source: trunk/src/Scantable.cpp @ 2575

Last change on this file since 2575 was 2575, checked in by Kana Sugimoto, 12 years ago

New Development: No

JIRA Issue: No

Ready for Test: Yes

Interface Changes: No

What Interface Changed:

Test Programs:

import asap
scan = asap.scantable("SOME_NAME")
scan.get_direction(0)
# retuns a string of reference frame in addition to RA and Dec.

Put in Release Notes: No

Module(s): scantable.get_direction, scantable._getdirection

Description:

Modified Scantable::formatDirection so that it returns a string of direction
with the reference frame.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 116.2 KB
Line 
1//
2// C++ Implementation: Scantable
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2005
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12#include <map>
13
14#include <atnf/PKSIO/SrcType.h>
15
16#include <casa/aips.h>
17#include <casa/iomanip.h>
18#include <casa/iostream.h>
19#include <casa/OS/File.h>
20#include <casa/OS/Path.h>
21#include <casa/Arrays/Array.h>
22#include <casa/Arrays/ArrayAccessor.h>
23#include <casa/Arrays/ArrayLogical.h>
24#include <casa/Arrays/ArrayMath.h>
25#include <casa/Arrays/MaskArrMath.h>
26#include <casa/Arrays/Slice.h>
27#include <casa/Arrays/Vector.h>
28#include <casa/Arrays/VectorSTLIterator.h>
29#include <casa/BasicMath/Math.h>
30#include <casa/BasicSL/Constants.h>
31#include <casa/Containers/RecordField.h>
32#include <casa/Logging/LogIO.h>
33#include <casa/Quanta/MVAngle.h>
34#include <casa/Quanta/MVTime.h>
35#include <casa/Utilities/GenSort.h>
36
37#include <coordinates/Coordinates/CoordinateUtil.h>
38
39// needed to avoid error in .tcc
40#include <measures/Measures/MCDirection.h>
41//
42#include <measures/Measures/MDirection.h>
43#include <measures/Measures/MEpoch.h>
44#include <measures/Measures/MFrequency.h>
45#include <measures/Measures/MeasRef.h>
46#include <measures/Measures/MeasTable.h>
47#include <measures/TableMeasures/ScalarMeasColumn.h>
48#include <measures/TableMeasures/TableMeasDesc.h>
49#include <measures/TableMeasures/TableMeasRefDesc.h>
50#include <measures/TableMeasures/TableMeasValueDesc.h>
51
52#include <tables/Tables/ArrColDesc.h>
53#include <tables/Tables/ExprNode.h>
54#include <tables/Tables/ScaColDesc.h>
55#include <tables/Tables/SetupNewTab.h>
56#include <tables/Tables/TableCopy.h>
57#include <tables/Tables/TableDesc.h>
58#include <tables/Tables/TableIter.h>
59#include <tables/Tables/TableParse.h>
60#include <tables/Tables/TableRecord.h>
61#include <tables/Tables/TableRow.h>
62#include <tables/Tables/TableVector.h>
63
64#include "MathUtils.h"
65#include "STAttr.h"
66#include "STLineFinder.h"
67#include "STPolCircular.h"
68#include "STPolLinear.h"
69#include "STPolStokes.h"
70#include "STUpgrade.h"
71#include "Scantable.h"
72
73#define debug 1
74
75using namespace casa;
76
77namespace asap {
78
79std::map<std::string, STPol::STPolFactory *> Scantable::factories_;
80
81void Scantable::initFactories() {
82  if ( factories_.empty() ) {
83    Scantable::factories_["linear"] = &STPolLinear::myFactory;
84    Scantable::factories_["circular"] = &STPolCircular::myFactory;
85    Scantable::factories_["stokes"] = &STPolStokes::myFactory;
86  }
87}
88
89Scantable::Scantable(Table::TableType ttype) :
90  type_(ttype)
91{
92  initFactories();
93  setupMainTable();
94  freqTable_ = STFrequencies(*this);
95  table_.rwKeywordSet().defineTable("FREQUENCIES", freqTable_.table());
96  weatherTable_ = STWeather(*this);
97  table_.rwKeywordSet().defineTable("WEATHER", weatherTable_.table());
98  focusTable_ = STFocus(*this);
99  table_.rwKeywordSet().defineTable("FOCUS", focusTable_.table());
100  tcalTable_ = STTcal(*this);
101  table_.rwKeywordSet().defineTable("TCAL", tcalTable_.table());
102  moleculeTable_ = STMolecules(*this);
103  table_.rwKeywordSet().defineTable("MOLECULES", moleculeTable_.table());
104  historyTable_ = STHistory(*this);
105  table_.rwKeywordSet().defineTable("HISTORY", historyTable_.table());
106  fitTable_ = STFit(*this);
107  table_.rwKeywordSet().defineTable("FIT", fitTable_.table());
108  table_.tableInfo().setType( "Scantable" ) ;
109  originalTable_ = table_;
110  attach();
111}
112
113Scantable::Scantable(const std::string& name, Table::TableType ttype) :
114  type_(ttype)
115{
116  initFactories();
117
118  Table tab(name, Table::Update);
119  uInt version = tab.keywordSet().asuInt("VERSION");
120  if (version != version_) {
121      STUpgrade upgrader(version_);
122      LogIO os( LogOrigin( "Scantable" ) ) ;
123      os << LogIO::WARN
124         << name << " data format version " << version
125         << " is deprecated" << endl
126         << "Running upgrade."<< endl 
127         << LogIO::POST ; 
128      std::string outname = upgrader.upgrade(name);
129      if ( outname != name ) {
130        os << LogIO::WARN
131           << "Data will be loaded from " << outname << " instead of "
132           << name << LogIO::POST ;
133        tab = Table(outname, Table::Update ) ;
134      }
135  }
136  if ( type_ == Table::Memory ) {
137    table_ = tab.copyToMemoryTable(generateName());
138  } else {
139    table_ = tab;
140  }
141  table_.tableInfo().setType( "Scantable" ) ;
142
143  attachSubtables();
144  originalTable_ = table_;
145  attach();
146}
147/*
148Scantable::Scantable(const std::string& name, Table::TableType ttype) :
149  type_(ttype)
150{
151  initFactories();
152  Table tab(name, Table::Update);
153  uInt version = tab.keywordSet().asuInt("VERSION");
154  if (version != version_) {
155    throw(AipsError("Unsupported version of ASAP file."));
156  }
157  if ( type_ == Table::Memory ) {
158    table_ = tab.copyToMemoryTable(generateName());
159  } else {
160    table_ = tab;
161  }
162
163  attachSubtables();
164  originalTable_ = table_;
165  attach();
166}
167*/
168
169Scantable::Scantable( const Scantable& other, bool clear ):
170  Logger()
171{
172  // with or without data
173  String newname = String(generateName());
174  type_ = other.table_.tableType();
175  if ( other.table_.tableType() == Table::Memory ) {
176      if ( clear ) {
177        table_ = TableCopy::makeEmptyMemoryTable(newname,
178                                                 other.table_, True);
179      } else
180        table_ = other.table_.copyToMemoryTable(newname);
181  } else {
182      other.table_.deepCopy(newname, Table::New, False,
183                            other.table_.endianFormat(),
184                            Bool(clear));
185      table_ = Table(newname, Table::Update);
186      table_.markForDelete();
187  }
188  table_.tableInfo().setType( "Scantable" ) ;
189  /// @todo reindex SCANNO, recompute nbeam, nif, npol
190  if ( clear ) copySubtables(other);
191  attachSubtables();
192  originalTable_ = table_;
193  attach();
194}
195
196void Scantable::copySubtables(const Scantable& other) {
197  Table t = table_.rwKeywordSet().asTable("FREQUENCIES");
198  TableCopy::copyRows(t, other.freqTable_.table());
199  t = table_.rwKeywordSet().asTable("FOCUS");
200  TableCopy::copyRows(t, other.focusTable_.table());
201  t = table_.rwKeywordSet().asTable("WEATHER");
202  TableCopy::copyRows(t, other.weatherTable_.table());
203  t = table_.rwKeywordSet().asTable("TCAL");
204  TableCopy::copyRows(t, other.tcalTable_.table());
205  t = table_.rwKeywordSet().asTable("MOLECULES");
206  TableCopy::copyRows(t, other.moleculeTable_.table());
207  t = table_.rwKeywordSet().asTable("HISTORY");
208  TableCopy::copyRows(t, other.historyTable_.table());
209  t = table_.rwKeywordSet().asTable("FIT");
210  TableCopy::copyRows(t, other.fitTable_.table());
211}
212
213void Scantable::attachSubtables()
214{
215  freqTable_ = STFrequencies(table_);
216  focusTable_ = STFocus(table_);
217  weatherTable_ = STWeather(table_);
218  tcalTable_ = STTcal(table_);
219  moleculeTable_ = STMolecules(table_);
220  historyTable_ = STHistory(table_);
221  fitTable_ = STFit(table_);
222}
223
224Scantable::~Scantable()
225{
226}
227
228void Scantable::setupMainTable()
229{
230  TableDesc td("", "1", TableDesc::Scratch);
231  td.comment() = "An ASAP Scantable";
232  td.rwKeywordSet().define("VERSION", uInt(version_));
233
234  // n Cycles
235  td.addColumn(ScalarColumnDesc<uInt>("SCANNO"));
236  // new index every nBeam x nIF x nPol
237  td.addColumn(ScalarColumnDesc<uInt>("CYCLENO"));
238
239  td.addColumn(ScalarColumnDesc<uInt>("BEAMNO"));
240  td.addColumn(ScalarColumnDesc<uInt>("IFNO"));
241  // linear, circular, stokes
242  td.rwKeywordSet().define("POLTYPE", String("linear"));
243  td.addColumn(ScalarColumnDesc<uInt>("POLNO"));
244
245  td.addColumn(ScalarColumnDesc<uInt>("FREQ_ID"));
246  td.addColumn(ScalarColumnDesc<uInt>("MOLECULE_ID"));
247
248  ScalarColumnDesc<Int> refbeamnoColumn("REFBEAMNO");
249  refbeamnoColumn.setDefault(Int(-1));
250  td.addColumn(refbeamnoColumn);
251
252  ScalarColumnDesc<uInt> flagrowColumn("FLAGROW");
253  flagrowColumn.setDefault(uInt(0));
254  td.addColumn(flagrowColumn);
255
256  td.addColumn(ScalarColumnDesc<Double>("TIME"));
257  TableMeasRefDesc measRef(MEpoch::UTC); // UTC as default
258  TableMeasValueDesc measVal(td, "TIME");
259  TableMeasDesc<MEpoch> mepochCol(measVal, measRef);
260  mepochCol.write(td);
261
262  td.addColumn(ScalarColumnDesc<Double>("INTERVAL"));
263
264  td.addColumn(ScalarColumnDesc<String>("SRCNAME"));
265  // Type of source (on=0, off=1, other=-1)
266  ScalarColumnDesc<Int> stypeColumn("SRCTYPE");
267  stypeColumn.setDefault(Int(-1));
268  td.addColumn(stypeColumn);
269  td.addColumn(ScalarColumnDesc<String>("FIELDNAME"));
270
271  //The actual Data Vectors
272  td.addColumn(ArrayColumnDesc<Float>("SPECTRA"));
273  td.addColumn(ArrayColumnDesc<uChar>("FLAGTRA"));
274  td.addColumn(ArrayColumnDesc<Float>("TSYS"));
275
276  td.addColumn(ArrayColumnDesc<Double>("DIRECTION",
277                                       IPosition(1,2),
278                                       ColumnDesc::Direct));
279  TableMeasRefDesc mdirRef(MDirection::J2000); // default
280  TableMeasValueDesc tmvdMDir(td, "DIRECTION");
281  // the TableMeasDesc gives the column a type
282  TableMeasDesc<MDirection> mdirCol(tmvdMDir, mdirRef);
283  // a uder set table type e.g. GALCTIC, B1950 ...
284  td.rwKeywordSet().define("DIRECTIONREF", String("J2000"));
285  // writing create the measure column
286  mdirCol.write(td);
287  td.addColumn(ScalarColumnDesc<Float>("AZIMUTH"));
288  td.addColumn(ScalarColumnDesc<Float>("ELEVATION"));
289  td.addColumn(ScalarColumnDesc<Float>("OPACITY"));
290
291  td.addColumn(ScalarColumnDesc<uInt>("TCAL_ID"));
292  ScalarColumnDesc<Int> fitColumn("FIT_ID");
293  fitColumn.setDefault(Int(-1));
294  td.addColumn(fitColumn);
295
296  td.addColumn(ScalarColumnDesc<uInt>("FOCUS_ID"));
297  td.addColumn(ScalarColumnDesc<uInt>("WEATHER_ID"));
298
299  // columns which just get dragged along, as they aren't used in asap
300  td.addColumn(ScalarColumnDesc<Double>("SRCVELOCITY"));
301  td.addColumn(ArrayColumnDesc<Double>("SRCPROPERMOTION"));
302  td.addColumn(ArrayColumnDesc<Double>("SRCDIRECTION"));
303  td.addColumn(ArrayColumnDesc<Double>("SCANRATE"));
304
305  td.rwKeywordSet().define("OBSMODE", String(""));
306
307  // Now create Table SetUp from the description.
308  SetupNewTable aNewTab(generateName(), td, Table::Scratch);
309  table_ = Table(aNewTab, type_, 0);
310  originalTable_ = table_;
311}
312
313void Scantable::attach()
314{
315  timeCol_.attach(table_, "TIME");
316  srcnCol_.attach(table_, "SRCNAME");
317  srctCol_.attach(table_, "SRCTYPE");
318  specCol_.attach(table_, "SPECTRA");
319  flagsCol_.attach(table_, "FLAGTRA");
320  tsysCol_.attach(table_, "TSYS");
321  cycleCol_.attach(table_,"CYCLENO");
322  scanCol_.attach(table_, "SCANNO");
323  beamCol_.attach(table_, "BEAMNO");
324  ifCol_.attach(table_, "IFNO");
325  polCol_.attach(table_, "POLNO");
326  integrCol_.attach(table_, "INTERVAL");
327  azCol_.attach(table_, "AZIMUTH");
328  elCol_.attach(table_, "ELEVATION");
329  dirCol_.attach(table_, "DIRECTION");
330  fldnCol_.attach(table_, "FIELDNAME");
331  rbeamCol_.attach(table_, "REFBEAMNO");
332
333  mweatheridCol_.attach(table_,"WEATHER_ID");
334  mfitidCol_.attach(table_,"FIT_ID");
335  mfreqidCol_.attach(table_, "FREQ_ID");
336  mtcalidCol_.attach(table_, "TCAL_ID");
337  mfocusidCol_.attach(table_, "FOCUS_ID");
338  mmolidCol_.attach(table_, "MOLECULE_ID");
339
340  //Add auxiliary column for row-based flagging (CAS-1433 Wataru Kawasaki)
341  attachAuxColumnDef(flagrowCol_, "FLAGROW", 0);
342
343}
344
345template<class T, class T2>
346void Scantable::attachAuxColumnDef(ScalarColumn<T>& col,
347                                   const String& colName,
348                                   const T2& defValue)
349{
350  try {
351    col.attach(table_, colName);
352  } catch (TableError& err) {
353    String errMesg = err.getMesg();
354    if (errMesg == "Table column " + colName + " is unknown") {
355      table_.addColumn(ScalarColumnDesc<T>(colName));
356      col.attach(table_, colName);
357      col.fillColumn(static_cast<T>(defValue));
358    } else {
359      throw;
360    }
361  } catch (...) {
362    throw;
363  }
364}
365
366template<class T, class T2>
367void Scantable::attachAuxColumnDef(ArrayColumn<T>& col,
368                                   const String& colName,
369                                   const Array<T2>& defValue)
370{
371  try {
372    col.attach(table_, colName);
373  } catch (TableError& err) {
374    String errMesg = err.getMesg();
375    if (errMesg == "Table column " + colName + " is unknown") {
376      table_.addColumn(ArrayColumnDesc<T>(colName));
377      col.attach(table_, colName);
378
379      int size = 0;
380      ArrayIterator<T2>& it = defValue.begin();
381      while (it != defValue.end()) {
382        ++size;
383        ++it;
384      }
385      IPosition ip(1, size);
386      Array<T>& arr(ip);
387      for (int i = 0; i < size; ++i)
388        arr[i] = static_cast<T>(defValue[i]);
389
390      col.fillColumn(arr);
391    } else {
392      throw;
393    }
394  } catch (...) {
395    throw;
396  }
397}
398
399void Scantable::setHeader(const STHeader& sdh)
400{
401  table_.rwKeywordSet().define("nIF", sdh.nif);
402  table_.rwKeywordSet().define("nBeam", sdh.nbeam);
403  table_.rwKeywordSet().define("nPol", sdh.npol);
404  table_.rwKeywordSet().define("nChan", sdh.nchan);
405  table_.rwKeywordSet().define("Observer", sdh.observer);
406  table_.rwKeywordSet().define("Project", sdh.project);
407  table_.rwKeywordSet().define("Obstype", sdh.obstype);
408  table_.rwKeywordSet().define("AntennaName", sdh.antennaname);
409  table_.rwKeywordSet().define("AntennaPosition", sdh.antennaposition);
410  table_.rwKeywordSet().define("Equinox", sdh.equinox);
411  table_.rwKeywordSet().define("FreqRefFrame", sdh.freqref);
412  table_.rwKeywordSet().define("FreqRefVal", sdh.reffreq);
413  table_.rwKeywordSet().define("Bandwidth", sdh.bandwidth);
414  table_.rwKeywordSet().define("UTC", sdh.utc);
415  table_.rwKeywordSet().define("FluxUnit", sdh.fluxunit);
416  table_.rwKeywordSet().define("Epoch", sdh.epoch);
417  table_.rwKeywordSet().define("POLTYPE", sdh.poltype);
418}
419
420STHeader Scantable::getHeader() const
421{
422  STHeader sdh;
423  table_.keywordSet().get("nBeam",sdh.nbeam);
424  table_.keywordSet().get("nIF",sdh.nif);
425  table_.keywordSet().get("nPol",sdh.npol);
426  table_.keywordSet().get("nChan",sdh.nchan);
427  table_.keywordSet().get("Observer", sdh.observer);
428  table_.keywordSet().get("Project", sdh.project);
429  table_.keywordSet().get("Obstype", sdh.obstype);
430  table_.keywordSet().get("AntennaName", sdh.antennaname);
431  table_.keywordSet().get("AntennaPosition", sdh.antennaposition);
432  table_.keywordSet().get("Equinox", sdh.equinox);
433  table_.keywordSet().get("FreqRefFrame", sdh.freqref);
434  table_.keywordSet().get("FreqRefVal", sdh.reffreq);
435  table_.keywordSet().get("Bandwidth", sdh.bandwidth);
436  table_.keywordSet().get("UTC", sdh.utc);
437  table_.keywordSet().get("FluxUnit", sdh.fluxunit);
438  table_.keywordSet().get("Epoch", sdh.epoch);
439  table_.keywordSet().get("POLTYPE", sdh.poltype);
440  return sdh;
441}
442
443void Scantable::setSourceType( int stype )
444{
445  if ( stype < 0 || stype > 1 )
446    throw(AipsError("Illegal sourcetype."));
447  TableVector<Int> tabvec(table_, "SRCTYPE");
448  tabvec = Int(stype);
449}
450
451bool Scantable::conformant( const Scantable& other )
452{
453  return this->getHeader().conformant(other.getHeader());
454}
455
456
457
458std::string Scantable::formatSec(Double x) const
459{
460  Double xcop = x;
461  MVTime mvt(xcop/24./3600.);  // make days
462
463  if (x < 59.95)
464    return  String("      ") + mvt.string(MVTime::TIME_CLEAN_NO_HM, 7)+"s";
465  else if (x < 3599.95)
466    return String("   ") + mvt.string(MVTime::TIME_CLEAN_NO_H,7)+" ";
467  else {
468    ostringstream oss;
469    oss << setw(2) << std::right << setprecision(1) << mvt.hour();
470    oss << ":" << mvt.string(MVTime::TIME_CLEAN_NO_H,7) << " ";
471    return String(oss);
472  }
473};
474
475std::string Scantable::formatDirection(const MDirection& md) const
476{
477  Vector<Double> t = md.getAngle(Unit(String("rad"))).getValue();
478  Int prec = 7;
479
480  String ref = md.getRefString();
481  MVAngle mvLon(t[0]);
482  String sLon = mvLon.string(MVAngle::TIME,prec);
483  uInt tp = md.getRef().getType();
484  if (tp == MDirection::GALACTIC ||
485      tp == MDirection::SUPERGAL ) {
486    sLon = mvLon(0.0).string(MVAngle::ANGLE_CLEAN,prec);
487  }
488  MVAngle mvLat(t[1]);
489  String sLat = mvLat.string(MVAngle::ANGLE+MVAngle::DIG2,prec);
490  return  ref + String(" ") + sLon + String(" ") + sLat;
491}
492
493
494std::string Scantable::getFluxUnit() const
495{
496  return table_.keywordSet().asString("FluxUnit");
497}
498
499void Scantable::setFluxUnit(const std::string& unit)
500{
501  String tmp(unit);
502  Unit tU(tmp);
503  if (tU==Unit("K") || tU==Unit("Jy")) {
504     table_.rwKeywordSet().define(String("FluxUnit"), tmp);
505  } else {
506     throw AipsError("Illegal unit - must be compatible with Jy or K");
507  }
508}
509
510void Scantable::setInstrument(const std::string& name)
511{
512  bool throwIt = true;
513  // create an Instrument to see if this is valid
514  STAttr::convertInstrument(name, throwIt);
515  String nameU(name);
516  nameU.upcase();
517  table_.rwKeywordSet().define(String("AntennaName"), nameU);
518}
519
520void Scantable::setFeedType(const std::string& feedtype)
521{
522  if ( Scantable::factories_.find(feedtype) ==  Scantable::factories_.end() ) {
523    std::string msg = "Illegal feed type "+ feedtype;
524    throw(casa::AipsError(msg));
525  }
526  table_.rwKeywordSet().define(String("POLTYPE"), feedtype);
527}
528
529MPosition Scantable::getAntennaPosition() const
530{
531  Vector<Double> antpos;
532  table_.keywordSet().get("AntennaPosition", antpos);
533  MVPosition mvpos(antpos(0),antpos(1),antpos(2));
534  return MPosition(mvpos);
535}
536
537void Scantable::makePersistent(const std::string& filename)
538{
539  String inname(filename);
540  Path path(inname);
541  /// @todo reindex SCANNO, recompute nbeam, nif, npol
542  inname = path.expandedName();
543  // 2011/03/04 TN
544  // We can comment out this workaround since the essential bug is
545  // fixed in casacore (r20889 in google code).
546  table_.deepCopy(inname, Table::New);
547//   // WORKAROUND !!! for Table bug
548//   // Remove when fixed in casacore
549//   if ( table_.tableType() == Table::Memory  && !selector_.empty() ) {
550//     Table tab = table_.copyToMemoryTable(generateName());
551//     tab.deepCopy(inname, Table::New);
552//     tab.markForDelete();
553//
554//   } else {
555//     table_.deepCopy(inname, Table::New);
556//   }
557}
558
559int Scantable::nbeam( int scanno ) const
560{
561  if ( scanno < 0 ) {
562    Int n;
563    table_.keywordSet().get("nBeam",n);
564    return int(n);
565  } else {
566    // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
567    Table t = table_(table_.col("SCANNO") == scanno);
568    ROTableRow row(t);
569    const TableRecord& rec = row.get(0);
570    Table subt = t( t.col("IFNO") == Int(rec.asuInt("IFNO"))
571                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
572                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
573    ROTableVector<uInt> v(subt, "BEAMNO");
574    return int(v.nelements());
575  }
576  return 0;
577}
578
579int Scantable::nif( int scanno ) const
580{
581  if ( scanno < 0 ) {
582    Int n;
583    table_.keywordSet().get("nIF",n);
584    return int(n);
585  } else {
586    // take the first POLNO,BEAMNO,CYCLENO as nbeam shouldn't vary with these
587    Table t = table_(table_.col("SCANNO") == scanno);
588    ROTableRow row(t);
589    const TableRecord& rec = row.get(0);
590    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
591                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
592                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
593    if ( subt.nrow() == 0 ) return 0;
594    ROTableVector<uInt> v(subt, "IFNO");
595    return int(v.nelements());
596  }
597  return 0;
598}
599
600int Scantable::npol( int scanno ) const
601{
602  if ( scanno < 0 ) {
603    Int n;
604    table_.keywordSet().get("nPol",n);
605    return n;
606  } else {
607    // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
608    Table t = table_(table_.col("SCANNO") == scanno);
609    ROTableRow row(t);
610    const TableRecord& rec = row.get(0);
611    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
612                    && t.col("IFNO") == Int(rec.asuInt("IFNO"))
613                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
614    if ( subt.nrow() == 0 ) return 0;
615    ROTableVector<uInt> v(subt, "POLNO");
616    return int(v.nelements());
617  }
618  return 0;
619}
620
621int Scantable::ncycle( int scanno ) const
622{
623  if ( scanno < 0 ) {
624    Block<String> cols(2);
625    cols[0] = "SCANNO";
626    cols[1] = "CYCLENO";
627    TableIterator it(table_, cols);
628    int n = 0;
629    while ( !it.pastEnd() ) {
630      ++n;
631      ++it;
632    }
633    return n;
634  } else {
635    Table t = table_(table_.col("SCANNO") == scanno);
636    ROTableRow row(t);
637    const TableRecord& rec = row.get(0);
638    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
639                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
640                    && t.col("IFNO") == Int(rec.asuInt("IFNO")) );
641    if ( subt.nrow() == 0 ) return 0;
642    return int(subt.nrow());
643  }
644  return 0;
645}
646
647
648int Scantable::nrow( int scanno ) const
649{
650  return int(table_.nrow());
651}
652
653int Scantable::nchan( int ifno ) const
654{
655  if ( ifno < 0 ) {
656    Int n;
657    table_.keywordSet().get("nChan",n);
658    return int(n);
659  } else {
660    // take the first SCANNO,POLNO,BEAMNO,CYCLENO as nbeam shouldn't
661    // vary with these
662    Table t = table_(table_.col("IFNO") == ifno, 1);
663    if ( t.nrow() == 0 ) return 0;
664    ROArrayColumn<Float> v(t, "SPECTRA");
665    return v.shape(0)(0);
666  }
667  return 0;
668}
669
670int Scantable::nscan() const {
671  Vector<uInt> scannos(scanCol_.getColumn());
672  uInt nout = genSort( scannos, Sort::Ascending,
673                       Sort::QuickSort|Sort::NoDuplicates );
674  return int(nout);
675}
676
677int Scantable::getChannels(int whichrow) const
678{
679  return specCol_.shape(whichrow)(0);
680}
681
682int Scantable::getBeam(int whichrow) const
683{
684  return beamCol_(whichrow);
685}
686
687std::vector<uint> Scantable::getNumbers(const ScalarColumn<uInt>& col) const
688{
689  Vector<uInt> nos(col.getColumn());
690  uInt n = genSort( nos, Sort::Ascending, Sort::QuickSort|Sort::NoDuplicates );
691  nos.resize(n, True);
692  std::vector<uint> stlout;
693  nos.tovector(stlout);
694  return stlout;
695}
696
697int Scantable::getIF(int whichrow) const
698{
699  return ifCol_(whichrow);
700}
701
702int Scantable::getPol(int whichrow) const
703{
704  return polCol_(whichrow);
705}
706
707std::string Scantable::formatTime(const MEpoch& me, bool showdate) const
708{
709  return formatTime(me, showdate, 0);
710}
711
712std::string Scantable::formatTime(const MEpoch& me, bool showdate, uInt prec) const
713{
714  MVTime mvt(me.getValue());
715  if (showdate)
716    //mvt.setFormat(MVTime::YMD);
717    mvt.setFormat(MVTime::YMD, prec);
718  else
719    //mvt.setFormat(MVTime::TIME);
720    mvt.setFormat(MVTime::TIME, prec);
721  ostringstream oss;
722  oss << mvt;
723  return String(oss);
724}
725
726void Scantable::calculateAZEL()
727{
728  MPosition mp = getAntennaPosition();
729  MEpoch::ROScalarColumn timeCol(table_, "TIME");
730  ostringstream oss;
731  oss << "Computed azimuth/elevation using " << endl
732      << mp << endl;
733  for (Int i=0; i<nrow(); ++i) {
734    MEpoch me = timeCol(i);
735    MDirection md = getDirection(i);
736    oss  << " Time: " << formatTime(me,False) << " Direction: " << formatDirection(md)
737         << endl << "     => ";
738    MeasFrame frame(mp, me);
739    Vector<Double> azel =
740        MDirection::Convert(md, MDirection::Ref(MDirection::AZEL,
741                                                frame)
742                            )().getAngle("rad").getValue();
743    azCol_.put(i,Float(azel[0]));
744    elCol_.put(i,Float(azel[1]));
745    oss << "azel: " << azel[0]/C::pi*180.0 << " "
746        << azel[1]/C::pi*180.0 << " (deg)" << endl;
747  }
748  pushLog(String(oss));
749}
750
751void Scantable::clip(const Float uthres, const Float dthres, bool clipoutside, bool unflag)
752{
753  for (uInt i=0; i<table_.nrow(); ++i) {
754    Vector<uChar> flgs = flagsCol_(i);
755    srchChannelsToClip(i, uthres, dthres, clipoutside, unflag, flgs);
756    flagsCol_.put(i, flgs);
757  }
758}
759
760std::vector<bool> Scantable::getClipMask(int whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag)
761{
762  Vector<uChar> flags;
763  flagsCol_.get(uInt(whichrow), flags);
764  srchChannelsToClip(uInt(whichrow), uthres, dthres, clipoutside, unflag, flags);
765  Vector<Bool> bflag(flags.shape());
766  convertArray(bflag, flags);
767  //bflag = !bflag;
768
769  std::vector<bool> mask;
770  bflag.tovector(mask);
771  return mask;
772}
773
774void Scantable::srchChannelsToClip(uInt whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag,
775                                   Vector<uChar> flgs)
776{
777    Vector<Float> spcs = specCol_(whichrow);
778    uInt nchannel = spcs.nelements();
779    if (spcs.nelements() != nchannel) {
780      throw(AipsError("Data has incorrect number of channels"));
781    }
782    uChar userflag = 1 << 7;
783    if (unflag) {
784      userflag = 0 << 7;
785    }
786    if (clipoutside) {
787      for (uInt j = 0; j < nchannel; ++j) {
788        Float spc = spcs(j);
789        if ((spc >= uthres) || (spc <= dthres)) {
790          flgs(j) = userflag;
791        }
792      }
793    } else {
794      for (uInt j = 0; j < nchannel; ++j) {
795        Float spc = spcs(j);
796        if ((spc < uthres) && (spc > dthres)) {
797          flgs(j) = userflag;
798        }
799      }
800    }
801}
802
803
804void Scantable::flag( int whichrow, const std::vector<bool>& msk, bool unflag ) {
805  std::vector<bool>::const_iterator it;
806  uInt ntrue = 0;
807  if (whichrow >= int(table_.nrow()) ) {
808    throw(AipsError("Invalid row number"));
809  }
810  for (it = msk.begin(); it != msk.end(); ++it) {
811    if ( *it ) {
812      ntrue++;
813    }
814  }
815  //if ( selector_.empty()  && (msk.size() == 0 || msk.size() == ntrue) )
816  if ( whichrow == -1 && !unflag && selector_.empty() && (msk.size() == 0 || msk.size() == ntrue) )
817    throw(AipsError("Trying to flag whole scantable."));
818  uChar userflag = 1 << 7;
819  if ( unflag ) {
820    userflag = 0 << 7;
821  }
822  if (whichrow > -1 ) {
823    applyChanFlag(uInt(whichrow), msk, userflag);
824  } else {
825    for ( uInt i=0; i<table_.nrow(); ++i) {
826      applyChanFlag(i, msk, userflag);
827    }
828  }
829}
830
831void Scantable::applyChanFlag( uInt whichrow, const std::vector<bool>& msk, uChar flagval )
832{
833  if (whichrow >= table_.nrow() ) {
834    throw( casa::indexError<int>( whichrow, "asap::Scantable::applyChanFlag: Invalid row number" ) );
835  }
836  Vector<uChar> flgs = flagsCol_(whichrow);
837  if ( msk.size() == 0 ) {
838    flgs = flagval;
839    flagsCol_.put(whichrow, flgs);
840    return;
841  }
842  if ( int(msk.size()) != nchan( getIF(whichrow) ) ) {
843    throw(AipsError("Mask has incorrect number of channels."));
844  }
845  if ( flgs.nelements() != msk.size() ) {
846    throw(AipsError("Mask has incorrect number of channels."
847                    " Probably varying with IF. Please flag per IF"));
848  }
849  std::vector<bool>::const_iterator it;
850  uInt j = 0;
851  for (it = msk.begin(); it != msk.end(); ++it) {
852    if ( *it ) {
853      flgs(j) = flagval;
854    }
855    ++j;
856  }
857  flagsCol_.put(whichrow, flgs);
858}
859
860void Scantable::flagRow(const std::vector<uInt>& rows, bool unflag)
861{
862  if ( selector_.empty() && (rows.size() == table_.nrow()) )
863    throw(AipsError("Trying to flag whole scantable."));
864
865  uInt rowflag = (unflag ? 0 : 1);
866  std::vector<uInt>::const_iterator it;
867  for (it = rows.begin(); it != rows.end(); ++it)
868    flagrowCol_.put(*it, rowflag);
869}
870
871std::vector<bool> Scantable::getMask(int whichrow) const
872{
873  Vector<uChar> flags;
874  flagsCol_.get(uInt(whichrow), flags);
875  Vector<Bool> bflag(flags.shape());
876  convertArray(bflag, flags);
877  bflag = !bflag;
878  std::vector<bool> mask;
879  bflag.tovector(mask);
880  return mask;
881}
882
883std::vector<float> Scantable::getSpectrum( int whichrow,
884                                           const std::string& poltype ) const
885{
886  String ptype = poltype;
887  if (poltype == "" ) ptype = getPolType();
888  if ( whichrow  < 0 || whichrow >= nrow() )
889    throw(AipsError("Illegal row number."));
890  std::vector<float> out;
891  Vector<Float> arr;
892  uInt requestedpol = polCol_(whichrow);
893  String basetype = getPolType();
894  if ( ptype == basetype ) {
895    specCol_.get(whichrow, arr);
896  } else {
897    CountedPtr<STPol> stpol(STPol::getPolClass(Scantable::factories_,
898                                               basetype));
899    uInt row = uInt(whichrow);
900    stpol->setSpectra(getPolMatrix(row));
901    Float fang,fhand;
902    fang = focusTable_.getTotalAngle(mfocusidCol_(row));
903    fhand = focusTable_.getFeedHand(mfocusidCol_(row));
904    stpol->setPhaseCorrections(fang, fhand);
905    arr = stpol->getSpectrum(requestedpol, ptype);
906  }
907  if ( arr.nelements() == 0 )
908    pushLog("Not enough polarisations present to do the conversion.");
909  arr.tovector(out);
910  return out;
911}
912
913void Scantable::setSpectrum( const std::vector<float>& spec,
914                                   int whichrow )
915{
916  Vector<Float> spectrum(spec);
917  Vector<Float> arr;
918  specCol_.get(whichrow, arr);
919  if ( spectrum.nelements() != arr.nelements() )
920    throw AipsError("The spectrum has incorrect number of channels.");
921  specCol_.put(whichrow, spectrum);
922}
923
924
925String Scantable::generateName()
926{
927  return (File::newUniqueName("./","temp")).baseName();
928}
929
930const casa::Table& Scantable::table( ) const
931{
932  return table_;
933}
934
935casa::Table& Scantable::table( )
936{
937  return table_;
938}
939
940std::string Scantable::getPolType() const
941{
942  return table_.keywordSet().asString("POLTYPE");
943}
944
945void Scantable::unsetSelection()
946{
947  table_ = originalTable_;
948  attach();
949  selector_.reset();
950}
951
952void Scantable::setSelection( const STSelector& selection )
953{
954  Table tab = const_cast<STSelector&>(selection).apply(originalTable_);
955  if ( tab.nrow() == 0 ) {
956    throw(AipsError("Selection contains no data. Not applying it."));
957  }
958  table_ = tab;
959  attach();
960//   tab.rwKeywordSet().define("nBeam",(Int)(getBeamNos().size())) ;
961//   vector<uint> selectedIFs = getIFNos() ;
962//   Int newnIF = selectedIFs.size() ;
963//   tab.rwKeywordSet().define("nIF",newnIF) ;
964//   if ( newnIF != 0 ) {
965//     Int newnChan = 0 ;
966//     for ( Int i = 0 ; i < newnIF ; i++ ) {
967//       Int nChan = nchan( selectedIFs[i] ) ;
968//       if ( newnChan > nChan )
969//         newnChan = nChan ;
970//     }
971//     tab.rwKeywordSet().define("nChan",newnChan) ;
972//   }
973//   tab.rwKeywordSet().define("nPol",(Int)(getPolNos().size())) ;
974  selector_ = selection;
975}
976
977
978std::string Scantable::headerSummary()
979{
980  // Format header info
981//   STHeader sdh;
982//   sdh = getHeader();
983//   sdh.print();
984  ostringstream oss;
985  oss.flags(std::ios_base::left);
986  String tmp;
987  // Project
988  table_.keywordSet().get("Project", tmp);
989  oss << setw(15) << "Project:" << tmp << endl;
990  // Observation date
991  oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
992  // Observer
993  oss << setw(15) << "Observer:"
994      << table_.keywordSet().asString("Observer") << endl;
995  // Antenna Name
996  table_.keywordSet().get("AntennaName", tmp);
997  oss << setw(15) << "Antenna Name:" << tmp << endl;
998  // Obs type
999  table_.keywordSet().get("Obstype", tmp);
1000  // Records (nrow)
1001  oss << setw(15) << "Data Records:" << table_.nrow() << " rows" << endl;
1002  oss << setw(15) << "Obs. Type:" << tmp << endl;
1003  // Beams, IFs, Polarizations, and Channels
1004  oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1005      << setw(15) << "IFs:" << setw(4) << nif() << endl
1006      << setw(15) << "Polarisations:" << setw(4) << npol()
1007      << "(" << getPolType() << ")" << endl
1008      << setw(15) << "Channels:" << nchan() << endl;
1009  // Flux unit
1010  table_.keywordSet().get("FluxUnit", tmp);
1011  oss << setw(15) << "Flux Unit:" << tmp << endl;
1012  // Abscissa Unit
1013  oss << setw(15) << "Abscissa:" << getAbcissaLabel(0) << endl;
1014  // Selection
1015  oss << selector_.print() << endl;
1016
1017  return String(oss);
1018}
1019
1020void Scantable::summary( const std::string& filename )
1021{
1022  ostringstream oss;
1023  ofstream ofs;
1024  LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1025
1026  if (filename != "")
1027    ofs.open( filename.c_str(),  ios::out );
1028
1029  oss << endl;
1030  oss << asap::SEPERATOR << endl;
1031  oss << " Scan Table Summary" << endl;
1032  oss << asap::SEPERATOR << endl;
1033
1034  // Format header info
1035  oss << headerSummary();
1036  oss << endl;
1037
1038  if (table_.nrow() <= 0){
1039    oss << asap::SEPERATOR << endl;
1040    oss << "The MAIN table is empty: there are no data!!!" << endl;
1041    oss << asap::SEPERATOR << endl;
1042
1043    ols << String(oss) << LogIO::POST;
1044    if (ofs) {
1045      ofs << String(oss) << flush;
1046      ofs.close();
1047    }
1048    return;
1049  }
1050
1051
1052
1053  // main table
1054  String dirtype = "Position ("
1055                  + getDirectionRefString()
1056                  + ")";
1057  oss.flags(std::ios_base::left);
1058  oss << setw(5) << "Scan"
1059      << setw(15) << "Source"
1060      << setw(35) << "Time range"
1061      << setw(2) << "" << setw(7) << "Int[s]"
1062      << setw(7) << "Record"
1063      << setw(8) << "SrcType"
1064      << setw(8) << "FreqIDs"
1065      << setw(7) << "MolIDs" << endl;
1066  oss << setw(7)<< "" << setw(6) << "Beam"
1067      << setw(23) << dirtype << endl;
1068
1069  oss << asap::SEPERATOR << endl;
1070
1071  // Flush summary and clear up the string
1072  ols << String(oss) << LogIO::POST;
1073  if (ofs) ofs << String(oss) << flush;
1074  oss.str("");
1075  oss.clear();
1076
1077
1078  // Get Freq_ID map
1079  ROScalarColumn<uInt> ftabIds(frequencies().table(), "ID");
1080  Int nfid = ftabIds.nrow();
1081  if (nfid <= 0){
1082    oss << "FREQUENCIES subtable is empty: there are no data!!!" << endl;
1083    oss << asap::SEPERATOR << endl;
1084
1085    ols << String(oss) << LogIO::POST;
1086    if (ofs) {
1087      ofs << String(oss) << flush;
1088      ofs.close();
1089    }
1090    return;
1091  }
1092  // Storages of overall IFNO, POLNO, and nchan per FREQ_ID
1093  // the orders are identical to ID in FREQ subtable
1094  Block< Vector<uInt> > ifNos(nfid), polNos(nfid);
1095  Vector<Int> fIdchans(nfid,-1);
1096  map<uInt, Int> fidMap;  // (FREQ_ID, row # in FREQ subtable) pair
1097  for (Int i=0; i < nfid; i++){
1098   // fidMap[freqId] returns row number in FREQ subtable
1099   fidMap.insert(pair<uInt, Int>(ftabIds(i),i));
1100   ifNos[i] = Vector<uInt>();
1101   polNos[i] = Vector<uInt>();
1102  }
1103
1104  TableIterator iter(table_, "SCANNO");
1105
1106  // Vars for keeping track of time, freqids, molIds in a SCANNO
1107  Vector<uInt> freqids;
1108  Vector<uInt> molids;
1109  Vector<uInt> beamids(1,0);
1110  Vector<MDirection> beamDirs;
1111  Vector<Int> stypeids(1,0);
1112  Vector<String> stypestrs;
1113  Int nfreq(1);
1114  Int nmol(1);
1115  uInt nbeam(1);
1116  uInt nstype(1);
1117
1118  Double btime(0.0), etime(0.0);
1119  Double meanIntTim(0.0);
1120
1121  uInt currFreqId(0), ftabRow(0);
1122  Int iflen(0), pollen(0);
1123
1124  while (!iter.pastEnd()) {
1125    Table subt = iter.table();
1126    uInt snrow = subt.nrow();
1127    ROTableRow row(subt);
1128    const TableRecord& rec = row.get(0);
1129
1130    // relevant columns
1131    ROScalarColumn<Double> mjdCol(subt,"TIME");
1132    ROScalarColumn<Double> intervalCol(subt,"INTERVAL");
1133    MDirection::ROScalarColumn dirCol(subt,"DIRECTION");
1134
1135    ScalarColumn<uInt> freqIdCol(subt,"FREQ_ID");
1136    ScalarColumn<uInt> molIdCol(subt,"MOLECULE_ID");
1137    ROScalarColumn<uInt> beamCol(subt,"BEAMNO");
1138    ROScalarColumn<Int> stypeCol(subt,"SRCTYPE");
1139
1140    ROScalarColumn<uInt> ifNoCol(subt,"IFNO");
1141    ROScalarColumn<uInt> polNoCol(subt,"POLNO");
1142
1143
1144    // Times
1145    meanIntTim = sum(intervalCol.getColumn()) / (double) snrow;
1146    minMax(btime, etime, mjdCol.getColumn());
1147    etime += meanIntTim/C::day;
1148
1149    // MOLECULE_ID and FREQ_ID
1150    molids = getNumbers(molIdCol);
1151    molids.shape(nmol);
1152
1153    freqids = getNumbers(freqIdCol);
1154    freqids.shape(nfreq);
1155
1156    // Add first beamid, and srcNames
1157    beamids.resize(1,False);
1158    beamDirs.resize(1,False);
1159    beamids(0)=beamCol(0);
1160    beamDirs(0)=dirCol(0);
1161    nbeam = 1;
1162
1163    stypeids.resize(1,False);
1164    stypeids(0)=stypeCol(0);
1165    nstype = 1;
1166
1167    // Global listings of nchan/IFNO/POLNO per FREQ_ID
1168    currFreqId=freqIdCol(0);
1169    ftabRow = fidMap[currFreqId];
1170    // Assumes an identical number of channels per FREQ_ID
1171    if (fIdchans(ftabRow) < 0 ) {
1172      RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1173      fIdchans(ftabRow)=(*spec).shape()(0);
1174    }
1175    // Should keep ifNos and polNos form the previous SCANNO
1176    if ( !anyEQ(ifNos[ftabRow],ifNoCol(0)) ) {
1177      ifNos[ftabRow].shape(iflen);
1178      iflen++;
1179      ifNos[ftabRow].resize(iflen,True);
1180      ifNos[ftabRow](iflen-1) = ifNoCol(0);
1181    }
1182    if ( !anyEQ(polNos[ftabRow],polNoCol(0)) ) {
1183      polNos[ftabRow].shape(pollen);
1184      pollen++;
1185      polNos[ftabRow].resize(pollen,True);
1186      polNos[ftabRow](pollen-1) = polNoCol(0);
1187    }
1188
1189    for (uInt i=1; i < snrow; i++){
1190      // Need to list BEAMNO and DIRECTION in the same order
1191      if ( !anyEQ(beamids,beamCol(i)) ) {
1192        nbeam++;
1193        beamids.resize(nbeam,True);
1194        beamids(nbeam-1)=beamCol(i);
1195        beamDirs.resize(nbeam,True);
1196        beamDirs(nbeam-1)=dirCol(i);
1197      }
1198
1199      // SRCTYPE is Int (getNumber takes only uInt)
1200      if ( !anyEQ(stypeids,stypeCol(i)) ) {
1201        nstype++;
1202        stypeids.resize(nstype,True);
1203        stypeids(nstype-1)=stypeCol(i);
1204      }
1205
1206      // Global listings of nchan/IFNO/POLNO per FREQ_ID
1207      currFreqId=freqIdCol(i);
1208      ftabRow = fidMap[currFreqId];
1209      if (fIdchans(ftabRow) < 0 ) {
1210        const TableRecord& rec = row.get(i);
1211        RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1212        fIdchans(ftabRow) = (*spec).shape()(0);
1213      }
1214      if ( !anyEQ(ifNos[ftabRow],ifNoCol(i)) ) {
1215        ifNos[ftabRow].shape(iflen);
1216        iflen++;
1217        ifNos[ftabRow].resize(iflen,True);
1218        ifNos[ftabRow](iflen-1) = ifNoCol(i);
1219      }
1220      if ( !anyEQ(polNos[ftabRow],polNoCol(i)) ) {
1221        polNos[ftabRow].shape(pollen);
1222        pollen++;
1223        polNos[ftabRow].resize(pollen,True);
1224        polNos[ftabRow](pollen-1) = polNoCol(i);
1225      }
1226    } // end of row iteration
1227
1228    stypestrs.resize(nstype,False);
1229    for (uInt j=0; j < nstype; j++)
1230      stypestrs(j) = SrcType::getName(stypeids(j));
1231
1232    // Format Scan summary
1233    oss << setw(4) << std::right << rec.asuInt("SCANNO")
1234        << std::left << setw(1) << ""
1235        << setw(15) << rec.asString("SRCNAME")
1236        << setw(21) << MVTime(btime).string(MVTime::YMD,7)
1237        << setw(3) << " - " << MVTime(etime).string(MVTime::TIME,7)
1238        << setw(3) << "" << setw(6) << meanIntTim << setw(1) << ""
1239        << std::right << setw(5) << snrow << setw(2) << ""
1240        << std::left << stypestrs << setw(1) << ""
1241        << freqids << setw(1) << ""
1242        << molids  << endl;
1243    // Format Beam summary
1244    for (uInt j=0; j < nbeam; j++) {
1245      oss << setw(7) << "" << setw(6) << beamids(j) << setw(1) << ""
1246          << formatDirection(beamDirs(j)) << endl;
1247    }
1248    // Flush summary every scan and clear up the string
1249    ols << String(oss) << LogIO::POST;
1250    if (ofs) ofs << String(oss) << flush;
1251    oss.str("");
1252    oss.clear();
1253
1254    ++iter;
1255  } // end of scan iteration
1256  oss << asap::SEPERATOR << endl;
1257 
1258  // List FRECUENCIES Table (using STFrequencies.print may be slow)
1259  oss << "FREQUENCIES: " << nfreq << endl;
1260  oss << std::right << setw(5) << "ID" << setw(2) << ""
1261      << std::left  << setw(5) << "IFNO" << setw(2) << ""
1262      << setw(8) << "Frame"
1263      << setw(16) << "RefVal"
1264      << setw(7) << "RefPix"
1265      << setw(15) << "Increment"
1266      << setw(9) << "Channels"
1267      << setw(6) << "POLNOs" << endl;
1268  Int tmplen;
1269  for (Int i=0; i < nfid; i++){
1270    // List row=i of FREQUENCIES subtable
1271    ifNos[i].shape(tmplen);
1272    if (tmplen >= 1) {
1273      oss << std::right << setw(5) << ftabIds(i) << setw(2) << ""
1274          << setw(3) << ifNos[i](0) << setw(1) << ""
1275          << std::left << setw(46) << frequencies().print(ftabIds(i))
1276          << setw(2) << ""
1277          << std::right << setw(8) << fIdchans[i] << setw(2) << ""
1278          << std::left << polNos[i];
1279      if (tmplen > 1) {
1280        oss  << " (" << tmplen << " chains)";
1281      }
1282      oss << endl;
1283    }
1284   
1285  }
1286  oss << asap::SEPERATOR << endl;
1287
1288  // List MOLECULES Table (currently lists all rows)
1289  oss << "MOLECULES: " << endl;
1290  if (molecules().nrow() <= 0) {
1291    oss << "   MOLECULES subtable is empty: there are no data" << endl;
1292  } else {
1293    ROTableRow row(molecules().table());
1294    oss << std::right << setw(5) << "ID"
1295        << std::left << setw(3) << ""
1296        << setw(18) << "RestFreq"
1297        << setw(15) << "Name" << endl;
1298    for (Int i=0; i < molecules().nrow(); i++){
1299      const TableRecord& rec=row.get(i);
1300      oss << std::right << setw(5) << rec.asuInt("ID")
1301          << std::left << setw(3) << ""
1302          << rec.asArrayDouble("RESTFREQUENCY") << setw(1) << ""
1303          << rec.asArrayString("NAME") << endl;
1304    }
1305  }
1306  oss << asap::SEPERATOR << endl;
1307  ols << String(oss) << LogIO::POST;
1308  if (ofs) {
1309    ofs << String(oss) << flush;
1310    ofs.close();
1311  }
1312  //  return String(oss);
1313}
1314
1315
1316std::string Scantable::oldheaderSummary()
1317{
1318  // Format header info
1319//   STHeader sdh;
1320//   sdh = getHeader();
1321//   sdh.print();
1322  ostringstream oss;
1323  oss.flags(std::ios_base::left);
1324  oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1325      << setw(15) << "IFs:" << setw(4) << nif() << endl
1326      << setw(15) << "Polarisations:" << setw(4) << npol()
1327      << "(" << getPolType() << ")" << endl
1328      << setw(15) << "Channels:" << nchan() << endl;
1329  String tmp;
1330  oss << setw(15) << "Observer:"
1331      << table_.keywordSet().asString("Observer") << endl;
1332  oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1333  table_.keywordSet().get("Project", tmp);
1334  oss << setw(15) << "Project:" << tmp << endl;
1335  table_.keywordSet().get("Obstype", tmp);
1336  oss << setw(15) << "Obs. Type:" << tmp << endl;
1337  table_.keywordSet().get("AntennaName", tmp);
1338  oss << setw(15) << "Antenna Name:" << tmp << endl;
1339  table_.keywordSet().get("FluxUnit", tmp);
1340  oss << setw(15) << "Flux Unit:" << tmp << endl;
1341  int nid = moleculeTable_.nrow();
1342  Bool firstline = True;
1343  oss << setw(15) << "Rest Freqs:";
1344  for (int i=0; i<nid; i++) {
1345    Table t = table_(table_.col("MOLECULE_ID") == i, 1);
1346      if (t.nrow() >  0) {
1347          Vector<Double> vec(moleculeTable_.getRestFrequency(i));
1348          if (vec.nelements() > 0) {
1349               if (firstline) {
1350                   oss << setprecision(10) << vec << " [Hz]" << endl;
1351                   firstline=False;
1352               }
1353               else{
1354                   oss << setw(15)<<" " << setprecision(10) << vec << " [Hz]" << endl;
1355               }
1356          } else {
1357              oss << "none" << endl;
1358          }
1359      }
1360  }
1361
1362  oss << setw(15) << "Abcissa:" << getAbcissaLabel(0) << endl;
1363  oss << selector_.print() << endl;
1364  return String(oss);
1365}
1366
1367  //std::string Scantable::summary( const std::string& filename )
1368void Scantable::oldsummary( const std::string& filename )
1369{
1370  ostringstream oss;
1371  ofstream ofs;
1372  LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1373
1374  if (filename != "")
1375    ofs.open( filename.c_str(),  ios::out );
1376
1377  oss << endl;
1378  oss << asap::SEPERATOR << endl;
1379  oss << " Scan Table Summary" << endl;
1380  oss << asap::SEPERATOR << endl;
1381
1382  // Format header info
1383  oss << oldheaderSummary();
1384  oss << endl;
1385
1386  // main table
1387  String dirtype = "Position ("
1388                  + getDirectionRefString()
1389                  + ")";
1390  oss.flags(std::ios_base::left);
1391  oss << setw(5) << "Scan" << setw(15) << "Source"
1392      << setw(10) << "Time" << setw(18) << "Integration"
1393      << setw(15) << "Source Type" << endl;
1394  oss << setw(5) << "" << setw(5) << "Beam" << setw(3) << "" << dirtype << endl;
1395  oss << setw(10) << "" << setw(3) << "IF" << setw(3) << ""
1396      << setw(8) << "Frame" << setw(16)
1397      << "RefVal" << setw(10) << "RefPix" << setw(12) << "Increment"
1398      << setw(7) << "Channels"
1399      << endl;
1400  oss << asap::SEPERATOR << endl;
1401
1402  // Flush summary and clear up the string
1403  ols << String(oss) << LogIO::POST;
1404  if (ofs) ofs << String(oss) << flush;
1405  oss.str("");
1406  oss.clear();
1407
1408  TableIterator iter(table_, "SCANNO");
1409  while (!iter.pastEnd()) {
1410    Table subt = iter.table();
1411    ROTableRow row(subt);
1412    MEpoch::ROScalarColumn timeCol(subt,"TIME");
1413    const TableRecord& rec = row.get(0);
1414    oss << setw(4) << std::right << rec.asuInt("SCANNO")
1415        << std::left << setw(1) << ""
1416        << setw(15) << rec.asString("SRCNAME")
1417        << setw(10) << formatTime(timeCol(0), false);
1418    // count the cycles in the scan
1419    TableIterator cyciter(subt, "CYCLENO");
1420    int nint = 0;
1421    while (!cyciter.pastEnd()) {
1422      ++nint;
1423      ++cyciter;
1424    }
1425    oss << setw(3) << std::right << nint  << setw(3) << " x " << std::left
1426        << setw(11) <<  formatSec(rec.asFloat("INTERVAL")) << setw(1) << ""
1427        << setw(15) << SrcType::getName(rec.asInt("SRCTYPE")) << endl;
1428
1429    TableIterator biter(subt, "BEAMNO");
1430    while (!biter.pastEnd()) {
1431      Table bsubt = biter.table();
1432      ROTableRow brow(bsubt);
1433      const TableRecord& brec = brow.get(0);
1434      uInt row0 = bsubt.rowNumbers(table_)[0];
1435      oss << setw(5) << "" <<  setw(4) << std::right << brec.asuInt("BEAMNO")<< std::left;
1436      oss  << setw(4) << ""  << formatDirection(getDirection(row0)) << endl;
1437      TableIterator iiter(bsubt, "IFNO");
1438      while (!iiter.pastEnd()) {
1439        Table isubt = iiter.table();
1440        ROTableRow irow(isubt);
1441        const TableRecord& irec = irow.get(0);
1442        oss << setw(9) << "";
1443        oss << setw(3) << std::right << irec.asuInt("IFNO") << std::left
1444            << setw(1) << "" << frequencies().print(irec.asuInt("FREQ_ID"))
1445            << setw(3) << "" << nchan(irec.asuInt("IFNO"))
1446            << endl;
1447
1448        ++iiter;
1449      }
1450      ++biter;
1451    }
1452    // Flush summary every scan and clear up the string
1453    ols << String(oss) << LogIO::POST;
1454    if (ofs) ofs << String(oss) << flush;
1455    oss.str("");
1456    oss.clear();
1457
1458    ++iter;
1459  }
1460  oss << asap::SEPERATOR << endl;
1461  ols << String(oss) << LogIO::POST;
1462  if (ofs) {
1463    ofs << String(oss) << flush;
1464    ofs.close();
1465  }
1466  //  return String(oss);
1467}
1468
1469// std::string Scantable::getTime(int whichrow, bool showdate) const
1470// {
1471//   MEpoch::ROScalarColumn timeCol(table_, "TIME");
1472//   MEpoch me;
1473//   if (whichrow > -1) {
1474//     me = timeCol(uInt(whichrow));
1475//   } else {
1476//     Double tm;
1477//     table_.keywordSet().get("UTC",tm);
1478//     me = MEpoch(MVEpoch(tm));
1479//   }
1480//   return formatTime(me, showdate);
1481// }
1482
1483std::string Scantable::getTime(int whichrow, bool showdate, uInt prec) const
1484{
1485  MEpoch me;
1486  me = getEpoch(whichrow);
1487  return formatTime(me, showdate, prec);
1488}
1489
1490MEpoch Scantable::getEpoch(int whichrow) const
1491{
1492  if (whichrow > -1) {
1493    return timeCol_(uInt(whichrow));
1494  } else {
1495    Double tm;
1496    table_.keywordSet().get("UTC",tm);
1497    return MEpoch(MVEpoch(tm));
1498  }
1499}
1500
1501std::string Scantable::getDirectionString(int whichrow) const
1502{
1503  return formatDirection(getDirection(uInt(whichrow)));
1504}
1505
1506
1507SpectralCoordinate Scantable::getSpectralCoordinate(int whichrow) const {
1508  const MPosition& mp = getAntennaPosition();
1509  const MDirection& md = getDirection(whichrow);
1510  const MEpoch& me = timeCol_(whichrow);
1511  //Double rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1512  Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1513  return freqTable_.getSpectralCoordinate(md, mp, me, rf,
1514                                          mfreqidCol_(whichrow));
1515}
1516
1517std::vector< double > Scantable::getAbcissa( int whichrow ) const
1518{
1519  if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal row number"));
1520  std::vector<double> stlout;
1521  int nchan = specCol_(whichrow).nelements();
1522  String us = freqTable_.getUnitString();
1523  if ( us == "" || us == "pixel" || us == "channel" ) {
1524    for (int i=0; i<nchan; ++i) {
1525      stlout.push_back(double(i));
1526    }
1527    return stlout;
1528  }
1529  SpectralCoordinate spc = getSpectralCoordinate(whichrow);
1530  Vector<Double> pixel(nchan);
1531  Vector<Double> world;
1532  indgen(pixel);
1533  if ( Unit(us) == Unit("Hz") ) {
1534    for ( int i=0; i < nchan; ++i) {
1535      Double world;
1536      spc.toWorld(world, pixel[i]);
1537      stlout.push_back(double(world));
1538    }
1539  } else if ( Unit(us) == Unit("km/s") ) {
1540    Vector<Double> world;
1541    spc.pixelToVelocity(world, pixel);
1542    world.tovector(stlout);
1543  }
1544  return stlout;
1545}
1546void Scantable::setDirectionRefString( const std::string & refstr )
1547{
1548  MDirection::Types mdt;
1549  if (refstr != "" && !MDirection::getType(mdt, refstr)) {
1550    throw(AipsError("Illegal Direction frame."));
1551  }
1552  if ( refstr == "" ) {
1553    String defaultstr = MDirection::showType(dirCol_.getMeasRef().getType());
1554    table_.rwKeywordSet().define("DIRECTIONREF", defaultstr);
1555  } else {
1556    table_.rwKeywordSet().define("DIRECTIONREF", String(refstr));
1557  }
1558}
1559
1560std::string Scantable::getDirectionRefString( ) const
1561{
1562  return table_.keywordSet().asString("DIRECTIONREF");
1563}
1564
1565MDirection Scantable::getDirection(int whichrow ) const
1566{
1567  String usertype = table_.keywordSet().asString("DIRECTIONREF");
1568  String type = MDirection::showType(dirCol_.getMeasRef().getType());
1569  if ( usertype != type ) {
1570    MDirection::Types mdt;
1571    if (!MDirection::getType(mdt, usertype)) {
1572      throw(AipsError("Illegal Direction frame."));
1573    }
1574    return dirCol_.convert(uInt(whichrow), mdt);
1575  } else {
1576    return dirCol_(uInt(whichrow));
1577  }
1578}
1579
1580std::string Scantable::getAbcissaLabel( int whichrow ) const
1581{
1582  if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal ro number"));
1583  const MPosition& mp = getAntennaPosition();
1584  const MDirection& md = getDirection(whichrow);
1585  const MEpoch& me = timeCol_(whichrow);
1586  //const Double& rf = mmolidCol_(whichrow);
1587  const Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1588  SpectralCoordinate spc =
1589    freqTable_.getSpectralCoordinate(md, mp, me, rf, mfreqidCol_(whichrow));
1590
1591  String s = "Channel";
1592  Unit u = Unit(freqTable_.getUnitString());
1593  if (u == Unit("km/s")) {
1594    s = CoordinateUtil::axisLabel(spc, 0, True,True,  True);
1595  } else if (u == Unit("Hz")) {
1596    Vector<String> wau(1);wau = u.getName();
1597    spc.setWorldAxisUnits(wau);
1598    s = CoordinateUtil::axisLabel(spc, 0, True, True, False);
1599  }
1600  return s;
1601
1602}
1603
1604/**
1605void asap::Scantable::setRestFrequencies( double rf, const std::string& name,
1606                                          const std::string& unit )
1607**/
1608void Scantable::setRestFrequencies( vector<double> rf, const vector<std::string>& name,
1609                                          const std::string& unit )
1610
1611{
1612  ///@todo lookup in line table to fill in name and formattedname
1613  Unit u(unit);
1614  //Quantum<Double> urf(rf, u);
1615  Quantum<Vector<Double> >urf(rf, u);
1616  Vector<String> formattedname(0);
1617  //cerr<<"Scantable::setRestFrequnecies="<<urf<<endl;
1618
1619  //uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), name, "");
1620  uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), mathutil::toVectorString(name), formattedname);
1621  TableVector<uInt> tabvec(table_, "MOLECULE_ID");
1622  tabvec = id;
1623}
1624
1625/**
1626void asap::Scantable::setRestFrequencies( const std::string& name )
1627{
1628  throw(AipsError("setRestFrequencies( const std::string& name ) NYI"));
1629  ///@todo implement
1630}
1631**/
1632
1633void Scantable::setRestFrequencies( const vector<std::string>& name )
1634{
1635  (void) name; // suppress unused warning
1636  throw(AipsError("setRestFrequencies( const vector<std::string>& name ) NYI"));
1637  ///@todo implement
1638}
1639
1640std::vector< unsigned int > Scantable::rownumbers( ) const
1641{
1642  std::vector<unsigned int> stlout;
1643  Vector<uInt> vec = table_.rowNumbers();
1644  vec.tovector(stlout);
1645  return stlout;
1646}
1647
1648
1649Matrix<Float> Scantable::getPolMatrix( uInt whichrow ) const
1650{
1651  ROTableRow row(table_);
1652  const TableRecord& rec = row.get(whichrow);
1653  Table t =
1654    originalTable_( originalTable_.col("SCANNO") == Int(rec.asuInt("SCANNO"))
1655                    && originalTable_.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1656                    && originalTable_.col("IFNO") == Int(rec.asuInt("IFNO"))
1657                    && originalTable_.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
1658  ROArrayColumn<Float> speccol(t, "SPECTRA");
1659  return speccol.getColumn();
1660}
1661
1662std::vector< std::string > Scantable::columnNames( ) const
1663{
1664  Vector<String> vec = table_.tableDesc().columnNames();
1665  return mathutil::tovectorstring(vec);
1666}
1667
1668MEpoch::Types Scantable::getTimeReference( ) const
1669{
1670  return MEpoch::castType(timeCol_.getMeasRef().getType());
1671}
1672
1673void Scantable::addFit( const STFitEntry& fit, int row )
1674{
1675  //cout << mfitidCol_(uInt(row)) << endl;
1676  LogIO os( LogOrigin( "Scantable", "addFit()", WHERE ) ) ;
1677  os << mfitidCol_(uInt(row)) << LogIO::POST ;
1678  uInt id = fitTable_.addEntry(fit, mfitidCol_(uInt(row)));
1679  mfitidCol_.put(uInt(row), id);
1680}
1681
1682void Scantable::shift(int npix)
1683{
1684  Vector<uInt> fids(mfreqidCol_.getColumn());
1685  genSort( fids, Sort::Ascending,
1686           Sort::QuickSort|Sort::NoDuplicates );
1687  for (uInt i=0; i<fids.nelements(); ++i) {
1688    frequencies().shiftRefPix(npix, fids[i]);
1689  }
1690}
1691
1692String Scantable::getAntennaName() const
1693{
1694  String out;
1695  table_.keywordSet().get("AntennaName", out);
1696  String::size_type pos1 = out.find("@") ;
1697  String::size_type pos2 = out.find("//") ;
1698  if ( pos2 != String::npos )
1699    out = out.substr(pos2+2,pos1-pos2-2) ;
1700  else if ( pos1 != String::npos )
1701    out = out.substr(0,pos1) ;
1702  return out;
1703}
1704
1705int Scantable::checkScanInfo(const std::vector<int>& scanlist) const
1706{
1707  String tbpath;
1708  int ret = 0;
1709  if ( table_.keywordSet().isDefined("GBT_GO") ) {
1710    table_.keywordSet().get("GBT_GO", tbpath);
1711    Table t(tbpath,Table::Old);
1712    // check each scan if other scan of the pair exist
1713    int nscan = scanlist.size();
1714    for (int i = 0; i < nscan; i++) {
1715      Table subt = t( t.col("SCAN") == scanlist[i]+1 );
1716      if (subt.nrow()==0) {
1717        //cerr <<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<endl;
1718        LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1719        os <<LogIO::WARN<<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<LogIO::POST;
1720        ret = 1;
1721        break;
1722      }
1723      ROTableRow row(subt);
1724      const TableRecord& rec = row.get(0);
1725      int scan1seqn = rec.asuInt("PROCSEQN");
1726      int laston1 = rec.asuInt("LASTON");
1727      if ( rec.asuInt("PROCSIZE")==2 ) {
1728        if ( i < nscan-1 ) {
1729          Table subt2 = t( t.col("SCAN") == scanlist[i+1]+1 );
1730          if ( subt2.nrow() == 0) {
1731            LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1732
1733            //cerr<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<endl;
1734            os<<LogIO::WARN<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<LogIO::POST;
1735            ret = 1;
1736            break;
1737          }
1738          ROTableRow row2(subt2);
1739          const TableRecord& rec2 = row2.get(0);
1740          int scan2seqn = rec2.asuInt("PROCSEQN");
1741          int laston2 = rec2.asuInt("LASTON");
1742          if (scan1seqn == 1 && scan2seqn == 2) {
1743            if (laston1 == laston2) {
1744              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1745              //cerr<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1746              os<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
1747              i +=1;
1748            }
1749            else {
1750              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1751              //cerr<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1752              os<<LogIO::WARN<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
1753            }
1754          }
1755          else if (scan1seqn==2 && scan2seqn == 1) {
1756            if (laston1 == laston2) {
1757              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1758              //cerr<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<endl;
1759              os<<LogIO::WARN<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<LogIO::POST;
1760              ret = 1;
1761              break;
1762            }
1763          }
1764          else {
1765            LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1766            //cerr<<"The other scan for  "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<endl;
1767            os<<LogIO::WARN<<"The other scan for  "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<LogIO::POST;
1768            ret = 1;
1769            break;
1770          }
1771        }
1772      }
1773      else {
1774        LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1775        //cerr<<"The scan does not appear to be standard obsevation."<<endl;
1776        os<<LogIO::WARN<<"The scan does not appear to be standard obsevation."<<LogIO::POST;
1777      }
1778    //if ( i >= nscan ) break;
1779    }
1780  }
1781  else {
1782    LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1783    //cerr<<"No reference to GBT_GO table."<<endl;
1784    os<<LogIO::WARN<<"No reference to GBT_GO table."<<LogIO::POST;
1785    ret = 1;
1786  }
1787  return ret;
1788}
1789
1790std::vector<double> Scantable::getDirectionVector(int whichrow) const
1791{
1792  Vector<Double> Dir = dirCol_(whichrow).getAngle("rad").getValue();
1793  std::vector<double> dir;
1794  Dir.tovector(dir);
1795  return dir;
1796}
1797
1798void asap::Scantable::reshapeSpectrum( int nmin, int nmax )
1799  throw( casa::AipsError )
1800{
1801  // assumed that all rows have same nChan
1802  Vector<Float> arr = specCol_( 0 ) ;
1803  int nChan = arr.nelements() ;
1804
1805  // if nmin < 0 or nmax < 0, nothing to do
1806  if (  nmin < 0 ) {
1807    throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1808    }
1809  if (  nmax < 0  ) {
1810    throw( casa::indexError<int>( nmax, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1811  }
1812
1813  // if nmin > nmax, exchange values
1814  if ( nmin > nmax ) {
1815    int tmp = nmax ;
1816    nmax = nmin ;
1817    nmin = tmp ;
1818    LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1819    os << "Swap values. Applied range is ["
1820       << nmin << ", " << nmax << "]" << LogIO::POST ;
1821  }
1822
1823  // if nmin exceeds nChan, nothing to do
1824  if ( nmin >= nChan ) {
1825    throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Specified minimum exceeds nChan." ) ) ;
1826  }
1827
1828  // if nmax exceeds nChan, reset nmax to nChan
1829  if ( nmax >= nChan ) {
1830    if ( nmin == 0 ) {
1831      // nothing to do
1832      LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1833      os << "Whole range is selected. Nothing to do." << LogIO::POST ;
1834      return ;
1835    }
1836    else {
1837      LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1838      os << "Specified maximum exceeds nChan. Applied range is ["
1839         << nmin << ", " << nChan-1 << "]." << LogIO::POST ;
1840      nmax = nChan - 1 ;
1841    }
1842  }
1843
1844  // reshape specCol_ and flagCol_
1845  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1846    reshapeSpectrum( nmin, nmax, irow ) ;
1847  }
1848
1849  // update FREQUENCIES subtable
1850  Double refpix ;
1851  Double refval ;
1852  Double increment ;
1853  int freqnrow = freqTable_.table().nrow() ;
1854  Vector<uInt> oldId( freqnrow ) ;
1855  Vector<uInt> newId( freqnrow ) ;
1856  for ( int irow = 0 ; irow < freqnrow ; irow++ ) {
1857    freqTable_.getEntry( refpix, refval, increment, irow ) ;
1858    /***
1859     * need to shift refpix to nmin
1860     * note that channel nmin in old index will be channel 0 in new one
1861     ***/
1862    refval = refval - ( refpix - nmin ) * increment ;
1863    refpix = 0 ;
1864    freqTable_.setEntry( refpix, refval, increment, irow ) ;
1865  }
1866
1867  // update nchan
1868  int newsize = nmax - nmin + 1 ;
1869  table_.rwKeywordSet().define( "nChan", newsize ) ;
1870
1871  // update bandwidth
1872  // assumed all spectra in the scantable have same bandwidth
1873  table_.rwKeywordSet().define( "Bandwidth", increment * newsize ) ;
1874
1875  return ;
1876}
1877
1878void asap::Scantable::reshapeSpectrum( int nmin, int nmax, int irow )
1879{
1880  // reshape specCol_ and flagCol_
1881  Vector<Float> oldspec = specCol_( irow ) ;
1882  Vector<uChar> oldflag = flagsCol_( irow ) ;
1883  Vector<Float> oldtsys = tsysCol_( irow ) ;
1884  uInt newsize = nmax - nmin + 1 ;
1885  Slice slice( nmin, newsize, 1 ) ;
1886  specCol_.put( irow, oldspec( slice ) ) ;
1887  flagsCol_.put( irow, oldflag( slice ) ) ;
1888  if ( oldspec.size() == oldtsys.size() )
1889    tsysCol_.put( irow, oldtsys( slice ) ) ;
1890
1891  return ;
1892}
1893
1894void asap::Scantable::regridSpecChannel( double dnu, int nChan )
1895{
1896  LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
1897  os << "Regrid abcissa with spectral resoultion " << dnu << " " << freqTable_.getUnitString() << " with channel number " << ((nChan>0)? String(nChan) : "covering band width")<< LogIO::POST ;
1898  int freqnrow = freqTable_.table().nrow() ;
1899  Vector<bool> firstTime( freqnrow, true ) ;
1900  double oldincr, factor;
1901  uInt currId;
1902  Double refpix ;
1903  Double refval ;
1904  Double increment ;
1905  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1906    currId = mfreqidCol_(irow);
1907    vector<double> abcissa = getAbcissa( irow ) ;
1908    if (nChan < 0) {
1909      int oldsize = abcissa.size() ;
1910      double bw = (abcissa[oldsize-1]-abcissa[0]) +                     \
1911        0.5 * (abcissa[1]-abcissa[0] + abcissa[oldsize-1]-abcissa[oldsize-2]) ;
1912      nChan = int( ceil( abs(bw/dnu) ) ) ;
1913    }
1914    // actual regridding
1915    regridChannel( nChan, dnu, irow ) ;
1916
1917    // update FREQUENCIES subtable
1918    if (firstTime[currId]) {
1919      oldincr = abcissa[1]-abcissa[0] ;
1920      factor = dnu/oldincr ;
1921      firstTime[currId] = false ;
1922      freqTable_.getEntry( refpix, refval, increment, currId ) ;
1923
1924      //refval = refval - ( refpix + 0.5 * (1 - factor) ) * increment ;
1925      if (factor > 0 ) {
1926        refpix = (refpix + 0.5)/factor - 0.5;
1927      } else {
1928        refpix = (abcissa.size() - 0.5 - refpix)/abs(factor) - 0.5;
1929      }
1930      freqTable_.setEntry( refpix, refval, increment*factor, currId ) ;
1931      //os << "ID" << currId << ": channel width (Orig) = " << oldincr << " [" << freqTable_.getUnitString() << "], scale factor = " << factor << LogIO::POST ;
1932      //os << "     frequency increment (Orig) = " << increment << "-> (New) " << increment*factor << LogIO::POST ;
1933    }
1934  }
1935}
1936
1937void asap::Scantable::regridChannel( int nChan, double dnu )
1938{
1939  LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
1940  os << "Regrid abcissa with channel number " << nChan << " and spectral resoultion " << dnu << "Hz." << LogIO::POST ;
1941  // assumed that all rows have same nChan
1942  Vector<Float> arr = specCol_( 0 ) ;
1943  int oldsize = arr.nelements() ;
1944
1945  // if oldsize == nChan, nothing to do
1946  if ( oldsize == nChan ) {
1947    os << "Specified channel number is same as current one. Nothing to do." << LogIO::POST ;
1948    return ;
1949  }
1950
1951  // if oldChan < nChan, unphysical operation
1952  if ( oldsize < nChan ) {
1953    os << "Unphysical operation. Nothing to do." << LogIO::POST ;
1954    return ;
1955  }
1956
1957  // change channel number for specCol_, flagCol_, and tsysCol_ (if necessary)
1958  vector<string> coordinfo = getCoordInfo() ;
1959  string oldinfo = coordinfo[0] ;
1960  coordinfo[0] = "Hz" ;
1961  setCoordInfo( coordinfo ) ;
1962  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1963    regridChannel( nChan, dnu, irow ) ;
1964  }
1965  coordinfo[0] = oldinfo ;
1966  setCoordInfo( coordinfo ) ;
1967
1968
1969  // NOTE: this method does not update metadata such as
1970  //       FREQUENCIES subtable, nChan, Bandwidth, etc.
1971
1972  return ;
1973}
1974
1975void asap::Scantable::regridChannel( int nChan, double dnu, int irow )
1976{
1977  // logging
1978  //ofstream ofs( "average.log", std::ios::out | std::ios::app ) ;
1979  //ofs << "IFNO = " << getIF( irow ) << " irow = " << irow << endl ;
1980
1981  Vector<Float> oldspec = specCol_( irow ) ;
1982  Vector<uChar> oldflag = flagsCol_( irow ) ;
1983  Vector<Float> oldtsys = tsysCol_( irow ) ;
1984  Vector<Float> newspec( nChan, 0 ) ;
1985  Vector<uChar> newflag( nChan, true ) ;
1986  Vector<Float> newtsys ;
1987  bool regridTsys = false ;
1988  if (oldtsys.size() == oldspec.size()) {
1989    regridTsys = true ;
1990    newtsys.resize(nChan,false) ;
1991    newtsys = 0 ;
1992  }
1993
1994  // regrid
1995  vector<double> abcissa = getAbcissa( irow ) ;
1996  int oldsize = abcissa.size() ;
1997  double olddnu = abcissa[1] - abcissa[0] ;
1998  //int ichan = 0 ;
1999  double wsum = 0.0 ;
2000  Vector<double> zi( nChan+1 ) ;
2001  Vector<double> yi( oldsize + 1 ) ;
2002  yi[0] = abcissa[0] - 0.5 * olddnu ;
2003  for ( int ii = 1 ; ii < oldsize ; ii++ )
2004    yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ;
2005  yi[oldsize] = abcissa[oldsize-1] \
2006    + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ;
2007  //zi[0] = abcissa[0] - 0.5 * olddnu ;
2008  zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ;
2009  for ( int ii = 1 ; ii < nChan ; ii++ )
2010    zi[ii] = zi[0] + dnu * ii ;
2011  zi[nChan] = zi[nChan-1] + dnu ;
2012  // Access zi and yi in ascending order
2013  int izs = ((dnu > 0) ? 0 : nChan ) ;
2014  int ize = ((dnu > 0) ? nChan : 0 ) ;
2015  int izincr = ((dnu > 0) ? 1 : -1 ) ;
2016  int ichan =  ((olddnu > 0) ? 0 : oldsize ) ;
2017  int iye = ((olddnu > 0) ? oldsize : 0 ) ;
2018  int iyincr = ((olddnu > 0) ? 1 : -1 ) ;
2019  //for ( int ii = izs ; ii != ize ; ii+=izincr ){
2020  int ii = izs ;
2021  while (ii != ize) {
2022    // always zl < zr
2023    double zl = zi[ii] ;
2024    double zr = zi[ii+izincr] ;
2025    // Need to access smaller index for the new spec, flag, and tsys.
2026    // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc.
2027    int i = min(ii, ii+izincr) ;
2028    //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) {
2029    int jj = ichan ;
2030    while (jj != iye) {
2031      // always yl < yr
2032      double yl = yi[jj] ;
2033      double yr = yi[jj+iyincr] ;
2034      // Need to access smaller index for the original spec, flag, and tsys.
2035      // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc.
2036      int j = min(jj, jj+iyincr) ;
2037      if ( yr <= zl ) {
2038        jj += iyincr ;
2039        continue ;
2040      }
2041      else if ( yl <= zl ) {
2042        if ( yr < zr ) {
2043          if (!oldflag[j]) {
2044            newspec[i] += oldspec[j] * ( yr - zl ) ;
2045            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ;
2046            wsum += ( yr - zl ) ;
2047          }
2048          newflag[i] = newflag[i] && oldflag[j] ;
2049        }
2050        else {
2051          if (!oldflag[j]) {
2052            newspec[i] += oldspec[j] * abs(dnu) ;
2053            if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ;
2054            wsum += abs(dnu) ;
2055          }
2056          newflag[i] = newflag[i] && oldflag[j] ;
2057          ichan = jj ;
2058          break ;
2059        }
2060      }
2061      else if ( yl < zr ) {
2062        if ( yr <= zr ) {
2063          if (!oldflag[j]) {
2064            newspec[i] += oldspec[j] * ( yr - yl ) ;
2065            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ;
2066            wsum += ( yr - yl ) ;
2067          }
2068          newflag[i] = newflag[i] && oldflag[j] ;
2069        }
2070        else {
2071          if (!oldflag[j]) {
2072            newspec[i] += oldspec[j] * ( zr - yl ) ;
2073            if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ;
2074            wsum += ( zr - yl ) ;
2075          }
2076          newflag[i] = newflag[i] && oldflag[j] ;
2077          ichan = jj ;
2078          break ;
2079        }
2080      }
2081      else {
2082        ichan = jj - iyincr ;
2083        break ;
2084      }
2085      jj += iyincr ;
2086    }
2087    if ( wsum != 0.0 ) {
2088      newspec[i] /= wsum ;
2089      if (regridTsys) newtsys[i] /= wsum ;
2090    }
2091    wsum = 0.0 ;
2092    ii += izincr ;
2093  }
2094//   if ( dnu > 0.0 ) {
2095//     for ( int ii = 0 ; ii < nChan ; ii++ ) {
2096//       double zl = zi[ii] ;
2097//       double zr = zi[ii+1] ;
2098//       for ( int j = ichan ; j < oldsize ; j++ ) {
2099//         double yl = yi[j] ;
2100//         double yr = yi[j+1] ;
2101//         if ( yl <= zl ) {
2102//           if ( yr <= zl ) {
2103//             continue ;
2104//           }
2105//           else if ( yr <= zr ) {
2106//          if (!oldflag[j]) {
2107//            newspec[ii] += oldspec[j] * ( yr - zl ) ;
2108//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - zl ) ;
2109//            wsum += ( yr - zl ) ;
2110//          }
2111//          newflag[ii] = newflag[ii] && oldflag[j] ;
2112//           }
2113//           else {
2114//          if (!oldflag[j]) {
2115//            newspec[ii] += oldspec[j] * dnu ;
2116//            if (regridTsys) newtsys[ii] += oldtsys[j] * dnu ;
2117//            wsum += dnu ;
2118//          }
2119//          newflag[ii] = newflag[ii] && oldflag[j] ;
2120//             ichan = j ;
2121//             break ;
2122//           }
2123//         }
2124//         else if ( yl < zr ) {
2125//           if ( yr <= zr ) {
2126//          if (!oldflag[j]) {
2127//            newspec[ii] += oldspec[j] * ( yr - yl ) ;
2128//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - yl ) ;
2129//               wsum += ( yr - yl ) ;
2130//          }
2131//          newflag[ii] = newflag[ii] && oldflag[j] ;
2132//           }
2133//           else {
2134//          if (!oldflag[j]) {
2135//            newspec[ii] += oldspec[j] * ( zr - yl ) ;
2136//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( zr - yl ) ;
2137//            wsum += ( zr - yl ) ;
2138//          }
2139//          newflag[ii] = newflag[ii] && oldflag[j] ;
2140//             ichan = j ;
2141//             break ;
2142//           }
2143//         }
2144//         else {
2145//           ichan = j - 1 ;
2146//           break ;
2147//         }
2148//       }
2149//       if ( wsum != 0.0 ) {
2150//         newspec[ii] /= wsum ;
2151//      if (regridTsys) newtsys[ii] /= wsum ;
2152//       }
2153//       wsum = 0.0 ;
2154//     }
2155//   }
2156//   else if ( dnu < 0.0 ) {
2157//     for ( int ii = 0 ; ii < nChan ; ii++ ) {
2158//       double zl = zi[ii] ;
2159//       double zr = zi[ii+1] ;
2160//       for ( int j = ichan ; j < oldsize ; j++ ) {
2161//         double yl = yi[j] ;
2162//         double yr = yi[j+1] ;
2163//         if ( yl >= zl ) {
2164//           if ( yr >= zl ) {
2165//             continue ;
2166//           }
2167//           else if ( yr >= zr ) {
2168//          if (!oldflag[j]) {
2169//            newspec[ii] += oldspec[j] * abs( yr - zl ) ;
2170//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - zl ) ;
2171//            wsum += abs( yr - zl ) ;
2172//          }
2173//          newflag[ii] = newflag[ii] && oldflag[j] ;
2174//           }
2175//           else {
2176//          if (!oldflag[j]) {
2177//            newspec[ii] += oldspec[j] * abs( dnu ) ;
2178//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( dnu ) ;
2179//            wsum += abs( dnu ) ;
2180//          }
2181//          newflag[ii] = newflag[ii] && oldflag[j] ;
2182//             ichan = j ;
2183//             break ;
2184//           }
2185//         }
2186//         else if ( yl > zr ) {
2187//           if ( yr >= zr ) {
2188//          if (!oldflag[j]) {
2189//            newspec[ii] += oldspec[j] * abs( yr - yl ) ;
2190//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - yl ) ;
2191//            wsum += abs( yr - yl ) ;
2192//          }
2193//          newflag[ii] = newflag[ii] && oldflag[j] ;
2194//           }
2195//           else {
2196//          if (!oldflag[j]) {
2197//            newspec[ii] += oldspec[j] * abs( zr - yl ) ;
2198//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( zr - yl ) ;
2199//            wsum += abs( zr - yl ) ;
2200//          }
2201//          newflag[ii] = newflag[ii] && oldflag[j] ;
2202//             ichan = j ;
2203//             break ;
2204//           }
2205//         }
2206//         else {
2207//           ichan = j - 1 ;
2208//           break ;
2209//         }
2210//       }
2211//       if ( wsum != 0.0 ) {
2212//         newspec[ii] /= wsum ;
2213//      if (regridTsys) newtsys[ii] /= wsum ;
2214//       }
2215//       wsum = 0.0 ;
2216//     }
2217//   }
2218// //   //ofs << "olddnu = " << olddnu << ", dnu = " << dnu << endl ;
2219// //   pile += dnu ;
2220// //   wedge = olddnu * ( refChan + 1 ) ;
2221// //   while ( wedge < pile ) {
2222// //     newspec[0] += olddnu * oldspec[refChan] ;
2223// //     newflag[0] = newflag[0] || oldflag[refChan] ;
2224// //     //ofs << "channel " << refChan << " is included in new channel 0" << endl ;
2225// //     refChan++ ;
2226// //     wedge += olddnu ;
2227// //     wsum += olddnu ;
2228// //     //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2229// //   }
2230// //   frac = ( wedge - pile ) / olddnu ;
2231// //   wsum += ( 1.0 - frac ) * olddnu ;
2232// //   newspec[0] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2233// //   newflag[0] = newflag[0] || oldflag[refChan] ;
2234// //   //ofs << "channel " << refChan << " is partly included in new channel 0" << " with fraction of " << ( 1.0 - frac ) << endl ;
2235// //   //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2236// //   newspec[0] /= wsum ;
2237// //   //ofs << "newspec[0] = " << newspec[0] << endl ;
2238// //   //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2239
2240// //   /***
2241// //    * ichan = 1 - nChan-2
2242// //    ***/
2243// //   for ( int ichan = 1 ; ichan < nChan - 1 ; ichan++ ) {
2244// //     pile += dnu ;
2245// //     newspec[ichan] += frac * olddnu * oldspec[refChan] ;
2246// //     newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2247// //     //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << frac << endl ;
2248// //     refChan++ ;
2249// //     wedge += olddnu ;
2250// //     wsum = frac * olddnu ;
2251// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2252// //     while ( wedge < pile ) {
2253// //       newspec[ichan] += olddnu * oldspec[refChan] ;
2254// //       newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2255// //       //ofs << "channel " << refChan << " is included in new channel " << ichan << endl ;
2256// //       refChan++ ;
2257// //       wedge += olddnu ;
2258// //       wsum += olddnu ;
2259// //       //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2260// //     }
2261// //     frac = ( wedge - pile ) / olddnu ;
2262// //     wsum += ( 1.0 - frac ) * olddnu ;
2263// //     newspec[ichan] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2264// //     newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2265// //     //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << ( 1.0 - frac ) << endl ;
2266// //     //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2267// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2268// //     newspec[ichan] /= wsum ;
2269// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << endl ;
2270// //   }
2271
2272// //   /***
2273// //    * ichan = nChan-1
2274// //    ***/
2275// //   // NOTE: Assumed that all spectra have the same bandwidth
2276// //   pile += dnu ;
2277// //   newspec[nChan-1] += frac * olddnu * oldspec[refChan] ;
2278// //   newflag[nChan-1] = newflag[nChan-1] || oldflag[refChan] ;
2279// //   //ofs << "channel " << refChan << " is partly included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2280// //   refChan++ ;
2281// //   wedge += olddnu ;
2282// //   wsum = frac * olddnu ;
2283// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2284// //   for ( int jchan = refChan ; jchan < oldsize ; jchan++ ) {
2285// //     newspec[nChan-1] += olddnu * oldspec[jchan] ;
2286// //     newflag[nChan-1] = newflag[nChan-1] || oldflag[jchan] ;
2287// //     wsum += olddnu ;
2288// //     //ofs << "channel " << jchan << " is included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2289// //     //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2290// //   }
2291// //   //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2292// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2293// //   newspec[nChan-1] /= wsum ;
2294// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << endl ;
2295
2296// //   // ofs.close() ;
2297
2298  specCol_.put( irow, newspec ) ;
2299  flagsCol_.put( irow, newflag ) ;
2300  if (regridTsys) tsysCol_.put( irow, newtsys );
2301
2302  return ;
2303}
2304
2305std::vector<float> Scantable::getWeather(int whichrow) const
2306{
2307  std::vector<float> out(5);
2308  //Float temperature, pressure, humidity, windspeed, windaz;
2309  weatherTable_.getEntry(out[0], out[1], out[2], out[3], out[4],
2310                         mweatheridCol_(uInt(whichrow)));
2311
2312
2313  return out;
2314}
2315
2316bool Scantable::getFlagtraFast(uInt whichrow)
2317{
2318  uChar flag;
2319  Vector<uChar> flags;
2320  flagsCol_.get(whichrow, flags);
2321  flag = flags[0];
2322  for (uInt i = 1; i < flags.size(); ++i) {
2323    flag &= flags[i];
2324  }
2325  return ((flag >> 7) == 1);
2326}
2327
2328void Scantable::polyBaseline(const std::vector<bool>& mask, int order, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
2329{
2330  try {
2331    ofstream ofs;
2332    String coordInfo = "";
2333    bool hasSameNchan = true;
2334    bool outTextFile = false;
2335
2336    if (blfile != "") {
2337      ofs.open(blfile.c_str(), ios::out | ios::app);
2338      if (ofs) outTextFile = true;
2339    }
2340
2341    if (outLogger || outTextFile) {
2342      coordInfo = getCoordInfo()[0];
2343      if (coordInfo == "") coordInfo = "channel";
2344      hasSameNchan = hasSameNchanOverIFs();
2345    }
2346
2347    Fitter fitter = Fitter();
2348    fitter.setExpression("poly", order);
2349    //fitter.setIterClipping(thresClip, nIterClip);
2350
2351    int nRow = nrow();
2352    std::vector<bool> chanMask;
2353    bool showProgress;
2354    int minNRow;
2355    parseProgressInfo(progressInfo, showProgress, minNRow);
2356
2357    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
2358      chanMask = getCompositeChanMask(whichrow, mask);
2359      fitBaseline(chanMask, whichrow, fitter);
2360      setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
2361      outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "polyBaseline()", fitter);
2362      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
2363    }
2364
2365    if (outTextFile) ofs.close();
2366
2367  } catch (...) {
2368    throw;
2369  }
2370}
2371
2372void Scantable::autoPolyBaseline(const std::vector<bool>& mask, int order, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
2373{
2374  try {
2375    ofstream ofs;
2376    String coordInfo = "";
2377    bool hasSameNchan = true;
2378    bool outTextFile = false;
2379
2380    if (blfile != "") {
2381      ofs.open(blfile.c_str(), ios::out | ios::app);
2382      if (ofs) outTextFile = true;
2383    }
2384
2385    if (outLogger || outTextFile) {
2386      coordInfo = getCoordInfo()[0];
2387      if (coordInfo == "") coordInfo = "channel";
2388      hasSameNchan = hasSameNchanOverIFs();
2389    }
2390
2391    Fitter fitter = Fitter();
2392    fitter.setExpression("poly", order);
2393    //fitter.setIterClipping(thresClip, nIterClip);
2394
2395    int nRow = nrow();
2396    std::vector<bool> chanMask;
2397    int minEdgeSize = getIFNos().size()*2;
2398    STLineFinder lineFinder = STLineFinder();
2399    lineFinder.setOptions(threshold, 3, chanAvgLimit);
2400
2401    bool showProgress;
2402    int minNRow;
2403    parseProgressInfo(progressInfo, showProgress, minNRow);
2404
2405    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
2406
2407      //-------------------------------------------------------
2408      //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
2409      //-------------------------------------------------------
2410      int edgeSize = edge.size();
2411      std::vector<int> currentEdge;
2412      if (edgeSize >= 2) {
2413        int idx = 0;
2414        if (edgeSize > 2) {
2415          if (edgeSize < minEdgeSize) {
2416            throw(AipsError("Length of edge element info is less than that of IFs"));
2417          }
2418          idx = 2 * getIF(whichrow);
2419        }
2420        currentEdge.push_back(edge[idx]);
2421        currentEdge.push_back(edge[idx+1]);
2422      } else {
2423        throw(AipsError("Wrong length of edge element"));
2424      }
2425      lineFinder.setData(getSpectrum(whichrow));
2426      lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
2427      chanMask = lineFinder.getMask();
2428      //-------------------------------------------------------
2429
2430      fitBaseline(chanMask, whichrow, fitter);
2431      setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
2432
2433      outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoPolyBaseline()", fitter);
2434      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
2435    }
2436
2437    if (outTextFile) ofs.close();
2438
2439  } catch (...) {
2440    throw;
2441  }
2442}
2443
2444void Scantable::cubicSplineBaseline(const std::vector<bool>& mask, int nPiece, float thresClip, int nIterClip, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
2445{
2446  try {
2447    ofstream ofs;
2448    String coordInfo = "";
2449    bool hasSameNchan = true;
2450    bool outTextFile = false;
2451
2452    if (blfile != "") {
2453      ofs.open(blfile.c_str(), ios::out | ios::app);
2454      if (ofs) outTextFile = true;
2455    }
2456
2457    if (outLogger || outTextFile) {
2458      coordInfo = getCoordInfo()[0];
2459      if (coordInfo == "") coordInfo = "channel";
2460      hasSameNchan = hasSameNchanOverIFs();
2461    }
2462
2463    //Fitter fitter = Fitter();
2464    //fitter.setExpression("cspline", nPiece);
2465    //fitter.setIterClipping(thresClip, nIterClip);
2466
2467    bool showProgress;
2468    int minNRow;
2469    parseProgressInfo(progressInfo, showProgress, minNRow);
2470
2471    int nRow = nrow();
2472    std::vector<bool> chanMask;
2473
2474    //--------------------------------
2475    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
2476      chanMask = getCompositeChanMask(whichrow, mask);
2477      //fitBaseline(chanMask, whichrow, fitter);
2478      //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
2479      std::vector<int> pieceEdges(nPiece+1);
2480      std::vector<float> params(nPiece*4);
2481      int nClipped = 0;
2482      std::vector<float> res = doCubicSplineFitting(getSpectrum(whichrow), chanMask, nPiece, pieceEdges, params, nClipped, thresClip, nIterClip, getResidual);
2483      setSpectrum(res, whichrow);
2484      //
2485
2486      outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "cubicSplineBaseline()", pieceEdges, params, nClipped);
2487      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
2488    }
2489    //--------------------------------
2490   
2491    if (outTextFile) ofs.close();
2492
2493  } catch (...) {
2494    throw;
2495  }
2496}
2497
2498void Scantable::autoCubicSplineBaseline(const std::vector<bool>& mask, int nPiece, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
2499{
2500  try {
2501    ofstream ofs;
2502    String coordInfo = "";
2503    bool hasSameNchan = true;
2504    bool outTextFile = false;
2505
2506    if (blfile != "") {
2507      ofs.open(blfile.c_str(), ios::out | ios::app);
2508      if (ofs) outTextFile = true;
2509    }
2510
2511    if (outLogger || outTextFile) {
2512      coordInfo = getCoordInfo()[0];
2513      if (coordInfo == "") coordInfo = "channel";
2514      hasSameNchan = hasSameNchanOverIFs();
2515    }
2516
2517    //Fitter fitter = Fitter();
2518    //fitter.setExpression("cspline", nPiece);
2519    //fitter.setIterClipping(thresClip, nIterClip);
2520
2521    int nRow = nrow();
2522    std::vector<bool> chanMask;
2523    int minEdgeSize = getIFNos().size()*2;
2524    STLineFinder lineFinder = STLineFinder();
2525    lineFinder.setOptions(threshold, 3, chanAvgLimit);
2526
2527    bool showProgress;
2528    int minNRow;
2529    parseProgressInfo(progressInfo, showProgress, minNRow);
2530
2531    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
2532
2533      //-------------------------------------------------------
2534      //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
2535      //-------------------------------------------------------
2536      int edgeSize = edge.size();
2537      std::vector<int> currentEdge;
2538      if (edgeSize >= 2) {
2539        int idx = 0;
2540        if (edgeSize > 2) {
2541          if (edgeSize < minEdgeSize) {
2542            throw(AipsError("Length of edge element info is less than that of IFs"));
2543          }
2544          idx = 2 * getIF(whichrow);
2545        }
2546        currentEdge.push_back(edge[idx]);
2547        currentEdge.push_back(edge[idx+1]);
2548      } else {
2549        throw(AipsError("Wrong length of edge element"));
2550      }
2551      lineFinder.setData(getSpectrum(whichrow));
2552      lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
2553      chanMask = lineFinder.getMask();
2554      //-------------------------------------------------------
2555
2556
2557      //fitBaseline(chanMask, whichrow, fitter);
2558      //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
2559      std::vector<int> pieceEdges(nPiece+1);
2560      std::vector<float> params(nPiece*4);
2561      int nClipped = 0;
2562      std::vector<float> res = doCubicSplineFitting(getSpectrum(whichrow), chanMask, nPiece, pieceEdges, params, nClipped, thresClip, nIterClip, getResidual);
2563      setSpectrum(res, whichrow);
2564      //
2565
2566      outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoCubicSplineBaseline()", pieceEdges, params, nClipped);
2567      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
2568    }
2569
2570    if (outTextFile) ofs.close();
2571
2572  } catch (...) {
2573    throw;
2574  }
2575}
2576
2577std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data, const std::vector<bool>& mask, int nPiece, std::vector<int>& idxEdge, std::vector<float>& params, int& nClipped, float thresClip, int nIterClip, bool getResidual)
2578{
2579  if (data.size() != mask.size()) {
2580    throw(AipsError("data and mask sizes are not identical"));
2581  }
2582  if (nPiece < 1) {
2583    throw(AipsError("number of the sections must be one or more"));
2584  }
2585
2586  int nChan = data.size();
2587  std::vector<int> maskArray(nChan);
2588  std::vector<int> x(nChan);
2589  int j = 0;
2590  for (int i = 0; i < nChan; ++i) {
2591    maskArray[i] = mask[i] ? 1 : 0;
2592    if (mask[i]) {
2593      x[j] = i;
2594      j++;
2595    }
2596  }
2597  int initNData = j;
2598
2599  if (initNData < nPiece) {
2600    throw(AipsError("too few non-flagged channels"));
2601  }
2602
2603  int nElement = (int)(floor(floor((double)(initNData/nPiece))+0.5));
2604  std::vector<double> invEdge(nPiece-1);
2605  idxEdge[0] = x[0];
2606  for (int i = 1; i < nPiece; ++i) {
2607    int valX = x[nElement*i];
2608    idxEdge[i] = valX;
2609    invEdge[i-1] = 1.0/(double)valX;
2610  }
2611  idxEdge[nPiece] = x[initNData-1]+1;
2612
2613  int nData = initNData;
2614  int nDOF = nPiece + 3;  //number of parameters to solve, namely, 4+(nPiece-1).
2615
2616  std::vector<double> x1(nChan), x2(nChan), x3(nChan);
2617  std::vector<double> z1(nChan), x1z1(nChan), x2z1(nChan), x3z1(nChan);
2618  std::vector<double> r1(nChan), residual(nChan);
2619  for (int i = 0; i < nChan; ++i) {
2620    double di = (double)i;
2621    double dD = (double)data[i];
2622    x1[i]   = di;
2623    x2[i]   = di*di;
2624    x3[i]   = di*di*di;
2625    z1[i]   = dD;
2626    x1z1[i] = dD*di;
2627    x2z1[i] = dD*di*di;
2628    x3z1[i] = dD*di*di*di;
2629    r1[i]   = 0.0;
2630    residual[i] = 0.0;
2631  }
2632
2633  for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
2634    // xMatrix : horizontal concatenation of
2635    //           the least-sq. matrix (left) and an
2636    //           identity matrix (right).
2637    // the right part is used to calculate the inverse matrix of the left part.
2638    double xMatrix[nDOF][2*nDOF];
2639    double zMatrix[nDOF];
2640    for (int i = 0; i < nDOF; ++i) {
2641      for (int j = 0; j < 2*nDOF; ++j) {
2642        xMatrix[i][j] = 0.0;
2643      }
2644      xMatrix[i][nDOF+i] = 1.0;
2645      zMatrix[i] = 0.0;
2646    }
2647
2648    for (int n = 0; n < nPiece; ++n) {
2649      int nUseDataInPiece = 0;
2650      for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
2651
2652        if (maskArray[i] == 0) continue;
2653
2654        xMatrix[0][0] += 1.0;
2655        xMatrix[0][1] += x1[i];
2656        xMatrix[0][2] += x2[i];
2657        xMatrix[0][3] += x3[i];
2658        xMatrix[1][1] += x2[i];
2659        xMatrix[1][2] += x3[i];
2660        xMatrix[1][3] += x2[i]*x2[i];
2661        xMatrix[2][2] += x2[i]*x2[i];
2662        xMatrix[2][3] += x3[i]*x2[i];
2663        xMatrix[3][3] += x3[i]*x3[i];
2664        zMatrix[0] += z1[i];
2665        zMatrix[1] += x1z1[i];
2666        zMatrix[2] += x2z1[i];
2667        zMatrix[3] += x3z1[i];
2668
2669        for (int j = 0; j < n; ++j) {
2670          double q = 1.0 - x1[i]*invEdge[j];
2671          q = q*q*q;
2672          xMatrix[0][j+4] += q;
2673          xMatrix[1][j+4] += q*x1[i];
2674          xMatrix[2][j+4] += q*x2[i];
2675          xMatrix[3][j+4] += q*x3[i];
2676          for (int k = 0; k < j; ++k) {
2677            double r = 1.0 - x1[i]*invEdge[k];
2678            r = r*r*r;
2679            xMatrix[k+4][j+4] += r*q;
2680          }
2681          xMatrix[j+4][j+4] += q*q;
2682          zMatrix[j+4] += q*z1[i];
2683        }
2684
2685        nUseDataInPiece++;
2686      }
2687
2688      if (nUseDataInPiece < 1) {
2689        std::vector<string> suffixOfPieceNumber(4);
2690        suffixOfPieceNumber[0] = "th";
2691        suffixOfPieceNumber[1] = "st";
2692        suffixOfPieceNumber[2] = "nd";
2693        suffixOfPieceNumber[3] = "rd";
2694        int idxNoDataPiece = (n % 10 <= 3) ? n : 0;
2695        ostringstream oss;
2696        oss << "all channels clipped or masked in " << n << suffixOfPieceNumber[idxNoDataPiece];
2697        oss << " piece of the spectrum. can't execute fitting anymore.";
2698        throw(AipsError(String(oss)));
2699      }
2700    }
2701
2702    for (int i = 0; i < nDOF; ++i) {
2703      for (int j = 0; j < i; ++j) {
2704        xMatrix[i][j] = xMatrix[j][i];
2705      }
2706    }
2707
2708    std::vector<double> invDiag(nDOF);
2709    for (int i = 0; i < nDOF; ++i) {
2710      invDiag[i] = 1.0/xMatrix[i][i];
2711      for (int j = 0; j < nDOF; ++j) {
2712        xMatrix[i][j] *= invDiag[i];
2713      }
2714    }
2715
2716    for (int k = 0; k < nDOF; ++k) {
2717      for (int i = 0; i < nDOF; ++i) {
2718        if (i != k) {
2719          double factor1 = xMatrix[k][k];
2720          double factor2 = xMatrix[i][k];
2721          for (int j = k; j < 2*nDOF; ++j) {
2722            xMatrix[i][j] *= factor1;
2723            xMatrix[i][j] -= xMatrix[k][j]*factor2;
2724            xMatrix[i][j] /= factor1;
2725          }
2726        }
2727      }
2728      double xDiag = xMatrix[k][k];
2729      for (int j = k; j < 2*nDOF; ++j) {
2730        xMatrix[k][j] /= xDiag;
2731      }
2732    }
2733   
2734    for (int i = 0; i < nDOF; ++i) {
2735      for (int j = 0; j < nDOF; ++j) {
2736        xMatrix[i][nDOF+j] *= invDiag[j];
2737      }
2738    }
2739    //compute a vector y which consists of the coefficients of the best-fit spline curves
2740    //(a0,a1,a2,a3(,b3,c3,...)), namely, the ones for the leftmost piece and the ones of
2741    //cubic terms for the other pieces (in case nPiece>1).
2742    std::vector<double> y(nDOF);
2743    for (int i = 0; i < nDOF; ++i) {
2744      y[i] = 0.0;
2745      for (int j = 0; j < nDOF; ++j) {
2746        y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
2747      }
2748    }
2749
2750    double a0 = y[0];
2751    double a1 = y[1];
2752    double a2 = y[2];
2753    double a3 = y[3];
2754
2755    int j = 0;
2756    for (int n = 0; n < nPiece; ++n) {
2757      for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
2758        r1[i] = a0 + a1*x1[i] + a2*x2[i] + a3*x3[i];
2759      }
2760      params[j]   = a0;
2761      params[j+1] = a1;
2762      params[j+2] = a2;
2763      params[j+3] = a3;
2764      j += 4;
2765
2766      if (n == nPiece-1) break;
2767
2768      double d = y[4+n];
2769      double iE = invEdge[n];
2770      a0 +=     d;
2771      a1 -= 3.0*d*iE;
2772      a2 += 3.0*d*iE*iE;
2773      a3 -=     d*iE*iE*iE;
2774    }
2775
2776    //subtract constant value for masked regions at the edge of spectrum
2777    if (idxEdge[0] > 0) {
2778      int n = idxEdge[0];
2779      for (int i = 0; i < idxEdge[0]; ++i) {
2780        //--cubic extrapolate--
2781        //r1[i] = params[0] + params[1]*x1[i] + params[2]*x2[i] + params[3]*x3[i];
2782        //--linear extrapolate--
2783        //r1[i] = (r1[n+1] - r1[n])/(x1[n+1] - x1[n])*(x1[i] - x1[n]) + r1[n];
2784        //--constant--
2785        r1[i] = r1[n];
2786      }
2787    }
2788    if (idxEdge[nPiece] < nChan) {
2789      int n = idxEdge[nPiece]-1;
2790      for (int i = idxEdge[nPiece]; i < nChan; ++i) {
2791        //--cubic extrapolate--
2792        //int m = 4*(nPiece-1);
2793        //r1[i] = params[m] + params[m+1]*x1[i] + params[m+2]*x2[i] + params[m+3]*x3[i];
2794        //--linear extrapolate--
2795        //r1[i] = (r1[n-1] - r1[n])/(x1[n-1] - x1[n])*(x1[i] - x1[n]) + r1[n];
2796        //--constant--
2797        r1[i] = r1[n];
2798      }
2799    }
2800
2801    for (int i = 0; i < nChan; ++i) {
2802      residual[i] = z1[i] - r1[i];
2803    }
2804
2805    if ((nClip == nIterClip) || (thresClip <= 0.0)) {
2806      break;
2807    } else {
2808      double stdDev = 0.0;
2809      for (int i = 0; i < nChan; ++i) {
2810        stdDev += residual[i]*residual[i]*(double)maskArray[i];
2811      }
2812      stdDev = sqrt(stdDev/(double)nData);
2813     
2814      double thres = stdDev * thresClip;
2815      int newNData = 0;
2816      for (int i = 0; i < nChan; ++i) {
2817        if (abs(residual[i]) >= thres) {
2818          maskArray[i] = 0;
2819        }
2820        if (maskArray[i] > 0) {
2821          newNData++;
2822        }
2823      }
2824      if (newNData == nData) {
2825        break; //no more flag to add. iteration stops.
2826      } else {
2827        nData = newNData;
2828      }
2829    }
2830  }
2831
2832  nClipped = initNData - nData;
2833
2834  std::vector<float> result(nChan);
2835  if (getResidual) {
2836    for (int i = 0; i < nChan; ++i) {
2837      result[i] = (float)residual[i];
2838    }
2839  } else {
2840    for (int i = 0; i < nChan; ++i) {
2841      result[i] = (float)r1[i];
2842    }
2843  }
2844
2845  return result;
2846}
2847
2848void Scantable::selectWaveNumbers(const int whichrow, const std::vector<bool>& chanMask, const bool applyFFT, const std::string& fftMethod, const std::string& fftThresh, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, std::vector<int>& nWaves)
2849{
2850  nWaves.clear();
2851
2852  if (applyFFT) {
2853    string fftThAttr;
2854    float fftThSigma;
2855    int fftThTop;
2856    parseThresholdExpression(fftThresh, fftThAttr, fftThSigma, fftThTop);
2857    doSelectWaveNumbers(whichrow, chanMask, fftMethod, fftThSigma, fftThTop, fftThAttr, nWaves);
2858  }
2859
2860  addAuxWaveNumbers(whichrow, addNWaves, rejectNWaves, nWaves);
2861}
2862
2863void Scantable::parseThresholdExpression(const std::string& fftThresh, std::string& fftThAttr, float& fftThSigma, int& fftThTop)
2864{
2865  uInt idxSigma = fftThresh.find("sigma");
2866  uInt idxTop   = fftThresh.find("top");
2867
2868  if (idxSigma == fftThresh.size() - 5) {
2869    std::istringstream is(fftThresh.substr(0, fftThresh.size() - 5));
2870    is >> fftThSigma;
2871    fftThAttr = "sigma";
2872  } else if (idxTop == 0) {
2873    std::istringstream is(fftThresh.substr(3));
2874    is >> fftThTop;
2875    fftThAttr = "top";
2876  } else {
2877    bool isNumber = true;
2878    for (uInt i = 0; i < fftThresh.size()-1; ++i) {
2879      char ch = (fftThresh.substr(i, 1).c_str())[0];
2880      if (!(isdigit(ch) || (fftThresh.substr(i, 1) == "."))) {
2881        isNumber = false;
2882        break;
2883      }
2884    }
2885    if (isNumber) {
2886      std::istringstream is(fftThresh);
2887      is >> fftThSigma;
2888      fftThAttr = "sigma";
2889    } else {
2890      throw(AipsError("fftthresh has a wrong value"));
2891    }
2892  }
2893}
2894
2895void Scantable::doSelectWaveNumbers(const int whichrow, const std::vector<bool>& chanMask, const std::string& fftMethod, const float fftThSigma, const int fftThTop, const std::string& fftThAttr, std::vector<int>& nWaves)
2896{
2897  std::vector<float> fspec;
2898  if (fftMethod == "fft") {
2899    fspec = execFFT(whichrow, chanMask, false, true);
2900  //} else if (fftMethod == "lsp") {
2901  //  fspec = lombScarglePeriodogram(whichrow);
2902  }
2903
2904  if (fftThAttr == "sigma") {
2905    float mean  = 0.0;
2906    float mean2 = 0.0;
2907    for (uInt i = 0; i < fspec.size(); ++i) {
2908      mean  += fspec[i];
2909      mean2 += fspec[i]*fspec[i];
2910    }
2911    mean  /= float(fspec.size());
2912    mean2 /= float(fspec.size());
2913    float thres = mean + fftThSigma * float(sqrt(mean2 - mean*mean));
2914
2915    for (uInt i = 0; i < fspec.size(); ++i) {
2916      if (fspec[i] >= thres) {
2917        nWaves.push_back(i);
2918      }
2919    }
2920
2921  } else if (fftThAttr == "top") {
2922    for (int i = 0; i < fftThTop; ++i) {
2923      float max = 0.0;
2924      int maxIdx = 0;
2925      for (uInt j = 0; j < fspec.size(); ++j) {
2926        if (fspec[j] > max) {
2927          max = fspec[j];
2928          maxIdx = j;
2929        }
2930      }
2931      nWaves.push_back(maxIdx);
2932      fspec[maxIdx] = 0.0;
2933    }
2934
2935  }
2936
2937  if (nWaves.size() > 1) {
2938    sort(nWaves.begin(), nWaves.end());
2939  }
2940}
2941
2942void Scantable::addAuxWaveNumbers(const int whichrow, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, std::vector<int>& nWaves)
2943{
2944  std::vector<int> tempAddNWaves, tempRejectNWaves;
2945  for (uInt i = 0; i < addNWaves.size(); ++i) {
2946    tempAddNWaves.push_back(addNWaves[i]);
2947  }
2948  if ((tempAddNWaves.size() == 2) && (tempAddNWaves[1] == -999)) {
2949    setWaveNumberListUptoNyquistFreq(whichrow, tempAddNWaves);
2950  }
2951
2952  for (uInt i = 0; i < rejectNWaves.size(); ++i) {
2953    tempRejectNWaves.push_back(rejectNWaves[i]);
2954  }
2955  if ((tempRejectNWaves.size() == 2) && (tempRejectNWaves[1] == -999)) {
2956    setWaveNumberListUptoNyquistFreq(whichrow, tempRejectNWaves);
2957  }
2958
2959  for (uInt i = 0; i < tempAddNWaves.size(); ++i) {
2960    bool found = false;
2961    for (uInt j = 0; j < nWaves.size(); ++j) {
2962      if (nWaves[j] == tempAddNWaves[i]) {
2963        found = true;
2964        break;
2965      }
2966    }
2967    if (!found) nWaves.push_back(tempAddNWaves[i]);
2968  }
2969
2970  for (uInt i = 0; i < tempRejectNWaves.size(); ++i) {
2971    for (std::vector<int>::iterator j = nWaves.begin(); j != nWaves.end(); ) {
2972      if (*j == tempRejectNWaves[i]) {
2973        j = nWaves.erase(j);
2974      } else {
2975        ++j;
2976      }
2977    }
2978  }
2979
2980  if (nWaves.size() > 1) {
2981    sort(nWaves.begin(), nWaves.end());
2982    unique(nWaves.begin(), nWaves.end());
2983  }
2984}
2985
2986void Scantable::setWaveNumberListUptoNyquistFreq(const int whichrow, std::vector<int>& nWaves)
2987{
2988  if ((nWaves.size() == 2)&&(nWaves[1] == -999)) {
2989    int val = nWaves[0];
2990    int nyquistFreq = nchan(getIF(whichrow))/2+1;
2991    nWaves.clear();
2992    if (val > nyquistFreq) {  // for safety, at least nWaves contains a constant; CAS-3759
2993      nWaves.push_back(0);
2994    }
2995    while (val <= nyquistFreq) {
2996      nWaves.push_back(val);
2997      val++;
2998    }
2999  }
3000}
3001
3002void Scantable::sinusoidBaseline(const std::vector<bool>& mask, const bool applyFFT, const std::string& fftMethod, const std::string& fftThresh, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, float thresClip, int nIterClip, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
3003{
3004  try {
3005    ofstream ofs;
3006    String coordInfo = "";
3007    bool hasSameNchan = true;
3008    bool outTextFile = false;
3009
3010    if (blfile != "") {
3011      ofs.open(blfile.c_str(), ios::out | ios::app);
3012      if (ofs) outTextFile = true;
3013    }
3014
3015    if (outLogger || outTextFile) {
3016      coordInfo = getCoordInfo()[0];
3017      if (coordInfo == "") coordInfo = "channel";
3018      hasSameNchan = hasSameNchanOverIFs();
3019    }
3020
3021    //Fitter fitter = Fitter();
3022    //fitter.setExpression("sinusoid", nWaves);
3023    //fitter.setIterClipping(thresClip, nIterClip);
3024
3025    int nRow = nrow();
3026    std::vector<bool> chanMask;
3027    std::vector<int> nWaves;
3028
3029    bool showProgress;
3030    int minNRow;
3031    parseProgressInfo(progressInfo, showProgress, minNRow);
3032
3033    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3034      chanMask = getCompositeChanMask(whichrow, mask);
3035      selectWaveNumbers(whichrow, chanMask, applyFFT, fftMethod, fftThresh, addNWaves, rejectNWaves, nWaves);
3036
3037      //FOR DEBUGGING------------
3038      /*
3039      if (whichrow < 0) {// == nRow -1) {
3040        cout << "+++ i=" << setw(3) << whichrow << ", IF=" << setw(2) << getIF(whichrow);
3041        if (applyFFT) {
3042          cout << "[ ";
3043          for (uInt j = 0; j < nWaves.size(); ++j) {
3044            cout << nWaves[j] << ", ";
3045          }
3046          cout << " ]    " << endl;
3047        }
3048        cout << flush;
3049      }
3050      */
3051      //-------------------------
3052
3053      //fitBaseline(chanMask, whichrow, fitter);
3054      //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
3055      std::vector<float> params;
3056      int nClipped = 0;
3057      std::vector<float> res = doSinusoidFitting(getSpectrum(whichrow), chanMask, nWaves, params, nClipped, thresClip, nIterClip, getResidual);
3058      setSpectrum(res, whichrow);
3059      //
3060
3061      outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "sinusoidBaseline()", params, nClipped);
3062      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3063    }
3064
3065    if (outTextFile) ofs.close();
3066
3067  } catch (...) {
3068    throw;
3069  }
3070}
3071
3072void Scantable::autoSinusoidBaseline(const std::vector<bool>& mask, const bool applyFFT, const std::string& fftMethod, const std::string& fftThresh, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
3073{
3074  try {
3075    ofstream ofs;
3076    String coordInfo = "";
3077    bool hasSameNchan = true;
3078    bool outTextFile = false;
3079
3080    if (blfile != "") {
3081      ofs.open(blfile.c_str(), ios::out | ios::app);
3082      if (ofs) outTextFile = true;
3083    }
3084
3085    if (outLogger || outTextFile) {
3086      coordInfo = getCoordInfo()[0];
3087      if (coordInfo == "") coordInfo = "channel";
3088      hasSameNchan = hasSameNchanOverIFs();
3089    }
3090
3091    //Fitter fitter = Fitter();
3092    //fitter.setExpression("sinusoid", nWaves);
3093    //fitter.setIterClipping(thresClip, nIterClip);
3094
3095    int nRow = nrow();
3096    std::vector<bool> chanMask;
3097    std::vector<int> nWaves;
3098
3099    int minEdgeSize = getIFNos().size()*2;
3100    STLineFinder lineFinder = STLineFinder();
3101    lineFinder.setOptions(threshold, 3, chanAvgLimit);
3102
3103    bool showProgress;
3104    int minNRow;
3105    parseProgressInfo(progressInfo, showProgress, minNRow);
3106
3107    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3108
3109      //-------------------------------------------------------
3110      //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
3111      //-------------------------------------------------------
3112      int edgeSize = edge.size();
3113      std::vector<int> currentEdge;
3114      if (edgeSize >= 2) {
3115        int idx = 0;
3116        if (edgeSize > 2) {
3117          if (edgeSize < minEdgeSize) {
3118            throw(AipsError("Length of edge element info is less than that of IFs"));
3119          }
3120          idx = 2 * getIF(whichrow);
3121        }
3122        currentEdge.push_back(edge[idx]);
3123        currentEdge.push_back(edge[idx+1]);
3124      } else {
3125        throw(AipsError("Wrong length of edge element"));
3126      }
3127      lineFinder.setData(getSpectrum(whichrow));
3128      lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
3129      chanMask = lineFinder.getMask();
3130      //-------------------------------------------------------
3131
3132      selectWaveNumbers(whichrow, chanMask, applyFFT, fftMethod, fftThresh, addNWaves, rejectNWaves, nWaves);
3133
3134      //fitBaseline(chanMask, whichrow, fitter);
3135      //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
3136      std::vector<float> params;
3137      int nClipped = 0;
3138      std::vector<float> res = doSinusoidFitting(getSpectrum(whichrow), chanMask, nWaves, params, nClipped, thresClip, nIterClip, getResidual);
3139      setSpectrum(res, whichrow);
3140      //
3141
3142      outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoSinusoidBaseline()", params, nClipped);
3143      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3144    }
3145
3146    if (outTextFile) ofs.close();
3147
3148  } catch (...) {
3149    throw;
3150  }
3151}
3152
3153std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data, const std::vector<bool>& mask, const std::vector<int>& waveNumbers, std::vector<float>& params, int& nClipped, float thresClip, int nIterClip, bool getResidual)
3154{
3155  if (data.size() != mask.size()) {
3156    throw(AipsError("data and mask sizes are not identical"));
3157  }
3158  if (data.size() < 2) {
3159    throw(AipsError("data size is too short"));
3160  }
3161  if (waveNumbers.size() == 0) {
3162    throw(AipsError("no wave numbers given"));
3163  }
3164  std::vector<int> nWaves;  // sorted and uniqued array of wave numbers
3165  nWaves.reserve(waveNumbers.size());
3166  copy(waveNumbers.begin(), waveNumbers.end(), back_inserter(nWaves));
3167  sort(nWaves.begin(), nWaves.end());
3168  std::vector<int>::iterator end_it = unique(nWaves.begin(), nWaves.end());
3169  nWaves.erase(end_it, nWaves.end());
3170
3171  int minNWaves = nWaves[0];
3172  if (minNWaves < 0) {
3173    throw(AipsError("wave number must be positive or zero (i.e. constant)"));
3174  }
3175  bool hasConstantTerm = (minNWaves == 0);
3176
3177  int nChan = data.size();
3178  std::vector<int> maskArray;
3179  std::vector<int> x;
3180  for (int i = 0; i < nChan; ++i) {
3181    maskArray.push_back(mask[i] ? 1 : 0);
3182    if (mask[i]) {
3183      x.push_back(i);
3184    }
3185  }
3186
3187  int initNData = x.size();
3188
3189  int nData = initNData;
3190  int nDOF = nWaves.size() * 2 - (hasConstantTerm ? 1 : 0);  //number of parameters to solve.
3191
3192  const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
3193  double baseXFactor = 2.0*PI/(double)(nChan-1);  //the denominator (nChan-1) should be changed to (xdata[nChan-1]-xdata[0]) for accepting x-values given in velocity or frequency when this function is moved to fitter. (2011/03/30 WK)
3194
3195  // xArray : contains elemental values for computing the least-square matrix.
3196  //          xArray.size() is nDOF and xArray[*].size() is nChan.
3197  //          Each xArray element are as follows:
3198  //          xArray[0]    = {1.0, 1.0, 1.0, ..., 1.0},
3199  //          xArray[2n-1] = {sin(nPI/L*x[0]), sin(nPI/L*x[1]), ..., sin(nPI/L*x[nChan])},
3200  //          xArray[2n]   = {cos(nPI/L*x[0]), cos(nPI/L*x[1]), ..., cos(nPI/L*x[nChan])},
3201  //          where (1 <= n <= nMaxWavesInSW),
3202  //          or,
3203  //          xArray[2n-1] = {sin(wn[n]PI/L*x[0]), sin(wn[n]PI/L*x[1]), ..., sin(wn[n]PI/L*x[nChan])},
3204  //          xArray[2n]   = {cos(wn[n]PI/L*x[0]), cos(wn[n]PI/L*x[1]), ..., cos(wn[n]PI/L*x[nChan])},
3205  //          where wn[n] denotes waveNumbers[n] (1 <= n <= waveNumbers.size()).
3206  std::vector<std::vector<double> > xArray;
3207  if (hasConstantTerm) {
3208    std::vector<double> xu;
3209    for (int j = 0; j < nChan; ++j) {
3210      xu.push_back(1.0);
3211    }
3212    xArray.push_back(xu);
3213  }
3214  for (uInt i = (hasConstantTerm ? 1 : 0); i < nWaves.size(); ++i) {
3215    double xFactor = baseXFactor*(double)nWaves[i];
3216    std::vector<double> xs, xc;
3217    xs.clear();
3218    xc.clear();
3219    for (int j = 0; j < nChan; ++j) {
3220      xs.push_back(sin(xFactor*(double)j));
3221      xc.push_back(cos(xFactor*(double)j));
3222    }
3223    xArray.push_back(xs);
3224    xArray.push_back(xc);
3225  }
3226
3227  std::vector<double> z1, r1, residual;
3228  for (int i = 0; i < nChan; ++i) {
3229    z1.push_back((double)data[i]);
3230    r1.push_back(0.0);
3231    residual.push_back(0.0);
3232  }
3233
3234  for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
3235    // xMatrix : horizontal concatenation of
3236    //           the least-sq. matrix (left) and an
3237    //           identity matrix (right).
3238    // the right part is used to calculate the inverse matrix of the left part.
3239    double xMatrix[nDOF][2*nDOF];
3240    double zMatrix[nDOF];
3241    for (int i = 0; i < nDOF; ++i) {
3242      for (int j = 0; j < 2*nDOF; ++j) {
3243        xMatrix[i][j] = 0.0;
3244      }
3245      xMatrix[i][nDOF+i] = 1.0;
3246      zMatrix[i] = 0.0;
3247    }
3248
3249    int nUseData = 0;
3250    for (int k = 0; k < nChan; ++k) {
3251      if (maskArray[k] == 0) continue;
3252
3253      for (int i = 0; i < nDOF; ++i) {
3254        for (int j = i; j < nDOF; ++j) {
3255          xMatrix[i][j] += xArray[i][k] * xArray[j][k];
3256        }
3257        zMatrix[i] += z1[k] * xArray[i][k];
3258      }
3259
3260      nUseData++;
3261    }
3262
3263    if (nUseData < 1) {
3264        throw(AipsError("all channels clipped or masked. can't execute fitting anymore."));     
3265    }
3266
3267    for (int i = 0; i < nDOF; ++i) {
3268      for (int j = 0; j < i; ++j) {
3269        xMatrix[i][j] = xMatrix[j][i];
3270      }
3271    }
3272
3273    std::vector<double> invDiag;
3274    for (int i = 0; i < nDOF; ++i) {
3275      invDiag.push_back(1.0/xMatrix[i][i]);
3276      for (int j = 0; j < nDOF; ++j) {
3277        xMatrix[i][j] *= invDiag[i];
3278      }
3279    }
3280
3281    for (int k = 0; k < nDOF; ++k) {
3282      for (int i = 0; i < nDOF; ++i) {
3283        if (i != k) {
3284          double factor1 = xMatrix[k][k];
3285          double factor2 = xMatrix[i][k];
3286          for (int j = k; j < 2*nDOF; ++j) {
3287            xMatrix[i][j] *= factor1;
3288            xMatrix[i][j] -= xMatrix[k][j]*factor2;
3289            xMatrix[i][j] /= factor1;
3290          }
3291        }
3292      }
3293      double xDiag = xMatrix[k][k];
3294      for (int j = k; j < 2*nDOF; ++j) {
3295        xMatrix[k][j] /= xDiag;
3296      }
3297    }
3298   
3299    for (int i = 0; i < nDOF; ++i) {
3300      for (int j = 0; j < nDOF; ++j) {
3301        xMatrix[i][nDOF+j] *= invDiag[j];
3302      }
3303    }
3304    //compute a vector y which consists of the coefficients of the sinusoids forming the
3305    //best-fit curves (a0,s1,c1,s2,c2,...), where a0 is constant and s* and c* are of sine
3306    //and cosine functions, respectively.
3307    std::vector<double> y;
3308    params.clear();
3309    for (int i = 0; i < nDOF; ++i) {
3310      y.push_back(0.0);
3311      for (int j = 0; j < nDOF; ++j) {
3312        y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
3313      }
3314      params.push_back(y[i]);
3315    }
3316
3317    for (int i = 0; i < nChan; ++i) {
3318      r1[i] = y[0];
3319      for (int j = 1; j < nDOF; ++j) {
3320        r1[i] += y[j]*xArray[j][i];
3321      }
3322      residual[i] = z1[i] - r1[i];
3323    }
3324
3325    if ((nClip == nIterClip) || (thresClip <= 0.0)) {
3326      break;
3327    } else {
3328      double stdDev = 0.0;
3329      for (int i = 0; i < nChan; ++i) {
3330        stdDev += residual[i]*residual[i]*(double)maskArray[i];
3331      }
3332      stdDev = sqrt(stdDev/(double)nData);
3333     
3334      double thres = stdDev * thresClip;
3335      int newNData = 0;
3336      for (int i = 0; i < nChan; ++i) {
3337        if (abs(residual[i]) >= thres) {
3338          maskArray[i] = 0;
3339        }
3340        if (maskArray[i] > 0) {
3341          newNData++;
3342        }
3343      }
3344      if (newNData == nData) {
3345        break; //no more flag to add. iteration stops.
3346      } else {
3347        nData = newNData;
3348      }
3349    }
3350  }
3351
3352  nClipped = initNData - nData;
3353
3354  std::vector<float> result;
3355  if (getResidual) {
3356    for (int i = 0; i < nChan; ++i) {
3357      result.push_back((float)residual[i]);
3358    }
3359  } else {
3360    for (int i = 0; i < nChan; ++i) {
3361      result.push_back((float)r1[i]);
3362    }
3363  }
3364
3365  return result;
3366}
3367
3368void Scantable::fitBaseline(const std::vector<bool>& mask, int whichrow, Fitter& fitter)
3369{
3370  std::vector<double> dAbcissa = getAbcissa(whichrow);
3371  std::vector<float> abcissa;
3372  for (uInt i = 0; i < dAbcissa.size(); ++i) {
3373    abcissa.push_back((float)dAbcissa[i]);
3374  }
3375  std::vector<float> spec = getSpectrum(whichrow);
3376
3377  fitter.setData(abcissa, spec, mask);
3378  fitter.lfit();
3379}
3380
3381std::vector<bool> Scantable::getCompositeChanMask(int whichrow, const std::vector<bool>& inMask)
3382{
3383  std::vector<bool> mask = getMask(whichrow);
3384  uInt maskSize = mask.size();
3385  if (inMask.size() != 0) {
3386    if (maskSize != inMask.size()) {
3387      throw(AipsError("mask sizes are not the same."));
3388    }
3389    for (uInt i = 0; i < maskSize; ++i) {
3390      mask[i] = mask[i] && inMask[i];
3391    }
3392  }
3393
3394  return mask;
3395}
3396
3397/*
3398std::vector<bool> Scantable::getCompositeChanMask(int whichrow, const std::vector<bool>& inMask, const std::vector<int>& edge, const int minEdgeSize, STLineFinder& lineFinder)
3399{
3400  int edgeSize = edge.size();
3401  std::vector<int> currentEdge;
3402  if (edgeSize >= 2) {
3403      int idx = 0;
3404      if (edgeSize > 2) {
3405        if (edgeSize < minEdgeSize) {
3406          throw(AipsError("Length of edge element info is less than that of IFs"));
3407        }
3408        idx = 2 * getIF(whichrow);
3409      }
3410      currentEdge.push_back(edge[idx]);
3411      currentEdge.push_back(edge[idx+1]);
3412  } else {
3413    throw(AipsError("Wrong length of edge element"));
3414  }
3415
3416  lineFinder.setData(getSpectrum(whichrow));
3417  lineFinder.findLines(getCompositeChanMask(whichrow, inMask), currentEdge, whichrow);
3418
3419  return lineFinder.getMask();
3420}
3421*/
3422
3423/* for poly. the variations of outputFittingResult() should be merged into one eventually (2011/3/10 WK)  */
3424void Scantable::outputFittingResult(bool outLogger, bool outTextFile, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, Fitter& fitter)
3425{
3426  if (outLogger || outTextFile) {
3427    std::vector<float> params = fitter.getParameters();
3428    std::vector<bool>  fixed  = fitter.getFixedParameters();
3429    float rms = getRms(chanMask, whichrow);
3430    String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
3431
3432    if (outLogger) {
3433      LogIO ols(LogOrigin("Scantable", funcName, WHERE));
3434      ols << formatBaselineParams(params, fixed, rms, -1, masklist, whichrow, false) << LogIO::POST ;
3435    }
3436    if (outTextFile) {
3437      ofs << formatBaselineParams(params, fixed, rms, -1, masklist, whichrow, true) << flush;
3438    }
3439  }
3440}
3441
3442/* for cspline. will be merged once cspline is available in fitter (2011/3/10 WK) */
3443void Scantable::outputFittingResult(bool outLogger, bool outTextFile, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, const std::vector<int>& edge, const std::vector<float>& params, const int nClipped)
3444{
3445  if (outLogger || outTextFile) {
3446    float rms = getRms(chanMask, whichrow);
3447    String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
3448    std::vector<bool> fixed;
3449    fixed.clear();
3450
3451    if (outLogger) {
3452      LogIO ols(LogOrigin("Scantable", funcName, WHERE));
3453      ols << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped, masklist, whichrow, false) << LogIO::POST ;
3454    }
3455    if (outTextFile) {
3456      ofs << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped, masklist, whichrow, true) << flush;
3457    }
3458  }
3459}
3460
3461/* for sinusoid. will be merged once sinusoid is available in fitter (2011/3/10 WK) */
3462void Scantable::outputFittingResult(bool outLogger, bool outTextFile, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, const std::vector<float>& params, const int nClipped)
3463{
3464  if (outLogger || outTextFile) {
3465    float rms = getRms(chanMask, whichrow);
3466    String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
3467    std::vector<bool> fixed;
3468    fixed.clear();
3469
3470    if (outLogger) {
3471      LogIO ols(LogOrigin("Scantable", funcName, WHERE));
3472      ols << formatBaselineParams(params, fixed, rms, nClipped, masklist, whichrow, false) << LogIO::POST ;
3473    }
3474    if (outTextFile) {
3475      ofs << formatBaselineParams(params, fixed, rms, nClipped, masklist, whichrow, true) << flush;
3476    }
3477  }
3478}
3479
3480void Scantable::parseProgressInfo(const std::string& progressInfo, bool& showProgress, int& minNRow)
3481{
3482  int idxDelimiter = progressInfo.find(",");
3483  if (idxDelimiter < 0) {
3484    throw(AipsError("wrong value in 'showprogress' parameter")) ;
3485  }
3486  showProgress = (progressInfo.substr(0, idxDelimiter) == "true");
3487  std::istringstream is(progressInfo.substr(idxDelimiter+1));
3488  is >> minNRow;
3489}
3490
3491void Scantable::showProgressOnTerminal(const int nProcessed, const int nTotal, const bool showProgress, const int nTotalThreshold)
3492{
3493  if (showProgress && (nTotal >= nTotalThreshold)) {
3494    int nInterval = int(floor(double(nTotal)/100.0));
3495    if (nInterval == 0) nInterval++;
3496
3497    if (nProcessed % nInterval == 0) {
3498      printf("\r");                          //go to the head of line
3499      printf("\x1b[31m\x1b[1m");             //set red color, highlighted
3500      printf("[%3d%%]", (int)(100.0*(double(nProcessed+1))/(double(nTotal))) );
3501      printf("\x1b[39m\x1b[0m");             //set default attributes
3502      fflush(NULL);
3503    }
3504
3505    if (nProcessed == nTotal - 1) {
3506      printf("\r\x1b[K");                    //clear
3507      fflush(NULL);
3508    }
3509
3510  }
3511}
3512
3513std::vector<float> Scantable::execFFT(const int whichrow, const std::vector<bool>& inMask, bool getRealImag, bool getAmplitudeOnly)
3514{
3515  std::vector<bool>  mask = getMask(whichrow);
3516
3517  if (inMask.size() > 0) {
3518    uInt maskSize = mask.size();
3519    if (maskSize != inMask.size()) {
3520      throw(AipsError("mask sizes are not the same."));
3521    }
3522    for (uInt i = 0; i < maskSize; ++i) {
3523      mask[i] = mask[i] && inMask[i];
3524    }
3525  }
3526
3527  Vector<Float> spec = getSpectrum(whichrow);
3528  mathutil::doZeroOrderInterpolation(spec, mask);
3529
3530  FFTServer<Float,Complex> ffts;
3531  Vector<Complex> fftres;
3532  ffts.fft0(fftres, spec);
3533
3534  std::vector<float> res;
3535  float norm = float(2.0/double(spec.size()));
3536
3537  if (getRealImag) {
3538    for (uInt i = 0; i < fftres.size(); ++i) {
3539      res.push_back(real(fftres[i])*norm);
3540      res.push_back(imag(fftres[i])*norm);
3541    }
3542  } else {
3543    for (uInt i = 0; i < fftres.size(); ++i) {
3544      res.push_back(abs(fftres[i])*norm);
3545      if (!getAmplitudeOnly) res.push_back(arg(fftres[i]));
3546    }
3547  }
3548
3549  return res;
3550}
3551
3552
3553float Scantable::getRms(const std::vector<bool>& mask, int whichrow)
3554{
3555  Vector<Float> spec;
3556  specCol_.get(whichrow, spec);
3557
3558  float mean = 0.0;
3559  float smean = 0.0;
3560  int n = 0;
3561  for (uInt i = 0; i < spec.nelements(); ++i) {
3562    if (mask[i]) {
3563      mean += spec[i];
3564      smean += spec[i]*spec[i];
3565      n++;
3566    }
3567  }
3568
3569  mean /= (float)n;
3570  smean /= (float)n;
3571
3572  return sqrt(smean - mean*mean);
3573}
3574
3575
3576std::string Scantable::formatBaselineParamsHeader(int whichrow, const std::string& masklist, bool verbose) const
3577{
3578  ostringstream oss;
3579
3580  if (verbose) {
3581    oss <<  " Scan[" << getScan(whichrow)  << "]";
3582    oss <<  " Beam[" << getBeam(whichrow)  << "]";
3583    oss <<    " IF[" << getIF(whichrow)    << "]";
3584    oss <<   " Pol[" << getPol(whichrow)   << "]";
3585    oss << " Cycle[" << getCycle(whichrow) << "]: " << endl;
3586    oss << "Fitter range = " << masklist << endl;
3587    oss << "Baseline parameters" << endl;
3588    oss << flush;
3589  }
3590
3591  return String(oss);
3592}
3593
3594std::string Scantable::formatBaselineParamsFooter(float rms, int nClipped, bool verbose) const
3595{
3596  ostringstream oss;
3597
3598  if (verbose) {
3599    oss << "Results of baseline fit" << endl;
3600    oss << "  rms = " << setprecision(6) << rms << endl;
3601    if (nClipped >= 0) {
3602      oss << "  Number of clipped channels = " << nClipped << endl;
3603    }
3604    for (int i = 0; i < 60; ++i) {
3605      oss << "-";
3606    }
3607    oss << endl;
3608    oss << flush;
3609  }
3610
3611  return String(oss);
3612}
3613
3614std::string Scantable::formatBaselineParams(const std::vector<float>& params,
3615                                            const std::vector<bool>& fixed,
3616                                            float rms,
3617                                            int nClipped,
3618                                            const std::string& masklist,
3619                                            int whichrow,
3620                                            bool verbose,
3621                                            int start, int count,
3622                                            bool resetparamid) const
3623{
3624  int nParam = (int)(params.size());
3625
3626  if (nParam < 1) {
3627    return("  Not fitted");
3628  } else {
3629
3630    ostringstream oss;
3631    oss << formatBaselineParamsHeader(whichrow, masklist, verbose);
3632
3633    if (start < 0) start = 0;
3634    if (count < 0) count = nParam;
3635    int end = start + count;
3636    if (end > nParam) end = nParam;
3637    int paramidoffset = (resetparamid) ? (-start) : 0;
3638
3639    for (int i = start; i < end; ++i) {
3640      if (i > start) {
3641        oss << ",";
3642      }
3643      std::string sFix = ((fixed.size() > 0) && (fixed[i]) && verbose) ? "(fixed)" : "";
3644      oss << "  p" << (i+paramidoffset) << sFix << "= " << right << setw(13) << setprecision(6) << params[i];
3645    }
3646
3647    oss << endl;
3648    oss << formatBaselineParamsFooter(rms, nClipped, verbose);
3649
3650    return String(oss);
3651  }
3652
3653}
3654
3655  std::string Scantable::formatPiecewiseBaselineParams(const std::vector<int>& ranges, const std::vector<float>& params, const std::vector<bool>& fixed, float rms, int nClipped, const std::string& masklist, int whichrow, bool verbose) const
3656{
3657  int nOutParam = (int)(params.size());
3658  int nPiece = (int)(ranges.size()) - 1;
3659
3660  if (nOutParam < 1) {
3661    return("  Not fitted");
3662  } else if (nPiece < 0) {
3663    return formatBaselineParams(params, fixed, rms, nClipped, masklist, whichrow, verbose);
3664  } else if (nPiece < 1) {
3665    return("  Bad count of the piece edge info");
3666  } else if (nOutParam % nPiece != 0) {
3667    return("  Bad count of the output baseline parameters");
3668  } else {
3669
3670    int nParam = nOutParam / nPiece;
3671
3672    ostringstream oss;
3673    oss << formatBaselineParamsHeader(whichrow, masklist, verbose);
3674
3675    stringstream ss;
3676    ss << ranges[nPiece] << flush;
3677    int wRange = ss.str().size() * 2 + 5;
3678
3679    for (int i = 0; i < nPiece; ++i) {
3680      ss.str("");
3681      ss << "  [" << ranges[i] << "," << (ranges[i+1]-1) << "]";
3682      oss << left << setw(wRange) << ss.str();
3683      oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, i*nParam, nParam, true);
3684    }
3685
3686    oss << formatBaselineParamsFooter(rms, nClipped, verbose);
3687
3688    return String(oss);
3689  }
3690
3691}
3692
3693bool Scantable::hasSameNchanOverIFs()
3694{
3695  int nIF = nif(-1);
3696  int nCh;
3697  int totalPositiveNChan = 0;
3698  int nPositiveNChan = 0;
3699
3700  for (int i = 0; i < nIF; ++i) {
3701    nCh = nchan(i);
3702    if (nCh > 0) {
3703      totalPositiveNChan += nCh;
3704      nPositiveNChan++;
3705    }
3706  }
3707
3708  return (totalPositiveNChan == (nPositiveNChan * nchan(0)));
3709}
3710
3711std::string Scantable::getMaskRangeList(const std::vector<bool>& mask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, bool verbose)
3712{
3713  if (mask.size() <= 0) {
3714    throw(AipsError("The mask elements should be > 0"));
3715  }
3716  int IF = getIF(whichrow);
3717  if (mask.size() != (uInt)nchan(IF)) {
3718    throw(AipsError("Number of channels in scantable != number of mask elements"));
3719  }
3720
3721  if (verbose) {
3722    LogIO logOs(LogOrigin("Scantable", "getMaskRangeList()", WHERE));
3723    logOs << LogIO::WARN << "The current mask window unit is " << coordInfo;
3724    if (!hasSameNchan) {
3725      logOs << endl << "This mask is only valid for IF=" << IF;
3726    }
3727    logOs << LogIO::POST;
3728  }
3729
3730  std::vector<double> abcissa = getAbcissa(whichrow);
3731  std::vector<int> edge = getMaskEdgeIndices(mask);
3732
3733  ostringstream oss;
3734  oss.setf(ios::fixed);
3735  oss << setprecision(1) << "[";
3736  for (uInt i = 0; i < edge.size(); i+=2) {
3737    if (i > 0) oss << ",";
3738    oss << "[" << (float)abcissa[edge[i]] << "," << (float)abcissa[edge[i+1]] << "]";
3739  }
3740  oss << "]" << flush;
3741
3742  return String(oss);
3743}
3744
3745std::vector<int> Scantable::getMaskEdgeIndices(const std::vector<bool>& mask)
3746{
3747  if (mask.size() <= 0) {
3748    throw(AipsError("The mask elements should be > 0"));
3749  }
3750
3751  std::vector<int> out, startIndices, endIndices;
3752  int maskSize = mask.size();
3753
3754  startIndices.clear();
3755  endIndices.clear();
3756
3757  if (mask[0]) {
3758    startIndices.push_back(0);
3759  }
3760  for (int i = 1; i < maskSize; ++i) {
3761    if ((!mask[i-1]) && mask[i]) {
3762      startIndices.push_back(i);
3763    } else if (mask[i-1] && (!mask[i])) {
3764      endIndices.push_back(i-1);
3765    }
3766  }
3767  if (mask[maskSize-1]) {
3768    endIndices.push_back(maskSize-1);
3769  }
3770
3771  if (startIndices.size() != endIndices.size()) {
3772    throw(AipsError("Inconsistent Mask Size: bad data?"));
3773  }
3774  for (uInt i = 0; i < startIndices.size(); ++i) {
3775    if (startIndices[i] > endIndices[i]) {
3776      throw(AipsError("Mask start index > mask end index"));
3777    }
3778  }
3779
3780  out.clear();
3781  for (uInt i = 0; i < startIndices.size(); ++i) {
3782    out.push_back(startIndices[i]);
3783    out.push_back(endIndices[i]);
3784  }
3785
3786  return out;
3787}
3788
3789vector<float> Scantable::getTsysSpectrum( int whichrow ) const
3790{
3791  Vector<Float> tsys( tsysCol_(whichrow) ) ;
3792  vector<float> stlTsys ;
3793  tsys.tovector( stlTsys ) ;
3794  return stlTsys ;
3795}
3796
3797
3798}
3799//namespace asap
Note: See TracBrowser for help on using the repository browser.