source: trunk/src/Scantable.cpp @ 2831

Last change on this file since 2831 was 2831, checked in by Kana Sugimoto, 11 years ago

New Development: No

JIRA Issue: No

Ready for Test: Yes

Interface Changes: Yes

What Interface Changed: Renamed function names which previously didn't properly express the nature of functions.

Test Programs:

Put in Release Notes: No

Module(s):

Description:

Renamed function names after the discussion with Wataru.
New names:

  • python_Scantable::_is_all_chan_flagged (was: _getflagtrafast)
  • ScantableWrapper::isAllChannelsFlagged (was: getFlagtraFast)
  • Scantable::isAllChannelsFlagged (was: getFlagtraFast)

Also, isAllChannelsFlagged checks FLAGROW value.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 156.8 KB
Line 
1//
2// C++ Implementation: Scantable
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2005-2013
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12#include <map>
13#include <sys/time.h>
14
15#include <atnf/PKSIO/SrcType.h>
16
17#include <casa/aips.h>
18#include <casa/iomanip.h>
19#include <casa/iostream.h>
20#include <casa/OS/File.h>
21#include <casa/OS/Path.h>
22#include <casa/Logging/LogIO.h>
23#include <casa/Arrays/Array.h>
24#include <casa/Arrays/ArrayAccessor.h>
25#include <casa/Arrays/ArrayLogical.h>
26#include <casa/Arrays/ArrayMath.h>
27#include <casa/Arrays/MaskArrMath.h>
28#include <casa/Arrays/Slice.h>
29#include <casa/Arrays/Vector.h>
30#include <casa/Arrays/VectorSTLIterator.h>
31#include <casa/BasicMath/Math.h>
32#include <casa/BasicSL/Constants.h>
33#include <casa/Containers/RecordField.h>
34#include <casa/Logging/LogIO.h>
35#include <casa/Quanta/MVAngle.h>
36#include <casa/Quanta/MVTime.h>
37#include <casa/Utilities/GenSort.h>
38
39#include <coordinates/Coordinates/CoordinateUtil.h>
40
41// needed to avoid error in .tcc
42#include <measures/Measures/MCDirection.h>
43//
44#include <measures/Measures/MDirection.h>
45#include <measures/Measures/MEpoch.h>
46#include <measures/Measures/MFrequency.h>
47#include <measures/Measures/MeasRef.h>
48#include <measures/Measures/MeasTable.h>
49#include <measures/TableMeasures/ScalarMeasColumn.h>
50#include <measures/TableMeasures/TableMeasDesc.h>
51#include <measures/TableMeasures/TableMeasRefDesc.h>
52#include <measures/TableMeasures/TableMeasValueDesc.h>
53
54#include <tables/Tables/ArrColDesc.h>
55#include <tables/Tables/ExprNode.h>
56#include <tables/Tables/ScaColDesc.h>
57#include <tables/Tables/SetupNewTab.h>
58#include <tables/Tables/TableCopy.h>
59#include <tables/Tables/TableDesc.h>
60#include <tables/Tables/TableIter.h>
61#include <tables/Tables/TableParse.h>
62#include <tables/Tables/TableRecord.h>
63#include <tables/Tables/TableRow.h>
64#include <tables/Tables/TableVector.h>
65
66#include "MathUtils.h"
67#include "STAttr.h"
68#include "STBaselineTable.h"
69#include "STLineFinder.h"
70#include "STPolCircular.h"
71#include "STPolLinear.h"
72#include "STPolStokes.h"
73#include "STUpgrade.h"
74#include "STFitter.h"
75#include "Scantable.h"
76
77#define debug 1
78
79using namespace casa;
80
81namespace asap {
82
83std::map<std::string, STPol::STPolFactory *> Scantable::factories_;
84
85void Scantable::initFactories() {
86  if ( factories_.empty() ) {
87    Scantable::factories_["linear"] = &STPolLinear::myFactory;
88    Scantable::factories_["circular"] = &STPolCircular::myFactory;
89    Scantable::factories_["stokes"] = &STPolStokes::myFactory;
90  }
91}
92
93Scantable::Scantable(Table::TableType ttype) :
94  type_(ttype)
95{
96  initFactories();
97  setupMainTable();
98  freqTable_ = STFrequencies(*this);
99  table_.rwKeywordSet().defineTable("FREQUENCIES", freqTable_.table());
100  weatherTable_ = STWeather(*this);
101  table_.rwKeywordSet().defineTable("WEATHER", weatherTable_.table());
102  focusTable_ = STFocus(*this);
103  table_.rwKeywordSet().defineTable("FOCUS", focusTable_.table());
104  tcalTable_ = STTcal(*this);
105  table_.rwKeywordSet().defineTable("TCAL", tcalTable_.table());
106  moleculeTable_ = STMolecules(*this);
107  table_.rwKeywordSet().defineTable("MOLECULES", moleculeTable_.table());
108  historyTable_ = STHistory(*this);
109  table_.rwKeywordSet().defineTable("HISTORY", historyTable_.table());
110  fitTable_ = STFit(*this);
111  table_.rwKeywordSet().defineTable("FIT", fitTable_.table());
112  table_.tableInfo().setType( "Scantable" ) ;
113  originalTable_ = table_;
114  attach();
115}
116
117Scantable::Scantable(const std::string& name, Table::TableType ttype) :
118  type_(ttype)
119{
120  initFactories();
121
122  Table tab(name, Table::Update);
123  uInt version = tab.keywordSet().asuInt("VERSION");
124  if (version != version_) {
125      STUpgrade upgrader(version_);
126      LogIO os( LogOrigin( "Scantable" ) ) ;
127      os << LogIO::WARN
128         << name << " data format version " << version
129         << " is deprecated" << endl
130         << "Running upgrade."<< endl 
131         << LogIO::POST ; 
132      std::string outname = upgrader.upgrade(name);
133      if ( outname != name ) {
134        os << LogIO::WARN
135           << "Data will be loaded from " << outname << " instead of "
136           << name << LogIO::POST ;
137        tab = Table(outname, Table::Update ) ;
138      }
139  }
140  if ( type_ == Table::Memory ) {
141    table_ = tab.copyToMemoryTable(generateName());
142  } else {
143    table_ = tab;
144  }
145  table_.tableInfo().setType( "Scantable" ) ;
146
147  attachSubtables();
148  originalTable_ = table_;
149  attach();
150}
151/*
152Scantable::Scantable(const std::string& name, Table::TableType ttype) :
153  type_(ttype)
154{
155  initFactories();
156  Table tab(name, Table::Update);
157  uInt version = tab.keywordSet().asuInt("VERSION");
158  if (version != version_) {
159    throw(AipsError("Unsupported version of ASAP file."));
160  }
161  if ( type_ == Table::Memory ) {
162    table_ = tab.copyToMemoryTable(generateName());
163  } else {
164    table_ = tab;
165  }
166
167  attachSubtables();
168  originalTable_ = table_;
169  attach();
170}
171*/
172
173Scantable::Scantable( const Scantable& other, bool clear )
174{
175  // with or without data
176  String newname = String(generateName());
177  type_ = other.table_.tableType();
178  if ( other.table_.tableType() == Table::Memory ) {
179      if ( clear ) {
180        table_ = TableCopy::makeEmptyMemoryTable(newname,
181                                                 other.table_, True);
182      } else {
183        table_ = other.table_.copyToMemoryTable(newname);
184      }
185  } else {
186      other.table_.deepCopy(newname, Table::New, False,
187                            other.table_.endianFormat(),
188                            Bool(clear));
189      table_ = Table(newname, Table::Update);
190      table_.markForDelete();
191  }
192  table_.tableInfo().setType( "Scantable" ) ;
193  /// @todo reindex SCANNO, recompute nbeam, nif, npol
194  if ( !clear ) copySubtables(other);
195  attachSubtables();
196  originalTable_ = table_;
197  attach();
198}
199
200void Scantable::copySubtables(const Scantable& other) {
201  Table t = table_.rwKeywordSet().asTable("FREQUENCIES");
202  TableCopy::copyRows(t, other.freqTable_.table());
203  t = table_.rwKeywordSet().asTable("FOCUS");
204  TableCopy::copyRows(t, other.focusTable_.table());
205  t = table_.rwKeywordSet().asTable("WEATHER");
206  TableCopy::copyRows(t, other.weatherTable_.table());
207  t = table_.rwKeywordSet().asTable("TCAL");
208  TableCopy::copyRows(t, other.tcalTable_.table());
209  t = table_.rwKeywordSet().asTable("MOLECULES");
210  TableCopy::copyRows(t, other.moleculeTable_.table());
211  t = table_.rwKeywordSet().asTable("HISTORY");
212  TableCopy::copyRows(t, other.historyTable_.table());
213  t = table_.rwKeywordSet().asTable("FIT");
214  TableCopy::copyRows(t, other.fitTable_.table());
215}
216
217void Scantable::attachSubtables()
218{
219  freqTable_ = STFrequencies(table_);
220  focusTable_ = STFocus(table_);
221  weatherTable_ = STWeather(table_);
222  tcalTable_ = STTcal(table_);
223  moleculeTable_ = STMolecules(table_);
224  historyTable_ = STHistory(table_);
225  fitTable_ = STFit(table_);
226}
227
228Scantable::~Scantable()
229{
230}
231
232void Scantable::setupMainTable()
233{
234  TableDesc td("", "1", TableDesc::Scratch);
235  td.comment() = "An ASAP Scantable";
236  td.rwKeywordSet().define("VERSION", uInt(version_));
237
238  // n Cycles
239  td.addColumn(ScalarColumnDesc<uInt>("SCANNO"));
240  // new index every nBeam x nIF x nPol
241  td.addColumn(ScalarColumnDesc<uInt>("CYCLENO"));
242
243  td.addColumn(ScalarColumnDesc<uInt>("BEAMNO"));
244  td.addColumn(ScalarColumnDesc<uInt>("IFNO"));
245  // linear, circular, stokes
246  td.rwKeywordSet().define("POLTYPE", String("linear"));
247  td.addColumn(ScalarColumnDesc<uInt>("POLNO"));
248
249  td.addColumn(ScalarColumnDesc<uInt>("FREQ_ID"));
250  td.addColumn(ScalarColumnDesc<uInt>("MOLECULE_ID"));
251
252  ScalarColumnDesc<Int> refbeamnoColumn("REFBEAMNO");
253  refbeamnoColumn.setDefault(Int(-1));
254  td.addColumn(refbeamnoColumn);
255
256  ScalarColumnDesc<uInt> flagrowColumn("FLAGROW");
257  flagrowColumn.setDefault(uInt(0));
258  td.addColumn(flagrowColumn);
259
260  td.addColumn(ScalarColumnDesc<Double>("TIME"));
261  TableMeasRefDesc measRef(MEpoch::UTC); // UTC as default
262  TableMeasValueDesc measVal(td, "TIME");
263  TableMeasDesc<MEpoch> mepochCol(measVal, measRef);
264  mepochCol.write(td);
265
266  td.addColumn(ScalarColumnDesc<Double>("INTERVAL"));
267
268  td.addColumn(ScalarColumnDesc<String>("SRCNAME"));
269  // Type of source (on=0, off=1, other=-1)
270  ScalarColumnDesc<Int> stypeColumn("SRCTYPE");
271  stypeColumn.setDefault(Int(-1));
272  td.addColumn(stypeColumn);
273  td.addColumn(ScalarColumnDesc<String>("FIELDNAME"));
274
275  //The actual Data Vectors
276  td.addColumn(ArrayColumnDesc<Float>("SPECTRA"));
277  td.addColumn(ArrayColumnDesc<uChar>("FLAGTRA"));
278  td.addColumn(ArrayColumnDesc<Float>("TSYS"));
279
280  td.addColumn(ArrayColumnDesc<Double>("DIRECTION",
281                                       IPosition(1,2),
282                                       ColumnDesc::Direct));
283  TableMeasRefDesc mdirRef(MDirection::J2000); // default
284  TableMeasValueDesc tmvdMDir(td, "DIRECTION");
285  // the TableMeasDesc gives the column a type
286  TableMeasDesc<MDirection> mdirCol(tmvdMDir, mdirRef);
287  // a uder set table type e.g. GALCTIC, B1950 ...
288  td.rwKeywordSet().define("DIRECTIONREF", String("J2000"));
289  // writing create the measure column
290  mdirCol.write(td);
291  td.addColumn(ScalarColumnDesc<Float>("AZIMUTH"));
292  td.addColumn(ScalarColumnDesc<Float>("ELEVATION"));
293  td.addColumn(ScalarColumnDesc<Float>("OPACITY"));
294
295  td.addColumn(ScalarColumnDesc<uInt>("TCAL_ID"));
296  ScalarColumnDesc<Int> fitColumn("FIT_ID");
297  fitColumn.setDefault(Int(-1));
298  td.addColumn(fitColumn);
299
300  td.addColumn(ScalarColumnDesc<uInt>("FOCUS_ID"));
301  td.addColumn(ScalarColumnDesc<uInt>("WEATHER_ID"));
302
303  // columns which just get dragged along, as they aren't used in asap
304  td.addColumn(ScalarColumnDesc<Double>("SRCVELOCITY"));
305  td.addColumn(ArrayColumnDesc<Double>("SRCPROPERMOTION"));
306  td.addColumn(ArrayColumnDesc<Double>("SRCDIRECTION"));
307  td.addColumn(ArrayColumnDesc<Double>("SCANRATE"));
308
309  td.rwKeywordSet().define("OBSMODE", String(""));
310
311  // Now create Table SetUp from the description.
312  SetupNewTable aNewTab(generateName(), td, Table::Scratch);
313  table_ = Table(aNewTab, type_, 0);
314  originalTable_ = table_;
315}
316
317void Scantable::attach()
318{
319  timeCol_.attach(table_, "TIME");
320  srcnCol_.attach(table_, "SRCNAME");
321  srctCol_.attach(table_, "SRCTYPE");
322  specCol_.attach(table_, "SPECTRA");
323  flagsCol_.attach(table_, "FLAGTRA");
324  tsysCol_.attach(table_, "TSYS");
325  cycleCol_.attach(table_,"CYCLENO");
326  scanCol_.attach(table_, "SCANNO");
327  beamCol_.attach(table_, "BEAMNO");
328  ifCol_.attach(table_, "IFNO");
329  polCol_.attach(table_, "POLNO");
330  integrCol_.attach(table_, "INTERVAL");
331  azCol_.attach(table_, "AZIMUTH");
332  elCol_.attach(table_, "ELEVATION");
333  dirCol_.attach(table_, "DIRECTION");
334  fldnCol_.attach(table_, "FIELDNAME");
335  rbeamCol_.attach(table_, "REFBEAMNO");
336
337  mweatheridCol_.attach(table_,"WEATHER_ID");
338  mfitidCol_.attach(table_,"FIT_ID");
339  mfreqidCol_.attach(table_, "FREQ_ID");
340  mtcalidCol_.attach(table_, "TCAL_ID");
341  mfocusidCol_.attach(table_, "FOCUS_ID");
342  mmolidCol_.attach(table_, "MOLECULE_ID");
343
344  //Add auxiliary column for row-based flagging (CAS-1433 Wataru Kawasaki)
345  attachAuxColumnDef(flagrowCol_, "FLAGROW", 0);
346
347}
348
349template<class T, class T2>
350void Scantable::attachAuxColumnDef(ScalarColumn<T>& col,
351                                   const String& colName,
352                                   const T2& defValue)
353{
354  try {
355    col.attach(table_, colName);
356  } catch (TableError& err) {
357    String errMesg = err.getMesg();
358    if (errMesg == "Table column " + colName + " is unknown") {
359      table_.addColumn(ScalarColumnDesc<T>(colName));
360      col.attach(table_, colName);
361      col.fillColumn(static_cast<T>(defValue));
362    } else {
363      throw;
364    }
365  } catch (...) {
366    throw;
367  }
368}
369
370template<class T, class T2>
371void Scantable::attachAuxColumnDef(ArrayColumn<T>& col,
372                                   const String& colName,
373                                   const Array<T2>& defValue)
374{
375  try {
376    col.attach(table_, colName);
377  } catch (TableError& err) {
378    String errMesg = err.getMesg();
379    if (errMesg == "Table column " + colName + " is unknown") {
380      table_.addColumn(ArrayColumnDesc<T>(colName));
381      col.attach(table_, colName);
382
383      int size = 0;
384      ArrayIterator<T2>& it = defValue.begin();
385      while (it != defValue.end()) {
386        ++size;
387        ++it;
388      }
389      IPosition ip(1, size);
390      Array<T>& arr(ip);
391      for (int i = 0; i < size; ++i)
392        arr[i] = static_cast<T>(defValue[i]);
393
394      col.fillColumn(arr);
395    } else {
396      throw;
397    }
398  } catch (...) {
399    throw;
400  }
401}
402
403void Scantable::setHeader(const STHeader& sdh)
404{
405  table_.rwKeywordSet().define("nIF", sdh.nif);
406  table_.rwKeywordSet().define("nBeam", sdh.nbeam);
407  table_.rwKeywordSet().define("nPol", sdh.npol);
408  table_.rwKeywordSet().define("nChan", sdh.nchan);
409  table_.rwKeywordSet().define("Observer", sdh.observer);
410  table_.rwKeywordSet().define("Project", sdh.project);
411  table_.rwKeywordSet().define("Obstype", sdh.obstype);
412  table_.rwKeywordSet().define("AntennaName", sdh.antennaname);
413  table_.rwKeywordSet().define("AntennaPosition", sdh.antennaposition);
414  table_.rwKeywordSet().define("Equinox", sdh.equinox);
415  table_.rwKeywordSet().define("FreqRefFrame", sdh.freqref);
416  table_.rwKeywordSet().define("FreqRefVal", sdh.reffreq);
417  table_.rwKeywordSet().define("Bandwidth", sdh.bandwidth);
418  table_.rwKeywordSet().define("UTC", sdh.utc);
419  table_.rwKeywordSet().define("FluxUnit", sdh.fluxunit);
420  table_.rwKeywordSet().define("Epoch", sdh.epoch);
421  table_.rwKeywordSet().define("POLTYPE", sdh.poltype);
422}
423
424STHeader Scantable::getHeader() const
425{
426  STHeader sdh;
427  table_.keywordSet().get("nBeam",sdh.nbeam);
428  table_.keywordSet().get("nIF",sdh.nif);
429  table_.keywordSet().get("nPol",sdh.npol);
430  table_.keywordSet().get("nChan",sdh.nchan);
431  table_.keywordSet().get("Observer", sdh.observer);
432  table_.keywordSet().get("Project", sdh.project);
433  table_.keywordSet().get("Obstype", sdh.obstype);
434  table_.keywordSet().get("AntennaName", sdh.antennaname);
435  table_.keywordSet().get("AntennaPosition", sdh.antennaposition);
436  table_.keywordSet().get("Equinox", sdh.equinox);
437  table_.keywordSet().get("FreqRefFrame", sdh.freqref);
438  table_.keywordSet().get("FreqRefVal", sdh.reffreq);
439  table_.keywordSet().get("Bandwidth", sdh.bandwidth);
440  table_.keywordSet().get("UTC", sdh.utc);
441  table_.keywordSet().get("FluxUnit", sdh.fluxunit);
442  table_.keywordSet().get("Epoch", sdh.epoch);
443  table_.keywordSet().get("POLTYPE", sdh.poltype);
444  return sdh;
445}
446
447void Scantable::setSourceType( int stype )
448{
449  if ( stype < 0 || stype > 1 )
450    throw(AipsError("Illegal sourcetype."));
451  TableVector<Int> tabvec(table_, "SRCTYPE");
452  tabvec = Int(stype);
453}
454
455void Scantable::setSourceName( const std::string& name )
456{
457  TableVector<String> tabvec(table_, "SRCNAME");
458  tabvec = name;
459}
460
461bool Scantable::conformant( const Scantable& other )
462{
463  return this->getHeader().conformant(other.getHeader());
464}
465
466
467
468std::string Scantable::formatSec(Double x) const
469{
470  Double xcop = x;
471  MVTime mvt(xcop/24./3600.);  // make days
472
473  if (x < 59.95)
474    return  String("      ") + mvt.string(MVTime::TIME_CLEAN_NO_HM, 7)+"s";
475  else if (x < 3599.95)
476    return String("   ") + mvt.string(MVTime::TIME_CLEAN_NO_H,7)+" ";
477  else {
478    ostringstream oss;
479    oss << setw(2) << std::right << setprecision(1) << mvt.hour();
480    oss << ":" << mvt.string(MVTime::TIME_CLEAN_NO_H,7) << " ";
481    return String(oss);
482  }
483};
484
485std::string Scantable::formatDirection(const MDirection& md) const
486{
487  Vector<Double> t = md.getAngle(Unit(String("rad"))).getValue();
488  Int prec = 7;
489
490  String ref = md.getRefString();
491  MVAngle mvLon(t[0]);
492  String sLon = mvLon.string(MVAngle::TIME,prec);
493  uInt tp = md.getRef().getType();
494  if (tp == MDirection::GALACTIC ||
495      tp == MDirection::SUPERGAL ) {
496    sLon = mvLon(0.0).string(MVAngle::ANGLE_CLEAN,prec);
497  }
498  MVAngle mvLat(t[1]);
499  String sLat = mvLat.string(MVAngle::ANGLE+MVAngle::DIG2,prec);
500  return  ref + String(" ") + sLon + String(" ") + sLat;
501}
502
503
504std::string Scantable::getFluxUnit() const
505{
506  return table_.keywordSet().asString("FluxUnit");
507}
508
509void Scantable::setFluxUnit(const std::string& unit)
510{
511  String tmp(unit);
512  Unit tU(tmp);
513  if (tU==Unit("K") || tU==Unit("Jy")) {
514     table_.rwKeywordSet().define(String("FluxUnit"), tmp);
515  } else {
516     throw AipsError("Illegal unit - must be compatible with Jy or K");
517  }
518}
519
520void Scantable::setInstrument(const std::string& name)
521{
522  bool throwIt = true;
523  // create an Instrument to see if this is valid
524  STAttr::convertInstrument(name, throwIt);
525  String nameU(name);
526  nameU.upcase();
527  table_.rwKeywordSet().define(String("AntennaName"), nameU);
528}
529
530void Scantable::setFeedType(const std::string& feedtype)
531{
532  if ( Scantable::factories_.find(feedtype) ==  Scantable::factories_.end() ) {
533    std::string msg = "Illegal feed type "+ feedtype;
534    throw(casa::AipsError(msg));
535  }
536  table_.rwKeywordSet().define(String("POLTYPE"), feedtype);
537}
538
539MPosition Scantable::getAntennaPosition() const
540{
541  Vector<Double> antpos;
542  table_.keywordSet().get("AntennaPosition", antpos);
543  MVPosition mvpos(antpos(0),antpos(1),antpos(2));
544  return MPosition(mvpos);
545}
546
547void Scantable::makePersistent(const std::string& filename)
548{
549  String inname(filename);
550  Path path(inname);
551  /// @todo reindex SCANNO, recompute nbeam, nif, npol
552  inname = path.expandedName();
553  // 2011/03/04 TN
554  // We can comment out this workaround since the essential bug is
555  // fixed in casacore (r20889 in google code).
556  table_.deepCopy(inname, Table::New);
557//   // WORKAROUND !!! for Table bug
558//   // Remove when fixed in casacore
559//   if ( table_.tableType() == Table::Memory  && !selector_.empty() ) {
560//     Table tab = table_.copyToMemoryTable(generateName());
561//     tab.deepCopy(inname, Table::New);
562//     tab.markForDelete();
563//
564//   } else {
565//     table_.deepCopy(inname, Table::New);
566//   }
567}
568
569int Scantable::nbeam( int scanno ) const
570{
571  if ( scanno < 0 ) {
572    Int n;
573    table_.keywordSet().get("nBeam",n);
574    return int(n);
575  } else {
576    // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
577    Table t = table_(table_.col("SCANNO") == scanno);
578    ROTableRow row(t);
579    const TableRecord& rec = row.get(0);
580    Table subt = t( t.col("IFNO") == Int(rec.asuInt("IFNO"))
581                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
582                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
583    ROTableVector<uInt> v(subt, "BEAMNO");
584    return int(v.nelements());
585  }
586  return 0;
587}
588
589int Scantable::nif( int scanno ) const
590{
591  if ( scanno < 0 ) {
592    Int n;
593    table_.keywordSet().get("nIF",n);
594    return int(n);
595  } else {
596    // take the first POLNO,BEAMNO,CYCLENO as nbeam shouldn't vary with these
597    Table t = table_(table_.col("SCANNO") == scanno);
598    ROTableRow row(t);
599    const TableRecord& rec = row.get(0);
600    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
601                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
602                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
603    if ( subt.nrow() == 0 ) return 0;
604    ROTableVector<uInt> v(subt, "IFNO");
605    return int(v.nelements());
606  }
607  return 0;
608}
609
610int Scantable::npol( int scanno ) const
611{
612  if ( scanno < 0 ) {
613    Int n;
614    table_.keywordSet().get("nPol",n);
615    return n;
616  } else {
617    // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
618    Table t = table_(table_.col("SCANNO") == scanno);
619    ROTableRow row(t);
620    const TableRecord& rec = row.get(0);
621    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
622                    && t.col("IFNO") == Int(rec.asuInt("IFNO"))
623                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
624    if ( subt.nrow() == 0 ) return 0;
625    ROTableVector<uInt> v(subt, "POLNO");
626    return int(v.nelements());
627  }
628  return 0;
629}
630
631int Scantable::ncycle( int scanno ) const
632{
633  if ( scanno < 0 ) {
634    Block<String> cols(2);
635    cols[0] = "SCANNO";
636    cols[1] = "CYCLENO";
637    TableIterator it(table_, cols);
638    int n = 0;
639    while ( !it.pastEnd() ) {
640      ++n;
641      ++it;
642    }
643    return n;
644  } else {
645    Table t = table_(table_.col("SCANNO") == scanno);
646    ROTableRow row(t);
647    const TableRecord& rec = row.get(0);
648    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
649                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
650                    && t.col("IFNO") == Int(rec.asuInt("IFNO")) );
651    if ( subt.nrow() == 0 ) return 0;
652    return int(subt.nrow());
653  }
654  return 0;
655}
656
657
658int Scantable::nrow( int scanno ) const
659{
660  return int(table_.nrow());
661}
662
663int Scantable::nchan( int ifno ) const
664{
665  if ( ifno < 0 ) {
666    Int n;
667    table_.keywordSet().get("nChan",n);
668    return int(n);
669  } else {
670    // take the first SCANNO,POLNO,BEAMNO,CYCLENO as nbeam shouldn't
671    // vary with these
672    Table t = table_(table_.col("IFNO") == ifno, 1);
673    if ( t.nrow() == 0 ) return 0;
674    ROArrayColumn<Float> v(t, "SPECTRA");
675    return v.shape(0)(0);
676  }
677  return 0;
678}
679
680int Scantable::nscan() const {
681  Vector<uInt> scannos(scanCol_.getColumn());
682  uInt nout = genSort( scannos, Sort::Ascending,
683                       Sort::QuickSort|Sort::NoDuplicates );
684  return int(nout);
685}
686
687int Scantable::getChannels(int whichrow) const
688{
689  return specCol_.shape(whichrow)(0);
690}
691
692int Scantable::getBeam(int whichrow) const
693{
694  return beamCol_(whichrow);
695}
696
697std::vector<uint> Scantable::getNumbers(const ScalarColumn<uInt>& col) const
698{
699  Vector<uInt> nos(col.getColumn());
700  uInt n = genSort( nos, Sort::Ascending, Sort::QuickSort|Sort::NoDuplicates );
701  nos.resize(n, True);
702  std::vector<uint> stlout;
703  nos.tovector(stlout);
704  return stlout;
705}
706
707int Scantable::getIF(int whichrow) const
708{
709  return ifCol_(whichrow);
710}
711
712int Scantable::getPol(int whichrow) const
713{
714  return polCol_(whichrow);
715}
716
717std::string Scantable::formatTime(const MEpoch& me, bool showdate) const
718{
719  return formatTime(me, showdate, 0);
720}
721
722std::string Scantable::formatTime(const MEpoch& me, bool showdate, uInt prec) const
723{
724  MVTime mvt(me.getValue());
725  if (showdate)
726    //mvt.setFormat(MVTime::YMD);
727    mvt.setFormat(MVTime::YMD, prec);
728  else
729    //mvt.setFormat(MVTime::TIME);
730    mvt.setFormat(MVTime::TIME, prec);
731  ostringstream oss;
732  oss << mvt;
733  return String(oss);
734}
735
736void Scantable::calculateAZEL()
737
738  LogIO os( LogOrigin( "Scantable", "calculateAZEL()", WHERE ) ) ;
739  MPosition mp = getAntennaPosition();
740  MEpoch::ROScalarColumn timeCol(table_, "TIME");
741  ostringstream oss;
742  oss << mp;
743  os << "Computed azimuth/elevation using " << endl
744     << String(oss) << endl;
745  for (Int i=0; i<nrow(); ++i) {
746    MEpoch me = timeCol(i);
747    MDirection md = getDirection(i);
748    os  << " Time: " << formatTime(me,False)
749        << " Direction: " << formatDirection(md)
750         << endl << "     => ";
751    MeasFrame frame(mp, me);
752    Vector<Double> azel =
753        MDirection::Convert(md, MDirection::Ref(MDirection::AZEL,
754                                                frame)
755                            )().getAngle("rad").getValue();
756    azCol_.put(i,Float(azel[0]));
757    elCol_.put(i,Float(azel[1]));
758    os << "azel: " << azel[0]/C::pi*180.0 << " "
759       << azel[1]/C::pi*180.0 << " (deg)" << LogIO::POST;
760  }
761}
762
763void Scantable::clip(const Float uthres, const Float dthres, bool clipoutside, bool unflag)
764{
765  for (uInt i=0; i<table_.nrow(); ++i) {
766    Vector<uChar> flgs = flagsCol_(i);
767    srchChannelsToClip(i, uthres, dthres, clipoutside, unflag, flgs);
768    flagsCol_.put(i, flgs);
769  }
770}
771
772std::vector<bool> Scantable::getClipMask(int whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag)
773{
774  Vector<uChar> flags;
775  flagsCol_.get(uInt(whichrow), flags);
776  srchChannelsToClip(uInt(whichrow), uthres, dthres, clipoutside, unflag, flags);
777  Vector<Bool> bflag(flags.shape());
778  convertArray(bflag, flags);
779  //bflag = !bflag;
780
781  std::vector<bool> mask;
782  bflag.tovector(mask);
783  return mask;
784}
785
786void Scantable::srchChannelsToClip(uInt whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag,
787                                   Vector<uChar> flgs)
788{
789    Vector<Float> spcs = specCol_(whichrow);
790    uInt nchannel = spcs.nelements();
791    if (spcs.nelements() != nchannel) {
792      throw(AipsError("Data has incorrect number of channels"));
793    }
794    uChar userflag = 1 << 7;
795    if (unflag) {
796      userflag = 0 << 7;
797    }
798    if (clipoutside) {
799      for (uInt j = 0; j < nchannel; ++j) {
800        Float spc = spcs(j);
801        if ((spc >= uthres) || (spc <= dthres)) {
802          flgs(j) = userflag;
803        }
804      }
805    } else {
806      for (uInt j = 0; j < nchannel; ++j) {
807        Float spc = spcs(j);
808        if ((spc < uthres) && (spc > dthres)) {
809          flgs(j) = userflag;
810        }
811      }
812    }
813}
814
815
816void Scantable::flag( int whichrow, const std::vector<bool>& msk, bool unflag ) {
817  std::vector<bool>::const_iterator it;
818  uInt ntrue = 0;
819  if (whichrow >= int(table_.nrow()) ) {
820    throw(AipsError("Invalid row number"));
821  }
822  for (it = msk.begin(); it != msk.end(); ++it) {
823    if ( *it ) {
824      ntrue++;
825    }
826  }
827  //if ( selector_.empty()  && (msk.size() == 0 || msk.size() == ntrue) )
828  if ( whichrow == -1 && !unflag && selector_.empty() && (msk.size() == 0 || msk.size() == ntrue) )
829    throw(AipsError("Trying to flag whole scantable."));
830  uChar userflag = 1 << 7;
831  if ( unflag ) {
832    userflag = 0 << 7;
833  }
834  if (whichrow > -1 ) {
835    applyChanFlag(uInt(whichrow), msk, userflag);
836  } else {
837    for ( uInt i=0; i<table_.nrow(); ++i) {
838      applyChanFlag(i, msk, userflag);
839    }
840  }
841}
842
843void Scantable::applyChanFlag( uInt whichrow, const std::vector<bool>& msk, uChar flagval )
844{
845  if (whichrow >= table_.nrow() ) {
846    throw( casa::indexError<int>( whichrow, "asap::Scantable::applyChanFlag: Invalid row number" ) );
847  }
848  Vector<uChar> flgs = flagsCol_(whichrow);
849  if ( msk.size() == 0 ) {
850    flgs = flagval;
851    flagsCol_.put(whichrow, flgs);
852    return;
853  }
854  if ( int(msk.size()) != nchan( getIF(whichrow) ) ) {
855    throw(AipsError("Mask has incorrect number of channels."));
856  }
857  if ( flgs.nelements() != msk.size() ) {
858    throw(AipsError("Mask has incorrect number of channels."
859                    " Probably varying with IF. Please flag per IF"));
860  }
861  std::vector<bool>::const_iterator it;
862  uInt j = 0;
863  for (it = msk.begin(); it != msk.end(); ++it) {
864    if ( *it ) {
865      flgs(j) = flagval;
866    }
867    ++j;
868  }
869  flagsCol_.put(whichrow, flgs);
870}
871
872void Scantable::flagRow(const std::vector<uInt>& rows, bool unflag)
873{
874  if (selector_.empty() && (rows.size() == table_.nrow()) && !unflag)
875    throw(AipsError("Trying to flag whole scantable."));
876
877  uInt rowflag = (unflag ? 0 : 1);
878  std::vector<uInt>::const_iterator it;
879  for (it = rows.begin(); it != rows.end(); ++it)
880    flagrowCol_.put(*it, rowflag);
881}
882
883std::vector<bool> Scantable::getMask(int whichrow) const
884{
885  Vector<uChar> flags;
886  flagsCol_.get(uInt(whichrow), flags);
887  Vector<Bool> bflag(flags.shape());
888  convertArray(bflag, flags);
889  bflag = !bflag;
890  std::vector<bool> mask;
891  bflag.tovector(mask);
892  return mask;
893}
894
895std::vector<float> Scantable::getSpectrum( int whichrow,
896                                           const std::string& poltype ) const
897{
898  LogIO os( LogOrigin( "Scantable", "getSpectrum()", WHERE ) ) ;
899
900  String ptype = poltype;
901  if (poltype == "" ) ptype = getPolType();
902  if ( whichrow  < 0 || whichrow >= nrow() )
903    throw(AipsError("Illegal row number."));
904  std::vector<float> out;
905  Vector<Float> arr;
906  uInt requestedpol = polCol_(whichrow);
907  String basetype = getPolType();
908  if ( ptype == basetype ) {
909    specCol_.get(whichrow, arr);
910  } else {
911    CountedPtr<STPol> stpol(STPol::getPolClass(Scantable::factories_,
912                                               basetype));
913    uInt row = uInt(whichrow);
914    stpol->setSpectra(getPolMatrix(row));
915    Float fang,fhand;
916    fang = focusTable_.getTotalAngle(mfocusidCol_(row));
917    fhand = focusTable_.getFeedHand(mfocusidCol_(row));
918    stpol->setPhaseCorrections(fang, fhand);
919    arr = stpol->getSpectrum(requestedpol, ptype);
920  }
921  if ( arr.nelements() == 0 )
922   
923    os << "Not enough polarisations present to do the conversion."
924       << LogIO::POST;
925  arr.tovector(out);
926  return out;
927}
928
929void Scantable::setSpectrum( const std::vector<float>& spec,
930                                   int whichrow )
931{
932  Vector<Float> spectrum(spec);
933  Vector<Float> arr;
934  specCol_.get(whichrow, arr);
935  if ( spectrum.nelements() != arr.nelements() )
936    throw AipsError("The spectrum has incorrect number of channels.");
937  specCol_.put(whichrow, spectrum);
938}
939
940
941String Scantable::generateName()
942{
943  return (File::newUniqueName("./","temp")).baseName();
944}
945
946const casa::Table& Scantable::table( ) const
947{
948  return table_;
949}
950
951casa::Table& Scantable::table( )
952{
953  return table_;
954}
955
956std::string Scantable::getPolType() const
957{
958  return table_.keywordSet().asString("POLTYPE");
959}
960
961void Scantable::unsetSelection()
962{
963  table_ = originalTable_;
964  attach();
965  selector_.reset();
966}
967
968void Scantable::setSelection( const STSelector& selection )
969{
970  Table tab = const_cast<STSelector&>(selection).apply(originalTable_);
971  if ( tab.nrow() == 0 ) {
972    throw(AipsError("Selection contains no data. Not applying it."));
973  }
974  table_ = tab;
975  attach();
976//   tab.rwKeywordSet().define("nBeam",(Int)(getBeamNos().size())) ;
977//   vector<uint> selectedIFs = getIFNos() ;
978//   Int newnIF = selectedIFs.size() ;
979//   tab.rwKeywordSet().define("nIF",newnIF) ;
980//   if ( newnIF != 0 ) {
981//     Int newnChan = 0 ;
982//     for ( Int i = 0 ; i < newnIF ; i++ ) {
983//       Int nChan = nchan( selectedIFs[i] ) ;
984//       if ( newnChan > nChan )
985//         newnChan = nChan ;
986//     }
987//     tab.rwKeywordSet().define("nChan",newnChan) ;
988//   }
989//   tab.rwKeywordSet().define("nPol",(Int)(getPolNos().size())) ;
990  selector_ = selection;
991}
992
993
994std::string Scantable::headerSummary()
995{
996  // Format header info
997//   STHeader sdh;
998//   sdh = getHeader();
999//   sdh.print();
1000  ostringstream oss;
1001  oss.flags(std::ios_base::left);
1002  String tmp;
1003  // Project
1004  table_.keywordSet().get("Project", tmp);
1005  oss << setw(15) << "Project:" << tmp << endl;
1006  // Observation date
1007  oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1008  // Observer
1009  oss << setw(15) << "Observer:"
1010      << table_.keywordSet().asString("Observer") << endl;
1011  // Antenna Name
1012  table_.keywordSet().get("AntennaName", tmp);
1013  oss << setw(15) << "Antenna Name:" << tmp << endl;
1014  // Obs type
1015  table_.keywordSet().get("Obstype", tmp);
1016  // Records (nrow)
1017  oss << setw(15) << "Data Records:" << table_.nrow() << " rows" << endl;
1018  oss << setw(15) << "Obs. Type:" << tmp << endl;
1019  // Beams, IFs, Polarizations, and Channels
1020  oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1021      << setw(15) << "IFs:" << setw(4) << nif() << endl
1022      << setw(15) << "Polarisations:" << setw(4) << npol()
1023      << "(" << getPolType() << ")" << endl
1024      << setw(15) << "Channels:" << nchan() << endl;
1025  // Flux unit
1026  table_.keywordSet().get("FluxUnit", tmp);
1027  oss << setw(15) << "Flux Unit:" << tmp << endl;
1028  // Abscissa Unit
1029  oss << setw(15) << "Abscissa:" << getAbcissaLabel(0) << endl;
1030  // Selection
1031  oss << selector_.print() << endl;
1032
1033  return String(oss);
1034}
1035
1036void Scantable::summary( const std::string& filename )
1037{
1038  ostringstream oss;
1039  ofstream ofs;
1040  LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1041
1042  if (filename != "")
1043    ofs.open( filename.c_str(),  ios::out );
1044
1045  oss << endl;
1046  oss << asap::SEPERATOR << endl;
1047  oss << " Scan Table Summary" << endl;
1048  oss << asap::SEPERATOR << endl;
1049
1050  // Format header info
1051  oss << headerSummary();
1052  oss << endl;
1053
1054  if (table_.nrow() <= 0){
1055    oss << asap::SEPERATOR << endl;
1056    oss << "The MAIN table is empty: there are no data!!!" << endl;
1057    oss << asap::SEPERATOR << endl;
1058
1059    ols << String(oss) << LogIO::POST;
1060    if (ofs) {
1061      ofs << String(oss) << flush;
1062      ofs.close();
1063    }
1064    return;
1065  }
1066
1067
1068
1069  // main table
1070  String dirtype = "Position ("
1071                  + getDirectionRefString()
1072                  + ")";
1073  oss.flags(std::ios_base::left);
1074  oss << setw(5) << "Scan"
1075      << setw(15) << "Source"
1076      << setw(35) << "Time range"
1077      << setw(2) << "" << setw(7) << "Int[s]"
1078      << setw(7) << "Record"
1079      << setw(8) << "SrcType"
1080      << setw(8) << "FreqIDs"
1081      << setw(7) << "MolIDs" << endl;
1082  oss << setw(7)<< "" << setw(6) << "Beam"
1083      << setw(23) << dirtype << endl;
1084
1085  oss << asap::SEPERATOR << endl;
1086
1087  // Flush summary and clear up the string
1088  ols << String(oss) << LogIO::POST;
1089  if (ofs) ofs << String(oss) << flush;
1090  oss.str("");
1091  oss.clear();
1092
1093
1094  // Get Freq_ID map
1095  ROScalarColumn<uInt> ftabIds(frequencies().table(), "ID");
1096  Int nfid = ftabIds.nrow();
1097  if (nfid <= 0){
1098    oss << "FREQUENCIES subtable is empty: there are no data!!!" << endl;
1099    oss << asap::SEPERATOR << endl;
1100
1101    ols << String(oss) << LogIO::POST;
1102    if (ofs) {
1103      ofs << String(oss) << flush;
1104      ofs.close();
1105    }
1106    return;
1107  }
1108  // Storages of overall IFNO, POLNO, and nchan per FREQ_ID
1109  // the orders are identical to ID in FREQ subtable
1110  Block< Vector<uInt> > ifNos(nfid), polNos(nfid);
1111  Vector<Int> fIdchans(nfid,-1);
1112  map<uInt, Int> fidMap;  // (FREQ_ID, row # in FREQ subtable) pair
1113  for (Int i=0; i < nfid; i++){
1114   // fidMap[freqId] returns row number in FREQ subtable
1115   fidMap.insert(pair<uInt, Int>(ftabIds(i),i));
1116   ifNos[i] = Vector<uInt>();
1117   polNos[i] = Vector<uInt>();
1118  }
1119
1120  TableIterator iter(table_, "SCANNO");
1121
1122  // Vars for keeping track of time, freqids, molIds in a SCANNO
1123  //Vector<uInt> freqids;
1124  //Vector<uInt> molids;
1125  Vector<uInt> beamids(1,0);
1126  Vector<MDirection> beamDirs;
1127  Vector<Int> stypeids(1,0);
1128  Vector<String> stypestrs;
1129  Int nfreq(1);
1130  Int nmol(1);
1131  uInt nbeam(1);
1132  uInt nstype(1);
1133
1134  Double btime(0.0), etime(0.0);
1135  Double meanIntTim(0.0);
1136
1137  uInt currFreqId(0), ftabRow(0);
1138  Int iflen(0), pollen(0);
1139
1140  while (!iter.pastEnd()) {
1141    Table subt = iter.table();
1142    uInt snrow = subt.nrow();
1143    ROTableRow row(subt);
1144    const TableRecord& rec = row.get(0);
1145
1146    // relevant columns
1147    ROScalarColumn<Double> mjdCol(subt,"TIME");
1148    ROScalarColumn<Double> intervalCol(subt,"INTERVAL");
1149    MDirection::ROScalarColumn dirCol(subt,"DIRECTION");
1150
1151    ScalarColumn<uInt> freqIdCol(subt,"FREQ_ID");
1152    ScalarColumn<uInt> molIdCol(subt,"MOLECULE_ID");
1153    ROScalarColumn<uInt> beamCol(subt,"BEAMNO");
1154    ROScalarColumn<Int> stypeCol(subt,"SRCTYPE");
1155
1156    ROScalarColumn<uInt> ifNoCol(subt,"IFNO");
1157    ROScalarColumn<uInt> polNoCol(subt,"POLNO");
1158
1159
1160    // Times
1161    meanIntTim = sum(intervalCol.getColumn()) / (double) snrow;
1162    minMax(btime, etime, mjdCol.getColumn());
1163    etime += meanIntTim/C::day;
1164
1165    // MOLECULE_ID and FREQ_ID
1166    Vector<uInt> molids(getNumbers(molIdCol));
1167    molids.shape(nmol);
1168
1169    Vector<uInt> freqids(getNumbers(freqIdCol));
1170    freqids.shape(nfreq);
1171
1172    // Add first beamid, and srcNames
1173    beamids.resize(1,False);
1174    beamDirs.resize(1,False);
1175    beamids(0)=beamCol(0);
1176    beamDirs(0)=dirCol(0);
1177    nbeam = 1;
1178
1179    stypeids.resize(1,False);
1180    stypeids(0)=stypeCol(0);
1181    nstype = 1;
1182
1183    // Global listings of nchan/IFNO/POLNO per FREQ_ID
1184    currFreqId=freqIdCol(0);
1185    ftabRow = fidMap[currFreqId];
1186    // Assumes an identical number of channels per FREQ_ID
1187    if (fIdchans(ftabRow) < 0 ) {
1188      RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1189      fIdchans(ftabRow)=(*spec).shape()(0);
1190    }
1191    // Should keep ifNos and polNos form the previous SCANNO
1192    if ( !anyEQ(ifNos[ftabRow],ifNoCol(0)) ) {
1193      ifNos[ftabRow].shape(iflen);
1194      iflen++;
1195      ifNos[ftabRow].resize(iflen,True);
1196      ifNos[ftabRow](iflen-1) = ifNoCol(0);
1197    }
1198    if ( !anyEQ(polNos[ftabRow],polNoCol(0)) ) {
1199      polNos[ftabRow].shape(pollen);
1200      pollen++;
1201      polNos[ftabRow].resize(pollen,True);
1202      polNos[ftabRow](pollen-1) = polNoCol(0);
1203    }
1204
1205    for (uInt i=1; i < snrow; i++){
1206      // Need to list BEAMNO and DIRECTION in the same order
1207      if ( !anyEQ(beamids,beamCol(i)) ) {
1208        nbeam++;
1209        beamids.resize(nbeam,True);
1210        beamids(nbeam-1)=beamCol(i);
1211        beamDirs.resize(nbeam,True);
1212        beamDirs(nbeam-1)=dirCol(i);
1213      }
1214
1215      // SRCTYPE is Int (getNumber takes only uInt)
1216      if ( !anyEQ(stypeids,stypeCol(i)) ) {
1217        nstype++;
1218        stypeids.resize(nstype,True);
1219        stypeids(nstype-1)=stypeCol(i);
1220      }
1221
1222      // Global listings of nchan/IFNO/POLNO per FREQ_ID
1223      currFreqId=freqIdCol(i);
1224      ftabRow = fidMap[currFreqId];
1225      if (fIdchans(ftabRow) < 0 ) {
1226        const TableRecord& rec = row.get(i);
1227        RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1228        fIdchans(ftabRow) = (*spec).shape()(0);
1229      }
1230      if ( !anyEQ(ifNos[ftabRow],ifNoCol(i)) ) {
1231        ifNos[ftabRow].shape(iflen);
1232        iflen++;
1233        ifNos[ftabRow].resize(iflen,True);
1234        ifNos[ftabRow](iflen-1) = ifNoCol(i);
1235      }
1236      if ( !anyEQ(polNos[ftabRow],polNoCol(i)) ) {
1237        polNos[ftabRow].shape(pollen);
1238        pollen++;
1239        polNos[ftabRow].resize(pollen,True);
1240        polNos[ftabRow](pollen-1) = polNoCol(i);
1241      }
1242    } // end of row iteration
1243
1244    stypestrs.resize(nstype,False);
1245    for (uInt j=0; j < nstype; j++)
1246      stypestrs(j) = SrcType::getName(stypeids(j));
1247
1248    // Format Scan summary
1249    oss << setw(4) << std::right << rec.asuInt("SCANNO")
1250        << std::left << setw(1) << ""
1251        << setw(15) << rec.asString("SRCNAME")
1252        << setw(21) << MVTime(btime).string(MVTime::YMD,7)
1253        << setw(3) << " - " << MVTime(etime).string(MVTime::TIME,7)
1254        << setw(3) << "" << setw(6) << meanIntTim << setw(1) << ""
1255        << std::right << setw(5) << snrow << setw(2) << ""
1256        << std::left << stypestrs << setw(1) << ""
1257        << freqids << setw(1) << ""
1258        << molids  << endl;
1259    // Format Beam summary
1260    for (uInt j=0; j < nbeam; j++) {
1261      oss << setw(7) << "" << setw(6) << beamids(j) << setw(1) << ""
1262          << formatDirection(beamDirs(j)) << endl;
1263    }
1264    // Flush summary every scan and clear up the string
1265    ols << String(oss) << LogIO::POST;
1266    if (ofs) ofs << String(oss) << flush;
1267    oss.str("");
1268    oss.clear();
1269
1270    ++iter;
1271  } // end of scan iteration
1272  oss << asap::SEPERATOR << endl;
1273 
1274  // List FRECUENCIES Table (using STFrequencies.print may be slow)
1275  oss << "FREQUENCIES: " << nfreq << endl;
1276  oss << std::right << setw(5) << "ID" << setw(2) << ""
1277      << std::left  << setw(5) << "IFNO" << setw(2) << ""
1278      << setw(8) << "Frame"
1279      << setw(16) << "RefVal"
1280      << setw(7) << "RefPix"
1281      << setw(15) << "Increment"
1282      << setw(9) << "Channels"
1283      << setw(6) << "POLNOs" << endl;
1284  Int tmplen;
1285  for (Int i=0; i < nfid; i++){
1286    // List row=i of FREQUENCIES subtable
1287    ifNos[i].shape(tmplen);
1288    if (tmplen >= 1) {
1289      oss << std::right << setw(5) << ftabIds(i) << setw(2) << ""
1290          << setw(3) << ifNos[i](0) << setw(1) << ""
1291          << std::left << setw(46) << frequencies().print(ftabIds(i))
1292          << setw(2) << ""
1293          << std::right << setw(8) << fIdchans[i] << setw(2) << ""
1294          << std::left << polNos[i];
1295      if (tmplen > 1) {
1296        oss  << " (" << tmplen << " chains)";
1297      }
1298      oss << endl;
1299    }
1300   
1301  }
1302  oss << asap::SEPERATOR << endl;
1303
1304  // List MOLECULES Table (currently lists all rows)
1305  oss << "MOLECULES: " << endl;
1306  if (molecules().nrow() <= 0) {
1307    oss << "   MOLECULES subtable is empty: there are no data" << endl;
1308  } else {
1309    ROTableRow row(molecules().table());
1310    oss << std::right << setw(5) << "ID"
1311        << std::left << setw(3) << ""
1312        << setw(18) << "RestFreq"
1313        << setw(15) << "Name" << endl;
1314    for (Int i=0; i < molecules().nrow(); i++){
1315      const TableRecord& rec=row.get(i);
1316      oss << std::right << setw(5) << rec.asuInt("ID")
1317          << std::left << setw(3) << ""
1318          << rec.asArrayDouble("RESTFREQUENCY") << setw(1) << ""
1319          << rec.asArrayString("NAME") << endl;
1320    }
1321  }
1322  oss << asap::SEPERATOR << endl;
1323  ols << String(oss) << LogIO::POST;
1324  if (ofs) {
1325    ofs << String(oss) << flush;
1326    ofs.close();
1327  }
1328  //  return String(oss);
1329}
1330
1331
1332std::string Scantable::oldheaderSummary()
1333{
1334  // Format header info
1335//   STHeader sdh;
1336//   sdh = getHeader();
1337//   sdh.print();
1338  ostringstream oss;
1339  oss.flags(std::ios_base::left);
1340  oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1341      << setw(15) << "IFs:" << setw(4) << nif() << endl
1342      << setw(15) << "Polarisations:" << setw(4) << npol()
1343      << "(" << getPolType() << ")" << endl
1344      << setw(15) << "Channels:" << nchan() << endl;
1345  String tmp;
1346  oss << setw(15) << "Observer:"
1347      << table_.keywordSet().asString("Observer") << endl;
1348  oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1349  table_.keywordSet().get("Project", tmp);
1350  oss << setw(15) << "Project:" << tmp << endl;
1351  table_.keywordSet().get("Obstype", tmp);
1352  oss << setw(15) << "Obs. Type:" << tmp << endl;
1353  table_.keywordSet().get("AntennaName", tmp);
1354  oss << setw(15) << "Antenna Name:" << tmp << endl;
1355  table_.keywordSet().get("FluxUnit", tmp);
1356  oss << setw(15) << "Flux Unit:" << tmp << endl;
1357  int nid = moleculeTable_.nrow();
1358  Bool firstline = True;
1359  oss << setw(15) << "Rest Freqs:";
1360  for (int i=0; i<nid; i++) {
1361    Table t = table_(table_.col("MOLECULE_ID") == i, 1);
1362      if (t.nrow() >  0) {
1363          Vector<Double> vec(moleculeTable_.getRestFrequency(i));
1364          if (vec.nelements() > 0) {
1365               if (firstline) {
1366                   oss << setprecision(10) << vec << " [Hz]" << endl;
1367                   firstline=False;
1368               }
1369               else{
1370                   oss << setw(15)<<" " << setprecision(10) << vec << " [Hz]" << endl;
1371               }
1372          } else {
1373              oss << "none" << endl;
1374          }
1375      }
1376  }
1377
1378  oss << setw(15) << "Abcissa:" << getAbcissaLabel(0) << endl;
1379  oss << selector_.print() << endl;
1380  return String(oss);
1381}
1382
1383  //std::string Scantable::summary( const std::string& filename )
1384void Scantable::oldsummary( const std::string& filename )
1385{
1386  ostringstream oss;
1387  ofstream ofs;
1388  LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1389
1390  if (filename != "")
1391    ofs.open( filename.c_str(),  ios::out );
1392
1393  oss << endl;
1394  oss << asap::SEPERATOR << endl;
1395  oss << " Scan Table Summary" << endl;
1396  oss << asap::SEPERATOR << endl;
1397
1398  // Format header info
1399  oss << oldheaderSummary();
1400  oss << endl;
1401
1402  // main table
1403  String dirtype = "Position ("
1404                  + getDirectionRefString()
1405                  + ")";
1406  oss.flags(std::ios_base::left);
1407  oss << setw(5) << "Scan" << setw(15) << "Source"
1408      << setw(10) << "Time" << setw(18) << "Integration"
1409      << setw(15) << "Source Type" << endl;
1410  oss << setw(5) << "" << setw(5) << "Beam" << setw(3) << "" << dirtype << endl;
1411  oss << setw(10) << "" << setw(3) << "IF" << setw(3) << ""
1412      << setw(8) << "Frame" << setw(16)
1413      << "RefVal" << setw(10) << "RefPix" << setw(12) << "Increment"
1414      << setw(7) << "Channels"
1415      << endl;
1416  oss << asap::SEPERATOR << endl;
1417
1418  // Flush summary and clear up the string
1419  ols << String(oss) << LogIO::POST;
1420  if (ofs) ofs << String(oss) << flush;
1421  oss.str("");
1422  oss.clear();
1423
1424  TableIterator iter(table_, "SCANNO");
1425  while (!iter.pastEnd()) {
1426    Table subt = iter.table();
1427    ROTableRow row(subt);
1428    MEpoch::ROScalarColumn timeCol(subt,"TIME");
1429    const TableRecord& rec = row.get(0);
1430    oss << setw(4) << std::right << rec.asuInt("SCANNO")
1431        << std::left << setw(1) << ""
1432        << setw(15) << rec.asString("SRCNAME")
1433        << setw(10) << formatTime(timeCol(0), false);
1434    // count the cycles in the scan
1435    TableIterator cyciter(subt, "CYCLENO");
1436    int nint = 0;
1437    while (!cyciter.pastEnd()) {
1438      ++nint;
1439      ++cyciter;
1440    }
1441    oss << setw(3) << std::right << nint  << setw(3) << " x " << std::left
1442        << setw(11) <<  formatSec(rec.asFloat("INTERVAL")) << setw(1) << ""
1443        << setw(15) << SrcType::getName(rec.asInt("SRCTYPE")) << endl;
1444
1445    TableIterator biter(subt, "BEAMNO");
1446    while (!biter.pastEnd()) {
1447      Table bsubt = biter.table();
1448      ROTableRow brow(bsubt);
1449      const TableRecord& brec = brow.get(0);
1450      uInt row0 = bsubt.rowNumbers(table_)[0];
1451      oss << setw(5) << "" <<  setw(4) << std::right << brec.asuInt("BEAMNO")<< std::left;
1452      oss  << setw(4) << ""  << formatDirection(getDirection(row0)) << endl;
1453      TableIterator iiter(bsubt, "IFNO");
1454      while (!iiter.pastEnd()) {
1455        Table isubt = iiter.table();
1456        ROTableRow irow(isubt);
1457        const TableRecord& irec = irow.get(0);
1458        oss << setw(9) << "";
1459        oss << setw(3) << std::right << irec.asuInt("IFNO") << std::left
1460            << setw(1) << "" << frequencies().print(irec.asuInt("FREQ_ID"))
1461            << setw(3) << "" << nchan(irec.asuInt("IFNO"))
1462            << endl;
1463
1464        ++iiter;
1465      }
1466      ++biter;
1467    }
1468    // Flush summary every scan and clear up the string
1469    ols << String(oss) << LogIO::POST;
1470    if (ofs) ofs << String(oss) << flush;
1471    oss.str("");
1472    oss.clear();
1473
1474    ++iter;
1475  }
1476  oss << asap::SEPERATOR << endl;
1477  ols << String(oss) << LogIO::POST;
1478  if (ofs) {
1479    ofs << String(oss) << flush;
1480    ofs.close();
1481  }
1482  //  return String(oss);
1483}
1484
1485// std::string Scantable::getTime(int whichrow, bool showdate) const
1486// {
1487//   MEpoch::ROScalarColumn timeCol(table_, "TIME");
1488//   MEpoch me;
1489//   if (whichrow > -1) {
1490//     me = timeCol(uInt(whichrow));
1491//   } else {
1492//     Double tm;
1493//     table_.keywordSet().get("UTC",tm);
1494//     me = MEpoch(MVEpoch(tm));
1495//   }
1496//   return formatTime(me, showdate);
1497// }
1498
1499std::string Scantable::getTime(int whichrow, bool showdate, uInt prec) const
1500{
1501  MEpoch me;
1502  me = getEpoch(whichrow);
1503  return formatTime(me, showdate, prec);
1504}
1505
1506MEpoch Scantable::getEpoch(int whichrow) const
1507{
1508  if (whichrow > -1) {
1509    return timeCol_(uInt(whichrow));
1510  } else {
1511    Double tm;
1512    table_.keywordSet().get("UTC",tm);
1513    return MEpoch(MVEpoch(tm));
1514  }
1515}
1516
1517std::string Scantable::getDirectionString(int whichrow) const
1518{
1519  return formatDirection(getDirection(uInt(whichrow)));
1520}
1521
1522
1523SpectralCoordinate Scantable::getSpectralCoordinate(int whichrow) const {
1524  const MPosition& mp = getAntennaPosition();
1525  const MDirection& md = getDirection(whichrow);
1526  const MEpoch& me = timeCol_(whichrow);
1527  //Double rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1528  Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1529  return freqTable_.getSpectralCoordinate(md, mp, me, rf,
1530                                          mfreqidCol_(whichrow));
1531}
1532
1533std::vector< double > Scantable::getAbcissa( int whichrow ) const
1534{
1535  if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal row number"));
1536  std::vector<double> stlout;
1537  int nchan = specCol_(whichrow).nelements();
1538  String us = freqTable_.getUnitString();
1539  if ( us == "" || us == "pixel" || us == "channel" ) {
1540    for (int i=0; i<nchan; ++i) {
1541      stlout.push_back(double(i));
1542    }
1543    return stlout;
1544  }
1545  SpectralCoordinate spc = getSpectralCoordinate(whichrow);
1546  Vector<Double> pixel(nchan);
1547  Vector<Double> world;
1548  indgen(pixel);
1549  if ( Unit(us) == Unit("Hz") ) {
1550    for ( int i=0; i < nchan; ++i) {
1551      Double world;
1552      spc.toWorld(world, pixel[i]);
1553      stlout.push_back(double(world));
1554    }
1555  } else if ( Unit(us) == Unit("km/s") ) {
1556    Vector<Double> world;
1557    spc.pixelToVelocity(world, pixel);
1558    world.tovector(stlout);
1559  }
1560  return stlout;
1561}
1562void Scantable::setDirectionRefString( const std::string & refstr )
1563{
1564  MDirection::Types mdt;
1565  if (refstr != "" && !MDirection::getType(mdt, refstr)) {
1566    throw(AipsError("Illegal Direction frame."));
1567  }
1568  if ( refstr == "" ) {
1569    String defaultstr = MDirection::showType(dirCol_.getMeasRef().getType());
1570    table_.rwKeywordSet().define("DIRECTIONREF", defaultstr);
1571  } else {
1572    table_.rwKeywordSet().define("DIRECTIONREF", String(refstr));
1573  }
1574}
1575
1576std::string Scantable::getDirectionRefString( ) const
1577{
1578  return table_.keywordSet().asString("DIRECTIONREF");
1579}
1580
1581MDirection Scantable::getDirection(int whichrow ) const
1582{
1583  String usertype = table_.keywordSet().asString("DIRECTIONREF");
1584  String type = MDirection::showType(dirCol_.getMeasRef().getType());
1585  if ( usertype != type ) {
1586    MDirection::Types mdt;
1587    if (!MDirection::getType(mdt, usertype)) {
1588      throw(AipsError("Illegal Direction frame."));
1589    }
1590    return dirCol_.convert(uInt(whichrow), mdt);
1591  } else {
1592    return dirCol_(uInt(whichrow));
1593  }
1594}
1595
1596std::string Scantable::getAbcissaLabel( int whichrow ) const
1597{
1598  if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal ro number"));
1599  const MPosition& mp = getAntennaPosition();
1600  const MDirection& md = getDirection(whichrow);
1601  const MEpoch& me = timeCol_(whichrow);
1602  //const Double& rf = mmolidCol_(whichrow);
1603  const Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1604  SpectralCoordinate spc =
1605    freqTable_.getSpectralCoordinate(md, mp, me, rf, mfreqidCol_(whichrow));
1606
1607  String s = "Channel";
1608  Unit u = Unit(freqTable_.getUnitString());
1609  if (u == Unit("km/s")) {
1610    s = CoordinateUtil::axisLabel(spc, 0, True,True,  True);
1611  } else if (u == Unit("Hz")) {
1612    Vector<String> wau(1);wau = u.getName();
1613    spc.setWorldAxisUnits(wau);
1614    s = CoordinateUtil::axisLabel(spc, 0, True, True, False);
1615  }
1616  return s;
1617
1618}
1619
1620/**
1621void asap::Scantable::setRestFrequencies( double rf, const std::string& name,
1622                                          const std::string& unit )
1623**/
1624void Scantable::setRestFrequencies( vector<double> rf, const vector<std::string>& name,
1625                                          const std::string& unit )
1626
1627{
1628  ///@todo lookup in line table to fill in name and formattedname
1629  Unit u(unit);
1630  //Quantum<Double> urf(rf, u);
1631  Quantum<Vector<Double> >urf(rf, u);
1632  Vector<String> formattedname(0);
1633  //cerr<<"Scantable::setRestFrequnecies="<<urf<<endl;
1634
1635  //uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), name, "");
1636  uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), mathutil::toVectorString(name), formattedname);
1637  TableVector<uInt> tabvec(table_, "MOLECULE_ID");
1638  tabvec = id;
1639}
1640
1641/**
1642void asap::Scantable::setRestFrequencies( const std::string& name )
1643{
1644  throw(AipsError("setRestFrequencies( const std::string& name ) NYI"));
1645  ///@todo implement
1646}
1647**/
1648
1649void Scantable::setRestFrequencies( const vector<std::string>& name )
1650{
1651  (void) name; // suppress unused warning
1652  throw(AipsError("setRestFrequencies( const vector<std::string>& name ) NYI"));
1653  ///@todo implement
1654}
1655
1656std::vector< unsigned int > Scantable::rownumbers( ) const
1657{
1658  std::vector<unsigned int> stlout;
1659  Vector<uInt> vec = table_.rowNumbers();
1660  vec.tovector(stlout);
1661  return stlout;
1662}
1663
1664
1665Matrix<Float> Scantable::getPolMatrix( uInt whichrow ) const
1666{
1667  ROTableRow row(table_);
1668  const TableRecord& rec = row.get(whichrow);
1669  Table t =
1670    originalTable_( originalTable_.col("SCANNO") == Int(rec.asuInt("SCANNO"))
1671                    && originalTable_.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1672                    && originalTable_.col("IFNO") == Int(rec.asuInt("IFNO"))
1673                    && originalTable_.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
1674  ROArrayColumn<Float> speccol(t, "SPECTRA");
1675  return speccol.getColumn();
1676}
1677
1678std::vector< std::string > Scantable::columnNames( ) const
1679{
1680  Vector<String> vec = table_.tableDesc().columnNames();
1681  return mathutil::tovectorstring(vec);
1682}
1683
1684MEpoch::Types Scantable::getTimeReference( ) const
1685{
1686  return MEpoch::castType(timeCol_.getMeasRef().getType());
1687}
1688
1689void Scantable::addFit( const STFitEntry& fit, int row )
1690{
1691  //cout << mfitidCol_(uInt(row)) << endl;
1692  LogIO os( LogOrigin( "Scantable", "addFit()", WHERE ) ) ;
1693  os << mfitidCol_(uInt(row)) << LogIO::POST ;
1694  uInt id = fitTable_.addEntry(fit, mfitidCol_(uInt(row)));
1695  mfitidCol_.put(uInt(row), id);
1696}
1697
1698void Scantable::shift(int npix)
1699{
1700  Vector<uInt> fids(mfreqidCol_.getColumn());
1701  genSort( fids, Sort::Ascending,
1702           Sort::QuickSort|Sort::NoDuplicates );
1703  for (uInt i=0; i<fids.nelements(); ++i) {
1704    frequencies().shiftRefPix(npix, fids[i]);
1705  }
1706}
1707
1708String Scantable::getAntennaName() const
1709{
1710  String out;
1711  table_.keywordSet().get("AntennaName", out);
1712  String::size_type pos1 = out.find("@") ;
1713  String::size_type pos2 = out.find("//") ;
1714  if ( pos2 != String::npos )
1715    out = out.substr(pos2+2,pos1-pos2-2) ;
1716  else if ( pos1 != String::npos )
1717    out = out.substr(0,pos1) ;
1718  return out;
1719}
1720
1721int Scantable::checkScanInfo(const std::vector<int>& scanlist) const
1722{
1723  String tbpath;
1724  int ret = 0;
1725  if ( table_.keywordSet().isDefined("GBT_GO") ) {
1726    table_.keywordSet().get("GBT_GO", tbpath);
1727    Table t(tbpath,Table::Old);
1728    // check each scan if other scan of the pair exist
1729    int nscan = scanlist.size();
1730    for (int i = 0; i < nscan; i++) {
1731      Table subt = t( t.col("SCAN") == scanlist[i]+1 );
1732      if (subt.nrow()==0) {
1733        //cerr <<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<endl;
1734        LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1735        os <<LogIO::WARN<<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<LogIO::POST;
1736        ret = 1;
1737        break;
1738      }
1739      ROTableRow row(subt);
1740      const TableRecord& rec = row.get(0);
1741      int scan1seqn = rec.asuInt("PROCSEQN");
1742      int laston1 = rec.asuInt("LASTON");
1743      if ( rec.asuInt("PROCSIZE")==2 ) {
1744        if ( i < nscan-1 ) {
1745          Table subt2 = t( t.col("SCAN") == scanlist[i+1]+1 );
1746          if ( subt2.nrow() == 0) {
1747            LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1748
1749            //cerr<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<endl;
1750            os<<LogIO::WARN<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<LogIO::POST;
1751            ret = 1;
1752            break;
1753          }
1754          ROTableRow row2(subt2);
1755          const TableRecord& rec2 = row2.get(0);
1756          int scan2seqn = rec2.asuInt("PROCSEQN");
1757          int laston2 = rec2.asuInt("LASTON");
1758          if (scan1seqn == 1 && scan2seqn == 2) {
1759            if (laston1 == laston2) {
1760              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1761              //cerr<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1762              os<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
1763              i +=1;
1764            }
1765            else {
1766              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1767              //cerr<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1768              os<<LogIO::WARN<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
1769            }
1770          }
1771          else if (scan1seqn==2 && scan2seqn == 1) {
1772            if (laston1 == laston2) {
1773              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1774              //cerr<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<endl;
1775              os<<LogIO::WARN<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<LogIO::POST;
1776              ret = 1;
1777              break;
1778            }
1779          }
1780          else {
1781            LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1782            //cerr<<"The other scan for  "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<endl;
1783            os<<LogIO::WARN<<"The other scan for  "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<LogIO::POST;
1784            ret = 1;
1785            break;
1786          }
1787        }
1788      }
1789      else {
1790        LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1791        //cerr<<"The scan does not appear to be standard obsevation."<<endl;
1792        os<<LogIO::WARN<<"The scan does not appear to be standard obsevation."<<LogIO::POST;
1793      }
1794    //if ( i >= nscan ) break;
1795    }
1796  }
1797  else {
1798    LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1799    //cerr<<"No reference to GBT_GO table."<<endl;
1800    os<<LogIO::WARN<<"No reference to GBT_GO table."<<LogIO::POST;
1801    ret = 1;
1802  }
1803  return ret;
1804}
1805
1806std::vector<double> Scantable::getDirectionVector(int whichrow) const
1807{
1808  Vector<Double> Dir = dirCol_(whichrow).getAngle("rad").getValue();
1809  std::vector<double> dir;
1810  Dir.tovector(dir);
1811  return dir;
1812}
1813
1814void asap::Scantable::reshapeSpectrum( int nmin, int nmax )
1815  throw( casa::AipsError )
1816{
1817  // assumed that all rows have same nChan
1818  Vector<Float> arr = specCol_( 0 ) ;
1819  int nChan = arr.nelements() ;
1820
1821  // if nmin < 0 or nmax < 0, nothing to do
1822  if (  nmin < 0 ) {
1823    throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1824    }
1825  if (  nmax < 0  ) {
1826    throw( casa::indexError<int>( nmax, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1827  }
1828
1829  // if nmin > nmax, exchange values
1830  if ( nmin > nmax ) {
1831    int tmp = nmax ;
1832    nmax = nmin ;
1833    nmin = tmp ;
1834    LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1835    os << "Swap values. Applied range is ["
1836       << nmin << ", " << nmax << "]" << LogIO::POST ;
1837  }
1838
1839  // if nmin exceeds nChan, nothing to do
1840  if ( nmin >= nChan ) {
1841    throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Specified minimum exceeds nChan." ) ) ;
1842  }
1843
1844  // if nmax exceeds nChan, reset nmax to nChan
1845  if ( nmax >= nChan-1 ) {
1846    if ( nmin == 0 ) {
1847      // nothing to do
1848      LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1849      os << "Whole range is selected. Nothing to do." << LogIO::POST ;
1850      return ;
1851    }
1852    else {
1853      LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1854      os << "Specified maximum exceeds nChan. Applied range is ["
1855         << nmin << ", " << nChan-1 << "]." << LogIO::POST ;
1856      nmax = nChan - 1 ;
1857    }
1858  }
1859
1860  // reshape specCol_ and flagCol_
1861  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1862    reshapeSpectrum( nmin, nmax, irow ) ;
1863  }
1864
1865  // update FREQUENCIES subtable
1866  Double refpix ;
1867  Double refval ;
1868  Double increment ;
1869  int freqnrow = freqTable_.table().nrow() ;
1870  Vector<uInt> oldId( freqnrow ) ;
1871  Vector<uInt> newId( freqnrow ) ;
1872  for ( int irow = 0 ; irow < freqnrow ; irow++ ) {
1873    freqTable_.getEntry( refpix, refval, increment, irow ) ;
1874    /***
1875     * need to shift refpix to nmin
1876     * note that channel nmin in old index will be channel 0 in new one
1877     ***/
1878    refval = refval - ( refpix - nmin ) * increment ;
1879    refpix = 0 ;
1880    freqTable_.setEntry( refpix, refval, increment, irow ) ;
1881  }
1882
1883  // update nchan
1884  int newsize = nmax - nmin + 1 ;
1885  table_.rwKeywordSet().define( "nChan", newsize ) ;
1886
1887  // update bandwidth
1888  // assumed all spectra in the scantable have same bandwidth
1889  table_.rwKeywordSet().define( "Bandwidth", increment * newsize ) ;
1890
1891  return ;
1892}
1893
1894void asap::Scantable::reshapeSpectrum( int nmin, int nmax, int irow )
1895{
1896  // reshape specCol_ and flagCol_
1897  Vector<Float> oldspec = specCol_( irow ) ;
1898  Vector<uChar> oldflag = flagsCol_( irow ) ;
1899  Vector<Float> oldtsys = tsysCol_( irow ) ;
1900  uInt newsize = nmax - nmin + 1 ;
1901  Slice slice( nmin, newsize, 1 ) ;
1902  specCol_.put( irow, oldspec( slice ) ) ;
1903  flagsCol_.put( irow, oldflag( slice ) ) ;
1904  if ( oldspec.size() == oldtsys.size() )
1905    tsysCol_.put( irow, oldtsys( slice ) ) ;
1906
1907  return ;
1908}
1909
1910void asap::Scantable::regridSpecChannel( double dnu, int nChan )
1911{
1912  LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
1913  os << "Regrid abcissa with spectral resoultion " << dnu << " " << freqTable_.getUnitString() << " with channel number " << ((nChan>0)? String(nChan) : "covering band width")<< LogIO::POST ;
1914  int freqnrow = freqTable_.table().nrow() ;
1915  Vector<bool> firstTime( freqnrow, true ) ;
1916  double oldincr, factor;
1917  uInt currId;
1918  Double refpix ;
1919  Double refval ;
1920  Double increment ;
1921  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1922    currId = mfreqidCol_(irow);
1923    vector<double> abcissa = getAbcissa( irow ) ;
1924    if (nChan < 0) {
1925      int oldsize = abcissa.size() ;
1926      double bw = (abcissa[oldsize-1]-abcissa[0]) +                     \
1927        0.5 * (abcissa[1]-abcissa[0] + abcissa[oldsize-1]-abcissa[oldsize-2]) ;
1928      nChan = int( ceil( abs(bw/dnu) ) ) ;
1929    }
1930    // actual regridding
1931    regridChannel( nChan, dnu, irow ) ;
1932
1933    // update FREQUENCIES subtable
1934    if (firstTime[currId]) {
1935      oldincr = abcissa[1]-abcissa[0] ;
1936      factor = dnu/oldincr ;
1937      firstTime[currId] = false ;
1938      freqTable_.getEntry( refpix, refval, increment, currId ) ;
1939
1940      //refval = refval - ( refpix + 0.5 * (1 - factor) ) * increment ;
1941      if (factor > 0 ) {
1942        refpix = (refpix + 0.5)/factor - 0.5;
1943      } else {
1944        refpix = (abcissa.size() - 0.5 - refpix)/abs(factor) - 0.5;
1945      }
1946      freqTable_.setEntry( refpix, refval, increment*factor, currId ) ;
1947      //os << "ID" << currId << ": channel width (Orig) = " << oldincr << " [" << freqTable_.getUnitString() << "], scale factor = " << factor << LogIO::POST ;
1948      //os << "     frequency increment (Orig) = " << increment << "-> (New) " << increment*factor << LogIO::POST ;
1949    }
1950  }
1951}
1952
1953void asap::Scantable::regridChannel( int nChan, double dnu )
1954{
1955  LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
1956  os << "Regrid abcissa with channel number " << nChan << " and spectral resoultion " << dnu << "Hz." << LogIO::POST ;
1957  // assumed that all rows have same nChan
1958  Vector<Float> arr = specCol_( 0 ) ;
1959  int oldsize = arr.nelements() ;
1960
1961  // if oldsize == nChan, nothing to do
1962  if ( oldsize == nChan ) {
1963    os << "Specified channel number is same as current one. Nothing to do." << LogIO::POST ;
1964    return ;
1965  }
1966
1967  // if oldChan < nChan, unphysical operation
1968  if ( oldsize < nChan ) {
1969    os << "Unphysical operation. Nothing to do." << LogIO::POST ;
1970    return ;
1971  }
1972
1973  // change channel number for specCol_, flagCol_, and tsysCol_ (if necessary)
1974  vector<string> coordinfo = getCoordInfo() ;
1975  string oldinfo = coordinfo[0] ;
1976  coordinfo[0] = "Hz" ;
1977  setCoordInfo( coordinfo ) ;
1978  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1979    regridChannel( nChan, dnu, irow ) ;
1980  }
1981  coordinfo[0] = oldinfo ;
1982  setCoordInfo( coordinfo ) ;
1983
1984
1985  // NOTE: this method does not update metadata such as
1986  //       FREQUENCIES subtable, nChan, Bandwidth, etc.
1987
1988  return ;
1989}
1990
1991void asap::Scantable::regridChannel( int nChan, double dnu, int irow )
1992{
1993  // logging
1994  //ofstream ofs( "average.log", std::ios::out | std::ios::app ) ;
1995  //ofs << "IFNO = " << getIF( irow ) << " irow = " << irow << endl ;
1996
1997  Vector<Float> oldspec = specCol_( irow ) ;
1998  Vector<uChar> oldflag = flagsCol_( irow ) ;
1999  Vector<Float> oldtsys = tsysCol_( irow ) ;
2000  Vector<Float> newspec( nChan, 0 ) ;
2001  Vector<uChar> newflag( nChan, true ) ;
2002  Vector<Float> newtsys ;
2003  bool regridTsys = false ;
2004  if (oldtsys.size() == oldspec.size()) {
2005    regridTsys = true ;
2006    newtsys.resize(nChan,false) ;
2007    newtsys = 0 ;
2008  }
2009
2010  // regrid
2011  vector<double> abcissa = getAbcissa( irow ) ;
2012  int oldsize = abcissa.size() ;
2013  double olddnu = abcissa[1] - abcissa[0] ;
2014  //int ichan = 0 ;
2015  double wsum = 0.0 ;
2016  Vector<double> zi( nChan+1 ) ;
2017  Vector<double> yi( oldsize + 1 ) ;
2018  yi[0] = abcissa[0] - 0.5 * olddnu ;
2019  for ( int ii = 1 ; ii < oldsize ; ii++ )
2020    yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ;
2021  yi[oldsize] = abcissa[oldsize-1] \
2022    + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ;
2023  //zi[0] = abcissa[0] - 0.5 * olddnu ;
2024  zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ;
2025  for ( int ii = 1 ; ii < nChan ; ii++ )
2026    zi[ii] = zi[0] + dnu * ii ;
2027  zi[nChan] = zi[nChan-1] + dnu ;
2028  // Access zi and yi in ascending order
2029  int izs = ((dnu > 0) ? 0 : nChan ) ;
2030  int ize = ((dnu > 0) ? nChan : 0 ) ;
2031  int izincr = ((dnu > 0) ? 1 : -1 ) ;
2032  int ichan =  ((olddnu > 0) ? 0 : oldsize ) ;
2033  int iye = ((olddnu > 0) ? oldsize : 0 ) ;
2034  int iyincr = ((olddnu > 0) ? 1 : -1 ) ;
2035  //for ( int ii = izs ; ii != ize ; ii+=izincr ){
2036  int ii = izs ;
2037  while (ii != ize) {
2038    // always zl < zr
2039    double zl = zi[ii] ;
2040    double zr = zi[ii+izincr] ;
2041    // Need to access smaller index for the new spec, flag, and tsys.
2042    // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc.
2043    int i = min(ii, ii+izincr) ;
2044    //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) {
2045    int jj = ichan ;
2046    while (jj != iye) {
2047      // always yl < yr
2048      double yl = yi[jj] ;
2049      double yr = yi[jj+iyincr] ;
2050      // Need to access smaller index for the original spec, flag, and tsys.
2051      // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc.
2052      int j = min(jj, jj+iyincr) ;
2053      if ( yr <= zl ) {
2054        jj += iyincr ;
2055        continue ;
2056      }
2057      else if ( yl <= zl ) {
2058        if ( yr < zr ) {
2059          if (!oldflag[j]) {
2060            newspec[i] += oldspec[j] * ( yr - zl ) ;
2061            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ;
2062            wsum += ( yr - zl ) ;
2063          }
2064          newflag[i] = newflag[i] && oldflag[j] ;
2065        }
2066        else {
2067          if (!oldflag[j]) {
2068            newspec[i] += oldspec[j] * abs(dnu) ;
2069            if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ;
2070            wsum += abs(dnu) ;
2071          }
2072          newflag[i] = newflag[i] && oldflag[j] ;
2073          ichan = jj ;
2074          break ;
2075        }
2076      }
2077      else if ( yl < zr ) {
2078        if ( yr <= zr ) {
2079          if (!oldflag[j]) {
2080            newspec[i] += oldspec[j] * ( yr - yl ) ;
2081            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ;
2082            wsum += ( yr - yl ) ;
2083          }
2084          newflag[i] = newflag[i] && oldflag[j] ;
2085        }
2086        else {
2087          if (!oldflag[j]) {
2088            newspec[i] += oldspec[j] * ( zr - yl ) ;
2089            if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ;
2090            wsum += ( zr - yl ) ;
2091          }
2092          newflag[i] = newflag[i] && oldflag[j] ;
2093          ichan = jj ;
2094          break ;
2095        }
2096      }
2097      else {
2098        ichan = jj - iyincr ;
2099        break ;
2100      }
2101      jj += iyincr ;
2102    }
2103    if ( wsum != 0.0 ) {
2104      newspec[i] /= wsum ;
2105      if (regridTsys) newtsys[i] /= wsum ;
2106    }
2107    wsum = 0.0 ;
2108    ii += izincr ;
2109  }
2110//   if ( dnu > 0.0 ) {
2111//     for ( int ii = 0 ; ii < nChan ; ii++ ) {
2112//       double zl = zi[ii] ;
2113//       double zr = zi[ii+1] ;
2114//       for ( int j = ichan ; j < oldsize ; j++ ) {
2115//         double yl = yi[j] ;
2116//         double yr = yi[j+1] ;
2117//         if ( yl <= zl ) {
2118//           if ( yr <= zl ) {
2119//             continue ;
2120//           }
2121//           else if ( yr <= zr ) {
2122//          if (!oldflag[j]) {
2123//            newspec[ii] += oldspec[j] * ( yr - zl ) ;
2124//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - zl ) ;
2125//            wsum += ( yr - zl ) ;
2126//          }
2127//          newflag[ii] = newflag[ii] && oldflag[j] ;
2128//           }
2129//           else {
2130//          if (!oldflag[j]) {
2131//            newspec[ii] += oldspec[j] * dnu ;
2132//            if (regridTsys) newtsys[ii] += oldtsys[j] * dnu ;
2133//            wsum += dnu ;
2134//          }
2135//          newflag[ii] = newflag[ii] && oldflag[j] ;
2136//             ichan = j ;
2137//             break ;
2138//           }
2139//         }
2140//         else if ( yl < zr ) {
2141//           if ( yr <= zr ) {
2142//          if (!oldflag[j]) {
2143//            newspec[ii] += oldspec[j] * ( yr - yl ) ;
2144//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - yl ) ;
2145//               wsum += ( yr - yl ) ;
2146//          }
2147//          newflag[ii] = newflag[ii] && oldflag[j] ;
2148//           }
2149//           else {
2150//          if (!oldflag[j]) {
2151//            newspec[ii] += oldspec[j] * ( zr - yl ) ;
2152//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( zr - yl ) ;
2153//            wsum += ( zr - yl ) ;
2154//          }
2155//          newflag[ii] = newflag[ii] && oldflag[j] ;
2156//             ichan = j ;
2157//             break ;
2158//           }
2159//         }
2160//         else {
2161//           ichan = j - 1 ;
2162//           break ;
2163//         }
2164//       }
2165//       if ( wsum != 0.0 ) {
2166//         newspec[ii] /= wsum ;
2167//      if (regridTsys) newtsys[ii] /= wsum ;
2168//       }
2169//       wsum = 0.0 ;
2170//     }
2171//   }
2172//   else if ( dnu < 0.0 ) {
2173//     for ( int ii = 0 ; ii < nChan ; ii++ ) {
2174//       double zl = zi[ii] ;
2175//       double zr = zi[ii+1] ;
2176//       for ( int j = ichan ; j < oldsize ; j++ ) {
2177//         double yl = yi[j] ;
2178//         double yr = yi[j+1] ;
2179//         if ( yl >= zl ) {
2180//           if ( yr >= zl ) {
2181//             continue ;
2182//           }
2183//           else if ( yr >= zr ) {
2184//          if (!oldflag[j]) {
2185//            newspec[ii] += oldspec[j] * abs( yr - zl ) ;
2186//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - zl ) ;
2187//            wsum += abs( yr - zl ) ;
2188//          }
2189//          newflag[ii] = newflag[ii] && oldflag[j] ;
2190//           }
2191//           else {
2192//          if (!oldflag[j]) {
2193//            newspec[ii] += oldspec[j] * abs( dnu ) ;
2194//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( dnu ) ;
2195//            wsum += abs( dnu ) ;
2196//          }
2197//          newflag[ii] = newflag[ii] && oldflag[j] ;
2198//             ichan = j ;
2199//             break ;
2200//           }
2201//         }
2202//         else if ( yl > zr ) {
2203//           if ( yr >= zr ) {
2204//          if (!oldflag[j]) {
2205//            newspec[ii] += oldspec[j] * abs( yr - yl ) ;
2206//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - yl ) ;
2207//            wsum += abs( yr - yl ) ;
2208//          }
2209//          newflag[ii] = newflag[ii] && oldflag[j] ;
2210//           }
2211//           else {
2212//          if (!oldflag[j]) {
2213//            newspec[ii] += oldspec[j] * abs( zr - yl ) ;
2214//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( zr - yl ) ;
2215//            wsum += abs( zr - yl ) ;
2216//          }
2217//          newflag[ii] = newflag[ii] && oldflag[j] ;
2218//             ichan = j ;
2219//             break ;
2220//           }
2221//         }
2222//         else {
2223//           ichan = j - 1 ;
2224//           break ;
2225//         }
2226//       }
2227//       if ( wsum != 0.0 ) {
2228//         newspec[ii] /= wsum ;
2229//      if (regridTsys) newtsys[ii] /= wsum ;
2230//       }
2231//       wsum = 0.0 ;
2232//     }
2233//   }
2234// //   //ofs << "olddnu = " << olddnu << ", dnu = " << dnu << endl ;
2235// //   pile += dnu ;
2236// //   wedge = olddnu * ( refChan + 1 ) ;
2237// //   while ( wedge < pile ) {
2238// //     newspec[0] += olddnu * oldspec[refChan] ;
2239// //     newflag[0] = newflag[0] || oldflag[refChan] ;
2240// //     //ofs << "channel " << refChan << " is included in new channel 0" << endl ;
2241// //     refChan++ ;
2242// //     wedge += olddnu ;
2243// //     wsum += olddnu ;
2244// //     //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2245// //   }
2246// //   frac = ( wedge - pile ) / olddnu ;
2247// //   wsum += ( 1.0 - frac ) * olddnu ;
2248// //   newspec[0] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2249// //   newflag[0] = newflag[0] || oldflag[refChan] ;
2250// //   //ofs << "channel " << refChan << " is partly included in new channel 0" << " with fraction of " << ( 1.0 - frac ) << endl ;
2251// //   //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2252// //   newspec[0] /= wsum ;
2253// //   //ofs << "newspec[0] = " << newspec[0] << endl ;
2254// //   //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2255
2256// //   /***
2257// //    * ichan = 1 - nChan-2
2258// //    ***/
2259// //   for ( int ichan = 1 ; ichan < nChan - 1 ; ichan++ ) {
2260// //     pile += dnu ;
2261// //     newspec[ichan] += frac * olddnu * oldspec[refChan] ;
2262// //     newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2263// //     //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << frac << endl ;
2264// //     refChan++ ;
2265// //     wedge += olddnu ;
2266// //     wsum = frac * olddnu ;
2267// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2268// //     while ( wedge < pile ) {
2269// //       newspec[ichan] += olddnu * oldspec[refChan] ;
2270// //       newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2271// //       //ofs << "channel " << refChan << " is included in new channel " << ichan << endl ;
2272// //       refChan++ ;
2273// //       wedge += olddnu ;
2274// //       wsum += olddnu ;
2275// //       //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2276// //     }
2277// //     frac = ( wedge - pile ) / olddnu ;
2278// //     wsum += ( 1.0 - frac ) * olddnu ;
2279// //     newspec[ichan] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2280// //     newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2281// //     //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << ( 1.0 - frac ) << endl ;
2282// //     //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2283// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2284// //     newspec[ichan] /= wsum ;
2285// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << endl ;
2286// //   }
2287
2288// //   /***
2289// //    * ichan = nChan-1
2290// //    ***/
2291// //   // NOTE: Assumed that all spectra have the same bandwidth
2292// //   pile += dnu ;
2293// //   newspec[nChan-1] += frac * olddnu * oldspec[refChan] ;
2294// //   newflag[nChan-1] = newflag[nChan-1] || oldflag[refChan] ;
2295// //   //ofs << "channel " << refChan << " is partly included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2296// //   refChan++ ;
2297// //   wedge += olddnu ;
2298// //   wsum = frac * olddnu ;
2299// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2300// //   for ( int jchan = refChan ; jchan < oldsize ; jchan++ ) {
2301// //     newspec[nChan-1] += olddnu * oldspec[jchan] ;
2302// //     newflag[nChan-1] = newflag[nChan-1] || oldflag[jchan] ;
2303// //     wsum += olddnu ;
2304// //     //ofs << "channel " << jchan << " is included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2305// //     //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2306// //   }
2307// //   //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2308// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2309// //   newspec[nChan-1] /= wsum ;
2310// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << endl ;
2311
2312// //   // ofs.close() ;
2313
2314  specCol_.put( irow, newspec ) ;
2315  flagsCol_.put( irow, newflag ) ;
2316  if (regridTsys) tsysCol_.put( irow, newtsys );
2317
2318  return ;
2319}
2320
2321void Scantable::regridChannel( int nChan, double dnu, double fmin, int irow )
2322{
2323  Vector<Float> oldspec = specCol_( irow ) ;
2324  Vector<uChar> oldflag = flagsCol_( irow ) ;
2325  Vector<Float> oldtsys = tsysCol_( irow ) ;
2326  Vector<Float> newspec( nChan, 0 ) ;
2327  Vector<uChar> newflag( nChan, true ) ;
2328  Vector<Float> newtsys ;
2329  bool regridTsys = false ;
2330  if (oldtsys.size() == oldspec.size()) {
2331    regridTsys = true ;
2332    newtsys.resize(nChan,false) ;
2333    newtsys = 0 ;
2334  }
2335 
2336  // regrid
2337  vector<double> abcissa = getAbcissa( irow ) ;
2338  int oldsize = abcissa.size() ;
2339  double olddnu = abcissa[1] - abcissa[0] ;
2340  //int ichan = 0 ;
2341  double wsum = 0.0 ;
2342  Vector<double> zi( nChan+1 ) ;
2343  Vector<double> yi( oldsize + 1 ) ;
2344  Block<uInt> count( nChan, 0 ) ;
2345  yi[0] = abcissa[0] - 0.5 * olddnu ;
2346  for ( int ii = 1 ; ii < oldsize ; ii++ )
2347    yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ;
2348  yi[oldsize] = abcissa[oldsize-1] \
2349    + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ;
2350//   cout << "olddnu=" << olddnu << ", dnu=" << dnu << " (diff=" << olddnu-dnu << ")" << endl ;
2351//   cout << "yi[0]=" << yi[0] << ", fmin=" << fmin << " (diff=" << yi[0]-fmin << ")" << endl ;
2352//   cout << "oldsize=" << oldsize << ", nChan=" << nChan << endl ;
2353
2354  // do not regrid if input parameters are almost same as current
2355  // spectral setup
2356  double dnuDiff = abs( ( dnu - olddnu ) / olddnu ) ;
2357  double oldfmin = min( yi[0], yi[oldsize] ) ;
2358  double fminDiff = abs( ( fmin - oldfmin ) / oldfmin ) ;
2359  double nChanDiff = nChan - oldsize ;
2360  double eps = 1.0e-8 ;
2361  if ( nChanDiff == 0 && dnuDiff < eps && fminDiff < eps )
2362    return ;
2363
2364  //zi[0] = abcissa[0] - 0.5 * olddnu ;
2365  //zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ;
2366  if ( dnu > 0 )
2367    zi[0] = fmin - 0.5 * dnu ;
2368  else
2369    zi[0] = fmin + nChan * abs(dnu) ;
2370  for ( int ii = 1 ; ii < nChan ; ii++ )
2371    zi[ii] = zi[0] + dnu * ii ;
2372  zi[nChan] = zi[nChan-1] + dnu ;
2373  // Access zi and yi in ascending order
2374  int izs = ((dnu > 0) ? 0 : nChan ) ;
2375  int ize = ((dnu > 0) ? nChan : 0 ) ;
2376  int izincr = ((dnu > 0) ? 1 : -1 ) ;
2377  int ichan =  ((olddnu > 0) ? 0 : oldsize ) ;
2378  int iye = ((olddnu > 0) ? oldsize : 0 ) ;
2379  int iyincr = ((olddnu > 0) ? 1 : -1 ) ;
2380  //for ( int ii = izs ; ii != ize ; ii+=izincr ){
2381  int ii = izs ;
2382  while (ii != ize) {
2383    // always zl < zr
2384    double zl = zi[ii] ;
2385    double zr = zi[ii+izincr] ;
2386    // Need to access smaller index for the new spec, flag, and tsys.
2387    // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc.
2388    int i = min(ii, ii+izincr) ;
2389    //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) {
2390    int jj = ichan ;
2391    while (jj != iye) {
2392      // always yl < yr
2393      double yl = yi[jj] ;
2394      double yr = yi[jj+iyincr] ;
2395      // Need to access smaller index for the original spec, flag, and tsys.
2396      // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc.
2397      int j = min(jj, jj+iyincr) ;
2398      if ( yr <= zl ) {
2399        jj += iyincr ;
2400        continue ;
2401      }
2402      else if ( yl <= zl ) {
2403        if ( yr < zr ) {
2404          if (!oldflag[j]) {
2405            newspec[i] += oldspec[j] * ( yr - zl ) ;
2406            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ;
2407            wsum += ( yr - zl ) ;
2408            count[i]++ ;
2409          }
2410          newflag[i] = newflag[i] && oldflag[j] ;
2411        }
2412        else {
2413          if (!oldflag[j]) {
2414            newspec[i] += oldspec[j] * abs(dnu) ;
2415            if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ;
2416            wsum += abs(dnu) ;
2417            count[i]++ ;
2418          }
2419          newflag[i] = newflag[i] && oldflag[j] ;
2420          ichan = jj ;
2421          break ;
2422        }
2423      }
2424      else if ( yl < zr ) {
2425        if ( yr <= zr ) {
2426          if (!oldflag[j]) {
2427            newspec[i] += oldspec[j] * ( yr - yl ) ;
2428            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ;
2429            wsum += ( yr - yl ) ;
2430            count[i]++ ;
2431          }
2432          newflag[i] = newflag[i] && oldflag[j] ;
2433        }
2434        else {
2435          if (!oldflag[j]) {
2436            newspec[i] += oldspec[j] * ( zr - yl ) ;
2437            if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ;
2438            wsum += ( zr - yl ) ;
2439            count[i]++ ;
2440          }
2441          newflag[i] = newflag[i] && oldflag[j] ;
2442          ichan = jj ;
2443          break ;
2444        }
2445      }
2446      else {
2447        //ichan = jj - iyincr ;
2448        break ;
2449      }
2450      jj += iyincr ;
2451    }
2452    if ( wsum != 0.0 ) {
2453      newspec[i] /= wsum ;
2454      if (regridTsys) newtsys[i] /= wsum ;
2455    }
2456    wsum = 0.0 ;
2457    ii += izincr ;
2458  }
2459
2460  // flag out channels without data
2461  // this is tentative since there is no specific definition
2462  // on bit flag...
2463  uChar noData = 1 << 7 ;
2464  for ( Int i = 0 ; i < nChan ; i++ ) {
2465    if ( count[i] == 0 )
2466      newflag[i] = noData ;
2467  }
2468
2469  specCol_.put( irow, newspec ) ;
2470  flagsCol_.put( irow, newflag ) ;
2471  if (regridTsys) tsysCol_.put( irow, newtsys );
2472
2473  return ;
2474}
2475
2476std::vector<float> Scantable::getWeather(int whichrow) const
2477{
2478  std::vector<float> out(5);
2479  //Float temperature, pressure, humidity, windspeed, windaz;
2480  weatherTable_.getEntry(out[0], out[1], out[2], out[3], out[4],
2481                         mweatheridCol_(uInt(whichrow)));
2482
2483
2484  return out;
2485}
2486
2487bool Scantable::isAllChannelsFlagged(uInt whichrow)
2488{
2489  uInt rflag;
2490  flagrowCol_.get(whichrow, rflag);
2491  if (rflag > 0)
2492    return true;
2493  uChar flag;
2494  Vector<uChar> flags;
2495  flagsCol_.get(whichrow, flags);
2496  flag = flags[0];
2497  for (uInt i = 1; i < flags.size(); ++i) {
2498    flag &= flags[i];
2499  }
2500  return ((flag >> 7) == 1);
2501}
2502
2503std::vector<std::string> Scantable::applyBaselineTable(const std::string& bltable, const bool returnfitresult, const std::string& outbltable, const bool outbltableexists, const bool overwrite)
2504{
2505  STBaselineTable btin = STBaselineTable(bltable);
2506
2507  Vector<Bool> applyCol = btin.getApply();
2508  int nRowBl = applyCol.size();
2509  if (nRowBl != nrow()) {
2510    throw(AipsError("Scantable and bltable have different number of rows."));
2511  }
2512
2513  std::vector<std::string> res;
2514  res.clear();
2515
2516  bool outBaselineTable = ((outbltable != "") && (!outbltableexists || overwrite));
2517  bool bltableidentical = (bltable == outbltable);
2518  STBaselineTable btout = STBaselineTable(*this);
2519  ROScalarColumn<Double> tcol = ROScalarColumn<Double>(table_, "TIME");
2520  Vector<Double> timeSecCol = tcol.getColumn();
2521
2522  for (int whichrow = 0; whichrow < nRowBl; ++whichrow) {
2523    if (applyCol[whichrow]) {
2524      std::vector<float> spec = getSpectrum(whichrow);
2525
2526      std::vector<bool> mask = btin.getMask(whichrow);  //use mask_bltable only
2527
2528      STBaselineFunc::FuncName ftype = btin.getFunctionName(whichrow);
2529      std::vector<int> fpar = btin.getFuncParam(whichrow);
2530      std::vector<float> params;
2531      float rms;
2532      std::vector<float> resfit = doApplyBaselineTable(spec, mask, ftype, fpar, params, rms);
2533      setSpectrum(resfit, whichrow);
2534
2535      if (returnfitresult) {
2536        res.push_back(packFittingResults(whichrow, params, rms));
2537      }
2538
2539      if (outBaselineTable) {
2540        if (outbltableexists) {
2541          if (overwrite) {
2542            if (bltableidentical) {
2543              btin.setresult(uInt(whichrow), Vector<Float>(params), Float(rms));
2544            } else {
2545              btout.setresult(uInt(whichrow), Vector<Float>(params), Float(rms));
2546            }
2547          }
2548        } else {
2549          btout.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
2550                           getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
2551                           true, ftype, fpar, std::vector<float>(),
2552                           getMaskListFromMask(mask), params, rms, spec.size(),
2553                           3.0, 0, 0.0, 0, std::vector<int>());
2554        }
2555      }
2556    }
2557  }
2558
2559  if (outBaselineTable) {
2560    if (bltableidentical) {
2561      btin.save(outbltable);
2562    } else {
2563      btout.save(outbltable);
2564    }
2565  }
2566
2567  return res;
2568}
2569
2570std::vector<std::string> Scantable::subBaseline(const std::vector<std::string>& blInfoList, const bool returnfitresult, const std::string& outbltable, const bool outbltableexists, const bool overwrite)
2571{
2572  int nRowBl = blInfoList.size();
2573  int nRowSt = nrow();
2574
2575  std::vector<std::string> res;
2576  res.clear();
2577
2578  bool outBaselineTable = ((outbltable != "") && (!outbltableexists || overwrite));
2579  if ((outbltable != "") && outbltableexists && !overwrite) {
2580    throw(AipsError("Cannot overwrite bltable. Set overwrite=True."));
2581  }
2582
2583  STBaselineTable bt = STBaselineTable(*this);
2584  ROScalarColumn<Double> tcol = ROScalarColumn<Double>(table_, "TIME");
2585  Vector<Double> timeSecCol = tcol.getColumn();
2586
2587  if (outBaselineTable && !outbltableexists) {
2588    for (int i = 0; i < nRowSt; ++i) {
2589      bt.appendbasedata(getScan(i), getCycle(i), getBeam(i), getIF(i), getPol(i),
2590                         0, timeSecCol[i]);
2591      bt.setApply(i, false);
2592    }
2593  }
2594
2595  for (int i = 0; i < nRowBl; ++i) {
2596    int irow;
2597    STBaselineFunc::FuncName ftype;
2598    std::vector<bool> mask;
2599    std::vector<int> fpar;
2600    float clipth;
2601    int clipn;
2602    bool uself;
2603    float lfth;
2604    std::vector<int> lfedge;
2605    int lfavg;
2606    parseBlInfo(blInfoList[i], irow, ftype, fpar, mask, clipth, clipn, uself, lfth, lfedge, lfavg);
2607
2608    if (irow < nRowSt) {
2609      std::vector<float> spec = getSpectrum(irow);
2610      std::vector<float> params;
2611      float rms;
2612      std::vector<bool> finalmask;
2613
2614      std::vector<float> resfit = doSubtractBaseline(spec, mask, ftype, fpar, params, rms, finalmask, clipth, clipn, uself, irow, lfth, lfedge, lfavg);
2615      setSpectrum(resfit, irow);
2616
2617      if (returnfitresult) {
2618        res.push_back(packFittingResults(irow, params, rms));
2619      }
2620
2621      if (outBaselineTable) {
2622        Vector<Int> fparam(fpar.size());
2623        for (uInt j = 0; j < fparam.size(); ++j) {
2624          fparam[j] = (Int)fpar[j];
2625        }
2626
2627        bt.setdata(uInt(irow),
2628                    uInt(getScan(irow)), uInt(getCycle(irow)),
2629                    uInt(getBeam(irow)), uInt(getIF(irow)), uInt(getPol(irow)),
2630                    uInt(0), timeSecCol[irow], Bool(true), ftype, fparam,
2631                    Vector<Float>(), getMaskListFromMask(finalmask), Vector<Float>(params),
2632                    Float(rms), uInt(spec.size()), Float(clipth), uInt(clipn),
2633                    Float(0.0), uInt(0), Vector<uInt>());
2634      }
2635
2636    }
2637  }
2638
2639  if (outBaselineTable) {
2640    bt.save(outbltable);
2641  }
2642
2643  return res;
2644}
2645
2646std::vector<float> Scantable::doApplyBaselineTable(std::vector<float>& spec,
2647                                                   std::vector<bool>& mask,
2648                                                   const STBaselineFunc::FuncName ftype,
2649                                                   std::vector<int>& fpar,
2650                                                   std::vector<float>& params,
2651                                                   float&rms)
2652{
2653  std::vector<bool> finalmask;
2654  std::vector<int> lfedge;
2655  return doSubtractBaseline(spec, mask, ftype, fpar, params, rms, finalmask, 0.0, 0, false, 0, 0.0, lfedge, 0);
2656}
2657
2658std::vector<float> Scantable::doSubtractBaseline(std::vector<float>& spec,
2659                                                 std::vector<bool>& mask,
2660                                                 const STBaselineFunc::FuncName ftype,
2661                                                 std::vector<int>& fpar,
2662                                                 std::vector<float>& params,
2663                                                 float&rms,
2664                                                 std::vector<bool>& finalmask,
2665                                                 float clipth,
2666                                                 int clipn,
2667                                                 bool uself,
2668                                                 int irow,
2669                                                 float lfth,
2670                                                 std::vector<int>& lfedge,
2671                                                 int lfavg)
2672{
2673  if (uself) {
2674    STLineFinder lineFinder = STLineFinder();
2675    initLineFinder(lfedge, lfth, lfavg, lineFinder);
2676    std::vector<int> currentEdge;
2677    mask = getCompositeChanMask(irow, mask, lfedge, currentEdge, lineFinder);
2678  }
2679
2680  std::vector<float> res;
2681  if (ftype == STBaselineFunc::Polynomial) {
2682    res = doPolynomialFitting(spec, mask, fpar[0], params, rms, finalmask, clipth, clipn);
2683  } else if (ftype == STBaselineFunc::Chebyshev) {
2684    res = doChebyshevFitting(spec, mask, fpar[0], params, rms, finalmask, clipth, clipn);
2685  } else if (ftype == STBaselineFunc::CSpline) {
2686    if (fpar.size() > 1) { // reading from baseline table in which pieceEdges are already calculated and stored.
2687      res = doCubicSplineFitting(spec, mask, fpar, params, rms, finalmask, clipth, clipn);
2688    } else {               // usual cspline fitting by giving nPiece only. fpar will be replaced with pieceEdges.
2689      res = doCubicSplineFitting(spec, mask, fpar[0], fpar, params, rms, finalmask, clipth, clipn);
2690    }
2691  } else if (ftype == STBaselineFunc::Sinusoid) {
2692    res = doSinusoidFitting(spec, mask, fpar, params, rms, finalmask, clipth, clipn);
2693  }
2694
2695  return res;
2696}
2697
2698std::string Scantable::packFittingResults(const int irow, const std::vector<float>& params, const float rms)
2699{
2700  // returned value: "irow:params[0],params[1],..,params[n-1]:rms"
2701  ostringstream os;
2702  os << irow << ':';
2703  for (uInt i = 0; i < params.size(); ++i) {
2704    if (i > 0) {
2705      os << ',';
2706    }
2707    os << params[i];
2708  }
2709  os << ':' << rms;
2710
2711  return os.str();
2712}
2713
2714void Scantable::parseBlInfo(const std::string& blInfo, int& irow, STBaselineFunc::FuncName& ftype, std::vector<int>& fpar, std::vector<bool>& mask, float& thresClip, int& nIterClip, bool& useLineFinder, float& thresLF, std::vector<int>& edgeLF, int& avgLF)
2715{
2716  // The baseline info to be parsed must be column-delimited string like
2717  // "0:chebyshev:5:3,5,169,174,485,487" where the elements are
2718  // row number, funcType, funcOrder, maskList, clipThreshold, clipNIter,
2719  // useLineFinder, lfThreshold, lfEdge and lfChanAvgLimit.
2720
2721  std::vector<string> res = splitToStringList(blInfo, ':');
2722  if (res.size() < 4) {
2723    throw(AipsError("baseline info has bad format")) ;
2724  }
2725
2726  string ftype0, fpar0, masklist0, uself0, edge0;
2727  std::vector<int> masklist;
2728
2729  stringstream ss;
2730  ss << res[0];
2731  ss >> irow;
2732  ss.clear(); ss.str("");
2733
2734  ss << res[1];
2735  ss >> ftype0;
2736  if (ftype0 == "poly") {
2737    ftype = STBaselineFunc::Polynomial;
2738  } else if (ftype0 == "cspline") {
2739    ftype = STBaselineFunc::CSpline;
2740  } else if (ftype0 == "sinusoid") {
2741    ftype = STBaselineFunc::Sinusoid;
2742  } else if (ftype0 == "chebyshev") {
2743    ftype = STBaselineFunc::Chebyshev;
2744  } else {
2745    throw(AipsError("invalid function type."));
2746  }
2747  ss.clear(); ss.str("");
2748
2749  ss << res[2];
2750  ss >> fpar0;
2751  fpar = splitToIntList(fpar0, ',');
2752  ss.clear(); ss.str("");
2753
2754  ss << res[3];
2755  ss >> masklist0;
2756  mask = getMaskFromMaskList(nchan(getIF(irow)), splitToIntList(masklist0, ','));
2757
2758  ss << res[4];
2759  ss >> thresClip;
2760  ss.clear(); ss.str("");
2761
2762  ss << res[5];
2763  ss >> nIterClip;
2764  ss.clear(); ss.str("");
2765
2766  ss << res[6];
2767  ss >> uself0;
2768  if (uself0 == "true") {
2769    useLineFinder = true;
2770  } else {
2771    useLineFinder = false;
2772  }
2773  ss.clear(); ss.str("");
2774
2775  if (useLineFinder) {
2776    ss << res[7];
2777    ss >> thresLF;
2778    ss.clear(); ss.str("");
2779
2780    ss << res[8];
2781    ss >> edge0;
2782    edgeLF = splitToIntList(edge0, ',');
2783    ss.clear(); ss.str("");
2784
2785    ss << res[9];
2786    ss >> avgLF;
2787    ss.clear(); ss.str("");
2788  }
2789
2790}
2791
2792std::vector<int> Scantable::splitToIntList(const std::string& s, const char delim)
2793{
2794  istringstream iss(s);
2795  string tmp;
2796  int tmpi;
2797  std::vector<int> res;
2798  stringstream ss;
2799  while (getline(iss, tmp, delim)) {
2800    ss << tmp;
2801    ss >> tmpi;
2802    res.push_back(tmpi);
2803    ss.clear(); ss.str("");
2804  }
2805
2806  return res;
2807}
2808
2809std::vector<string> Scantable::splitToStringList(const std::string& s, const char delim)
2810{
2811  istringstream iss(s);
2812  std::string tmp;
2813  std::vector<string> res;
2814  while (getline(iss, tmp, delim)) {
2815    res.push_back(tmp);
2816  }
2817
2818  return res;
2819}
2820
2821std::vector<bool> Scantable::getMaskFromMaskList(const int nchan, const std::vector<int>& masklist)
2822{
2823  if (masklist.size() % 2 != 0) {
2824    throw(AipsError("masklist must have even number of elements."));
2825  }
2826
2827  std::vector<bool> res(nchan);
2828
2829  for (int i = 0; i < nchan; ++i) {
2830    res[i] = false;
2831  }
2832  for (uInt j = 0; j < masklist.size(); j += 2) {
2833    for (int i = masklist[j]; i <= masklist[j+1]; ++i) {
2834      res[i] = true;
2835    }
2836  }
2837
2838  return res;
2839}
2840
2841Vector<uInt> Scantable::getMaskListFromMask(const std::vector<bool>& mask)
2842{
2843  std::vector<int> masklist;
2844  masklist.clear();
2845
2846  for (uInt i = 0; i < mask.size(); ++i) {
2847    if (mask[i]) {
2848      if ((i == 0)||(i == mask.size()-1)) {
2849        masklist.push_back(i);
2850      } else {
2851        if ((mask[i])&&(!mask[i-1])) {
2852          masklist.push_back(i);
2853        }
2854        if ((mask[i])&&(!mask[i+1])) {
2855          masklist.push_back(i);
2856        }
2857      }
2858    }
2859  }
2860
2861  Vector<uInt> res(masklist.size());
2862  for (uInt i = 0; i < masklist.size(); ++i) {
2863    res[i] = (uInt)masklist[i];
2864  }
2865
2866  return res;
2867}
2868
2869void Scantable::initialiseBaselining(const std::string& blfile,
2870                                     ofstream& ofs,
2871                                     const bool outLogger,
2872                                     bool& outTextFile,
2873                                     bool& csvFormat,
2874                                     String& coordInfo,
2875                                     bool& hasSameNchan,
2876                                     const std::string& progressInfo,
2877                                     bool& showProgress,
2878                                     int& minNRow,
2879                                     Vector<Double>& timeSecCol)
2880{
2881  csvFormat = false;
2882  outTextFile = false;
2883
2884  if (blfile != "") {
2885    csvFormat = (blfile.substr(0, 1) == "T");
2886    ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
2887    if (ofs) outTextFile = true;
2888  }
2889
2890  coordInfo = "";
2891  hasSameNchan = true;
2892
2893  if (outLogger || outTextFile) {
2894    coordInfo = getCoordInfo()[0];
2895    if (coordInfo == "") coordInfo = "channel";
2896    hasSameNchan = hasSameNchanOverIFs();
2897  }
2898
2899  parseProgressInfo(progressInfo, showProgress, minNRow);
2900
2901  ROScalarColumn<Double> tcol = ROScalarColumn<Double>(table_, "TIME");
2902  timeSecCol = tcol.getColumn();
2903}
2904
2905void Scantable::finaliseBaselining(const bool outBaselineTable,
2906                                   STBaselineTable* pbt,
2907                                   const string& bltable,
2908                                   const bool outTextFile,
2909                                   ofstream& ofs)
2910{
2911  if (outBaselineTable) {
2912    pbt->save(bltable);
2913  }
2914
2915  if (outTextFile) ofs.close();
2916}
2917
2918void Scantable::initLineFinder(const std::vector<int>& edge,
2919                               const float threshold,
2920                               const int chanAvgLimit,
2921                               STLineFinder& lineFinder)
2922{
2923  if ((edge.size() > 2) && (edge.size() < getIFNos().size()*2)) {
2924    throw(AipsError("Length of edge element info is less than that of IFs"));
2925  }
2926
2927  lineFinder.setOptions(threshold, 3, chanAvgLimit);
2928}
2929
2930void Scantable::polyBaseline(const std::vector<bool>& mask, int order,
2931                             float thresClip, int nIterClip,
2932                             bool getResidual,
2933                             const std::string& progressInfo,
2934                             const bool outLogger, const std::string& blfile,
2935                             const std::string& bltable)
2936{
2937  /****
2938  double TimeStart = mathutil::gettimeofday_sec();
2939  ****/
2940
2941  try {
2942    ofstream ofs;
2943    String coordInfo;
2944    bool hasSameNchan, outTextFile, csvFormat, showProgress;
2945    int minNRow;
2946    int nRow = nrow();
2947    std::vector<bool> chanMask, finalChanMask;
2948    float rms;
2949    bool outBaselineTable = (bltable != "");
2950    STBaselineTable bt = STBaselineTable(*this);
2951    Vector<Double> timeSecCol;
2952
2953    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
2954                         coordInfo, hasSameNchan,
2955                         progressInfo, showProgress, minNRow,
2956                         timeSecCol);
2957
2958    std::vector<int> nChanNos;
2959    std::vector<std::vector<std::vector<double> > > modelReservoir;
2960    modelReservoir = getPolynomialModelReservoir(order,
2961                                                 &Scantable::getNormalPolynomial,
2962                                                 nChanNos);
2963
2964    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
2965      std::vector<float> sp = getSpectrum(whichrow);
2966      chanMask = getCompositeChanMask(whichrow, mask);
2967
2968      std::vector<float> params;
2969      int nClipped = 0;
2970      std::vector<float> res = doLeastSquareFitting(sp, chanMask,
2971                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
2972                                   params, rms, finalChanMask,
2973                                   nClipped, thresClip, nIterClip, getResidual);
2974
2975      if (outBaselineTable) {
2976        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
2977                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
2978                      true, STBaselineFunc::Polynomial, order, std::vector<float>(),
2979                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
2980                      thresClip, nIterClip, 0.0, 0, std::vector<int>());
2981      } else {
2982        setSpectrum(res, whichrow);
2983      }
2984
2985      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
2986                          coordInfo, hasSameNchan, ofs, "polyBaseline()",
2987                          params, nClipped);
2988      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
2989    }
2990
2991    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
2992
2993  } catch (...) {
2994    throw;
2995  }
2996
2997  /****
2998  double TimeEnd = mathutil::gettimeofday_sec();
2999  double elapse1 = TimeEnd - TimeStart;
3000  std::cout << "poly-new   : " << elapse1 << " (sec.)" << endl;
3001  ****/
3002}
3003
3004void Scantable::autoPolyBaseline(const std::vector<bool>& mask, int order,
3005                                 float thresClip, int nIterClip,
3006                                 const std::vector<int>& edge,
3007                                 float threshold, int chanAvgLimit,
3008                                 bool getResidual,
3009                                 const std::string& progressInfo,
3010                                 const bool outLogger, const std::string& blfile,
3011                                 const std::string& bltable)
3012{
3013  try {
3014    ofstream ofs;
3015    String coordInfo;
3016    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3017    int minNRow;
3018    int nRow = nrow();
3019    std::vector<bool> chanMask, finalChanMask;
3020    float rms;
3021    bool outBaselineTable = (bltable != "");
3022    STBaselineTable bt = STBaselineTable(*this);
3023    Vector<Double> timeSecCol;
3024    STLineFinder lineFinder = STLineFinder();
3025
3026    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3027                         coordInfo, hasSameNchan,
3028                         progressInfo, showProgress, minNRow,
3029                         timeSecCol);
3030
3031    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3032
3033    std::vector<int> nChanNos;
3034    std::vector<std::vector<std::vector<double> > > modelReservoir;
3035    modelReservoir = getPolynomialModelReservoir(order,
3036                                                 &Scantable::getNormalPolynomial,
3037                                                 nChanNos);
3038
3039    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3040      std::vector<float> sp = getSpectrum(whichrow);
3041      std::vector<int> currentEdge;
3042      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
3043
3044      std::vector<float> params;
3045      int nClipped = 0;
3046      std::vector<float> res = doLeastSquareFitting(sp, chanMask,
3047                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3048                                   params, rms, finalChanMask,
3049                                   nClipped, thresClip, nIterClip, getResidual);
3050
3051      if (outBaselineTable) {
3052        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3053                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3054                      true, STBaselineFunc::Polynomial, order, std::vector<float>(),
3055                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3056                      thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
3057      } else {
3058        setSpectrum(res, whichrow);
3059      }
3060
3061      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3062                          coordInfo, hasSameNchan, ofs, "autoPolyBaseline()",
3063                          params, nClipped);
3064      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3065    }
3066
3067    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3068
3069  } catch (...) {
3070    throw;
3071  }
3072}
3073
3074void Scantable::chebyshevBaseline(const std::vector<bool>& mask, int order,
3075                                  float thresClip, int nIterClip,
3076                                  bool getResidual,
3077                                  const std::string& progressInfo,
3078                                  const bool outLogger, const std::string& blfile,
3079                                  const std::string& bltable)
3080{
3081  /*
3082  double TimeStart = mathutil::gettimeofday_sec();
3083  */
3084
3085  try {
3086    ofstream ofs;
3087    String coordInfo;
3088    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3089    int minNRow;
3090    int nRow = nrow();
3091    std::vector<bool> chanMask, finalChanMask;
3092    float rms;
3093    bool outBaselineTable = (bltable != "");
3094    STBaselineTable bt = STBaselineTable(*this);
3095    Vector<Double> timeSecCol;
3096
3097    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3098                         coordInfo, hasSameNchan,
3099                         progressInfo, showProgress, minNRow,
3100                         timeSecCol);
3101
3102    std::vector<int> nChanNos;
3103    std::vector<std::vector<std::vector<double> > > modelReservoir;
3104    modelReservoir = getPolynomialModelReservoir(order,
3105                                                 &Scantable::getChebyshevPolynomial,
3106                                                 nChanNos);
3107
3108    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3109      std::vector<float> sp = getSpectrum(whichrow);
3110      chanMask = getCompositeChanMask(whichrow, mask);
3111
3112      std::vector<float> params;
3113      int nClipped = 0;
3114      std::vector<float> res = doLeastSquareFitting(sp, chanMask,
3115                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3116                                   params, rms, finalChanMask,
3117                                   nClipped, thresClip, nIterClip, getResidual);
3118
3119      if (outBaselineTable) {
3120        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3121                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3122                      true, STBaselineFunc::Chebyshev, order, std::vector<float>(),
3123                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3124                      thresClip, nIterClip, 0.0, 0, std::vector<int>());
3125      } else {
3126        setSpectrum(res, whichrow);
3127      }
3128
3129      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3130                          coordInfo, hasSameNchan, ofs, "chebyshevBaseline()",
3131                          params, nClipped);
3132      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3133    }
3134   
3135    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3136
3137  } catch (...) {
3138    throw;
3139  }
3140
3141  /*
3142  double TimeEnd = mathutil::gettimeofday_sec();
3143  double elapse1 = TimeEnd - TimeStart;
3144  std::cout << "cheby   : " << elapse1 << " (sec.)" << endl;
3145  */
3146}
3147
3148void Scantable::autoChebyshevBaseline(const std::vector<bool>& mask, int order,
3149                                      float thresClip, int nIterClip,
3150                                      const std::vector<int>& edge,
3151                                      float threshold, int chanAvgLimit,
3152                                      bool getResidual,
3153                                      const std::string& progressInfo,
3154                                      const bool outLogger, const std::string& blfile,
3155                                      const std::string& bltable)
3156{
3157  try {
3158    ofstream ofs;
3159    String coordInfo;
3160    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3161    int minNRow;
3162    int nRow = nrow();
3163    std::vector<bool> chanMask, finalChanMask;
3164    float rms;
3165    bool outBaselineTable = (bltable != "");
3166    STBaselineTable bt = STBaselineTable(*this);
3167    Vector<Double> timeSecCol;
3168    STLineFinder lineFinder = STLineFinder();
3169
3170    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3171                         coordInfo, hasSameNchan,
3172                         progressInfo, showProgress, minNRow,
3173                         timeSecCol);
3174
3175    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3176
3177    std::vector<int> nChanNos;
3178    std::vector<std::vector<std::vector<double> > > modelReservoir;
3179    modelReservoir = getPolynomialModelReservoir(order,
3180                                                 &Scantable::getChebyshevPolynomial,
3181                                                 nChanNos);
3182
3183    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3184      std::vector<float> sp = getSpectrum(whichrow);
3185      std::vector<int> currentEdge;
3186      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
3187
3188      std::vector<float> params;
3189      int nClipped = 0;
3190      std::vector<float> res = doLeastSquareFitting(sp, chanMask,
3191                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3192                                   params, rms, finalChanMask,
3193                                   nClipped, thresClip, nIterClip, getResidual);
3194
3195      if (outBaselineTable) {
3196        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3197                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3198                      true, STBaselineFunc::Chebyshev, order, std::vector<float>(),
3199                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3200                      thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
3201      } else {
3202        setSpectrum(res, whichrow);
3203      }
3204
3205      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3206                          coordInfo, hasSameNchan, ofs, "autoChebyshevBaseline()",
3207                          params, nClipped);
3208      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3209    }
3210
3211    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3212
3213  } catch (...) {
3214    throw;
3215  }
3216}
3217
3218double Scantable::calculateModelSelectionCriteria(const std::string& valname,
3219                                                  const std::string& blfunc,
3220                                                  int order,
3221                                                  const std::vector<bool>& inMask,
3222                                                  int whichrow,
3223                                                  bool useLineFinder,
3224                                                  const std::vector<int>& edge,
3225                                                  float threshold,
3226                                                  int chanAvgLimit)
3227{
3228  std::vector<float> sp = getSpectrum(whichrow);
3229  std::vector<bool> chanMask;
3230  chanMask.clear();
3231
3232  if (useLineFinder) {
3233    STLineFinder lineFinder = STLineFinder();
3234    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3235    std::vector<int> currentEdge;
3236    chanMask = getCompositeChanMask(whichrow, inMask, edge, currentEdge, lineFinder);
3237  } else {
3238    chanMask = getCompositeChanMask(whichrow, inMask);
3239  }
3240
3241  return doCalculateModelSelectionCriteria(valname, sp, chanMask, blfunc, order);
3242}
3243
3244double Scantable::doCalculateModelSelectionCriteria(const std::string& valname, const std::vector<float>& spec, const std::vector<bool>& mask, const std::string& blfunc, int order)
3245{
3246  int nparam;
3247  std::vector<float> params;
3248  std::vector<bool> finalChanMask;
3249  float rms;
3250  int nClipped = 0;
3251  std::vector<float> res;
3252  if (blfunc == "poly") {
3253    nparam = order + 1;
3254    res = doPolynomialFitting(spec, mask, order, params, rms, finalChanMask, nClipped);
3255  } else if (blfunc == "chebyshev") {
3256    nparam = order + 1;
3257    res = doChebyshevFitting(spec, mask, order, params, rms, finalChanMask, nClipped);
3258  } else if (blfunc == "cspline") {
3259    std::vector<int> pieceEdges;//(order+1);  //order = npiece
3260    nparam = order + 3;
3261    res = doCubicSplineFitting(spec, mask, order, false, pieceEdges, params, rms, finalChanMask, nClipped);
3262  } else if (blfunc == "sinusoid") {
3263    std::vector<int> nWaves;
3264    nWaves.clear();
3265    for (int i = 0; i <= order; ++i) {
3266      nWaves.push_back(i);
3267    }
3268    nparam = 2*order + 1;  // order = nwave
3269    res = doSinusoidFitting(spec, mask, nWaves, params, rms, finalChanMask, nClipped);
3270  } else {
3271    throw(AipsError("blfunc must be poly, chebyshev, cspline or sinusoid."));
3272  }
3273
3274  double msq = 0.0;
3275  int nusedchan = 0;
3276  int nChan = res.size();
3277  for (int i = 0; i < nChan; ++i) {
3278    if (mask[i]) {
3279      msq += (double)res[i]*(double)res[i];
3280      nusedchan++;
3281    }
3282  }
3283  if (nusedchan == 0) {
3284    throw(AipsError("all channels masked."));
3285  }
3286  msq /= (double)nusedchan;
3287
3288  nparam++;  //add 1 for sigma of Gaussian distribution
3289  const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
3290
3291  if (valname.find("aic") == 0) {
3292    // Original Akaike Information Criterion (AIC)
3293    double aic = nusedchan * (log(2.0 * PI * msq) + 1.0) + 2.0 * nparam;
3294
3295    // Corrected AIC by Sugiura(1978) (AICc)
3296    if (valname == "aicc") {
3297      if (nusedchan - nparam - 1 <= 0) {
3298        throw(AipsError("channel size is too small to calculate AICc."));
3299      }
3300      aic += 2.0*nparam*(nparam + 1)/(double)(nusedchan - nparam - 1);
3301    }
3302
3303    return aic;
3304
3305  } else if (valname == "bic") {
3306    // Bayesian Information Criterion (BIC)
3307    double bic = nusedchan * log(msq) + nparam * log((double)nusedchan);
3308    return bic;
3309
3310  } else if (valname == "gcv") {
3311    // Generalised Cross Validation
3312    double x = 1.0 - (double)nparam / (double)nusedchan;
3313    double gcv = msq / (x * x);
3314    return gcv;
3315
3316  } else {
3317    throw(AipsError("valname must be aic, aicc, bic or gcv."));
3318  }
3319}
3320
3321double Scantable::getNormalPolynomial(int n, double x) {
3322  if (n == 0) {
3323    return 1.0;
3324  } else if (n > 0) {
3325    double res = 1.0;
3326    for (int i = 0; i < n; ++i) {
3327      res *= x;
3328    }
3329    return res;
3330  } else {
3331    if (x == 0.0) {
3332      throw(AipsError("infinity result: x=0 given for negative power."));
3333    } else {
3334      return pow(x, (double)n);
3335    }
3336  }
3337}
3338
3339double Scantable::getChebyshevPolynomial(int n, double x) {
3340  if ((x < -1.0)||(x > 1.0)) {
3341    throw(AipsError("out of definition range (-1 <= x <= 1)."));
3342  } else if (x == 1.0) {
3343    return 1.0;
3344  } else if (x == 0.0) {
3345    double res;
3346    if (n%2 == 0) {
3347      if (n%4 == 0) {
3348        res = 1.0;
3349      } else {
3350        res = -1.0;
3351      }
3352    } else {
3353      res = 0.0;
3354    }
3355    return res;
3356  } else if (x == -1.0) {
3357    double res = (n%2 == 0 ? 1.0 : -1.0);
3358    return res;
3359  } else if (n < 0) {
3360    throw(AipsError("the order must be zero or positive."));
3361  } else if (n == 0) {
3362    return 1.0;
3363  } else if (n == 1) {
3364    return x;
3365  } else {
3366    double res = 0.0;
3367    for (int m = 0; m <= n/2; ++m) {
3368      double c = 1.0;
3369      if (m > 0) {
3370        for (int i = 1; i <= m; ++i) {
3371          c *= (double)(n-2*m+i)/(double)i;
3372        }
3373      }
3374      res += (m%2 == 0 ? 1.0 : -1.0)*(double)n/(double)(n-m)*pow(2.0*x, (double)(n-2*m))/2.0*c;
3375    }
3376    return res;
3377  }
3378}
3379
3380std::vector<float> Scantable::doPolynomialFitting(const std::vector<float>& data,
3381                                                  const std::vector<bool>& mask,
3382                                                  int order,
3383                                                  std::vector<float>& params,
3384                                                  float& rms,
3385                                                  std::vector<bool>& finalmask,
3386                                                  float clipth,
3387                                                  int clipn)
3388{
3389  int nClipped = 0;
3390  return doPolynomialFitting(data, mask, order, params, rms, finalmask, nClipped, clipth, clipn);
3391}
3392
3393std::vector<float> Scantable::doPolynomialFitting(const std::vector<float>& data,
3394                                                  const std::vector<bool>& mask,
3395                                                  int order,
3396                                                  std::vector<float>& params,
3397                                                  float& rms,
3398                                                  std::vector<bool>& finalMask,
3399                                                  int& nClipped,
3400                                                  float thresClip,
3401                                                  int nIterClip,
3402                                                  bool getResidual)
3403{
3404  return doLeastSquareFitting(data, mask,
3405                              getPolynomialModel(order, data.size(), &Scantable::getNormalPolynomial),
3406                              params, rms, finalMask,
3407                              nClipped, thresClip, nIterClip,
3408                              getResidual);
3409}
3410
3411std::vector<float> Scantable::doChebyshevFitting(const std::vector<float>& data,
3412                                                 const std::vector<bool>& mask,
3413                                                 int order,
3414                                                 std::vector<float>& params,
3415                                                 float& rms,
3416                                                 std::vector<bool>& finalmask,
3417                                                 float clipth,
3418                                                 int clipn)
3419{
3420  int nClipped = 0;
3421  return doChebyshevFitting(data, mask, order, params, rms, finalmask, nClipped, clipth, clipn);
3422}
3423
3424std::vector<float> Scantable::doChebyshevFitting(const std::vector<float>& data,
3425                                                 const std::vector<bool>& mask,
3426                                                 int order,
3427                                                 std::vector<float>& params,
3428                                                 float& rms,
3429                                                 std::vector<bool>& finalMask,
3430                                                 int& nClipped,
3431                                                 float thresClip,
3432                                                 int nIterClip,
3433                                                 bool getResidual)
3434{
3435  return doLeastSquareFitting(data, mask,
3436                              getPolynomialModel(order, data.size(), &Scantable::getChebyshevPolynomial),
3437                              params, rms, finalMask,
3438                              nClipped, thresClip, nIterClip,
3439                              getResidual);
3440}
3441
3442std::vector<std::vector<double> > Scantable::getPolynomialModel(int order, int nchan, double (Scantable::*pfunc)(int, double))
3443{
3444  // model  : contains model values for computing the least-square matrix.
3445  //          model.size() is nmodel and model[*].size() is nchan.
3446  //          Each model element are as follows:
3447  //
3448  //          (for normal polynomials)
3449  //          model[0]   = {1.0,   1.0,   1.0,   ..., 1.0},
3450  //          model[1]   = {0.0,   1.0,   2.0,   ..., (nchan-1)}
3451  //          model[n-1] = ...,
3452  //          model[n]   = {0.0^n, 1.0^n, 2.0^n, ..., (nchan-1)^n}
3453  //          where (0 <= n <= order)
3454  //
3455  //          (for Chebyshev polynomials)
3456  //          model[0]   = {T0(-1), T0(2/(nchan-1)-1), T0(4/(nchan-1)-1), ..., T0(1)},
3457  //          model[n-1] = ...,
3458  //          model[n]   = {Tn(-1), Tn(2/(nchan-1)-1), Tn(4/(nchan-1)-1), ..., Tn(1)}
3459  //          where (0 <= n <= order),
3460
3461  int nmodel = order + 1;
3462  std::vector<std::vector<double> > model(nmodel, std::vector<double>(nchan));
3463
3464  double stretch, shift;
3465  if (pfunc == &Scantable::getChebyshevPolynomial) {
3466    stretch = 2.0/(double)(nchan - 1);
3467    shift   = -1.0;
3468  } else {
3469    stretch = 1.0;
3470    shift   = 0.0;
3471  }
3472
3473  for (int i = 0; i < nmodel; ++i) {
3474    for (int j = 0; j < nchan; ++j) {
3475      model[i][j] = (this->*pfunc)(i, stretch*(double)j + shift);
3476    }
3477  }
3478
3479  return model;
3480}
3481
3482std::vector<std::vector<std::vector<double> > > Scantable::getPolynomialModelReservoir(int order,
3483                                                                                       double (Scantable::*pfunc)(int, double),
3484                                                                                       std::vector<int>& nChanNos)
3485{
3486  std::vector<std::vector<std::vector<double> > > res;
3487  res.clear();
3488  nChanNos.clear();
3489
3490  std::vector<uint> ifNos = getIFNos();
3491  for (uint i = 0; i < ifNos.size(); ++i) {
3492    int currNchan = nchan(ifNos[i]);
3493    bool hasDifferentNchan = (i == 0);
3494    for (uint j = 0; j < i; ++j) {
3495      if (currNchan != nchan(ifNos[j])) {
3496        hasDifferentNchan = true;
3497        break;
3498      }
3499    }
3500    if (hasDifferentNchan) {
3501      res.push_back(getPolynomialModel(order, currNchan, pfunc));
3502      nChanNos.push_back(currNchan);
3503    }
3504  }
3505
3506  return res;
3507}
3508
3509std::vector<float> Scantable::doLeastSquareFitting(const std::vector<float>& data,
3510                                                   const std::vector<bool>& mask,
3511                                                   const std::vector<std::vector<double> >& model,
3512                                                   std::vector<float>& params,
3513                                                   float& rms,
3514                                                   std::vector<bool>& finalMask,
3515                                                   int& nClipped,
3516                                                   float thresClip,
3517                                                   int nIterClip,
3518                                                   bool getResidual)
3519{
3520  int nDOF = model.size();
3521  int nChan = data.size();
3522
3523  if (nDOF == 0) {
3524    throw(AipsError("no model data given"));
3525  }
3526  if (nChan < 2) {
3527    throw(AipsError("data size is too few"));
3528  }
3529  if (nChan != (int)mask.size()) {
3530    throw(AipsError("data and mask sizes are not identical"));
3531  }
3532  for (int i = 0; i < nDOF; ++i) {
3533    if (nChan != (int)model[i].size()) {
3534      throw(AipsError("data and model sizes are not identical"));
3535    }
3536  }
3537
3538  params.clear();
3539  params.resize(nDOF);
3540
3541  finalMask.clear();
3542  finalMask.resize(nChan);
3543
3544  std::vector<int> maskArray(nChan);
3545  int j = 0;
3546  for (int i = 0; i < nChan; ++i) {
3547    maskArray[i] = mask[i] ? 1 : 0;
3548    if (mask[i]) {
3549      j++;
3550    }
3551    finalMask[i] = mask[i];
3552  }
3553
3554  int initNData = j;
3555  int nData = initNData;
3556
3557  std::vector<double> z1(nChan), r1(nChan), residual(nChan);
3558  for (int i = 0; i < nChan; ++i) {
3559    z1[i] = (double)data[i];
3560    r1[i] = 0.0;
3561    residual[i] = 0.0;
3562  }
3563
3564  for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
3565    // xMatrix : horizontal concatenation of
3566    //           the least-sq. matrix (left) and an
3567    //           identity matrix (right).
3568    // the right part is used to calculate the inverse matrix of the left part.
3569    double xMatrix[nDOF][2*nDOF];
3570    double zMatrix[nDOF];
3571    for (int i = 0; i < nDOF; ++i) {
3572      for (int j = 0; j < 2*nDOF; ++j) {
3573        xMatrix[i][j] = 0.0;
3574      }
3575      xMatrix[i][nDOF+i] = 1.0;
3576      zMatrix[i] = 0.0;
3577    }
3578
3579    int nUseData = 0;
3580    for (int k = 0; k < nChan; ++k) {
3581      if (maskArray[k] == 0) continue;
3582
3583      for (int i = 0; i < nDOF; ++i) {
3584        for (int j = i; j < nDOF; ++j) {
3585          xMatrix[i][j] += model[i][k] * model[j][k];
3586        }
3587        zMatrix[i] += z1[k] * model[i][k];
3588      }
3589
3590      nUseData++;
3591    }
3592
3593    if (nUseData < 1) {
3594        throw(AipsError("all channels clipped or masked. can't execute fitting anymore."));     
3595    }
3596
3597    for (int i = 0; i < nDOF; ++i) {
3598      for (int j = 0; j < i; ++j) {
3599        xMatrix[i][j] = xMatrix[j][i];
3600      }
3601    }
3602
3603    std::vector<double> invDiag(nDOF);
3604    for (int i = 0; i < nDOF; ++i) {
3605      invDiag[i] = 1.0 / xMatrix[i][i];
3606      for (int j = 0; j < nDOF; ++j) {
3607        xMatrix[i][j] *= invDiag[i];
3608      }
3609    }
3610
3611    for (int k = 0; k < nDOF; ++k) {
3612      for (int i = 0; i < nDOF; ++i) {
3613        if (i != k) {
3614          double factor1 = xMatrix[k][k];
3615          double invfactor1 = 1.0 / factor1;
3616          double factor2 = xMatrix[i][k];
3617          for (int j = k; j < 2*nDOF; ++j) {
3618            xMatrix[i][j] *= factor1;
3619            xMatrix[i][j] -= xMatrix[k][j]*factor2;
3620            xMatrix[i][j] *= invfactor1;
3621          }
3622        }
3623      }
3624      double invXDiag = 1.0 / xMatrix[k][k];
3625      for (int j = k; j < 2*nDOF; ++j) {
3626        xMatrix[k][j] *= invXDiag;
3627      }
3628    }
3629   
3630    for (int i = 0; i < nDOF; ++i) {
3631      for (int j = 0; j < nDOF; ++j) {
3632        xMatrix[i][nDOF+j] *= invDiag[j];
3633      }
3634    }
3635    //compute a vector y in which coefficients of the best-fit
3636    //model functions are stored.
3637    //in case of polynomials, y consists of (a0,a1,a2,...)
3638    //where ai is the coefficient of the term x^i.
3639    //in case of sinusoids, y consists of (a0,s1,c1,s2,c2,...)
3640    //where a0 is constant term and s* and c* are of sine
3641    //and cosine functions, respectively.
3642    std::vector<double> y(nDOF);
3643    for (int i = 0; i < nDOF; ++i) {
3644      y[i] = 0.0;
3645      for (int j = 0; j < nDOF; ++j) {
3646        y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
3647      }
3648      params[i] = (float)y[i];
3649    }
3650
3651    for (int i = 0; i < nChan; ++i) {
3652      r1[i] = y[0];
3653      for (int j = 1; j < nDOF; ++j) {
3654        r1[i] += y[j]*model[j][i];
3655      }
3656      residual[i] = z1[i] - r1[i];
3657    }
3658
3659    double stdDev = 0.0;
3660    for (int i = 0; i < nChan; ++i) {
3661      stdDev += residual[i]*residual[i]*(double)maskArray[i];
3662    }
3663    stdDev = sqrt(stdDev/(double)nData);
3664    rms = (float)stdDev;
3665
3666    if ((nClip == nIterClip) || (thresClip <= 0.0)) {
3667      break;
3668    } else {
3669
3670      double thres = stdDev * thresClip;
3671      int newNData = 0;
3672      for (int i = 0; i < nChan; ++i) {
3673        if (abs(residual[i]) >= thres) {
3674          maskArray[i] = 0;
3675          finalMask[i] = false;
3676        }
3677        if (maskArray[i] > 0) {
3678          newNData++;
3679        }
3680      }
3681      if (newNData == nData) {
3682        break; //no more flag to add. iteration stops.
3683      } else {
3684        nData = newNData;
3685      }
3686
3687    }
3688  }
3689
3690  nClipped = initNData - nData;
3691
3692  std::vector<float> result(nChan);
3693  if (getResidual) {
3694    for (int i = 0; i < nChan; ++i) {
3695      result[i] = (float)residual[i];
3696    }
3697  } else {
3698    for (int i = 0; i < nChan; ++i) {
3699      result[i] = (float)r1[i];
3700    }
3701  }
3702
3703  return result;
3704}
3705
3706void Scantable::cubicSplineBaseline(const std::vector<bool>& mask, int nPiece,
3707                                    float thresClip, int nIterClip,
3708                                    bool getResidual,
3709                                    const std::string& progressInfo,
3710                                    const bool outLogger, const std::string& blfile,
3711                                    const std::string& bltable)
3712{
3713  /****
3714  double TimeStart = mathutil::gettimeofday_sec();
3715  ****/
3716
3717  try {
3718    ofstream ofs;
3719    String coordInfo;
3720    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3721    int minNRow;
3722    int nRow = nrow();
3723    std::vector<bool> chanMask, finalChanMask;
3724    float rms;
3725    bool outBaselineTable = (bltable != "");
3726    STBaselineTable bt = STBaselineTable(*this);
3727    Vector<Double> timeSecCol;
3728
3729    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3730                         coordInfo, hasSameNchan,
3731                         progressInfo, showProgress, minNRow,
3732                         timeSecCol);
3733
3734    std::vector<int> nChanNos;
3735    std::vector<std::vector<std::vector<double> > > modelReservoir;
3736    modelReservoir = getPolynomialModelReservoir(3,
3737                                                 &Scantable::getNormalPolynomial,
3738                                                 nChanNos);
3739
3740    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3741      std::vector<float> sp = getSpectrum(whichrow);
3742      chanMask = getCompositeChanMask(whichrow, mask);
3743
3744      std::vector<int> pieceEdges;
3745      std::vector<float> params;
3746      int nClipped = 0;
3747      std::vector<float> res = doCubicSplineLeastSquareFitting(sp, chanMask,
3748                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3749                                   nPiece, false, pieceEdges, params, rms, finalChanMask,
3750                                   nClipped, thresClip, nIterClip, getResidual);
3751
3752      if (outBaselineTable) {
3753        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3754                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3755                      true, STBaselineFunc::CSpline, pieceEdges, std::vector<float>(),
3756                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3757                      thresClip, nIterClip, 0.0, 0, std::vector<int>());
3758      } else {
3759        setSpectrum(res, whichrow);
3760      }
3761
3762      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3763                          coordInfo, hasSameNchan, ofs, "cubicSplineBaseline()",
3764                          pieceEdges, params, nClipped);
3765      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3766    }
3767   
3768    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3769
3770  } catch (...) {
3771    throw;
3772  }
3773
3774  /****
3775  double TimeEnd = mathutil::gettimeofday_sec();
3776  double elapse1 = TimeEnd - TimeStart;
3777  std::cout << "cspline-new   : " << elapse1 << " (sec.)" << endl;
3778  ****/
3779}
3780
3781void Scantable::autoCubicSplineBaseline(const std::vector<bool>& mask, int nPiece,
3782                                        float thresClip, int nIterClip,
3783                                        const std::vector<int>& edge,
3784                                        float threshold, int chanAvgLimit,
3785                                        bool getResidual,
3786                                        const std::string& progressInfo,
3787                                        const bool outLogger, const std::string& blfile,
3788                                        const std::string& bltable)
3789{
3790  try {
3791    ofstream ofs;
3792    String coordInfo;
3793    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3794    int minNRow;
3795    int nRow = nrow();
3796    std::vector<bool> chanMask, finalChanMask;
3797    float rms;
3798    bool outBaselineTable = (bltable != "");
3799    STBaselineTable bt = STBaselineTable(*this);
3800    Vector<Double> timeSecCol;
3801    STLineFinder lineFinder = STLineFinder();
3802
3803    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3804                         coordInfo, hasSameNchan,
3805                         progressInfo, showProgress, minNRow,
3806                         timeSecCol);
3807
3808    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3809
3810    std::vector<int> nChanNos;
3811    std::vector<std::vector<std::vector<double> > > modelReservoir;
3812    modelReservoir = getPolynomialModelReservoir(3,
3813                                                 &Scantable::getNormalPolynomial,
3814                                                 nChanNos);
3815
3816    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3817      std::vector<float> sp = getSpectrum(whichrow);
3818      std::vector<int> currentEdge;
3819      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
3820
3821      std::vector<int> pieceEdges;
3822      std::vector<float> params;
3823      int nClipped = 0;
3824      std::vector<float> res = doCubicSplineLeastSquareFitting(sp, chanMask,
3825                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3826                                   nPiece, false, pieceEdges, params, rms, finalChanMask,
3827                                   nClipped, thresClip, nIterClip, getResidual);
3828
3829      if (outBaselineTable) {
3830        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3831                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3832                      true, STBaselineFunc::CSpline, pieceEdges, std::vector<float>(),
3833                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3834                      thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
3835      } else {
3836        setSpectrum(res, whichrow);
3837      }
3838
3839      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3840                          coordInfo, hasSameNchan, ofs, "autoCubicSplineBaseline()",
3841                          pieceEdges, params, nClipped);
3842      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3843    }
3844
3845    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3846
3847  } catch (...) {
3848    throw;
3849  }
3850}
3851
3852std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data,
3853                                                   const std::vector<bool>& mask,
3854                                                   std::vector<int>& idxEdge,
3855                                                   std::vector<float>& params,
3856                                                   float& rms,
3857                                                   std::vector<bool>& finalmask,
3858                                                   float clipth,
3859                                                   int clipn)
3860{
3861  int nClipped = 0;
3862  return doCubicSplineFitting(data, mask, idxEdge.size()-1, true, idxEdge, params, rms, finalmask, nClipped, clipth, clipn);
3863}
3864
3865std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data,
3866                                                   const std::vector<bool>& mask,
3867                                                   int nPiece,
3868                                                   std::vector<int>& idxEdge,
3869                                                   std::vector<float>& params,
3870                                                   float& rms,
3871                                                   std::vector<bool>& finalmask,
3872                                                   float clipth,
3873                                                   int clipn)
3874{
3875  int nClipped = 0;
3876  return doCubicSplineFitting(data, mask, nPiece, false, idxEdge, params, rms, finalmask, nClipped, clipth, clipn);
3877}
3878
3879std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data,
3880                                                   const std::vector<bool>& mask,
3881                                                   int nPiece,
3882                                                   bool useGivenPieceBoundary,
3883                                                   std::vector<int>& idxEdge,
3884                                                   std::vector<float>& params,
3885                                                   float& rms,
3886                                                   std::vector<bool>& finalMask,
3887                                                   int& nClipped,
3888                                                   float thresClip,
3889                                                   int nIterClip,
3890                                                   bool getResidual)
3891{
3892  return doCubicSplineLeastSquareFitting(data, mask,
3893                                         getPolynomialModel(3, data.size(), &Scantable::getNormalPolynomial),
3894                                         nPiece, useGivenPieceBoundary, idxEdge,
3895                                         params, rms, finalMask,
3896                                         nClipped, thresClip, nIterClip,
3897                                         getResidual);
3898}
3899
3900std::vector<float> Scantable::doCubicSplineLeastSquareFitting(const std::vector<float>& data,
3901                                                              const std::vector<bool>& mask,
3902                                                              const std::vector<std::vector<double> >& model,
3903                                                              int nPiece,
3904                                                              bool useGivenPieceBoundary,
3905                                                              std::vector<int>& idxEdge,
3906                                                              std::vector<float>& params,
3907                                                              float& rms,
3908                                                              std::vector<bool>& finalMask,
3909                                                              int& nClipped,
3910                                                              float thresClip,
3911                                                              int nIterClip,
3912                                                              bool getResidual)
3913{
3914  int nDOF = nPiece + 3;  //number of independent parameters to solve, namely, 4+(nPiece-1).
3915  int nModel = model.size();
3916  int nChan = data.size();
3917
3918  if (nModel != 4) {
3919    throw(AipsError("model size must be 4."));
3920  }
3921  if (nPiece < 1) {
3922    throw(AipsError("number of the sections must be one or more"));
3923  }
3924  if (nChan < 2*nPiece) {
3925    throw(AipsError("data size is too few"));
3926  }
3927  if (nChan != (int)mask.size()) {
3928    throw(AipsError("data and mask sizes are not identical"));
3929  }
3930  for (int i = 0; i < nModel; ++i) {
3931    if (nChan != (int)model[i].size()) {
3932      throw(AipsError("data and model sizes are not identical"));
3933    }
3934  }
3935
3936  params.clear();
3937  params.resize(nPiece*nModel);
3938
3939  finalMask.clear();
3940  finalMask.resize(nChan);
3941
3942  std::vector<int> maskArray(nChan);
3943  std::vector<int> x(nChan);
3944  int j = 0;
3945  for (int i = 0; i < nChan; ++i) {
3946    maskArray[i] = mask[i] ? 1 : 0;
3947    if (mask[i]) {
3948      x[j] = i;
3949      j++;
3950    }
3951    finalMask[i] = mask[i];
3952  }
3953
3954  int initNData = j;
3955  int nData = initNData;
3956
3957  if (initNData < nPiece) {
3958    throw(AipsError("too few non-flagged channels"));
3959  }
3960
3961  int nElement = (int)(floor(floor((double)(initNData/nPiece))+0.5));
3962  std::vector<double> invEdge(nPiece-1);
3963
3964  if (useGivenPieceBoundary) {
3965    if ((int)idxEdge.size() != nPiece+1) {
3966      throw(AipsError("pieceEdge.size() must be equal to nPiece+1."));
3967    }
3968  } else {
3969    idxEdge.clear();
3970    idxEdge.resize(nPiece+1);
3971    idxEdge[0] = x[0];
3972  }
3973  for (int i = 1; i < nPiece; ++i) {
3974    int valX = x[nElement*i];
3975    if (!useGivenPieceBoundary) {
3976      idxEdge[i] = valX;
3977    }
3978    invEdge[i-1] = 1.0/(double)valX;
3979  }
3980  if (!useGivenPieceBoundary) {
3981    idxEdge[nPiece] = x[initNData-1]+1;
3982  }
3983
3984  std::vector<double> z1(nChan), r1(nChan), residual(nChan);
3985  for (int i = 0; i < nChan; ++i) {
3986    z1[i] = (double)data[i];
3987    r1[i] = 0.0;
3988    residual[i] = 0.0;
3989  }
3990
3991  for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
3992    // xMatrix : horizontal concatenation of
3993    //           the least-sq. matrix (left) and an
3994    //           identity matrix (right).
3995    // the right part is used to calculate the inverse matrix of the left part.
3996
3997    double xMatrix[nDOF][2*nDOF];
3998    double zMatrix[nDOF];
3999    for (int i = 0; i < nDOF; ++i) {
4000      for (int j = 0; j < 2*nDOF; ++j) {
4001        xMatrix[i][j] = 0.0;
4002      }
4003      xMatrix[i][nDOF+i] = 1.0;
4004      zMatrix[i] = 0.0;
4005    }
4006
4007    for (int n = 0; n < nPiece; ++n) {
4008      int nUseDataInPiece = 0;
4009      for (int k = idxEdge[n]; k < idxEdge[n+1]; ++k) {
4010
4011        if (maskArray[k] == 0) continue;
4012
4013        for (int i = 0; i < nModel; ++i) {
4014          for (int j = i; j < nModel; ++j) {
4015            xMatrix[i][j] += model[i][k] * model[j][k];
4016          }
4017          zMatrix[i] += z1[k] * model[i][k];
4018        }
4019
4020        for (int i = 0; i < n; ++i) {
4021          double q = 1.0 - model[1][k]*invEdge[i];
4022          q = q*q*q;
4023          for (int j = 0; j < nModel; ++j) {
4024            xMatrix[j][i+nModel] += q * model[j][k];
4025          }
4026          for (int j = 0; j < i; ++j) {
4027            double r = 1.0 - model[1][k]*invEdge[j];
4028            r = r*r*r;
4029            xMatrix[j+nModel][i+nModel] += r*q;
4030          }
4031          xMatrix[i+nModel][i+nModel] += q*q;
4032          zMatrix[i+nModel] += q*z1[k];
4033        }
4034
4035        nUseDataInPiece++;
4036      }
4037
4038      if (nUseDataInPiece < 1) {
4039        std::vector<string> suffixOfPieceNumber(4);
4040        suffixOfPieceNumber[0] = "th";
4041        suffixOfPieceNumber[1] = "st";
4042        suffixOfPieceNumber[2] = "nd";
4043        suffixOfPieceNumber[3] = "rd";
4044        int idxNoDataPiece = (n % 10 <= 3) ? n : 0;
4045        ostringstream oss;
4046        oss << "all channels clipped or masked in " << n << suffixOfPieceNumber[idxNoDataPiece];
4047        oss << " piece of the spectrum. can't execute fitting anymore.";
4048        throw(AipsError(String(oss)));
4049      }
4050    }
4051
4052    for (int i = 0; i < nDOF; ++i) {
4053      for (int j = 0; j < i; ++j) {
4054        xMatrix[i][j] = xMatrix[j][i];
4055      }
4056    }
4057
4058    std::vector<double> invDiag(nDOF);
4059    for (int i = 0; i < nDOF; ++i) {
4060      invDiag[i] = 1.0 / xMatrix[i][i];
4061      for (int j = 0; j < nDOF; ++j) {
4062        xMatrix[i][j] *= invDiag[i];
4063      }
4064    }
4065
4066    for (int k = 0; k < nDOF; ++k) {
4067      for (int i = 0; i < nDOF; ++i) {
4068        if (i != k) {
4069          double factor1 = xMatrix[k][k];
4070          double invfactor1 = 1.0 / factor1;
4071          double factor2 = xMatrix[i][k];
4072          for (int j = k; j < 2*nDOF; ++j) {
4073            xMatrix[i][j] *= factor1;
4074            xMatrix[i][j] -= xMatrix[k][j]*factor2;
4075            xMatrix[i][j] *= invfactor1;
4076          }
4077        }
4078      }
4079      double invXDiag = 1.0 / xMatrix[k][k];
4080      for (int j = k; j < 2*nDOF; ++j) {
4081        xMatrix[k][j] *= invXDiag;
4082      }
4083    }
4084   
4085    for (int i = 0; i < nDOF; ++i) {
4086      for (int j = 0; j < nDOF; ++j) {
4087        xMatrix[i][nDOF+j] *= invDiag[j];
4088      }
4089    }
4090
4091    //compute a vector y which consists of the coefficients of the best-fit spline curves
4092    //(a0,a1,a2,a3(,b3,c3,...)), namely, the ones for the leftmost piece and the ones of
4093    //cubic terms for the other pieces (in case nPiece>1).
4094    std::vector<double> y(nDOF);
4095    for (int i = 0; i < nDOF; ++i) {
4096      y[i] = 0.0;
4097      for (int j = 0; j < nDOF; ++j) {
4098        y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
4099      }
4100    }
4101
4102    std::vector<double> a(nModel);
4103    for (int i = 0; i < nModel; ++i) {
4104      a[i] = y[i];
4105    }
4106
4107    int j = 0;
4108    for (int n = 0; n < nPiece; ++n) {
4109      for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
4110        r1[i] = 0.0;
4111        for (int j = 0; j < nModel; ++j) {
4112          r1[i] += a[j] * model[j][i];
4113        }
4114      }
4115      for (int i = 0; i < nModel; ++i) {
4116        params[j+i] = a[i];
4117      }
4118      j += nModel;
4119
4120      if (n == nPiece-1) break;
4121
4122      double d = y[n+nModel];
4123      double iE = invEdge[n];
4124      a[0] +=       d;
4125      a[1] -= 3.0 * d * iE;
4126      a[2] += 3.0 * d * iE * iE;
4127      a[3] -=       d * iE * iE * iE;
4128    }
4129
4130    //subtract constant value for masked regions at the edge of spectrum
4131    if (idxEdge[0] > 0) {
4132      int n = idxEdge[0];
4133      for (int i = 0; i < idxEdge[0]; ++i) {
4134        //--cubic extrapolate--
4135        //r1[i] = params[0] + params[1]*x1[i] + params[2]*x2[i] + params[3]*x3[i];
4136        //--linear extrapolate--
4137        //r1[i] = (r1[n+1] - r1[n])/(x1[n+1] - x1[n])*(x1[i] - x1[n]) + r1[n];
4138        //--constant--
4139        r1[i] = r1[n];
4140      }
4141    }
4142
4143    if (idxEdge[nPiece] < nChan) {
4144      int n = idxEdge[nPiece]-1;
4145      for (int i = idxEdge[nPiece]; i < nChan; ++i) {
4146        //--cubic extrapolate--
4147        //int m = 4*(nPiece-1);
4148        //r1[i] = params[m] + params[m+1]*x1[i] + params[m+2]*x2[i] + params[m+3]*x3[i];
4149        //--linear extrapolate--
4150        //r1[i] = (r1[n-1] - r1[n])/(x1[n-1] - x1[n])*(x1[i] - x1[n]) + r1[n];
4151        //--constant--
4152        r1[i] = r1[n];
4153      }
4154    }
4155
4156    for (int i = 0; i < nChan; ++i) {
4157      residual[i] = z1[i] - r1[i];
4158    }
4159
4160    double stdDev = 0.0;
4161    for (int i = 0; i < nChan; ++i) {
4162      stdDev += residual[i]*residual[i]*(double)maskArray[i];
4163    }
4164    stdDev = sqrt(stdDev/(double)nData);
4165    rms = (float)stdDev;
4166
4167    if ((nClip == nIterClip) || (thresClip <= 0.0)) {
4168      break;
4169    } else {
4170     
4171      double thres = stdDev * thresClip;
4172      int newNData = 0;
4173      for (int i = 0; i < nChan; ++i) {
4174        if (abs(residual[i]) >= thres) {
4175          maskArray[i] = 0;
4176          finalMask[i] = false;
4177        }
4178        if (maskArray[i] > 0) {
4179          newNData++;
4180        }
4181      }
4182      if (newNData == nData) {
4183        break; //no more flag to add. iteration stops.
4184      } else {
4185        nData = newNData;
4186      }
4187
4188    }
4189  }
4190
4191  nClipped = initNData - nData;
4192
4193  std::vector<float> result(nChan);
4194  if (getResidual) {
4195    for (int i = 0; i < nChan; ++i) {
4196      result[i] = (float)residual[i];
4197    }
4198  } else {
4199    for (int i = 0; i < nChan; ++i) {
4200      result[i] = (float)r1[i];
4201    }
4202  }
4203
4204  return result;
4205}
4206
4207std::vector<int> Scantable::selectWaveNumbers(const std::vector<int>& addNWaves,
4208                                  const std::vector<int>& rejectNWaves)
4209{
4210  std::vector<bool> chanMask;
4211  std::string fftMethod;
4212  std::string fftThresh;
4213
4214  return selectWaveNumbers(0, chanMask, false, fftMethod, fftThresh, addNWaves, rejectNWaves);
4215}
4216
4217std::vector<int> Scantable::selectWaveNumbers(const int whichrow,
4218                                  const std::vector<bool>& chanMask,
4219                                  const bool applyFFT,
4220                                  const std::string& fftMethod,
4221                                  const std::string& fftThresh,
4222                                  const std::vector<int>& addNWaves,
4223                                  const std::vector<int>& rejectNWaves)
4224{
4225  std::vector<int> nWaves;
4226  nWaves.clear();
4227
4228  if (applyFFT) {
4229    string fftThAttr;
4230    float fftThSigma;
4231    int fftThTop;
4232    parseFFTThresholdInfo(fftThresh, fftThAttr, fftThSigma, fftThTop);
4233    doSelectWaveNumbers(whichrow, chanMask, fftMethod, fftThSigma, fftThTop, fftThAttr, nWaves);
4234  }
4235
4236  addAuxWaveNumbers(whichrow, addNWaves, rejectNWaves, nWaves);
4237
4238  return nWaves;
4239}
4240
4241int Scantable::getIdxOfNchan(const int nChan, const std::vector<int>& nChanNos)
4242{
4243  int idx = -1;
4244  for (uint i = 0; i < nChanNos.size(); ++i) {
4245    if (nChan == nChanNos[i]) {
4246      idx = i;
4247      break;
4248    }
4249  }
4250
4251  if (idx < 0) {
4252    throw(AipsError("nChan not found in nChhanNos."));
4253  }
4254
4255  return idx;
4256}
4257
4258void Scantable::parseFFTInfo(const std::string& fftInfo, bool& applyFFT, std::string& fftMethod, std::string& fftThresh)
4259{
4260  istringstream iss(fftInfo);
4261  std::string tmp;
4262  std::vector<string> res;
4263  while (getline(iss, tmp, ',')) {
4264    res.push_back(tmp);
4265  }
4266  if (res.size() < 3) {
4267    throw(AipsError("wrong value in 'fftinfo' parameter")) ;
4268  }
4269  applyFFT = (res[0] == "true");
4270  fftMethod = res[1];
4271  fftThresh = res[2];
4272}
4273
4274void Scantable::parseFFTThresholdInfo(const std::string& fftThresh, std::string& fftThAttr, float& fftThSigma, int& fftThTop)
4275{
4276  uInt idxSigma = fftThresh.find("sigma");
4277  uInt idxTop   = fftThresh.find("top");
4278
4279  if (idxSigma == fftThresh.size() - 5) {
4280    std::istringstream is(fftThresh.substr(0, fftThresh.size() - 5));
4281    is >> fftThSigma;
4282    fftThAttr = "sigma";
4283  } else if (idxTop == 0) {
4284    std::istringstream is(fftThresh.substr(3));
4285    is >> fftThTop;
4286    fftThAttr = "top";
4287  } else {
4288    bool isNumber = true;
4289    for (uInt i = 0; i < fftThresh.size()-1; ++i) {
4290      char ch = (fftThresh.substr(i, 1).c_str())[0];
4291      if (!(isdigit(ch) || (fftThresh.substr(i, 1) == "."))) {
4292        isNumber = false;
4293        break;
4294      }
4295    }
4296    if (isNumber) {
4297      std::istringstream is(fftThresh);
4298      is >> fftThSigma;
4299      fftThAttr = "sigma";
4300    } else {
4301      throw(AipsError("fftthresh has a wrong value"));
4302    }
4303  }
4304}
4305
4306void Scantable::doSelectWaveNumbers(const int whichrow, const std::vector<bool>& chanMask, const std::string& fftMethod, const float fftThSigma, const int fftThTop, const std::string& fftThAttr, std::vector<int>& nWaves)
4307{
4308  std::vector<float> fspec;
4309  if (fftMethod == "fft") {
4310    fspec = execFFT(whichrow, chanMask, false, true);
4311  //} else if (fftMethod == "lsp") {
4312  //  fspec = lombScarglePeriodogram(whichrow);
4313  }
4314
4315  if (fftThAttr == "sigma") {
4316    float mean  = 0.0;
4317    float mean2 = 0.0;
4318    for (uInt i = 0; i < fspec.size(); ++i) {
4319      mean  += fspec[i];
4320      mean2 += fspec[i]*fspec[i];
4321    }
4322    mean  /= float(fspec.size());
4323    mean2 /= float(fspec.size());
4324    float thres = mean + fftThSigma * float(sqrt(mean2 - mean*mean));
4325
4326    for (uInt i = 0; i < fspec.size(); ++i) {
4327      if (fspec[i] >= thres) {
4328        nWaves.push_back(i);
4329      }
4330    }
4331
4332  } else if (fftThAttr == "top") {
4333    for (int i = 0; i < fftThTop; ++i) {
4334      float max = 0.0;
4335      int maxIdx = 0;
4336      for (uInt j = 0; j < fspec.size(); ++j) {
4337        if (fspec[j] > max) {
4338          max = fspec[j];
4339          maxIdx = j;
4340        }
4341      }
4342      nWaves.push_back(maxIdx);
4343      fspec[maxIdx] = 0.0;
4344    }
4345
4346  }
4347
4348  if (nWaves.size() > 1) {
4349    sort(nWaves.begin(), nWaves.end());
4350  }
4351}
4352
4353void Scantable::addAuxWaveNumbers(const int whichrow, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, std::vector<int>& nWaves)
4354{
4355  std::vector<int> tempAddNWaves, tempRejectNWaves;
4356  tempAddNWaves.clear();
4357  tempRejectNWaves.clear();
4358
4359  for (uInt i = 0; i < addNWaves.size(); ++i) {
4360    tempAddNWaves.push_back(addNWaves[i]);
4361  }
4362  if ((tempAddNWaves.size() == 2) && (tempAddNWaves[1] == -999)) {
4363    setWaveNumberListUptoNyquistFreq(whichrow, tempAddNWaves);
4364  }
4365
4366  for (uInt i = 0; i < rejectNWaves.size(); ++i) {
4367    tempRejectNWaves.push_back(rejectNWaves[i]);
4368  }
4369  if ((tempRejectNWaves.size() == 2) && (tempRejectNWaves[1] == -999)) {
4370    setWaveNumberListUptoNyquistFreq(whichrow, tempRejectNWaves);
4371  }
4372
4373  for (uInt i = 0; i < tempAddNWaves.size(); ++i) {
4374    bool found = false;
4375    for (uInt j = 0; j < nWaves.size(); ++j) {
4376      if (nWaves[j] == tempAddNWaves[i]) {
4377        found = true;
4378        break;
4379      }
4380    }
4381    if (!found) nWaves.push_back(tempAddNWaves[i]);
4382  }
4383
4384  for (uInt i = 0; i < tempRejectNWaves.size(); ++i) {
4385    for (std::vector<int>::iterator j = nWaves.begin(); j != nWaves.end(); ) {
4386      if (*j == tempRejectNWaves[i]) {
4387        j = nWaves.erase(j);
4388      } else {
4389        ++j;
4390      }
4391    }
4392  }
4393
4394  if (nWaves.size() > 1) {
4395    sort(nWaves.begin(), nWaves.end());
4396    unique(nWaves.begin(), nWaves.end());
4397  }
4398}
4399
4400void Scantable::setWaveNumberListUptoNyquistFreq(const int whichrow, std::vector<int>& nWaves)
4401{
4402  int val = nWaves[0];
4403  int nyquistFreq = nchan(getIF(whichrow))/2+1;
4404  nWaves.clear();
4405  if (val > nyquistFreq) {  // for safety, at least nWaves contains a constant; CAS-3759
4406    nWaves.push_back(0);
4407  }
4408  while (val <= nyquistFreq) {
4409    nWaves.push_back(val);
4410    val++;
4411  }
4412}
4413
4414void Scantable::sinusoidBaseline(const std::vector<bool>& mask, const std::string& fftInfo,
4415                                 const std::vector<int>& addNWaves,
4416                                 const std::vector<int>& rejectNWaves,
4417                                 float thresClip, int nIterClip,
4418                                 bool getResidual,
4419                                 const std::string& progressInfo,
4420                                 const bool outLogger, const std::string& blfile,
4421                                 const std::string& bltable)
4422{
4423  /****
4424  double TimeStart = mathutil::gettimeofday_sec();
4425  ****/
4426
4427  try {
4428    ofstream ofs;
4429    String coordInfo;
4430    bool hasSameNchan, outTextFile, csvFormat, showProgress;
4431    int minNRow;
4432    int nRow = nrow();
4433    std::vector<bool> chanMask, finalChanMask;
4434    float rms;
4435    bool outBaselineTable = (bltable != "");
4436    STBaselineTable bt = STBaselineTable(*this);
4437    Vector<Double> timeSecCol;
4438
4439    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
4440                         coordInfo, hasSameNchan,
4441                         progressInfo, showProgress, minNRow,
4442                         timeSecCol);
4443
4444    bool applyFFT;
4445    std::string fftMethod, fftThresh;
4446    parseFFTInfo(fftInfo, applyFFT, fftMethod, fftThresh);
4447
4448    std::vector<int> nWaves;
4449    std::vector<int> nChanNos;
4450    std::vector<std::vector<std::vector<double> > > modelReservoir;
4451    if (!applyFFT) {
4452      nWaves = selectWaveNumbers(addNWaves, rejectNWaves);
4453      modelReservoir = getSinusoidModelReservoir(nWaves, nChanNos);
4454    }
4455
4456    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
4457      std::vector<float> sp = getSpectrum(whichrow);
4458      chanMask = getCompositeChanMask(whichrow, mask);
4459      std::vector<std::vector<double> > model;
4460      if (applyFFT) {
4461        nWaves = selectWaveNumbers(whichrow, chanMask, true, fftMethod, fftThresh,
4462                                   addNWaves, rejectNWaves);
4463        model = getSinusoidModel(nWaves, sp.size());
4464      } else {
4465        model = modelReservoir[getIdxOfNchan(sp.size(), nChanNos)];
4466      }
4467
4468      std::vector<float> params;
4469      int nClipped = 0;
4470      std::vector<float> res = doLeastSquareFitting(sp, chanMask, model,
4471                                   params, rms, finalChanMask,
4472                                   nClipped, thresClip, nIterClip, getResidual);
4473
4474      if (outBaselineTable) {
4475        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4476                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4477                      true, STBaselineFunc::Sinusoid, nWaves, std::vector<float>(),
4478                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
4479                      thresClip, nIterClip, 0.0, 0, std::vector<int>());
4480      } else {
4481        setSpectrum(res, whichrow);
4482      }
4483
4484      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
4485                          coordInfo, hasSameNchan, ofs, "sinusoidBaseline()",
4486                          params, nClipped);
4487      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
4488    }
4489
4490    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
4491
4492  } catch (...) {
4493    throw;
4494  }
4495
4496  /****
4497  double TimeEnd = mathutil::gettimeofday_sec();
4498  double elapse1 = TimeEnd - TimeStart;
4499  std::cout << "sinusoid-old   : " << elapse1 << " (sec.)" << endl;
4500  ****/
4501}
4502
4503void Scantable::autoSinusoidBaseline(const std::vector<bool>& mask, const std::string& fftInfo,
4504                                     const std::vector<int>& addNWaves,
4505                                     const std::vector<int>& rejectNWaves,
4506                                     float thresClip, int nIterClip,
4507                                     const std::vector<int>& edge,
4508                                     float threshold, int chanAvgLimit,
4509                                     bool getResidual,
4510                                     const std::string& progressInfo,
4511                                     const bool outLogger, const std::string& blfile,
4512                                     const std::string& bltable)
4513{
4514  try {
4515    ofstream ofs;
4516    String coordInfo;
4517    bool hasSameNchan, outTextFile, csvFormat, showProgress;
4518    int minNRow;
4519    int nRow = nrow();
4520    std::vector<bool> chanMask, finalChanMask;
4521    float rms;
4522    bool outBaselineTable = (bltable != "");
4523    STBaselineTable bt = STBaselineTable(*this);
4524    Vector<Double> timeSecCol;
4525    STLineFinder lineFinder = STLineFinder();
4526
4527    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
4528                         coordInfo, hasSameNchan,
4529                         progressInfo, showProgress, minNRow,
4530                         timeSecCol);
4531
4532    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
4533
4534    bool applyFFT;
4535    string fftMethod, fftThresh;
4536    parseFFTInfo(fftInfo, applyFFT, fftMethod, fftThresh);
4537
4538    std::vector<int> nWaves;
4539    std::vector<int> nChanNos;
4540    std::vector<std::vector<std::vector<double> > > modelReservoir;
4541    if (!applyFFT) {
4542      nWaves = selectWaveNumbers(addNWaves, rejectNWaves);
4543      modelReservoir = getSinusoidModelReservoir(nWaves, nChanNos);
4544    }
4545
4546    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
4547      std::vector<float> sp = getSpectrum(whichrow);
4548      std::vector<int> currentEdge;
4549      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
4550      std::vector<std::vector<double> > model;
4551      if (applyFFT) {
4552        nWaves = selectWaveNumbers(whichrow, chanMask, true, fftMethod, fftThresh,
4553                                   addNWaves, rejectNWaves);
4554        model = getSinusoidModel(nWaves, sp.size());
4555      } else {
4556        model = modelReservoir[getIdxOfNchan(sp.size(), nChanNos)];
4557      }
4558
4559      std::vector<float> params;
4560      int nClipped = 0;
4561      std::vector<float> res = doLeastSquareFitting(sp, chanMask, model,
4562                                   params, rms, finalChanMask,
4563                                   nClipped, thresClip, nIterClip, getResidual);
4564
4565      if (outBaselineTable) {
4566        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4567                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4568                      true, STBaselineFunc::Sinusoid, nWaves, std::vector<float>(),
4569                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
4570                      thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
4571      } else {
4572        setSpectrum(res, whichrow);
4573      }
4574
4575      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
4576                          coordInfo, hasSameNchan, ofs, "autoSinusoidBaseline()",
4577                          params, nClipped);
4578      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
4579    }
4580
4581    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
4582
4583  } catch (...) {
4584    throw;
4585  }
4586}
4587
4588std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data,
4589                                                const std::vector<bool>& mask,
4590                                                const std::vector<int>& waveNumbers,
4591                                                std::vector<float>& params,
4592                                                float& rms,
4593                                                std::vector<bool>& finalmask,
4594                                                float clipth,
4595                                                int clipn)
4596{
4597  int nClipped = 0;
4598  return doSinusoidFitting(data, mask, waveNumbers, params, rms, finalmask, nClipped, clipth, clipn);
4599}
4600
4601std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data,
4602                                                const std::vector<bool>& mask,
4603                                                const std::vector<int>& waveNumbers,
4604                                                std::vector<float>& params,
4605                                                float& rms,
4606                                                std::vector<bool>& finalMask,
4607                                                int& nClipped,
4608                                                float thresClip,
4609                                                int nIterClip,
4610                                                bool getResidual)
4611{
4612  return doLeastSquareFitting(data, mask,
4613                              getSinusoidModel(waveNumbers, data.size()),
4614                              params, rms, finalMask,
4615                              nClipped, thresClip, nIterClip,
4616                              getResidual);
4617}
4618
4619std::vector<std::vector<std::vector<double> > > Scantable::getSinusoidModelReservoir(const std::vector<int>& waveNumbers,
4620                                                                                     std::vector<int>& nChanNos)
4621{
4622  std::vector<std::vector<std::vector<double> > > res;
4623  res.clear();
4624  nChanNos.clear();
4625
4626  std::vector<uint> ifNos = getIFNos();
4627  for (uint i = 0; i < ifNos.size(); ++i) {
4628    int currNchan = nchan(ifNos[i]);
4629    bool hasDifferentNchan = (i == 0);
4630    for (uint j = 0; j < i; ++j) {
4631      if (currNchan != nchan(ifNos[j])) {
4632        hasDifferentNchan = true;
4633        break;
4634      }
4635    }
4636    if (hasDifferentNchan) {
4637      res.push_back(getSinusoidModel(waveNumbers, currNchan));
4638      nChanNos.push_back(currNchan);
4639    }
4640  }
4641
4642  return res;
4643}
4644
4645std::vector<std::vector<double> > Scantable::getSinusoidModel(const std::vector<int>& waveNumbers, int nchan)
4646{
4647  // model  : contains elemental values for computing the least-square matrix.
4648  //          model.size() is nmodel and model[*].size() is nchan.
4649  //          Each model element are as follows:
4650  //          model[0]    = {1.0, 1.0, 1.0, ..., 1.0},
4651  //          model[2n-1] = {sin(nPI/L*x[0]), sin(nPI/L*x[1]), ..., sin(nPI/L*x[nchan])},
4652  //          model[2n]   = {cos(nPI/L*x[0]), cos(nPI/L*x[1]), ..., cos(nPI/L*x[nchan])},
4653  //          where (1 <= n <= nMaxWavesInSW),
4654  //          or,
4655  //          model[2n-1] = {sin(wn[n]PI/L*x[0]), sin(wn[n]PI/L*x[1]), ..., sin(wn[n]PI/L*x[nchan])},
4656  //          model[2n]   = {cos(wn[n]PI/L*x[0]), cos(wn[n]PI/L*x[1]), ..., cos(wn[n]PI/L*x[nchan])},
4657  //          where wn[n] denotes waveNumbers[n] (1 <= n <= waveNumbers.size()).
4658
4659  std::vector<int> nWaves;  // sorted and uniqued array of wave numbers
4660  nWaves.reserve(waveNumbers.size());
4661  copy(waveNumbers.begin(), waveNumbers.end(), back_inserter(nWaves));
4662  sort(nWaves.begin(), nWaves.end());
4663  std::vector<int>::iterator end_it = unique(nWaves.begin(), nWaves.end());
4664  nWaves.erase(end_it, nWaves.end());
4665
4666  int minNWaves = nWaves[0];
4667  if (minNWaves < 0) {
4668    throw(AipsError("wave number must be positive or zero (i.e. constant)"));
4669  }
4670  bool hasConstantTerm = (minNWaves == 0);
4671  int nmodel = nWaves.size() * 2 - (hasConstantTerm ? 1 : 0);  //number of parameters to solve.
4672
4673  std::vector<std::vector<double> > model(nmodel, std::vector<double>(nchan));
4674
4675  if (hasConstantTerm) {
4676    for (int j = 0; j < nchan; ++j) {
4677      model[0][j] = 1.0;
4678    }
4679  }
4680
4681  const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
4682  double stretch0 = 2.0*PI/(double)(nchan-1);
4683
4684  for (uInt i = (hasConstantTerm ? 1 : 0); i < nWaves.size(); ++i) {
4685    int sidx = hasConstantTerm ? 2*i-1 : 2*i;
4686    int cidx = sidx + 1;
4687    double stretch = stretch0*(double)nWaves[i];
4688
4689    for (int j = 0; j < nchan; ++j) {
4690      model[sidx][j] = sin(stretch*(double)j);
4691      model[cidx][j] = cos(stretch*(double)j);
4692    }
4693  }
4694
4695  return model;
4696}
4697
4698std::vector<bool> Scantable::getCompositeChanMask(int whichrow,
4699                                                  const std::vector<bool>& inMask)
4700{
4701  std::vector<bool> mask = getMask(whichrow);
4702  uInt maskSize = mask.size();
4703  if (inMask.size() != 0) {
4704    if (maskSize != inMask.size()) {
4705      throw(AipsError("mask sizes are not the same."));
4706    }
4707    for (uInt i = 0; i < maskSize; ++i) {
4708      mask[i] = mask[i] && inMask[i];
4709    }
4710  }
4711
4712  return mask;
4713}
4714
4715std::vector<bool> Scantable::getCompositeChanMask(int whichrow,
4716                                                  const std::vector<bool>& inMask,
4717                                                  const std::vector<int>& edge,
4718                                                  std::vector<int>& currEdge,
4719                                                  STLineFinder& lineFinder)
4720{
4721  std::vector<uint> ifNos = getIFNos();
4722  if ((edge.size() > 2) && (edge.size() < ifNos.size()*2)) {
4723    throw(AipsError("Length of edge element info is less than that of IFs"));
4724  }
4725
4726  uint idx = 0;
4727  if (edge.size() > 2) {
4728    int ifVal = getIF(whichrow);
4729    bool foundIF = false;
4730    for (uint i = 0; i < ifNos.size(); ++i) {
4731      if (ifVal == (int)ifNos[i]) {
4732        idx = 2*i;
4733        foundIF = true;
4734        break;
4735      }
4736    }
4737    if (!foundIF) {
4738      throw(AipsError("bad IF number"));
4739    }
4740  }
4741
4742  currEdge.clear();
4743  currEdge.resize(2);
4744  currEdge[0] = edge[idx];
4745  currEdge[1] = edge[idx+1];
4746
4747  lineFinder.setData(getSpectrum(whichrow));
4748  lineFinder.findLines(getCompositeChanMask(whichrow, inMask), currEdge, whichrow);
4749
4750  return lineFinder.getMask();
4751}
4752
4753/* for cspline. will be merged once cspline is available in fitter (2011/3/10 WK) */
4754void Scantable::outputFittingResult(bool outLogger,
4755                                    bool outTextFile,
4756                                    bool csvFormat,
4757                                    const std::vector<bool>& chanMask,
4758                                    int whichrow,
4759                                    const casa::String& coordInfo,
4760                                    bool hasSameNchan,
4761                                    ofstream& ofs,
4762                                    const casa::String& funcName,
4763                                    const std::vector<int>& edge,
4764                                    const std::vector<float>& params,
4765                                    const int nClipped)
4766{
4767  if (outLogger || outTextFile) {
4768    float rms = getRms(chanMask, whichrow);
4769    String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
4770    std::vector<bool> fixed;
4771    fixed.clear();
4772
4773    if (outLogger) {
4774      LogIO ols(LogOrigin("Scantable", funcName, WHERE));
4775      ols << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped,
4776                                           masklist, whichrow, false, csvFormat) << LogIO::POST ;
4777    }
4778    if (outTextFile) {
4779      ofs << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped,
4780                                           masklist, whichrow, true, csvFormat) << flush;
4781    }
4782  }
4783}
4784
4785/* for poly/chebyshev/sinusoid. */
4786void Scantable::outputFittingResult(bool outLogger,
4787                                    bool outTextFile,
4788                                    bool csvFormat,
4789                                    const std::vector<bool>& chanMask,
4790                                    int whichrow,
4791                                    const casa::String& coordInfo,
4792                                    bool hasSameNchan,
4793                                    ofstream& ofs,
4794                                    const casa::String& funcName,
4795                                    const std::vector<float>& params,
4796                                    const int nClipped)
4797{
4798  if (outLogger || outTextFile) {
4799    float rms = getRms(chanMask, whichrow);
4800    String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
4801    std::vector<bool> fixed;
4802    fixed.clear();
4803
4804    if (outLogger) {
4805      LogIO ols(LogOrigin("Scantable", funcName, WHERE));
4806      ols << formatBaselineParams(params, fixed, rms, nClipped,
4807                                  masklist, whichrow, false, csvFormat) << LogIO::POST ;
4808    }
4809    if (outTextFile) {
4810      ofs << formatBaselineParams(params, fixed, rms, nClipped,
4811                                  masklist, whichrow, true, csvFormat) << flush;
4812    }
4813  }
4814}
4815
4816void Scantable::parseProgressInfo(const std::string& progressInfo, bool& showProgress, int& minNRow)
4817{
4818  int idxDelimiter = progressInfo.find(",");
4819  if (idxDelimiter < 0) {
4820    throw(AipsError("wrong value in 'showprogress' parameter")) ;
4821  }
4822  showProgress = (progressInfo.substr(0, idxDelimiter) == "true");
4823  std::istringstream is(progressInfo.substr(idxDelimiter+1));
4824  is >> minNRow;
4825}
4826
4827void Scantable::showProgressOnTerminal(const int nProcessed, const int nTotal, const bool showProgress, const int nTotalThreshold)
4828{
4829  if (showProgress && (nTotal >= nTotalThreshold)) {
4830    int nInterval = int(floor(double(nTotal)/100.0));
4831    if (nInterval == 0) nInterval++;
4832
4833    if (nProcessed % nInterval == 0) {
4834      printf("\r");                          //go to the head of line
4835      printf("\x1b[31m\x1b[1m");             //set red color, highlighted
4836      printf("[%3d%%]", (int)(100.0*(double(nProcessed+1))/(double(nTotal))) );
4837      printf("\x1b[39m\x1b[0m");             //set default attributes
4838      fflush(NULL);
4839    }
4840
4841    if (nProcessed == nTotal - 1) {
4842      printf("\r\x1b[K");                    //clear
4843      fflush(NULL);
4844    }
4845
4846  }
4847}
4848
4849std::vector<float> Scantable::execFFT(const int whichrow, const std::vector<bool>& inMask, bool getRealImag, bool getAmplitudeOnly)
4850{
4851  std::vector<bool>  mask = getMask(whichrow);
4852
4853  if (inMask.size() > 0) {
4854    uInt maskSize = mask.size();
4855    if (maskSize != inMask.size()) {
4856      throw(AipsError("mask sizes are not the same."));
4857    }
4858    for (uInt i = 0; i < maskSize; ++i) {
4859      mask[i] = mask[i] && inMask[i];
4860    }
4861  }
4862
4863  Vector<Float> spec = getSpectrum(whichrow);
4864  mathutil::doZeroOrderInterpolation(spec, mask);
4865
4866  FFTServer<Float,Complex> ffts;
4867  Vector<Complex> fftres;
4868  ffts.fft0(fftres, spec);
4869
4870  std::vector<float> res;
4871  float norm = float(2.0/double(spec.size()));
4872
4873  if (getRealImag) {
4874    for (uInt i = 0; i < fftres.size(); ++i) {
4875      res.push_back(real(fftres[i])*norm);
4876      res.push_back(imag(fftres[i])*norm);
4877    }
4878  } else {
4879    for (uInt i = 0; i < fftres.size(); ++i) {
4880      res.push_back(abs(fftres[i])*norm);
4881      if (!getAmplitudeOnly) res.push_back(arg(fftres[i]));
4882    }
4883  }
4884
4885  return res;
4886}
4887
4888
4889float Scantable::getRms(const std::vector<bool>& mask, int whichrow)
4890{
4891  /****
4892  double ms1TimeStart, ms1TimeEnd;
4893  double elapse1 = 0.0;
4894  ms1TimeStart = mathutil::gettimeofday_sec();
4895  ****/
4896
4897  Vector<Float> spec;
4898  specCol_.get(whichrow, spec);
4899
4900  /****
4901  ms1TimeEnd = mathutil::gettimeofday_sec();
4902  elapse1 = ms1TimeEnd - ms1TimeStart;
4903  std::cout << "rm1   : " << elapse1 << " (sec.)" << endl;
4904  ****/
4905
4906  return (float)doGetRms(mask, spec);
4907}
4908
4909double Scantable::doGetRms(const std::vector<bool>& mask, const Vector<Float>& spec)
4910{
4911  double mean = 0.0;
4912  double smean = 0.0;
4913  int n = 0;
4914  for (uInt i = 0; i < spec.nelements(); ++i) {
4915    if (mask[i]) {
4916      double val = (double)spec[i];
4917      mean += val;
4918      smean += val*val;
4919      n++;
4920    }
4921  }
4922
4923  mean /= (double)n;
4924  smean /= (double)n;
4925
4926  return sqrt(smean - mean*mean);
4927}
4928
4929std::string Scantable::formatBaselineParamsHeader(int whichrow, const std::string& masklist, bool verbose, bool csvformat) const
4930{
4931  if (verbose) {
4932    ostringstream oss;
4933
4934    if (csvformat) {
4935      oss << getScan(whichrow)  << ",";
4936      oss << getBeam(whichrow)  << ",";
4937      oss << getIF(whichrow)    << ",";
4938      oss << getPol(whichrow)   << ",";
4939      oss << getCycle(whichrow) << ",";
4940      String commaReplacedMasklist = masklist;
4941      string::size_type pos = 0;
4942      while (pos = commaReplacedMasklist.find(","), pos != string::npos) {
4943        commaReplacedMasklist.replace(pos, 1, ";");
4944        pos++;
4945      }
4946      oss << commaReplacedMasklist << ",";
4947    } else {
4948      oss <<  " Scan[" << getScan(whichrow)  << "]";
4949      oss <<  " Beam[" << getBeam(whichrow)  << "]";
4950      oss <<    " IF[" << getIF(whichrow)    << "]";
4951      oss <<   " Pol[" << getPol(whichrow)   << "]";
4952      oss << " Cycle[" << getCycle(whichrow) << "]: " << endl;
4953      oss << "Fitter range = " << masklist << endl;
4954      oss << "Baseline parameters" << endl;
4955    }
4956    oss << flush;
4957
4958    return String(oss);
4959  }
4960
4961  return "";
4962}
4963
4964std::string Scantable::formatBaselineParamsFooter(float rms, int nClipped, bool verbose, bool csvformat) const
4965{
4966  if (verbose) {
4967    ostringstream oss;
4968
4969    if (csvformat) {
4970      oss << rms << ",";
4971      if (nClipped >= 0) {
4972        oss << nClipped;
4973      }
4974    } else {
4975      oss << "Results of baseline fit" << endl;
4976      oss << "  rms = " << setprecision(6) << rms << endl;
4977      if (nClipped >= 0) {
4978        oss << "  Number of clipped channels = " << nClipped << endl;
4979      }
4980      for (int i = 0; i < 60; ++i) {
4981        oss << "-";
4982      }
4983    }
4984    oss << endl;
4985    oss << flush;
4986
4987    return String(oss);
4988  }
4989
4990  return "";
4991}
4992
4993std::string Scantable::formatBaselineParams(const std::vector<float>& params,
4994                                            const std::vector<bool>& fixed,
4995                                            float rms,
4996                                            int nClipped,
4997                                            const std::string& masklist,
4998                                            int whichrow,
4999                                            bool verbose,
5000                                            bool csvformat,
5001                                            int start, int count,
5002                                            bool resetparamid) const
5003{
5004  int nParam = (int)(params.size());
5005
5006  if (nParam < 1) {
5007    return("  Not fitted");
5008  } else {
5009
5010    ostringstream oss;
5011    oss << formatBaselineParamsHeader(whichrow, masklist, verbose, csvformat);
5012
5013    if (start < 0) start = 0;
5014    if (count < 0) count = nParam;
5015    int end = start + count;
5016    if (end > nParam) end = nParam;
5017    int paramidoffset = (resetparamid) ? (-start) : 0;
5018
5019    for (int i = start; i < end; ++i) {
5020      if (i > start) {
5021        oss << ",";
5022      }
5023      std::string sFix = ((fixed.size() > 0) && (fixed[i]) && verbose) ? "(fixed)" : "";
5024      if (csvformat) {
5025        oss << params[i] << sFix;
5026      } else {
5027        oss << "  p" << (i+paramidoffset) << sFix << "= " << right << setw(13) << setprecision(6) << params[i];
5028      }
5029    }
5030
5031    if (csvformat) {
5032      oss << ",";
5033    } else {
5034      oss << endl;
5035    }
5036    oss << formatBaselineParamsFooter(rms, nClipped, verbose, csvformat);
5037
5038    return String(oss);
5039  }
5040
5041}
5042
5043std::string Scantable::formatPiecewiseBaselineParams(const std::vector<int>& ranges, const std::vector<float>& params, const std::vector<bool>& fixed, float rms, int nClipped, const std::string& masklist, int whichrow, bool verbose, bool csvformat) const
5044{
5045  int nOutParam = (int)(params.size());
5046  int nPiece = (int)(ranges.size()) - 1;
5047
5048  if (nOutParam < 1) {
5049    return("  Not fitted");
5050  } else if (nPiece < 0) {
5051    return formatBaselineParams(params, fixed, rms, nClipped, masklist, whichrow, verbose, csvformat);
5052  } else if (nPiece < 1) {
5053    return("  Bad count of the piece edge info");
5054  } else if (nOutParam % nPiece != 0) {
5055    return("  Bad count of the output baseline parameters");
5056  } else {
5057
5058    int nParam = nOutParam / nPiece;
5059
5060    ostringstream oss;
5061    oss << formatBaselineParamsHeader(whichrow, masklist, verbose, csvformat);
5062
5063    if (csvformat) {
5064      for (int i = 0; i < nPiece; ++i) {
5065        oss << ranges[i] << "," << (ranges[i+1]-1) << ",";
5066        oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, csvformat, i*nParam, nParam, true);
5067      }
5068    } else {
5069      stringstream ss;
5070      ss << ranges[nPiece] << flush;
5071      int wRange = ss.str().size() * 2 + 5;
5072
5073      for (int i = 0; i < nPiece; ++i) {
5074        ss.str("");
5075        ss << "  [" << ranges[i] << "," << (ranges[i+1]-1) << "]";
5076        oss << left << setw(wRange) << ss.str();
5077        oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, csvformat, i*nParam, nParam, true);
5078        //oss << endl;
5079      }
5080    }
5081
5082    oss << formatBaselineParamsFooter(rms, nClipped, verbose, csvformat);
5083
5084    return String(oss);
5085  }
5086
5087}
5088
5089bool Scantable::hasSameNchanOverIFs()
5090{
5091  int nIF = nif(-1);
5092  int nCh;
5093  int totalPositiveNChan = 0;
5094  int nPositiveNChan = 0;
5095
5096  for (int i = 0; i < nIF; ++i) {
5097    nCh = nchan(i);
5098    if (nCh > 0) {
5099      totalPositiveNChan += nCh;
5100      nPositiveNChan++;
5101    }
5102  }
5103
5104  return (totalPositiveNChan == (nPositiveNChan * nchan(0)));
5105}
5106
5107std::string Scantable::getMaskRangeList(const std::vector<bool>& mask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, bool verbose)
5108{
5109  if (mask.size() <= 0) {
5110    throw(AipsError("The mask elements should be > 0"));
5111  }
5112  int IF = getIF(whichrow);
5113  if (mask.size() != (uInt)nchan(IF)) {
5114    throw(AipsError("Number of channels in scantable != number of mask elements"));
5115  }
5116
5117  if (verbose) {
5118    LogIO logOs(LogOrigin("Scantable", "getMaskRangeList()", WHERE));
5119    logOs << LogIO::WARN << "The current mask window unit is " << coordInfo;
5120    if (!hasSameNchan) {
5121      logOs << endl << "This mask is only valid for IF=" << IF;
5122    }
5123    logOs << LogIO::POST;
5124  }
5125
5126  std::vector<double> abcissa = getAbcissa(whichrow);
5127  std::vector<int> edge = getMaskEdgeIndices(mask);
5128
5129  ostringstream oss;
5130  oss.setf(ios::fixed);
5131  oss << setprecision(1) << "[";
5132  for (uInt i = 0; i < edge.size(); i+=2) {
5133    if (i > 0) oss << ",";
5134    oss << "[" << (float)abcissa[edge[i]] << "," << (float)abcissa[edge[i+1]] << "]";
5135  }
5136  oss << "]" << flush;
5137
5138  return String(oss);
5139}
5140
5141std::vector<int> Scantable::getMaskEdgeIndices(const std::vector<bool>& mask)
5142{
5143  if (mask.size() <= 0) {
5144    throw(AipsError("The mask elements should be > 0"));
5145  }
5146
5147  std::vector<int> out, startIndices, endIndices;
5148  int maskSize = mask.size();
5149
5150  startIndices.clear();
5151  endIndices.clear();
5152
5153  if (mask[0]) {
5154    startIndices.push_back(0);
5155  }
5156  for (int i = 1; i < maskSize; ++i) {
5157    if ((!mask[i-1]) && mask[i]) {
5158      startIndices.push_back(i);
5159    } else if (mask[i-1] && (!mask[i])) {
5160      endIndices.push_back(i-1);
5161    }
5162  }
5163  if (mask[maskSize-1]) {
5164    endIndices.push_back(maskSize-1);
5165  }
5166
5167  if (startIndices.size() != endIndices.size()) {
5168    throw(AipsError("Inconsistent Mask Size: bad data?"));
5169  }
5170  for (uInt i = 0; i < startIndices.size(); ++i) {
5171    if (startIndices[i] > endIndices[i]) {
5172      throw(AipsError("Mask start index > mask end index"));
5173    }
5174  }
5175
5176  out.clear();
5177  for (uInt i = 0; i < startIndices.size(); ++i) {
5178    out.push_back(startIndices[i]);
5179    out.push_back(endIndices[i]);
5180  }
5181
5182  return out;
5183}
5184
5185void Scantable::setTsys(const std::vector<float>& newvals, int whichrow) {
5186  Vector<Float> tsys(newvals);
5187  if (whichrow > -1) {
5188    if (tsysCol_.shape(whichrow) != tsys.shape())
5189      throw(AipsError("Given Tsys values are not of the same shape"));
5190    tsysCol_.put(whichrow, tsys);
5191  } else {
5192    tsysCol_.fillColumn(tsys);
5193  }
5194}
5195
5196vector<float> Scantable::getTsysSpectrum( int whichrow ) const
5197{
5198  Vector<Float> tsys( tsysCol_(whichrow) ) ;
5199  vector<float> stlTsys ;
5200  tsys.tovector( stlTsys ) ;
5201  return stlTsys ;
5202}
5203
5204vector<uint> Scantable::getMoleculeIdColumnData() const
5205{
5206  Vector<uInt> molIds(mmolidCol_.getColumn());
5207  vector<uint> res;
5208  molIds.tovector(res);
5209  return res;
5210}
5211
5212void Scantable::setMoleculeIdColumnData(const std::vector<uint>& molids)
5213{
5214  Vector<uInt> molIds(molids);
5215  Vector<uInt> arr(mmolidCol_.getColumn());
5216  if ( molIds.nelements() != arr.nelements() )
5217    throw AipsError("The input data size must be the number of rows.");
5218  mmolidCol_.putColumn(molIds);
5219}
5220
5221
5222void Scantable::dropXPol()
5223{
5224  if (npol() <= 2) {
5225    return;
5226  }
5227  if (!selector_.empty()) {
5228    throw AipsError("Can only operate with empty selection");
5229  }
5230  std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
5231  Table tab = tableCommand(taql, table_);
5232  table_ = tab;
5233  table_.rwKeywordSet().define("nPol", Int(2));
5234  originalTable_ = table_;
5235  attach();
5236}
5237
5238}
5239//namespace asap
Note: See TracBrowser for help on using the repository browser.