
2373  // Access zi and yi in ascending order
2374  int izs = ((dnu > 0) ? 0 : nChan ) ;
2375  int ize = ((dnu > 0) ? nChan : 0 ) ;
2376  int izincr = ((dnu > 0) ? 1 : -1 ) ;
2377  int ichan =  ((olddnu > 0) ? 0 : oldsize ) ;
2378  int iye = ((olddnu > 0) ? oldsize : 0 ) ;
2379  int iyincr = ((olddnu > 0) ? 1 : -1 ) ;
2380  //for ( int ii = izs ; ii != ize ; ii+=izincr ){
2381  int ii = izs ;
2382  while (ii != ize) {
2383    // always zl < zr
2384    double zl = zi[ii] ;
2385    double zr = zi[ii+izincr] ;
2386    // Need to access smaller index for the new spec, flag, and tsys.
2387    // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc.
2388    int i = min(ii, ii+izincr) ;
2389    //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) {
2390    int jj = ichan ;
2391    while (jj != iye) {
2392      // always yl < yr
2393      double yl = yi[jj] ;
2394      double yr = yi[jj+iyincr] ;
2395      // Need to access smaller index for the original spec, flag, and tsys.
2396      // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc.
2397      int j = min(jj, jj+iyincr) ;
2398      if ( yr <= zl ) {
2399        jj += iyincr ;
2400        continue ;
2401      }
2402      else if ( yl <= zl ) {
2403        if ( yr < zr ) {
2404          if (!oldflag[j]) {
2405            newspec[i] += oldspec[j] * ( yr - zl ) ;
2406            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ;
2407            wsum += ( yr - zl ) ;
2408            count[i]++ ;
2409          }
2410          newflag[i] = newflag[i] && oldflag[j] ;
2411        }
2412        else {
2413          if (!oldflag[j]) {
2414            newspec[i] += oldspec[j] * abs(dnu) ;
2415            if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ;
2416            wsum += abs(dnu) ;
2417            count[i]++ ;
2418          }
2419          newflag[i] = newflag[i] && oldflag[j] ;
2420          ichan = jj ;
2421          break ;
2422        }
2423      }
2424      else if ( yl < zr ) {
2425        if ( yr <= zr ) {
2426          if (!oldflag[j]) {
2427            newspec[i] += oldspec[j] * ( yr - yl ) ;
2428            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ;
2429            wsum += ( yr - yl ) ;
2430            count[i]++ ;
2431          }
2432          newflag[i] = newflag[i] && oldflag[j] ;
2433        }
2434        else {
2435          if (!oldflag[j]) {
2436            newspec[i] += oldspec[j] * ( zr - yl ) ;
2437            if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ;
2438            wsum += ( zr - yl ) ;
2439            count[i]++ ;
2440          }
2441          newflag[i] = newflag[i] && oldflag[j] ;
2442          ichan = jj ;
2443          break ;
2444        }
2445      }
2446      else {
2447        //ichan = jj - iyincr ;
2448        break ;
2449      }
2450      jj += iyincr ;
2451    }
2452    if ( wsum != 0.0 ) {
2453      newspec[i] /= wsum ;
2454      if (regridTsys) newtsys[i] /= wsum ;
2455    }
2456    wsum = 0.0 ;
2457    ii += izincr ;
2458  }
2459
2460  // flag out channels without data
2461  // this is tentative since there is no specific definition
2462  // on bit flag...
2463  uChar noData = 1 << 7 ;
2464  for ( Int i = 0 ; i < nChan ; i++ ) {
2465    if ( count[i] == 0 )
2466      newflag[i] = noData ;
2467  }
2468
2469  specCol_.put( irow, newspec ) ;
2470  flagsCol_.put( irow, newflag ) ;
2471  if (regridTsys) tsysCol_.put( irow, newtsys );
2472
2473  return ;
2474}
2475
2476std::vector<float> Scantable::getWeather(int whichrow) const
2477{
2478  std::vector<float> out(5);
2479  //Float temperature, pressure, humidity, windspeed, windaz;
2480  weatherTable_.getEntry(out[0], out[1], out[2], out[3], out[4],
2481                         mweatheridCol_(uInt(whichrow)));
2482
2483
2484  return out;
2485}
2486
2487bool Scantable::isAllChannelsFlagged(uInt whichrow)
2488{
2489  uInt rflag;
2490  flagrowCol_.get(whichrow, rflag);
2491  if (rflag > 0)
2492    return true;
2493  uChar flag;
2494  Vector<uChar> flags;
2495  flagsCol_.get(whichrow, flags);
2496  flag = flags[0];
2497  for (uInt i = 1; i < flags.size(); ++i) {
2498    flag &= flags[i];
2499  }
2500  //  return ((flag >> 7) == 1);
2501  return (flag > 0);
2502}
2503
2504std::vector<std::string> Scantable::applyBaselineTable(const std::string& bltable, const bool returnfitresult, const std::string& outbltable, const bool outbltableexists, const bool overwrite)
2505{
2506  STBaselineTable btin = STBaselineTable(bltable);
2507
2508  Vector<Bool> applyCol = btin.getApply();
2509  int nRowBl = applyCol.size();
2510  if (nRowBl != nrow()) {
2511    throw(AipsError("Scantable and bltable have different number of rows."));
2512  }
2513
2514  std::vector<std::string> res;
2515  res.clear();
2516
2517  bool outBaselineTable = ((outbltable != "") && (!outbltableexists || overwrite));
2518  bool bltableidentical = (bltable == outbltable);
2519  STBaselineTable btout = STBaselineTable(*this);
2520  ROScalarColumn<Double> tcol = ROScalarColumn<Double>(table_, "TIME");
2521  Vector<Double> timeSecCol = tcol.getColumn();
2522
2523  for (int whichrow = 0; whichrow < nRowBl; ++whichrow) {
2524    if (applyCol[whichrow]) {
2525      std::vector<float> spec = getSpectrum(whichrow);
2526
2527      std::vector<bool> mask = btin.getMask(whichrow);  //use mask_bltable only
2528
2529      STBaselineFunc::FuncName ftype = btin.getFunctionName(whichrow);
2530      std::vector<int> fpar = btin.getFuncParam(whichrow);
2531      std::vector<float> params;
2532      float rms;
2533      std::vector<float> resfit = doApplyBaselineTable(spec, mask, ftype, fpar, params, rms);
2534      setSpectrum(resfit, whichrow);
2535
2536      if (returnfitresult) {
2537        res.push_back(packFittingResults(whichrow, params, rms));
2538      }
2539
2540      if (outBaselineTable) {
2541        if (outbltableexists) {
2542          if (overwrite) {
2543            if (bltableidentical) {
2544              btin.setresult(uInt(whichrow), Vector<Float>(params), Float(rms));
2545            } else {
2546              btout.setresult(uInt(whichrow), Vector<Float>(params), Float(rms));
2547            }
2548          }
2549        } else {
2550          btout.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
2551                           getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
2552                           true, ftype, fpar, std::vector<float>(),
2553                           getMaskListFromMask(mask), params, rms, spec.size(),
2554                           3.0, 0, 0.0, 0, std::vector<int>());
2555        }
2556      }
2557    }
2558  }
2559
2560  if (outBaselineTable) {
2561    if (bltableidentical) {
2562      btin.save(outbltable);
2563    } else {
2564      btout.save(outbltable);
2565    }
2566  }
2567
2568  return res;
2569}
2570
2571std::vector<std::string> Scantable::subBaseline(const std::vector<std::string>& blInfoList, const bool returnfitresult, const std::string& outbltable, const bool outbltableexists, const bool overwrite)
2572{
2573  int nRowBl = blInfoList.size();
2574  int nRowSt = nrow();
2575
2576  std::vector<std::string> res;
2577  res.clear();
2578
2579  bool outBaselineTable = ((outbltable != "") && (!outbltableexists || overwrite));
2580  if ((outbltable != "") && outbltableexists && !overwrite) {
2581    throw(AipsError("Cannot overwrite bltable. Set overwrite=True."));
2582  }
2583
2584  STBaselineTable bt = STBaselineTable(*this);
2585  ROScalarColumn<Double> tcol = ROScalarColumn<Double>(table_, "TIME");
2586  Vector<Double> timeSecCol = tcol.getColumn();
2587
2588  if (outBaselineTable && !outbltableexists) {
2589    for (int i = 0; i < nRowSt; ++i) {
2590      bt.appendbasedata(getScan(i), getCycle(i), getBeam(i), getIF(i), getPol(i),
2591                         0, timeSecCol[i]);
2592      bt.setApply(i, false);
2593    }
2594  }
2595
2596  for (int i = 0; i < nRowBl; ++i) {
2597    int irow;
2598    STBaselineFunc::FuncName ftype;
2599    std::vector<bool> mask;
2600    std::vector<int> fpar;
2601    float clipth;
2602    int clipn;
2603    bool uself;
2604    float lfth;
2605    std::vector<int> lfedge;
2606    int lfavg;
2607    parseBlInfo(blInfoList[i], irow, ftype, fpar, mask, clipth, clipn, uself, lfth, lfedge, lfavg);
2608
2609    if (irow < nRowSt) {
2610      std::vector<float> spec = getSpectrum(irow);
2611      std::vector<float> params;
2612      float rms;
2613      std::vector<bool> finalmask;
2614
2615      std::vector<float> resfit = doSubtractBaseline(spec, mask, ftype, fpar, params, rms, finalmask, clipth, clipn, uself, irow, lfth, lfedge, lfavg);
2616      setSpectrum(resfit, irow);
2617
2618      if (returnfitresult) {
2619        res.push_back(packFittingResults(irow, params, rms));
2620      }
2621
2622      if (outBaselineTable) {
2623        Vector<Int> fparam(fpar.size());
2624        for (uInt j = 0; j < fparam.size(); ++j) {
2625          fparam[j] = (Int)fpar[j];
2626        }
2627
2628        bt.setdata(uInt(irow),
2629                    uInt(getScan(irow)), uInt(getCycle(irow)),
2630                    uInt(getBeam(irow)), uInt(getIF(irow)), uInt(getPol(irow)),
2631                    uInt(0), timeSecCol[irow], Bool(true), ftype, fparam,
2632                    Vector<Float>(), getMaskListFromMask(finalmask), Vector<Float>(params),
2633                    Float(rms), uInt(spec.size()), Float(clipth), uInt(clipn),
2634                    Float(0.0), uInt(0), Vector<uInt>());
2635      }
2636
2637    }
2638  }
2639
2640  if (outBaselineTable) {
2641    bt.save(outbltable);
2642  }
2643
2644  return res;
2645}
2646
2647std::vector<float> Scantable::doApplyBaselineTable(std::vector<float>& spec,
2648                                                   std::vector<bool>& mask,
2649                                                   const STBaselineFunc::FuncName ftype,
2650                                                   std::vector<int>& fpar,
2651                                                   std::vector<float>& params,
2652                                                   float&rms)
2653{
2654  std::vector<bool> finalmask;
2655  std::vector<int> lfedge;
2656  return doSubtractBaseline(spec, mask, ftype, fpar, params, rms, finalmask, 0.0, 0, false, 0, 0.0, lfedge, 0);
2657}
2658
2659std::vector<float> Scantable::doSubtractBaseline(std::vector<float>& spec,
2660                                                 std::vector<bool>& mask,
2661                                                 const STBaselineFunc::FuncName ftype,
2662                                                 std::vector<int>& fpar,
2663                                                 std::vector<float>& params,
2664                                                 float&rms,
2665                                                 std::vector<bool>& finalmask,
2666                                                 float clipth,
2667                                                 int clipn,
2668                                                 bool uself,
2669                                                 int irow,
2670                                                 float lfth,
2671                                                 std::vector<int>& lfedge,
2672                                                 int lfavg)
2673{
2674  if (uself) {
2675    STLineFinder lineFinder = STLineFinder();
2676    initLineFinder(lfedge, lfth, lfavg, lineFinder);
2677    std::vector<int> currentEdge;
2678    mask = getCompositeChanMask(irow, mask, lfedge, currentEdge, lineFinder);
2679  }
2680
2681  std::vector<float> res;
2682  if (ftype == STBaselineFunc::Polynomial) {
2683    res = doPolynomialFitting(spec, mask, fpar[0], params, rms, finalmask, clipth, clipn);
2684  } else if (ftype == STBaselineFunc::Chebyshev) {
2685    res = doChebyshevFitting(spec, mask, fpar[0], params, rms, finalmask, clipth, clipn);
2686  } else if (ftype == STBaselineFunc::CSpline) {
2687    if (fpar.size() > 1) { // reading from baseline table in which pieceEdges are already calculated and stored.
2688      res = doCubicSplineFitting(spec, mask, fpar, params, rms, finalmask, clipth, clipn);
2689    } else {               // usual cspline fitting by giving nPiece only. fpar will be replaced with pieceEdges.
2690      res = doCubicSplineFitting(spec, mask, fpar[0], fpar, params, rms, finalmask, clipth, clipn);
2691    }
2692  } else if (ftype == STBaselineFunc::Sinusoid) {
2693    res = doSinusoidFitting(spec, mask, fpar, params, rms, finalmask, clipth, clipn);
2694  }
2695
2696  return res;
2697}
2698
2699std::string Scantable::packFittingResults(const int irow, const std::vector<float>& params, const float rms)
2700{
2701  // returned value: "irow:params[0],params[1],..,params[n-1]:rms"
2702  ostringstream os;
2703  os << irow << ':';
2704  for (uInt i = 0; i < params.size(); ++i) {
2705    if (i > 0) {
2706      os << ',';
2707    }
2708    os << params[i];
2709  }
2710  os << ':' << rms;
2711
2712  return os.str();
2713}
2714
2715void Scantable::parseBlInfo(const std::string& blInfo, int& irow, STBaselineFunc::FuncName& ftype, std::vector<int>& fpar, std::vector<bool>& mask, float& thresClip, int& nIterClip, bool& useLineFinder, float& thresLF, std::vector<int>& edgeLF, int& avgLF)
2716{
2717  // The baseline info to be parsed must be column-delimited string like
2718  // "0:chebyshev:5:3,5,169,174,485,487" where the elements are
2719  // row number, funcType, funcOrder, maskList, clipThreshold, clipNIter,
2720  // useLineFinder, lfThreshold, lfEdge and lfChanAvgLimit.
2721
2722  std::vector<string> res = splitToStringList(blInfo, ':');
2723  if (res.size() < 4) {
2724    throw(AipsError("baseline info has bad format")) ;
2725  }
2726
2727  string ftype0, fpar0, masklist0, uself0, edge0;
2728  std::vector<int> masklist;
2729
2730  stringstream ss;
2731  ss << res[0];
2732  ss >> irow;
2733  ss.clear(); ss.str("");
2734
2735  ss << res[1];
2736  ss >> ftype0;
2737  if (ftype0 == "poly") {
2738    ftype = STBaselineFunc::Polynomial;
2739  } else if (ftype0 == "cspline") {
2740    ftype = STBaselineFunc::CSpline;
2741  } else if (ftype0 == "sinusoid") {
2742    ftype = STBaselineFunc::Sinusoid;
2743  } else if (ftype0 == "chebyshev") {
2744    ftype = STBaselineFunc::Chebyshev;
2745  } else {
2746    throw(AipsError("invalid function type."));
2747  }
2748  ss.clear(); ss.str("");
2749
2750  ss << res[2];
2751  ss >> fpar0;
2752  fpar = splitToIntList(fpar0, ',');
2753  ss.clear(); ss.str("");
2754
2755  ss << res[3];
2756  ss >> masklist0;
2757  mask = getMaskFromMaskList(nchan(getIF(irow)), splitToIntList(masklist0, ','));
2758
2759  ss << res[4];
2760  ss >> thresClip;
2761  ss.clear(); ss.str("");
2762
2763  ss << res[5];
2764  ss >> nIterClip;
2765  ss.clear(); ss.str("");
2766
2767  ss << res[6];
2768  ss >> uself0;
2769  if (uself0 == "true") {
2770    useLineFinder = true;
2771  } else {
2772    useLineFinder = false;
2773  }
2774  ss.clear(); ss.str("");
2775
2776  if (useLineFinder) {
2777    ss << res[7];
2778    ss >> thresLF;
2779    ss.clear(); ss.str("");
2780
2781    ss << res[8];
2782    ss >> edge0;
2783    edgeLF = splitToIntList(edge0, ',');
2784    ss.clear(); ss.str("");
2785
2786    ss << res[9];
2787    ss >> avgLF;
2788    ss.clear(); ss.str("");
2789  }
2790
2791}
2792
2793std::vector<int> Scantable::splitToIntList(const std::string& s, const char delim)
2794{
2795  istringstream iss(s);
2796  string tmp;
2797  int tmpi;
2798  std::vector<int> res;
2799  stringstream ss;
2800  while (getline(iss, tmp, delim)) {
2801    ss << tmp;
2802    ss >> tmpi;
2803    res.push_back(tmpi);
2804    ss.clear(); ss.str("");
2805  }
2806
2807  return res;
2808}
2809
2810std::vector<string> Scantable::splitToStringList(const std::string& s, const char delim)
2811{
2812  istringstream iss(s);
2813  std::string tmp;
2814  std::vector<string> res;
2815  while (getline(iss, tmp, delim)) {
2816    res.push_back(tmp);
2817  }
2818
2819  return res;
2820}
2821
2822std::vector<bool> Scantable::getMaskFromMaskList(const int nchan, const std::vector<int>& masklist)
2823{
2824  if (masklist.size() % 2 != 0) {
2825    throw(AipsError("masklist must have even number of elements."));
2826  }
2827
2828  std::vector<bool> res(nchan);
2829
2830  for (int i = 0; i < nchan; ++i) {
2831    res[i] = false;
2832  }
2833  for (uInt j = 0; j < masklist.size(); j += 2) {
2834    for (int i = masklist[j]; i <= masklist[j+1]; ++i) {
2835      res[i] = true;
2836    }
2837  }
2838
2839  return res;
2840}
2841
2842Vector<uInt> Scantable::getMaskListFromMask(const std::vector<bool>& mask)
2843{
2844  std::vector<int> masklist;
2845  masklist.clear();
2846
2847  for (uInt i = 0; i < mask.size(); ++i) {
2848    if (mask[i]) {
2849      if ((i == 0)||(i == mask.size()-1)) {
2850        masklist.push_back(i);
2851      } else {
2852        if ((mask[i])&&(!mask[i-1])) {
2853          masklist.push_back(i);
2854        }
2855        if ((mask[i])&&(!mask[i+1])) {
2856          masklist.push_back(i);
2857        }
2858      }
2859    }
2860  }
2861
2862  Vector<uInt> res(masklist.size());
2863  for (uInt i = 0; i < masklist.size(); ++i) {
2864    res[i] = (uInt)masklist[i];
2865  }
2866
2867  return res;
2868}
2869
2870void Scantable::initialiseBaselining(const std::string& blfile,
2871                                     ofstream& ofs,
2872                                     const bool outLogger,
2873                                     bool& outTextFile,
2874                                     bool& csvFormat,
2875                                     String& coordInfo,
2876                                     bool& hasSameNchan,
2877                                     const std::string& progressInfo,
2878                                     bool& showProgress,
2879                                     int& minNRow,
2880                                     Vector<Double>& timeSecCol)
2881{
2882  csvFormat = false;
2883  outTextFile = false;
2884
2885  if (blfile != "") {
2886    csvFormat = (blfile.substr(0, 1) == "T");
2887    ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
2888    if (ofs) outTextFile = true;
2889  }
2890
2891  coordInfo = "";
2892  hasSameNchan = true;
2893
2894  if (outLogger || outTextFile) {
2895    coordInfo = getCoordInfo()[0];
2896    if (coordInfo == "") coordInfo = "channel";
2897    hasSameNchan = hasSameNchanOverIFs();
2898  }
2899
2900  parseProgressInfo(progressInfo, showProgress, minNRow);
2901
2902  ROScalarColumn<Double> tcol = ROScalarColumn<Double>(table_, "TIME");
2903  timeSecCol = tcol.getColumn();
2904}
2905
2906void Scantable::finaliseBaselining(const bool outBaselineTable,
2907                                   STBaselineTable* pbt,
2908                                   const string& bltable,
2909                                   const bool outTextFile,
2910                                   ofstream& ofs)
2911{
2912  if (outBaselineTable) {
2913    pbt->save(bltable);
2914  }
2915
2916  if (outTextFile) ofs.close();
2917}
2918
2919void Scantable::initLineFinder(const std::vector<int>& edge,
2920                               const float threshold,
2921                               const int chanAvgLimit,
2922                               STLineFinder& lineFinder)
2923{
2924  if ((edge.size() > 2) && (edge.size() < getIFNos().size()*2)) {
2925    throw(AipsError("Length of edge element info is less than that of IFs"));
2926  }
2927
2928  lineFinder.setOptions(threshold, 3, chanAvgLimit);
2929}
2930
2931void Scantable::polyBaseline(const std::vector<bool>& mask, int order,
2932                             float thresClip, int nIterClip,
2933                             bool getResidual,
2934                             const std::string& progressInfo,
2935                             const bool outLogger, const std::string& blfile,
2936                             const std::string& bltable)
2937{
2938  /****
2939  double TimeStart = mathutil::gettimeofday_sec();
2940  ****/
2941
2942  try {
2943    ofstream ofs;
2944    String coordInfo;
2945    bool hasSameNchan, outTextFile, csvFormat, showProgress;
2946    int minNRow;
2947    int nRow = nrow();
2948    std::vector<bool> chanMask, finalChanMask;
2949    float rms;
2950    bool outBaselineTable = (bltable != "");
2951    STBaselineTable bt = STBaselineTable(*this);
2952    Vector<Double> timeSecCol;
2953
2954    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
2955                         coordInfo, hasSameNchan,
2956                         progressInfo, showProgress, minNRow,
2957                         timeSecCol);
2958
2959    std::vector<int> nChanNos;
2960    std::vector<std::vector<std::vector<double> > > modelReservoir;
2961    modelReservoir = getPolynomialModelReservoir(order,
2962                                                 &Scantable::getNormalPolynomial,
2963                                                 nChanNos);
2964
2965    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
2966      std::vector<float> sp = getSpectrum(whichrow);
2967      chanMask = getCompositeChanMask(whichrow, mask);
2968
2969      std::vector<float> params;
2970      int nClipped = 0;
2971      std::vector<float> res = doLeastSquareFitting(sp, chanMask,
2972                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
2973                                   params, rms, finalChanMask,
2974                                   nClipped, thresClip, nIterClip, getResidual);
2975
2976      if (outBaselineTable) {
2977        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
2978                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
2979                      true, STBaselineFunc::Polynomial, order, std::vector<float>(),
2980                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
2981                      thresClip, nIterClip, 0.0, 0, std::vector<int>());
2982      } else {
2983        setSpectrum(res, whichrow);
2984      }
2985
2986      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
2987                          coordInfo, hasSameNchan, ofs, "polyBaseline()",
2988                          params, nClipped);
2989      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
2990    }
2991
2992    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
2993
2994  } catch (...) {
2995    throw;
2996  }
2997
2998  /****
2999  double TimeEnd = mathutil::gettimeofday_sec();
3000  double elapse1 = TimeEnd - TimeStart;
3001  std::cout << "poly-new   : " << elapse1 << " (sec.)" << endl;
3002  ****/
3003}
3004
3005void Scantable::autoPolyBaseline(const std::vector<bool>& mask, int order,
3006                                 float thresClip, int nIterClip,
3007                                 const std::vector<int>& edge,
3008                                 float threshold, int chanAvgLimit,
3009                                 bool getResidual,
3010                                 const std::string& progressInfo,
3011                                 const bool outLogger, const std::string& blfile,
3012                                 const std::string& bltable)
3013{
3014  try {
3015    ofstream ofs;
3016    String coordInfo;
3017    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3018    int minNRow;
3019    int nRow = nrow();
3020    std::vector<bool> chanMask, finalChanMask;
3021    float rms;
3022    bool outBaselineTable = (bltable != "");
3023    STBaselineTable bt = STBaselineTable(*this);
3024    Vector<Double> timeSecCol;
3025    STLineFinder lineFinder = STLineFinder();
3026
3027    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3028                         coordInfo, hasSameNchan,
3029                         progressInfo, showProgress, minNRow,
3030                         timeSecCol);
3031
3032    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3033
3034    std::vector<int> nChanNos;
3035    std::vector<std::vector<std::vector<double> > > modelReservoir;
3036    modelReservoir = getPolynomialModelReservoir(order,
3037                                                 &Scantable::getNormalPolynomial,
3038                                                 nChanNos);
3039
3040    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3041      std::vector<float> sp = getSpectrum(whichrow);
3042      std::vector<int> currentEdge;
3043      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
3044
3045      std::vector<float> params;
3046      int nClipped = 0;
3047      std::vector<float> res = doLeastSquareFitting(sp, chanMask,
3048                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3049                                   params, rms, finalChanMask,
3050                                   nClipped, thresClip, nIterClip, getResidual);
3051
3052      if (outBaselineTable) {
3053        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3054                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3055                      true, STBaselineFunc::Polynomial, order, std::vector<float>(),
3056                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3057                      thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
3058      } else {
3059        setSpectrum(res, whichrow);
3060      }
3061
3062      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3063                          coordInfo, hasSameNchan, ofs, "autoPolyBaseline()",
3064                          params, nClipped);
3065      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3066    }
3067
3068    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3069
3070  } catch (...) {
3071    throw;
3072  }
3073}
3074
3075void Scantable::chebyshevBaseline(const std::vector<bool>& mask, int order,
3076                                  float thresClip, int nIterClip,
3077                                  bool getResidual,
3078                                  const std::string& progressInfo,
3079                                  const bool outLogger, const std::string& blfile,
3080                                  const std::string& bltable)
3081{
3082  /*
3083  double TimeStart = mathutil::gettimeofday_sec();
3084  */
3085
3086  try {
3087    ofstream ofs;
3088    String coordInfo;
3089    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3090    int minNRow;
3091    int nRow = nrow();
3092    std::vector<bool> chanMask, finalChanMask;
3093    float rms;
3094    bool outBaselineTable = (bltable != "");
3095    STBaselineTable bt = STBaselineTable(*this);
3096    Vector<Double> timeSecCol;
3097
3098    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3099                         coordInfo, hasSameNchan,
3100                         progressInfo, showProgress, minNRow,
3101                         timeSecCol);
3102
3103    std::vector<int> nChanNos;
3104    std::vector<std::vector<std::vector<double> > > modelReservoir;
3105    modelReservoir = getPolynomialModelReservoir(order,
3106                                                 &Scantable::getChebyshevPolynomial,
3107                                                 nChanNos);
3108
3109    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3110      std::vector<float> sp = getSpectrum(whichrow);
3111      chanMask = getCompositeChanMask(whichrow, mask);
3112
3113      std::vector<float> params;
3114      int nClipped = 0;
3115      std::vector<float> res = doLeastSquareFitting(sp, chanMask,
3116                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3117                                   params, rms, finalChanMask,
3118                                   nClipped, thresClip, nIterClip, getResidual);
3119
3120      if (outBaselineTable) {
3121        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3122                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3123                      true, STBaselineFunc::Chebyshev, order, std::vector<float>(),
3124                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3125                      thresClip, nIterClip, 0.0, 0, std::vector<int>());
3126      } else {
3127        setSpectrum(res, whichrow);
3128      }
3129
3130      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3131                          coordInfo, hasSameNchan, ofs, "chebyshevBaseline()",
3132                          params, nClipped);
3133      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3134    }
3135   
3136    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3137
3138  } catch (...) {
3139    throw;
3140  }
3141
3142  /*
3143  double TimeEnd = mathutil::gettimeofday_sec();
3144  double elapse1 = TimeEnd - TimeStart;
3145  std::cout << "cheby   : " << elapse1 << " (sec.)" << endl;
3146  */
3147}
3148
3149void Scantable::autoChebyshevBaseline(const std::vector<bool>& mask, int order,
3150                                      float thresClip, int nIterClip,
3151                                      const std::vector<int>& edge,
3152                                      float threshold, int chanAvgLimit,
3153                                      bool getResidual,
3154                                      const std::string& progressInfo,
3155                                      const bool outLogger, const std::string& blfile,
3156                                      const std::string& bltable)
3157{
3158  try {
3159    ofstream ofs;
3160    String coordInfo;
3161    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3162    int minNRow;
3163    int nRow = nrow();
3164    std::vector<bool> chanMask, finalChanMask;
3165    float rms;
3166    bool outBaselineTable = (bltable != "");
3167    STBaselineTable bt = STBaselineTable(*this);
3168    Vector<Double> timeSecCol;
3169    STLineFinder lineFinder = STLineFinder();
3170
3171    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3172                         coordInfo, hasSameNchan,
3173                         progressInfo, showProgress, minNRow,
3174                         timeSecCol);
3175
3176    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3177
3178    std::vector<int> nChanNos;
3179    std::vector<std::vector<std::vector<double> > > modelReservoir;
3180    modelReservoir = getPolynomialModelReservoir(order,
3181                                                 &Scantable::getChebyshevPolynomial,
3182                                                 nChanNos);
3183
3184    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3185      std::vector<float> sp = getSpectrum(whichrow);
3186      std::vector<int> currentEdge;
3187      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
3188
3189      std::vector<float> params;
3190      int nClipped = 0;
3191      std::vector<float> res = doLeastSquareFitting(sp, chanMask,
3192                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3193                                   params, rms, finalChanMask,
3194                                   nClipped, thresClip, nIterClip, getResidual);
3195
3196      if (outBaselineTable) {
3197        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3198                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3199                      true, STBaselineFunc::Chebyshev, order, std::vector<float>(),
3200                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3201                      thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
3202      } else {
3203        setSpectrum(res, whichrow);
3204      }
3205
3206      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3207                          coordInfo, hasSameNchan, ofs, "autoChebyshevBaseline()",
3208                          params, nClipped);
3209      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3210    }
3211
3212    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3213
3214  } catch (...) {
3215    throw;
3216  }
3217}
3218
3219double Scantable::calculateModelSelectionCriteria(const std::string& valname,
3220                                                  const std::string& blfunc,
3221                                                  int order,
3222                                                  const std::vector<bool>& inMask,
3223                                                  int whichrow,
3224                                                  bool useLineFinder,
3225                                                  const std::vector<int>& edge,
3226                                                  float threshold,
3227                                                  int chanAvgLimit)
3228{
3229  std::vector<float> sp = getSpectrum(whichrow);
3230  std::vector<bool> chanMask;
3231  chanMask.clear();
3232
3233  if (useLineFinder) {
3234    STLineFinder lineFinder = STLineFinder();
3235    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3236    std::vector<int> currentEdge;
3237    chanMask = getCompositeChanMask(whichrow, inMask, edge, currentEdge, lineFinder);
3238  } else {
3239    chanMask = getCompositeChanMask(whichrow, inMask);
3240  }
3241
3242  return doCalculateModelSelectionCriteria(valname, sp, chanMask, blfunc, order);
3243}
3244
3245double Scantable::doCalculateModelSelectionCriteria(const std::string& valname, const std::vector<float>& spec, const std::vector<bool>& mask, const std::string& blfunc, int order)
3246{
3247  int nparam;
3248  std::vector<float> params;
3249  std::vector<bool> finalChanMask;
3250  float rms;
3251  int nClipped = 0;
3252  std::vector<float> res;
3253  if (blfunc == "poly") {
3254    nparam = order + 1;
3255    res = doPolynomialFitting(spec, mask, order, params, rms, finalChanMask, nClipped);
3256  } else if (blfunc == "chebyshev") {
3257    nparam = order + 1;
3258    res = doChebyshevFitting(spec, mask, order, params, rms, finalChanMask, nClipped);
3259  } else if (blfunc == "cspline") {
3260    std::vector<int> pieceEdges;//(order+1);  //order = npiece
3261    nparam = order + 3;
3262    res = doCubicSplineFitting(spec, mask, order, false, pieceEdges, params, rms, finalChanMask, nClipped);
3263  } else if (blfunc == "sinusoid") {
3264    std::vector<int> nWaves;
3265    nWaves.clear();
3266    for (int i = 0; i <= order; ++i) {
3267      nWaves.push_back(i);
3268    }
3269    nparam = 2*order + 1;  // order = nwave
3270    res = doSinusoidFitting(spec, mask, nWaves, params, rms, finalChanMask, nClipped);
3271  } else {
3272    throw(AipsError("blfunc must be poly, chebyshev, cspline or sinusoid."));
3273  }
3274
3275  double msq = 0.0;
3276  int nusedchan = 0;
3277  int nChan = res.size();
3278  for (int i = 0; i < nChan; ++i) {
3279    if (mask[i]) {
3280      msq += (double)res[i]*(double)res[i];
3281      nusedchan++;
3282    }
3283  }
3284  if (nusedchan == 0) {
3285    throw(AipsError("all channels masked."));
3286  }
3287  msq /= (double)nusedchan;
3288
3289  nparam++;  //add 1 for sigma of Gaussian distribution
3290  const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
3291
3292  if (valname.find("aic") == 0) {
3293    // Original Akaike Information Criterion (AIC)
3294    double aic = nusedchan * (log(2.0 * PI * msq) + 1.0) + 2.0 * nparam;
3295
3296    // Corrected AIC by Sugiura(1978) (AICc)
3297    if (valname == "aicc") {
3298      if (nusedchan - nparam - 1 <= 0) {
3299        throw(AipsError("channel size is too small to calculate AICc."));
3300      }
3301      aic += 2.0*nparam*(nparam + 1)/(double)(nusedchan - nparam - 1);
3302    }
3303
3304    return aic;
3305
3306  } else if (valname == "bic") {
3307    // Bayesian Information Criterion (BIC)
3308    double bic = nusedchan * log(msq) + nparam * log((double)nusedchan);
3309    return bic;
3310
3311  } else if (valname == "gcv") {
3312    // Generalised Cross Validation
3313    double x = 1.0 - (double)nparam / (double)nusedchan;
3314    double gcv = msq / (x * x);
3315    return gcv;
3316
3317  } else {
3318    throw(AipsError("valname must be aic, aicc, bic or gcv."));
3319  }
3320}
3321
3322double Scantable::getNormalPolynomial(int n, double x) {
3323  if (n == 0) {
3324    return 1.0;
3325  } else if (n > 0) {
3326    double res = 1.0;
3327    for (int i = 0; i < n; ++i) {
3328      res *= x;
3329    }
3330    return res;
3331  } else {
3332    if (x == 0.0) {
3333      throw(AipsError("infinity result: x=0 given for negative power."));
3334    } else {
3335      return pow(x, (double)n);
3336    }
3337  }
3338}
3339
3340double Scantable::getChebyshevPolynomial(int n, double x) {
3341  if ((x < -1.0)||(x > 1.0)) {
3342    throw(AipsError("out of definition range (-1 <= x <= 1)."));
3343  } else if (x == 1.0) {
3344    return 1.0;
3345  } else if (x == 0.0) {
3346    double res;
3347    if (n%2 == 0) {
3348      if (n%4 == 0) {
3349        res = 1.0;
3350      } else {
3351        res = -1.0;
3352      }
3353    } else {
3354      res = 0.0;
3355    }
3356    return res;
3357  } else if (x == -1.0) {
3358    double res = (n%2 == 0 ? 1.0 : -1.0);
3359    return res;
3360  } else if (n < 0) {
3361    throw(AipsError("the order must be zero or positive."));
3362  } else if (n == 0) {
3363    return 1.0;
3364  } else if (n == 1) {
3365    return x;
3366  } else {
3367    double res = 0.0;
3368    for (int m = 0; m <= n/2; ++m) {
3369      double c = 1.0;
3370      if (m > 0) {
3371        for (int i = 1; i <= m; ++i) {
3372          c *= (double)(n-2*m+i)/(double)i;
3373        }
3374      }
3375      res += (m%2 == 0 ? 1.0 : -1.0)*(double)n/(double)(n-m)*pow(2.0*x, (double)(n-2*m))/2.0*c;
3376    }
3377    return res;
3378  }
3379}
3380
3381std::vector<float> Scantable::doPolynomialFitting(const std::vector<float>& data,
3382                                                  const std::vector<bool>& mask,
3383                                                  int order,
3384                                                  std::vector<float>& params,
3385                                                  float& rms,
3386                                                  std::vector<bool>& finalmask,
3387                                                  float clipth,
3388                                                  int clipn)
3389{
3390  int nClipped = 0;
3391  return doPolynomialFitting(data, mask, order, params, rms, finalmask, nClipped, clipth, clipn);
3392}
3393
3394std::vector<float> Scantable::doPolynomialFitting(const std::vector<float>& data,
3395                                                  const std::vector<bool>& mask,
3396                                                  int order,
3397                                                  std::vector<float>& params,
3398                                                  float& rms,
3399                                                  std::vector<bool>& finalMask,
3400                                                  int& nClipped,
3401                                                  float thresClip,
3402                                                  int nIterClip,
3403                                                  bool getResidual)
3404{
3405  return doLeastSquareFitting(data, mask,
3406                              getPolynomialModel(order, data.size(), &Scantable::getNormalPolynomial),
3407                              params, rms, finalMask,
3408                              nClipped, thresClip, nIterClip,
3409                              getResidual);
3410}
3411
3412std::vector<float> Scantable::doChebyshevFitting(const std::vector<float>& data,
3413                                                 const std::vector<bool>& mask,
3414                                                 int order,
3415                                                 std::vector<float>& params,
3416                                                 float& rms,
3417                                                 std::vector<bool>& finalmask,
3418                                                 float clipth,
3419                                                 int clipn)
3420{
3421  int nClipped = 0;
3422  return doChebyshevFitting(data, mask, order, params, rms, finalmask, nClipped, clipth, clipn);
3423}
3424
3425std::vector<float> Scantable::doChebyshevFitting(const std::vector<float>& data,
3426                                                 const std::vector<bool>& mask,
3427                                                 int order,
3428                                                 std::vector<float>& params,
3429                                                 float& rms,
3430                                                 std::vector<bool>& finalMask,
3431                                                 int& nClipped,
3432                                                 float thresClip,
3433                                                 int nIterClip,
3434                                                 bool getResidual)
3435{
3436  return doLeastSquareFitting(data, mask,
3437                              getPolynomialModel(order, data.size(), &Scantable::getChebyshevPolynomial),
3438                              params, rms, finalMask,
3439                              nClipped, thresClip, nIterClip,
3440                              getResidual);
3441}
3442
3443std::vector<std::vector<double> > Scantable::getPolynomialModel(int order, int nchan, double (Scantable::*pfunc)(int, double))
3444{
3445  // model  : contains model values for computing the least-square matrix.
3446  //          model.size() is nmodel and model[*].size() is nchan.
3447  //          Each model element are as follows:
3448  //
3449  //          (for normal polynomials)
3450  //          model[0]   = {1.0,   1.0,   1.0,   ..., 1.0},
3451  //          model[1]   = {0.0,   1.0,   2.0,   ..., (nchan-1)}
3452  //          model[n-1] = ...,
3453  //          model[n]   = {0.0^n, 1.0^n, 2.0^n, ..., (nchan-1)^n}
3454  //          where (0 <= n <= order)
3455  //
3456  //          (for Chebyshev polynomials)
3457  //          model[0]   = {T0(-1), T0(2/(nchan-1)-1), T0(4/(nchan-1)-1), ..., T0(1)},
3458  //          model[n-1] = ...,
3459  //          model[n]   = {Tn(-1), Tn(2/(nchan-1)-1), Tn(4/(nchan-1)-1), ..., Tn(1)}
3460  //          where (0 <= n <= order),
3461
3462  int nmodel = order + 1;
3463  std::vector<std::vector<double> > model(nmodel, std::vector<double>(nchan));
3464
3465  double stretch, shift;
3466  if (pfunc == &Scantable::getChebyshevPolynomial) {
3467    stretch = 2.0/(double)(nchan - 1);
3468    shift   = -1.0;
3469  } else {
3470    stretch = 1.0;
3471    shift   = 0.0;
3472  }
3473
3474  for (int i = 0; i < nmodel; ++i) {
3475    for (int j = 0; j < nchan; ++j) {
3476      model[i][j] = (this->*pfunc)(i, stretch*(double)j + shift);
3477    }
3478  }
3479
3480  return model;
3481}
3482
3483std::vector<std::vector<std::vector<double> > > Scantable::getPolynomialModelReservoir(int order,
3484                                                                                       double (Scantable::*pfunc)(int, double),
3485                                                                                       std::vector<int>& nChanNos)
3486{
3487  std::vector<std::vector<std::vector<double> > > res;
3488  res.clear();
3489  nChanNos.clear();
3490
3491  std::vector<uint> ifNos = getIFNos();
3492  for (uint i = 0; i < ifNos.size(); ++i) {
3493    int currNchan = nchan(ifNos[i]);
3494    bool hasDifferentNchan = (i == 0);
3495    for (uint j = 0; j < i; ++j) {
3496      if (currNchan != nchan(ifNos[j])) {
3497        hasDifferentNchan = true;
3498        break;
3499      }
3500    }
3501    if (hasDifferentNchan) {
3502      res.push_back(getPolynomialModel(order, currNchan, pfunc));
3503      nChanNos.push_back(currNchan);
3504    }
3505  }
3506
3507  return res;
3508}
3509
3510std::vector<float> Scantable::doLeastSquareFitting(const std::vector<float>& data,
3511                                                   const std::vector<bool>& mask,
3512                                                   const std::vector<std::vector<double> >& model,
3513                                                   std::vector<float>& params,
3514                                                   float& rms,
3515                                                   std::vector<bool>& finalMask,
3516                                                   int& nClipped,
3517                                                   float thresClip,
3518                                                   int nIterClip,
3519                                                   bool getResidual)
3520{
3521  int nDOF = model.size();
3522  int nChan = data.size();
3523
3524  if (nDOF == 0) {
3525    throw(AipsError("no model data given"));
3526  }
3527  if (nChan < 2) {
3528    throw(AipsError("data size is too few"));
3529  }
3530  if (nChan != (int)mask.size()) {
3531    throw(AipsError("data and mask sizes are not identical"));
3532  }
3533  for (int i = 0; i < nDOF; ++i) {
3534    if (nChan != (int)model[i].size()) {
3535      throw(AipsError("data and model sizes are not identical"));
3536    }
3537  }
3538
3539  params.clear();
3540  params.resize(nDOF);
3541
3542  finalMask.clear();
3543  finalMask.resize(nChan);
3544
3545  std::vector<int> maskArray(nChan);
3546  int j = 0;
3547  for (int i = 0; i < nChan; ++i) {
3548    maskArray[i] = mask[i] ? 1 : 0;
3549    if (mask[i]) {
3550      j++;
3551    }
3552    finalMask[i] = mask[i];
3553  }
3554
3555  int initNData = j;
3556  int nData = initNData;
3557
3558  std::vector<double> z1(nChan), r1(nChan), residual(nChan);
3559  for (int i = 0; i < nChan; ++i) {
3560    z1[i] = (double)data[i];
3561    r1[i] = 0.0;
3562    residual[i] = 0.0;
3563  }
3564
3565  for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
3566    // xMatrix : horizontal concatenation of
3567    //           the least-sq. matrix (left) and an
3568    //           identity matrix (right).
3569    // the right part is used to calculate the inverse matrix of the left part.
3570    double xMatrix[nDOF][2*nDOF];
3571    double zMatrix[nDOF];
3572    for (int i = 0; i < nDOF; ++i) {
3573      for (int j = 0; j < 2*nDOF; ++j) {
3574        xMatrix[i][j] = 0.0;
3575      }
3576      xMatrix[i][nDOF+i] = 1.0;
3577      zMatrix[i] = 0.0;
3578    }
3579
3580    int nUseData = 0;
3581    for (int k = 0; k < nChan; ++k) {
3582      if (maskArray[k] == 0) continue;
3583
3584      for (int i = 0; i < nDOF; ++i) {
3585        for (int j = i; j < nDOF; ++j) {
3586          xMatrix[i][j] += model[i][k] * model[j][k];
3587        }
3588        zMatrix[i] += z1[k] * model[i][k];
3589      }
3590
3591      nUseData++;
3592    }
3593
3594    if (nUseData < 1) {
3595        throw(AipsError("all channels clipped or masked. can't execute fitting anymore."));     
3596    }
3597
3598    for (int i = 0; i < nDOF; ++i) {
3599      for (int j = 0; j < i; ++j) {
3600        xMatrix[i][j] = xMatrix[j][i];
3601      }
3602    }
3603
3604    std::vector<double> invDiag(nDOF);
3605    for (int i = 0; i < nDOF; ++i) {
3606      invDiag[i] = 1.0 / xMatrix[i][i];
3607      for (int j = 0; j < nDOF; ++j) {
3608        xMatrix[i][j] *= invDiag[i];
3609      }
3610    }
3611
3612    for (int k = 0; k < nDOF; ++k) {
3613      for (int i = 0; i < nDOF; ++i) {
3614        if (i != k) {
3615          double factor1 = xMatrix[k][k];
3616          double invfactor1 = 1.0 / factor1;
3617          double factor2 = xMatrix[i][k];
3618          for (int j = k; j < 2*nDOF; ++j) {
3619            xMatrix[i][j] *= factor1;
3620            xMatrix[i][j] -= xMatrix[k][j]*factor2;
3621            xMatrix[i][j] *= invfactor1;
3622          }
3623        }
3624      }
3625      double invXDiag = 1.0 / xMatrix[k][k];
3626      for (int j = k; j < 2*nDOF; ++j) {
3627        xMatrix[k][j] *= invXDiag;
3628      }
3629    }
3630   
3631    for (int i = 0; i < nDOF; ++i) {
3632      for (int j = 0; j < nDOF; ++j) {
3633        xMatrix[i][nDOF+j] *= invDiag[j];
3634      }
3635    }
3636    //compute a vector y in which coefficients of the best-fit
3637    //model functions are stored.
3638    //in case of polynomials, y consists of (a0,a1,a2,...)
3639    //where ai is the coefficient of the term x^i.
3640    //in case of sinusoids, y consists of (a0,s1,c1,s2,c2,...)
3641    //where a0 is constant term and s* and c* are of sine
3642    //and cosine functions, respectively.
3643    std::vector<double> y(nDOF);
3644    for (int i = 0; i < nDOF; ++i) {
3645      y[i] = 0.0;
3646      for (int j = 0; j < nDOF; ++j) {
3647        y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
3648      }
3649      params[i] = (float)y[i];
3650    }
3651
3652    for (int i = 0; i < nChan; ++i) {
3653      r1[i] = y[0];
3654      for (int j = 1; j < nDOF; ++j) {
3655        r1[i] += y[j]*model[j][i];
3656      }
3657      residual[i] = z1[i] - r1[i];
3658    }
3659
3660    double stdDev = 0.0;
3661    for (int i = 0; i < nChan; ++i) {
3662      stdDev += residual[i]*residual[i]*(double)maskArray[i];
3663    }
3664    stdDev = sqrt(stdDev/(double)nData);
3665    rms = (float)stdDev;
3666
3667    if ((nClip == nIterClip) || (thresClip <= 0.0)) {
3668      break;
3669    } else {
3670
3671      double thres = stdDev * thresClip;
3672      int newNData = 0;
3673      for (int i = 0; i < nChan; ++i) {
3674        if (abs(residual[i]) >= thres) {
3675          maskArray[i] = 0;
3676          finalMask[i] = false;
3677        }
3678        if (maskArray[i] > 0) {
3679          newNData++;
3680        }
3681      }
3682      if (newNData == nData) {
3683        break; //no more flag to add. iteration stops.
3684      } else {
3685        nData = newNData;
3686      }
3687
3688    }
3689  }
3690
3691  nClipped = initNData - nData;
3692
3693  std::vector<float> result(nChan);
3694  if (getResidual) {
3695    for (int i = 0; i < nChan; ++i) {
3696      result[i] = (float)residual[i];
3697    }
3698  } else {
3699    for (int i = 0; i < nChan; ++i) {
3700      result[i] = (float)r1[i];
3701    }
3702  }
3703
3704  return result;
3705}
3706
3707void Scantable::cubicSplineBaseline(const std::vector<bool>& mask, int nPiece,
3708                                    float thresClip, int nIterClip,
3709                                    bool getResidual,
3710                                    const std::string& progressInfo,
3711                                    const bool outLogger, const std::string& blfile,
3712                                    const std::string& bltable)
3713{
3714  /****
3715  double TimeStart = mathutil::gettimeofday_sec();
3716  ****/
3717
3718  try {
3719    ofstream ofs;
3720    String coordInfo;
3721    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3722    int minNRow;
3723    int nRow = nrow();
3724    std::vector<bool> chanMask, finalChanMask;
3725    float rms;
3726    bool outBaselineTable = (bltable != "");
3727    STBaselineTable bt = STBaselineTable(*this);
3728    Vector<Double> timeSecCol;
3729
3730    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3731                         coordInfo, hasSameNchan,
3732                         progressInfo, showProgress, minNRow,
3733                         timeSecCol);
3734
3735    std::vector<int> nChanNos;
3736    std::vector<std::vector<std::vector<double> > > modelReservoir;
3737    modelReservoir = getPolynomialModelReservoir(3,
3738                                                 &Scantable::getNormalPolynomial,
3739                                                 nChanNos);
3740
3741    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3742      std::vector<float> sp = getSpectrum(whichrow);
3743      chanMask = getCompositeChanMask(whichrow, mask);
3744
3745      std::vector<int> pieceEdges;
3746      std::vector<float> params;
3747      int nClipped = 0;
3748      std::vector<float> res = doCubicSplineLeastSquareFitting(sp, chanMask,
3749                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3750                                   nPiece, false, pieceEdges, params, rms, finalChanMask,
3751                                   nClipped, thresClip, nIterClip, getResidual);
3752
3753      if (outBaselineTable) {
3754        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3755                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3756                      true, STBaselineFunc::CSpline, pieceEdges, std::vector<float>(),
3757                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3758                      thresClip, nIterClip, 0.0, 0, std::vector<int>());
3759      } else {
3760        setSpectrum(res, whichrow);
3761      }
3762
3763      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3764                          coordInfo, hasSameNchan, ofs, "cubicSplineBaseline()",
3765                          pieceEdges, params, nClipped);
3766      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3767    }
3768   
3769    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3770
3771  } catch (...) {
3772    throw;
3773  }
3774
3775  /****
3776  double TimeEnd = mathutil::gettimeofday_sec();
3777  double elapse1 = TimeEnd - TimeStart;
3778  std::cout << "cspline-new   : " << elapse1 << " (sec.)" << endl;
3779  ****/
3780}
3781
3782void Scantable::autoCubicSplineBaseline(const std::vector<bool>& mask, int nPiece,
3783                                        float thresClip, int nIterClip,
3784                                        const std::vector<int>& edge,
3785                                        float threshold, int chanAvgLimit,
3786                                        bool getResidual,
3787                                        const std::string& progressInfo,
3788                                        const bool outLogger, const std::string& blfile,
3789                                        const std::string& bltable)
3790{
3791  try {
3792    ofstream ofs;
3793    String coordInfo;
3794    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3795    int minNRow;
3796    int nRow = nrow();
3797    std::vector<bool> chanMask, finalChanMask;
3798    float rms;
3799    bool outBaselineTable = (bltable != "");
3800    STBaselineTable bt = STBaselineTable(*this);
3801    Vector<Double> timeSecCol;
3802    STLineFinder lineFinder = STLineFinder();
3803
3804    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3805                         coordInfo, hasSameNchan,
3806                         progressInfo, showProgress, minNRow,
3807                         timeSecCol);
3808
3809    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3810
3811    std::vector<int> nChanNos;
3812    std::vector<std::vector<std::vector<double> > > modelReservoir;
3813    modelReservoir = getPolynomialModelReservoir(3,
3814                                                 &Scantable::getNormalPolynomial,
3815                                                 nChanNos);
3816
3817    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3818      std::vector<float> sp = getSpectrum(whichrow);
3819      std::vector<int> currentEdge;
3820      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
3821
3822      std::vector<int> pieceEdges;
3823      std::vector<float> params;
3824      int nClipped = 0;
3825      std::vector<float> res = doCubicSplineLeastSquareFitting(sp, chanMask,
3826                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3827                                   nPiece, false, pieceEdges, params, rms, finalChanMask,
3828                                   nClipped, thresClip, nIterClip, getResidual);
3829
3830      if (outBaselineTable) {
3831        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3832                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3833                      true, STBaselineFunc::CSpline, pieceEdges, std::vector<float>(),
3834                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3835                      thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
3836      } else {
3837        setSpectrum(res, whichrow);
3838      }
3839
3840      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3841                          coordInfo, hasSameNchan, ofs, "autoCubicSplineBaseline()",
3842                          pieceEdges, params, nClipped);
3843      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3844    }
3845
3846    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3847
3848  } catch (...) {
3849    throw;
3850  }
3851}
3852
3853std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data,
3854                                                   const std::vector<bool>& mask,
3855                                                   std::vector<int>& idxEdge,
3856                                                   std::vector<float>& params,
3857                                                   float& rms,
3858                                                   std::vector<bool>& finalmask,
3859                                                   float clipth,
3860                                                   int clipn)
3861{
3862  int nClipped = 0;
3863  return doCubicSplineFitting(data, mask, idxEdge.size()-1, true, idxEdge, params, rms, finalmask, nClipped, clipth, clipn);
3864}
3865
3866std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data,
3867                                                   const std::vector<bool>& mask,
3868                                                   int nPiece,
3869                                                   std::vector<int>& idxEdge,
3870                                                   std::vector<float>& params,
3871                                                   float& rms,
3872                                                   std::vector<bool>& finalmask,
3873                                                   float clipth,
3874                                                   int clipn)
3875{
3876  int nClipped = 0;
3877  return doCubicSplineFitting(data, mask, nPiece, false, idxEdge, params, rms, finalmask, nClipped, clipth, clipn);
3878}
3879
3880std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data,
3881                                                   const std::vector<bool>& mask,
3882                                                   int nPiece,
3883                                                   bool useGivenPieceBoundary,
3884                                                   std::vector<int>& idxEdge,
3885                                                   std::vector<float>& params,
3886                                                   float& rms,
3887                                                   std::vector<bool>& finalMask,
3888                                                   int& nClipped,
3889                                                   float thresClip,
3890                                                   int nIterClip,
3891                                                   bool getResidual)
3892{
3893  return doCubicSplineLeastSquareFitting(data, mask,
3894                                         getPolynomialModel(3, data.size(), &Scantable::getNormalPolynomial),
3895                                         nPiece, useGivenPieceBoundary, idxEdge,
3896                                         params, rms, finalMask,
3897                                         nClipped, thresClip, nIterClip,
3898                                         getResidual);
3899}
3900
3901std::vector<float> Scantable::doCubicSplineLeastSquareFitting(const std::vector<float>& data,
3902                                                              const std::vector<bool>& mask,
3903                                                              const std::vector<std::vector<double> >& model,
3904                                                              int nPiece,
3905                                                              bool useGivenPieceBoundary,
3906                                                              std::vector<int>& idxEdge,
3907                                                              std::vector<float>& params,
3908                                                              float& rms,
3909                                                              std::vector<bool>& finalMask,
3910                                                              int& nClipped,
3911                                                              float thresClip,
3912                                                              int nIterClip,
3913                                                              bool getResidual)
3914{
3915  int nDOF = nPiece + 3;  //number of independent parameters to solve, namely, 4+(nPiece-1).
3916  int nModel = model.size();
3917  int nChan = data.size();
3918
3919  if (nModel != 4) {
3920    throw(AipsError("model size must be 4."));
3921  }
3922  if (nPiece < 1) {
3923    throw(AipsError("number of the sections must be one or more"));
3924  }
3925  if (nChan < 2*nPiece) {
3926    throw(AipsError("data size is too few"));
3927  }
3928  if (nChan != (int)mask.size()) {
3929    throw(AipsError("data and mask sizes are not identical"));
3930  }
3931  for (int i = 0; i < nModel; ++i) {
3932    if (nChan != (int)model[i].size()) {
3933      throw(AipsError("data and model sizes are not identical"));
3934    }
3935  }
3936
3937  params.clear();
3938  params.resize(nPiece*nModel);
3939
3940  finalMask.clear();
3941  finalMask.resize(nChan);
3942
3943  std::vector<int> maskArray(nChan);
3944  std::vector<int> x(nChan);
3945  int j = 0;
3946  for (int i = 0; i < nChan; ++i) {
3947    maskArray[i] = mask[i] ? 1 : 0;
3948    if (mask[i]) {
3949      x[j] = i;
3950      j++;
3951    }
3952    finalMask[i] = mask[i];
3953  }
3954
3955  int initNData = j;
3956  int nData = initNData;
3957
3958  if (initNData < nPiece) {
3959    throw(AipsError("too few non-flagged channels"));
3960  }
3961
3962  int nElement = (int)(floor(floor((double)(initNData/nPiece))+0.5));
3963  std::vector<double> invEdge(nPiece-1);
3964
3965  if (useGivenPieceBoundary) {
3966    if ((int)idxEdge.size() != nPiece+1) {
3967      throw(AipsError("pieceEdge.size() must be equal to nPiece+1."));
3968    }
3969  } else {
3970    idxEdge.clear();
3971    idxEdge.resize(nPiece+1);
3972    idxEdge[0] = x[0];
3973  }
3974  for (int i = 1; i < nPiece; ++i) {
3975    int valX = x[nElement*i];
3976    if (!useGivenPieceBoundary) {
3977      idxEdge[i] = valX;
3978    }
3979    invEdge[i-1] = 1.0/(double)valX;
3980  }
3981  if (!useGivenPieceBoundary) {
3982    idxEdge[nPiece] = x[initNData-1]+1;
3983  }
3984
3985  std::vector<double> z1(nChan), r1(nChan), residual(nChan);
3986  for (int i = 0; i < nChan; ++i) {
3987    z1[i] = (double)data[i];
3988    r1[i] = 0.0;
3989    residual[i] = 0.0;
3990  }
3991
3992  for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
3993    // xMatrix : horizontal concatenation of
3994    //           the least-sq. matrix (left) and an
3995    //           identity matrix (right).
3996    // the right part is used to calculate the inverse matrix of the left part.
3997
3998    double xMatrix[nDOF][2*nDOF];
3999    double zMatrix[nDOF];
4000    for (int i = 0; i < nDOF; ++i) {
4001      for (int j = 0; j < 2*nDOF; ++j) {
4002        xMatrix[i][j] = 0.0;
4003      }
4004      xMatrix[i][nDOF+i] = 1.0;
4005      zMatrix[i] = 0.0;
4006    }
4007
4008    for (int n = 0; n < nPiece; ++n) {
4009      int nUseDataInPiece = 0;
4010      for (int k = idxEdge[n]; k < idxEdge[n+1]; ++k) {
4011
4012        if (maskArray[k] == 0) continue;
4013
4014        for (int i = 0; i < nModel; ++i) {
4015          for (int j = i; j < nModel; ++j) {
4016            xMatrix[i][j] += model[i][k] * model[j][k];
4017          }
4018          zMatrix[i] += z1[k] * model[i][k];
4019        }
4020
4021        for (int i = 0; i < n; ++i) {
4022          double q = 1.0 - model[1][k]*invEdge[i];
4023          q = q*q*q;
4024          for (int j = 0; j < nModel; ++j) {
4025            xMatrix[j][i+nModel] += q * model[j][k];
4026          }
4027          for (int j = 0; j < i; ++j) {
4028            double r = 1.0 - model[1][k]*invEdge[j];
4029            r = r*r*r;
4030            xMatrix[j+nModel][i+nModel] += r*q;
4031          }
4032          xMatrix[i+nModel][i+nModel] += q*q;
4033          zMatrix[i+nModel] += q*z1[k];
4034        }
4035
4036        nUseDataInPiece++;
4037      }
4038
4039      if (nUseDataInPiece < 1) {
4040        std::vector<string> suffixOfPieceNumber(4);
4041        suffixOfPieceNumber[0] = "th";
4042        suffixOfPieceNumber[1] = "st";
4043        suffixOfPieceNumber[2] = "nd";
4044        suffixOfPieceNumber[3] = "rd";
4045        int idxNoDataPiece = (n % 10 <= 3) ? n : 0;
4046        ostringstream oss;
4047        oss << "all channels clipped or masked in " << n << suffixOfPieceNumber[idxNoDataPiece];
4048        oss << " piece of the spectrum. can't execute fitting anymore.";
4049        throw(AipsError(String(oss)));
4050      }
4051    }
4052
4053    for (int i = 0; i < nDOF; ++i) {
4054      for (int j = 0; j < i; ++j) {
4055        xMatrix[i][j] = xMatrix[j][i];
4056      }
4057    }
4058
4059    std::vector<double> invDiag(nDOF);
4060    for (int i = 0; i < nDOF; ++i) {
4061      invDiag[i] = 1.0 / xMatrix[i][i];
4062      for (int j = 0; j < nDOF; ++j) {
4063        xMatrix[i][j] *= invDiag[i];
4064      }
4065    }
4066
4067    for (int k = 0; k < nDOF; ++k) {
4068      for (int i = 0; i < nDOF; ++i) {
4069        if (i != k) {
4070          double factor1 = xMatrix[k][k];
4071          double invfactor1 = 1.0 / factor1;
4072          double factor2 = xMatrix[i][k];
4073          for (int j = k; j < 2*nDOF; ++j) {
4074            xMatrix[i][j] *= factor1;
4075            xMatrix[i][j] -= xMatrix[k][j]*factor2;
4076            xMatrix[i][j] *= invfactor1;
4077          }
4078        }
4079      }
4080      double invXDiag = 1.0 / xMatrix[k][k];
4081      for (int j = k; j < 2*nDOF; ++j) {
4082        xMatrix[k][j] *= invXDiag;
4083      }
4084    }
4085   
4086    for (int i = 0; i < nDOF; ++i) {
4087      for (int j = 0; j < nDOF; ++j) {
4088        xMatrix[i][nDOF+j] *= invDiag[j];
4089      }
4090    }
4091
4092    //compute a vector y which consists of the coefficients of the best-fit spline curves
4093    //(a0,a1,a2,a3(,b3,c3,...)), namely, the ones for the leftmost piece and the ones of
4094    //cubic terms for the other pieces (in case nPiece>1).
4095    std::vector<double> y(nDOF);
4096    for (int i = 0; i < nDOF; ++i) {
4097      y[i] = 0.0;
4098      for (int j = 0; j < nDOF; ++j) {
4099        y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
4100      }
4101    }
4102
4103    std::vector<double> a(nModel);
4104    for (int i = 0; i < nModel; ++i) {
4105      a[i] = y[i];
4106    }
4107
4108    int j = 0;
4109    for (int n = 0; n < nPiece; ++n) {
4110      for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
4111        r1[i] = 0.0;
4112        for (int j = 0; j < nModel; ++j) {
4113          r1[i] += a[j] * model[j][i];
4114        }
4115      }
4116      for (int i = 0; i < nModel; ++i) {
4117        params[j+i] = a[i];
4118      }
4119      j += nModel;
4120
4121      if (n == nPiece-1) break;
4122
4123      double d = y[n+nModel];
4124      double iE = invEdge[n];
4125      a[0] +=       d;
4126      a[1] -= 3.0 * d * iE;
4127      a[2] += 3.0 * d * iE * iE;
4128      a[3] -=       d * iE * iE * iE;
4129    }
4130
4131    //subtract constant value for masked regions at the edge of spectrum
4132    if (idxEdge[0] > 0) {
4133      int n = idxEdge[0];
4134      for (int i = 0; i < idxEdge[0]; ++i) {
4135        //--cubic extrapolate--
4136        //r1[i] = params[0] + params[1]*x1[i] + params[2]*x2[i] + params[3]*x3[i];
4137        //--linear extrapolate--
4138        //r1[i] = (r1[n+1] - r1[n])/(x1[n+1] - x1[n])*(x1[i] - x1[n]) + r1[n];
4139        //--constant--
4140        r1[i] = r1[n];
4141      }
4142    }
4143
4144    if (idxEdge[nPiece] < nChan) {
4145      int n = idxEdge[nPiece]-1;
4146      for (int i = idxEdge[nPiece]; i < nChan; ++i) {
4147        //--cubic extrapolate--
4148        //int m = 4*(nPiece-1);
4149        //r1[i] = params[m] + params[m+1]*x1[i] + params[m+2]*x2[i] + params[m+3]*x3[i];
4150        //--linear extrapolate--
4151        //r1[i] = (r1[n-1] - r1[n])/(x1[n-1] - x1[n])*(x1[i] - x1[n]) + r1[n];
4152        //--constant--
4153        r1[i] = r1[n];
4154      }
4155    }
4156
4157    for (int i = 0; i < nChan; ++i) {
4158      residual[i] = z1[i] - r1[i];
4159    }
4160
4161    double stdDev = 0.0;
4162    for (int i = 0; i < nChan; ++i) {
4163      stdDev += residual[i]*residual[i]*(double)maskArray[i];
4164    }
4165    stdDev = sqrt(stdDev/(double)nData);
4166    rms = (float)stdDev;
4167
4168    if ((nClip == nIterClip) || (thresClip <= 0.0)) {
4169      break;
4170    } else {
4171     
4172      double thres = stdDev * thresClip;
4173      int newNData = 0;
4174      for (int i = 0; i < nChan; ++i) {
4175        if (abs(residual[i]) >= thres) {
4176          maskArray[i] = 0;
4177          finalMask[i] = false;
4178        }
4179        if (maskArray[i] > 0) {
4180          newNData++;
4181        }
4182      }
4183      if (newNData == nData) {
4184        break; //no more flag to add. iteration stops.
4185      } else {
4186        nData = newNData;
4187      }
4188
4189    }
4190  }
4191
4192  nClipped = initNData - nData;
4193
4194  std::vector<float> result(nChan);
4195  if (getResidual) {
4196    for (int i = 0; i < nChan; ++i) {
4197      result[i] = (float)residual[i];
4198    }
4199  } else {
4200    for (int i = 0; i < nChan; ++i) {
4201      result[i] = (float)r1[i];
4202    }
4203  }
4204
4205  return result;
4206}
4207
4208std::vector<int> Scantable::selectWaveNumbers(const std::vector<int>& addNWaves,
4209                                  const std::vector<int>& rejectNWaves)
4210{
4211  std::vector<bool> chanMask;
4212  std::string fftMethod;
4213  std::string fftThresh;
4214
4215  return selectWaveNumbers(0, chanMask, false, fftMethod, fftThresh, addNWaves, rejectNWaves);
4216}
4217
4218std::vector<int> Scantable::selectWaveNumbers(const int whichrow,
4219                                  const std::vector<bool>& chanMask,
4220                                  const bool applyFFT,
4221                                  const std::string& fftMethod,
4222                                  const std::string& fftThresh,
4223                                  const std::vector<int>& addNWaves,
4224                                  const std::vector<int>& rejectNWaves)
4225{
4226  std::vector<int> nWaves;
4227  nWaves.clear();
4228
4229  if (applyFFT) {
4230    string fftThAttr;
4231    float fftThSigma;
4232    int fftThTop;
4233    parseFFTThresholdInfo(fftThresh, fftThAttr, fftThSigma, fftThTop);
4234    doSelectWaveNumbers(whichrow, chanMask, fftMethod, fftThSigma, fftThTop, fftThAttr, nWaves);
4235  }
4236
4237  addAuxWaveNumbers(whichrow, addNWaves, rejectNWaves, nWaves);
4238
4239  return nWaves;
4240}
4241
4242int Scantable::getIdxOfNchan(const int nChan, const std::vector<int>& nChanNos)
4243{
4244  int idx = -1;
4245  for (uint i = 0; i < nChanNos.size(); ++i) {
4246    if (nChan == nChanNos[i]) {
4247      idx = i;
4248      break;
4249    }
4250  }
4251
4252  if (idx < 0) {
4253    throw(AipsError("nChan not found in nChhanNos."));
4254  }
4255
4256  return idx;
4257}
4258
4259void Scantable::parseFFTInfo(const std::string& fftInfo, bool& applyFFT, std::string& fftMethod, std::string& fftThresh)
4260{
4261  istringstream iss(fftInfo);
4262  std::string tmp;
4263  std::vector<string> res;
4264  while (getline(iss, tmp, ',')) {
4265    res.push_back(tmp);
4266  }
4267  if (res.size() < 3) {
4268    throw(AipsError("wrong value in 'fftinfo' parameter")) ;
4269  }
4270  applyFFT = (res[0] == "true");
4271  fftMethod = res[1];
4272  fftThresh = res[2];
4273}
4274
4275void Scantable::parseFFTThresholdInfo(const std::string& fftThresh, std::string& fftThAttr, float& fftThSigma, int& fftThTop)
4276{
4277  uInt idxSigma = fftThresh.find("sigma");
4278  uInt idxTop   = fftThresh.find("top");
4279
4280  if (idxSigma == fftThresh.size() - 5) {
4281    std::istringstream is(fftThresh.substr(0, fftThresh.size() - 5));
4282    is >> fftThSigma;
4283    fftThAttr = "sigma";
4284  } else if (idxTop == 0) {
4285    std::istringstream is(fftThresh.substr(3));
4286    is >> fftThTop;
4287    fftThAttr = "top";
4288  } else {
4289    bool isNumber = true;
4290    for (uInt i = 0; i < fftThresh.size()-1; ++i) {
4291      char ch = (fftThresh.substr(i, 1).c_str())[0];
4292      if (!(isdigit(ch) || (fftThresh.substr(i, 1) == "."))) {
4293        isNumber = false;
4294        break;
4295      }
4296    }
4297    if (isNumber) {
4298      std::istringstream is(fftThresh);
4299      is >> fftThSigma;
4300      fftThAttr = "sigma";
4301    } else {
4302      throw(AipsError("fftthresh has a wrong value"));
4303    }
4304  }
4305}
4306
4307void Scantable::doSelectWaveNumbers(const int whichrow, const std::vector<bool>& chanMask, const std::string& fftMethod, const float fftThSigma, const int fftThTop, const std::string& fftThAttr, std::vector<int>& nWaves)
4308{
4309  std::vector<float> fspec;
4310  if (fftMethod == "fft") {
4311    fspec = execFFT(whichrow, chanMask, false, true);
4312  //} else if (fftMethod == "lsp") {
4313  //  fspec = lombScarglePeriodogram(whichrow);
4314  }
4315
4316  if (fftThAttr == "sigma") {
4317    float mean  = 0.0;
4318    float mean2 = 0.0;
4319    for (uInt i = 0; i < fspec.size(); ++i) {
4320      mean  += fspec[i];
4321      mean2 += fspec[i]*fspec[i];
4322    }
4323    mean  /= float(fspec.size());
4324    mean2 /= float(fspec.size());
4325    float thres = mean + fftThSigma * float(sqrt(mean2 - mean*mean));
4326
4327    for (uInt i = 0; i < fspec.size(); ++i) {
4328      if (fspec[i] >= thres) {
4329        nWaves.push_back(i);
4330      }
4331    }
4332
4333  } else if (fftThAttr == "top") {
4334    for (int i = 0; i < fftThTop; ++i) {
4335      float max = 0.0;
4336      int maxIdx = 0;
4337      for (uInt j = 0; j < fspec.size(); ++j) {
4338        if (fspec[j] > max) {
4339          max = fspec[j];
4340          maxIdx = j;
4341        }
4342      }
4343      nWaves.push_back(maxIdx);
4344      fspec[maxIdx] = 0.0;
4345    }
4346
4347  }
4348
4349  if (nWaves.size() > 1) {
4350    sort(nWaves.begin(), nWaves.end());
4351  }
4352}
4353
4354void Scantable::addAuxWaveNumbers(const int whichrow, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, std::vector<int>& nWaves)
4355{
4356  std::vector<int> tempAddNWaves, tempRejectNWaves;
4357  tempAddNWaves.clear();
4358  tempRejectNWaves.clear();
4359
4360  for (uInt i = 0; i < addNWaves.size(); ++i) {
4361    tempAddNWaves.push_back(addNWaves[i]);
4362  }
4363  if ((tempAddNWaves.size() == 2) && (tempAddNWaves[1] == -999)) {
4364    setWaveNumberListUptoNyquistFreq(whichrow, tempAddNWaves);
4365  }
4366
4367  for (uInt i = 0; i < rejectNWaves.size(); ++i) {
4368    tempRejectNWaves.push_back(rejectNWaves[i]);
4369  }
4370  if ((tempRejectNWaves.size() == 2) && (tempRejectNWaves[1] == -999)) {
4371    setWaveNumberListUptoNyquistFreq(whichrow, tempRejectNWaves);
4372  }
4373
4374  for (uInt i = 0; i < tempAddNWaves.size(); ++i) {
4375    bool found = false;
4376    for (uInt j = 0; j < nWaves.size(); ++j) {
4377      if (nWaves[j] == tempAddNWaves[i]) {
4378        found = true;
4379        break;
4380      }
4381    }
4382    if (!found) nWaves.push_back(tempAddNWaves[i]);
4383  }
4384
4385  for (uInt i = 0; i < tempRejectNWaves.size(); ++i) {
4386    for (std::vector<int>::iterator j = nWaves.begin(); j != nWaves.end(); ) {
4387      if (*j == tempRejectNWaves[i]) {
4388        j = nWaves.erase(j);
4389      } else {
4390        ++j;
4391      }
4392    }
4393  }
4394
4395  if (nWaves.size() > 1) {
4396    sort(nWaves.begin(), nWaves.end());
4397    unique(nWaves.begin(), nWaves.end());
4398  }
4399}
4400
4401void Scantable::setWaveNumberListUptoNyquistFreq(const int whichrow, std::vector<int>& nWaves)
4402{
4403  int val = nWaves[0];
4404  int nyquistFreq = nchan(getIF(whichrow))/2+1;
4405  nWaves.clear();
4406  if (val > nyquistFreq) {  // for safety, at least nWaves contains a constant; CAS-3759
4407    nWaves.push_back(0);
4408  }
4409  while (val <= nyquistFreq) {
4410    nWaves.push_back(val);
4411    val++;
4412  }
4413}
4414
4415void Scantable::sinusoidBaseline(const std::vector<bool>& mask, const std::string& fftInfo,
4416                                 const std::vector<int>& addNWaves,
4417                                 const std::vector<int>& rejectNWaves,
4418                                 float thresClip, int nIterClip,
4419                                 bool getResidual,
4420                                 const std::string& progressInfo,
4421                                 const bool outLogger, const std::string& blfile,
4422                                 const std::string& bltable)
4423{
4424  /****
4425  double TimeStart = mathutil::gettimeofday_sec();
4426  ****/
4427
4428  try {
4429    ofstream ofs;
4430    String coordInfo;
4431    bool hasSameNchan, outTextFile, csvFormat, showProgress;
4432    int minNRow;
4433    int nRow = nrow();
4434    std::vector<bool> chanMask, finalChanMask;
4435    float rms;
4436    bool outBaselineTable = (bltable != "");
4437    STBaselineTable bt = STBaselineTable(*this);
4438    Vector<Double> timeSecCol;
4439
4440    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
4441                         coordInfo, hasSameNchan,
4442                         progressInfo, showProgress, minNRow,
4443                         timeSecCol);
4444
4445    bool applyFFT;
4446    std::string fftMethod, fftThresh;
4447    parseFFTInfo(fftInfo, applyFFT, fftMethod, fftThresh);
4448
4449    std::vector<int> nWaves;
4450    std::vector<int> nChanNos;
4451    std::vector<std::vector<std::vector<double> > > modelReservoir;
4452    if (!applyFFT) {
4453      nWaves = selectWaveNumbers(addNWaves, rejectNWaves);
4454      modelReservoir = getSinusoidModelReservoir(nWaves, nChanNos);
4455    }
4456
4457    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
4458      std::vector<float> sp = getSpectrum(whichrow);
4459      chanMask = getCompositeChanMask(whichrow, mask);
4460      std::vector<std::vector<double> > model;
4461      if (applyFFT) {
4462        nWaves = selectWaveNumbers(whichrow, chanMask, true, fftMethod, fftThresh,
4463                                   addNWaves, rejectNWaves);
4464        model = getSinusoidModel(nWaves, sp.size());
4465      } else {
4466        model = modelReservoir[getIdxOfNchan(sp.size(), nChanNos)];
4467      }
4468
4469      std::vector<float> params;
4470      int nClipped = 0;
4471      std::vector<float> res = doLeastSquareFitting(sp, chanMask, model,
4472                                   params, rms, finalChanMask,
4473                                   nClipped, thresClip, nIterClip, getResidual);
4474
4475      if (outBaselineTable) {
4476        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4477                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4478                      true, STBaselineFunc::Sinusoid, nWaves, std::vector<float>(),
4479                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
4480                      thresClip, nIterClip, 0.0, 0, std::vector<int>());
4481      } else {
4482        setSpectrum(res, whichrow);
4483      }
4484
4485      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
4486                          coordInfo, hasSameNchan, ofs, "sinusoidBaseline()",
4487                          params, nClipped);
4488      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
4489    }
4490
4491    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
4492
4493  } catch (...) {
4494    throw;
4495  }
4496
4497  /****
4498  double TimeEnd = mathutil::gettimeofday_sec();
4499  double elapse1 = TimeEnd - TimeStart;
4500  std::cout << "sinusoid-old   : " << elapse1 << " (sec.)" << endl;
4501  ****/
4502}
4503
4504void Scantable::autoSinusoidBaseline(const std::vector<bool>& mask, const std::string& fftInfo,
4505                                     const std::vector<int>& addNWaves,
4506                                     const std::vector<int>& rejectNWaves,
4507                                     float thresClip, int nIterClip,
4508                                     const std::vector<int>& edge,
4509                                     float threshold, int chanAvgLimit,
4510                                     bool getResidual,
4511                                     const std::string& progressInfo,
4512                                     const bool outLogger, const std::string& blfile,
4513                                     const std::string& bltable)
4514{
4515  try {
4516    ofstream ofs;
4517    String coordInfo;
4518    bool hasSameNchan, outTextFile, csvFormat, showProgress;
4519    int minNRow;
4520    int nRow = nrow();
4521    std::vector<bool> chanMask, finalChanMask;
4522    float rms;
4523    bool outBaselineTable = (bltable != "");
4524    STBaselineTable bt = STBaselineTable(*this);
4525    Vector<Double> timeSecCol;
4526    STLineFinder lineFinder = STLineFinder();
4527
4528    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
4529                         coordInfo, hasSameNchan,
4530                         progressInfo, showProgress, minNRow,
4531                         timeSecCol);
4532
4533    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
4534
4535    bool applyFFT;
4536    string fftMethod, fftThresh;
4537    parseFFTInfo(fftInfo, applyFFT, fftMethod, fftThresh);
4538
4539    std::vector<int> nWaves;
4540    std::vector<int> nChanNos;
4541    std::vector<std::vector<std::vector<double> > > modelReservoir;
4542    if (!applyFFT) {
4543      nWaves = selectWaveNumbers(addNWaves, rejectNWaves);
4544      modelReservoir = getSinusoidModelReservoir(nWaves, nChanNos);
4545    }
4546
4547    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
4548      std::vector<float> sp = getSpectrum(whichrow);
4549      std::vector<int> currentEdge;
4550      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
4551      std::vector<std::vector<double> > model;
4552      if (applyFFT) {
4553        nWaves = selectWaveNumbers(whichrow, chanMask, true, fftMethod, fftThresh,
4554                                   addNWaves, rejectNWaves);
4555        model = getSinusoidModel(nWaves, sp.size());
4556      } else {
4557        model = modelReservoir[getIdxOfNchan(sp.size(), nChanNos)];
4558      }
4559
4560      std::vector<float> params;
4561      int nClipped = 0;
4562      std::vector<float> res = doLeastSquareFitting(sp, chanMask, model,
4563                                   params, rms, finalChanMask,
4564                                   nClipped, thresClip, nIterClip, getResidual);
4565
4566      if (outBaselineTable) {
4567        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4568                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4569                      true, STBaselineFunc::Sinusoid, nWaves, std::vector<float>(),
4570                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
4571                      thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
4572      } else {
4573        setSpectrum(res, whichrow);
4574      }
4575
4576      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
4577                          coordInfo, hasSameNchan, ofs, "autoSinusoidBaseline()",
4578                          params, nClipped);
4579      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
4580    }
4581
4582    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
4583
4584  } catch (...) {
4585    throw;
4586  }
4587}
4588
4589std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data,
4590                                                const std::vector<bool>& mask,
4591                                                const std::vector<int>& waveNumbers,
4592                                                std::vector<float>& params,
4593                                                float& rms,
4594                                                std::vector<bool>& finalmask,
4595                                                float clipth,
4596                                                int clipn)
4597{
4598  int nClipped = 0;
4599  return doSinusoidFitting(data, mask, waveNumbers, params, rms, finalmask, nClipped, clipth, clipn);
4600}
4601
4602std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data,
4603                                                const std::vector<bool>& mask,
4604                                                const std::vector<int>& waveNumbers,
4605                                                std::vector<float>& params,
4606                                                float& rms,
4607                                                std::vector<bool>& finalMask,
4608                                                int& nClipped,
4609                                                float thresClip,
4610                                                int nIterClip,
4611                                                bool getResidual)
4612{
4613  return doLeastSquareFitting(data, mask,
4614                              getSinusoidModel(waveNumbers, data.size()),
4615                              params, rms, finalMask,
4616                              nClipped, thresClip, nIterClip,
4617                              getResidual);
4618}
4619
4620std::vector<std::vector<std::vector<double> > > Scantable::getSinusoidModelReservoir(const std::vector<int>& waveNumbers,
4621                                                                                     std::vector<int>& nChanNos)
4622{
4623  std::vector<std::vector<std::vector<double> > > res;
4624  res.clear();
4625  nChanNos.clear();
4626
4627  std::vector<uint> ifNos = getIFNos();
4628  for (uint i = 0; i < ifNos.size(); ++i) {
4629    int currNchan = nchan(ifNos[i]);
4630    bool hasDifferentNchan = (i == 0);
4631    for (uint j = 0; j < i; ++j) {
4632      if (currNchan != nchan(ifNos[j])) {
4633        hasDifferentNchan = true;
4634        break;
4635      }
4636    }
4637    if (hasDifferentNchan) {
4638      res.push_back(getSinusoidModel(waveNumbers, currNchan));
4639      nChanNos.push_back(currNchan);
4640    }
4641  }
4642
4643  return res;
4644}
4645
4646std::vector<std::vector<double> > Scantable::getSinusoidModel(const std::vector<int>& waveNumbers, int nchan)
4647{
4648  // model  : contains elemental values for computing the least-square matrix.
4649  //          model.size() is nmodel and model[*].size() is nchan.
4650  //          Each model element are as follows:
4651  //          model[0]    = {1.0, 1.0, 1.0, ..., 1.0},
4652  //          model[2n-1] = {sin(nPI/L*x[0]), sin(nPI/L*x[1]), ..., sin(nPI/L*x[nchan])},
4653  //          model[2n]   = {cos(nPI/L*x[0]), cos(nPI/L*x[1]), ..., cos(nPI/L*x[nchan])},
4654  //          where (1 <= n <= nMaxWavesInSW),
4655  //          or,
4656  //          model[2n-1] = {sin(wn[n]PI/L*x[0]), sin(wn[n]PI/L*x[1]), ..., sin(wn[n]PI/L*x[nchan])},
4657  //          model[2n]   = {cos(wn[n]PI/L*x[0]), cos(wn[n]PI/L*x[1]), ..., cos(wn[n]PI/L*x[nchan])},
4658  //          where wn[n] denotes waveNumbers[n] (1 <= n <= waveNumbers.size()).
4659
4660  std::vector<int> nWaves;  // sorted and uniqued array of wave numbers
4661  nWaves.reserve(waveNumbers.size());
4662  copy(waveNumbers.begin(), waveNumbers.end(), back_inserter(nWaves));
4663  sort(nWaves.begin(), nWaves.end());
4664  std::vector<int>::iterator end_it = unique(nWaves.begin(), nWaves.end());
4665  nWaves.erase(end_it, nWaves.end());
4666
4667  int minNWaves = nWaves[0];
4668  if (minNWaves < 0) {
4669    throw(AipsError("wave number must be positive or zero (i.e. constant)"));
4670  }
4671  bool hasConstantTerm = (minNWaves == 0);
4672  int nmodel = nWaves.size() * 2 - (hasConstantTerm ? 1 : 0);  //number of parameters to solve.
4673
4674  std::vector<std::vector<double> > model(nmodel, std::vector<double>(nchan));
4675
4676  if (hasConstantTerm) {
4677    for (int j = 0; j < nchan; ++j) {
4678      model[0][j] = 1.0;
4679    }
4680  }
4681
4682  const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
4683  double stretch0 = 2.0*PI/(double)(nchan-1);
4684
4685  for (uInt i = (hasConstantTerm ? 1 : 0); i < nWaves.size(); ++i) {
4686    int sidx = hasConstantTerm ? 2*i-1 : 2*i;
4687    int cidx = sidx + 1;
4688    double stretch = stretch0*(double)nWaves[i];
4689
4690    for (int j = 0; j < nchan; ++j) {
4691      model[sidx][j] = sin(stretch*(double)j);
4692      model[cidx][j] = cos(stretch*(double)j);
4693    }
4694  }
4695
4696  return model;
4697}
4698
4699std::vector<bool> Scantable::getCompositeChanMask(int whichrow,
4700                                                  const std::vector<bool>& inMask)
4701{
4702  std::vector<bool> mask = getMask(whichrow);
4703  uInt maskSize = mask.size();
4704  if (inMask.size() != 0) {
4705    if (maskSize != inMask.size()) {
4706      throw(AipsError("mask sizes are not the same."));
4707    }
4708    for (uInt i = 0; i < maskSize; ++i) {
4709      mask[i] = mask[i] && inMask[i];
4710    }
4711  }
4712
4713  return mask;
4714}
4715
4716std::vector<bool> Scantable::getCompositeChanMask(int whichrow,
4717                                                  const std::vector<bool>& inMask,
4718                                                  const std::vector<int>& edge,
4719                                                  std::vector<int>& currEdge,
4720                                                  STLineFinder& lineFinder)
4721{
4722  std::vector<uint> ifNos = getIFNos();
4723  if ((edge.size() > 2) && (edge.size() < ifNos.size()*2)) {
4724    throw(AipsError("Length of edge element info is less than that of IFs"));
4725  }
4726
4727  uint idx = 0;
4728  if (edge.size() > 2) {
4729    int ifVal = getIF(whichrow);
4730    bool foundIF = false;
4731    for (uint i = 0; i < ifNos.size(); ++i) {
4732      if (ifVal == (int)ifNos[i]) {
4733        idx = 2*i;
4734        foundIF = true;
4735        break;
4736      }
4737    }
4738    if (!foundIF) {
4739      throw(AipsError("bad IF number"));
4740    }
4741  }
4742
4743  currEdge.clear();
4744  currEdge.resize(2);
4745  currEdge[0] = edge[idx];
4746  currEdge[1] = edge[idx+1];
4747
4748  lineFinder.setData(getSpectrum(whichrow));
4749  lineFinder.findLines(getCompositeChanMask(whichrow, inMask), currEdge, whichrow);
4750
4751  return lineFinder.getMask();
4752}
4753
4754/* for cspline. will be merged once cspline is available in fitter (2011/3/10 WK) */
4755void Scantable::outputFittingResult(bool outLogger,
4756                                    bool outTextFile,
4757                                    bool csvFormat,
4758                                    const std::vector<bool>& chanMask,
4759                                    int whichrow,
4760                                    const casa::String& coordInfo,
4761                                    bool hasSameNchan,
4762                                    ofstream& ofs,
4763                                    const casa::String& funcName,
4764                                    const std::vector<int>& edge,
4765                                    const std::vector<float>& params,
4766                                    const int nClipped)
4767{
4768  if (outLogger || outTextFile) {
4769    float rms = getRms(chanMask, whichrow);
4770    String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
4771    std::vector<bool> fixed;
4772    fixed.clear();
4773
4774    if (outLogger) {
4775      LogIO ols(LogOrigin("Scantable", funcName, WHERE));
4776      ols << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped,
4777                                           masklist, whichrow, false, csvFormat) << LogIO::POST ;
4778    }
4779    if (outTextFile) {
4780      ofs << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped,
4781                                           masklist, whichrow, true, csvFormat) << flush;
4782    }
4783  }
4784}
4785
4786/* for poly/chebyshev/sinusoid. */
4787void Scantable::outputFittingResult(bool outLogger,
4788                                    bool outTextFile,
4789                                    bool csvFormat,
4790                                    const std::vector<bool>& chanMask,
4791                                    int whichrow,
4792                                    const casa::String& coordInfo,
4793                                    bool hasSameNchan,
4794                                    ofstream& ofs,
4795                                    const casa::String& funcName,
4796                                    const std::vector<float>& params,
4797                                    const int nClipped)
4798{
4799  if (outLogger || outTextFile) {
4800    float rms = getRms(chanMask, whichrow);
4801    String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
4802    std::vector<bool> fixed;
4803    fixed.clear();
4804
4805    if (outLogger) {
4806      LogIO ols(LogOrigin("Scantable", funcName, WHERE));
4807      ols << formatBaselineParams(params, fixed, rms, nClipped,
4808                                  masklist, whichrow, false, csvFormat) << LogIO::POST ;
4809    }
4810    if (outTextFile) {
4811      ofs << formatBaselineParams(params, fixed, rms, nClipped,
4812                                  masklist, whichrow, true, csvFormat) << flush;
4813    }
4814  }
4815}
4816
4817void Scantable::parseProgressInfo(const std::string& progressInfo, bool& showProgress, int& minNRow)
4818{
4819  int idxDelimiter = progressInfo.find(",");
4820  if (idxDelimiter < 0) {
4821    throw(AipsError("wrong value in 'showprogress' parameter")) ;
4822  }
4823  showProgress = (progressInfo.substr(0, idxDelimiter) == "true");
4824  std::istringstream is(progressInfo.substr(idxDelimiter+1));
4825  is >> minNRow;
4826}
4827
4828void Scantable::showProgressOnTerminal(const int nProcessed, const int nTotal, const bool showProgress, const int nTotalThreshold)
4829{
4830  if (showProgress && (nTotal >= nTotalThreshold)) {
4831    int nInterval = int(floor(double(nTotal)/100.0));
4832    if (nInterval == 0) nInterval++;
4833
4834    if (nProcessed % nInterval == 0) {
4835      printf("\r");                          //go to the head of line
4836      printf("\x1b[31m\x1b[1m");             //set red color, highlighted
4837      printf("[%3d%%]", (int)(100.0*(double(nProcessed+1))/(double(nTotal))) );
4838      printf("\x1b[39m\x1b[0m");             //set default attributes
4839      fflush(NULL);
4840    }
4841
4842    if (nProcessed == nTotal - 1) {
4843      printf("\r\x1b[K");                    //clear
4844      fflush(NULL);
4845    }
4846
4847  }
4848}
4849
4850std::vector<float> Scantable::execFFT(const int whichrow, const std::vector<bool>& inMask, bool getRealImag, bool getAmplitudeOnly)
4851{
4852  std::vector<bool>  mask = getMask(whichrow);
4853
4854  if (inMask.size() > 0) {
4855    uInt maskSize = mask.size();
4856    if (maskSize != inMask.size()) {
4857      throw(AipsError("mask sizes are not the same."));
4858    }
4859    for (uInt i = 0; i < maskSize; ++i) {
4860      mask[i] = mask[i] && inMask[i];
4861    }
4862  }
4863
4864  Vector<Float> spec = getSpectrum(whichrow);
4865  mathutil::doZeroOrderInterpolation(spec, mask);
4866
4867  FFTServer<Float,Complex> ffts;
4868  Vector<Complex> fftres;
4869  ffts.fft0(fftres, spec);
4870
4871  std::vector<float> res;
4872  float norm = float(2.0/double(spec.size()));
4873
4874  if (getRealImag) {
4875    for (uInt i = 0; i < fftres.size(); ++i) {
4876      res.push_back(real(fftres[i])*norm);
4877      res.push_back(imag(fftres[i])*norm);
4878    }
4879  } else {
4880    for (uInt i = 0; i < fftres.size(); ++i) {
4881      res.push_back(abs(fftres[i])*norm);
4882      if (!getAmplitudeOnly) res.push_back(arg(fftres[i]));
4883    }
4884  }
4885
4886  return res;
4887}
4888
4889
4890float Scantable::getRms(const std::vector<bool>& mask, int whichrow)
4891{
4892  /****
4893  double ms1TimeStart, ms1TimeEnd;
4894  double elapse1 = 0.0;
4895  ms1TimeStart = mathutil::gettimeofday_sec();
4896  ****/
4897
4898  Vector<Float> spec;
4899  specCol_.get(whichrow, spec);
4900
4901  /****
4902  ms1TimeEnd = mathutil::gettimeofday_sec();
4903  elapse1 = ms1TimeEnd - ms1TimeStart;
4904  std::cout << "rm1   : " << elapse1 << " (sec.)" << endl;
4905  ****/
4906
4907  return (float)doGetRms(mask, spec);
4908}
4909
4910double Scantable::doGetRms(const std::vector<bool>& mask, const Vector<Float>& spec)
4911{
4912  double mean = 0.0;
4913  double smean = 0.0;
4914  int n = 0;
4915  for (uInt i = 0; i < spec.nelements(); ++i) {
4916    if (mask[i]) {
4917      double val = (double)spec[i];
4918      mean += val;
4919      smean += val*val;
4920      n++;
4921    }
4922  }
4923
4924  mean /= (double)n;
4925  smean /= (double)n;
4926
4927  return sqrt(smean - mean*mean);
4928}
4929
4930std::string Scantable::formatBaselineParamsHeader(int whichrow, const std::string& masklist, bool verbose, bool csvformat) const
4931{
4932  if (verbose) {
4933    ostringstream oss;
4934
4935    if (csvformat) {
4936      oss << getScan(whichrow)  << ",";
4937      oss << getBeam(whichrow)  << ",";
4938      oss << getIF(whichrow)    << ",";
4939      oss << getPol(whichrow)   << ",";
4940      oss << getCycle(whichrow) << ",";
4941      String commaReplacedMasklist = masklist;
4942      string::size_type pos = 0;
4943      while (pos = commaReplacedMasklist.find(","), pos != string::npos) {
4944        commaReplacedMasklist.replace(pos, 1, ";");
4945        pos++;
4946      }
4947      oss << commaReplacedMasklist << ",";
4948    } else {
4949      oss <<  " Scan[" << getScan(whichrow)  << "]";
4950      oss <<  " Beam[" << getBeam(whichrow)  << "]";
4951      oss <<    " IF[" << getIF(whichrow)    << "]";
4952      oss <<   " Pol[" << getPol(whichrow)   << "]";
4953      oss << " Cycle[" << getCycle(whichrow) << "]: " << endl;
4954      oss << "Fitter range = " << masklist << endl;
4955      oss << "Baseline parameters" << endl;
4956    }
4957    oss << flush;
4958
4959    return String(oss);
4960  }
4961
4962  return "";
4963}
4964
4965std::string Scantable::formatBaselineParamsFooter(float rms, int nClipped, bool verbose, bool csvformat) const
4966{
4967  if (verbose) {
4968    ostringstream oss;
4969
4970    if (csvformat) {
4971      oss << rms << ",";
4972      if (nClipped >= 0) {
4973        oss << nClipped;
4974      }
4975    } else {
4976      oss << "Results of baseline fit" << endl;
4977      oss << "  rms = " << setprecision(6) << rms << endl;
4978      if (nClipped >= 0) {
4979        oss << "  Number of clipped channels = " << nClipped << endl;
4980      }
4981      for (int i = 0; i < 60; ++i) {
4982        oss << "-";
4983      }
4984    }
4985    oss << endl;
4986    oss << flush;
4987
4988    return String(oss);
4989  }
4990
4991  return "";
4992}
4993
4994std::string Scantable::formatBaselineParams(const std::vector<float>& params,
4995                                            const std::vector<bool>& fixed,
4996                                            float rms,
4997                                            int nClipped,
4998                                            const std::string& masklist,
4999                                            int whichrow,
5000                                            bool verbose,
5001                                            bool csvformat,
5002                                            int start, int count,
5003                                            bool resetparamid) const
5004{
5005  int nParam = (int)(params.size());
5006
5007  if (nParam < 1) {
5008    return("  Not fitted");
5009  } else {
5010
5011    ostringstream oss;
5012    oss << formatBaselineParamsHeader(whichrow, masklist, verbose, csvformat);
5013
5014    if (start < 0) start = 0;
5015    if (count < 0) count = nParam;
5016    int end = start + count;
5017    if (end > nParam) end = nParam;
5018    int paramidoffset = (resetparamid) ? (-start) : 0;
5019
5020    for (int i = start; i < end; ++i) {
5021      if (i > start) {
5022        oss << ",";
5023      }
5024      std::string sFix = ((fixed.size() > 0) && (fixed[i]) && verbose) ? "(fixed)" : "";
5025      if (csvformat) {
5026        oss << params[i] << sFix;
5027      } else {
5028        oss << "  p" << (i+paramidoffset) << sFix << "= " << right << setw(13) << setprecision(6) << params[i];
5029      }
5030    }
5031
5032    if (csvformat) {
5033      oss << ",";
5034    } else {
5035      oss << endl;
5036    }
5037    oss << formatBaselineParamsFooter(rms, nClipped, verbose, csvformat);
5038
5039    return String(oss);
5040  }
5041
5042}
5043
5044std::string Scantable::formatPiecewiseBaselineParams(const std::vector<int>& ranges, const std::vector<float>& params, const std::vector<bool>& fixed, float rms, int nClipped, const std::string& masklist, int whichrow, bool verbose, bool csvformat) const
5045{
5046  int nOutParam = (int)(params.size());
5047  int nPiece = (int)(ranges.size()) - 1;
5048
5049  if (nOutParam < 1) {
5050    return("  Not fitted");
5051  } else if (nPiece < 0) {
5052    return formatBaselineParams(params, fixed, rms, nClipped, masklist, whichrow, verbose, csvformat);
5053  } else if (nPiece < 1) {
5054    return("  Bad count of the piece edge info");
5055  } else if (nOutParam % nPiece != 0) {
5056    return("  Bad count of the output baseline parameters");
5057  } else {
5058
5059    int nParam = nOutParam / nPiece;
5060
5061    ostringstream oss;
5062    oss << formatBaselineParamsHeader(whichrow, masklist, verbose, csvformat);
5063
5064    if (csvformat) {
5065      for (int i = 0; i < nPiece; ++i) {
5066        oss << ranges[i] << "," << (ranges[i+1]-1) << ",";
5067        oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, csvformat, i*nParam, nParam, true);
5068      }
5069    } else {
5070      stringstream ss;
5071      ss << ranges[nPiece] << flush;
5072      int wRange = ss.str().size() * 2 + 5;
5073
5074      for (int i = 0; i < nPiece; ++i) {
5075        ss.str("");
5076        ss << "  [" << ranges[i] << "," << (ranges[i+1]-1) << "]";
5077        oss << left << setw(wRange) << ss.str();
5078        oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, csvformat, i*nParam, nParam, true);
5079        //oss << endl;
5080      }
5081    }
5082
5083    oss << formatBaselineParamsFooter(rms, nClipped, verbose, csvformat);
5084
5085    return String(oss);
5086  }
5087
5088}
5089
5090bool Scantable::hasSameNchanOverIFs()
5091{
5092  int nIF = nif(-1);
5093  int nCh;
5094  int totalPositiveNChan = 0;
5095  int nPositiveNChan = 0;
5096
5097  for (int i = 0; i < nIF; ++i) {
5098    nCh = nchan(i);
5099    if (nCh > 0) {
5100      totalPositiveNChan += nCh;
5101      nPositiveNChan++;
5102    }
5103  }
5104
5105  return (totalPositiveNChan == (nPositiveNChan * nchan(0)));
5106}
5107
5108std::string Scantable::getMaskRangeList(const std::vector<bool>& mask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, bool verbose)
5109{
5110  if (mask.size() <= 0) {
5111    throw(AipsError("The mask elements should be > 0"));
5112  }
5113  int IF = getIF(whichrow);
5114  if (mask.size() != (uInt)nchan(IF)) {
5115    throw(AipsError("Number of channels in scantable != number of mask elements"));
5116  }
5117
5118  if (verbose) {
5119    LogIO logOs(LogOrigin("Scantable", "getMaskRangeList()", WHERE));
5120    logOs << LogIO::WARN << "The current mask window unit is " << coordInfo;
5121    if (!hasSameNchan) {
5122      logOs << endl << "This mask is only valid for IF=" << IF;
5123    }
5124    logOs << LogIO::POST;
5125  }
5126
5127  std::vector<double> abcissa = getAbcissa(whichrow);
5128  std::vector<int> edge = getMaskEdgeIndices(mask);
5129
5130  ostringstream oss;
5131  oss.setf(ios::fixed);
5132  oss << setprecision(1) << "[";
5133  for (uInt i = 0; i < edge.size(); i+=2) {
5134    if (i > 0) oss << ",";
5135    oss << "[" << (float)abcissa[edge[i]] << "," << (float)abcissa[edge[i+1]] << "]";
5136  }
5137  oss << "]" << flush;
5138
5139  return String(oss);
5140}
5141
5142std::vector<int> Scantable::getMaskEdgeIndices(const std::vector<bool>& mask)
5143{
5144  if (mask.size() <= 0) {
5145    throw(AipsError("The mask elements should be > 0"));
5146  }
5147
5148  std::vector<int> out, startIndices, endIndices;
5149  int maskSize = mask.size();
5150
5151  startIndices.clear();
5152  endIndices.clear();
5153
5154  if (mask[0]) {
5155    startIndices.push_back(0);
5156  }
5157  for (int i = 1; i < maskSize; ++i) {
5158    if ((!mask[i-1]) && mask[i]) {
5159      startIndices.push_back(i);
5160    } else if (mask[i-1] && (!mask[i])) {
5161      endIndices.push_back(i-1);
5162    }
5163  }
5164  if (mask[maskSize-1]) {
5165    endIndices.push_back(maskSize-1);
5166  }
5167
5168  if (startIndices.size() != endIndices.size()) {
5169    throw(AipsError("Inconsistent Mask Size: bad data?"));
5170  }
5171  for (uInt i = 0; i < startIndices.size(); ++i) {
5172    if (startIndices[i] > endIndices[i]) {
5173      throw(AipsError("Mask start index > mask end index"));
5174    }
5175  }
5176
5177  out.clear();
5178  for (uInt i = 0; i < startIndices.size(); ++i) {
5179    out.push_back(startIndices[i]);
5180    out.push_back(endIndices[i]);
5181  }
5182
5183  return out;
5184}
5185
5186void Scantable::setTsys(const std::vector<float>& newvals, int whichrow) {
5187  Vector<Float> tsys(newvals);
5188  if (whichrow > -1) {
5189    if (tsysCol_.shape(whichrow) != tsys.shape())
5190      throw(AipsError("Given Tsys values are not of the same shape"));
5191    tsysCol_.put(whichrow, tsys);
5192  } else {
5193    tsysCol_.fillColumn(tsys);
5194  }
5195}
5196
5197vector<float> Scantable::getTsysSpectrum( int whichrow ) const
5198{
5199  Vector<Float> tsys( tsysCol_(whichrow) ) ;
5200  vector<float> stlTsys ;
5201  tsys.tovector( stlTsys ) ;
5202  return stlTsys ;
5203}
5204
5205vector<uint> Scantable::getMoleculeIdColumnData() const
5206{
5207  Vector<uInt> molIds(mmolidCol_.getColumn());
5208  vector<uint> res;
5209  molIds.tovector(res);
5210  return res;
5211}
5212
5213void Scantable::setMoleculeIdColumnData(const std::vector<uint>& molids)
5214{
5215  Vector<uInt> molIds(molids);
5216  Vector<uInt> arr(mmolidCol_.getColumn());
5217  if ( molIds.nelements() != arr.nelements() )
5218    throw AipsError("The input data size must be the number of rows.");
5219  mmolidCol_.putColumn(molIds);
5220}
5221
5222
5223void Scantable::dropXPol()
5224{
5225  if (npol() <= 2) {
5226    return;
5227  }
5228  if (!selector_.empty()) {
5229    throw AipsError("Can only operate with empty selection");
5230  }
5231  std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
5232  Table tab = tableCommand(taql, table_);
5233  table_ = tab;
5234  table_.rwKeywordSet().define("nPol", Int(2));
5235  originalTable_ = table_;
5236  attach();
5237}
5238
5239}
5240//namespace asap
Note: See TracBrowser for help on using the repository browser.