source: trunk/src/STMath.cpp @ 3010

Last change on this file since 3010 was 3010, checked in by WataruKawasaki, 10 years ago

New Development: No

JIRA Issue: Yes CAS-6599

Ready for Test: Yes

Interface Changes: No

What Interface Changed:

Test Programs:

Put in Release Notes: No

Module(s): sd

Description: modified so that sd.scantable.stats() returns None for flagged rows and rows with all channels flagged.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 148.5 KB
Line 
1//
2// C++ Implementation: STMath
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2006
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12
13//#include <math.h>
14//#include <bits/nan.h>
15#include <sstream>
16#include <iostream>
17
18#include <casa/iomanip.h>
19#include <casa/Arrays/MaskArrLogi.h>
20#include <casa/Arrays/MaskArrMath.h>
21#include <casa/Arrays/ArrayLogical.h>
22#include <casa/Arrays/ArrayMath.h>
23#include <casa/Arrays/Slice.h>
24#include <casa/Arrays/Slicer.h>
25#include <casa/BasicSL/String.h>
26#include <casa/Containers/Block.h>
27#include <casa/Containers/RecordField.h>
28#include <casa/Exceptions/Error.h>
29#include <casa/Logging/LogIO.h>
30#include <casa/Quanta/Quantum.h>
31
32#include <coordinates/Coordinates/CoordinateSystem.h>
33#include <coordinates/Coordinates/CoordinateUtil.h>
34#include <coordinates/Coordinates/FrequencyAligner.h>
35#include <coordinates/Coordinates/SpectralCoordinate.h>
36
37#include <lattices/Lattices/LatticeUtilities.h>
38
39#include <scimath/Functionals/Polynomial.h>
40#include <scimath/Mathematics/Convolver.h>
41#include <scimath/Mathematics/VectorKernel.h>
42
43#include <tables/Tables/ExprNode.h>
44#include <tables/Tables/ReadAsciiTable.h>
45#include <tables/Tables/TableCopy.h>
46#include <tables/Tables/TableIter.h>
47#include <tables/Tables/TableParse.h>
48#include <tables/Tables/TableRecord.h>
49#include <tables/Tables/TableRow.h>
50#include <tables/Tables/TableVector.h>
51#include <tables/Tables/TabVecMath.h>
52
53#include <atnf/PKSIO/SrcType.h>
54
55#include "RowAccumulator.h"
56#include "STAttr.h"
57#include "STMath.h"
58#include "STSelector.h"
59#include "Accelerator.h"
60#include "STIdxIter.h"
61
62#include "CalibrationHelper.h"
63
64using namespace casa;
65using namespace asap;
66
67// 2012/02/17 TN
68// Since STGrid is implemented, average doesn't consider direction
69// when accumulating
70// tolerance for direction comparison (rad)
71// #define TOL_OTF    1.0e-15
72// #define TOL_POINT  2.9088821e-4  // 1 arcmin
73
74STMath::STMath(bool insitu) :
75  insitu_(insitu)
76{
77}
78
79
80STMath::~STMath()
81{
82}
83
84CountedPtr<Scantable>
85STMath::average( const std::vector<CountedPtr<Scantable> >& in,
86                 const std::vector<bool>& mask,
87                 const std::string& weight,
88                 const std::string& avmode)
89{
90//    double t0, t1 ;
91//    t0 = mathutil::gettimeofday_sec() ;
92
93  LogIO os( LogOrigin( "STMath", "average()", WHERE ) ) ;
94  if ( avmode == "SCAN" && in.size() != 1 )
95    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
96                    "Use merge first."));
97  WeightType wtype = stringToWeight(weight);
98
99  // 2012/02/17 TN
100  // Since STGrid is implemented, average doesn't consider direction
101  // when accumulating
102  // check if OTF observation
103//   String obstype = in[0]->getHeader().obstype ;
104//   Double tol = 0.0 ;
105//   if ( (obstype.find( "OTF" ) != String::npos) || (obstype.find( "OBSERVE_TARGET" ) != String::npos) ) {
106//     tol = TOL_OTF ;
107//   }
108//   else {
109//     tol = TOL_POINT ;
110//   }
111
112  // output
113  // clone as this is non insitu
114  bool insitu = insitu_;
115  setInsitu(false);
116  CountedPtr< Scantable > out = getScantable(in[0], true);
117  setInsitu(insitu);
118  std::vector<CountedPtr<Scantable> >::const_iterator stit = in.begin();
119  ++stit;
120  while ( stit != in.end() ) {
121    out->appendToHistoryTable((*stit)->history());
122    ++stit;
123  }
124
125  Table& tout = out->table();
126
127  /// @todo check if all scantables are conformant
128
129  ArrayColumn<Float> specColOut(tout,"SPECTRA");
130  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
131  ArrayColumn<Float> tsysColOut(tout,"TSYS");
132  ScalarColumn<Double> mjdColOut(tout,"TIME");
133  ScalarColumn<Double> intColOut(tout,"INTERVAL");
134  ScalarColumn<uInt> cycColOut(tout,"CYCLENO");
135  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
136  ScalarColumn<uInt> flagRowColOut(tout,"FLAGROW");
137
138  // set up the output table rows. These are based on the structure of the
139  // FIRST scantable in the vector
140  const Table& baset = in[0]->table();
141
142  RowAccumulator acc(wtype);
143  Vector<Bool> cmask(mask);
144  acc.setUserMask(cmask);
145//   ROTableRow row(tout);
146  ROArrayColumn<Float> specCol, tsysCol;
147  ROArrayColumn<uChar> flagCol;
148  ROScalarColumn<Double> mjdCol, intCol;
149  ROScalarColumn<Int> scanIDCol;
150  ROScalarColumn<uInt> flagRowCol;
151
152  //Vector<uInt> rowstodelete;
153  Block<uInt> rowstodelB( in[0]->nrow() ) ;
154  uInt nrowdel = 0 ;
155
156//   Block<String> cols(3);
157  vector<string> cols(3) ;
158  cols[0] = String("BEAMNO");
159  cols[1] = String("IFNO");
160  cols[2] = String("POLNO");
161  if ( avmode == "SOURCE" ) {
162    cols.resize(4);
163    cols[3] = String("SRCNAME");
164  }
165  if ( avmode == "SCAN"  && in.size() == 1) {
166    //cols.resize(4);
167    //cols[3] = String("SCANNO");
168    cols.resize(5);
169    cols[3] = String("SRCNAME");
170    cols[4] = String("SCANNO");
171  }
172  uInt outrowCount = 0;
173  // use STIdxIter2 instead of TableIterator
174  STIdxIter2 iter( in[0], cols ) ;
175//   double t2 = 0 ;
176//   double t3 = 0 ;
177//   double t4 = 0 ;
178//   double t5 = 0 ;
179//   TableIterator iter(baset, cols);
180//   int count = 0 ;
181  while (!iter.pastEnd()) {
182    Vector<uInt> rows = iter.getRows( SHARE ) ;
183    if ( rows.nelements() == 0 ) {
184      iter.next() ;
185      continue ;
186    }
187    Record current = iter.currentValue() ;
188    //Table subt = iter.table();
189    // copy the first row of this selection into the new table
190    tout.addRow();
191//     t4 = mathutil::gettimeofday_sec() ;
192    // skip to copy SPECTRA, FLAGTRA, and TSYS since those heavy columns are
193    // overwritten in the following process
194    copyRows( tout, baset, outrowCount, rows[0], 1, False, False, False ) ;
195//     t5 += mathutil::gettimeofday_sec() - t4 ;
196    // re-index to 0
197    if ( avmode != "SCAN" && avmode != "SOURCE" ) {
198      scanColOut.put(outrowCount, uInt(0));
199    }
200
201    // 2012/02/17 TN
202    // Since STGrid is implemented, average doesn't consider direction
203    // when accumulating
204//     MDirection::ScalarColumn dircol ;
205//     dircol.attach( subt, "DIRECTION" ) ;
206//     Int length = subt.nrow() ;
207//     vector< Vector<Double> > dirs ;
208//     vector<int> indexes ;
209//     for ( Int i = 0 ; i < length ; i++ ) {
210//       Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
211//       //os << << count++ << ": " ;
212//       //os << "[" << t[0] << "," << t[1] << "]" << LogIO::POST ;
213//       bool adddir = true ;
214//       for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
215//         //if ( allTrue( t == dirs[j] ) ) {
216//         Double dx = t[0] - dirs[j][0] ;
217//         Double dy = t[1] - dirs[j][1] ;
218//         Double dd = sqrt( dx * dx + dy * dy ) ;
219//         //if ( allNearAbs( t, dirs[j], tol ) ) {
220//         if ( dd <= tol ) {
221//           adddir = false ;
222//           break ;
223//         }
224//       }
225//       if ( adddir ) {
226//         dirs.push_back( t ) ;
227//         indexes.push_back( i ) ;
228//       }
229//     }
230//     uInt rowNum = dirs.size() ;
231//     tout.addRow( rowNum ) ;
232//     for ( uInt i = 0 ; i < rowNum ; i++ ) {
233//       TableCopy::copyRows( tout, subt, outrowCount+i, indexes[i], 1 ) ;
234//       // re-index to 0
235//       if ( avmode != "SCAN" && avmode != "SOURCE" ) {
236//         scanColOut.put(outrowCount+i, uInt(0));
237//       }       
238//     }
239//     outrowCount += rowNum ;
240
241    // merge loop
242    uInt i = outrowCount ;
243    // in[0] is already selected by iterator
244    specCol.attach(baset,"SPECTRA");
245    flagCol.attach(baset,"FLAGTRA");
246    tsysCol.attach(baset,"TSYS");
247    intCol.attach(baset,"INTERVAL");
248    mjdCol.attach(baset,"TIME");
249    flagRowCol.attach(baset,"FLAGROW");
250    Vector<Float> spec,tsys;
251    Vector<uChar> flag;
252    Double inter,time;
253    uInt flagRow;
254
255    for (uInt l = 0; l < rows.nelements(); ++l ) {
256      uInt k = rows[l] ;
257      flagCol.get(k, flag);
258      Vector<Bool> bflag(flag.shape());
259      flagRowCol.get(k, flagRow);
260      if (flagRow > 0)
261        bflag = true;
262      else
263        convertArray(bflag, flag);
264      /*                                                                                                   
265        if ( allEQ(bflag, True) ) {                                                                         
266        continue;//don't accumulate                                                                         
267        }                                                                                                   
268      */
269      specCol.get(k, spec);
270      tsysCol.get(k, tsys);
271      intCol.get(k, inter);
272      mjdCol.get(k, time);
273      // spectrum has to be added last to enable weighting by the other values                             
274//       t2 = mathutil::gettimeofday_sec() ;
275      acc.add(spec, !bflag, tsys, inter, time);
276//       t3 += mathutil::gettimeofday_sec() - t2 ;
277     
278    }
279
280
281    // in[0] is already selected by TableIterator so that index is
282    // started from 1
283    for ( int j=1; j < int(in.size()); ++j ) {
284      const Table& tin = in[j]->table();
285      //const TableRecord& rec = row.get(i);
286      ROScalarColumn<Double> tmp(tin, "TIME");
287      Double td;tmp.get(0,td);
288
289#if 1
290      static char const*const colNames1[] = { "IFNO", "BEAMNO", "POLNO" };
291      //uInt const values1[] = { rec.asuInt("IFNO"), rec.asuInt("BEAMNO"), rec.asuInt("POLNO") };
292      uInt const values1[] = { current.asuInt("IFNO"), current.asuInt("BEAMNO"), current.asuInt("POLNO") };
293      SingleTypeEqPredicate<uInt, 3> myPred(tin, colNames1, values1);
294      CustomTableExprNodeRep myNodeRep(tin, myPred);
295      myNodeRep.link(); // to avoid automatic delete when myExpr is destructed.
296      CustomTableExprNode myExpr(myNodeRep);
297      Table basesubt = tin(myExpr);
298#else
299//       Table basesubt = tin( tin.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
300//                          && tin.col("IFNO") == Int(rec.asuInt("IFNO"))
301//                          && tin.col("POLNO") == Int(rec.asuInt("POLNO")) );
302      Table basesubt = tin( tin.col("BEAMNO") == current.asuInt("BEAMNO")
303                            && tin.col("IFNO") == current.asuInt("IFNO")
304                            && tin.col("POLNO") == current.asuInt("POLNO") );
305#endif
306      Table subt;
307      if ( avmode == "SOURCE") {
308//         subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME"));
309        subt = basesubt( basesubt.col("SRCNAME") == current.asString("SRCNAME") );
310
311      } else if (avmode == "SCAN") {
312//         subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME")
313//                    && basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO")) );
314        subt = basesubt( basesubt.col("SRCNAME") == current.asString("SRCNAME")
315                         && basesubt.col("SCANNO") == current.asuInt("SCANNO") );
316      } else {
317        subt = basesubt;
318      }
319
320      // 2012/02/17 TN
321      // Since STGrid is implemented, average doesn't consider direction
322      // when accumulating
323//       vector<uInt> removeRows ;
324//       uInt nrsubt = subt.nrow() ;
325//       for ( uInt irow = 0 ; irow < nrsubt ; irow++ ) {
326//         //if ( !allTrue((subt.col("DIRECTION").getArrayDouble(TableExprId(irow)))==rec.asArrayDouble("DIRECTION")) ) {
327//         Vector<Double> x0 = (subt.col("DIRECTION").getArrayDouble(TableExprId(irow))) ;
328//         Vector<Double> x1 = rec.asArrayDouble("DIRECTION") ;
329//         double dx = x0[0] - x1[0];
330//         double dy = x0[1] - x1[1];
331//         Double dd = sqrt( dx * dx + dy * dy ) ;
332//         //if ( !allNearAbs((subt.col("DIRECTION").getArrayDouble(TableExprId(irow))), rec.asArrayDouble("DIRECTION"), tol ) ) {
333//         if ( dd > tol ) {
334//           removeRows.push_back( irow ) ;
335//         }
336//       }
337//       if ( removeRows.size() != 0 ) {
338//         subt.removeRow( removeRows ) ;
339//       }
340     
341//       if ( nrsubt == removeRows.size() )
342//         throw(AipsError("Averaging data is empty.")) ;
343
344      specCol.attach(subt,"SPECTRA");
345      flagCol.attach(subt,"FLAGTRA");
346      tsysCol.attach(subt,"TSYS");
347      intCol.attach(subt,"INTERVAL");
348      mjdCol.attach(subt,"TIME");
349      flagRowCol.attach(subt,"FLAGROW");
350      for (uInt k = 0; k < subt.nrow(); ++k ) {
351        flagCol.get(k, flag);
352        Vector<Bool> bflag(flag.shape());
353        flagRowCol.get(k, flagRow);
354        if (flagRow > 0)
355          bflag = true;
356        else
357          convertArray(bflag, flag);
358        /*
359        if ( allEQ(bflag, True) ) {
360        continue;//don't accumulate
361        }
362        */
363        specCol.get(k, spec);
364        //tsysCol.get(k, tsys);
365        tsys.assign( tsysCol(k) );
366        intCol.get(k, inter);
367        mjdCol.get(k, time);
368        // spectrum has to be added last to enable weighting by the other values
369//         t2 = mathutil::gettimeofday_sec() ;
370        acc.add(spec, !bflag, tsys, inter, time);
371//         t3 += mathutil::gettimeofday_sec() - t2 ;
372      }
373
374    }
375    const Vector<Bool>& msk = acc.getMask();
376    uInt outFlagRow = 0;
377    if ( allEQ(msk, False) ) {
378      rowstodelB[nrowdel] = i ;
379      nrowdel++ ;
380      outFlagRow = 1;
381    }
382    //write out
383    if (acc.state()) {
384      // If there exists a channel at which all the input spectra are masked,
385      // spec has 'nan' values for that channel and it may affect the following
386      // processes. To avoid this, replacing 'nan' values in spec with
387      // weighted-mean of all spectra in the following line.
388      // (done for CAS-2776, 2011/04/07 by Wataru Kawasaki)
389      acc.replaceNaN();
390
391      Vector<uChar> flg(msk.shape());
392      convertArray(flg, !msk);
393      for (uInt k = 0; k < flg.nelements(); ++k) {
394        uChar userFlag = 1 << 7;
395        if (msk[k]==True) userFlag = 0 << 7;
396        flg(k) = userFlag;
397      }
398
399      flagColOut.put(i, flg);
400      specColOut.put(i, acc.getSpectrum());
401      tsysColOut.put(i, acc.getTsys());
402      intColOut.put(i, acc.getInterval());
403      mjdColOut.put(i, acc.getTime());
404      // we should only have one cycle now -> reset it to be 0
405      // frequency switched data has different CYCLENO for different IFNO
406      // which requires resetting this value
407      cycColOut.put(i, uInt(0));
408      flagRowColOut.put(i, outFlagRow);
409    } else {
410      os << "For output row="<<i<<", all input rows of data are flagged. no averaging" << LogIO::POST;
411    }
412    acc.reset();
413
414    // merge with while loop for preparing out table
415    ++outrowCount;
416//     ++iter ;
417    iter.next() ;
418  }
419
420  if ( nrowdel > 0 ) {
421    if (nrowdel == tout.nrow()) {
422      os << LogIO::WARN << "Output data are fully flagged." << LogIO::POST;
423    }
424    if (tout.nrow() == 0) {
425      throw(AipsError("Can't average fully flagged data."));
426    }
427  }
428
429//    t1 = mathutil::gettimeofday_sec() ;
430//    cout << "elapsed time for average(): " << t1-t0 << " sec" << endl ;
431//    cout << "   elapsed time for acc.add(): " << t3 << " sec" << endl ;
432//    cout << "   elapsed time for copyRows(): " << t5 << " sec" << endl ;
433
434  return out;
435}
436
437CountedPtr< Scantable >
438STMath::averageChannel( const CountedPtr < Scantable > & in,
439                          const std::string & mode,
440                          const std::string& avmode )
441{
442  (void) mode; // currently unused
443  // 2012/02/17 TN
444  // Since STGrid is implemented, average doesn't consider direction
445  // when accumulating
446  // check if OTF observation
447//   String obstype = in->getHeader().obstype ;
448//   Double tol = 0.0 ;
449//   if ( obstype.find( "OTF" ) != String::npos ) {
450//     tol = TOL_OTF ;
451//   }
452//   else {
453//     tol = TOL_POINT ;
454//   }
455
456  // clone as this is non insitu
457  bool insitu = insitu_;
458  setInsitu(false);
459  CountedPtr< Scantable > out = getScantable(in, true);
460  setInsitu(insitu);
461  Table& tout = out->table();
462  ArrayColumn<Float> specColOut(tout,"SPECTRA");
463  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
464  ArrayColumn<Float> tsysColOut(tout,"TSYS");
465  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
466  ScalarColumn<Double> intColOut(tout, "INTERVAL");
467  Table tmp = in->table().sort("BEAMNO");
468  Block<String> cols(3);
469  cols[0] = String("BEAMNO");
470  cols[1] = String("IFNO");
471  cols[2] = String("POLNO");
472  if ( avmode == "SCAN") {
473    cols.resize(4);
474    cols[3] = String("SCANNO");
475  }
476  uInt outrowCount = 0;
477  uChar userflag = 1 << 7;
478  TableIterator iter(tmp, cols);
479  while (!iter.pastEnd()) {
480    Table subt = iter.table();
481    ROArrayColumn<Float> specCol, tsysCol;
482    ROArrayColumn<uChar> flagCol;
483    ROScalarColumn<Double> intCol(subt, "INTERVAL");
484    specCol.attach(subt,"SPECTRA");
485    flagCol.attach(subt,"FLAGTRA");
486    tsysCol.attach(subt,"TSYS");
487
488    tout.addRow();
489    TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
490    if ( avmode != "SCAN") {
491      scanColOut.put(outrowCount, uInt(0));
492    }
493    Vector<Float> tmp;
494    specCol.get(0, tmp);
495    uInt nchan = tmp.nelements();
496    // have to do channel by channel here as MaskedArrMath
497    // doesn't have partialMedians
498    Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
499    Vector<Float> outspec(nchan);
500    Vector<uChar> outflag(nchan,0);
501    Vector<Float> outtsys(1);/// @fixme when tsys is channel based
502    for (uInt i=0; i<nchan; ++i) {
503      Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
504      MaskedArray<Float> ma = maskedArray(specs,flags);
505      outspec[i] = median(ma);
506      if ( allEQ(ma.getMask(), False) )
507        outflag[i] = userflag;// flag data
508    }
509    outtsys[0] = median(tsysCol.getColumn());
510    specColOut.put(outrowCount, outspec);
511    flagColOut.put(outrowCount, outflag);
512    tsysColOut.put(outrowCount, outtsys);
513    Double intsum = sum(intCol.getColumn());
514    intColOut.put(outrowCount, intsum);
515    ++outrowCount;
516    ++iter;
517
518    // 2012/02/17 TN
519    // Since STGrid is implemented, average doesn't consider direction
520    // when accumulating
521//     MDirection::ScalarColumn dircol ;
522//     dircol.attach( subt, "DIRECTION" ) ;
523//     Int length = subt.nrow() ;
524//     vector< Vector<Double> > dirs ;
525//     vector<int> indexes ;
526//     // Handle MX mode averaging
527//     if (in->nbeam() > 1 ) {     
528//       length = 1;
529//     }
530//     for ( Int i = 0 ; i < length ; i++ ) {
531//       Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
532//       bool adddir = true ;
533//       for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
534//         //if ( allTrue( t == dirs[j] ) ) {
535//         Double dx = t[0] - dirs[j][0] ;
536//         Double dy = t[1] - dirs[j][1] ;
537//         Double dd = sqrt( dx * dx + dy * dy ) ;
538//         //if ( allNearAbs( t, dirs[j], tol ) ) {
539//         if ( dd <= tol ) {
540//           adddir = false ;
541//           break ;
542//         }
543//       }
544//       if ( adddir ) {
545//         dirs.push_back( t ) ;
546//         indexes.push_back( i ) ;
547//       }
548//     }
549//     uInt rowNum = dirs.size() ;
550//     tout.addRow( rowNum );
551//     for ( uInt i = 0 ; i < rowNum ; i++ ) {
552//       TableCopy::copyRows(tout, subt, outrowCount+i, indexes[i], 1) ;
553//       // Handle MX mode averaging
554//       if ( avmode != "SCAN") {
555//         scanColOut.put(outrowCount+i, uInt(0));
556//       }
557//     }
558//     MDirection::ScalarColumn dircolOut ;
559//     dircolOut.attach( tout, "DIRECTION" ) ;
560//     for ( uInt irow = 0 ; irow < rowNum ; irow++ ) {
561//       Vector<Double> t = \
562//      dircolOut(outrowCount+irow).getAngle(Unit(String("rad"))).getValue() ;
563//       Vector<Float> tmp;
564//       specCol.get(0, tmp);
565//       uInt nchan = tmp.nelements();
566//       // have to do channel by channel here as MaskedArrMath
567//       // doesn't have partialMedians
568//       Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
569//       // mask spectra for different DIRECTION
570//       for ( uInt jrow = 0 ; jrow < subt.nrow() ; jrow++ ) {
571//         Vector<Double> direction = \
572//        dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
573//         //if ( t[0] != direction[0] || t[1] != direction[1] ) {
574//         Double dx = t[0] - direction[0];
575//         Double dy = t[1] - direction[1];
576//         Double dd = sqrt(dx*dx + dy*dy);
577//         //if ( !allNearAbs( t, direction, tol ) ) {
578//         if ( dd > tol &&  in->nbeam() < 2 ) {
579//           flags[jrow] = userflag ;
580//         }
581//       }
582//       Vector<Float> outspec(nchan);
583//       Vector<uChar> outflag(nchan,0);
584//       Vector<Float> outtsys(1);/// @fixme when tsys is channel based
585//       for (uInt i=0; i<nchan; ++i) {
586//         Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
587//         MaskedArray<Float> ma = maskedArray(specs,flags);
588//         outspec[i] = median(ma);
589//         if ( allEQ(ma.getMask(), False) )
590//           outflag[i] = userflag;// flag data
591//       }
592//       outtsys[0] = median(tsysCol.getColumn());
593//       specColOut.put(outrowCount+irow, outspec);
594//       flagColOut.put(outrowCount+irow, outflag);
595//       tsysColOut.put(outrowCount+irow, outtsys);
596//       Vector<Double> integ = intCol.getColumn() ;
597//       MaskedArray<Double> mi = maskedArray( integ, flags ) ;
598//       Double intsum = sum(mi);
599//       intColOut.put(outrowCount+irow, intsum);
600//     }
601//     outrowCount += rowNum ;
602//     ++iter;
603  }
604  return out;
605}
606
607CountedPtr< Scantable > STMath::getScantable(const CountedPtr< Scantable >& in,
608                                             bool droprows)
609{
610  if (insitu_) {
611    return in;
612  }
613  else {
614    // clone
615    return CountedPtr<Scantable>(new Scantable(*in, Bool(droprows)));
616  }
617}
618
619CountedPtr< Scantable > STMath::unaryOperate( const CountedPtr< Scantable >& in,
620                                              float val,
621                                              const std::string& mode,
622                                              bool tsys,
623                                              bool skip_flaggedrow )
624{
625  CountedPtr< Scantable > out = getScantable(in, false);
626  Table& tab = out->table();
627  ArrayColumn<Float> specCol(tab,"SPECTRA");
628  ArrayColumn<Float> tsysCol(tab,"TSYS");
629  ScalarColumn<uInt> flagrowCol(tab, "FLAGROW");
630  if (mode=="DIV") val = 1.0/val ;
631  else if (mode=="SUB") val *= -1.0 ;
632  for (uInt i=0; i<tab.nrow(); ++i) {
633    Vector<Float> spec;
634    Vector<Float> ts;
635    uInt flagrow;
636    specCol.get(i, spec);
637    tsysCol.get(i, ts);
638    flagrowCol.get(i, flagrow);
639    if (skip_flaggedrow && (flagrow > 0)) continue;
640    if (mode == "MUL" || mode == "DIV") {
641      //if (mode == "DIV") val = 1.0/val;
642      spec *= val;
643      specCol.put(i, spec);
644      if ( tsys ) {
645        ts *= val;
646        tsysCol.put(i, ts);
647      }
648    } else if ( mode == "ADD"  || mode == "SUB") {
649      //if (mode == "SUB") val *= -1.0;
650      spec += val;
651      specCol.put(i, spec);
652      if ( tsys ) {
653        ts += val;
654        tsysCol.put(i, ts);
655      }
656    }
657  }
658  return out;
659}
660
661CountedPtr< Scantable > STMath::arrayOperate( const CountedPtr< Scantable >& in,
662                                              const std::vector<float> val,
663                                              const std::string& mode,
664                                              const std::string& opmode,
665                                              bool tsys,
666                                              bool skip_flaggedrow )
667{
668  CountedPtr< Scantable > out ;
669  if ( opmode == "channel" ) {
670    out = arrayOperateChannel( in, val, mode, tsys, skip_flaggedrow ) ;
671  }
672  else if ( opmode == "row" ) {
673    out = arrayOperateRow( in, val, mode, tsys, skip_flaggedrow ) ;
674  }
675  else {
676    throw( AipsError( "Unknown array operation mode." ) ) ;
677  }
678  return out ;
679}
680
681CountedPtr< Scantable > STMath::arrayOperateChannel( const CountedPtr< Scantable >& in,
682                                                     const std::vector<float> val,
683                                                     const std::string& mode,
684                                                     bool tsys,
685                                                     bool skip_flaggedrow )
686{
687  if ( val.size() == 1 ){
688    return unaryOperate( in, val[0], mode, tsys ) ;
689  }
690
691  // conformity of SPECTRA and TSYS
692  if ( tsys ) {
693    TableIterator titer(in->table(), "IFNO");
694    while ( !titer.pastEnd() ) {
695      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
696      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
697      Array<Float> spec = specCol.getColumn() ;
698      Array<Float> ts = tsysCol.getColumn() ;
699      if ( !spec.conform( ts ) ) {
700        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
701      }
702      titer.next() ;
703    }
704  }
705
706  // check if all spectra in the scantable have the same number of channel
707  vector<uInt> nchans;
708  vector<uInt> ifnos = in->getIFNos() ;
709  for ( uInt i = 0 ; i < ifnos.size() ; i++ ) {
710    nchans.push_back( in->nchan( ifnos[i] ) ) ;
711  }
712  Vector<uInt> mchans( nchans ) ;
713  if ( anyNE( mchans, mchans[0] ) ) {
714    throw( AipsError("All spectra in the input scantable must have the same number of channel for vector operation." ) ) ;
715  }
716
717  // check if vector size is equal to nchan
718  Vector<Float> fact( val ) ;
719  if ( fact.nelements() != mchans[0] ) {
720    throw( AipsError("Vector size must be 1 or be same as number of channel.") ) ;
721  }
722
723  // check divided by zero
724  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
725    throw( AipsError("Divided by zero is not recommended." ) ) ;
726  }
727
728  CountedPtr< Scantable > out = getScantable(in, false);
729  Table& tab = out->table();
730  ArrayColumn<Float> specCol(tab,"SPECTRA");
731  ArrayColumn<Float> tsysCol(tab,"TSYS");
732  ScalarColumn<uInt> flagrowCol(tab, "FLAGROW");
733  if (mode == "DIV") fact = (float)1.0 / fact;
734  else if (mode == "SUB") fact *= (float)-1.0 ;
735  for (uInt i=0; i<tab.nrow(); ++i) {
736    Vector<Float> spec;
737    Vector<Float> ts;
738    uInt flagrow;
739    specCol.get(i, spec);
740    tsysCol.get(i, ts);
741    flagrowCol.get(i, flagrow);
742    if (skip_flaggedrow && (flagrow > 0)) continue;
743    if (mode == "MUL" || mode == "DIV") {
744      //if (mode == "DIV") fact = (float)1.0 / fact;
745      spec *= fact;
746      specCol.put(i, spec);
747      if ( tsys ) {
748        ts *= fact;
749        tsysCol.put(i, ts);
750      }
751    } else if ( mode == "ADD"  || mode == "SUB") {
752      //if (mode == "SUB") fact *= (float)-1.0 ;
753      spec += fact;
754      specCol.put(i, spec);
755      if ( tsys ) {
756        ts += fact;
757        tsysCol.put(i, ts);
758      }
759    }
760  }
761  return out;
762}
763
764CountedPtr< Scantable > STMath::arrayOperateRow( const CountedPtr< Scantable >& in,
765                                                 const std::vector<float> val,
766                                                 const std::string& mode,
767                                                 bool tsys,
768                                                 bool skip_flaggedrow )
769{
770  if ( val.size() == 1 ) {
771    return unaryOperate( in, val[0], mode, tsys ) ;
772  }
773
774  // conformity of SPECTRA and TSYS
775  if ( tsys ) {
776    TableIterator titer(in->table(), "IFNO");
777    while ( !titer.pastEnd() ) {
778      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
779      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
780      Array<Float> spec = specCol.getColumn() ;
781      Array<Float> ts = tsysCol.getColumn() ;
782      if ( !spec.conform( ts ) ) {
783        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
784      }
785      titer.next() ;
786    }
787  }
788
789  // check if vector size is equal to nrow
790  Vector<Float> fact( val ) ;
791  if (fact.nelements() != uInt(in->nrow())) {
792    throw( AipsError("Vector size must be 1 or be same as number of row.") ) ;
793  }
794
795  // check divided by zero
796  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
797    throw( AipsError("Divided by zero is not recommended." ) ) ;
798  }
799
800  CountedPtr< Scantable > out = getScantable(in, false);
801  Table& tab = out->table();
802  ArrayColumn<Float> specCol(tab,"SPECTRA");
803  ArrayColumn<Float> tsysCol(tab,"TSYS");
804  ScalarColumn<uInt> flagrowCol(tab, "FLAGROW");
805  if (mode == "DIV") fact = (float)1.0 / fact;
806  if (mode == "SUB") fact *= (float)-1.0 ;
807  for (uInt i=0; i<tab.nrow(); ++i) {
808    Vector<Float> spec;
809    Vector<Float> ts;
810    uInt flagrow;
811    specCol.get(i, spec);
812    tsysCol.get(i, ts);
813    flagrowCol.get(i, flagrow);
814    if (skip_flaggedrow && (flagrow > 0)) continue;
815    if (mode == "MUL" || mode == "DIV") {
816      spec *= fact[i];
817      specCol.put(i, spec);
818      if ( tsys ) {
819        ts *= fact[i];
820        tsysCol.put(i, ts);
821      }
822    } else if ( mode == "ADD"  || mode == "SUB") {
823      spec += fact[i];
824      specCol.put(i, spec);
825      if ( tsys ) {
826        ts += fact[i];
827        tsysCol.put(i, ts);
828      }
829    }
830  }
831  return out;
832}
833
834CountedPtr< Scantable > STMath::array2dOperate( const CountedPtr< Scantable >& in,
835                                                const std::vector< std::vector<float> > val,
836                                                const std::string& mode,
837                                                bool tsys )
838{
839  // conformity of SPECTRA and TSYS
840  if ( tsys ) {
841    TableIterator titer(in->table(), "IFNO");
842    while ( !titer.pastEnd() ) {
843      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
844      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
845      Array<Float> spec = specCol.getColumn() ;
846      Array<Float> ts = tsysCol.getColumn() ;
847      if ( !spec.conform( ts ) ) {
848        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
849      }
850      titer.next() ;
851    }
852  }
853
854  // some checks
855  vector<uInt> nchans;
856  for (Int i = 0 ; i < in->nrow() ; i++) {
857    nchans.push_back((in->getSpectrum(i)).size());
858  }
859  //Vector<uInt> mchans( nchans ) ;
860  vector< Vector<Float> > facts ;
861  for ( uInt i = 0 ; i < nchans.size() ; i++ ) {
862    Vector<Float> tmp( val[i] ) ;
863    // check divided by zero
864    if ( ( mode == "DIV" ) && anyEQ( tmp, (float)0.0 ) ) {
865      throw( AipsError("Divided by zero is not recommended." ) ) ;
866    }
867    // conformity check
868    if ( tmp.nelements() != nchans[i] ) {
869      stringstream ss ;
870      ss << "Row " << i << ": Vector size must be same as number of channel." ;
871      throw( AipsError( ss.str() ) ) ;
872    }
873    facts.push_back( tmp ) ;
874  }
875
876
877  CountedPtr< Scantable > out = getScantable(in, false);
878  Table& tab = out->table();
879  ArrayColumn<Float> specCol(tab,"SPECTRA");
880  ArrayColumn<Float> tsysCol(tab,"TSYS");
881  for (uInt i=0; i<tab.nrow(); ++i) {
882    Vector<Float> fact = facts[i] ;
883    Vector<Float> spec;
884    Vector<Float> ts;
885    specCol.get(i, spec);
886    tsysCol.get(i, ts);
887    if (mode == "MUL" || mode == "DIV") {
888      if (mode == "DIV") fact = (float)1.0 / fact;
889      spec *= fact;
890      specCol.put(i, spec);
891      if ( tsys ) {
892        ts *= fact;
893        tsysCol.put(i, ts);
894      }
895    } else if ( mode == "ADD"  || mode == "SUB") {
896      if (mode == "SUB") fact *= (float)-1.0 ;
897      spec += fact;
898      specCol.put(i, spec);
899      if ( tsys ) {
900        ts += fact;
901        tsysCol.put(i, ts);
902      }
903    }
904  }
905  return out;
906}
907
908CountedPtr<Scantable> STMath::binaryOperate(const CountedPtr<Scantable>& left,
909                                            const CountedPtr<Scantable>& right,
910                                            const std::string& mode)
911{
912  bool insitu = insitu_;
913  if ( ! left->conformant(*right) ) {
914    throw(AipsError("'left' and 'right' scantables are not conformant."));
915  }
916  setInsitu(false);
917  CountedPtr< Scantable > out = getScantable(left, false);
918  setInsitu(insitu);
919  Table& tout = out->table();
920  Block<String> coln(5);
921  coln[0] = "SCANNO";  coln[1] = "CYCLENO";  coln[2] = "BEAMNO";
922  coln[3] = "IFNO";  coln[4] = "POLNO";
923  Table tmpl = tout.sort(coln);
924  Table tmpr = right->table().sort(coln);
925  ArrayColumn<Float> lspecCol(tmpl,"SPECTRA");
926  ROArrayColumn<Float> rspecCol(tmpr,"SPECTRA");
927  ArrayColumn<uChar> lflagCol(tmpl,"FLAGTRA");
928  ROArrayColumn<uChar> rflagCol(tmpr,"FLAGTRA");
929  ScalarColumn<uInt> lflagrowCol(tmpl,"FLAGROW");
930  ROScalarColumn<uInt> rflagrowCol(tmpr,"FLAGROW");
931
932  for (uInt i=0; i<tout.nrow(); ++i) {
933    uInt lflagrow, rflagrow;
934    lflagrow = lflagrowCol(i); rflagrow = rflagrowCol(i);
935    //-------
936    if ((lflagrow > 0)||(rflagrow > 0)) {
937      lflagrowCol.put(i, uInt(1));
938      continue;
939    }
940    Vector<Float> lspecvec, rspecvec;
941    Vector<uChar> lflagvec, rflagvec;
942    lspecvec = lspecCol(i);    rspecvec = rspecCol(i);
943    lflagvec = lflagCol(i);    rflagvec = rflagCol(i);
944    Vector<uChar> outflagvec = lflagCol(i);
945    //-------
946    for (uInt j = 0; j < outflagvec.nelements(); ++j) {
947      uChar outflag = 0 << 7;
948      if ((lflagvec(j) == 1 << 7) || (rflagvec(j) == 1 << 7)) {
949        outflag = 1 << 7;
950      }
951      outflagvec(j) = outflag;
952    }
953    lflagvec = 0 << 7;
954    rflagvec = 0 << 7;
955    //-------
956    MaskedArray<Float> mleft = maskedArray(lspecvec, lflagvec);
957    MaskedArray<Float> mright = maskedArray(rspecvec, rflagvec);
958    if (mode == "ADD") {
959      mleft += mright;
960    } else if ( mode == "SUB") {
961      mleft -= mright;
962    } else if ( mode == "MUL") {
963      mleft *= mright;
964    } else if ( mode == "DIV") {
965      mleft /= mright;
966    } else {
967      throw(AipsError("Illegal binary operator"));
968    }
969    lspecCol.put(i, mleft.getArray());
970    //-----
971    lflagCol.put(i, outflagvec);
972    //-----
973  }
974  return out;
975}
976
977
978
979MaskedArray<Float> STMath::maskedArray( const Vector<Float>& s,
980                                        const Vector<uChar>& f)
981{
982  Vector<Bool> mask;
983  mask.resize(f.shape());
984  convertArray(mask, f);
985  return MaskedArray<Float>(s,!mask);
986}
987
988MaskedArray<Double> STMath::maskedArray( const Vector<Double>& s,
989                                         const Vector<uChar>& f)
990{
991  Vector<Bool> mask;
992  mask.resize(f.shape());
993  convertArray(mask, f);
994  return MaskedArray<Double>(s,!mask);
995}
996
997Vector<uChar> STMath::flagsFromMA(const MaskedArray<Float>& ma)
998{
999  const Vector<Bool>& m = ma.getMask();
1000  Vector<uChar> flags(m.shape());
1001  convertArray(flags, !m);
1002  return flags;
1003}
1004
1005CountedPtr< Scantable > STMath::autoQuotient( const CountedPtr< Scantable >& in,
1006                                              const std::string & mode,
1007                                              bool preserve )
1008{
1009  /// @todo make other modes available
1010  /// modes should be "nearest", "pair"
1011  // make this operation non insitu
1012  (void) mode; //currently unused
1013  const Table& tin = in->table();
1014  Table ons = tin(tin.col("SRCTYPE") == Int(SrcType::PSON));
1015  Table offs = tin(tin.col("SRCTYPE") == Int(SrcType::PSOFF));
1016  if ( offs.nrow() == 0 )
1017    throw(AipsError("No 'off' scans present."));
1018  // put all "on" scans into output table
1019
1020  bool insitu = insitu_;
1021  setInsitu(false);
1022  CountedPtr< Scantable > out = getScantable(in, true);
1023  setInsitu(insitu);
1024  Table& tout = out->table();
1025
1026  TableCopy::copyRows(tout, ons);
1027  TableRow row(tout);
1028  ROScalarColumn<Double> offtimeCol(offs, "TIME");
1029  ArrayColumn<Float> outspecCol(tout, "SPECTRA");
1030  ROArrayColumn<Float> outtsysCol(tout, "TSYS");
1031  ArrayColumn<uChar> outflagCol(tout, "FLAGTRA");
1032  for (uInt i=0; i < tout.nrow(); ++i) {
1033    const TableRecord& rec = row.get(i);
1034    Double ontime = rec.asDouble("TIME");
1035    Table presel = offs(offs.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1036                        && offs.col("IFNO") == Int(rec.asuInt("IFNO"))
1037                        && offs.col("POLNO") == Int(rec.asuInt("POLNO")) );
1038    ROScalarColumn<Double> offtimeCol(presel, "TIME");
1039
1040    Double mindeltat = min(abs(offtimeCol.getColumn() - ontime));
1041    // Timestamp may vary within a cycle ???!!!
1042    // increase this by 0.01 sec in case of rounding errors...
1043    // There might be a better way to do this.
1044    // fix to this fix. TIME is MJD, so 1.0d not 1.0s
1045    mindeltat += 0.01/24./60./60.;
1046    Table sel = presel( abs(presel.col("TIME")-ontime) <= mindeltat);
1047
1048    if ( sel.nrow() < 1 )  {
1049      throw(AipsError("No closest in time found... This could be a rounding "
1050                      "issue. Try quotient instead."));
1051    }
1052    TableRow offrow(sel);
1053    const TableRecord& offrec = offrow.get(0);//should only be one row
1054    RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
1055    RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
1056    RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
1057    /// @fixme this assumes tsys is a scalar not vector
1058    Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
1059    Vector<Float> specon, tsyson;
1060    outtsysCol.get(i, tsyson);
1061    outspecCol.get(i, specon);
1062    Vector<uChar> flagon;
1063    outflagCol.get(i, flagon);
1064    MaskedArray<Float> mon = maskedArray(specon, flagon);
1065    MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
1066    MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
1067    if (preserve) {
1068      quot -= tsysoffscalar;
1069    } else {
1070      quot -= tsyson[0];
1071    }
1072    outspecCol.put(i, quot.getArray());
1073    outflagCol.put(i, flagsFromMA(quot));
1074  }
1075  // renumber scanno
1076  TableIterator it(tout, "SCANNO");
1077  uInt i = 0;
1078  while ( !it.pastEnd() ) {
1079    Table t = it.table();
1080    TableVector<uInt> vec(t, "SCANNO");
1081    vec = i;
1082    ++i;
1083    ++it;
1084  }
1085  return out;
1086}
1087
1088
1089CountedPtr< Scantable > STMath::quotient( const CountedPtr< Scantable > & on,
1090                                          const CountedPtr< Scantable > & off,
1091                                          bool preserve )
1092{
1093  bool insitu = insitu_;
1094  if ( ! on->conformant(*off) ) {
1095    throw(AipsError("'on' and 'off' scantables are not conformant."));
1096  }
1097  setInsitu(false);
1098  CountedPtr< Scantable > out = getScantable(on, false);
1099  setInsitu(insitu);
1100  Table& tout = out->table();
1101  const Table& toff = off->table();
1102  TableIterator sit(tout, "SCANNO");
1103  TableIterator s2it(toff, "SCANNO");
1104  while ( !sit.pastEnd() ) {
1105    Table ton = sit.table();
1106    TableRow row(ton);
1107    Table t = s2it.table();
1108    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1109    ROArrayColumn<Float> outtsysCol(ton, "TSYS");
1110    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1111    for (uInt i=0; i < ton.nrow(); ++i) {
1112      const TableRecord& rec = row.get(i);
1113      Table offsel = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1114                          && t.col("IFNO") == Int(rec.asuInt("IFNO"))
1115                          && t.col("POLNO") == Int(rec.asuInt("POLNO")) );
1116      if ( offsel.nrow() == 0 )
1117        throw AipsError("STMath::quotient: no matching off");
1118      TableRow offrow(offsel);
1119      const TableRecord& offrec = offrow.get(0);//should be ncycles - take first
1120      RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
1121      RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
1122      RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
1123      Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
1124      Vector<Float> specon, tsyson;
1125      outtsysCol.get(i, tsyson);
1126      outspecCol.get(i, specon);
1127      Vector<uChar> flagon;
1128      outflagCol.get(i, flagon);
1129      MaskedArray<Float> mon = maskedArray(specon, flagon);
1130      MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
1131      MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
1132      if (preserve) {
1133        quot -= tsysoffscalar;
1134      } else {
1135        quot -= tsyson[0];
1136      }
1137      outspecCol.put(i, quot.getArray());
1138      outflagCol.put(i, flagsFromMA(quot));
1139    }
1140    ++sit;
1141    ++s2it;
1142    // take the first off for each on scan which doesn't have a
1143    // matching off scan
1144    // non <= noff:  matching pairs, non > noff matching pairs then first off
1145    if ( s2it.pastEnd() ) s2it.reset();
1146  }
1147  return out;
1148}
1149
1150// dototalpower (migration of GBTIDL procedure dototalpower.pro)
1151// calibrate the CAL on-off pair. It calculate Tsys and average CAL on-off subintegrations
1152// do it for each cycles in a specific scan.
1153CountedPtr< Scantable > STMath::dototalpower( const CountedPtr< Scantable >& calon,
1154                                              const CountedPtr< Scantable >& caloff, Float tcal )
1155{
1156  if ( ! calon->conformant(*caloff) ) {
1157    throw(AipsError("'CAL on' and 'CAL off' scantables are not conformant."));
1158  }
1159  setInsitu(false);
1160  CountedPtr< Scantable > out = getScantable(caloff, false);
1161  Table& tout = out->table();
1162  const Table& tcon = calon->table();
1163  Vector<Float> tcalout;
1164
1165  std::map<uInt,uInt> tcalIdToRecNoMap;
1166  const Table& calOffTcalTable = caloff->tcal().table();
1167  {
1168    ROScalarColumn<uInt> calOffTcalTable_IDcol(calOffTcalTable, "ID");
1169    const Vector<uInt> tcalIds(calOffTcalTable_IDcol.getColumn());
1170    size_t tcalIdsEnd = tcalIds.nelements();
1171    for (uInt i = 0; i < tcalIdsEnd; i++) {
1172      tcalIdToRecNoMap[tcalIds[i]] = i;
1173    }
1174  }
1175  ROArrayColumn<Float> calOffTcalTable_TCALcol(calOffTcalTable, "TCAL");
1176
1177  if ( tout.nrow() != tcon.nrow() ) {
1178    throw(AipsError("Mismatch in number of rows to form cal on - off pair."));
1179  }
1180  // iteration by scanno or cycle no.
1181  TableIterator sit(tout, "SCANNO");
1182  TableIterator s2it(tcon, "SCANNO");
1183  while ( !sit.pastEnd() ) {
1184    Table toff = sit.table();
1185    TableRow row(toff);
1186    Table t = s2it.table();
1187    ScalarColumn<Double> outintCol(toff, "INTERVAL");
1188    ArrayColumn<Float> outspecCol(toff, "SPECTRA");
1189    ArrayColumn<Float> outtsysCol(toff, "TSYS");
1190    ArrayColumn<uChar> outflagCol(toff, "FLAGTRA");
1191    ROScalarColumn<uInt> outtcalIdCol(toff, "TCAL_ID");
1192    ROScalarColumn<uInt> outpolCol(toff, "POLNO");
1193    ROScalarColumn<Double> onintCol(t, "INTERVAL");
1194    ROArrayColumn<Float> onspecCol(t, "SPECTRA");
1195    ROArrayColumn<Float> ontsysCol(t, "TSYS");
1196    ROArrayColumn<uChar> onflagCol(t, "FLAGTRA");
1197    //ROScalarColumn<uInt> ontcalIdCol(t, "TCAL_ID");
1198
1199    for (uInt i=0; i < toff.nrow(); ++i) {
1200      //skip these checks -> assumes the data order are the same between the cal on off pairs
1201      //
1202      Vector<Float> specCalon, specCaloff;
1203      // to store scalar (mean) tsys
1204      Vector<Float> tsysout(1);
1205      uInt tcalId, polno;
1206      Double offint, onint;
1207      outpolCol.get(i, polno);
1208      outspecCol.get(i, specCaloff);
1209      onspecCol.get(i, specCalon);
1210      Vector<uChar> flagCaloff, flagCalon;
1211      outflagCol.get(i, flagCaloff);
1212      onflagCol.get(i, flagCalon);
1213      outtcalIdCol.get(i, tcalId);
1214      outintCol.get(i, offint);
1215      onintCol.get(i, onint);
1216      // caluculate mean Tsys
1217      uInt nchan = specCaloff.nelements();
1218      // percentage of edge cut off
1219      uInt pc = 10;
1220      uInt bchan = nchan/pc;
1221      uInt echan = nchan-bchan;
1222
1223      Slicer chansl(IPosition(1,bchan-1), IPosition(1,echan-1), IPosition(1,1),Slicer::endIsLast);
1224      Vector<Float> testsubsp = specCaloff(chansl);
1225      MaskedArray<Float> spoff = maskedArray( specCaloff(chansl),flagCaloff(chansl) );
1226      MaskedArray<Float> spon = maskedArray( specCalon(chansl),flagCalon(chansl) );
1227      MaskedArray<Float> spdiff = spon-spoff;
1228      uInt noff = spoff.nelementsValid();
1229      //uInt non = spon.nelementsValid();
1230      uInt ndiff = spdiff.nelementsValid();
1231      Float meantsys;
1232
1233/**
1234      Double subspec, subdiff;
1235      uInt usednchan;
1236      subspec = 0;
1237      subdiff = 0;
1238      usednchan = 0;
1239      for(uInt k=(bchan-1); k<echan; k++) {
1240        subspec += specCaloff[k];
1241        subdiff += static_cast<Double>(specCalon[k]-specCaloff[k]);
1242        ++usednchan;
1243      }
1244**/
1245      // get tcal if input tcal <= 0
1246      Float tcalUsed;
1247      tcalUsed = tcal;
1248      if ( tcal <= 0.0 ) {
1249        uInt tcalRecNo = tcalIdToRecNoMap[tcalId];
1250        calOffTcalTable_TCALcol.get(tcalRecNo, tcalout);
1251//         if (polno<=3) {
1252//           tcalUsed = tcalout[polno];
1253//         }
1254//         else {
1255//           tcalUsed = tcalout[0];
1256//         }
1257        if ( tcalout.size() == 1 )
1258          tcalUsed = tcalout[0] ;
1259        else if ( tcalout.size() == nchan )
1260          tcalUsed = mean(tcalout) ;
1261        else {
1262          uInt ipol = polno ;
1263          if ( ipol > 3 ) ipol = 0 ;
1264          tcalUsed = tcalout[ipol] ;
1265        }
1266      }
1267
1268      Float meanoff;
1269      Float meandiff;
1270      if (noff && ndiff) {
1271         //Debug
1272         //if(noff!=ndiff) cerr<<"noff and ndiff is not equal"<<endl;
1273         //LogIO os( LogOrigin( "STMath", "dototalpower()", WHERE ) ) ;
1274         //if(noff!=ndiff) os<<"noff and ndiff is not equal"<<LogIO::POST;
1275         meanoff = sum(spoff)/noff;
1276         meandiff = sum(spdiff)/ndiff;
1277         meantsys= (meanoff/meandiff )*tcalUsed + tcalUsed/2;
1278      }
1279      else {
1280         meantsys=1;
1281      }
1282
1283      tsysout[0] = Float(meantsys);
1284      MaskedArray<Float> mcaloff = maskedArray(specCaloff, flagCaloff);
1285      MaskedArray<Float> mcalon = maskedArray(specCalon, flagCalon);
1286      MaskedArray<Float> sig =   Float(0.5) * (mcaloff + mcalon);
1287      //uInt ncaloff = mcaloff.nelementsValid();
1288      //uInt ncalon = mcalon.nelementsValid();
1289
1290      outintCol.put(i, offint+onint);
1291      outspecCol.put(i, sig.getArray());
1292      outflagCol.put(i, flagsFromMA(sig));
1293      outtsysCol.put(i, tsysout);
1294    }
1295    ++sit;
1296    ++s2it;
1297  }
1298  return out;
1299}
1300
1301//dosigref - migrated from GBT IDL's dosigref.pro, do calibration of position switch
1302// observatiions.
1303// input: sig and ref scantables, and an optional boxcar smoothing width(default width=0,
1304//        no smoothing).
1305// output: resultant scantable [= (sig-ref/ref)*tsys]
1306CountedPtr< Scantable > STMath::dosigref( const CountedPtr < Scantable >& sig,
1307                                          const CountedPtr < Scantable >& ref,
1308                                          int smoothref,
1309                                          casa::Float tsysv,
1310                                          casa::Float tau )
1311{
1312  LogIO os( casa::LogOrigin( "STMath", "dosigref()"));
1313if ( ! ref->conformant(*sig) ) {
1314    throw(AipsError("'sig' and 'ref' scantables are not conformant."));
1315  }
1316  setInsitu(false);
1317  CountedPtr< Scantable > out = getScantable(sig, false);
1318  CountedPtr< Scantable > smref;
1319  if ( smoothref > 1 ) {
1320    float fsmoothref = static_cast<float>(smoothref);
1321    std::string inkernel = "boxcar";
1322    smref = smooth(ref, inkernel, fsmoothref );
1323    ostringstream oss;
1324    os <<"Applied smoothing of "<<fsmoothref<<" on the reference."
1325       << LogIO::POST;
1326  }
1327  else {
1328    smref = ref;
1329  }
1330  Table& tout = out->table();
1331  const Table& tref = smref->table();
1332  if ( tout.nrow() != tref.nrow() ) {
1333    throw(AipsError("Mismatch in number of rows to form on-source and reference pair."));
1334  }
1335  // iteration by scanno? or cycle no.
1336  TableIterator sit(tout, "SCANNO");
1337  TableIterator s2it(tref, "SCANNO");
1338  while ( !sit.pastEnd() ) {
1339    Table ton = sit.table();
1340    Table t = s2it.table();
1341    ScalarColumn<Double> outintCol(ton, "INTERVAL");
1342    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1343    ArrayColumn<Float> outtsysCol(ton, "TSYS");
1344    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1345    ArrayColumn<Float> refspecCol(t, "SPECTRA");
1346    ROScalarColumn<Double> refintCol(t, "INTERVAL");
1347    ROArrayColumn<Float> reftsysCol(t, "TSYS");
1348    ArrayColumn<uChar> refflagCol(t, "FLAGTRA");
1349    ROScalarColumn<Float> refelevCol(t, "ELEVATION");
1350    for (uInt i=0; i < ton.nrow(); ++i) {
1351
1352      Double onint, refint;
1353      Vector<Float> specon, specref;
1354      // to store scalar (mean) tsys
1355      Vector<Float> tsysref;
1356      outintCol.get(i, onint);
1357      refintCol.get(i, refint);
1358      outspecCol.get(i, specon);
1359      refspecCol.get(i, specref);
1360      Vector<uChar> flagref, flagon;
1361      outflagCol.get(i, flagon);
1362      refflagCol.get(i, flagref);
1363      reftsysCol.get(i, tsysref);
1364
1365      Float tsysrefscalar;
1366      if ( tsysv > 0.0 ) {
1367        ostringstream oss;
1368        Float elev;
1369        refelevCol.get(i, elev);
1370        os << "user specified Tsys = " << tsysv;
1371        // do recalc elevation if EL = 0
1372        if ( elev == 0 ) {
1373          throw(AipsError("EL=0, elevation data is missing."));
1374        } else {
1375          if ( tau <= 0.0 ) {
1376            throw(AipsError("Valid tau is not supplied."));
1377          } else {
1378            tsysrefscalar = tsysv * exp(tau/elev);
1379          }
1380        }
1381        os << ", corrected (for El) tsys= "<<tsysrefscalar;
1382      }
1383      else {
1384        tsysrefscalar = tsysref[0];
1385      }
1386      //get quotient spectrum
1387      MaskedArray<Float> mref = maskedArray(specref, flagref);
1388      MaskedArray<Float> mon = maskedArray(specon, flagon);
1389      MaskedArray<Float> specres =   tsysrefscalar*((mon - mref)/mref);
1390      Double resint = onint*refint*smoothref/(onint+refint*smoothref);
1391
1392      //Debug
1393      //cerr<<"Tsys used="<<tsysrefscalar<<endl;
1394      //LogIO os( LogOrigin( "STMath", "dosigref", WHERE ) ) ;
1395      //os<<"Tsys used="<<tsysrefscalar<<LogIO::POST;
1396      // fill the result, replay signal tsys by reference tsys
1397      outintCol.put(i, resint);
1398      outspecCol.put(i, specres.getArray());
1399      outflagCol.put(i, flagsFromMA(specres));
1400      outtsysCol.put(i, tsysref);
1401    }
1402    ++sit;
1403    ++s2it;
1404  }
1405 
1406  out->setFluxUnit("K");
1407
1408  return out;
1409}
1410
1411CountedPtr< Scantable > STMath::donod(const casa::CountedPtr<Scantable>& s,
1412                                     const std::vector<int>& scans,
1413                                     int smoothref,
1414                                     casa::Float tsysv,
1415                                     casa::Float tau,
1416                                     casa::Float tcal )
1417
1418{
1419  setInsitu(false);
1420  LogIO os( casa::LogOrigin( "STMath", "donod()"));
1421  STSelector sel;
1422  std::vector<int> scan1, scan2, beams, types;
1423  std::vector< vector<int> > scanpair;
1424  //std::vector<string> calstate;
1425  std::vector<int> calstate;
1426  String msg;
1427
1428  CountedPtr< Scantable > s1b1on, s1b1off, s1b2on, s1b2off;
1429  CountedPtr< Scantable > s2b1on, s2b1off, s2b2on, s2b2off;
1430
1431  std::vector< CountedPtr< Scantable > > sctables;
1432  sctables.push_back(s1b1on);
1433  sctables.push_back(s1b1off);
1434  sctables.push_back(s1b2on);
1435  sctables.push_back(s1b2off);
1436  sctables.push_back(s2b1on);
1437  sctables.push_back(s2b1off);
1438  sctables.push_back(s2b2on);
1439  sctables.push_back(s2b2off);
1440
1441  //check scanlist
1442  int n=s->checkScanInfo(scans);
1443  if (n==1) {
1444     throw(AipsError("Incorrect scan pairs. "));
1445  }
1446
1447  // Assume scans contain only a pair of consecutive scan numbers.
1448  // It is assumed that first beam, b1,  is on target.
1449  // There is no check if the first beam is on or not.
1450  if ( scans.size()==1 ) {
1451    scan1.push_back(scans[0]);
1452    scan2.push_back(scans[0]+1);
1453  } else if ( scans.size()==2 ) {
1454   scan1.push_back(scans[0]);
1455   scan2.push_back(scans[1]);
1456  } else {
1457    if ( scans.size()%2 == 0 ) {
1458      for (uInt i=0; i<scans.size(); i++) {
1459        if (i%2 == 0) {
1460          scan1.push_back(scans[i]);
1461        }
1462        else {
1463          scan2.push_back(scans[i]);
1464        }
1465      }
1466    } else {
1467      throw(AipsError("Odd numbers of scans, cannot form pairs."));
1468    }
1469  }
1470  scanpair.push_back(scan1);
1471  scanpair.push_back(scan2);
1472  //calstate.push_back("*calon");
1473  //calstate.push_back("*[^calon]");
1474  calstate.push_back(SrcType::NODCAL);
1475  calstate.push_back(SrcType::NOD);
1476  CountedPtr< Scantable > ws = getScantable(s, false);
1477  uInt l=0;
1478  while ( l < sctables.size() ) {
1479    for (uInt i=0; i < 2; i++) {
1480      for (uInt j=0; j < 2; j++) {
1481        for (uInt k=0; k < 2; k++) {
1482          sel.reset();
1483          sel.setScans(scanpair[i]);
1484          //sel.setName(calstate[k]);
1485          types.clear();
1486          types.push_back(calstate[k]);
1487          sel.setTypes(types);
1488          beams.clear();
1489          beams.push_back(j);
1490          sel.setBeams(beams);
1491          ws->setSelection(sel);
1492          sctables[l]= getScantable(ws, false);
1493          l++;
1494        }
1495      }
1496    }
1497  }
1498
1499  // replace here by splitData or getData functionality
1500  CountedPtr< Scantable > sig1;
1501  CountedPtr< Scantable > ref1;
1502  CountedPtr< Scantable > sig2;
1503  CountedPtr< Scantable > ref2;
1504  CountedPtr< Scantable > calb1;
1505  CountedPtr< Scantable > calb2;
1506
1507  msg=String("Processing dototalpower for subset of the data");
1508  os << msg << LogIO::POST;
1509  // Debug for IRC CS data
1510  //float tcal1=7.0;
1511  //float tcal2=4.0;
1512  sig1 = dototalpower(sctables[0], sctables[1], tcal=tcal);
1513  ref1 = dototalpower(sctables[2], sctables[3], tcal=tcal);
1514  ref2 = dototalpower(sctables[4], sctables[5], tcal=tcal);
1515  sig2 = dototalpower(sctables[6], sctables[7], tcal=tcal);
1516
1517  // correction of user-specified tsys for elevation here
1518
1519  // dosigref calibration
1520  msg=String("Processing dosigref for subset of the data");
1521  os << msg  << endl;
1522  calb1=dosigref(sig1,ref2,smoothref,tsysv,tau);
1523  calb2=dosigref(sig2,ref1,smoothref,tsysv,tau);
1524
1525  // iteration by scanno or cycle no.
1526  Table& tcalb1 = calb1->table();
1527  Table& tcalb2 = calb2->table();
1528  TableIterator sit(tcalb1, "SCANNO");
1529  TableIterator s2it(tcalb2, "SCANNO");
1530  while ( !sit.pastEnd() ) {
1531    Table t1 = sit.table();
1532    Table t2= s2it.table();
1533    ArrayColumn<Float> outspecCol(t1, "SPECTRA");
1534    ArrayColumn<Float> outtsysCol(t1, "TSYS");
1535    ArrayColumn<uChar> outflagCol(t1, "FLAGTRA");
1536    ScalarColumn<Double> outintCol(t1, "INTERVAL");
1537    ArrayColumn<Float> t2specCol(t2, "SPECTRA");
1538    ROArrayColumn<Float> t2tsysCol(t2, "TSYS");
1539    ArrayColumn<uChar> t2flagCol(t2, "FLAGTRA");
1540    ROScalarColumn<Double> t2intCol(t2, "INTERVAL");
1541    for (uInt i=0; i < t1.nrow(); ++i) {
1542      Vector<Float> spec1, spec2;
1543      // to store scalar (mean) tsys
1544      Vector<Float> tsys1, tsys2;
1545      Vector<uChar> flag1, flag2;
1546      Double tint1, tint2;
1547      outspecCol.get(i, spec1);
1548      t2specCol.get(i, spec2);
1549      outflagCol.get(i, flag1);
1550      t2flagCol.get(i, flag2);
1551      outtsysCol.get(i, tsys1);
1552      t2tsysCol.get(i, tsys2);
1553      outintCol.get(i, tint1);
1554      t2intCol.get(i, tint2);
1555      // average
1556      // assume scalar tsys for weights
1557      Float wt1, wt2, tsyssq1, tsyssq2;
1558      tsyssq1 = tsys1[0]*tsys1[0];
1559      tsyssq2 = tsys2[0]*tsys2[0];
1560      wt1 = Float(tint1)/tsyssq1;
1561      wt2 = Float(tint2)/tsyssq2;
1562      Float invsumwt=1/(wt1+wt2);
1563      MaskedArray<Float> mspec1 = maskedArray(spec1, flag1);
1564      MaskedArray<Float> mspec2 = maskedArray(spec2, flag2);
1565      MaskedArray<Float> avspec =  invsumwt * (wt1*mspec1 + wt2*mspec2);
1566      //Array<Float> avtsys =  Float(0.5) * (tsys1 + tsys2);
1567      // cerr<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<endl;
1568      // LogIO os( LogOrigin( "STMath", "donod", WHERE ) ) ;
1569      // os<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<LogIO::POST;
1570      tsys1[0] = sqrt(tsyssq1 + tsyssq2);
1571      Array<Float> avtsys =  tsys1;
1572
1573      outspecCol.put(i, avspec.getArray());
1574      outflagCol.put(i, flagsFromMA(avspec));
1575      outtsysCol.put(i, avtsys);
1576    }
1577    ++sit;
1578    ++s2it;
1579  }
1580
1581  calb1->setFluxUnit("K");
1582 
1583  return calb1;
1584}
1585
1586//GBTIDL version of frequency switched data calibration
1587CountedPtr< Scantable > STMath::dofs( const CountedPtr< Scantable >& s,
1588                                      const std::vector<int>& scans,
1589                                      int smoothref,
1590                                      casa::Float tsysv,
1591                                      casa::Float tau,
1592                                      casa::Float tcal )
1593{
1594
1595
1596  (void) scans; //currently unused
1597  STSelector sel;
1598  CountedPtr< Scantable > ws = getScantable(s, false);
1599  CountedPtr< Scantable > sig, sigwcal, ref, refwcal;
1600  CountedPtr< Scantable > calsig, calref, out, out1, out2;
1601  Bool nofold=False;
1602  vector<int> types ;
1603
1604  //split the data
1605  //sel.setName("*_fs");
1606  types.push_back( SrcType::FSON ) ;
1607  sel.setTypes( types ) ;
1608  ws->setSelection(sel);
1609  sig = getScantable(ws,false);
1610  sel.reset();
1611  types.clear() ;
1612  //sel.setName("*_fs_calon");
1613  types.push_back( SrcType::FONCAL ) ;
1614  sel.setTypes( types ) ;
1615  ws->setSelection(sel);
1616  sigwcal = getScantable(ws,false);
1617  sel.reset();
1618  types.clear() ;
1619  //sel.setName("*_fsr");
1620  types.push_back( SrcType::FSOFF ) ;
1621  sel.setTypes( types ) ;
1622  ws->setSelection(sel);
1623  ref = getScantable(ws,false);
1624  sel.reset();
1625  types.clear() ;
1626  //sel.setName("*_fsr_calon");
1627  types.push_back( SrcType::FOFFCAL ) ;
1628  sel.setTypes( types ) ;
1629  ws->setSelection(sel);
1630  refwcal = getScantable(ws,false);
1631  sel.reset() ;
1632  types.clear() ;
1633
1634  calsig = dototalpower(sigwcal, sig, tcal=tcal);
1635  calref = dototalpower(refwcal, ref, tcal=tcal);
1636
1637  out1=dosigref(calsig,calref,smoothref,tsysv,tau);
1638  out2=dosigref(calref,calsig,smoothref,tsysv,tau);
1639
1640  Table& tabout1=out1->table();
1641  Table& tabout2=out2->table();
1642  ROScalarColumn<uInt> freqidCol1(tabout1, "FREQ_ID");
1643  ScalarColumn<uInt> freqidCol2(tabout2, "FREQ_ID");
1644  ROArrayColumn<Float> specCol(tabout2, "SPECTRA");
1645  Vector<Float> spec; specCol.get(0, spec);
1646  uInt nchan = spec.nelements();
1647  uInt freqid1; freqidCol1.get(0,freqid1);
1648  uInt freqid2; freqidCol2.get(0,freqid2);
1649  Double rp1, rp2, rv1, rv2, inc1, inc2;
1650  out1->frequencies().getEntry(rp1, rv1, inc1, freqid1);
1651  out2->frequencies().getEntry(rp2, rv2, inc2, freqid2);
1652  //cerr << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << endl ;
1653  //LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1654  //os << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << LogIO::POST ;
1655  if (rp1==rp2) {
1656    Double foffset = rv1 - rv2;
1657    uInt choffset = static_cast<uInt>(foffset/abs(inc2));
1658    if (choffset >= nchan) {
1659      //cerr<<"out-band frequency switching, no folding"<<endl;
1660      LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1661      os<<"out-band frequency switching, no folding"<<LogIO::POST;
1662      nofold = True;
1663    }
1664  }
1665
1666  if (nofold) {
1667    std::vector< CountedPtr< Scantable > > tabs;
1668    tabs.push_back(out1);
1669    tabs.push_back(out2);
1670    out = merge(tabs);
1671  }
1672  else {
1673    //out = out1;
1674    Double choffset = ( rv1 - rv2 ) / inc2 ;
1675    out = dofold( out1, out2, choffset ) ;
1676  }
1677   
1678  out->setFluxUnit("K");
1679
1680  return out;
1681}
1682
1683CountedPtr<Scantable> STMath::dofold( const CountedPtr<Scantable> &sig,
1684                                      const CountedPtr<Scantable> &ref,
1685                                      Double choffset,
1686                                      Double choffset2 )
1687{
1688  LogIO os( LogOrigin( "STMath", "dofold", WHERE ) ) ;
1689  os << "choffset=" << choffset << " choffset2=" << choffset2 << LogIO::POST ;
1690
1691  // output scantable
1692  CountedPtr<Scantable> out = getScantable( sig, false ) ;
1693
1694  // separate choffset to integer part and decimal part
1695  Int ioffset = (Int)choffset ;
1696  Double doffset = choffset - ioffset ;
1697  Int ioffset2 = (Int)choffset2 ;
1698  Double doffset2 = choffset2 - ioffset2 ;
1699  os << "ioffset=" << ioffset << " doffset=" << doffset << LogIO::POST ;
1700  os << "ioffset2=" << ioffset2 << " doffset2=" << doffset2 << LogIO::POST ; 
1701
1702  // get column
1703  ROArrayColumn<Float> specCol1( sig->table(), "SPECTRA" ) ;
1704  ROArrayColumn<Float> specCol2( ref->table(), "SPECTRA" ) ;
1705  ROArrayColumn<Float> tsysCol1( sig->table(), "TSYS" ) ;
1706  ROArrayColumn<Float> tsysCol2( ref->table(), "TSYS" ) ;
1707  ROArrayColumn<uChar> flagCol1( sig->table(), "FLAGTRA" ) ;
1708  ROArrayColumn<uChar> flagCol2( ref->table(), "FLAGTRA" ) ;
1709  ROScalarColumn<Double> mjdCol1( sig->table(), "TIME" ) ;
1710  ROScalarColumn<Double> mjdCol2( ref->table(), "TIME" ) ;
1711  ROScalarColumn<Double> intervalCol1( sig->table(), "INTERVAL" ) ;
1712  ROScalarColumn<Double> intervalCol2( ref->table(), "INTERVAL" ) ;
1713
1714  // check
1715  if ( ioffset == 0 ) {
1716    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1717    os << "channel offset is zero, no folding" << LogIO::POST ;
1718    return out ;
1719  }
1720  int nchan = ref->nchan() ;
1721  if ( abs(ioffset) >= nchan ) {
1722    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1723    os << "out-band frequency switching, no folding" << LogIO::POST ;
1724    return out ;
1725  }
1726
1727  // attach column for output scantable
1728  ArrayColumn<Float> specColOut( out->table(), "SPECTRA" ) ;
1729  ArrayColumn<uChar> flagColOut( out->table(), "FLAGTRA" ) ;
1730  ArrayColumn<Float> tsysColOut( out->table(), "TSYS" ) ;
1731  ScalarColumn<Double> mjdColOut( out->table(), "TIME" ) ;
1732  ScalarColumn<Double> intervalColOut( out->table(), "INTERVAL" ) ;
1733  ScalarColumn<uInt> fidColOut( out->table(), "FREQ_ID" ) ;
1734
1735  // for each row
1736  // assume that the data order are same between sig and ref
1737  RowAccumulator acc( asap::W_TINTSYS ) ;
1738  for ( int i = 0 ; i < sig->nrow() ; i++ ) {
1739    // get values
1740    Vector<Float> spsig ;
1741    specCol1.get( i, spsig ) ;
1742    Vector<Float> spref ;
1743    specCol2.get( i, spref ) ;
1744    Vector<Float> tsyssig ;
1745    tsysCol1.get( i, tsyssig ) ;
1746    Vector<Float> tsysref ;
1747    tsysCol2.get( i, tsysref ) ;
1748    Vector<uChar> flagsig ;
1749    flagCol1.get( i, flagsig ) ;
1750    Vector<uChar> flagref ;
1751    flagCol2.get( i, flagref ) ;
1752    Double timesig ;
1753    mjdCol1.get( i, timesig ) ;
1754    Double timeref ;
1755    mjdCol2.get( i, timeref ) ;
1756    Double intsig ;
1757    intervalCol1.get( i, intsig ) ;
1758    Double intref ;
1759    intervalCol2.get( i, intref ) ;
1760
1761    // shift reference spectra
1762    int refchan = spref.nelements() ;
1763    Vector<Float> sspref( spref.nelements() ) ;
1764    Vector<Float> stsysref( tsysref.nelements() ) ;
1765    Vector<uChar> sflagref( flagref.nelements() ) ;
1766    if ( ioffset > 0 ) {
1767      // SPECTRA and FLAGTRA
1768      for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1769        sspref[j] = spref[j+ioffset] ;
1770        sflagref[j] = flagref[j+ioffset] ;
1771      }
1772      for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1773        sspref[j] = spref[j-refchan+ioffset] ;
1774        sflagref[j] = flagref[j-refchan+ioffset] ;
1775      }
1776      spref = sspref.copy() ;
1777      flagref = sflagref.copy() ;
1778      for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1779        sspref[j] = doffset * spref[j+1] + ( 1.0 - doffset ) * spref[j] ;
1780        sflagref[j] = flagref[j+1] + flagref[j] ;
1781      }
1782      sspref[refchan-1] = doffset * spref[0] + ( 1.0 - doffset ) * spref[refchan-1] ;
1783      sflagref[refchan-1] = flagref[0] + flagref[refchan-1] ;
1784
1785      // TSYS
1786      if ( spref.nelements() == tsysref.nelements() ) {
1787        for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1788          stsysref[j] = tsysref[j+ioffset] ;
1789        }
1790        for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1791          stsysref[j] = tsysref[j-refchan+ioffset] ;
1792        }
1793        tsysref = stsysref.copy() ;
1794        for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1795          stsysref[j] = doffset * tsysref[j+1] + ( 1.0 - doffset ) * tsysref[j] ;
1796        }
1797        stsysref[refchan-1] = doffset * tsysref[0] + ( 1.0 - doffset ) * tsysref[refchan-1] ;
1798      }
1799    }
1800    else {
1801      // SPECTRA and FLAGTRA
1802      for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1803        sspref[j] = spref[refchan+ioffset+j] ;
1804        sflagref[j] = flagref[refchan+ioffset+j] ;
1805      }
1806      for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1807        sspref[j] = spref[j+ioffset] ;
1808        sflagref[j] = flagref[j+ioffset] ;
1809      }
1810      spref = sspref.copy() ;
1811      flagref = sflagref.copy() ;
1812      sspref[0] = doffset * spref[refchan-1] + ( 1.0 - doffset ) * spref[0] ;
1813      sflagref[0] = flagref[0] + flagref[refchan-1] ;
1814      for ( int j = 1 ; j < refchan ; j++ ) {
1815        sspref[j] = doffset * spref[j-1] + ( 1.0 - doffset ) * spref[j] ;
1816        sflagref[j] = flagref[j-1] + flagref[j] ;
1817      }
1818      // TSYS
1819      if ( spref.nelements() == tsysref.nelements() ) {
1820        for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1821          stsysref[j] = tsysref[refchan+ioffset+j] ;
1822        }
1823        for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1824          stsysref[j] = tsysref[j+ioffset] ;
1825        }
1826        tsysref = stsysref.copy() ;
1827        stsysref[0] = doffset * tsysref[refchan-1] + ( 1.0 - doffset ) * tsysref[0] ;
1828        for ( int j = 1 ; j < refchan ; j++ ) {
1829          stsysref[j] = doffset * tsysref[j-1] + ( 1.0 - doffset ) * tsysref[j] ;
1830        }
1831      }
1832    }
1833
1834    // shift signal spectra if necessary (only for APEX?)
1835    if ( choffset2 != 0.0 ) {
1836      int sigchan = spsig.nelements() ;
1837      Vector<Float> sspsig( spsig.nelements() ) ;
1838      Vector<Float> stsyssig( tsyssig.nelements() ) ;
1839      Vector<uChar> sflagsig( flagsig.nelements() ) ;
1840      if ( ioffset2 > 0 ) {
1841        // SPECTRA and FLAGTRA
1842        for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1843          sspsig[j] = spsig[j+ioffset2] ;
1844          sflagsig[j] = flagsig[j+ioffset2] ;
1845        }
1846        for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1847          sspsig[j] = spsig[j-sigchan+ioffset2] ;
1848          sflagsig[j] = flagsig[j-sigchan+ioffset2] ;
1849        }
1850        spsig = sspsig.copy() ;
1851        flagsig = sflagsig.copy() ;
1852        for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1853          sspsig[j] = doffset2 * spsig[j+1] + ( 1.0 - doffset2 ) * spsig[j] ;
1854          sflagsig[j] = flagsig[j+1] || flagsig[j] ;
1855        }
1856        sspsig[sigchan-1] = doffset2 * spsig[0] + ( 1.0 - doffset2 ) * spsig[sigchan-1] ;
1857        sflagsig[sigchan-1] = flagsig[0] || flagsig[sigchan-1] ;
1858        // TSTS
1859        if ( spsig.nelements() == tsyssig.nelements() ) {
1860          for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1861            stsyssig[j] = tsyssig[j+ioffset2] ;
1862          }
1863          for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1864            stsyssig[j] = tsyssig[j-sigchan+ioffset2] ;
1865          }
1866          tsyssig = stsyssig.copy() ;
1867          for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1868            stsyssig[j] = doffset2 * tsyssig[j+1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1869          }
1870          stsyssig[sigchan-1] = doffset2 * tsyssig[0] + ( 1.0 - doffset2 ) * tsyssig[sigchan-1] ;
1871        }
1872      }
1873      else {
1874        // SPECTRA and FLAGTRA
1875        for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1876          sspsig[j] = spsig[sigchan+ioffset2+j] ;
1877          sflagsig[j] = flagsig[sigchan+ioffset2+j] ;
1878        }
1879        for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1880          sspsig[j] = spsig[j+ioffset2] ;
1881          sflagsig[j] = flagsig[j+ioffset2] ;
1882        }
1883        spsig = sspsig.copy() ;
1884        flagsig = sflagsig.copy() ;
1885        sspsig[0] = doffset2 * spsig[sigchan-1] + ( 1.0 - doffset2 ) * spsig[0] ;
1886        sflagsig[0] = flagsig[0] + flagsig[sigchan-1] ;
1887        for ( int j = 1 ; j < sigchan ; j++ ) {
1888          sspsig[j] = doffset2 * spsig[j-1] + ( 1.0 - doffset2 ) * spsig[j] ;
1889          sflagsig[j] = flagsig[j-1] + flagsig[j] ;
1890        }
1891        // TSYS
1892        if ( spsig.nelements() == tsyssig.nelements() ) {
1893          for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1894            stsyssig[j] = tsyssig[sigchan+ioffset2+j] ;
1895          }
1896          for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1897            stsyssig[j] = tsyssig[j+ioffset2] ;
1898          }
1899          tsyssig = stsyssig.copy() ;
1900          stsyssig[0] = doffset2 * tsyssig[sigchan-1] + ( 1.0 - doffset2 ) * tsyssig[0] ;
1901          for ( int j = 1 ; j < sigchan ; j++ ) {
1902            stsyssig[j] = doffset2 * tsyssig[j-1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1903          }
1904        }
1905      }
1906    }
1907
1908    // folding
1909    acc.add( spsig, !flagsig, tsyssig, intsig, timesig ) ;
1910    acc.add( sspref, !sflagref, stsysref, intref, timeref ) ;
1911   
1912    // put result
1913    specColOut.put( i, acc.getSpectrum() ) ;
1914    const Vector<Bool> &msk = acc.getMask() ;
1915    Vector<uChar> flg( msk.shape() ) ;
1916    convertArray( flg, !msk ) ;
1917    flagColOut.put( i, flg ) ;
1918    tsysColOut.put( i, acc.getTsys() ) ;
1919    intervalColOut.put( i, acc.getInterval() ) ;
1920    mjdColOut.put( i, acc.getTime() ) ;
1921    // change FREQ_ID to unshifted IF setting (only for APEX?)
1922    if ( choffset2 != 0.0 ) {
1923      uInt freqid = fidColOut( 0 ) ; // assume single-IF data
1924      double refpix, refval, increment ;
1925      out->frequencies().getEntry( refpix, refval, increment, freqid ) ;
1926      refval -= choffset * increment ;
1927      uInt newfreqid = out->frequencies().addEntry( refpix, refval, increment ) ;
1928      Vector<uInt> freqids = fidColOut.getColumn() ;
1929      for ( uInt j = 0 ; j < freqids.nelements() ; j++ ) {
1930        if ( freqids[j] == freqid )
1931          freqids[j] = newfreqid ;
1932      }
1933      fidColOut.putColumn( freqids ) ;
1934    }
1935
1936    acc.reset() ;
1937  }
1938
1939  return out ;
1940}
1941
1942
1943CountedPtr< Scantable > STMath::freqSwitch( const CountedPtr< Scantable >& in )
1944{
1945  // make copy or reference
1946  CountedPtr< Scantable > out = getScantable(in, false);
1947  Table& tout = out->table();
1948  Block<String> cols(4);
1949  cols[0] = String("SCANNO");
1950  cols[1] = String("CYCLENO");
1951  cols[2] = String("BEAMNO");
1952  cols[3] = String("POLNO");
1953  TableIterator iter(tout, cols);
1954  while (!iter.pastEnd()) {
1955    Table subt = iter.table();
1956    // this should leave us with two rows for the two IFs....if not ignore
1957    if (subt.nrow() != 2 ) {
1958      continue;
1959    }
1960    ArrayColumn<Float> specCol(subt, "SPECTRA");
1961    ArrayColumn<Float> tsysCol(subt, "TSYS");
1962    ArrayColumn<uChar> flagCol(subt, "FLAGTRA");
1963    Vector<Float> onspec,offspec, ontsys, offtsys;
1964    Vector<uChar> onflag, offflag;
1965    tsysCol.get(0, ontsys);   tsysCol.get(1, offtsys);
1966    specCol.get(0, onspec);   specCol.get(1, offspec);
1967    flagCol.get(0, onflag);   flagCol.get(1, offflag);
1968    MaskedArray<Float> on  = maskedArray(onspec, onflag);
1969    MaskedArray<Float> off = maskedArray(offspec, offflag);
1970    MaskedArray<Float> oncopy = on.copy();
1971
1972    on /= off; on -= 1.0f;
1973    on *= ontsys[0];
1974    off /= oncopy; off -= 1.0f;
1975    off *= offtsys[0];
1976    specCol.put(0, on.getArray());
1977    const Vector<Bool>& m0 = on.getMask();
1978    Vector<uChar> flags0(m0.shape());
1979    convertArray(flags0, !m0);
1980    flagCol.put(0, flags0);
1981
1982    specCol.put(1, off.getArray());
1983    const Vector<Bool>& m1 = off.getMask();
1984    Vector<uChar> flags1(m1.shape());
1985    convertArray(flags1, !m1);
1986    flagCol.put(1, flags1);
1987    ++iter;
1988  }
1989
1990  return out;
1991}
1992
1993std::vector< float > STMath::statistic( const CountedPtr< Scantable > & in,
1994                                        const std::vector< bool > & mask,
1995                                        const std::string& which )
1996{
1997  Vector<Bool> m(mask);
1998  const Table& tab = in->table();
1999  ROArrayColumn<Float> specCol(tab, "SPECTRA");
2000  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2001  std::vector<float> out;
2002  for (uInt i = 0; i < tab.nrow(); ++i) {
2003    if (in->isAllChannelsFlagged(i)) {
2004      out.push_back(NAN);
2005    } else {
2006      float outstat = 0.0;
2007      Vector<Float> spec; specCol.get(i, spec);
2008      Vector<uChar> flag; flagCol.get(i, flag);
2009      MaskedArray<Float> ma  = maskedArray(spec, flag);
2010      if (spec.nelements() == m.nelements()) {
2011        outstat = mathutil::statistics(which, ma(m));
2012      } else {
2013        outstat = mathutil::statistics(which, ma);
2014      }
2015      out.push_back(outstat);
2016    }
2017  }
2018  return out;
2019}
2020
2021std::vector< float > STMath::statisticRow( const CountedPtr< Scantable > & in,
2022                                        const std::vector< bool > & mask,
2023                                        const std::string& which,
2024                                        int row )
2025{
2026
2027  Vector<Bool> m(mask);
2028  const Table& tab = in->table();
2029  ROArrayColumn<Float> specCol(tab, "SPECTRA");
2030  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2031  std::vector<float> out;
2032
2033  Vector<Float> spec; specCol.get(row, spec);
2034  Vector<uChar> flag; flagCol.get(row, flag);
2035  MaskedArray<Float> ma  = maskedArray(spec, flag);
2036  float outstat = 0.0;
2037  if ( spec.nelements() == m.nelements() ) {
2038    outstat = mathutil::statistics(which, ma(m));
2039  } else {
2040    outstat = mathutil::statistics(which, ma);
2041  }
2042  out.push_back(outstat);
2043
2044  return out;
2045}
2046
2047std::vector< int > STMath::minMaxChan( const CountedPtr< Scantable > & in,
2048                                        const std::vector< bool > & mask,
2049                                        const std::string& which )
2050{
2051
2052  Vector<Bool> m(mask);
2053  const Table& tab = in->table();
2054  ROArrayColumn<Float> specCol(tab, "SPECTRA");
2055  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2056  std::vector<int> out;
2057  for (uInt i=0; i < tab.nrow(); ++i ) {
2058    if (in->isAllChannelsFlagged(i)) {
2059      out.push_back(NAN);
2060    } else {
2061      Vector<Float> spec; specCol.get(i, spec);
2062      Vector<uChar> flag; flagCol.get(i, flag);
2063      MaskedArray<Float> ma  = maskedArray(spec, flag);
2064      if (ma.ndim() != 1) {
2065        throw (ArrayError(
2066                          "std::vector<int> STMath::minMaxChan("
2067                          "ContedPtr<Scantable> &in, std::vector<bool> &mask, "
2068                          " std::string &which)"
2069                          " - MaskedArray is not 1D"));
2070      }
2071      IPosition outpos(1,0);
2072      if ( spec.nelements() == m.nelements() ) {
2073        outpos = mathutil::minMaxPos(which, ma(m));
2074      } else {
2075        outpos = mathutil::minMaxPos(which, ma);
2076      }
2077      out.push_back(outpos[0]);
2078    }
2079  }
2080  return out;
2081}
2082
2083CountedPtr< Scantable > STMath::bin( const CountedPtr< Scantable > & in,
2084                                     int width )
2085{
2086  if ( !in->getSelection().empty() ) throw(AipsError("Can't bin subset of the data."));
2087  CountedPtr< Scantable > out = getScantable(in, false);
2088  Table& tout = out->table();
2089  out->frequencies().rescale(width, "BIN");
2090  ArrayColumn<Float> specCol(tout, "SPECTRA");
2091  ArrayColumn<uChar> flagCol(tout, "FLAGTRA");
2092  ArrayColumn<Float> tsysCol(tout, "TSYS");
2093
2094  for (uInt i=0; i < tout.nrow(); ++i ) {
2095    MaskedArray<Float> main  = maskedArray(specCol(i), flagCol(i));
2096    MaskedArray<Float> maout;
2097    LatticeUtilities::bin(maout, main, 0, Int(width));
2098    specCol.put(i, maout.getArray());
2099    flagCol.put(i, flagsFromMA(maout));
2100    if (tsysCol(i).nelements() == specCol(i).nelements()) {
2101      MaskedArray<Float> matsysin = maskedArray(tsysCol(i), flagCol(i));
2102      MaskedArray<Float> matsysout;
2103      LatticeUtilities::bin(matsysout, matsysin, 0, Int(width));
2104      tsysCol.put(i, matsysout.getArray());
2105    }
2106    // take only the first binned spectrum's length for the deprecated
2107    // global header item nChan
2108    if (i==0) tout.rwKeywordSet().define(String("nChan"),
2109                                       Int(maout.getArray().nelements()));
2110  }
2111  return out;
2112}
2113
2114CountedPtr< Scantable > STMath::resample( const CountedPtr< Scantable >& in,
2115                                          const std::string& method,
2116                                          float width )
2117//
2118// Should add the possibility of width being specified in km/s. This means
2119// that for each freqID (SpectralCoordinate) we will need to convert to an
2120// average channel width (say at the reference pixel).  Then we would need
2121// to be careful to make sure each spectrum (of different freqID)
2122// is the same length.
2123//
2124{
2125  //InterpolateArray1D<Double,Float>::InterpolationMethod interp;
2126  Int interpMethod(stringToIMethod(method));
2127
2128  CountedPtr< Scantable > out = getScantable(in, false);
2129  Table& tout = out->table();
2130
2131// Resample SpectralCoordinates (one per freqID)
2132  out->frequencies().rescale(width, "RESAMPLE");
2133  TableIterator iter(tout, "IFNO");
2134  TableRow row(tout);
2135  while ( !iter.pastEnd() ) {
2136    Table tab = iter.table();
2137    ArrayColumn<Float> specCol(tab, "SPECTRA");
2138    //ArrayColumn<Float> tsysCol(tout, "TSYS");
2139    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2140    Vector<Float> spec;
2141    Vector<uChar> flag;
2142    specCol.get(0,spec); // the number of channels should be constant per IF
2143    uInt nChanIn = spec.nelements();
2144    Vector<Float> xIn(nChanIn); indgen(xIn);
2145    Int fac =  Int(nChanIn/width);
2146    Vector<Float> xOut(fac+10); // 10 to be safe - resize later
2147    uInt k = 0;
2148    Float x = 0.0;
2149    while (x < Float(nChanIn) ) {
2150      xOut(k) = x;
2151      k++;
2152      x += width;
2153    }
2154    uInt nChanOut = k;
2155    xOut.resize(nChanOut, True);
2156    // process all rows for this IFNO
2157    Vector<Float> specOut;
2158    Vector<Bool> maskOut;
2159    Vector<uChar> flagOut;
2160    for (uInt i=0; i < tab.nrow(); ++i) {
2161      specCol.get(i, spec);
2162      flagCol.get(i, flag);
2163      Vector<Bool> mask(flag.nelements());
2164      convertArray(mask, flag);
2165
2166      IPosition shapeIn(spec.shape());
2167      //sh.nchan = nChanOut;
2168      InterpolateArray1D<Float,Float>::interpolate(specOut, maskOut, xOut,
2169                                                   xIn, spec, mask,
2170                                                   interpMethod, True, True);
2171      /// @todo do the same for channel based Tsys
2172      flagOut.resize(maskOut.nelements());
2173      convertArray(flagOut, maskOut);
2174      specCol.put(i, specOut);
2175      flagCol.put(i, flagOut);
2176    }
2177    ++iter;
2178  }
2179
2180  return out;
2181}
2182
2183STMath::imethod STMath::stringToIMethod(const std::string& in)
2184{
2185  static STMath::imap lookup;
2186
2187  // initialize the lookup table if necessary
2188  if ( lookup.empty() ) {
2189    lookup["nearest"]   = InterpolateArray1D<Double,Float>::nearestNeighbour;
2190    lookup["linear"] = InterpolateArray1D<Double,Float>::linear;
2191    lookup["cubic"]  = InterpolateArray1D<Double,Float>::cubic;
2192    lookup["spline"]  = InterpolateArray1D<Double,Float>::spline;
2193  }
2194
2195  STMath::imap::const_iterator iter = lookup.find(in);
2196
2197  if ( lookup.end() == iter ) {
2198    std::string message = in;
2199    message += " is not a valid interpolation mode";
2200    throw(AipsError(message));
2201  }
2202  return iter->second;
2203}
2204
2205WeightType STMath::stringToWeight(const std::string& in)
2206{
2207  static std::map<std::string, WeightType> lookup;
2208
2209  // initialize the lookup table if necessary
2210  if ( lookup.empty() ) {
2211    lookup["NONE"]   = asap::W_NONE;
2212    lookup["TINT"] = asap::W_TINT;
2213    lookup["TINTSYS"]  = asap::W_TINTSYS;
2214    lookup["TSYS"]  = asap::W_TSYS;
2215    lookup["VAR"]  = asap::W_VAR;
2216  }
2217
2218  std::map<std::string, WeightType>::const_iterator iter = lookup.find(in);
2219
2220  if ( lookup.end() == iter ) {
2221    std::string message = in;
2222    message += " is not a valid weighting mode";
2223    throw(AipsError(message));
2224  }
2225  return iter->second;
2226}
2227
2228CountedPtr< Scantable > STMath::gainElevation( const CountedPtr< Scantable >& in,
2229                                               const vector< float > & coeff,
2230                                               const std::string & filename,
2231                                               const std::string& method)
2232{
2233  LogIO os( LogOrigin( "STMath", "gainElevation", WHERE ) ) ;
2234  // Get elevation data from Scantable and convert to degrees
2235  CountedPtr< Scantable > out = getScantable(in, false);
2236  Table& tab = out->table();
2237  ROScalarColumn<Float> elev(tab, "ELEVATION");
2238  Vector<Float> x = elev.getColumn();
2239  x *= Float(180 / C::pi);                        // Degrees
2240
2241  Vector<Float> coeffs(coeff);
2242  const uInt nc = coeffs.nelements();
2243  if ( filename.length() > 0 && nc > 0 ) {
2244    throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
2245  }
2246
2247  // Correct
2248  if ( nc > 0 || filename.length() == 0 ) {
2249    // Find instrument
2250    Bool throwit = True;
2251    Instrument inst =
2252      STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2253                                throwit);
2254
2255    // Set polynomial
2256    Polynomial<Float>* ppoly = 0;
2257    Vector<Float> coeff;
2258    String msg;
2259    if ( nc > 0 ) {
2260      ppoly = new Polynomial<Float>(nc-1);
2261      coeff = coeffs;
2262      msg = String("user");
2263    } else {
2264      STAttr sdAttr;
2265      coeff = sdAttr.gainElevationPoly(inst);
2266      ppoly = new Polynomial<Float>(coeff.nelements()-1);
2267      msg = String("built in");
2268    }
2269
2270    if ( coeff.nelements() > 0 ) {
2271      ppoly->setCoefficients(coeff);
2272    } else {
2273      delete ppoly;
2274      throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
2275    }
2276    os << "Making polynomial correction with " << msg << " coefficients:" << endl;
2277    os << "   " <<  coeff << LogIO::POST;
2278    const uInt nrow = tab.nrow();
2279    Vector<Float> factor(nrow);
2280    for ( uInt i=0; i < nrow; ++i ) {
2281      factor[i] = 1.0 / (*ppoly)(x[i]);
2282    }
2283    delete ppoly;
2284    scaleByVector(tab, factor, true);
2285
2286  } else {
2287    // Read and correct
2288    os << "Making correction from ascii Table" << LogIO::POST;
2289    scaleFromAsciiTable(tab, filename, method, x, true);
2290  }
2291  return out;
2292}
2293
2294void STMath::scaleFromAsciiTable(Table& in, const std::string& filename,
2295                                 const std::string& method,
2296                                 const Vector<Float>& xout, bool dotsys)
2297{
2298
2299// Read gain-elevation ascii file data into a Table.
2300
2301  String formatString;
2302  Table tbl = readAsciiTable(formatString, Table::Memory, filename, "", "", False);
2303  scaleFromTable(in, tbl, method, xout, dotsys);
2304}
2305
2306void STMath::scaleFromTable(Table& in,
2307                            const Table& table,
2308                            const std::string& method,
2309                            const Vector<Float>& xout, bool dotsys)
2310{
2311
2312  ROScalarColumn<Float> geElCol(table, "ELEVATION");
2313  ROScalarColumn<Float> geFacCol(table, "FACTOR");
2314  Vector<Float> xin = geElCol.getColumn();
2315  Vector<Float> yin = geFacCol.getColumn();
2316  Vector<Bool> maskin(xin.nelements(),True);
2317
2318  // Interpolate (and extrapolate) with desired method
2319
2320  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2321
2322   Vector<Float> yout;
2323   Vector<Bool> maskout;
2324   InterpolateArray1D<Float,Float>::interpolate(yout, maskout, xout,
2325                                                xin, yin, maskin, interp,
2326                                                True, True);
2327
2328   scaleByVector(in, Float(1.0)/yout, dotsys);
2329}
2330
2331void STMath::scaleByVector( Table& in,
2332                            const Vector< Float >& factor,
2333                            bool dotsys )
2334{
2335  uInt nrow = in.nrow();
2336  if ( factor.nelements() != nrow ) {
2337    throw(AipsError("factors.nelements() != table.nelements()"));
2338  }
2339  ArrayColumn<Float> specCol(in, "SPECTRA");
2340  ArrayColumn<uChar> flagCol(in, "FLAGTRA");
2341  ArrayColumn<Float> tsysCol(in, "TSYS");
2342  for (uInt i=0; i < nrow; ++i) {
2343    MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2344    ma *= factor[i];
2345    specCol.put(i, ma.getArray());
2346    flagCol.put(i, flagsFromMA(ma));
2347    if ( dotsys ) {
2348      Vector<Float> tsys = tsysCol(i);
2349      tsys *= factor[i];
2350      tsysCol.put(i,tsys);
2351    }
2352  }
2353}
2354
2355CountedPtr< Scantable > STMath::convertFlux( const CountedPtr< Scantable >& in,
2356                                             float d, float etaap,
2357                                             float jyperk )
2358{
2359  LogIO os( LogOrigin( "STMath", "convertFlux", WHERE ) ) ;
2360
2361  CountedPtr< Scantable > out = getScantable(in, false);
2362  Table& tab = in->table();
2363  Table& outtab = out->table();
2364  Unit fluxUnit(tab.keywordSet().asString("FluxUnit"));
2365  Unit K(String("K"));
2366  Unit JY(String("Jy"));
2367
2368  bool tokelvin = true;
2369  Double cfac = 1.0;
2370
2371  if ( fluxUnit == JY ) {
2372    os << "Converting to K" << LogIO::POST;
2373    Quantum<Double> t(1.0,fluxUnit);
2374    Quantum<Double> t2 = t.get(JY);
2375    cfac = (t2 / t).getValue();               // value to Jy
2376
2377    tokelvin = true;
2378    out->setFluxUnit("K");
2379  } else if ( fluxUnit == K ) {
2380    os << "Converting to Jy" << LogIO::POST;
2381    Quantum<Double> t(1.0,fluxUnit);
2382    Quantum<Double> t2 = t.get(K);
2383    cfac = (t2 / t).getValue();              // value to K
2384
2385    tokelvin = false;
2386    out->setFluxUnit("Jy");
2387  } else {
2388    throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
2389  }
2390  // Make sure input values are converted to either Jy or K first...
2391  Float factor = cfac;
2392
2393  // Select method
2394  if (jyperk > 0.0) {
2395    factor *= jyperk;
2396    if ( tokelvin ) factor = 1.0 / jyperk;
2397    os << "Jy/K = " << jyperk << LogIO::POST;
2398    Vector<Float> factors(outtab.nrow(), factor);
2399    scaleByVector(outtab,factors, false);
2400  } else if ( etaap > 0.0) {
2401    if (d < 0) {
2402      Instrument inst =
2403        STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2404                                  True);
2405      STAttr sda;
2406      d = sda.diameter(inst);
2407    }
2408    jyperk = STAttr::findJyPerK(etaap, d);
2409    os << "Jy/K = " << jyperk << LogIO::POST;
2410    factor *= jyperk;
2411    if ( tokelvin ) {
2412      factor = 1.0 / factor;
2413    }
2414    Vector<Float> factors(outtab.nrow(), factor);
2415    scaleByVector(outtab, factors, False);
2416  } else {
2417
2418    // OK now we must deal with automatic look up of values.
2419    // We must also deal with the fact that the factors need
2420    // to be computed per IF and may be different and may
2421    // change per integration.
2422
2423    os <<"Looking up conversion factors" << LogIO::POST;
2424    convertBrightnessUnits(out, tokelvin, cfac);
2425  }
2426
2427  return out;
2428}
2429
2430void STMath::convertBrightnessUnits( CountedPtr<Scantable>& in,
2431                                     bool tokelvin, float cfac )
2432{
2433  Table& table = in->table();
2434  Instrument inst =
2435    STAttr::convertInstrument(table.keywordSet().asString("AntennaName"), True);
2436  TableIterator iter(table, "FREQ_ID");
2437  STFrequencies stfreqs = in->frequencies();
2438  STAttr sdAtt;
2439  while (!iter.pastEnd()) {
2440    Table tab = iter.table();
2441    ArrayColumn<Float> specCol(tab, "SPECTRA");
2442    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2443    ROScalarColumn<uInt> freqidCol(tab, "FREQ_ID");
2444    MEpoch::ROScalarColumn timeCol(tab, "TIME");
2445
2446    uInt freqid; freqidCol.get(0, freqid);
2447    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2448    // STAttr.JyPerK has a Vector interface... change sometime.
2449    Vector<Float> freqs(1,stfreqs.getRefFreq(freqid, tmpspec.nelements()));
2450    for ( uInt i=0; i<tab.nrow(); ++i) {
2451      Float jyperk = (sdAtt.JyPerK(inst, timeCol(i), freqs))[0];
2452      Float factor = cfac * jyperk;
2453      if ( tokelvin ) factor = Float(1.0) / factor;
2454      MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2455      ma *= factor;
2456      specCol.put(i, ma.getArray());
2457      flagCol.put(i, flagsFromMA(ma));
2458    }
2459  ++iter;
2460  }
2461}
2462
2463CountedPtr< Scantable > STMath::opacity( const CountedPtr< Scantable > & in,
2464                                         const std::vector<float>& tau )
2465{
2466  CountedPtr< Scantable > out = getScantable(in, false);
2467
2468  Table outtab = out->table();
2469
2470  const Int ntau = uInt(tau.size());
2471  std::vector<float>::const_iterator tauit = tau.begin();
2472  AlwaysAssert((ntau == 1 || ntau == in->nif() || ntau == in->nif() * in->npol()),
2473               AipsError);
2474  TableIterator iiter(outtab, "IFNO");
2475  while ( !iiter.pastEnd() ) {
2476    Table itab = iiter.table();
2477    TableIterator piter(itab, "POLNO");
2478    while ( !piter.pastEnd() ) {
2479      Table tab = piter.table();
2480      ROScalarColumn<Float> elev(tab, "ELEVATION");
2481      ArrayColumn<Float> specCol(tab, "SPECTRA");
2482      ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2483      ArrayColumn<Float> tsysCol(tab, "TSYS");
2484      for ( uInt i=0; i<tab.nrow(); ++i) {
2485        Float zdist = Float(C::pi_2) - elev(i);
2486        Float factor = exp(*tauit/cos(zdist));
2487        MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2488        ma *= factor;
2489        specCol.put(i, ma.getArray());
2490        flagCol.put(i, flagsFromMA(ma));
2491        Vector<Float> tsys;
2492        tsysCol.get(i, tsys);
2493        tsys *= factor;
2494        tsysCol.put(i, tsys);
2495      }
2496      if (ntau == in->nif()*in->npol() ) {
2497        tauit++;
2498      }
2499      piter++;
2500    }
2501    if (ntau >= in->nif() ) {
2502      tauit++;
2503    }
2504    iiter++;
2505  }
2506  return out;
2507}
2508
2509CountedPtr< Scantable > STMath::smoothOther( const CountedPtr< Scantable >& in,
2510                                             const std::string& kernel,
2511                                             float width, int order)
2512{
2513  CountedPtr< Scantable > out = getScantable(in, false);
2514  Table table = out->table();
2515
2516  TableIterator iter(table, "IFNO");
2517  while (!iter.pastEnd()) {
2518    Table tab = iter.table();
2519    ArrayColumn<Float> specCol(tab, "SPECTRA");
2520    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2521    ScalarColumn<uInt> flagrowCol(tab, "FLAGROW");
2522    Vector<Float> spec;
2523    Vector<uChar> flag;
2524    Vector<uInt> flagrow = flagrowCol.getColumn();
2525    for (uInt i = 0; i < tab.nrow(); ++i) {
2526      if (flagrow[i] != 0) {
2527        // do not process flagged row
2528        continue;
2529      }
2530      specCol.get(i, spec);
2531      flagCol.get(i, flag);
2532      Vector<Bool> mask(flag.nelements());
2533      convertArray(mask, flag);
2534      Vector<Float> specout;
2535      Vector<Bool> maskout;
2536      if (kernel == "hanning") {
2537        mathutil::hanning(specout, maskout, spec, !mask);
2538      } else if (kernel == "rmedian") {
2539        mathutil::runningMedian(specout, maskout, spec , mask, width);
2540      } else if (kernel == "poly") {
2541        mathutil::polyfit(specout, maskout, spec, !mask, width, order);
2542      }
2543
2544      for (uInt j = 0; j < flag.nelements(); ++j) {
2545        uChar userFlag = 1 << 7;
2546        if (maskout[j]==True) userFlag = 0 << 7;
2547        flag(j) = userFlag;
2548      }
2549
2550      flagCol.put(i, flag);
2551      specCol.put(i, specout);
2552    }
2553  ++iter;
2554  }
2555  return out;
2556}
2557
2558CountedPtr< Scantable > STMath::smooth( const CountedPtr< Scantable >& in,
2559                                        const std::string& kernel, float width,
2560                                        int order)
2561{
2562  if (kernel == "rmedian"  || kernel == "hanning" || kernel == "poly") {
2563    return smoothOther(in, kernel, width, order);
2564  }
2565  CountedPtr< Scantable > out = getScantable(in, false);
2566  Table& table = out->table();
2567  VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernel);
2568  // same IFNO should have same no of channels
2569  // this saves overhead
2570  TableIterator iter(table, "IFNO");
2571  while (!iter.pastEnd()) {
2572    Table tab = iter.table();
2573    ArrayColumn<Float> specCol(tab, "SPECTRA");
2574    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2575    ScalarColumn<uInt> flagrowCol(tab, "FLAGROW");
2576    Vector<Float> spec = specCol( 0 );
2577    uInt nchan = spec.nelements();
2578    Vector<Float> kvec = VectorKernel::make(type, width, nchan, True, False);
2579    Convolver<Float> conv(kvec, IPosition(1,nchan));
2580    Vector<uChar> flag;
2581    Vector<Bool> mask(nchan);
2582    Vector<uInt> flagrow = flagrowCol.getColumn();
2583    for ( uInt i=0; i<tab.nrow(); ++i) {
2584      if (flagrow[i] != 0) {
2585        // do not process flagged row
2586        continue;
2587      }
2588     
2589      specCol.get(i, spec);
2590      flagCol.get(i, flag);
2591      convertArray(mask, flag);
2592      Vector<Float> specout;
2593      //mathutil::replaceMaskByZero(specout, mask);
2594      mathutil::replaceMaskByZero(spec, !mask);
2595      //std::vector<bool> vmask;
2596      //(!mask).tovector(vmask);
2597      //mathutil::doZeroOrderInterpolation(spec, vmask);
2598      conv.linearConv(specout, spec);
2599      specCol.put(i, specout);
2600    }
2601    ++iter;
2602  }
2603  return out;
2604}
2605
2606CountedPtr< Scantable >
2607STMath::merge( const std::vector< CountedPtr < Scantable > >& in,
2608               const std::string &freqTol )
2609{
2610  Double freqTolInHz = 0.0; // default is 0.0Hz (merge only when exact match)
2611  if (freqTol.size() > 0) {
2612    Quantum<Double> freqTolInQuantity;
2613    if (!Quantum<Double>::read(freqTolInQuantity, freqTol)) {
2614      throw(AipsError("Failed to convert freqTol string to quantity"));
2615    }
2616    if (!freqTolInQuantity.isConform("Hz")) {
2617      throw(AipsError("Invalid freqTol string"));
2618    }
2619    freqTolInHz = freqTolInQuantity.getValue("Hz");
2620    LogIO os(LogOrigin("STMath", "merge", WHERE));
2621    os << "frequency tolerance = " << freqTolInHz << "Hz" << LogIO::POST;
2622  }
2623 
2624  if ( in.size() < 2 ) {
2625    throw(AipsError("Need at least two scantables to perform a merge."));
2626  }
2627  std::vector<CountedPtr < Scantable > >::const_iterator it = in.begin();
2628  bool insitu = insitu_;
2629  setInsitu(false);
2630  CountedPtr< Scantable > out = getScantable(*it, false);
2631  setInsitu(insitu);
2632  Table& tout = out->table();
2633  ScalarColumn<uInt> freqidcol(tout,"FREQ_ID"), molidcol(tout, "MOLECULE_ID");
2634  ScalarColumn<uInt> scannocol(tout,"SCANNO"), focusidcol(tout,"FOCUS_ID");
2635  ScalarColumn<uInt> ifnocol(tout, "IFNO");
2636  // Renumber SCANNO to be 0-based
2637  Vector<uInt> scannos = scannocol.getColumn();
2638  uInt offset = min(scannos);
2639  scannos -= offset;
2640  scannocol.putColumn(scannos);
2641  uInt newscanno = max(scannos)+1;
2642  ++it;
2643
2644  // new IFNO
2645  uInt ifnoCounter = max(ifnocol.getColumn()) + 1;
2646 
2647  // Here we assume that each IFNO has unique MOLECULE_ID
2648  // molIdMap:
2649  //    KEY: IFNO
2650  //    VALUE: MOLECULE_ID
2651  map<uInt, uInt> molIdMap;
2652  {
2653    TableIterator ifit(tout, "IFNO");
2654    while (!ifit.pastEnd()) {
2655      ROTableRow row(ifit.table());
2656      const TableRecord& rec = row.get(0);
2657      molIdMap[rec.asuInt("IFNO")] = rec.asuInt("MOLECULE_ID");
2658      ifit.next();
2659    }
2660  }
2661 
2662  while ( it != in.end() ){
2663    // Check FREQUENCIES/BASEFRAME
2664    if ( out->frequencies().getFrame(true) != (*it)->frequencies().getFrame(true) ) {
2665      throw(AipsError("BASEFRAME is not identical"));
2666    }
2667   
2668    if ( ! (*it)->conformant(*out) ) {
2669      // non conformant.
2670      LogIO os( LogOrigin( "STMath", "merge()", WHERE ) ) ;
2671      os << LogIO::SEVERE << "Can't merge scantables as header informations (any one of AntennaName, Equinox, and FluxUnit) differ." << LogIO::EXCEPTION ;
2672    }
2673    out->appendToHistoryTable((*it)->history());
2674    const Table& tab = (*it)->table();
2675
2676    Block<String> cols(3);
2677    cols[0] = String("FREQ_ID");
2678    cols[1] = String("MOLECULE_ID");
2679    cols[2] = String("FOCUS_ID");
2680   
2681    TableIterator scanit(tab, "SCANNO");
2682    while (!scanit.pastEnd()) {
2683      TableIterator subit(scanit.table(), cols);
2684      while ( !subit.pastEnd() ) {
2685        uInt nrow = tout.nrow();
2686        Table thetab = subit.table();
2687        ROTableRow row(thetab);
2688        Vector<uInt> thecolvals(thetab.nrow());
2689        // The selected subset of table should have
2690        // the equal FREQ_ID, MOLECULE_ID, and FOCUS_ID values.
2691        const TableRecord& rec = row.get(0);
2692
2693        // Set the proper FREQ_ID
2694        Double rv,rp,inc;
2695        (*it)->frequencies().getEntry(rp, rv, inc, rec.asuInt("FREQ_ID"));
2696        uInt id;
2697       
2698        // default value is new unique IFNO
2699        uInt newifno = ifnoCounter;
2700        Bool isIfMerged = False;
2701        uInt nchan = rec.asArrayFloat("SPECTRA").shape()[0];
2702        //id = out->frequencies().addEntry(rp, rv, inc);
2703        if ( !out->frequencies().match(rp, rv, inc, freqTolInHz, id) ) {
2704          // add new entry to FREQUENCIES table
2705          id = out->frequencies().addEntry(rp, rv, inc);
2706
2707          // increment counter for IFNO
2708          ifnoCounter++;
2709        }
2710        else {
2711          // should renumber IFNO to be same as existing rows that have same FREQ_ID
2712          LogIO os(LogOrigin("STMath", "merge", WHERE));
2713          Table outFreqIdSelected = tout(tout.col("FREQ_ID") == id);
2714          TableIterator _iter(outFreqIdSelected, "IFNO");
2715          map<uInt, uInt> nchanMap;
2716          while (!_iter.pastEnd()) {
2717            const Table _table = _iter.table();
2718            ROTableRow _row(_table);
2719            const TableRecord &_rec = _row.get(0);
2720            uInt nchan = _rec.asArrayFloat("SPECTRA").shape()[0];
2721            if (nchanMap.find(nchan) != nchanMap.end()) {
2722              throw(AipsError("There are non-unique IFNOs assigned to spectra that have same FREQ_ID and same nchan. Something wrong."));
2723            }
2724            nchanMap[nchan] = _rec.asuInt("IFNO");
2725            _iter.next();
2726          }
2727
2728          os << LogIO::DEBUGGING << "nchanMap for " << id << ":" << LogIO::POST;
2729          for (map<uInt, uInt>::iterator i = nchanMap.begin(); i != nchanMap.end(); ++i) {
2730            os << LogIO::DEBUGGING << "nchanMap[" << i->first << "] = " << i->second << LogIO::POST;
2731          }
2732
2733          if (nchanMap.find(nchan) == nchanMap.end()) {
2734            // increment counter for IFNO
2735            ifnoCounter++;
2736          }
2737          else {
2738            // renumber IFNO to be same as existing value that corresponds to nchan
2739            newifno = nchanMap[nchan];
2740            isIfMerged = True;
2741          }
2742          os << LogIO::DEBUGGING << "newifno = " << newifno << LogIO::POST;
2743        }
2744        // copy rows to output table
2745        tout.addRow(thetab.nrow());
2746        TableCopy::copyRows(tout, thetab, nrow, 0, thetab.nrow());
2747
2748        Slicer slice(IPosition(1, nrow), IPosition(1, thetab.nrow()),
2749                     Slicer::endIsLength);
2750
2751        thecolvals = id;
2752        freqidcol.putColumnRange(slice, thecolvals);
2753
2754        thecolvals = newifno;
2755        ifnocol.putColumnRange(slice, thecolvals);
2756       
2757        // Set the proper MOLECULE_ID
2758        Vector<String> name,fname;Vector<Double> rf;
2759        (*it)->molecules().getEntry(rf, name, fname, rec.asuInt("MOLECULE_ID"));
2760        id = out->molecules().addEntry(rf, name, fname);
2761        if (molIdMap.find(newifno) == molIdMap.end()) {
2762          // add new entry to molIdMap
2763          molIdMap[newifno] = id;
2764        }
2765        if (isIfMerged) {
2766          id = molIdMap[newifno];
2767        }
2768        thecolvals = id;
2769        molidcol.putColumnRange(slice, thecolvals);
2770       
2771        // Set the proper FOCUS_ID
2772        Float fpa,frot,fax,ftan,fhand,fmount,fuser, fxy, fxyp;
2773        (*it)->focus().getEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2774                                fxy, fxyp, rec.asuInt("FOCUS_ID"));
2775        id = out->focus().addEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2776                                   fxy, fxyp);
2777        thecolvals = id;
2778        focusidcol.putColumnRange(slice, thecolvals);
2779
2780        // Set the proper SCANNO
2781        thecolvals = newscanno;
2782        scannocol.putColumnRange(slice, thecolvals);
2783
2784        ++subit;
2785      }
2786      ++newscanno;
2787      ++scanit;
2788    }
2789    ++it;
2790  }
2791  return out;
2792}
2793
2794CountedPtr< Scantable >
2795  STMath::invertPhase( const CountedPtr < Scantable >& in )
2796{
2797  return applyToPol(in, &STPol::invertPhase, Float(0.0));
2798}
2799
2800CountedPtr< Scantable >
2801  STMath::rotateXYPhase( const CountedPtr < Scantable >& in, float phase )
2802{
2803   return applyToPol(in, &STPol::rotatePhase, Float(phase));
2804}
2805
2806CountedPtr< Scantable >
2807  STMath::rotateLinPolPhase( const CountedPtr < Scantable >& in, float phase )
2808{
2809  return applyToPol(in, &STPol::rotateLinPolPhase, Float(phase));
2810}
2811
2812CountedPtr< Scantable > STMath::applyToPol( const CountedPtr<Scantable>& in,
2813                                             STPol::polOperation fptr,
2814                                             Float phase )
2815{
2816  CountedPtr< Scantable > out = getScantable(in, false);
2817  Table& tout = out->table();
2818  Block<String> cols(4);
2819  cols[0] = String("SCANNO");
2820  cols[1] = String("BEAMNO");
2821  cols[2] = String("IFNO");
2822  cols[3] = String("CYCLENO");
2823  TableIterator iter(tout, cols);
2824  CountedPtr<STPol> stpol = STPol::getPolClass(out->factories_,
2825                                               out->getPolType() );
2826  while (!iter.pastEnd()) {
2827    Table t = iter.table();
2828    ArrayColumn<Float> speccol(t, "SPECTRA");
2829    ScalarColumn<uInt> focidcol(t, "FOCUS_ID");
2830    Matrix<Float> pols(speccol.getColumn());
2831    try {
2832      stpol->setSpectra(pols);
2833      Float fang,fhand;
2834      fang = in->focusTable_.getTotalAngle(focidcol(0));
2835      fhand = in->focusTable_.getFeedHand(focidcol(0));
2836      stpol->setPhaseCorrections(fang, fhand);
2837      // use a member function pointer in STPol.  This only works on
2838      // the STPol pointer itself, not the Counted Pointer so
2839      // derefernce it.
2840      (&(*(stpol))->*fptr)(phase);
2841      speccol.putColumn(stpol->getSpectra());
2842    } catch (AipsError& e) {
2843      //delete stpol;stpol=0;
2844      throw(e);
2845    }
2846    ++iter;
2847  }
2848  //delete stpol;stpol=0;
2849  return out;
2850}
2851
2852CountedPtr< Scantable >
2853  STMath::swapPolarisations( const CountedPtr< Scantable > & in )
2854{
2855  CountedPtr< Scantable > out = getScantable(in, false);
2856  Table& tout = out->table();
2857  Table t0 = tout(tout.col("POLNO") == 0);
2858  Table t1 = tout(tout.col("POLNO") == 1);
2859  if ( t0.nrow() != t1.nrow() )
2860    throw(AipsError("Inconsistent number of polarisations"));
2861  ArrayColumn<Float> speccol0(t0, "SPECTRA");
2862  ArrayColumn<uChar> flagcol0(t0, "FLAGTRA");
2863  ArrayColumn<Float> speccol1(t1, "SPECTRA");
2864  ArrayColumn<uChar> flagcol1(t1, "FLAGTRA");
2865  Matrix<Float> s0 = speccol0.getColumn();
2866  Matrix<uChar> f0 = flagcol0.getColumn();
2867  speccol0.putColumn(speccol1.getColumn());
2868  flagcol0.putColumn(flagcol1.getColumn());
2869  speccol1.putColumn(s0);
2870  flagcol1.putColumn(f0);
2871  return out;
2872}
2873
2874CountedPtr< Scantable >
2875  STMath::averagePolarisations( const CountedPtr< Scantable > & in,
2876                                const std::vector<bool>& mask,
2877                                const std::string& weight )
2878{
2879  if (in->npol() < 2 )
2880    throw(AipsError("averagePolarisations can only be applied to two or more"
2881                    "polarisations"));
2882  bool insitu = insitu_;
2883  setInsitu(false);
2884  CountedPtr< Scantable > pols = getScantable(in, true);
2885  setInsitu(insitu);
2886  Table& tout = pols->table();
2887  std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
2888  Table tab = tableCommand(taql, in->table());
2889  if (tab.nrow() == 0 )
2890    throw(AipsError("Could not find  any rows with POLNO==0 and POLNO==1"));
2891  TableCopy::copyRows(tout, tab);
2892  TableVector<uInt> vec(tout, "POLNO");
2893  vec = 0;
2894  pols->table_.rwKeywordSet().define("nPol", Int(1));
2895  pols->table_.rwKeywordSet().define("POLTYPE", String("stokes"));
2896  //pols->table_.rwKeywordSet().define("POLTYPE", in->getPolType());
2897  std::vector<CountedPtr<Scantable> > vpols;
2898  vpols.push_back(pols);
2899  CountedPtr< Scantable > out = average(vpols, mask, weight, "SCAN");
2900  return out;
2901}
2902
2903CountedPtr< Scantable >
2904  STMath::averageBeams( const CountedPtr< Scantable > & in,
2905                        const std::vector<bool>& mask,
2906                        const std::string& weight )
2907{
2908  bool insitu = insitu_;
2909  setInsitu(false);
2910  CountedPtr< Scantable > beams = getScantable(in, false);
2911  setInsitu(insitu);
2912  Table& tout = beams->table();
2913  // give all rows the same BEAMNO
2914  TableVector<uInt> vec(tout, "BEAMNO");
2915  vec = 0;
2916  beams->table_.rwKeywordSet().define("nBeam", Int(1));
2917  std::vector<CountedPtr<Scantable> > vbeams;
2918  vbeams.push_back(beams);
2919  CountedPtr< Scantable > out = average(vbeams, mask, weight, "SCAN");
2920  return out;
2921}
2922
2923
2924CountedPtr< Scantable >
2925  asap::STMath::frequencyAlign( const CountedPtr< Scantable > & in,
2926                                const std::string & refTime,
2927                                const std::string & method)
2928{
2929  LogIO os( casa::LogOrigin("STMath", "frequencyAlign()", WHERE));
2930  // clone as this is not working insitu
2931  bool insitu = insitu_;
2932  setInsitu(false);
2933  CountedPtr< Scantable > out = getScantable(in, false);
2934  setInsitu(insitu);
2935  Table& tout = out->table();
2936  // Get reference Epoch to time of first row or given String
2937  Unit DAY(String("d"));
2938  MEpoch::Ref epochRef(in->getTimeReference());
2939  MEpoch refEpoch;
2940  if (refTime.length()>0) {
2941    Quantum<Double> qt;
2942    if (MVTime::read(qt,refTime)) {
2943      MVEpoch mv(qt);
2944      refEpoch = MEpoch(mv, epochRef);
2945   } else {
2946      throw(AipsError("Invalid format for Epoch string"));
2947   }
2948  } else {
2949    refEpoch = in->timeCol_(0);
2950  }
2951  MPosition refPos = in->getAntennaPosition();
2952
2953  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2954  /*
2955  // Comment from MV.
2956  // the following code has been commented out because different FREQ_IDs have to be aligned together even
2957  // if the frame doesn't change. So far, lack of this check didn't cause any problems.
2958  // test if user frame is different to base frame
2959  if ( in->frequencies().getFrameString(true)
2960       == in->frequencies().getFrameString(false) ) {
2961    throw(AipsError("Can't convert as no output frame has been set"
2962                    " (use set_freqframe) or it is aligned already."));
2963  }
2964  */
2965  MFrequency::Types system = in->frequencies().getFrame();
2966  MVTime mvt(refEpoch.getValue());
2967  String epochout = mvt.string(MVTime::YMD) + String(" (") + refEpoch.getRefString() + String(")");
2968  os << "Aligning at reference Epoch " << epochout
2969     << " in frame " << MFrequency::showType(system) << LogIO::POST;
2970  // set up the iterator
2971  Block<String> cols(4);
2972  // select by constant direction
2973  cols[0] = String("SRCNAME");
2974  cols[1] = String("BEAMNO");
2975  // select by IF ( no of channels varies over this )
2976  cols[2] = String("IFNO");
2977  // select by restfrequency
2978  cols[3] = String("MOLECULE_ID");
2979  TableIterator iter(tout, cols);
2980  while ( !iter.pastEnd() ) {
2981    Table t = iter.table();
2982    ROScalarColumn<String> snCol(t, "SRCNAME");
2983    os << "Aligning to position of source '" << snCol(0) << "'" << LogIO::POST;
2984    MDirection::ROScalarColumn dirCol(t, "DIRECTION");
2985    TableIterator fiter(t, "FREQ_ID");
2986    // determine nchan from the first row. This should work as
2987    // we are iterating over BEAMNO and IFNO   
2988    // we should have constant direction
2989
2990    ROArrayColumn<Float> sCol(t, "SPECTRA");
2991    const MDirection direction = dirCol(0);
2992    const uInt nchan = sCol(0).nelements();
2993
2994    // skip operations if there is nothing to align
2995    if (fiter.pastEnd()) {
2996        continue;
2997    }
2998
2999    Table ftab = fiter.table();
3000    // align all frequency ids with respect to the first encountered id
3001    ScalarColumn<uInt> freqidCol(ftab, "FREQ_ID");
3002    // get the SpectralCoordinate for the freqid, which we are iterating over
3003    SpectralCoordinate sC = \
3004      in->frequencies().getSpectralCoordinate(freqidCol(0));
3005    FrequencyAligner<Float> fa( sC, nchan, refEpoch,
3006                                direction, refPos, system );
3007    // realign the SpectralCoordinate and put into the output Scantable
3008    Vector<String> units(1);
3009    units = String("Hz");
3010    Bool linear=True;
3011    SpectralCoordinate sc2 = fa.alignedSpectralCoordinate(linear);
3012    sc2.setWorldAxisUnits(units);
3013    const uInt id = out->frequencies().addEntry(sc2.referencePixel()[0],
3014                                                sc2.referenceValue()[0],
3015                                                sc2.increment()[0]);
3016    while ( !fiter.pastEnd() ) {
3017     
3018      ftab = fiter.table();
3019      // spectral coordinate for the current FREQ_ID
3020      ScalarColumn<uInt> freqidCol2(ftab, "FREQ_ID");
3021      sC = in->frequencies().getSpectralCoordinate(freqidCol2(0));
3022      // create the "global" abcissa for alignment with same FREQ_ID
3023      Vector<Double> abc(nchan);
3024      for (uInt i=0; i<nchan; i++) {
3025           Double w;
3026           sC.toWorld(w,Double(i));
3027           abc[i] = w;
3028      }
3029      TableVector<uInt> tvec(ftab, "FREQ_ID");
3030      // assign new frequency id to all rows
3031      tvec = id;
3032      // cache abcissa for same time stamps, so iterate over those
3033      TableIterator timeiter(ftab, "TIME");
3034      while ( !timeiter.pastEnd() ) {
3035        Table tab = timeiter.table();
3036        ArrayColumn<Float> specCol(tab, "SPECTRA");
3037        ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
3038        MEpoch::ROScalarColumn timeCol(tab, "TIME");
3039        // use align abcissa cache after the first row
3040        // these rows should be just be POLNO
3041        bool first = true;
3042        for (int i=0; i<int(tab.nrow()); ++i) {
3043          // input values
3044          Vector<uChar> flag = flagCol(i);
3045          Vector<Bool> mask(flag.shape());
3046          Vector<Float> specOut, spec;
3047          spec  = specCol(i);
3048          Vector<Bool> maskOut;Vector<uChar> flagOut;
3049          convertArray(mask, flag);
3050          // alignment
3051          Bool ok = fa.align(specOut, maskOut, abc, spec,
3052                             mask, timeCol(i), !first,
3053                             interp, False);
3054          (void) ok; // unused stop compiler nagging
3055          // back into scantable
3056          flagOut.resize(maskOut.nelements());
3057          convertArray(flagOut, maskOut);
3058          flagCol.put(i, flagOut);
3059          specCol.put(i, specOut);
3060          // start abcissa caching
3061          first = false;
3062        }
3063        // next timestamp
3064        ++timeiter;
3065      }
3066      // next FREQ_ID
3067      ++fiter;
3068    }
3069    // next aligner
3070    ++iter;
3071  }
3072  // set this afterwards to ensure we are doing insitu correctly.
3073  out->frequencies().setFrame(system, true);
3074  return out;
3075}
3076
3077CountedPtr<Scantable>
3078  asap::STMath::convertPolarisation( const CountedPtr<Scantable>& in,
3079                                     const std::string & newtype )
3080{
3081  if (in->npol() != 2 && in->npol() != 4)
3082    throw(AipsError("Can only convert two or four polarisations."));
3083  if ( in->getPolType() == newtype )
3084    throw(AipsError("No need to convert."));
3085  if ( ! in->selector_.empty() )
3086    throw(AipsError("Can only convert whole scantable. Unset the selection."));
3087  bool insitu = insitu_;
3088  setInsitu(false);
3089  CountedPtr< Scantable > out = getScantable(in, true);
3090  setInsitu(insitu);
3091  Table& tout = out->table();
3092  tout.rwKeywordSet().define("POLTYPE", String(newtype));
3093
3094  Block<String> cols(4);
3095  cols[0] = "SCANNO";
3096  cols[1] = "CYCLENO";
3097  cols[2] = "BEAMNO";
3098  cols[3] = "IFNO";
3099  TableIterator it(in->originalTable_, cols);
3100  String basetype = in->getPolType();
3101  STPol* stpol = STPol::getPolClass(in->factories_, basetype);
3102  try {
3103    while ( !it.pastEnd() ) {
3104      Table tab = it.table();
3105      uInt row = tab.rowNumbers()[0];
3106      stpol->setSpectra(in->getPolMatrix(row));
3107      Float fang,fhand;
3108      fang = in->focusTable_.getTotalAngle(in->mfocusidCol_(row));
3109      fhand = in->focusTable_.getFeedHand(in->mfocusidCol_(row));
3110      stpol->setPhaseCorrections(fang, fhand);
3111      Int npolout = 0;
3112      for (uInt i=0; i<tab.nrow(); ++i) {
3113        Vector<Float> outvec = stpol->getSpectrum(i, newtype);
3114        if ( outvec.nelements() > 0 ) {
3115          tout.addRow();
3116          TableCopy::copyRows(tout, tab, tout.nrow()-1, 0, 1);
3117          ArrayColumn<Float> sCol(tout,"SPECTRA");
3118          ScalarColumn<uInt> pCol(tout,"POLNO");
3119          sCol.put(tout.nrow()-1 ,outvec);
3120          pCol.put(tout.nrow()-1 ,uInt(npolout));
3121          npolout++;
3122       }
3123      }
3124      tout.rwKeywordSet().define("nPol", npolout);
3125      ++it;
3126    }
3127  } catch (AipsError& e) {
3128    delete stpol;
3129    throw(e);
3130  }
3131  delete stpol;
3132  return out;
3133}
3134
3135CountedPtr< Scantable >
3136  asap::STMath::mxExtract( const CountedPtr< Scantable > & in,
3137                           const std::string & scantype )
3138{
3139  bool insitu = insitu_;
3140  setInsitu(false);
3141  CountedPtr< Scantable > out = getScantable(in, true);
3142  setInsitu(insitu);
3143  Table& tout = out->table();
3144  std::string taql = "SELECT FROM $1 WHERE BEAMNO != REFBEAMNO";
3145  if (scantype == "on") {
3146    taql = "SELECT FROM $1 WHERE BEAMNO == REFBEAMNO";
3147  }
3148  Table tab = tableCommand(taql, in->table());
3149  TableCopy::copyRows(tout, tab);
3150  if (scantype == "on") {
3151    // re-index SCANNO to 0
3152    TableVector<uInt> vec(tout, "SCANNO");
3153    vec = 0;
3154  }
3155  return out;
3156}
3157
3158std::vector<float>
3159  asap::STMath::fft( const casa::CountedPtr< Scantable > & in,
3160                     const std::vector<int>& whichrow,
3161                     bool getRealImag )
3162{
3163  std::vector<float> res;
3164  Table tab = in->table();
3165  std::vector<bool> mask;
3166
3167  if (whichrow.size() < 1) {          // for all rows (by default)
3168    int nrow = int(tab.nrow());
3169    for (int i = 0; i < nrow; ++i) {
3170      res = in->execFFT(i, mask, getRealImag);
3171    }
3172  } else {                           // for specified rows
3173    for (uInt i = 0; i < whichrow.size(); ++i) {
3174      res = in->execFFT(i, mask, getRealImag);
3175    }
3176  }
3177
3178  return res;
3179}
3180
3181
3182CountedPtr<Scantable>
3183  asap::STMath::lagFlag( const CountedPtr<Scantable>& in,
3184                         double start, double end,
3185                         const std::string& mode )
3186{
3187  CountedPtr<Scantable> out = getScantable(in, false);
3188  Table& tout = out->table();
3189  TableIterator iter(tout, "FREQ_ID");
3190  FFTServer<Float,Complex> ffts;
3191
3192  while ( !iter.pastEnd() ) {
3193    Table tab = iter.table();
3194    Double rp,rv,inc;
3195    ROTableRow row(tab);
3196    const TableRecord& rec = row.get(0);
3197    uInt freqid = rec.asuInt("FREQ_ID");
3198    out->frequencies().getEntry(rp, rv, inc, freqid);
3199    ArrayColumn<Float> specCol(tab, "SPECTRA");
3200    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
3201
3202    for (int i=0; i<int(tab.nrow()); ++i) {
3203      Vector<Float> spec = specCol(i);
3204      Vector<uChar> flag = flagCol(i);
3205      std::vector<bool> mask;
3206      for (uInt j = 0; j < flag.nelements(); ++j) {
3207        mask.push_back(!(flag[j]>0));
3208      }
3209      mathutil::doZeroOrderInterpolation(spec, mask);
3210
3211      Vector<Complex> lags;
3212      ffts.fft0(lags, spec);
3213
3214      Int lag0(start+0.5);
3215      Int lag1(end+0.5);
3216      if (mode == "frequency") {
3217        lag0 = Int(spec.nelements()*abs(inc)/(start)+0.5);
3218        lag1 = Int(spec.nelements()*abs(inc)/(end)+0.5);
3219      }
3220      Int lstart =  max(0, lag0);
3221      Int lend   =  min(Int(lags.nelements()-1), lag1);
3222      if (lstart == lend) {
3223        lags[lstart] = Complex(0.0);
3224      } else {
3225        if (lstart > lend) {
3226          Int tmp = lend;
3227          lend = lstart;
3228          lstart = tmp;
3229        }
3230        for (int j=lstart; j <=lend ;++j) {
3231          lags[j] = Complex(0.0);
3232        }
3233      }
3234
3235      ffts.fft0(spec, lags);
3236
3237      specCol.put(i, spec);
3238    }
3239    ++iter;
3240  }
3241  return out;
3242}
3243
3244// Averaging spectra with different channel/resolution
3245CountedPtr<Scantable>
3246STMath::new_average( const std::vector<CountedPtr<Scantable> >& in,
3247                     const bool& compel,
3248                     const std::vector<bool>& mask,
3249                     const std::string& weight,
3250                     const std::string& avmode )
3251  throw ( casa::AipsError )
3252{
3253  LogIO os( LogOrigin( "STMath", "new_average()", WHERE ) ) ;
3254  if ( avmode == "SCAN" && in.size() != 1 )
3255    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
3256                    "Use merge first."));
3257 
3258  CountedPtr<Scantable> out ;     // processed result
3259  if ( compel ) {
3260    std::vector< CountedPtr<Scantable> > newin ; // input for average process
3261    uInt insize = in.size() ;    // number of input scantables
3262
3263    // setup newin
3264    bool oldInsitu = insitu_ ;
3265    setInsitu( false ) ;
3266    newin.resize( insize ) ;
3267    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3268      newin[itable] = getScantable( in[itable], false ) ;
3269    }
3270    setInsitu( oldInsitu ) ;
3271
3272    // warning
3273    os << "Average spectra with different spectral resolution" << LogIO::POST ;
3274
3275    // temporarily set coordinfo
3276    vector<string> oldinfo( insize ) ;
3277    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3278      vector<string> coordinfo = in[itable]->getCoordInfo() ;
3279      oldinfo[itable] = coordinfo[0] ;
3280      coordinfo[0] = "Hz" ;
3281      newin[itable]->setCoordInfo( coordinfo ) ;
3282    }
3283
3284    ostringstream oss ;
3285
3286    // check IF frequency coverage
3287    // freqid: list of FREQ_ID, which is used, in each table 
3288    // iffreq: list of minimum and maximum frequency for each FREQ_ID in
3289    //         each table
3290    // freqid[insize][numIF]
3291    // freqid: [[id00, id01, ...],
3292    //          [id10, id11, ...],
3293    //          ...
3294    //          [idn0, idn1, ...]]
3295    // iffreq[insize][numIF*2]
3296    // iffreq: [[min_id00, max_id00, min_id01, max_id01, ...],
3297    //          [min_id10, max_id10, min_id11, max_id11, ...],
3298    //          ...
3299    //          [min_idn0, max_idn0, min_idn1, max_idn1, ...]]
3300    //os << "Check IF settings in each table" << LogIO::POST ;
3301    vector< vector<uInt> > freqid( insize );
3302    vector< vector<double> > iffreq( insize ) ;
3303    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3304      Vector<uInt> freqIds = newin[itable]->mfreqidCol_.getColumn() ;
3305      vector<uInt> uniqueFreqId = newin[itable]->getNumbers(newin[itable]->mfreqidCol_) ;
3306      for ( vector<uInt>::iterator i = uniqueFreqId.begin() ;
3307            i != uniqueFreqId.end() ; i++ ) {
3308        //os << "itable = " << itable << ": IF " << id << " is included in the list" << LogIO::POST ;
3309        uInt target = 0 ;
3310        while ( freqIds[target] != *i )
3311          target++ ;
3312        vector<double> abcissa = newin[itable]->getAbcissa( target ) ;
3313        freqid[itable].push_back( *i ) ;
3314        double incr = abs( abcissa[1] - abcissa[0] ) ;
3315        iffreq[itable].push_back( (*min_element(abcissa.begin(),abcissa.end()))-0.5*incr ) ;
3316        iffreq[itable].push_back( (*max_element(abcissa.begin(),abcissa.end()))+0.5*incr ) ;
3317      }
3318    }
3319
3320    // debug
3321//     os << "IF settings summary:" << endl ;
3322//     for ( uInt i = 0 ; i < freqid.size() ; i++ ) {
3323//       os << "   Table" << i << endl ;
3324//       for ( uInt j = 0 ; j < freqid[i].size() ; j++ ) {
3325//         os << "      id = " << freqid[i][j] << " (min,max) = (" << iffreq[i][2*j] << "," << iffreq[i][2*j+1] << ")" << endl ;
3326//       }
3327//     }
3328//     os << endl ;
3329//     os.post() ;
3330
3331    // IF grouping based on their frequency coverage
3332    // ifgrp: number of member in each IF group
3333    // ifgrp[numgrp]
3334    // ifgrp: [n0, n1, ...]
3335    //os << "IF grouping based on their frequency coverage" << LogIO::POST ;
3336
3337    // parameter for IF grouping
3338    // groupmode = OR    retrieve all region
3339    //             AND   only retrieve overlaped region
3340    //string groupmode = "AND" ;
3341    string groupmode = "OR" ;
3342    uInt sizecr = 0 ;
3343    if ( groupmode == "AND" )
3344      sizecr = 1 ;
3345    else if ( groupmode == "OR" )
3346      sizecr = 0 ;
3347
3348    vector<double> sortedfreq ;
3349    for ( uInt i = 0 ; i < iffreq.size() ; i++ ) {
3350      for ( uInt j = 0 ; j < iffreq[i].size() ; j++ ) {
3351        if ( count( sortedfreq.begin(), sortedfreq.end(), iffreq[i][j] ) == 0 )
3352          sortedfreq.push_back( iffreq[i][j] ) ;
3353      }
3354    }
3355    sort( sortedfreq.begin(), sortedfreq.end() ) ;
3356    vector<uInt> ifgrp( sortedfreq.size()-1, 0 ) ;
3357    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3358      for ( uInt iif = 0 ; iif < freqid[itable].size() ; iif++ ) {
3359        double range0 = iffreq[itable][2*iif] ;
3360        double range1 = iffreq[itable][2*iif+1] ;
3361        for ( uInt j = 0 ; j < sortedfreq.size()-1 ; j++ ) {
3362          double fmin = max( range0, sortedfreq[j] ) ;
3363          double fmax = min( range1, sortedfreq[j+1] ) ;
3364          if ( fmin < fmax ) {
3365            ifgrp[j]++ ;
3366          }
3367        }
3368      }
3369    }
3370
3371    // Grouping continuous IF groups (without frequency gap)
3372    // freqgrp: list of IF group indexes in each frequency group
3373    // freqgrp[numgrp][nummember]
3374    // freqgrp: [[ifgrp00, ifgrp01, ifgrp02, ...],
3375    //           [ifgrp10, ifgrp11, ifgrp12, ...],
3376    //           ...
3377    //           [ifgrpn0, ifgrpn1, ifgrpn2, ...]]
3378    // grprange[2*numgrp]
3379    // grprange: [fmin0,fmax0,fmin1,fmax1,...]
3380    vector< vector<uInt> > freqgrp ;
3381    vector<double> grprange ;
3382    vector<uInt> grpedge ;
3383    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3384      if ( ifgrp[igrp] <= sizecr ) {
3385        grpedge.push_back( igrp ) ;
3386      }
3387    }
3388    grpedge.push_back( ifgrp.size() ) ;
3389    uInt itmp = 0 ;
3390    for ( uInt i = 0 ; i < grpedge.size() ; i++ ) {
3391      int n = grpedge[i] - itmp ;
3392      if ( n > 0 ) {
3393        vector<uInt> members( n ) ;
3394        for ( int j = 0 ; j < n ; j++ ) {
3395          members[j] = itmp+j ;
3396        }
3397        freqgrp.push_back( members ) ;
3398        grprange.push_back( sortedfreq[itmp] ) ;
3399        grprange.push_back( sortedfreq[grpedge[i]] ) ;
3400      }
3401      itmp += n + 1 ;
3402    }
3403
3404    // print frequency group
3405    oss.str("") ;
3406    oss << "Frequency Group summary: " << endl ;
3407    oss << "   GROUP_ID: [FREQ_MIN, FREQ_MAX]" << endl ;
3408    for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3409      oss << "   GROUP " << setw( 2 ) << i << ": [" << grprange[2*i] << "," << grprange[2*i+1] << "]" ;
3410      oss << endl ;
3411    }
3412    oss << endl ;
3413    os << oss.str() << LogIO::POST ;
3414
3415    // groups: list of frequency group index whose frequency range overlaps
3416    //         with that of each table and IF
3417    // groups[numtable][numIF]
3418    // groups: [[grpx, grpy,...],
3419    //          [grpa, grpb,...],
3420    //          ...
3421    //          [grpk, grpm,...]]
3422    vector< vector<uInt> > groups( insize ) ;
3423    for ( uInt i = 0 ; i < insize ; i++ ) {
3424      groups[i].resize( freqid[i].size() ) ;
3425    }
3426    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3427      for ( uInt ifreq = 0 ; ifreq < freqid[itable].size() ; ifreq++ ) {
3428        double minf = iffreq[itable][2*ifreq] ;
3429        uInt groupid ;
3430        for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3431          vector<uInt> memberlist = freqgrp[igrp] ;
3432          if ( (minf >= grprange[2*igrp]) && (minf <= grprange[2*igrp+1]) ) {
3433            groupid = igrp ;
3434            break ;
3435          }
3436        }
3437        groups[itable][ifreq] = groupid ;
3438      }
3439    }
3440                                                         
3441
3442    // print membership
3443    oss.str("") ;
3444    for ( uInt i = 0 ; i < insize ; i++ ) {
3445      oss << "Table " << i << endl ;
3446      for ( uInt j = 0 ; j < groups[i].size() ; j++ ) {
3447        oss << "   FREQ_ID " <<  setw( 2 ) << freqid[i][j] << ": " ;
3448        oss << setw( 2 ) << groups[i][j] ;
3449        oss << endl ;
3450      }
3451    }
3452    os << oss.str() << LogIO::POST ;
3453
3454    // reset SCANNO and IFNO/FREQ_ID: IF is reset by the result of sortation
3455    //os << "All IF number is set to IF group index" << LogIO::POST ;
3456    // reset SCANNO only when avmode != "SCAN"
3457    if ( avmode != "SCAN" ) {
3458      os << "All scan number is set to 0" << LogIO::POST ;
3459      for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3460        uInt nrow = newin[itable]->nrow() ;
3461        Vector<uInt> resetScan( nrow, 0 ) ;
3462        newin[itable]->scanCol_.putColumn( resetScan ) ;
3463      }
3464    }
3465
3466    // reset spectra and flagtra: align spectral resolution
3467    //os << "Align spectral resolution" << LogIO::POST ;
3468    // gmaxdnu: the coarsest frequency resolution in the frequency group
3469    // gminfreq: lower frequency edge of the frequency group
3470    // gnchan: number of channels for the frequency group
3471    vector<double> gmaxdnu( freqgrp.size(), 0.0 ) ;
3472    vector<double> gminfreq( freqgrp.size() ) ;
3473    vector<double> gnchan( freqgrp.size() ) ;
3474    for ( uInt i = 0 ; i < insize ; i++ ) {
3475      vector<uInt> members = groups[i] ;
3476      for ( uInt j = 0 ; j < members.size() ; j++ ) {
3477        uInt groupid = members[j] ;
3478        Double rp,rv,ic ;
3479        newin[i]->frequencies().getEntry( rp, rv, ic, j ) ;
3480        if ( abs(ic) > abs(gmaxdnu[groupid]) )
3481          gmaxdnu[groupid] = ic ;
3482      }
3483    }
3484    for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3485      gminfreq[igrp] = grprange[2*igrp] ;
3486      double maxfreq = grprange[2*igrp+1] ;
3487      gnchan[igrp] = (int)(abs((maxfreq-gminfreq[igrp])/gmaxdnu[igrp])+0.9) ;
3488    }
3489     
3490    // regrid spectral data and update frequency info
3491    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3492      Vector<uInt> oldFreqId = newin[itable]->mfreqidCol_.getColumn() ;
3493      Vector<uInt> newFreqId( oldFreqId.nelements() ) ;
3494
3495      // update MAIN
3496      for ( uInt irow = 0 ; irow < newin[itable]->nrow() ; irow++ ) {
3497        uInt groupid = groups[itable][oldFreqId[irow]] ;
3498        newFreqId[irow] = groupid ;
3499        newin[itable]->regridChannel( gnchan[groupid],
3500                                      gmaxdnu[groupid],
3501                                      gminfreq[groupid],
3502                                      irow ) ;
3503      }
3504      newin[itable]->mfreqidCol_.putColumn( newFreqId ) ;
3505      newin[itable]->ifCol_.putColumn( newFreqId ) ;
3506
3507      // update FREQUENCIES
3508      Table tab = newin[itable]->frequencies().table() ;
3509      ScalarColumn<uInt> fIdCol( tab, "ID" ) ;
3510      ScalarColumn<Double> fRefPixCol( tab, "REFPIX" ) ;
3511      ScalarColumn<Double> fRefValCol( tab, "REFVAL" ) ;
3512      ScalarColumn<Double> fIncrCol( tab, "INCREMENT" ) ;
3513      if ( freqgrp.size() > tab.nrow() ) {
3514        tab.addRow( freqgrp.size()-tab.nrow() ) ;
3515      }
3516      for ( uInt irow = 0 ; irow < freqgrp.size() ; irow++ ) {
3517        Double refval = gminfreq[irow] + 0.5 * abs(gmaxdnu[irow]) ;
3518        Double refpix = (gmaxdnu[irow] > 0.0) ? 0 : gnchan[irow]-1 ;
3519        Double increment = gmaxdnu[irow] ;
3520        fIdCol.put( irow, irow ) ;
3521        fRefPixCol.put( irow, refpix ) ;
3522        fRefValCol.put( irow, refval ) ;
3523        fIncrCol.put( irow, increment ) ;
3524      }
3525    }
3526
3527    // set back coordinfo
3528    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3529      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3530      coordinfo[0] = oldinfo[itable] ;
3531      newin[itable]->setCoordInfo( coordinfo ) ;
3532    }
3533
3534    // average
3535    out = average( newin, mask, weight, avmode ) ;
3536  }
3537  else {
3538    // simple average
3539    out =  average( in, mask, weight, avmode ) ;
3540  }
3541 
3542  return out;
3543}
3544
3545CountedPtr<Scantable> STMath::cwcal( const CountedPtr<Scantable>& s,
3546                                     const String calmode,
3547                                     const String antname )
3548{
3549  // frequency switch
3550  if ( calmode == "fs" ) {
3551    return cwcalfs( s, antname ) ;
3552  }
3553  else {
3554    vector<bool> masks = s->getMask( 0 ) ;
3555    vector<int> types ;
3556
3557    // save original table selection
3558    Table torg  = s->table_ ;
3559
3560    // sky scan
3561    bool insitu = insitu_ ;
3562    insitu_ = false ;
3563    // share calibration scans before average with out
3564    CountedPtr<Scantable> out = getScantable( s, true ) ;
3565    insitu_ = insitu ;
3566    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::SKY ) ;
3567    out->attach() ;
3568    CountedPtr<Scantable> asky = averageWithinSession( out,
3569                                                       masks,
3570                                                       "TINT" ) ;
3571    // hot scan
3572    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::HOT ) ;
3573    out->attach() ;
3574    CountedPtr<Scantable> ahot = averageWithinSession( out,
3575                                                       masks,
3576                                                       "TINT" ) ;
3577    // cold scan
3578    CountedPtr<Scantable> acold ;
3579//     out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::COLD ) ;
3580//     out->attach() ;
3581//     CountedPtr<Scantable> acold = averageWithinSession( out,
3582//                                                         masks,
3583//                                                         "TINT" ) ;
3584
3585    // off scan
3586    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSOFF ) ;
3587    out->attach() ;
3588    CountedPtr<Scantable> aoff = averageWithinSession( out,
3589                                                       masks,
3590                                                       "TINT" ) ;
3591   
3592    // on scan
3593    s->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSON ) ;
3594    s->attach() ;
3595    out->table_ = out->originalTable_ ;
3596    out->attach() ;
3597    out->table().addRow( s->nrow() ) ;
3598    copyRows( out->table(), s->table(), 0, 0, s->nrow(), False, True, False ) ;
3599   
3600    // iterate throgh STIdxIter2
3601    ChopperWheelCalibrator cal(out, s, aoff, asky, ahot, acold);
3602    STIdxIter2::Iterate<ChopperWheelCalibrator>(cal, "BEAMNO,POLNO,IFNO");
3603
3604    s->table_ = torg ;
3605    s->attach() ;
3606
3607    // flux unit
3608    out->setFluxUnit( "K" ) ;
3609
3610    return out ;
3611  }
3612}
3613 
3614CountedPtr<Scantable> STMath::almacal( const CountedPtr<Scantable>& s,
3615                                       const String calmode )
3616{
3617  // frequency switch
3618  if ( calmode == "fs" ) {
3619    return almacalfs( s ) ;
3620  }
3621  else {
3622//     double t0, t1 ;
3623//     t0 = mathutil::gettimeofday_sec() ;
3624    vector<bool> masks = s->getMask( 0 ) ;
3625
3626    // save original table selection
3627    Table torg = s->table_ ;
3628
3629    // off scan
3630    // TODO 2010/01/08 TN
3631    // Grouping by time should be needed before averaging.
3632    // Each group must have own unique SCANNO (should be renumbered).
3633    // See PIPELINE/SDCalibration.py
3634    bool insitu = insitu_ ;
3635    insitu_ = false ;
3636    // share off scan before average with out
3637    CountedPtr<Scantable> out = getScantable( s, true ) ;
3638    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSOFF ) ;
3639    out->attach() ;
3640    insitu_ = insitu ;
3641    CountedPtr<Scantable> aoff = averageWithinSession( out,
3642                                                       masks,
3643                                                       "TINT" ) ;
3644
3645    // on scan
3646//     t0 = mathutil::gettimeofday_sec() ;
3647    s->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSON ) ;
3648    s->attach() ;
3649    out->table_ = out->originalTable_ ;
3650    out->attach() ;
3651    out->table().addRow( s->nrow() ) ;
3652    copyRows( out->table(), s->table(), 0, 0, s->nrow(), False ) ;
3653//     t1 = mathutil::gettimeofday_sec() ;
3654//     cout << "elapsed time for preparing output table: " << t1-t0 << " sec" << endl ;
3655
3656    // process each on scan
3657//     t0 = mathutil::gettimeofday_sec() ;
3658
3659    // iterate throgh STIdxIter2
3660    AlmaCalibrator cal(out, s, aoff);
3661    STIdxIter2::Iterate<AlmaCalibrator>(cal, "BEAMNO,POLNO,IFNO");
3662
3663    // finalize
3664    s->table_ = torg ;
3665    s->attach() ;
3666
3667//     t1 = mathutil::gettimeofday_sec() ;
3668//     cout << "elapsed time for calibration: " << t1-t0 << " sec" << endl ;
3669
3670    // flux unit
3671    out->setFluxUnit( "K" ) ;
3672
3673    return out ;
3674  }
3675}
3676
3677CountedPtr<Scantable> STMath::cwcalfs( const CountedPtr<Scantable>& s,
3678                                       const String antname )
3679{
3680  vector<int> types ;
3681
3682  // APEX calibration mode
3683  int apexcalmode = 1 ;
3684 
3685  if ( antname.find( "APEX" ) != string::npos ) {
3686    // check if off scan exists or not
3687    STSelector sel = STSelector() ;
3688    //sel.setName( offstr1 ) ;
3689    types.push_back( SrcType::FLOOFF ) ;
3690    sel.setTypes( types ) ;
3691    try {
3692      s->setSelection( sel ) ;
3693    }
3694    catch ( AipsError &e ) {
3695      apexcalmode = 0 ;
3696    }
3697    sel.reset() ;
3698  }
3699  s->unsetSelection() ;
3700  types.clear() ;
3701
3702  vector<bool> masks = s->getMask( 0 ) ;
3703  CountedPtr<Scantable> ssig, sref ;
3704  //CountedPtr<Scantable> out ;
3705  bool insitu = insitu_ ;
3706  insitu_ = False ;
3707  CountedPtr<Scantable> out = getScantable( s, true ) ;
3708  insitu_ = insitu ;
3709
3710  if ( antname.find( "APEX" ) != string::npos ) {
3711    // APEX calibration
3712    // sky scan
3713    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FLOSKY ) ;
3714    out->attach() ;
3715    CountedPtr<Scantable> askylo = averageWithinSession( out,
3716                                                         masks,
3717                                                         "TINT" ) ;
3718    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FHISKY ) ;
3719    out->attach() ;
3720    CountedPtr<Scantable> askyhi = averageWithinSession( out,
3721                                                         masks,
3722                                                         "TINT" ) ;
3723   
3724    // hot scan
3725    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FLOHOT ) ;
3726    out->attach() ;
3727    CountedPtr<Scantable> ahotlo = averageWithinSession( out,
3728                                                         masks,
3729                                                         "TINT" ) ;
3730    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FHIHOT ) ;
3731    out->attach() ;
3732    CountedPtr<Scantable> ahothi = averageWithinSession( out,
3733                                                         masks,
3734                                                         "TINT" ) ;
3735   
3736    // cold scan
3737    CountedPtr<Scantable> acoldlo, acoldhi ;
3738//     out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FLOCOLD ) ;
3739//     out->attach() ;
3740//     CountedPtr<Scantable> acoldlo = averageWithinSession( out,
3741//                                                           masks,
3742//                                                           "TINT" ) ;
3743//     out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FHICOLD ) ;
3744//     out->attach() ;
3745//     CountedPtr<Scantable> acoldhi = averageWithinSession( out,
3746//                                                           masks,
3747//                                                           "TINT" ) ;
3748
3749    // ref scan
3750    insitu_ = false ;
3751    sref = getScantable( s, true ) ;
3752    CountedPtr<Scantable> rref = getScantable( s, true ) ;
3753    insitu_ = insitu ;
3754    rref->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FSLO ) ;
3755    rref->attach() ;
3756    copyRows( sref->table_, rref->table_, 0, 0, rref->nrow(), False, True, False ) ;
3757   
3758    // sig scan
3759    insitu_ = false ;
3760    ssig = getScantable( s, true ) ;
3761    CountedPtr<Scantable> rsig = getScantable( s, true ) ;
3762    insitu_ = insitu ;
3763    rsig->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FSHI ) ;
3764    rsig->attach() ;
3765    copyRows( ssig->table_, rsig->table_, 0, 0, rsig->nrow(), False, True, False ) ;
3766         
3767    if ( apexcalmode == 0 ) {
3768      // using STIdxIter2
3769      vector<string> cols( 3 ) ;
3770      cols[0] = "BEAMNO" ;
3771      cols[1] = "POLNO" ;
3772      cols[2] = "IFNO" ;
3773      STIdxIter2 iter(ssig, cols) ;
3774      STSelector sel ;
3775      vector< CountedPtr<Scantable> > on( 2 ) ;
3776      on[0] = rsig ;
3777      on[1] = rref ;
3778      vector< CountedPtr<Scantable> > sky( 2 ) ;
3779      sky[0] = askylo ;
3780      sky[1] = askyhi ;
3781      vector< CountedPtr<Scantable> > hot( 2 ) ;
3782      hot[0] = ahotlo ;
3783      hot[1] = ahothi ;
3784      vector< CountedPtr<Scantable> > cold( 2 ) ;
3785      while ( !iter.pastEnd() ) {
3786        Record ids = iter.currentValue() ;
3787        stringstream ss ;
3788        ss << "SELECT FROM $1 WHERE "
3789           << "BEAMNO==" << ids.asuInt("BEAMNO") << "&&"
3790           << "POLNO==" << ids.asuInt("POLNO") << "&&"
3791           << "IFNO==" << ids.asuInt("IFNO") ;
3792        //cout << "TaQL string: " << ss.str() << endl ;
3793        sel.setTaQL( ss.str() ) ;
3794        sky[0]->setSelection( sel ) ;
3795        sky[1]->setSelection( sel ) ;
3796        hot[0]->setSelection( sel ) ;
3797        hot[1]->setSelection( sel ) ;
3798        Vector<uInt> rows = iter.getRows( SHARE ) ;
3799        calibrateAPEXFS( ssig, sref, on, sky, hot, cold, rows ) ;
3800        sky[0]->unsetSelection() ;
3801        sky[1]->unsetSelection() ;
3802        hot[0]->unsetSelection() ;
3803        hot[1]->unsetSelection() ;
3804        sel.reset() ;
3805        iter.next() ;
3806      }
3807
3808    }
3809    else if ( apexcalmode == 1 ) {
3810      // APEX fs data with off scan
3811      // off scan
3812      out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FLOOFF ) ;
3813      out->attach() ;
3814      CountedPtr<Scantable> aofflo = averageWithinSession( out,
3815                                                           masks,
3816                                                           "TINT" ) ;
3817      out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FHIOFF ) ;
3818      out->attach() ;
3819      CountedPtr<Scantable> aoffhi = averageWithinSession( out,
3820                                                           masks,
3821                                                           "TINT" ) ;
3822     
3823      // process each sig and ref scan
3824      // iterate throgh STIdxIter2
3825      ChopperWheelCalibrator cal_sig(ssig, rsig, aofflo, askylo, ahotlo, acoldlo);
3826      STIdxIter2::Iterate<ChopperWheelCalibrator>(cal_sig, "BEAMNO,POLNO,IFNO");
3827      ChopperWheelCalibrator cal_ref(sref, rref, aoffhi, askyhi, ahothi, acoldhi);
3828      STIdxIter2::Iterate<ChopperWheelCalibrator>(cal_ref, "BEAMNO,POLNO,IFNO");
3829    }
3830  }
3831  else {
3832    // non-APEX fs data
3833    // sky scan
3834    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::SKY ) ;
3835    out->attach() ;
3836    CountedPtr<Scantable> asky = averageWithinSession( out,
3837                                                       masks,
3838                                                       "TINT" ) ;
3839    STSelector sel = STSelector() ;
3840
3841    // hot scan
3842    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::HOT ) ;
3843    out->attach() ;
3844    CountedPtr<Scantable> ahot = averageWithinSession( out,
3845                                                       masks,
3846                                                       "TINT" ) ;
3847
3848    // cold scan
3849    CountedPtr<Scantable> acold ;
3850//     out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::COLD ) ;
3851//     out->attach() ;
3852//     CountedPtr<Scantable> acold = averageWithinSession( out,
3853//                                                         masks,
3854//                                                         "TINT" ) ;
3855   
3856    // ref scan
3857    bool insitu = insitu_ ;
3858    insitu_ = false ;
3859    sref = getScantable( s, true ) ;
3860    CountedPtr<Scantable> rref = getScantable( s, true ) ;
3861    insitu_ = insitu ;
3862    rref->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSOFF ) ;
3863    rref->attach() ;
3864    copyRows( sref->table_, rref->table_, 0, 0, rref->nrow(), False, True, False ) ;
3865   
3866    // sig scan
3867    insitu_ = false ;
3868    ssig = getScantable( s, true ) ;
3869    CountedPtr<Scantable> rsig = getScantable( s, true ) ;
3870    insitu_ = insitu ;
3871    rsig->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSON ) ;
3872    rsig->attach() ;
3873    copyRows( ssig->table_, rsig->table_, 0, 0, rsig->nrow(), False, True, False ) ;
3874
3875    // process each sig and ref scan
3876    vector<string> cols( 3 ) ;
3877    cols[0] = "BEAMNO" ;
3878    cols[1] = "POLNO" ;
3879    cols[2] = "IFNO" ;
3880    STIdxIter2 iter(ssig, cols);
3881    while ( !iter.pastEnd() ) {
3882      Record ids = iter.currentValue() ;
3883      stringstream ss ;
3884      ss << "SELECT FROM $1 WHERE "
3885         << "BEAMNO==" << ids.asuInt("BEAMNO") << "&&"
3886         << "POLNO==" << ids.asuInt("POLNO") << "&&"
3887         << "IFNO==" << ids.asuInt("IFNO") ;
3888      //cout << "TaQL string: " << ss.str() << endl ;
3889      sel.setTaQL( ss.str() ) ;
3890      ahot->setSelection( sel ) ;
3891      asky->setSelection( sel ) ;
3892      Vector<uInt> rows = iter.getRows( SHARE ) ;
3893      // out should be an exact copy of s except that SPECTRA column is empty
3894      calibrateFS( ssig, sref, rsig, rref, asky, ahot, acold, rows ) ;
3895      ahot->unsetSelection() ;
3896      asky->unsetSelection() ;
3897      sel.reset() ;
3898      iter.next() ;
3899    }
3900  }
3901
3902  // do folding if necessary
3903  Table sigtab = ssig->table() ;
3904  Table reftab = sref->table() ;
3905  ScalarColumn<uInt> reffidCol ;
3906  Int nchan = (Int)ssig->nchan() ;
3907  reffidCol.attach( reftab, "FREQ_ID" ) ;
3908  Vector<uInt> sfids = ssig->mfreqidCol_.getColumn() ;
3909  Vector<uInt> rfids = sref->mfreqidCol_.getColumn() ;
3910  vector<uInt> sfids_unique ;
3911  vector<uInt> rfids_unique ;
3912  vector<uInt> sifno_unique ;
3913  vector<uInt> rifno_unique ;
3914  for ( uInt i = 0 ; i < sfids.nelements() ; i++ ) {
3915    if ( count( sfids_unique.begin(), sfids_unique.end(), sfids[i] ) == 0 ) {
3916      sfids_unique.push_back( sfids[i] ) ;
3917      sifno_unique.push_back( ssig->getIF( i ) ) ;
3918    }
3919    if ( count( rfids_unique.begin(), rfids_unique.end(),  rfids[i] ) == 0 ) {
3920      rfids_unique.push_back( rfids[i] ) ;
3921      rifno_unique.push_back( sref->getIF( i ) ) ;
3922    }
3923  }
3924  double refpix_sig, refval_sig, increment_sig ;
3925  double refpix_ref, refval_ref, increment_ref ;
3926  vector< CountedPtr<Scantable> > tmp( sfids_unique.size() ) ;
3927  for ( uInt i = 0 ; i < sfids_unique.size() ; i++ ) {
3928    ssig->frequencies().getEntry( refpix_sig, refval_sig, increment_sig, sfids_unique[i] ) ;
3929    sref->frequencies().getEntry( refpix_ref, refval_ref, increment_ref, rfids_unique[i] ) ;
3930    if ( refpix_sig == refpix_ref ) {
3931      double foffset = refval_ref - refval_sig ;
3932      int choffset = static_cast<int>(foffset/increment_sig) ;
3933      double doffset = foffset / increment_sig ;
3934      if ( abs(choffset) >= nchan ) {
3935        LogIO os( LogOrigin( "STMath", "cwcalfs", WHERE ) ) ;
3936        os << "FREQ_ID=[" << sfids_unique[i] << "," << rfids_unique[i] << "]: out-band frequency switching, no folding" << LogIO::POST ;
3937        os << "Just return signal data" << LogIO::POST ;
3938        //std::vector< CountedPtr<Scantable> > tabs ;
3939        //tabs.push_back( ssig ) ;
3940        //tabs.push_back( sref ) ;
3941        //out = merge( tabs ) ;
3942        tmp[i] = ssig ;
3943      }
3944      else {
3945        STSelector sel = STSelector() ;
3946        vector<int> v( 1, sifno_unique[i] ) ;
3947        sel.setIFs( v ) ;
3948        ssig->setSelection( sel ) ;
3949        sel.reset() ;
3950        v[0] = rifno_unique[i] ;
3951        sel.setIFs( v ) ;
3952        sref->setSelection( sel ) ;
3953        sel.reset() ;
3954        if ( antname.find( "APEX" ) != string::npos ) {
3955          tmp[i] = dofold( ssig, sref, 0.5*doffset, -0.5*doffset ) ;
3956          //tmp[i] = dofold( ssig, sref, doffset ) ;
3957        }
3958        else {
3959          tmp[i] = dofold( ssig, sref, doffset ) ;
3960        }
3961        ssig->unsetSelection() ;
3962        sref->unsetSelection() ;
3963      }
3964    }
3965  }
3966
3967  if ( tmp.size() > 1 ) {
3968    out = merge( tmp ) ;
3969  }
3970  else {
3971    out = tmp[0] ;
3972  }
3973
3974  // flux unit
3975  out->setFluxUnit( "K" ) ;
3976
3977  return out ;
3978}
3979
3980CountedPtr<Scantable> STMath::almacalfs( const CountedPtr<Scantable>& s )
3981{
3982  (void) s; //currently unused
3983  CountedPtr<Scantable> out ;
3984
3985  return out ;
3986}
3987
3988void STMath::calibrateAPEXFS( CountedPtr<Scantable> &sig,
3989                              CountedPtr<Scantable> &ref,
3990                              const vector< CountedPtr<Scantable> >& on,
3991                              const vector< CountedPtr<Scantable> >& sky,
3992                              const vector< CountedPtr<Scantable> >& hot,
3993                              const vector< CountedPtr<Scantable> >& cold,
3994                              const Vector<uInt> &rows )
3995{
3996  // if rows is empty, just return
3997  if ( rows.nelements() == 0 )
3998    return ;
3999  ROScalarColumn<Double> timeCol( sky[0]->table(), "TIME" ) ;
4000  Vector<Double> timeSkyS = timeCol.getColumn() ;
4001  timeCol.attach( sky[1]->table(), "TIME" ) ;
4002  Vector<Double> timeSkyR = timeCol.getColumn() ;
4003  timeCol.attach( hot[0]->table(), "TIME" ) ;
4004  Vector<Double> timeHotS = timeCol.getColumn() ;
4005  timeCol.attach( hot[1]->table(), "TIME" ) ;
4006  Vector<Double> timeHotR = timeCol.getColumn() ;
4007  timeCol.attach( sig->table(), "TIME" ) ;
4008  ROScalarColumn<Double> timeCol2( ref->table(), "TIME" ) ;
4009  ROArrayColumn<Float> arrayFloatCol( sky[0]->table(), "SPECTRA" ) ;
4010  SpectralData skyspectraS(arrayFloatCol.getColumn());
4011  arrayFloatCol.attach( sky[1]->table(), "SPECTRA" ) ;
4012  SpectralData skyspectraR(arrayFloatCol.getColumn());
4013  arrayFloatCol.attach( hot[0]->table(), "SPECTRA" ) ;
4014  SpectralData hotspectraS(arrayFloatCol.getColumn());
4015  arrayFloatCol.attach( hot[1]->table(), "SPECTRA" ) ;
4016  SpectralData hotspectraR(arrayFloatCol.getColumn());
4017  TcalData tcaldataS(sky[0]);
4018  TsysData tsysdataS(sky[0]);
4019  TcalData tcaldataR(sky[1]);
4020  TsysData tsysdataR(sky[1]);
4021  unsigned int spsize = sig->nchan( sig->getIF(rows[0]) ) ;
4022  Vector<Float> spec( spsize ) ;
4023  // I know that the data is contiguous
4024  const uInt *p = rows.data() ;
4025  vector<int> ids( 2 ) ;
4026  Block<uInt> flagchan( spsize ) ;
4027  uInt nflag = 0 ;
4028  for ( int irow = 0 ; irow < rows.nelements() ; irow++ ) {
4029    double reftime = timeCol.asdouble(*p) ;
4030    ids = getRowIdFromTime( reftime, timeSkyS ) ;
4031    Vector<Float> spskyS = SimpleInterpolationHelper<SpectralData>::GetFromTime(reftime, timeSkyS, ids, skyspectraS, "linear");
4032    Vector<Float> tcalS = SimpleInterpolationHelper<TcalData>::GetFromTime(reftime, timeSkyS, ids, tcaldataS, "linear");
4033    Vector<Float> tsysS = SimpleInterpolationHelper<TsysData>::GetFromTime(reftime, timeSkyS, ids, tsysdataS, "linear");
4034    ids = getRowIdFromTime( reftime, timeHotS ) ;
4035    Vector<Float> sphotS = SimpleInterpolationHelper<SpectralData>::GetFromTime(reftime, timeHotS, ids, hotspectraS, "linear");
4036    reftime = timeCol2.asdouble(*p) ;
4037    ids = getRowIdFromTime( reftime, timeSkyR ) ;
4038    Vector<Float> spskyR = SimpleInterpolationHelper<SpectralData>::GetFromTime(reftime, timeSkyR, ids, skyspectraR, "linear");
4039    Vector<Float> tcalR = SimpleInterpolationHelper<TcalData>::GetFromTime(reftime, timeSkyR, ids, tcaldataR, "linear");
4040    Vector<Float> tsysR = SimpleInterpolationHelper<TsysData>::GetFromTime(reftime, timeSkyR, ids, tsysdataR, "linear");
4041    ids = getRowIdFromTime( reftime, timeHotR ) ;
4042    Vector<Float> sphotR = SimpleInterpolationHelper<SpectralData>::GetFromTime(reftime, timeHotR, ids, hotspectraR, "linear");
4043    Vector<Float> spsig = on[0]->specCol_( *p ) ;
4044    Vector<Float> spref = on[1]->specCol_( *p ) ;
4045    for ( unsigned int j = 0 ; j < spsize ; j++ ) {
4046      if ( (sphotS[j]-spskyS[j]) == 0.0 || (sphotR[j]-spskyR[j]) == 0.0 ) {
4047        spec[j] = 0.0 ;
4048        flagchan[nflag++] = j ;
4049      }
4050      else {
4051        spec[j] = tcalS[j] * spsig[j] / ( sphotS[j] - spskyS[j] )
4052          - tcalR[j] * spref[j] / ( sphotR[j] - spskyR[j] ) ;
4053      }
4054    }
4055    sig->specCol_.put( *p, spec ) ;
4056    sig->tsysCol_.put( *p, tsysS ) ;
4057    spec *= (Float)-1.0 ;
4058    ref->specCol_.put( *p, spec ) ;
4059    ref->tsysCol_.put( *p, tsysR ) ;   
4060    if ( nflag > 0 ) {
4061      Vector<uChar> flsig = sig->flagsCol_( *p ) ;
4062      Vector<uChar> flref = ref->flagsCol_( *p ) ;
4063      for ( unsigned int j = 0 ; j < nflag ; j++ ) {
4064        flsig[flagchan[j]] = (uChar)True ;
4065        flref[flagchan[j]] = (uChar)True ;
4066      }
4067      sig->flagsCol_.put( *p, flsig ) ;
4068      ref->flagsCol_.put( *p, flref ) ;
4069    }
4070    nflag = 0 ;
4071    p++ ;
4072  }
4073}
4074
4075void STMath::calibrateFS( CountedPtr<Scantable> &sig,
4076                          CountedPtr<Scantable> &ref,
4077                          const CountedPtr<Scantable>& rsig,
4078                          const CountedPtr<Scantable>& rref,
4079                          const CountedPtr<Scantable>& sky,
4080                          const CountedPtr<Scantable>& hot,
4081                          const CountedPtr<Scantable>& cold,
4082                          const Vector<uInt> &rows )
4083{
4084  // if rows is empty, just return
4085  if ( rows.nelements() == 0 )
4086    return ;
4087  ROScalarColumn<Double> timeCol( sky->table(), "TIME" ) ;
4088  Vector<Double> timeSky = timeCol.getColumn() ;
4089  timeCol.attach( hot->table(), "TIME" ) ;
4090  Vector<Double> timeHot = timeCol.getColumn() ;
4091  timeCol.attach( sig->table(), "TIME" ) ;
4092  ROScalarColumn<Double> timeCol2( ref->table(), "TIME" ) ;
4093  ROArrayColumn<Float> arrayFloatCol( sky->table(), "SPECTRA" ) ;
4094  SpectralData skyspectra(arrayFloatCol.getColumn());
4095  arrayFloatCol.attach( hot->table(), "SPECTRA" ) ;
4096  SpectralData hotspectra(arrayFloatCol.getColumn());
4097  TcalData tcaldata(sky);
4098  TsysData tsysdata(sky);
4099  unsigned int spsize = sig->nchan( sig->getIF(rows[0]) ) ;
4100  Vector<Float> spec( spsize ) ;
4101  // I know that the data is contiguous
4102  const uInt *p = rows.data() ;
4103  vector<int> ids( 2 ) ;
4104  Block<uInt> flagchan( spsize ) ;
4105  uInt nflag = 0 ;
4106  for ( int irow = 0 ; irow < rows.nelements() ; irow++ ) {
4107    double reftime = timeCol.asdouble(*p) ;
4108    ids = getRowIdFromTime( reftime, timeSky ) ;
4109    Vector<Float> spsky = SimpleInterpolationHelper<SpectralData>::GetFromTime(reftime, timeSky, ids, skyspectra, "linear");
4110    Vector<Float> tcal = SimpleInterpolationHelper<TcalData>::GetFromTime(reftime, timeSky, ids, tcaldata, "linear");
4111    Vector<Float> tsys = SimpleInterpolationHelper<TsysData>::GetFromTime(reftime, timeSky, ids, tsysdata, "linear");
4112    ids = getRowIdFromTime( reftime, timeHot ) ;
4113    Vector<Float> sphot = SimpleInterpolationHelper<SpectralData>::GetFromTime(reftime, timeHot, ids, hotspectra, "linear");
4114    Vector<Float> spsig = rsig->specCol_( *p ) ;
4115    Vector<Float> spref = rref->specCol_( *p ) ;
4116    // using gain array
4117    for ( unsigned int j = 0 ; j < spsize ; j++ ) {
4118      if ( spref[j] == 0.0 || (sphot[j]-spsky[j]) == 0.0 ) {
4119        spec[j] = 0.0 ;
4120        flagchan[nflag++] = j ;
4121      }
4122      else {
4123        spec[j] = ( ( spsig[j] - spref[j] ) / spref[j] )
4124          * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
4125      }
4126    }
4127    sig->specCol_.put( *p, spec ) ;
4128    sig->tsysCol_.put( *p, tsys ) ;
4129    if ( nflag > 0 ) {
4130      Vector<uChar> fl = sig->flagsCol_( *p ) ;
4131      for ( unsigned int j = 0 ; j < nflag ; j++ ) {
4132        fl[flagchan[j]] = (uChar)True ;
4133      }
4134      sig->flagsCol_.put( *p, fl ) ;
4135    }
4136    nflag = 0 ;
4137
4138    reftime = timeCol2.asdouble(*p) ;
4139    ids = getRowIdFromTime( reftime, timeSky ) ;
4140    spsky = SimpleInterpolationHelper<SpectralData>::GetFromTime(reftime, timeSky, ids, skyspectra, "linear");
4141    tcal = SimpleInterpolationHelper<TcalData>::GetFromTime(reftime, timeSky, ids, tcaldata, "linear");
4142    tsys = SimpleInterpolationHelper<TsysData>::GetFromTime(reftime, timeSky, ids, tsysdata, "linear");
4143    ids = getRowIdFromTime( reftime, timeHot ) ;
4144    sphot = SimpleInterpolationHelper<SpectralData>::GetFromTime(reftime, timeHot, ids, hotspectra, "linear");
4145    // using gain array
4146    for ( unsigned int j = 0 ; j < spsize ; j++ ) {
4147      if ( spsig[j] == 0.0 || (sphot[j]-spsky[j]) == 0.0 ) {
4148        spec[j] = 0.0 ;
4149        flagchan[nflag++] = j ;
4150      }
4151      else {
4152        spec[j] = ( ( spref[j] - spsig[j] ) / spsig[j] )
4153          * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
4154      }
4155    }
4156    ref->specCol_.put( *p, spec ) ;
4157    ref->tsysCol_.put( *p, tsys ) ;   
4158    if ( nflag > 0 ) {
4159      Vector<uChar> fl = ref->flagsCol_( *p ) ;
4160      for ( unsigned int j = 0 ; j < nflag ; j++ ) {
4161        fl[flagchan[j]] = (uChar)True ;
4162      }
4163      ref->flagsCol_.put( *p, fl ) ;
4164    }
4165    nflag = 0 ;
4166    p++ ;
4167  }
4168}
4169
4170void STMath::copyRows( Table &out,
4171                       const Table &in,
4172                       uInt startout,
4173                       uInt startin,
4174                       uInt nrow,
4175                       Bool copySpectra,
4176                       Bool copyFlagtra,
4177                       Bool copyTsys )
4178{
4179  uInt nexclude = 0 ;
4180  Block<String> excludeColsBlock( 3 ) ;
4181  if ( !copySpectra ) {
4182    excludeColsBlock[nexclude] = "SPECTRA" ;
4183    nexclude++ ;
4184  }
4185  if ( !copyFlagtra ) {
4186    excludeColsBlock[nexclude] = "FLAGTRA" ;
4187    nexclude++ ;
4188  }
4189  if ( !copyTsys ) {
4190    excludeColsBlock[nexclude] = "TSYS" ;
4191    nexclude++ ;
4192  }
4193  //  if ( nexclude < 3 ) {
4194  //    excludeCols.resize( nexclude, True ) ;
4195  //  }
4196  Vector<String> excludeCols( IPosition(1,nexclude),
4197                              excludeColsBlock.storage(),
4198                              SHARE ) ;
4199//   cout << "excludeCols=" << excludeCols << endl ;
4200  TableRow rowout( out, excludeCols, True ) ;
4201  ROTableRow rowin( in, excludeCols, True ) ;
4202  uInt rin = startin ;
4203  uInt rout = startout ;
4204  for ( uInt i = 0 ; i < nrow ; i++ ) {
4205    rowin.get( rin ) ;
4206    rowout.putMatchingFields( rout, rowin.record() ) ;
4207    rin++ ;
4208    rout++ ;
4209  }
4210}
4211
4212CountedPtr<Scantable> STMath::averageWithinSession( CountedPtr<Scantable> &s,
4213                                                    vector<bool> &mask,
4214                                                    string weight )
4215{
4216  // prepare output table
4217  bool insitu = insitu_ ;
4218  insitu_ = false ;
4219  CountedPtr<Scantable> a = getScantable( s, true ) ;
4220  insitu_ = insitu ;
4221  Table &atab = a->table() ;
4222  ScalarColumn<Double> timeColOut( atab, "TIME" ) ;
4223
4224  if ( s->nrow() == 0 )
4225    return a ;
4226
4227  // setup RowAccumulator
4228  WeightType wtype = stringToWeight( weight ) ;
4229  RowAccumulator acc( wtype ) ;
4230  Vector<Bool> cmask( mask ) ;
4231  acc.setUserMask( cmask ) ;
4232
4233  vector<string> cols( 3 ) ;
4234  cols[0] = "IFNO" ;
4235  cols[1] = "POLNO" ;
4236  cols[2] = "BEAMNO" ;
4237  STIdxIter2 iter( s, cols ) ;
4238
4239  Table ttab = s->table() ;
4240  ROScalarColumn<Double> *timeCol = new ROScalarColumn<Double>( ttab, "TIME" ) ;
4241  Vector<Double> timeVec = timeCol->getColumn() ;
4242  delete timeCol ;
4243  Vector<Double> interval = s->integrCol_.getColumn() ;
4244  uInt nrow = timeVec.nelements() ;
4245  uInt outrow = 0 ;
4246
4247  while( !iter.pastEnd() ) {
4248
4249    Vector<uInt> rows = iter.getRows( SHARE ) ;
4250    uInt len = rows.nelements() ;
4251
4252    if ( len == 0 ) {
4253      iter.next() ;
4254      continue ;
4255    }
4256
4257    uInt nchan = s->nchan(s->getIF(rows[0])) ;
4258    Vector<uChar> flag( nchan ) ;
4259    Vector<Bool> bflag( nchan ) ;
4260    Vector<Float> spec( nchan ) ;
4261    Vector<Float> tsys( nchan ) ;
4262
4263    Vector<Double> timeSep( len-1 ) ;
4264    for ( uInt i = 0 ; i < len-1 ; i++ ) {
4265      timeSep[i] = timeVec[rows[i+1]] - timeVec[rows[i]] ;
4266    }
4267
4268    uInt irow ;
4269    uInt jrow ;
4270    for ( uInt i = 0 ; i < len-1 ; i++ ) {
4271      irow = rows[i] ;
4272      jrow = rows[i+1] ;
4273      // accumulate data
4274      s->flagsCol_.get( irow, flag ) ;
4275      //if row-flagged, all channels set flagged
4276      if (s->getFlagRow(irow)) {
4277        for (uInt k = 0; k < nchan; ++k) {
4278          flag(k) = 1 << 7;
4279        }
4280      }
4281      convertArray( bflag, flag ) ;
4282      s->specCol_.get( irow, spec ) ;
4283      tsys.assign( s->tsysCol_( irow ) ) ;
4284      //if ( !allEQ(bflag,True) )
4285      acc.add( spec, !bflag, tsys, interval[irow], timeVec[irow] ) ;
4286      double gap = 2.0 * 86400.0 * timeSep[i] / ( interval[jrow] + interval[irow] ) ;
4287      //cout << "gap[" << i << "]=" << setw(5) << gap << endl ;
4288      if ( gap > 1.1 ) {
4289        //cout << "detected gap between " << i << " and " << i+1 << endl ;
4290        // put data to output table
4291        // reset RowAccumulator
4292        if ( acc.state() ) {
4293          atab.addRow() ;
4294          copyRows( atab, ttab, outrow, irow, 1, False, False, False ) ;
4295          acc.replaceNaN() ;
4296          const Vector<Bool> &msk = acc.getMask() ;
4297          convertArray( flag, !msk ) ;
4298          for (uInt k = 0; k < nchan; ++k) {
4299            uChar userFlag = 1 << 7;
4300            if (msk[k]==True) userFlag = 0 << 7;
4301            flag(k) = userFlag;
4302          }
4303          a->flagsCol_.put( outrow, flag ) ;
4304          a->specCol_.put( outrow, acc.getSpectrum() ) ;
4305          a->tsysCol_.put( outrow, acc.getTsys() ) ;
4306          a->integrCol_.put( outrow, acc.getInterval() ) ;
4307          timeColOut.put( outrow, acc.getTime() ) ;
4308          a->cycleCol_.put( outrow, 0 ) ;
4309        }
4310        acc.reset() ;
4311        outrow++ ;
4312      }
4313    }
4314
4315    // accumulate and add last data
4316    irow = rows[len-1] ;
4317    s->flagsCol_.get( irow, flag ) ;
4318    //if row-flagged, all channels set flagged
4319    if (s->getFlagRow(irow)) {
4320      for (uInt k = 0; k < nchan; ++k) {
4321        flag(k) = 1 << 7;
4322      }
4323    }
4324    convertArray( bflag, flag ) ;
4325    s->specCol_.get( irow, spec ) ;
4326    tsys.assign( s->tsysCol_( irow ) ) ;
4327    //if (!allEQ(bflag,True) )
4328    acc.add( spec, !bflag, tsys, interval[irow], timeVec[irow] ) ;
4329    if ( acc.state() ) {
4330      atab.addRow() ;
4331      copyRows( atab, ttab, outrow, irow, 1, False, False, False ) ;
4332      acc.replaceNaN() ;
4333      const Vector<Bool> &msk = acc.getMask() ;
4334      convertArray( flag, !msk ) ;
4335      for (uInt k = 0; k < nchan; ++k) {
4336        uChar userFlag = 1 << 7;
4337        if (msk[k]==True) userFlag = 0 << 7;
4338        flag(k) = userFlag;
4339      }
4340      a->flagsCol_.put( outrow, flag ) ;
4341      a->specCol_.put( outrow, acc.getSpectrum() ) ;
4342      a->tsysCol_.put( outrow, acc.getTsys() ) ;
4343      a->integrCol_.put( outrow, acc.getInterval() ) ;
4344      timeColOut.put( outrow, acc.getTime() ) ;
4345      a->cycleCol_.put( outrow, 0 ) ;
4346    }
4347    acc.reset() ;
4348    outrow++ ;
4349
4350    iter.next() ;
4351  }
4352
4353  return a ;
4354}
Note: See TracBrowser for help on using the repository browser.