source: trunk/src/STMath.cpp @ 2928

Last change on this file since 2928 was 2920, checked in by Takeshi Nakazato, 10 years ago

New Development: No

JIRA Issue: No

Ready for Test: Yes

Interface Changes: No

What Interface Changed: Please list interface changes

Test Programs: List test programs

Put in Release Notes: Yes/No?

Module(s): Module Names change impacts.

Description: Describe your changes here..

Merged IterationHelper? into STIdxIter2.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 146.2 KB
Line 
1//
2// C++ Implementation: STMath
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2006
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12
13#include <sstream>
14
15#include <casa/iomanip.h>
16#include <casa/Arrays/MaskArrLogi.h>
17#include <casa/Arrays/MaskArrMath.h>
18#include <casa/Arrays/ArrayLogical.h>
19#include <casa/Arrays/ArrayMath.h>
20#include <casa/Arrays/Slice.h>
21#include <casa/Arrays/Slicer.h>
22#include <casa/BasicSL/String.h>
23#include <casa/Containers/Block.h>
24#include <casa/Containers/RecordField.h>
25#include <casa/Exceptions/Error.h>
26#include <casa/Logging/LogIO.h>
27#include <casa/Quanta/Quantum.h>
28
29#include <coordinates/Coordinates/CoordinateSystem.h>
30#include <coordinates/Coordinates/CoordinateUtil.h>
31#include <coordinates/Coordinates/FrequencyAligner.h>
32#include <coordinates/Coordinates/SpectralCoordinate.h>
33
34#include <lattices/Lattices/LatticeUtilities.h>
35
36#include <scimath/Functionals/Polynomial.h>
37#include <scimath/Mathematics/Convolver.h>
38#include <scimath/Mathematics/VectorKernel.h>
39
40#include <tables/Tables/ExprNode.h>
41#include <tables/Tables/ReadAsciiTable.h>
42#include <tables/Tables/TableCopy.h>
43#include <tables/Tables/TableIter.h>
44#include <tables/Tables/TableParse.h>
45#include <tables/Tables/TableRecord.h>
46#include <tables/Tables/TableRow.h>
47#include <tables/Tables/TableVector.h>
48#include <tables/Tables/TabVecMath.h>
49
50#include <atnf/PKSIO/SrcType.h>
51
52#include "RowAccumulator.h"
53#include "STAttr.h"
54#include "STMath.h"
55#include "STSelector.h"
56#include "Accelerator.h"
57#include "STIdxIter.h"
58
59#include "CalibrationHelper.h"
60
61using namespace casa;
62using namespace asap;
63
64// 2012/02/17 TN
65// Since STGrid is implemented, average doesn't consider direction
66// when accumulating
67// tolerance for direction comparison (rad)
68// #define TOL_OTF    1.0e-15
69// #define TOL_POINT  2.9088821e-4  // 1 arcmin
70
71STMath::STMath(bool insitu) :
72  insitu_(insitu)
73{
74}
75
76
77STMath::~STMath()
78{
79}
80
81CountedPtr<Scantable>
82STMath::average( const std::vector<CountedPtr<Scantable> >& in,
83                 const std::vector<bool>& mask,
84                 const std::string& weight,
85                 const std::string& avmode)
86{
87//    double t0, t1 ;
88//    t0 = mathutil::gettimeofday_sec() ;
89
90  LogIO os( LogOrigin( "STMath", "average()", WHERE ) ) ;
91  if ( avmode == "SCAN" && in.size() != 1 )
92    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
93                    "Use merge first."));
94  WeightType wtype = stringToWeight(weight);
95
96  // 2012/02/17 TN
97  // Since STGrid is implemented, average doesn't consider direction
98  // when accumulating
99  // check if OTF observation
100//   String obstype = in[0]->getHeader().obstype ;
101//   Double tol = 0.0 ;
102//   if ( (obstype.find( "OTF" ) != String::npos) || (obstype.find( "OBSERVE_TARGET" ) != String::npos) ) {
103//     tol = TOL_OTF ;
104//   }
105//   else {
106//     tol = TOL_POINT ;
107//   }
108
109  // output
110  // clone as this is non insitu
111  bool insitu = insitu_;
112  setInsitu(false);
113  CountedPtr< Scantable > out = getScantable(in[0], true);
114  setInsitu(insitu);
115  std::vector<CountedPtr<Scantable> >::const_iterator stit = in.begin();
116  ++stit;
117  while ( stit != in.end() ) {
118    out->appendToHistoryTable((*stit)->history());
119    ++stit;
120  }
121
122  Table& tout = out->table();
123
124  /// @todo check if all scantables are conformant
125
126  ArrayColumn<Float> specColOut(tout,"SPECTRA");
127  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
128  ArrayColumn<Float> tsysColOut(tout,"TSYS");
129  ScalarColumn<Double> mjdColOut(tout,"TIME");
130  ScalarColumn<Double> intColOut(tout,"INTERVAL");
131  ScalarColumn<uInt> cycColOut(tout,"CYCLENO");
132  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
133  ScalarColumn<uInt> flagRowColOut(tout,"FLAGROW");
134
135  // set up the output table rows. These are based on the structure of the
136  // FIRST scantable in the vector
137  const Table& baset = in[0]->table();
138
139  RowAccumulator acc(wtype);
140  Vector<Bool> cmask(mask);
141  acc.setUserMask(cmask);
142//   ROTableRow row(tout);
143  ROArrayColumn<Float> specCol, tsysCol;
144  ROArrayColumn<uChar> flagCol;
145  ROScalarColumn<Double> mjdCol, intCol;
146  ROScalarColumn<Int> scanIDCol;
147  ROScalarColumn<uInt> flagRowCol;
148
149  //Vector<uInt> rowstodelete;
150  Block<uInt> rowstodelB( in[0]->nrow() ) ;
151  uInt nrowdel = 0 ;
152
153//   Block<String> cols(3);
154  vector<string> cols(3) ;
155  cols[0] = String("BEAMNO");
156  cols[1] = String("IFNO");
157  cols[2] = String("POLNO");
158  if ( avmode == "SOURCE" ) {
159    cols.resize(4);
160    cols[3] = String("SRCNAME");
161  }
162  if ( avmode == "SCAN"  && in.size() == 1) {
163    //cols.resize(4);
164    //cols[3] = String("SCANNO");
165    cols.resize(5);
166    cols[3] = String("SRCNAME");
167    cols[4] = String("SCANNO");
168  }
169  uInt outrowCount = 0;
170  // use STIdxIter2 instead of TableIterator
171  STIdxIter2 iter( in[0], cols ) ;
172//   double t2 = 0 ;
173//   double t3 = 0 ;
174//   double t4 = 0 ;
175//   double t5 = 0 ;
176//   TableIterator iter(baset, cols);
177//   int count = 0 ;
178  while (!iter.pastEnd()) {
179    Vector<uInt> rows = iter.getRows( SHARE ) ;
180    if ( rows.nelements() == 0 ) {
181      iter.next() ;
182      continue ;
183    }
184    Record current = iter.currentValue() ;
185    //Table subt = iter.table();
186    // copy the first row of this selection into the new table
187    tout.addRow();
188//     t4 = mathutil::gettimeofday_sec() ;
189    // skip to copy SPECTRA, FLAGTRA, and TSYS since those heavy columns are
190    // overwritten in the following process
191    copyRows( tout, baset, outrowCount, rows[0], 1, False, False, False ) ;
192//     t5 += mathutil::gettimeofday_sec() - t4 ;
193    // re-index to 0
194    if ( avmode != "SCAN" && avmode != "SOURCE" ) {
195      scanColOut.put(outrowCount, uInt(0));
196    }
197
198    // 2012/02/17 TN
199    // Since STGrid is implemented, average doesn't consider direction
200    // when accumulating
201//     MDirection::ScalarColumn dircol ;
202//     dircol.attach( subt, "DIRECTION" ) ;
203//     Int length = subt.nrow() ;
204//     vector< Vector<Double> > dirs ;
205//     vector<int> indexes ;
206//     for ( Int i = 0 ; i < length ; i++ ) {
207//       Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
208//       //os << << count++ << ": " ;
209//       //os << "[" << t[0] << "," << t[1] << "]" << LogIO::POST ;
210//       bool adddir = true ;
211//       for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
212//         //if ( allTrue( t == dirs[j] ) ) {
213//         Double dx = t[0] - dirs[j][0] ;
214//         Double dy = t[1] - dirs[j][1] ;
215//         Double dd = sqrt( dx * dx + dy * dy ) ;
216//         //if ( allNearAbs( t, dirs[j], tol ) ) {
217//         if ( dd <= tol ) {
218//           adddir = false ;
219//           break ;
220//         }
221//       }
222//       if ( adddir ) {
223//         dirs.push_back( t ) ;
224//         indexes.push_back( i ) ;
225//       }
226//     }
227//     uInt rowNum = dirs.size() ;
228//     tout.addRow( rowNum ) ;
229//     for ( uInt i = 0 ; i < rowNum ; i++ ) {
230//       TableCopy::copyRows( tout, subt, outrowCount+i, indexes[i], 1 ) ;
231//       // re-index to 0
232//       if ( avmode != "SCAN" && avmode != "SOURCE" ) {
233//         scanColOut.put(outrowCount+i, uInt(0));
234//       }       
235//     }
236//     outrowCount += rowNum ;
237
238    // merge loop
239    uInt i = outrowCount ;
240    // in[0] is already selected by iterator
241    specCol.attach(baset,"SPECTRA");
242    flagCol.attach(baset,"FLAGTRA");
243    tsysCol.attach(baset,"TSYS");
244    intCol.attach(baset,"INTERVAL");
245    mjdCol.attach(baset,"TIME");
246    flagRowCol.attach(baset,"FLAGROW");
247    Vector<Float> spec,tsys;
248    Vector<uChar> flag;
249    Double inter,time;
250    uInt flagRow;
251
252    for (uInt l = 0; l < rows.nelements(); ++l ) {
253      uInt k = rows[l] ;
254      flagCol.get(k, flag);
255      Vector<Bool> bflag(flag.shape());
256      flagRowCol.get(k, flagRow);
257      if (flagRow > 0)
258        bflag = true;
259      else
260        convertArray(bflag, flag);
261      /*                                                                                                   
262        if ( allEQ(bflag, True) ) {                                                                         
263        continue;//don't accumulate                                                                         
264        }                                                                                                   
265      */
266      specCol.get(k, spec);
267      tsysCol.get(k, tsys);
268      intCol.get(k, inter);
269      mjdCol.get(k, time);
270      // spectrum has to be added last to enable weighting by the other values                             
271//       t2 = mathutil::gettimeofday_sec() ;
272      acc.add(spec, !bflag, tsys, inter, time);
273//       t3 += mathutil::gettimeofday_sec() - t2 ;
274     
275    }
276
277
278    // in[0] is already selected by TableIterator so that index is
279    // started from 1
280    for ( int j=1; j < int(in.size()); ++j ) {
281      const Table& tin = in[j]->table();
282      //const TableRecord& rec = row.get(i);
283      ROScalarColumn<Double> tmp(tin, "TIME");
284      Double td;tmp.get(0,td);
285
286#if 1
287      static char const*const colNames1[] = { "IFNO", "BEAMNO", "POLNO" };
288      //uInt const values1[] = { rec.asuInt("IFNO"), rec.asuInt("BEAMNO"), rec.asuInt("POLNO") };
289      uInt const values1[] = { current.asuInt("IFNO"), current.asuInt("BEAMNO"), current.asuInt("POLNO") };
290      SingleTypeEqPredicate<uInt, 3> myPred(tin, colNames1, values1);
291      CustomTableExprNodeRep myNodeRep(tin, myPred);
292      myNodeRep.link(); // to avoid automatic delete when myExpr is destructed.
293      CustomTableExprNode myExpr(myNodeRep);
294      Table basesubt = tin(myExpr);
295#else
296//       Table basesubt = tin( tin.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
297//                          && tin.col("IFNO") == Int(rec.asuInt("IFNO"))
298//                          && tin.col("POLNO") == Int(rec.asuInt("POLNO")) );
299      Table basesubt = tin( tin.col("BEAMNO") == current.asuInt("BEAMNO")
300                            && tin.col("IFNO") == current.asuInt("IFNO")
301                            && tin.col("POLNO") == current.asuInt("POLNO") );
302#endif
303      Table subt;
304      if ( avmode == "SOURCE") {
305//         subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME"));
306        subt = basesubt( basesubt.col("SRCNAME") == current.asString("SRCNAME") );
307
308      } else if (avmode == "SCAN") {
309//         subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME")
310//                    && basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO")) );
311        subt = basesubt( basesubt.col("SRCNAME") == current.asString("SRCNAME")
312                         && basesubt.col("SCANNO") == current.asuInt("SCANNO") );
313      } else {
314        subt = basesubt;
315      }
316
317      // 2012/02/17 TN
318      // Since STGrid is implemented, average doesn't consider direction
319      // when accumulating
320//       vector<uInt> removeRows ;
321//       uInt nrsubt = subt.nrow() ;
322//       for ( uInt irow = 0 ; irow < nrsubt ; irow++ ) {
323//         //if ( !allTrue((subt.col("DIRECTION").getArrayDouble(TableExprId(irow)))==rec.asArrayDouble("DIRECTION")) ) {
324//         Vector<Double> x0 = (subt.col("DIRECTION").getArrayDouble(TableExprId(irow))) ;
325//         Vector<Double> x1 = rec.asArrayDouble("DIRECTION") ;
326//         double dx = x0[0] - x1[0];
327//         double dy = x0[1] - x1[1];
328//         Double dd = sqrt( dx * dx + dy * dy ) ;
329//         //if ( !allNearAbs((subt.col("DIRECTION").getArrayDouble(TableExprId(irow))), rec.asArrayDouble("DIRECTION"), tol ) ) {
330//         if ( dd > tol ) {
331//           removeRows.push_back( irow ) ;
332//         }
333//       }
334//       if ( removeRows.size() != 0 ) {
335//         subt.removeRow( removeRows ) ;
336//       }
337     
338//       if ( nrsubt == removeRows.size() )
339//         throw(AipsError("Averaging data is empty.")) ;
340
341      specCol.attach(subt,"SPECTRA");
342      flagCol.attach(subt,"FLAGTRA");
343      tsysCol.attach(subt,"TSYS");
344      intCol.attach(subt,"INTERVAL");
345      mjdCol.attach(subt,"TIME");
346      flagRowCol.attach(subt,"FLAGROW");
347      for (uInt k = 0; k < subt.nrow(); ++k ) {
348        flagCol.get(k, flag);
349        Vector<Bool> bflag(flag.shape());
350        flagRowCol.get(k, flagRow);
351        if (flagRow > 0)
352          bflag = true;
353        else
354          convertArray(bflag, flag);
355        /*
356        if ( allEQ(bflag, True) ) {
357        continue;//don't accumulate
358        }
359        */
360        specCol.get(k, spec);
361        //tsysCol.get(k, tsys);
362        tsys.assign( tsysCol(k) );
363        intCol.get(k, inter);
364        mjdCol.get(k, time);
365        // spectrum has to be added last to enable weighting by the other values
366//         t2 = mathutil::gettimeofday_sec() ;
367        acc.add(spec, !bflag, tsys, inter, time);
368//         t3 += mathutil::gettimeofday_sec() - t2 ;
369      }
370
371    }
372    const Vector<Bool>& msk = acc.getMask();
373    if ( allEQ(msk, False) ) {
374      rowstodelB[nrowdel] = i ;
375      nrowdel++ ;
376      continue;
377    }
378    //write out
379    if (acc.state()) {
380      // If there exists a channel at which all the input spectra are masked,
381      // spec has 'nan' values for that channel and it may affect the following
382      // processes. To avoid this, replacing 'nan' values in spec with
383      // weighted-mean of all spectra in the following line.
384      // (done for CAS-2776, 2011/04/07 by Wataru Kawasaki)
385      acc.replaceNaN();
386
387      Vector<uChar> flg(msk.shape());
388      convertArray(flg, !msk);
389      for (uInt k = 0; k < flg.nelements(); ++k) {
390        uChar userFlag = 1 << 7;
391        if (msk[k]==True) userFlag = 0 << 7;
392        flg(k) = userFlag;
393      }
394
395      flagColOut.put(i, flg);
396      specColOut.put(i, acc.getSpectrum());
397      tsysColOut.put(i, acc.getTsys());
398      intColOut.put(i, acc.getInterval());
399      mjdColOut.put(i, acc.getTime());
400      // we should only have one cycle now -> reset it to be 0
401      // frequency switched data has different CYCLENO for different IFNO
402      // which requires resetting this value
403      cycColOut.put(i, uInt(0));
404      // completely flagged rows are removed anyway
405      flagRowColOut.put(i, uInt(0));
406    } else {
407      os << "For output row="<<i<<", all input rows of data are flagged. no averaging" << LogIO::POST;
408    }
409    acc.reset();
410
411    // merge with while loop for preparing out table
412    ++outrowCount;
413//     ++iter ;
414    iter.next() ;
415  }
416
417  if ( nrowdel > 0 ) {
418    Vector<uInt> rowstodelete( IPosition(1,nrowdel), rowstodelB.storage(), SHARE ) ;
419    os << rowstodelete << LogIO::POST ;
420    tout.removeRow(rowstodelete);
421    if (tout.nrow() == 0) {
422      throw(AipsError("Can't average fully flagged data."));
423    }
424  }
425
426//    t1 = mathutil::gettimeofday_sec() ;
427//    cout << "elapsed time for average(): " << t1-t0 << " sec" << endl ;
428//    cout << "   elapsed time for acc.add(): " << t3 << " sec" << endl ;
429//    cout << "   elapsed time for copyRows(): " << t5 << " sec" << endl ;
430
431  return out;
432}
433
434CountedPtr< Scantable >
435STMath::averageChannel( const CountedPtr < Scantable > & in,
436                          const std::string & mode,
437                          const std::string& avmode )
438{
439  (void) mode; // currently unused
440  // 2012/02/17 TN
441  // Since STGrid is implemented, average doesn't consider direction
442  // when accumulating
443  // check if OTF observation
444//   String obstype = in->getHeader().obstype ;
445//   Double tol = 0.0 ;
446//   if ( obstype.find( "OTF" ) != String::npos ) {
447//     tol = TOL_OTF ;
448//   }
449//   else {
450//     tol = TOL_POINT ;
451//   }
452
453  // clone as this is non insitu
454  bool insitu = insitu_;
455  setInsitu(false);
456  CountedPtr< Scantable > out = getScantable(in, true);
457  setInsitu(insitu);
458  Table& tout = out->table();
459  ArrayColumn<Float> specColOut(tout,"SPECTRA");
460  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
461  ArrayColumn<Float> tsysColOut(tout,"TSYS");
462  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
463  ScalarColumn<Double> intColOut(tout, "INTERVAL");
464  Table tmp = in->table().sort("BEAMNO");
465  Block<String> cols(3);
466  cols[0] = String("BEAMNO");
467  cols[1] = String("IFNO");
468  cols[2] = String("POLNO");
469  if ( avmode == "SCAN") {
470    cols.resize(4);
471    cols[3] = String("SCANNO");
472  }
473  uInt outrowCount = 0;
474  uChar userflag = 1 << 7;
475  TableIterator iter(tmp, cols);
476  while (!iter.pastEnd()) {
477    Table subt = iter.table();
478    ROArrayColumn<Float> specCol, tsysCol;
479    ROArrayColumn<uChar> flagCol;
480    ROScalarColumn<Double> intCol(subt, "INTERVAL");
481    specCol.attach(subt,"SPECTRA");
482    flagCol.attach(subt,"FLAGTRA");
483    tsysCol.attach(subt,"TSYS");
484
485    tout.addRow();
486    TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
487    if ( avmode != "SCAN") {
488      scanColOut.put(outrowCount, uInt(0));
489    }
490    Vector<Float> tmp;
491    specCol.get(0, tmp);
492    uInt nchan = tmp.nelements();
493    // have to do channel by channel here as MaskedArrMath
494    // doesn't have partialMedians
495    Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
496    Vector<Float> outspec(nchan);
497    Vector<uChar> outflag(nchan,0);
498    Vector<Float> outtsys(1);/// @fixme when tsys is channel based
499    for (uInt i=0; i<nchan; ++i) {
500      Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
501      MaskedArray<Float> ma = maskedArray(specs,flags);
502      outspec[i] = median(ma);
503      if ( allEQ(ma.getMask(), False) )
504        outflag[i] = userflag;// flag data
505    }
506    outtsys[0] = median(tsysCol.getColumn());
507    specColOut.put(outrowCount, outspec);
508    flagColOut.put(outrowCount, outflag);
509    tsysColOut.put(outrowCount, outtsys);
510    Double intsum = sum(intCol.getColumn());
511    intColOut.put(outrowCount, intsum);
512    ++outrowCount;
513    ++iter;
514
515    // 2012/02/17 TN
516    // Since STGrid is implemented, average doesn't consider direction
517    // when accumulating
518//     MDirection::ScalarColumn dircol ;
519//     dircol.attach( subt, "DIRECTION" ) ;
520//     Int length = subt.nrow() ;
521//     vector< Vector<Double> > dirs ;
522//     vector<int> indexes ;
523//     // Handle MX mode averaging
524//     if (in->nbeam() > 1 ) {     
525//       length = 1;
526//     }
527//     for ( Int i = 0 ; i < length ; i++ ) {
528//       Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
529//       bool adddir = true ;
530//       for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
531//         //if ( allTrue( t == dirs[j] ) ) {
532//         Double dx = t[0] - dirs[j][0] ;
533//         Double dy = t[1] - dirs[j][1] ;
534//         Double dd = sqrt( dx * dx + dy * dy ) ;
535//         //if ( allNearAbs( t, dirs[j], tol ) ) {
536//         if ( dd <= tol ) {
537//           adddir = false ;
538//           break ;
539//         }
540//       }
541//       if ( adddir ) {
542//         dirs.push_back( t ) ;
543//         indexes.push_back( i ) ;
544//       }
545//     }
546//     uInt rowNum = dirs.size() ;
547//     tout.addRow( rowNum );
548//     for ( uInt i = 0 ; i < rowNum ; i++ ) {
549//       TableCopy::copyRows(tout, subt, outrowCount+i, indexes[i], 1) ;
550//       // Handle MX mode averaging
551//       if ( avmode != "SCAN") {
552//         scanColOut.put(outrowCount+i, uInt(0));
553//       }
554//     }
555//     MDirection::ScalarColumn dircolOut ;
556//     dircolOut.attach( tout, "DIRECTION" ) ;
557//     for ( uInt irow = 0 ; irow < rowNum ; irow++ ) {
558//       Vector<Double> t = \
559//      dircolOut(outrowCount+irow).getAngle(Unit(String("rad"))).getValue() ;
560//       Vector<Float> tmp;
561//       specCol.get(0, tmp);
562//       uInt nchan = tmp.nelements();
563//       // have to do channel by channel here as MaskedArrMath
564//       // doesn't have partialMedians
565//       Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
566//       // mask spectra for different DIRECTION
567//       for ( uInt jrow = 0 ; jrow < subt.nrow() ; jrow++ ) {
568//         Vector<Double> direction = \
569//        dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
570//         //if ( t[0] != direction[0] || t[1] != direction[1] ) {
571//         Double dx = t[0] - direction[0];
572//         Double dy = t[1] - direction[1];
573//         Double dd = sqrt(dx*dx + dy*dy);
574//         //if ( !allNearAbs( t, direction, tol ) ) {
575//         if ( dd > tol &&  in->nbeam() < 2 ) {
576//           flags[jrow] = userflag ;
577//         }
578//       }
579//       Vector<Float> outspec(nchan);
580//       Vector<uChar> outflag(nchan,0);
581//       Vector<Float> outtsys(1);/// @fixme when tsys is channel based
582//       for (uInt i=0; i<nchan; ++i) {
583//         Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
584//         MaskedArray<Float> ma = maskedArray(specs,flags);
585//         outspec[i] = median(ma);
586//         if ( allEQ(ma.getMask(), False) )
587//           outflag[i] = userflag;// flag data
588//       }
589//       outtsys[0] = median(tsysCol.getColumn());
590//       specColOut.put(outrowCount+irow, outspec);
591//       flagColOut.put(outrowCount+irow, outflag);
592//       tsysColOut.put(outrowCount+irow, outtsys);
593//       Vector<Double> integ = intCol.getColumn() ;
594//       MaskedArray<Double> mi = maskedArray( integ, flags ) ;
595//       Double intsum = sum(mi);
596//       intColOut.put(outrowCount+irow, intsum);
597//     }
598//     outrowCount += rowNum ;
599//     ++iter;
600  }
601  return out;
602}
603
604CountedPtr< Scantable > STMath::getScantable(const CountedPtr< Scantable >& in,
605                                             bool droprows)
606{
607  if (insitu_) {
608    return in;
609  }
610  else {
611    // clone
612    return CountedPtr<Scantable>(new Scantable(*in, Bool(droprows)));
613  }
614}
615
616CountedPtr< Scantable > STMath::unaryOperate( const CountedPtr< Scantable >& in,
617                                              float val,
618                                              const std::string& mode,
619                                              bool tsys )
620{
621  CountedPtr< Scantable > out = getScantable(in, false);
622  Table& tab = out->table();
623  ArrayColumn<Float> specCol(tab,"SPECTRA");
624  ArrayColumn<Float> tsysCol(tab,"TSYS");
625  if (mode=="DIV") val = 1.0/val ;
626  else if (mode=="SUB") val *= -1.0 ;
627  for (uInt i=0; i<tab.nrow(); ++i) {
628    Vector<Float> spec;
629    Vector<Float> ts;
630    specCol.get(i, spec);
631    tsysCol.get(i, ts);
632    if (mode == "MUL" || mode == "DIV") {
633      //if (mode == "DIV") val = 1.0/val;
634      spec *= val;
635      specCol.put(i, spec);
636      if ( tsys ) {
637        ts *= val;
638        tsysCol.put(i, ts);
639      }
640    } else if ( mode == "ADD"  || mode == "SUB") {
641      //if (mode == "SUB") val *= -1.0;
642      spec += val;
643      specCol.put(i, spec);
644      if ( tsys ) {
645        ts += val;
646        tsysCol.put(i, ts);
647      }
648    }
649  }
650  return out;
651}
652
653CountedPtr< Scantable > STMath::arrayOperate( const CountedPtr< Scantable >& in,
654                                              const std::vector<float> val,
655                                              const std::string& mode,
656                                              const std::string& opmode,
657                                              bool tsys )
658{
659  CountedPtr< Scantable > out ;
660  if ( opmode == "channel" ) {
661    out = arrayOperateChannel( in, val, mode, tsys ) ;
662  }
663  else if ( opmode == "row" ) {
664    out = arrayOperateRow( in, val, mode, tsys ) ;
665  }
666  else {
667    throw( AipsError( "Unknown array operation mode." ) ) ;
668  }
669  return out ;
670}
671
672CountedPtr< Scantable > STMath::arrayOperateChannel( const CountedPtr< Scantable >& in,
673                                                     const std::vector<float> val,
674                                                     const std::string& mode,
675                                                     bool tsys )
676{
677  if ( val.size() == 1 ){
678    return unaryOperate( in, val[0], mode, tsys ) ;
679  }
680
681  // conformity of SPECTRA and TSYS
682  if ( tsys ) {
683    TableIterator titer(in->table(), "IFNO");
684    while ( !titer.pastEnd() ) {
685      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
686      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
687      Array<Float> spec = specCol.getColumn() ;
688      Array<Float> ts = tsysCol.getColumn() ;
689      if ( !spec.conform( ts ) ) {
690        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
691      }
692      titer.next() ;
693    }
694  }
695
696  // check if all spectra in the scantable have the same number of channel
697  vector<uInt> nchans;
698  vector<uInt> ifnos = in->getIFNos() ;
699  for ( uInt i = 0 ; i < ifnos.size() ; i++ ) {
700    nchans.push_back( in->nchan( ifnos[i] ) ) ;
701  }
702  Vector<uInt> mchans( nchans ) ;
703  if ( anyNE( mchans, mchans[0] ) ) {
704    throw( AipsError("All spectra in the input scantable must have the same number of channel for vector operation." ) ) ;
705  }
706
707  // check if vector size is equal to nchan
708  Vector<Float> fact( val ) ;
709  if ( fact.nelements() != mchans[0] ) {
710    throw( AipsError("Vector size must be 1 or be same as number of channel.") ) ;
711  }
712
713  // check divided by zero
714  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
715    throw( AipsError("Divided by zero is not recommended." ) ) ;
716  }
717
718  CountedPtr< Scantable > out = getScantable(in, false);
719  Table& tab = out->table();
720  ArrayColumn<Float> specCol(tab,"SPECTRA");
721  ArrayColumn<Float> tsysCol(tab,"TSYS");
722  if (mode == "DIV") fact = (float)1.0 / fact;
723  else if (mode == "SUB") fact *= (float)-1.0 ;
724  for (uInt i=0; i<tab.nrow(); ++i) {
725    Vector<Float> spec;
726    Vector<Float> ts;
727    specCol.get(i, spec);
728    tsysCol.get(i, ts);
729    if (mode == "MUL" || mode == "DIV") {
730      //if (mode == "DIV") fact = (float)1.0 / fact;
731      spec *= fact;
732      specCol.put(i, spec);
733      if ( tsys ) {
734        ts *= fact;
735        tsysCol.put(i, ts);
736      }
737    } else if ( mode == "ADD"  || mode == "SUB") {
738      //if (mode == "SUB") fact *= (float)-1.0 ;
739      spec += fact;
740      specCol.put(i, spec);
741      if ( tsys ) {
742        ts += fact;
743        tsysCol.put(i, ts);
744      }
745    }
746  }
747  return out;
748}
749
750CountedPtr< Scantable > STMath::arrayOperateRow( const CountedPtr< Scantable >& in,
751                                                 const std::vector<float> val,
752                                                 const std::string& mode,
753                                                 bool tsys )
754{
755  if ( val.size() == 1 ) {
756    return unaryOperate( in, val[0], mode, tsys ) ;
757  }
758
759  // conformity of SPECTRA and TSYS
760  if ( tsys ) {
761    TableIterator titer(in->table(), "IFNO");
762    while ( !titer.pastEnd() ) {
763      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
764      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
765      Array<Float> spec = specCol.getColumn() ;
766      Array<Float> ts = tsysCol.getColumn() ;
767      if ( !spec.conform( ts ) ) {
768        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
769      }
770      titer.next() ;
771    }
772  }
773
774  // check if vector size is equal to nrow
775  Vector<Float> fact( val ) ;
776  if (fact.nelements() != uInt(in->nrow())) {
777    throw( AipsError("Vector size must be 1 or be same as number of row.") ) ;
778  }
779
780  // check divided by zero
781  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
782    throw( AipsError("Divided by zero is not recommended." ) ) ;
783  }
784
785  CountedPtr< Scantable > out = getScantable(in, false);
786  Table& tab = out->table();
787  ArrayColumn<Float> specCol(tab,"SPECTRA");
788  ArrayColumn<Float> tsysCol(tab,"TSYS");
789  if (mode == "DIV") fact = (float)1.0 / fact;
790  if (mode == "SUB") fact *= (float)-1.0 ;
791  for (uInt i=0; i<tab.nrow(); ++i) {
792    Vector<Float> spec;
793    Vector<Float> ts;
794    specCol.get(i, spec);
795    tsysCol.get(i, ts);
796    if (mode == "MUL" || mode == "DIV") {
797      spec *= fact[i];
798      specCol.put(i, spec);
799      if ( tsys ) {
800        ts *= fact[i];
801        tsysCol.put(i, ts);
802      }
803    } else if ( mode == "ADD"  || mode == "SUB") {
804      spec += fact[i];
805      specCol.put(i, spec);
806      if ( tsys ) {
807        ts += fact[i];
808        tsysCol.put(i, ts);
809      }
810    }
811  }
812  return out;
813}
814
815CountedPtr< Scantable > STMath::array2dOperate( const CountedPtr< Scantable >& in,
816                                                const std::vector< std::vector<float> > val,
817                                                const std::string& mode,
818                                                bool tsys )
819{
820  // conformity of SPECTRA and TSYS
821  if ( tsys ) {
822    TableIterator titer(in->table(), "IFNO");
823    while ( !titer.pastEnd() ) {
824      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
825      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
826      Array<Float> spec = specCol.getColumn() ;
827      Array<Float> ts = tsysCol.getColumn() ;
828      if ( !spec.conform( ts ) ) {
829        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
830      }
831      titer.next() ;
832    }
833  }
834
835  // some checks
836  vector<uInt> nchans;
837  for (Int i = 0 ; i < in->nrow() ; i++) {
838    nchans.push_back((in->getSpectrum(i)).size());
839  }
840  //Vector<uInt> mchans( nchans ) ;
841  vector< Vector<Float> > facts ;
842  for ( uInt i = 0 ; i < nchans.size() ; i++ ) {
843    Vector<Float> tmp( val[i] ) ;
844    // check divided by zero
845    if ( ( mode == "DIV" ) && anyEQ( tmp, (float)0.0 ) ) {
846      throw( AipsError("Divided by zero is not recommended." ) ) ;
847    }
848    // conformity check
849    if ( tmp.nelements() != nchans[i] ) {
850      stringstream ss ;
851      ss << "Row " << i << ": Vector size must be same as number of channel." ;
852      throw( AipsError( ss.str() ) ) ;
853    }
854    facts.push_back( tmp ) ;
855  }
856
857
858  CountedPtr< Scantable > out = getScantable(in, false);
859  Table& tab = out->table();
860  ArrayColumn<Float> specCol(tab,"SPECTRA");
861  ArrayColumn<Float> tsysCol(tab,"TSYS");
862  for (uInt i=0; i<tab.nrow(); ++i) {
863    Vector<Float> fact = facts[i] ;
864    Vector<Float> spec;
865    Vector<Float> ts;
866    specCol.get(i, spec);
867    tsysCol.get(i, ts);
868    if (mode == "MUL" || mode == "DIV") {
869      if (mode == "DIV") fact = (float)1.0 / fact;
870      spec *= fact;
871      specCol.put(i, spec);
872      if ( tsys ) {
873        ts *= fact;
874        tsysCol.put(i, ts);
875      }
876    } else if ( mode == "ADD"  || mode == "SUB") {
877      if (mode == "SUB") fact *= (float)-1.0 ;
878      spec += fact;
879      specCol.put(i, spec);
880      if ( tsys ) {
881        ts += fact;
882        tsysCol.put(i, ts);
883      }
884    }
885  }
886  return out;
887}
888
889CountedPtr<Scantable> STMath::binaryOperate(const CountedPtr<Scantable>& left,
890                                            const CountedPtr<Scantable>& right,
891                                            const std::string& mode)
892{
893  bool insitu = insitu_;
894  if ( ! left->conformant(*right) ) {
895    throw(AipsError("'left' and 'right' scantables are not conformant."));
896  }
897  setInsitu(false);
898  CountedPtr< Scantable > out = getScantable(left, false);
899  setInsitu(insitu);
900  Table& tout = out->table();
901  Block<String> coln(5);
902  coln[0] = "SCANNO";  coln[1] = "CYCLENO";  coln[2] = "BEAMNO";
903  coln[3] = "IFNO";  coln[4] = "POLNO";
904  Table tmpl = tout.sort(coln);
905  Table tmpr = right->table().sort(coln);
906  ArrayColumn<Float> lspecCol(tmpl,"SPECTRA");
907  ROArrayColumn<Float> rspecCol(tmpr,"SPECTRA");
908  ArrayColumn<uChar> lflagCol(tmpl,"FLAGTRA");
909  ROArrayColumn<uChar> rflagCol(tmpr,"FLAGTRA");
910
911  for (uInt i=0; i<tout.nrow(); ++i) {
912    Vector<Float> lspecvec, rspecvec;
913    Vector<uChar> lflagvec, rflagvec;
914    lspecvec = lspecCol(i);    rspecvec = rspecCol(i);
915    lflagvec = lflagCol(i);    rflagvec = rflagCol(i);
916    MaskedArray<Float> mleft = maskedArray(lspecvec, lflagvec);
917    MaskedArray<Float> mright = maskedArray(rspecvec, rflagvec);
918    if (mode == "ADD") {
919      mleft += mright;
920    } else if ( mode == "SUB") {
921      mleft -= mright;
922    } else if ( mode == "MUL") {
923      mleft *= mright;
924    } else if ( mode == "DIV") {
925      mleft /= mright;
926    } else {
927      throw(AipsError("Illegal binary operator"));
928    }
929    lspecCol.put(i, mleft.getArray());
930  }
931  return out;
932}
933
934
935
936MaskedArray<Float> STMath::maskedArray( const Vector<Float>& s,
937                                        const Vector<uChar>& f)
938{
939  Vector<Bool> mask;
940  mask.resize(f.shape());
941  convertArray(mask, f);
942  return MaskedArray<Float>(s,!mask);
943}
944
945MaskedArray<Double> STMath::maskedArray( const Vector<Double>& s,
946                                         const Vector<uChar>& f)
947{
948  Vector<Bool> mask;
949  mask.resize(f.shape());
950  convertArray(mask, f);
951  return MaskedArray<Double>(s,!mask);
952}
953
954Vector<uChar> STMath::flagsFromMA(const MaskedArray<Float>& ma)
955{
956  const Vector<Bool>& m = ma.getMask();
957  Vector<uChar> flags(m.shape());
958  convertArray(flags, !m);
959  return flags;
960}
961
962CountedPtr< Scantable > STMath::autoQuotient( const CountedPtr< Scantable >& in,
963                                              const std::string & mode,
964                                              bool preserve )
965{
966  /// @todo make other modes available
967  /// modes should be "nearest", "pair"
968  // make this operation non insitu
969  (void) mode; //currently unused
970  const Table& tin = in->table();
971  Table ons = tin(tin.col("SRCTYPE") == Int(SrcType::PSON));
972  Table offs = tin(tin.col("SRCTYPE") == Int(SrcType::PSOFF));
973  if ( offs.nrow() == 0 )
974    throw(AipsError("No 'off' scans present."));
975  // put all "on" scans into output table
976
977  bool insitu = insitu_;
978  setInsitu(false);
979  CountedPtr< Scantable > out = getScantable(in, true);
980  setInsitu(insitu);
981  Table& tout = out->table();
982
983  TableCopy::copyRows(tout, ons);
984  TableRow row(tout);
985  ROScalarColumn<Double> offtimeCol(offs, "TIME");
986  ArrayColumn<Float> outspecCol(tout, "SPECTRA");
987  ROArrayColumn<Float> outtsysCol(tout, "TSYS");
988  ArrayColumn<uChar> outflagCol(tout, "FLAGTRA");
989  for (uInt i=0; i < tout.nrow(); ++i) {
990    const TableRecord& rec = row.get(i);
991    Double ontime = rec.asDouble("TIME");
992    Table presel = offs(offs.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
993                        && offs.col("IFNO") == Int(rec.asuInt("IFNO"))
994                        && offs.col("POLNO") == Int(rec.asuInt("POLNO")) );
995    ROScalarColumn<Double> offtimeCol(presel, "TIME");
996
997    Double mindeltat = min(abs(offtimeCol.getColumn() - ontime));
998    // Timestamp may vary within a cycle ???!!!
999    // increase this by 0.01 sec in case of rounding errors...
1000    // There might be a better way to do this.
1001    // fix to this fix. TIME is MJD, so 1.0d not 1.0s
1002    mindeltat += 0.01/24./60./60.;
1003    Table sel = presel( abs(presel.col("TIME")-ontime) <= mindeltat);
1004
1005    if ( sel.nrow() < 1 )  {
1006      throw(AipsError("No closest in time found... This could be a rounding "
1007                      "issue. Try quotient instead."));
1008    }
1009    TableRow offrow(sel);
1010    const TableRecord& offrec = offrow.get(0);//should only be one row
1011    RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
1012    RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
1013    RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
1014    /// @fixme this assumes tsys is a scalar not vector
1015    Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
1016    Vector<Float> specon, tsyson;
1017    outtsysCol.get(i, tsyson);
1018    outspecCol.get(i, specon);
1019    Vector<uChar> flagon;
1020    outflagCol.get(i, flagon);
1021    MaskedArray<Float> mon = maskedArray(specon, flagon);
1022    MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
1023    MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
1024    if (preserve) {
1025      quot -= tsysoffscalar;
1026    } else {
1027      quot -= tsyson[0];
1028    }
1029    outspecCol.put(i, quot.getArray());
1030    outflagCol.put(i, flagsFromMA(quot));
1031  }
1032  // renumber scanno
1033  TableIterator it(tout, "SCANNO");
1034  uInt i = 0;
1035  while ( !it.pastEnd() ) {
1036    Table t = it.table();
1037    TableVector<uInt> vec(t, "SCANNO");
1038    vec = i;
1039    ++i;
1040    ++it;
1041  }
1042  return out;
1043}
1044
1045
1046CountedPtr< Scantable > STMath::quotient( const CountedPtr< Scantable > & on,
1047                                          const CountedPtr< Scantable > & off,
1048                                          bool preserve )
1049{
1050  bool insitu = insitu_;
1051  if ( ! on->conformant(*off) ) {
1052    throw(AipsError("'on' and 'off' scantables are not conformant."));
1053  }
1054  setInsitu(false);
1055  CountedPtr< Scantable > out = getScantable(on, false);
1056  setInsitu(insitu);
1057  Table& tout = out->table();
1058  const Table& toff = off->table();
1059  TableIterator sit(tout, "SCANNO");
1060  TableIterator s2it(toff, "SCANNO");
1061  while ( !sit.pastEnd() ) {
1062    Table ton = sit.table();
1063    TableRow row(ton);
1064    Table t = s2it.table();
1065    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1066    ROArrayColumn<Float> outtsysCol(ton, "TSYS");
1067    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1068    for (uInt i=0; i < ton.nrow(); ++i) {
1069      const TableRecord& rec = row.get(i);
1070      Table offsel = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1071                          && t.col("IFNO") == Int(rec.asuInt("IFNO"))
1072                          && t.col("POLNO") == Int(rec.asuInt("POLNO")) );
1073      if ( offsel.nrow() == 0 )
1074        throw AipsError("STMath::quotient: no matching off");
1075      TableRow offrow(offsel);
1076      const TableRecord& offrec = offrow.get(0);//should be ncycles - take first
1077      RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
1078      RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
1079      RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
1080      Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
1081      Vector<Float> specon, tsyson;
1082      outtsysCol.get(i, tsyson);
1083      outspecCol.get(i, specon);
1084      Vector<uChar> flagon;
1085      outflagCol.get(i, flagon);
1086      MaskedArray<Float> mon = maskedArray(specon, flagon);
1087      MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
1088      MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
1089      if (preserve) {
1090        quot -= tsysoffscalar;
1091      } else {
1092        quot -= tsyson[0];
1093      }
1094      outspecCol.put(i, quot.getArray());
1095      outflagCol.put(i, flagsFromMA(quot));
1096    }
1097    ++sit;
1098    ++s2it;
1099    // take the first off for each on scan which doesn't have a
1100    // matching off scan
1101    // non <= noff:  matching pairs, non > noff matching pairs then first off
1102    if ( s2it.pastEnd() ) s2it.reset();
1103  }
1104  return out;
1105}
1106
1107// dototalpower (migration of GBTIDL procedure dototalpower.pro)
1108// calibrate the CAL on-off pair. It calculate Tsys and average CAL on-off subintegrations
1109// do it for each cycles in a specific scan.
1110CountedPtr< Scantable > STMath::dototalpower( const CountedPtr< Scantable >& calon,
1111                                              const CountedPtr< Scantable >& caloff, Float tcal )
1112{
1113  if ( ! calon->conformant(*caloff) ) {
1114    throw(AipsError("'CAL on' and 'CAL off' scantables are not conformant."));
1115  }
1116  setInsitu(false);
1117  CountedPtr< Scantable > out = getScantable(caloff, false);
1118  Table& tout = out->table();
1119  const Table& tcon = calon->table();
1120  Vector<Float> tcalout;
1121
1122  std::map<uInt,uInt> tcalIdToRecNoMap;
1123  const Table& calOffTcalTable = caloff->tcal().table();
1124  {
1125    ROScalarColumn<uInt> calOffTcalTable_IDcol(calOffTcalTable, "ID");
1126    const Vector<uInt> tcalIds(calOffTcalTable_IDcol.getColumn());
1127    size_t tcalIdsEnd = tcalIds.nelements();
1128    for (uInt i = 0; i < tcalIdsEnd; i++) {
1129      tcalIdToRecNoMap[tcalIds[i]] = i;
1130    }
1131  }
1132  ROArrayColumn<Float> calOffTcalTable_TCALcol(calOffTcalTable, "TCAL");
1133
1134  if ( tout.nrow() != tcon.nrow() ) {
1135    throw(AipsError("Mismatch in number of rows to form cal on - off pair."));
1136  }
1137  // iteration by scanno or cycle no.
1138  TableIterator sit(tout, "SCANNO");
1139  TableIterator s2it(tcon, "SCANNO");
1140  while ( !sit.pastEnd() ) {
1141    Table toff = sit.table();
1142    TableRow row(toff);
1143    Table t = s2it.table();
1144    ScalarColumn<Double> outintCol(toff, "INTERVAL");
1145    ArrayColumn<Float> outspecCol(toff, "SPECTRA");
1146    ArrayColumn<Float> outtsysCol(toff, "TSYS");
1147    ArrayColumn<uChar> outflagCol(toff, "FLAGTRA");
1148    ROScalarColumn<uInt> outtcalIdCol(toff, "TCAL_ID");
1149    ROScalarColumn<uInt> outpolCol(toff, "POLNO");
1150    ROScalarColumn<Double> onintCol(t, "INTERVAL");
1151    ROArrayColumn<Float> onspecCol(t, "SPECTRA");
1152    ROArrayColumn<Float> ontsysCol(t, "TSYS");
1153    ROArrayColumn<uChar> onflagCol(t, "FLAGTRA");
1154    //ROScalarColumn<uInt> ontcalIdCol(t, "TCAL_ID");
1155
1156    for (uInt i=0; i < toff.nrow(); ++i) {
1157      //skip these checks -> assumes the data order are the same between the cal on off pairs
1158      //
1159      Vector<Float> specCalon, specCaloff;
1160      // to store scalar (mean) tsys
1161      Vector<Float> tsysout(1);
1162      uInt tcalId, polno;
1163      Double offint, onint;
1164      outpolCol.get(i, polno);
1165      outspecCol.get(i, specCaloff);
1166      onspecCol.get(i, specCalon);
1167      Vector<uChar> flagCaloff, flagCalon;
1168      outflagCol.get(i, flagCaloff);
1169      onflagCol.get(i, flagCalon);
1170      outtcalIdCol.get(i, tcalId);
1171      outintCol.get(i, offint);
1172      onintCol.get(i, onint);
1173      // caluculate mean Tsys
1174      uInt nchan = specCaloff.nelements();
1175      // percentage of edge cut off
1176      uInt pc = 10;
1177      uInt bchan = nchan/pc;
1178      uInt echan = nchan-bchan;
1179
1180      Slicer chansl(IPosition(1,bchan-1), IPosition(1,echan-1), IPosition(1,1),Slicer::endIsLast);
1181      Vector<Float> testsubsp = specCaloff(chansl);
1182      MaskedArray<Float> spoff = maskedArray( specCaloff(chansl),flagCaloff(chansl) );
1183      MaskedArray<Float> spon = maskedArray( specCalon(chansl),flagCalon(chansl) );
1184      MaskedArray<Float> spdiff = spon-spoff;
1185      uInt noff = spoff.nelementsValid();
1186      //uInt non = spon.nelementsValid();
1187      uInt ndiff = spdiff.nelementsValid();
1188      Float meantsys;
1189
1190/**
1191      Double subspec, subdiff;
1192      uInt usednchan;
1193      subspec = 0;
1194      subdiff = 0;
1195      usednchan = 0;
1196      for(uInt k=(bchan-1); k<echan; k++) {
1197        subspec += specCaloff[k];
1198        subdiff += static_cast<Double>(specCalon[k]-specCaloff[k]);
1199        ++usednchan;
1200      }
1201**/
1202      // get tcal if input tcal <= 0
1203      Float tcalUsed;
1204      tcalUsed = tcal;
1205      if ( tcal <= 0.0 ) {
1206        uInt tcalRecNo = tcalIdToRecNoMap[tcalId];
1207        calOffTcalTable_TCALcol.get(tcalRecNo, tcalout);
1208//         if (polno<=3) {
1209//           tcalUsed = tcalout[polno];
1210//         }
1211//         else {
1212//           tcalUsed = tcalout[0];
1213//         }
1214        if ( tcalout.size() == 1 )
1215          tcalUsed = tcalout[0] ;
1216        else if ( tcalout.size() == nchan )
1217          tcalUsed = mean(tcalout) ;
1218        else {
1219          uInt ipol = polno ;
1220          if ( ipol > 3 ) ipol = 0 ;
1221          tcalUsed = tcalout[ipol] ;
1222        }
1223      }
1224
1225      Float meanoff;
1226      Float meandiff;
1227      if (noff && ndiff) {
1228         //Debug
1229         //if(noff!=ndiff) cerr<<"noff and ndiff is not equal"<<endl;
1230         //LogIO os( LogOrigin( "STMath", "dototalpower()", WHERE ) ) ;
1231         //if(noff!=ndiff) os<<"noff and ndiff is not equal"<<LogIO::POST;
1232         meanoff = sum(spoff)/noff;
1233         meandiff = sum(spdiff)/ndiff;
1234         meantsys= (meanoff/meandiff )*tcalUsed + tcalUsed/2;
1235      }
1236      else {
1237         meantsys=1;
1238      }
1239
1240      tsysout[0] = Float(meantsys);
1241      MaskedArray<Float> mcaloff = maskedArray(specCaloff, flagCaloff);
1242      MaskedArray<Float> mcalon = maskedArray(specCalon, flagCalon);
1243      MaskedArray<Float> sig =   Float(0.5) * (mcaloff + mcalon);
1244      //uInt ncaloff = mcaloff.nelementsValid();
1245      //uInt ncalon = mcalon.nelementsValid();
1246
1247      outintCol.put(i, offint+onint);
1248      outspecCol.put(i, sig.getArray());
1249      outflagCol.put(i, flagsFromMA(sig));
1250      outtsysCol.put(i, tsysout);
1251    }
1252    ++sit;
1253    ++s2it;
1254  }
1255  return out;
1256}
1257
1258//dosigref - migrated from GBT IDL's dosigref.pro, do calibration of position switch
1259// observatiions.
1260// input: sig and ref scantables, and an optional boxcar smoothing width(default width=0,
1261//        no smoothing).
1262// output: resultant scantable [= (sig-ref/ref)*tsys]
1263CountedPtr< Scantable > STMath::dosigref( const CountedPtr < Scantable >& sig,
1264                                          const CountedPtr < Scantable >& ref,
1265                                          int smoothref,
1266                                          casa::Float tsysv,
1267                                          casa::Float tau )
1268{
1269  LogIO os( casa::LogOrigin( "STMath", "dosigref()"));
1270if ( ! ref->conformant(*sig) ) {
1271    throw(AipsError("'sig' and 'ref' scantables are not conformant."));
1272  }
1273  setInsitu(false);
1274  CountedPtr< Scantable > out = getScantable(sig, false);
1275  CountedPtr< Scantable > smref;
1276  if ( smoothref > 1 ) {
1277    float fsmoothref = static_cast<float>(smoothref);
1278    std::string inkernel = "boxcar";
1279    smref = smooth(ref, inkernel, fsmoothref );
1280    ostringstream oss;
1281    os <<"Applied smoothing of "<<fsmoothref<<" on the reference."
1282       << LogIO::POST;
1283  }
1284  else {
1285    smref = ref;
1286  }
1287  Table& tout = out->table();
1288  const Table& tref = smref->table();
1289  if ( tout.nrow() != tref.nrow() ) {
1290    throw(AipsError("Mismatch in number of rows to form on-source and reference pair."));
1291  }
1292  // iteration by scanno? or cycle no.
1293  TableIterator sit(tout, "SCANNO");
1294  TableIterator s2it(tref, "SCANNO");
1295  while ( !sit.pastEnd() ) {
1296    Table ton = sit.table();
1297    Table t = s2it.table();
1298    ScalarColumn<Double> outintCol(ton, "INTERVAL");
1299    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1300    ArrayColumn<Float> outtsysCol(ton, "TSYS");
1301    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1302    ArrayColumn<Float> refspecCol(t, "SPECTRA");
1303    ROScalarColumn<Double> refintCol(t, "INTERVAL");
1304    ROArrayColumn<Float> reftsysCol(t, "TSYS");
1305    ArrayColumn<uChar> refflagCol(t, "FLAGTRA");
1306    ROScalarColumn<Float> refelevCol(t, "ELEVATION");
1307    for (uInt i=0; i < ton.nrow(); ++i) {
1308
1309      Double onint, refint;
1310      Vector<Float> specon, specref;
1311      // to store scalar (mean) tsys
1312      Vector<Float> tsysref;
1313      outintCol.get(i, onint);
1314      refintCol.get(i, refint);
1315      outspecCol.get(i, specon);
1316      refspecCol.get(i, specref);
1317      Vector<uChar> flagref, flagon;
1318      outflagCol.get(i, flagon);
1319      refflagCol.get(i, flagref);
1320      reftsysCol.get(i, tsysref);
1321
1322      Float tsysrefscalar;
1323      if ( tsysv > 0.0 ) {
1324        ostringstream oss;
1325        Float elev;
1326        refelevCol.get(i, elev);
1327        os << "user specified Tsys = " << tsysv;
1328        // do recalc elevation if EL = 0
1329        if ( elev == 0 ) {
1330          throw(AipsError("EL=0, elevation data is missing."));
1331        } else {
1332          if ( tau <= 0.0 ) {
1333            throw(AipsError("Valid tau is not supplied."));
1334          } else {
1335            tsysrefscalar = tsysv * exp(tau/elev);
1336          }
1337        }
1338        os << ", corrected (for El) tsys= "<<tsysrefscalar;
1339      }
1340      else {
1341        tsysrefscalar = tsysref[0];
1342      }
1343      //get quotient spectrum
1344      MaskedArray<Float> mref = maskedArray(specref, flagref);
1345      MaskedArray<Float> mon = maskedArray(specon, flagon);
1346      MaskedArray<Float> specres =   tsysrefscalar*((mon - mref)/mref);
1347      Double resint = onint*refint*smoothref/(onint+refint*smoothref);
1348
1349      //Debug
1350      //cerr<<"Tsys used="<<tsysrefscalar<<endl;
1351      //LogIO os( LogOrigin( "STMath", "dosigref", WHERE ) ) ;
1352      //os<<"Tsys used="<<tsysrefscalar<<LogIO::POST;
1353      // fill the result, replay signal tsys by reference tsys
1354      outintCol.put(i, resint);
1355      outspecCol.put(i, specres.getArray());
1356      outflagCol.put(i, flagsFromMA(specres));
1357      outtsysCol.put(i, tsysref);
1358    }
1359    ++sit;
1360    ++s2it;
1361  }
1362 
1363  out->setFluxUnit("K");
1364
1365  return out;
1366}
1367
1368CountedPtr< Scantable > STMath::donod(const casa::CountedPtr<Scantable>& s,
1369                                     const std::vector<int>& scans,
1370                                     int smoothref,
1371                                     casa::Float tsysv,
1372                                     casa::Float tau,
1373                                     casa::Float tcal )
1374
1375{
1376  setInsitu(false);
1377  LogIO os( casa::LogOrigin( "STMath", "donod()"));
1378  STSelector sel;
1379  std::vector<int> scan1, scan2, beams, types;
1380  std::vector< vector<int> > scanpair;
1381  //std::vector<string> calstate;
1382  std::vector<int> calstate;
1383  String msg;
1384
1385  CountedPtr< Scantable > s1b1on, s1b1off, s1b2on, s1b2off;
1386  CountedPtr< Scantable > s2b1on, s2b1off, s2b2on, s2b2off;
1387
1388  std::vector< CountedPtr< Scantable > > sctables;
1389  sctables.push_back(s1b1on);
1390  sctables.push_back(s1b1off);
1391  sctables.push_back(s1b2on);
1392  sctables.push_back(s1b2off);
1393  sctables.push_back(s2b1on);
1394  sctables.push_back(s2b1off);
1395  sctables.push_back(s2b2on);
1396  sctables.push_back(s2b2off);
1397
1398  //check scanlist
1399  int n=s->checkScanInfo(scans);
1400  if (n==1) {
1401     throw(AipsError("Incorrect scan pairs. "));
1402  }
1403
1404  // Assume scans contain only a pair of consecutive scan numbers.
1405  // It is assumed that first beam, b1,  is on target.
1406  // There is no check if the first beam is on or not.
1407  if ( scans.size()==1 ) {
1408    scan1.push_back(scans[0]);
1409    scan2.push_back(scans[0]+1);
1410  } else if ( scans.size()==2 ) {
1411   scan1.push_back(scans[0]);
1412   scan2.push_back(scans[1]);
1413  } else {
1414    if ( scans.size()%2 == 0 ) {
1415      for (uInt i=0; i<scans.size(); i++) {
1416        if (i%2 == 0) {
1417          scan1.push_back(scans[i]);
1418        }
1419        else {
1420          scan2.push_back(scans[i]);
1421        }
1422      }
1423    } else {
1424      throw(AipsError("Odd numbers of scans, cannot form pairs."));
1425    }
1426  }
1427  scanpair.push_back(scan1);
1428  scanpair.push_back(scan2);
1429  //calstate.push_back("*calon");
1430  //calstate.push_back("*[^calon]");
1431  calstate.push_back(SrcType::NODCAL);
1432  calstate.push_back(SrcType::NOD);
1433  CountedPtr< Scantable > ws = getScantable(s, false);
1434  uInt l=0;
1435  while ( l < sctables.size() ) {
1436    for (uInt i=0; i < 2; i++) {
1437      for (uInt j=0; j < 2; j++) {
1438        for (uInt k=0; k < 2; k++) {
1439          sel.reset();
1440          sel.setScans(scanpair[i]);
1441          //sel.setName(calstate[k]);
1442          types.clear();
1443          types.push_back(calstate[k]);
1444          sel.setTypes(types);
1445          beams.clear();
1446          beams.push_back(j);
1447          sel.setBeams(beams);
1448          ws->setSelection(sel);
1449          sctables[l]= getScantable(ws, false);
1450          l++;
1451        }
1452      }
1453    }
1454  }
1455
1456  // replace here by splitData or getData functionality
1457  CountedPtr< Scantable > sig1;
1458  CountedPtr< Scantable > ref1;
1459  CountedPtr< Scantable > sig2;
1460  CountedPtr< Scantable > ref2;
1461  CountedPtr< Scantable > calb1;
1462  CountedPtr< Scantable > calb2;
1463
1464  msg=String("Processing dototalpower for subset of the data");
1465  os << msg << LogIO::POST;
1466  // Debug for IRC CS data
1467  //float tcal1=7.0;
1468  //float tcal2=4.0;
1469  sig1 = dototalpower(sctables[0], sctables[1], tcal=tcal);
1470  ref1 = dototalpower(sctables[2], sctables[3], tcal=tcal);
1471  ref2 = dototalpower(sctables[4], sctables[5], tcal=tcal);
1472  sig2 = dototalpower(sctables[6], sctables[7], tcal=tcal);
1473
1474  // correction of user-specified tsys for elevation here
1475
1476  // dosigref calibration
1477  msg=String("Processing dosigref for subset of the data");
1478  os << msg  << endl;
1479  calb1=dosigref(sig1,ref2,smoothref,tsysv,tau);
1480  calb2=dosigref(sig2,ref1,smoothref,tsysv,tau);
1481
1482  // iteration by scanno or cycle no.
1483  Table& tcalb1 = calb1->table();
1484  Table& tcalb2 = calb2->table();
1485  TableIterator sit(tcalb1, "SCANNO");
1486  TableIterator s2it(tcalb2, "SCANNO");
1487  while ( !sit.pastEnd() ) {
1488    Table t1 = sit.table();
1489    Table t2= s2it.table();
1490    ArrayColumn<Float> outspecCol(t1, "SPECTRA");
1491    ArrayColumn<Float> outtsysCol(t1, "TSYS");
1492    ArrayColumn<uChar> outflagCol(t1, "FLAGTRA");
1493    ScalarColumn<Double> outintCol(t1, "INTERVAL");
1494    ArrayColumn<Float> t2specCol(t2, "SPECTRA");
1495    ROArrayColumn<Float> t2tsysCol(t2, "TSYS");
1496    ArrayColumn<uChar> t2flagCol(t2, "FLAGTRA");
1497    ROScalarColumn<Double> t2intCol(t2, "INTERVAL");
1498    for (uInt i=0; i < t1.nrow(); ++i) {
1499      Vector<Float> spec1, spec2;
1500      // to store scalar (mean) tsys
1501      Vector<Float> tsys1, tsys2;
1502      Vector<uChar> flag1, flag2;
1503      Double tint1, tint2;
1504      outspecCol.get(i, spec1);
1505      t2specCol.get(i, spec2);
1506      outflagCol.get(i, flag1);
1507      t2flagCol.get(i, flag2);
1508      outtsysCol.get(i, tsys1);
1509      t2tsysCol.get(i, tsys2);
1510      outintCol.get(i, tint1);
1511      t2intCol.get(i, tint2);
1512      // average
1513      // assume scalar tsys for weights
1514      Float wt1, wt2, tsyssq1, tsyssq2;
1515      tsyssq1 = tsys1[0]*tsys1[0];
1516      tsyssq2 = tsys2[0]*tsys2[0];
1517      wt1 = Float(tint1)/tsyssq1;
1518      wt2 = Float(tint2)/tsyssq2;
1519      Float invsumwt=1/(wt1+wt2);
1520      MaskedArray<Float> mspec1 = maskedArray(spec1, flag1);
1521      MaskedArray<Float> mspec2 = maskedArray(spec2, flag2);
1522      MaskedArray<Float> avspec =  invsumwt * (wt1*mspec1 + wt2*mspec2);
1523      //Array<Float> avtsys =  Float(0.5) * (tsys1 + tsys2);
1524      // cerr<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<endl;
1525      // LogIO os( LogOrigin( "STMath", "donod", WHERE ) ) ;
1526      // os<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<LogIO::POST;
1527      tsys1[0] = sqrt(tsyssq1 + tsyssq2);
1528      Array<Float> avtsys =  tsys1;
1529
1530      outspecCol.put(i, avspec.getArray());
1531      outflagCol.put(i, flagsFromMA(avspec));
1532      outtsysCol.put(i, avtsys);
1533    }
1534    ++sit;
1535    ++s2it;
1536  }
1537
1538  calb1->setFluxUnit("K");
1539 
1540  return calb1;
1541}
1542
1543//GBTIDL version of frequency switched data calibration
1544CountedPtr< Scantable > STMath::dofs( const CountedPtr< Scantable >& s,
1545                                      const std::vector<int>& scans,
1546                                      int smoothref,
1547                                      casa::Float tsysv,
1548                                      casa::Float tau,
1549                                      casa::Float tcal )
1550{
1551
1552
1553  (void) scans; //currently unused
1554  STSelector sel;
1555  CountedPtr< Scantable > ws = getScantable(s, false);
1556  CountedPtr< Scantable > sig, sigwcal, ref, refwcal;
1557  CountedPtr< Scantable > calsig, calref, out, out1, out2;
1558  Bool nofold=False;
1559  vector<int> types ;
1560
1561  //split the data
1562  //sel.setName("*_fs");
1563  types.push_back( SrcType::FSON ) ;
1564  sel.setTypes( types ) ;
1565  ws->setSelection(sel);
1566  sig = getScantable(ws,false);
1567  sel.reset();
1568  types.clear() ;
1569  //sel.setName("*_fs_calon");
1570  types.push_back( SrcType::FONCAL ) ;
1571  sel.setTypes( types ) ;
1572  ws->setSelection(sel);
1573  sigwcal = getScantable(ws,false);
1574  sel.reset();
1575  types.clear() ;
1576  //sel.setName("*_fsr");
1577  types.push_back( SrcType::FSOFF ) ;
1578  sel.setTypes( types ) ;
1579  ws->setSelection(sel);
1580  ref = getScantable(ws,false);
1581  sel.reset();
1582  types.clear() ;
1583  //sel.setName("*_fsr_calon");
1584  types.push_back( SrcType::FOFFCAL ) ;
1585  sel.setTypes( types ) ;
1586  ws->setSelection(sel);
1587  refwcal = getScantable(ws,false);
1588  sel.reset() ;
1589  types.clear() ;
1590
1591  calsig = dototalpower(sigwcal, sig, tcal=tcal);
1592  calref = dototalpower(refwcal, ref, tcal=tcal);
1593
1594  out1=dosigref(calsig,calref,smoothref,tsysv,tau);
1595  out2=dosigref(calref,calsig,smoothref,tsysv,tau);
1596
1597  Table& tabout1=out1->table();
1598  Table& tabout2=out2->table();
1599  ROScalarColumn<uInt> freqidCol1(tabout1, "FREQ_ID");
1600  ScalarColumn<uInt> freqidCol2(tabout2, "FREQ_ID");
1601  ROArrayColumn<Float> specCol(tabout2, "SPECTRA");
1602  Vector<Float> spec; specCol.get(0, spec);
1603  uInt nchan = spec.nelements();
1604  uInt freqid1; freqidCol1.get(0,freqid1);
1605  uInt freqid2; freqidCol2.get(0,freqid2);
1606  Double rp1, rp2, rv1, rv2, inc1, inc2;
1607  out1->frequencies().getEntry(rp1, rv1, inc1, freqid1);
1608  out2->frequencies().getEntry(rp2, rv2, inc2, freqid2);
1609  //cerr << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << endl ;
1610  //LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1611  //os << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << LogIO::POST ;
1612  if (rp1==rp2) {
1613    Double foffset = rv1 - rv2;
1614    uInt choffset = static_cast<uInt>(foffset/abs(inc2));
1615    if (choffset >= nchan) {
1616      //cerr<<"out-band frequency switching, no folding"<<endl;
1617      LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1618      os<<"out-band frequency switching, no folding"<<LogIO::POST;
1619      nofold = True;
1620    }
1621  }
1622
1623  if (nofold) {
1624    std::vector< CountedPtr< Scantable > > tabs;
1625    tabs.push_back(out1);
1626    tabs.push_back(out2);
1627    out = merge(tabs);
1628  }
1629  else {
1630    //out = out1;
1631    Double choffset = ( rv1 - rv2 ) / inc2 ;
1632    out = dofold( out1, out2, choffset ) ;
1633  }
1634   
1635  out->setFluxUnit("K");
1636
1637  return out;
1638}
1639
1640CountedPtr<Scantable> STMath::dofold( const CountedPtr<Scantable> &sig,
1641                                      const CountedPtr<Scantable> &ref,
1642                                      Double choffset,
1643                                      Double choffset2 )
1644{
1645  LogIO os( LogOrigin( "STMath", "dofold", WHERE ) ) ;
1646  os << "choffset=" << choffset << " choffset2=" << choffset2 << LogIO::POST ;
1647
1648  // output scantable
1649  CountedPtr<Scantable> out = getScantable( sig, false ) ;
1650
1651  // separate choffset to integer part and decimal part
1652  Int ioffset = (Int)choffset ;
1653  Double doffset = choffset - ioffset ;
1654  Int ioffset2 = (Int)choffset2 ;
1655  Double doffset2 = choffset2 - ioffset2 ;
1656  os << "ioffset=" << ioffset << " doffset=" << doffset << LogIO::POST ;
1657  os << "ioffset2=" << ioffset2 << " doffset2=" << doffset2 << LogIO::POST ; 
1658
1659  // get column
1660  ROArrayColumn<Float> specCol1( sig->table(), "SPECTRA" ) ;
1661  ROArrayColumn<Float> specCol2( ref->table(), "SPECTRA" ) ;
1662  ROArrayColumn<Float> tsysCol1( sig->table(), "TSYS" ) ;
1663  ROArrayColumn<Float> tsysCol2( ref->table(), "TSYS" ) ;
1664  ROArrayColumn<uChar> flagCol1( sig->table(), "FLAGTRA" ) ;
1665  ROArrayColumn<uChar> flagCol2( ref->table(), "FLAGTRA" ) ;
1666  ROScalarColumn<Double> mjdCol1( sig->table(), "TIME" ) ;
1667  ROScalarColumn<Double> mjdCol2( ref->table(), "TIME" ) ;
1668  ROScalarColumn<Double> intervalCol1( sig->table(), "INTERVAL" ) ;
1669  ROScalarColumn<Double> intervalCol2( ref->table(), "INTERVAL" ) ;
1670
1671  // check
1672  if ( ioffset == 0 ) {
1673    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1674    os << "channel offset is zero, no folding" << LogIO::POST ;
1675    return out ;
1676  }
1677  int nchan = ref->nchan() ;
1678  if ( abs(ioffset) >= nchan ) {
1679    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1680    os << "out-band frequency switching, no folding" << LogIO::POST ;
1681    return out ;
1682  }
1683
1684  // attach column for output scantable
1685  ArrayColumn<Float> specColOut( out->table(), "SPECTRA" ) ;
1686  ArrayColumn<uChar> flagColOut( out->table(), "FLAGTRA" ) ;
1687  ArrayColumn<Float> tsysColOut( out->table(), "TSYS" ) ;
1688  ScalarColumn<Double> mjdColOut( out->table(), "TIME" ) ;
1689  ScalarColumn<Double> intervalColOut( out->table(), "INTERVAL" ) ;
1690  ScalarColumn<uInt> fidColOut( out->table(), "FREQ_ID" ) ;
1691
1692  // for each row
1693  // assume that the data order are same between sig and ref
1694  RowAccumulator acc( asap::W_TINTSYS ) ;
1695  for ( int i = 0 ; i < sig->nrow() ; i++ ) {
1696    // get values
1697    Vector<Float> spsig ;
1698    specCol1.get( i, spsig ) ;
1699    Vector<Float> spref ;
1700    specCol2.get( i, spref ) ;
1701    Vector<Float> tsyssig ;
1702    tsysCol1.get( i, tsyssig ) ;
1703    Vector<Float> tsysref ;
1704    tsysCol2.get( i, tsysref ) ;
1705    Vector<uChar> flagsig ;
1706    flagCol1.get( i, flagsig ) ;
1707    Vector<uChar> flagref ;
1708    flagCol2.get( i, flagref ) ;
1709    Double timesig ;
1710    mjdCol1.get( i, timesig ) ;
1711    Double timeref ;
1712    mjdCol2.get( i, timeref ) ;
1713    Double intsig ;
1714    intervalCol1.get( i, intsig ) ;
1715    Double intref ;
1716    intervalCol2.get( i, intref ) ;
1717
1718    // shift reference spectra
1719    int refchan = spref.nelements() ;
1720    Vector<Float> sspref( spref.nelements() ) ;
1721    Vector<Float> stsysref( tsysref.nelements() ) ;
1722    Vector<uChar> sflagref( flagref.nelements() ) ;
1723    if ( ioffset > 0 ) {
1724      // SPECTRA and FLAGTRA
1725      for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1726        sspref[j] = spref[j+ioffset] ;
1727        sflagref[j] = flagref[j+ioffset] ;
1728      }
1729      for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1730        sspref[j] = spref[j-refchan+ioffset] ;
1731        sflagref[j] = flagref[j-refchan+ioffset] ;
1732      }
1733      spref = sspref.copy() ;
1734      flagref = sflagref.copy() ;
1735      for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1736        sspref[j] = doffset * spref[j+1] + ( 1.0 - doffset ) * spref[j] ;
1737        sflagref[j] = flagref[j+1] + flagref[j] ;
1738      }
1739      sspref[refchan-1] = doffset * spref[0] + ( 1.0 - doffset ) * spref[refchan-1] ;
1740      sflagref[refchan-1] = flagref[0] + flagref[refchan-1] ;
1741
1742      // TSYS
1743      if ( spref.nelements() == tsysref.nelements() ) {
1744        for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1745          stsysref[j] = tsysref[j+ioffset] ;
1746        }
1747        for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1748          stsysref[j] = tsysref[j-refchan+ioffset] ;
1749        }
1750        tsysref = stsysref.copy() ;
1751        for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1752          stsysref[j] = doffset * tsysref[j+1] + ( 1.0 - doffset ) * tsysref[j] ;
1753        }
1754        stsysref[refchan-1] = doffset * tsysref[0] + ( 1.0 - doffset ) * tsysref[refchan-1] ;
1755      }
1756    }
1757    else {
1758      // SPECTRA and FLAGTRA
1759      for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1760        sspref[j] = spref[refchan+ioffset+j] ;
1761        sflagref[j] = flagref[refchan+ioffset+j] ;
1762      }
1763      for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1764        sspref[j] = spref[j+ioffset] ;
1765        sflagref[j] = flagref[j+ioffset] ;
1766      }
1767      spref = sspref.copy() ;
1768      flagref = sflagref.copy() ;
1769      sspref[0] = doffset * spref[refchan-1] + ( 1.0 - doffset ) * spref[0] ;
1770      sflagref[0] = flagref[0] + flagref[refchan-1] ;
1771      for ( int j = 1 ; j < refchan ; j++ ) {
1772        sspref[j] = doffset * spref[j-1] + ( 1.0 - doffset ) * spref[j] ;
1773        sflagref[j] = flagref[j-1] + flagref[j] ;
1774      }
1775      // TSYS
1776      if ( spref.nelements() == tsysref.nelements() ) {
1777        for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1778          stsysref[j] = tsysref[refchan+ioffset+j] ;
1779        }
1780        for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1781          stsysref[j] = tsysref[j+ioffset] ;
1782        }
1783        tsysref = stsysref.copy() ;
1784        stsysref[0] = doffset * tsysref[refchan-1] + ( 1.0 - doffset ) * tsysref[0] ;
1785        for ( int j = 1 ; j < refchan ; j++ ) {
1786          stsysref[j] = doffset * tsysref[j-1] + ( 1.0 - doffset ) * tsysref[j] ;
1787        }
1788      }
1789    }
1790
1791    // shift signal spectra if necessary (only for APEX?)
1792    if ( choffset2 != 0.0 ) {
1793      int sigchan = spsig.nelements() ;
1794      Vector<Float> sspsig( spsig.nelements() ) ;
1795      Vector<Float> stsyssig( tsyssig.nelements() ) ;
1796      Vector<uChar> sflagsig( flagsig.nelements() ) ;
1797      if ( ioffset2 > 0 ) {
1798        // SPECTRA and FLAGTRA
1799        for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1800          sspsig[j] = spsig[j+ioffset2] ;
1801          sflagsig[j] = flagsig[j+ioffset2] ;
1802        }
1803        for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1804          sspsig[j] = spsig[j-sigchan+ioffset2] ;
1805          sflagsig[j] = flagsig[j-sigchan+ioffset2] ;
1806        }
1807        spsig = sspsig.copy() ;
1808        flagsig = sflagsig.copy() ;
1809        for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1810          sspsig[j] = doffset2 * spsig[j+1] + ( 1.0 - doffset2 ) * spsig[j] ;
1811          sflagsig[j] = flagsig[j+1] || flagsig[j] ;
1812        }
1813        sspsig[sigchan-1] = doffset2 * spsig[0] + ( 1.0 - doffset2 ) * spsig[sigchan-1] ;
1814        sflagsig[sigchan-1] = flagsig[0] || flagsig[sigchan-1] ;
1815        // TSTS
1816        if ( spsig.nelements() == tsyssig.nelements() ) {
1817          for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1818            stsyssig[j] = tsyssig[j+ioffset2] ;
1819          }
1820          for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1821            stsyssig[j] = tsyssig[j-sigchan+ioffset2] ;
1822          }
1823          tsyssig = stsyssig.copy() ;
1824          for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1825            stsyssig[j] = doffset2 * tsyssig[j+1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1826          }
1827          stsyssig[sigchan-1] = doffset2 * tsyssig[0] + ( 1.0 - doffset2 ) * tsyssig[sigchan-1] ;
1828        }
1829      }
1830      else {
1831        // SPECTRA and FLAGTRA
1832        for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1833          sspsig[j] = spsig[sigchan+ioffset2+j] ;
1834          sflagsig[j] = flagsig[sigchan+ioffset2+j] ;
1835        }
1836        for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1837          sspsig[j] = spsig[j+ioffset2] ;
1838          sflagsig[j] = flagsig[j+ioffset2] ;
1839        }
1840        spsig = sspsig.copy() ;
1841        flagsig = sflagsig.copy() ;
1842        sspsig[0] = doffset2 * spsig[sigchan-1] + ( 1.0 - doffset2 ) * spsig[0] ;
1843        sflagsig[0] = flagsig[0] + flagsig[sigchan-1] ;
1844        for ( int j = 1 ; j < sigchan ; j++ ) {
1845          sspsig[j] = doffset2 * spsig[j-1] + ( 1.0 - doffset2 ) * spsig[j] ;
1846          sflagsig[j] = flagsig[j-1] + flagsig[j] ;
1847        }
1848        // TSYS
1849        if ( spsig.nelements() == tsyssig.nelements() ) {
1850          for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1851            stsyssig[j] = tsyssig[sigchan+ioffset2+j] ;
1852          }
1853          for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1854            stsyssig[j] = tsyssig[j+ioffset2] ;
1855          }
1856          tsyssig = stsyssig.copy() ;
1857          stsyssig[0] = doffset2 * tsyssig[sigchan-1] + ( 1.0 - doffset2 ) * tsyssig[0] ;
1858          for ( int j = 1 ; j < sigchan ; j++ ) {
1859            stsyssig[j] = doffset2 * tsyssig[j-1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1860          }
1861        }
1862      }
1863    }
1864
1865    // folding
1866    acc.add( spsig, !flagsig, tsyssig, intsig, timesig ) ;
1867    acc.add( sspref, !sflagref, stsysref, intref, timeref ) ;
1868   
1869    // put result
1870    specColOut.put( i, acc.getSpectrum() ) ;
1871    const Vector<Bool> &msk = acc.getMask() ;
1872    Vector<uChar> flg( msk.shape() ) ;
1873    convertArray( flg, !msk ) ;
1874    flagColOut.put( i, flg ) ;
1875    tsysColOut.put( i, acc.getTsys() ) ;
1876    intervalColOut.put( i, acc.getInterval() ) ;
1877    mjdColOut.put( i, acc.getTime() ) ;
1878    // change FREQ_ID to unshifted IF setting (only for APEX?)
1879    if ( choffset2 != 0.0 ) {
1880      uInt freqid = fidColOut( 0 ) ; // assume single-IF data
1881      double refpix, refval, increment ;
1882      out->frequencies().getEntry( refpix, refval, increment, freqid ) ;
1883      refval -= choffset * increment ;
1884      uInt newfreqid = out->frequencies().addEntry( refpix, refval, increment ) ;
1885      Vector<uInt> freqids = fidColOut.getColumn() ;
1886      for ( uInt j = 0 ; j < freqids.nelements() ; j++ ) {
1887        if ( freqids[j] == freqid )
1888          freqids[j] = newfreqid ;
1889      }
1890      fidColOut.putColumn( freqids ) ;
1891    }
1892
1893    acc.reset() ;
1894  }
1895
1896  return out ;
1897}
1898
1899
1900CountedPtr< Scantable > STMath::freqSwitch( const CountedPtr< Scantable >& in )
1901{
1902  // make copy or reference
1903  CountedPtr< Scantable > out = getScantable(in, false);
1904  Table& tout = out->table();
1905  Block<String> cols(4);
1906  cols[0] = String("SCANNO");
1907  cols[1] = String("CYCLENO");
1908  cols[2] = String("BEAMNO");
1909  cols[3] = String("POLNO");
1910  TableIterator iter(tout, cols);
1911  while (!iter.pastEnd()) {
1912    Table subt = iter.table();
1913    // this should leave us with two rows for the two IFs....if not ignore
1914    if (subt.nrow() != 2 ) {
1915      continue;
1916    }
1917    ArrayColumn<Float> specCol(subt, "SPECTRA");
1918    ArrayColumn<Float> tsysCol(subt, "TSYS");
1919    ArrayColumn<uChar> flagCol(subt, "FLAGTRA");
1920    Vector<Float> onspec,offspec, ontsys, offtsys;
1921    Vector<uChar> onflag, offflag;
1922    tsysCol.get(0, ontsys);   tsysCol.get(1, offtsys);
1923    specCol.get(0, onspec);   specCol.get(1, offspec);
1924    flagCol.get(0, onflag);   flagCol.get(1, offflag);
1925    MaskedArray<Float> on  = maskedArray(onspec, onflag);
1926    MaskedArray<Float> off = maskedArray(offspec, offflag);
1927    MaskedArray<Float> oncopy = on.copy();
1928
1929    on /= off; on -= 1.0f;
1930    on *= ontsys[0];
1931    off /= oncopy; off -= 1.0f;
1932    off *= offtsys[0];
1933    specCol.put(0, on.getArray());
1934    const Vector<Bool>& m0 = on.getMask();
1935    Vector<uChar> flags0(m0.shape());
1936    convertArray(flags0, !m0);
1937    flagCol.put(0, flags0);
1938
1939    specCol.put(1, off.getArray());
1940    const Vector<Bool>& m1 = off.getMask();
1941    Vector<uChar> flags1(m1.shape());
1942    convertArray(flags1, !m1);
1943    flagCol.put(1, flags1);
1944    ++iter;
1945  }
1946
1947  return out;
1948}
1949
1950std::vector< float > STMath::statistic( const CountedPtr< Scantable > & in,
1951                                        const std::vector< bool > & mask,
1952                                        const std::string& which )
1953{
1954
1955  Vector<Bool> m(mask);
1956  const Table& tab = in->table();
1957  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1958  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1959  std::vector<float> out;
1960  for (uInt i=0; i < tab.nrow(); ++i ) {
1961    Vector<Float> spec; specCol.get(i, spec);
1962    Vector<uChar> flag; flagCol.get(i, flag);
1963    MaskedArray<Float> ma  = maskedArray(spec, flag);
1964    float outstat = 0.0;
1965    if ( spec.nelements() == m.nelements() ) {
1966      outstat = mathutil::statistics(which, ma(m));
1967    } else {
1968      outstat = mathutil::statistics(which, ma);
1969    }
1970    out.push_back(outstat);
1971  }
1972  return out;
1973}
1974
1975std::vector< float > STMath::statisticRow( const CountedPtr< Scantable > & in,
1976                                        const std::vector< bool > & mask,
1977                                        const std::string& which,
1978                                        int row )
1979{
1980
1981  Vector<Bool> m(mask);
1982  const Table& tab = in->table();
1983  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1984  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1985  std::vector<float> out;
1986
1987  Vector<Float> spec; specCol.get(row, spec);
1988  Vector<uChar> flag; flagCol.get(row, flag);
1989  MaskedArray<Float> ma  = maskedArray(spec, flag);
1990  float outstat = 0.0;
1991  if ( spec.nelements() == m.nelements() ) {
1992    outstat = mathutil::statistics(which, ma(m));
1993  } else {
1994    outstat = mathutil::statistics(which, ma);
1995  }
1996  out.push_back(outstat);
1997
1998  return out;
1999}
2000
2001std::vector< int > STMath::minMaxChan( const CountedPtr< Scantable > & in,
2002                                        const std::vector< bool > & mask,
2003                                        const std::string& which )
2004{
2005
2006  Vector<Bool> m(mask);
2007  const Table& tab = in->table();
2008  ROArrayColumn<Float> specCol(tab, "SPECTRA");
2009  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2010  std::vector<int> out;
2011  for (uInt i=0; i < tab.nrow(); ++i ) {
2012    Vector<Float> spec; specCol.get(i, spec);
2013    Vector<uChar> flag; flagCol.get(i, flag);
2014    MaskedArray<Float> ma  = maskedArray(spec, flag);
2015    if (ma.ndim() != 1) {
2016      throw (ArrayError(
2017          "std::vector<int> STMath::minMaxChan("
2018          "ContedPtr<Scantable> &in, std::vector<bool> &mask, "
2019          " std::string &which)"
2020          " - MaskedArray is not 1D"));
2021    }
2022    IPosition outpos(1,0);
2023    if ( spec.nelements() == m.nelements() ) {
2024      outpos = mathutil::minMaxPos(which, ma(m));
2025    } else {
2026      outpos = mathutil::minMaxPos(which, ma);
2027    }
2028    out.push_back(outpos[0]);
2029  }
2030  return out;
2031}
2032
2033CountedPtr< Scantable > STMath::bin( const CountedPtr< Scantable > & in,
2034                                     int width )
2035{
2036  if ( !in->getSelection().empty() ) throw(AipsError("Can't bin subset of the data."));
2037  CountedPtr< Scantable > out = getScantable(in, false);
2038  Table& tout = out->table();
2039  out->frequencies().rescale(width, "BIN");
2040  ArrayColumn<Float> specCol(tout, "SPECTRA");
2041  ArrayColumn<uChar> flagCol(tout, "FLAGTRA");
2042  ArrayColumn<Float> tsysCol(tout, "TSYS");
2043
2044  for (uInt i=0; i < tout.nrow(); ++i ) {
2045    MaskedArray<Float> main  = maskedArray(specCol(i), flagCol(i));
2046    MaskedArray<Float> maout;
2047    LatticeUtilities::bin(maout, main, 0, Int(width));
2048    specCol.put(i, maout.getArray());
2049    flagCol.put(i, flagsFromMA(maout));
2050    if (tsysCol(i).nelements() == specCol(i).nelements()) {
2051      MaskedArray<Float> matsysin = maskedArray(tsysCol(i), flagCol(i));
2052      MaskedArray<Float> matsysout;
2053      LatticeUtilities::bin(matsysout, matsysin, 0, Int(width));
2054      tsysCol.put(i, matsysout.getArray());
2055    }
2056    // take only the first binned spectrum's length for the deprecated
2057    // global header item nChan
2058    if (i==0) tout.rwKeywordSet().define(String("nChan"),
2059                                       Int(maout.getArray().nelements()));
2060  }
2061  return out;
2062}
2063
2064CountedPtr< Scantable > STMath::resample( const CountedPtr< Scantable >& in,
2065                                          const std::string& method,
2066                                          float width )
2067//
2068// Should add the possibility of width being specified in km/s. This means
2069// that for each freqID (SpectralCoordinate) we will need to convert to an
2070// average channel width (say at the reference pixel).  Then we would need
2071// to be careful to make sure each spectrum (of different freqID)
2072// is the same length.
2073//
2074{
2075  //InterpolateArray1D<Double,Float>::InterpolationMethod interp;
2076  Int interpMethod(stringToIMethod(method));
2077
2078  CountedPtr< Scantable > out = getScantable(in, false);
2079  Table& tout = out->table();
2080
2081// Resample SpectralCoordinates (one per freqID)
2082  out->frequencies().rescale(width, "RESAMPLE");
2083  TableIterator iter(tout, "IFNO");
2084  TableRow row(tout);
2085  while ( !iter.pastEnd() ) {
2086    Table tab = iter.table();
2087    ArrayColumn<Float> specCol(tab, "SPECTRA");
2088    //ArrayColumn<Float> tsysCol(tout, "TSYS");
2089    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2090    Vector<Float> spec;
2091    Vector<uChar> flag;
2092    specCol.get(0,spec); // the number of channels should be constant per IF
2093    uInt nChanIn = spec.nelements();
2094    Vector<Float> xIn(nChanIn); indgen(xIn);
2095    Int fac =  Int(nChanIn/width);
2096    Vector<Float> xOut(fac+10); // 10 to be safe - resize later
2097    uInt k = 0;
2098    Float x = 0.0;
2099    while (x < Float(nChanIn) ) {
2100      xOut(k) = x;
2101      k++;
2102      x += width;
2103    }
2104    uInt nChanOut = k;
2105    xOut.resize(nChanOut, True);
2106    // process all rows for this IFNO
2107    Vector<Float> specOut;
2108    Vector<Bool> maskOut;
2109    Vector<uChar> flagOut;
2110    for (uInt i=0; i < tab.nrow(); ++i) {
2111      specCol.get(i, spec);
2112      flagCol.get(i, flag);
2113      Vector<Bool> mask(flag.nelements());
2114      convertArray(mask, flag);
2115
2116      IPosition shapeIn(spec.shape());
2117      //sh.nchan = nChanOut;
2118      InterpolateArray1D<Float,Float>::interpolate(specOut, maskOut, xOut,
2119                                                   xIn, spec, mask,
2120                                                   interpMethod, True, True);
2121      /// @todo do the same for channel based Tsys
2122      flagOut.resize(maskOut.nelements());
2123      convertArray(flagOut, maskOut);
2124      specCol.put(i, specOut);
2125      flagCol.put(i, flagOut);
2126    }
2127    ++iter;
2128  }
2129
2130  return out;
2131}
2132
2133STMath::imethod STMath::stringToIMethod(const std::string& in)
2134{
2135  static STMath::imap lookup;
2136
2137  // initialize the lookup table if necessary
2138  if ( lookup.empty() ) {
2139    lookup["nearest"]   = InterpolateArray1D<Double,Float>::nearestNeighbour;
2140    lookup["linear"] = InterpolateArray1D<Double,Float>::linear;
2141    lookup["cubic"]  = InterpolateArray1D<Double,Float>::cubic;
2142    lookup["spline"]  = InterpolateArray1D<Double,Float>::spline;
2143  }
2144
2145  STMath::imap::const_iterator iter = lookup.find(in);
2146
2147  if ( lookup.end() == iter ) {
2148    std::string message = in;
2149    message += " is not a valid interpolation mode";
2150    throw(AipsError(message));
2151  }
2152  return iter->second;
2153}
2154
2155WeightType STMath::stringToWeight(const std::string& in)
2156{
2157  static std::map<std::string, WeightType> lookup;
2158
2159  // initialize the lookup table if necessary
2160  if ( lookup.empty() ) {
2161    lookup["NONE"]   = asap::W_NONE;
2162    lookup["TINT"] = asap::W_TINT;
2163    lookup["TINTSYS"]  = asap::W_TINTSYS;
2164    lookup["TSYS"]  = asap::W_TSYS;
2165    lookup["VAR"]  = asap::W_VAR;
2166  }
2167
2168  std::map<std::string, WeightType>::const_iterator iter = lookup.find(in);
2169
2170  if ( lookup.end() == iter ) {
2171    std::string message = in;
2172    message += " is not a valid weighting mode";
2173    throw(AipsError(message));
2174  }
2175  return iter->second;
2176}
2177
2178CountedPtr< Scantable > STMath::gainElevation( const CountedPtr< Scantable >& in,
2179                                               const vector< float > & coeff,
2180                                               const std::string & filename,
2181                                               const std::string& method)
2182{
2183  LogIO os( LogOrigin( "STMath", "gainElevation", WHERE ) ) ;
2184  // Get elevation data from Scantable and convert to degrees
2185  CountedPtr< Scantable > out = getScantable(in, false);
2186  Table& tab = out->table();
2187  ROScalarColumn<Float> elev(tab, "ELEVATION");
2188  Vector<Float> x = elev.getColumn();
2189  x *= Float(180 / C::pi);                        // Degrees
2190
2191  Vector<Float> coeffs(coeff);
2192  const uInt nc = coeffs.nelements();
2193  if ( filename.length() > 0 && nc > 0 ) {
2194    throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
2195  }
2196
2197  // Correct
2198  if ( nc > 0 || filename.length() == 0 ) {
2199    // Find instrument
2200    Bool throwit = True;
2201    Instrument inst =
2202      STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2203                                throwit);
2204
2205    // Set polynomial
2206    Polynomial<Float>* ppoly = 0;
2207    Vector<Float> coeff;
2208    String msg;
2209    if ( nc > 0 ) {
2210      ppoly = new Polynomial<Float>(nc-1);
2211      coeff = coeffs;
2212      msg = String("user");
2213    } else {
2214      STAttr sdAttr;
2215      coeff = sdAttr.gainElevationPoly(inst);
2216      ppoly = new Polynomial<Float>(coeff.nelements()-1);
2217      msg = String("built in");
2218    }
2219
2220    if ( coeff.nelements() > 0 ) {
2221      ppoly->setCoefficients(coeff);
2222    } else {
2223      delete ppoly;
2224      throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
2225    }
2226    os << "Making polynomial correction with " << msg << " coefficients:" << endl;
2227    os << "   " <<  coeff << LogIO::POST;
2228    const uInt nrow = tab.nrow();
2229    Vector<Float> factor(nrow);
2230    for ( uInt i=0; i < nrow; ++i ) {
2231      factor[i] = 1.0 / (*ppoly)(x[i]);
2232    }
2233    delete ppoly;
2234    scaleByVector(tab, factor, true);
2235
2236  } else {
2237    // Read and correct
2238    os << "Making correction from ascii Table" << LogIO::POST;
2239    scaleFromAsciiTable(tab, filename, method, x, true);
2240  }
2241  return out;
2242}
2243
2244void STMath::scaleFromAsciiTable(Table& in, const std::string& filename,
2245                                 const std::string& method,
2246                                 const Vector<Float>& xout, bool dotsys)
2247{
2248
2249// Read gain-elevation ascii file data into a Table.
2250
2251  String formatString;
2252  Table tbl = readAsciiTable(formatString, Table::Memory, filename, "", "", False);
2253  scaleFromTable(in, tbl, method, xout, dotsys);
2254}
2255
2256void STMath::scaleFromTable(Table& in,
2257                            const Table& table,
2258                            const std::string& method,
2259                            const Vector<Float>& xout, bool dotsys)
2260{
2261
2262  ROScalarColumn<Float> geElCol(table, "ELEVATION");
2263  ROScalarColumn<Float> geFacCol(table, "FACTOR");
2264  Vector<Float> xin = geElCol.getColumn();
2265  Vector<Float> yin = geFacCol.getColumn();
2266  Vector<Bool> maskin(xin.nelements(),True);
2267
2268  // Interpolate (and extrapolate) with desired method
2269
2270  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2271
2272   Vector<Float> yout;
2273   Vector<Bool> maskout;
2274   InterpolateArray1D<Float,Float>::interpolate(yout, maskout, xout,
2275                                                xin, yin, maskin, interp,
2276                                                True, True);
2277
2278   scaleByVector(in, Float(1.0)/yout, dotsys);
2279}
2280
2281void STMath::scaleByVector( Table& in,
2282                            const Vector< Float >& factor,
2283                            bool dotsys )
2284{
2285  uInt nrow = in.nrow();
2286  if ( factor.nelements() != nrow ) {
2287    throw(AipsError("factors.nelements() != table.nelements()"));
2288  }
2289  ArrayColumn<Float> specCol(in, "SPECTRA");
2290  ArrayColumn<uChar> flagCol(in, "FLAGTRA");
2291  ArrayColumn<Float> tsysCol(in, "TSYS");
2292  for (uInt i=0; i < nrow; ++i) {
2293    MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2294    ma *= factor[i];
2295    specCol.put(i, ma.getArray());
2296    flagCol.put(i, flagsFromMA(ma));
2297    if ( dotsys ) {
2298      Vector<Float> tsys = tsysCol(i);
2299      tsys *= factor[i];
2300      tsysCol.put(i,tsys);
2301    }
2302  }
2303}
2304
2305CountedPtr< Scantable > STMath::convertFlux( const CountedPtr< Scantable >& in,
2306                                             float d, float etaap,
2307                                             float jyperk )
2308{
2309  LogIO os( LogOrigin( "STMath", "convertFlux", WHERE ) ) ;
2310
2311  CountedPtr< Scantable > out = getScantable(in, false);
2312  Table& tab = in->table();
2313  Table& outtab = out->table();
2314  Unit fluxUnit(tab.keywordSet().asString("FluxUnit"));
2315  Unit K(String("K"));
2316  Unit JY(String("Jy"));
2317
2318  bool tokelvin = true;
2319  Double cfac = 1.0;
2320
2321  if ( fluxUnit == JY ) {
2322    os << "Converting to K" << LogIO::POST;
2323    Quantum<Double> t(1.0,fluxUnit);
2324    Quantum<Double> t2 = t.get(JY);
2325    cfac = (t2 / t).getValue();               // value to Jy
2326
2327    tokelvin = true;
2328    out->setFluxUnit("K");
2329  } else if ( fluxUnit == K ) {
2330    os << "Converting to Jy" << LogIO::POST;
2331    Quantum<Double> t(1.0,fluxUnit);
2332    Quantum<Double> t2 = t.get(K);
2333    cfac = (t2 / t).getValue();              // value to K
2334
2335    tokelvin = false;
2336    out->setFluxUnit("Jy");
2337  } else {
2338    throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
2339  }
2340  // Make sure input values are converted to either Jy or K first...
2341  Float factor = cfac;
2342
2343  // Select method
2344  if (jyperk > 0.0) {
2345    factor *= jyperk;
2346    if ( tokelvin ) factor = 1.0 / jyperk;
2347    os << "Jy/K = " << jyperk << LogIO::POST;
2348    Vector<Float> factors(outtab.nrow(), factor);
2349    scaleByVector(outtab,factors, false);
2350  } else if ( etaap > 0.0) {
2351    if (d < 0) {
2352      Instrument inst =
2353        STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2354                                  True);
2355      STAttr sda;
2356      d = sda.diameter(inst);
2357    }
2358    jyperk = STAttr::findJyPerK(etaap, d);
2359    os << "Jy/K = " << jyperk << LogIO::POST;
2360    factor *= jyperk;
2361    if ( tokelvin ) {
2362      factor = 1.0 / factor;
2363    }
2364    Vector<Float> factors(outtab.nrow(), factor);
2365    scaleByVector(outtab, factors, False);
2366  } else {
2367
2368    // OK now we must deal with automatic look up of values.
2369    // We must also deal with the fact that the factors need
2370    // to be computed per IF and may be different and may
2371    // change per integration.
2372
2373    os <<"Looking up conversion factors" << LogIO::POST;
2374    convertBrightnessUnits(out, tokelvin, cfac);
2375  }
2376
2377  return out;
2378}
2379
2380void STMath::convertBrightnessUnits( CountedPtr<Scantable>& in,
2381                                     bool tokelvin, float cfac )
2382{
2383  Table& table = in->table();
2384  Instrument inst =
2385    STAttr::convertInstrument(table.keywordSet().asString("AntennaName"), True);
2386  TableIterator iter(table, "FREQ_ID");
2387  STFrequencies stfreqs = in->frequencies();
2388  STAttr sdAtt;
2389  while (!iter.pastEnd()) {
2390    Table tab = iter.table();
2391    ArrayColumn<Float> specCol(tab, "SPECTRA");
2392    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2393    ROScalarColumn<uInt> freqidCol(tab, "FREQ_ID");
2394    MEpoch::ROScalarColumn timeCol(tab, "TIME");
2395
2396    uInt freqid; freqidCol.get(0, freqid);
2397    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2398    // STAttr.JyPerK has a Vector interface... change sometime.
2399    Vector<Float> freqs(1,stfreqs.getRefFreq(freqid, tmpspec.nelements()));
2400    for ( uInt i=0; i<tab.nrow(); ++i) {
2401      Float jyperk = (sdAtt.JyPerK(inst, timeCol(i), freqs))[0];
2402      Float factor = cfac * jyperk;
2403      if ( tokelvin ) factor = Float(1.0) / factor;
2404      MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2405      ma *= factor;
2406      specCol.put(i, ma.getArray());
2407      flagCol.put(i, flagsFromMA(ma));
2408    }
2409  ++iter;
2410  }
2411}
2412
2413CountedPtr< Scantable > STMath::opacity( const CountedPtr< Scantable > & in,
2414                                         const std::vector<float>& tau )
2415{
2416  CountedPtr< Scantable > out = getScantable(in, false);
2417
2418  Table outtab = out->table();
2419
2420  const Int ntau = uInt(tau.size());
2421  std::vector<float>::const_iterator tauit = tau.begin();
2422  AlwaysAssert((ntau == 1 || ntau == in->nif() || ntau == in->nif() * in->npol()),
2423               AipsError);
2424  TableIterator iiter(outtab, "IFNO");
2425  while ( !iiter.pastEnd() ) {
2426    Table itab = iiter.table();
2427    TableIterator piter(itab, "POLNO");
2428    while ( !piter.pastEnd() ) {
2429      Table tab = piter.table();
2430      ROScalarColumn<Float> elev(tab, "ELEVATION");
2431      ArrayColumn<Float> specCol(tab, "SPECTRA");
2432      ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2433      ArrayColumn<Float> tsysCol(tab, "TSYS");
2434      for ( uInt i=0; i<tab.nrow(); ++i) {
2435        Float zdist = Float(C::pi_2) - elev(i);
2436        Float factor = exp(*tauit/cos(zdist));
2437        MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2438        ma *= factor;
2439        specCol.put(i, ma.getArray());
2440        flagCol.put(i, flagsFromMA(ma));
2441        Vector<Float> tsys;
2442        tsysCol.get(i, tsys);
2443        tsys *= factor;
2444        tsysCol.put(i, tsys);
2445      }
2446      if (ntau == in->nif()*in->npol() ) {
2447        tauit++;
2448      }
2449      piter++;
2450    }
2451    if (ntau >= in->nif() ) {
2452      tauit++;
2453    }
2454    iiter++;
2455  }
2456  return out;
2457}
2458
2459CountedPtr< Scantable > STMath::smoothOther( const CountedPtr< Scantable >& in,
2460                                             const std::string& kernel,
2461                                             float width, int order)
2462{
2463  CountedPtr< Scantable > out = getScantable(in, false);
2464  Table table = out->table();
2465
2466  TableIterator iter(table, "IFNO");
2467  while (!iter.pastEnd()) {
2468    Table tab = iter.table();
2469    ArrayColumn<Float> specCol(tab, "SPECTRA");
2470    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2471    Vector<Float> spec;
2472    Vector<uChar> flag;
2473    for (uInt i = 0; i < tab.nrow(); ++i) {
2474      specCol.get(i, spec);
2475      flagCol.get(i, flag);
2476      Vector<Bool> mask(flag.nelements());
2477      convertArray(mask, flag);
2478      Vector<Float> specout;
2479      Vector<Bool> maskout;
2480      if (kernel == "hanning") {
2481        mathutil::hanning(specout, maskout, spec, !mask);
2482      } else if (kernel == "rmedian") {
2483        mathutil::runningMedian(specout, maskout, spec , mask, width);
2484      } else if (kernel == "poly") {
2485        mathutil::polyfit(specout, maskout, spec, !mask, width, order);
2486      }
2487
2488      for (uInt j = 0; j < flag.nelements(); ++j) {
2489        uChar userFlag = 1 << 7;
2490        if (maskout[j]==True) userFlag = 0 << 7;
2491        flag(j) = userFlag;
2492      }
2493
2494      flagCol.put(i, flag);
2495      specCol.put(i, specout);
2496    }
2497  ++iter;
2498  }
2499  return out;
2500}
2501
2502CountedPtr< Scantable > STMath::smooth( const CountedPtr< Scantable >& in,
2503                                        const std::string& kernel, float width,
2504                                        int order)
2505{
2506  if (kernel == "rmedian"  || kernel == "hanning" || kernel == "poly") {
2507    return smoothOther(in, kernel, width, order);
2508  }
2509  CountedPtr< Scantable > out = getScantable(in, false);
2510  Table& table = out->table();
2511  VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernel);
2512  // same IFNO should have same no of channels
2513  // this saves overhead
2514  TableIterator iter(table, "IFNO");
2515  while (!iter.pastEnd()) {
2516    Table tab = iter.table();
2517    ArrayColumn<Float> specCol(tab, "SPECTRA");
2518    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2519    Vector<Float> spec = specCol( 0 );
2520    uInt nchan = spec.nelements();
2521    Vector<Float> kvec = VectorKernel::make(type, width, nchan, True, False);
2522    Convolver<Float> conv(kvec, IPosition(1,nchan));
2523    Vector<uChar> flag;
2524    Vector<Bool> mask(nchan);
2525    for ( uInt i=0; i<tab.nrow(); ++i) {
2526      specCol.get(i, spec);
2527      flagCol.get(i, flag);
2528      convertArray(mask, flag);
2529      Vector<Float> specout;
2530      //mathutil::replaceMaskByZero(specout, mask);
2531      mathutil::replaceMaskByZero(spec, !mask);
2532      //std::vector<bool> vmask;
2533      //(!mask).tovector(vmask);
2534      //mathutil::doZeroOrderInterpolation(spec, vmask);
2535      conv.linearConv(specout, spec);
2536      specCol.put(i, specout);
2537    }
2538    ++iter;
2539  }
2540  return out;
2541}
2542
2543CountedPtr< Scantable >
2544STMath::merge( const std::vector< CountedPtr < Scantable > >& in,
2545               const std::string &freqTol )
2546{
2547  Double freqTolInHz = 0.0; // default is 0.0Hz (merge only when exact match)
2548  if (freqTol.size() > 0) {
2549    Quantum<Double> freqTolInQuantity;
2550    if (!Quantum<Double>::read(freqTolInQuantity, freqTol)) {
2551      throw(AipsError("Failed to convert freqTol string to quantity"));
2552    }
2553    if (!freqTolInQuantity.isConform("Hz")) {
2554      throw(AipsError("Invalid freqTol string"));
2555    }
2556    freqTolInHz = freqTolInQuantity.getValue("Hz");
2557    LogIO os(LogOrigin("STMath", "merge", WHERE));
2558    os << "frequency tolerance = " << freqTolInHz << "Hz" << LogIO::POST;
2559  }
2560 
2561  if ( in.size() < 2 ) {
2562    throw(AipsError("Need at least two scantables to perform a merge."));
2563  }
2564  std::vector<CountedPtr < Scantable > >::const_iterator it = in.begin();
2565  bool insitu = insitu_;
2566  setInsitu(false);
2567  CountedPtr< Scantable > out = getScantable(*it, false);
2568  setInsitu(insitu);
2569  Table& tout = out->table();
2570  ScalarColumn<uInt> freqidcol(tout,"FREQ_ID"), molidcol(tout, "MOLECULE_ID");
2571  ScalarColumn<uInt> scannocol(tout,"SCANNO"), focusidcol(tout,"FOCUS_ID");
2572  ScalarColumn<uInt> ifnocol(tout, "IFNO");
2573  // Renumber SCANNO to be 0-based
2574  Vector<uInt> scannos = scannocol.getColumn();
2575  uInt offset = min(scannos);
2576  scannos -= offset;
2577  scannocol.putColumn(scannos);
2578  uInt newscanno = max(scannos)+1;
2579  ++it;
2580
2581  // new IFNO
2582  uInt ifnoCounter = max(ifnocol.getColumn()) + 1;
2583 
2584  // Here we assume that each IFNO has unique MOLECULE_ID
2585  // molIdMap:
2586  //    KEY: IFNO
2587  //    VALUE: MOLECULE_ID
2588  map<uInt, uInt> molIdMap;
2589  {
2590    TableIterator ifit(tout, "IFNO");
2591    while (!ifit.pastEnd()) {
2592      ROTableRow row(ifit.table());
2593      const TableRecord& rec = row.get(0);
2594      molIdMap[rec.asuInt("IFNO")] = rec.asuInt("MOLECULE_ID");
2595      ifit.next();
2596    }
2597  }
2598 
2599  while ( it != in.end() ){
2600    // Check FREQUENCIES/BASEFRAME
2601    if ( out->frequencies().getFrame(true) != (*it)->frequencies().getFrame(true) ) {
2602      throw(AipsError("BASEFRAME is not identical"));
2603    }
2604   
2605    if ( ! (*it)->conformant(*out) ) {
2606      // non conformant.
2607      LogIO os( LogOrigin( "STMath", "merge()", WHERE ) ) ;
2608      os << LogIO::SEVERE << "Can't merge scantables as header informations (any one of AntennaName, Equinox, and FluxUnit) differ." << LogIO::EXCEPTION ;
2609    }
2610    out->appendToHistoryTable((*it)->history());
2611    const Table& tab = (*it)->table();
2612
2613    Block<String> cols(3);
2614    cols[0] = String("FREQ_ID");
2615    cols[1] = String("MOLECULE_ID");
2616    cols[2] = String("FOCUS_ID");
2617   
2618    TableIterator scanit(tab, "SCANNO");
2619    while (!scanit.pastEnd()) {
2620      TableIterator subit(scanit.table(), cols);
2621      while ( !subit.pastEnd() ) {
2622        uInt nrow = tout.nrow();
2623        Table thetab = subit.table();
2624        ROTableRow row(thetab);
2625        Vector<uInt> thecolvals(thetab.nrow());
2626        // The selected subset of table should have
2627        // the equal FREQ_ID, MOLECULE_ID, and FOCUS_ID values.
2628        const TableRecord& rec = row.get(0);
2629        tout.addRow(thetab.nrow());
2630        TableCopy::copyRows(tout, thetab, nrow, 0, thetab.nrow());
2631
2632        Slicer slice(IPosition(1, nrow), IPosition(1, thetab.nrow()),
2633                     Slicer::endIsLength);
2634
2635        // Set the proper FREQ_ID
2636        Double rv,rp,inc;
2637        (*it)->frequencies().getEntry(rp, rv, inc, rec.asuInt("FREQ_ID"));
2638        uInt id;
2639       
2640        // default value is new unique IFNO
2641        uInt newifno = ifnoCounter;
2642        Bool isIfMerged = False;
2643        uInt nchan = rec.asArrayFloat("SPECTRA").shape()[0];
2644        //id = out->frequencies().addEntry(rp, rv, inc);
2645        if ( !out->frequencies().match(rp, rv, inc, freqTolInHz, id) ) {
2646          // add new entry to FREQUENCIES table
2647          id = out->frequencies().addEntry(rp, rv, inc);
2648
2649          // increment counter for IFNO
2650          ifnoCounter++;
2651        }
2652        else {
2653          // should renumber IFNO to be same as existing rows that have same FREQ_ID
2654          LogIO os(LogOrigin("STMath", "merge", WHERE));
2655          Table outFreqIdSelected = tout(tout.col("FREQ_ID") == id);
2656          TableIterator _iter(outFreqIdSelected, "IFNO");
2657          map<uInt, uInt> nchanMap;
2658          while (!_iter.pastEnd()) {
2659            const Table _table = _iter.table();
2660            ROTableRow _row(_table);
2661            const TableRecord &_rec = _row.get(0);
2662            uInt nchan = _rec.asArrayFloat("SPECTRA").shape()[0];
2663            if (nchanMap.find(nchan) != nchanMap.end()) {
2664              throw(AipsError("There are non-unique IFNOs assigned to spectra that have same FREQ_ID and same nchan. Something wrong."));
2665            }
2666            nchanMap[nchan] = _rec.asuInt("IFNO");
2667            _iter.next();
2668          }
2669
2670          os << LogIO::DEBUGGING << "nchanMap for " << id << ":" << LogIO::POST;
2671          for (map<uInt, uInt>::iterator i = nchanMap.begin(); i != nchanMap.end(); ++i) {
2672            os << LogIO::DEBUGGING << "nchanMap[" << i->first << "] = " << i->second << LogIO::POST;
2673          }
2674
2675          if (nchanMap.find(nchan) == nchanMap.end()) {
2676            // increment counter for IFNO
2677            ifnoCounter++;
2678          }
2679          else {
2680            // renumber IFNO to be same as existing value that corresponds to nchan
2681            newifno = nchanMap[nchan];
2682            isIfMerged = True;
2683          }
2684          os << LogIO::DEBUGGING << "newifno = " << newifno << LogIO::POST;
2685        }
2686        thecolvals = id;
2687        freqidcol.putColumnRange(slice, thecolvals);
2688
2689        thecolvals = newifno;
2690        ifnocol.putColumnRange(slice, thecolvals);
2691       
2692        // Set the proper MOLECULE_ID
2693        Vector<String> name,fname;Vector<Double> rf;
2694        (*it)->molecules().getEntry(rf, name, fname, rec.asuInt("MOLECULE_ID"));
2695        id = out->molecules().addEntry(rf, name, fname);
2696        if (molIdMap.find(newifno) == molIdMap.end()) {
2697          // add new entry to molIdMap
2698          molIdMap[newifno] = id;
2699        }
2700        if (isIfMerged) {
2701          id = molIdMap[newifno];
2702        }
2703        thecolvals = id;
2704        molidcol.putColumnRange(slice, thecolvals);
2705       
2706        // Set the proper FOCUS_ID
2707        Float fpa,frot,fax,ftan,fhand,fmount,fuser, fxy, fxyp;
2708        (*it)->focus().getEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2709                                fxy, fxyp, rec.asuInt("FOCUS_ID"));
2710        id = out->focus().addEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2711                                   fxy, fxyp);
2712        thecolvals = id;
2713        focusidcol.putColumnRange(slice, thecolvals);
2714
2715        // Set the proper SCANNO
2716        thecolvals = newscanno;
2717        scannocol.putColumnRange(slice, thecolvals);
2718
2719        ++subit;
2720      }
2721      ++newscanno;
2722      ++scanit;
2723    }
2724    ++it;
2725  }
2726  return out;
2727}
2728
2729CountedPtr< Scantable >
2730  STMath::invertPhase( const CountedPtr < Scantable >& in )
2731{
2732  return applyToPol(in, &STPol::invertPhase, Float(0.0));
2733}
2734
2735CountedPtr< Scantable >
2736  STMath::rotateXYPhase( const CountedPtr < Scantable >& in, float phase )
2737{
2738   return applyToPol(in, &STPol::rotatePhase, Float(phase));
2739}
2740
2741CountedPtr< Scantable >
2742  STMath::rotateLinPolPhase( const CountedPtr < Scantable >& in, float phase )
2743{
2744  return applyToPol(in, &STPol::rotateLinPolPhase, Float(phase));
2745}
2746
2747CountedPtr< Scantable > STMath::applyToPol( const CountedPtr<Scantable>& in,
2748                                             STPol::polOperation fptr,
2749                                             Float phase )
2750{
2751  CountedPtr< Scantable > out = getScantable(in, false);
2752  Table& tout = out->table();
2753  Block<String> cols(4);
2754  cols[0] = String("SCANNO");
2755  cols[1] = String("BEAMNO");
2756  cols[2] = String("IFNO");
2757  cols[3] = String("CYCLENO");
2758  TableIterator iter(tout, cols);
2759  CountedPtr<STPol> stpol = STPol::getPolClass(out->factories_,
2760                                               out->getPolType() );
2761  while (!iter.pastEnd()) {
2762    Table t = iter.table();
2763    ArrayColumn<Float> speccol(t, "SPECTRA");
2764    ScalarColumn<uInt> focidcol(t, "FOCUS_ID");
2765    Matrix<Float> pols(speccol.getColumn());
2766    try {
2767      stpol->setSpectra(pols);
2768      Float fang,fhand;
2769      fang = in->focusTable_.getTotalAngle(focidcol(0));
2770      fhand = in->focusTable_.getFeedHand(focidcol(0));
2771      stpol->setPhaseCorrections(fang, fhand);
2772      // use a member function pointer in STPol.  This only works on
2773      // the STPol pointer itself, not the Counted Pointer so
2774      // derefernce it.
2775      (&(*(stpol))->*fptr)(phase);
2776      speccol.putColumn(stpol->getSpectra());
2777    } catch (AipsError& e) {
2778      //delete stpol;stpol=0;
2779      throw(e);
2780    }
2781    ++iter;
2782  }
2783  //delete stpol;stpol=0;
2784  return out;
2785}
2786
2787CountedPtr< Scantable >
2788  STMath::swapPolarisations( const CountedPtr< Scantable > & in )
2789{
2790  CountedPtr< Scantable > out = getScantable(in, false);
2791  Table& tout = out->table();
2792  Table t0 = tout(tout.col("POLNO") == 0);
2793  Table t1 = tout(tout.col("POLNO") == 1);
2794  if ( t0.nrow() != t1.nrow() )
2795    throw(AipsError("Inconsistent number of polarisations"));
2796  ArrayColumn<Float> speccol0(t0, "SPECTRA");
2797  ArrayColumn<uChar> flagcol0(t0, "FLAGTRA");
2798  ArrayColumn<Float> speccol1(t1, "SPECTRA");
2799  ArrayColumn<uChar> flagcol1(t1, "FLAGTRA");
2800  Matrix<Float> s0 = speccol0.getColumn();
2801  Matrix<uChar> f0 = flagcol0.getColumn();
2802  speccol0.putColumn(speccol1.getColumn());
2803  flagcol0.putColumn(flagcol1.getColumn());
2804  speccol1.putColumn(s0);
2805  flagcol1.putColumn(f0);
2806  return out;
2807}
2808
2809CountedPtr< Scantable >
2810  STMath::averagePolarisations( const CountedPtr< Scantable > & in,
2811                                const std::vector<bool>& mask,
2812                                const std::string& weight )
2813{
2814  if (in->npol() < 2 )
2815    throw(AipsError("averagePolarisations can only be applied to two or more"
2816                    "polarisations"));
2817  bool insitu = insitu_;
2818  setInsitu(false);
2819  CountedPtr< Scantable > pols = getScantable(in, true);
2820  setInsitu(insitu);
2821  Table& tout = pols->table();
2822  std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
2823  Table tab = tableCommand(taql, in->table());
2824  if (tab.nrow() == 0 )
2825    throw(AipsError("Could not find  any rows with POLNO==0 and POLNO==1"));
2826  TableCopy::copyRows(tout, tab);
2827  TableVector<uInt> vec(tout, "POLNO");
2828  vec = 0;
2829  pols->table_.rwKeywordSet().define("nPol", Int(1));
2830  pols->table_.rwKeywordSet().define("POLTYPE", String("stokes"));
2831  //pols->table_.rwKeywordSet().define("POLTYPE", in->getPolType());
2832  std::vector<CountedPtr<Scantable> > vpols;
2833  vpols.push_back(pols);
2834  CountedPtr< Scantable > out = average(vpols, mask, weight, "SCAN");
2835  return out;
2836}
2837
2838CountedPtr< Scantable >
2839  STMath::averageBeams( const CountedPtr< Scantable > & in,
2840                        const std::vector<bool>& mask,
2841                        const std::string& weight )
2842{
2843  bool insitu = insitu_;
2844  setInsitu(false);
2845  CountedPtr< Scantable > beams = getScantable(in, false);
2846  setInsitu(insitu);
2847  Table& tout = beams->table();
2848  // give all rows the same BEAMNO
2849  TableVector<uInt> vec(tout, "BEAMNO");
2850  vec = 0;
2851  beams->table_.rwKeywordSet().define("nBeam", Int(1));
2852  std::vector<CountedPtr<Scantable> > vbeams;
2853  vbeams.push_back(beams);
2854  CountedPtr< Scantable > out = average(vbeams, mask, weight, "SCAN");
2855  return out;
2856}
2857
2858
2859CountedPtr< Scantable >
2860  asap::STMath::frequencyAlign( const CountedPtr< Scantable > & in,
2861                                const std::string & refTime,
2862                                const std::string & method)
2863{
2864  LogIO os( casa::LogOrigin("STMath", "frequencyAlign()", WHERE));
2865  // clone as this is not working insitu
2866  bool insitu = insitu_;
2867  setInsitu(false);
2868  CountedPtr< Scantable > out = getScantable(in, false);
2869  setInsitu(insitu);
2870  Table& tout = out->table();
2871  // Get reference Epoch to time of first row or given String
2872  Unit DAY(String("d"));
2873  MEpoch::Ref epochRef(in->getTimeReference());
2874  MEpoch refEpoch;
2875  if (refTime.length()>0) {
2876    Quantum<Double> qt;
2877    if (MVTime::read(qt,refTime)) {
2878      MVEpoch mv(qt);
2879      refEpoch = MEpoch(mv, epochRef);
2880   } else {
2881      throw(AipsError("Invalid format for Epoch string"));
2882   }
2883  } else {
2884    refEpoch = in->timeCol_(0);
2885  }
2886  MPosition refPos = in->getAntennaPosition();
2887
2888  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2889  /*
2890  // Comment from MV.
2891  // the following code has been commented out because different FREQ_IDs have to be aligned together even
2892  // if the frame doesn't change. So far, lack of this check didn't cause any problems.
2893  // test if user frame is different to base frame
2894  if ( in->frequencies().getFrameString(true)
2895       == in->frequencies().getFrameString(false) ) {
2896    throw(AipsError("Can't convert as no output frame has been set"
2897                    " (use set_freqframe) or it is aligned already."));
2898  }
2899  */
2900  MFrequency::Types system = in->frequencies().getFrame();
2901  MVTime mvt(refEpoch.getValue());
2902  String epochout = mvt.string(MVTime::YMD) + String(" (") + refEpoch.getRefString() + String(")");
2903  os << "Aligning at reference Epoch " << epochout
2904     << " in frame " << MFrequency::showType(system) << LogIO::POST;
2905  // set up the iterator
2906  Block<String> cols(4);
2907  // select by constant direction
2908  cols[0] = String("SRCNAME");
2909  cols[1] = String("BEAMNO");
2910  // select by IF ( no of channels varies over this )
2911  cols[2] = String("IFNO");
2912  // select by restfrequency
2913  cols[3] = String("MOLECULE_ID");
2914  TableIterator iter(tout, cols);
2915  while ( !iter.pastEnd() ) {
2916    Table t = iter.table();
2917    ROScalarColumn<String> snCol(t, "SRCNAME");
2918    os << "Aligning to position of source '" << snCol(0) << "'" << LogIO::POST;
2919    MDirection::ROScalarColumn dirCol(t, "DIRECTION");
2920    TableIterator fiter(t, "FREQ_ID");
2921    // determine nchan from the first row. This should work as
2922    // we are iterating over BEAMNO and IFNO   
2923    // we should have constant direction
2924
2925    ROArrayColumn<Float> sCol(t, "SPECTRA");
2926    const MDirection direction = dirCol(0);
2927    const uInt nchan = sCol(0).nelements();
2928
2929    // skip operations if there is nothing to align
2930    if (fiter.pastEnd()) {
2931        continue;
2932    }
2933
2934    Table ftab = fiter.table();
2935    // align all frequency ids with respect to the first encountered id
2936    ScalarColumn<uInt> freqidCol(ftab, "FREQ_ID");
2937    // get the SpectralCoordinate for the freqid, which we are iterating over
2938    SpectralCoordinate sC = \
2939      in->frequencies().getSpectralCoordinate(freqidCol(0));
2940    FrequencyAligner<Float> fa( sC, nchan, refEpoch,
2941                                direction, refPos, system );
2942    // realign the SpectralCoordinate and put into the output Scantable
2943    Vector<String> units(1);
2944    units = String("Hz");
2945    Bool linear=True;
2946    SpectralCoordinate sc2 = fa.alignedSpectralCoordinate(linear);
2947    sc2.setWorldAxisUnits(units);
2948    const uInt id = out->frequencies().addEntry(sc2.referencePixel()[0],
2949                                                sc2.referenceValue()[0],
2950                                                sc2.increment()[0]);
2951    while ( !fiter.pastEnd() ) {
2952     
2953      ftab = fiter.table();
2954      // spectral coordinate for the current FREQ_ID
2955      ScalarColumn<uInt> freqidCol2(ftab, "FREQ_ID");
2956      sC = in->frequencies().getSpectralCoordinate(freqidCol2(0));
2957      // create the "global" abcissa for alignment with same FREQ_ID
2958      Vector<Double> abc(nchan);
2959      for (uInt i=0; i<nchan; i++) {
2960           Double w;
2961           sC.toWorld(w,Double(i));
2962           abc[i] = w;
2963      }
2964      TableVector<uInt> tvec(ftab, "FREQ_ID");
2965      // assign new frequency id to all rows
2966      tvec = id;
2967      // cache abcissa for same time stamps, so iterate over those
2968      TableIterator timeiter(ftab, "TIME");
2969      while ( !timeiter.pastEnd() ) {
2970        Table tab = timeiter.table();
2971        ArrayColumn<Float> specCol(tab, "SPECTRA");
2972        ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2973        MEpoch::ROScalarColumn timeCol(tab, "TIME");
2974        // use align abcissa cache after the first row
2975        // these rows should be just be POLNO
2976        bool first = true;
2977        for (int i=0; i<int(tab.nrow()); ++i) {
2978          // input values
2979          Vector<uChar> flag = flagCol(i);
2980          Vector<Bool> mask(flag.shape());
2981          Vector<Float> specOut, spec;
2982          spec  = specCol(i);
2983          Vector<Bool> maskOut;Vector<uChar> flagOut;
2984          convertArray(mask, flag);
2985          // alignment
2986          Bool ok = fa.align(specOut, maskOut, abc, spec,
2987                             mask, timeCol(i), !first,
2988                             interp, False);
2989          (void) ok; // unused stop compiler nagging
2990          // back into scantable
2991          flagOut.resize(maskOut.nelements());
2992          convertArray(flagOut, maskOut);
2993          flagCol.put(i, flagOut);
2994          specCol.put(i, specOut);
2995          // start abcissa caching
2996          first = false;
2997        }
2998        // next timestamp
2999        ++timeiter;
3000      }
3001      // next FREQ_ID
3002      ++fiter;
3003    }
3004    // next aligner
3005    ++iter;
3006  }
3007  // set this afterwards to ensure we are doing insitu correctly.
3008  out->frequencies().setFrame(system, true);
3009  return out;
3010}
3011
3012CountedPtr<Scantable>
3013  asap::STMath::convertPolarisation( const CountedPtr<Scantable>& in,
3014                                     const std::string & newtype )
3015{
3016  if (in->npol() != 2 && in->npol() != 4)
3017    throw(AipsError("Can only convert two or four polarisations."));
3018  if ( in->getPolType() == newtype )
3019    throw(AipsError("No need to convert."));
3020  if ( ! in->selector_.empty() )
3021    throw(AipsError("Can only convert whole scantable. Unset the selection."));
3022  bool insitu = insitu_;
3023  setInsitu(false);
3024  CountedPtr< Scantable > out = getScantable(in, true);
3025  setInsitu(insitu);
3026  Table& tout = out->table();
3027  tout.rwKeywordSet().define("POLTYPE", String(newtype));
3028
3029  Block<String> cols(4);
3030  cols[0] = "SCANNO";
3031  cols[1] = "CYCLENO";
3032  cols[2] = "BEAMNO";
3033  cols[3] = "IFNO";
3034  TableIterator it(in->originalTable_, cols);
3035  String basetype = in->getPolType();
3036  STPol* stpol = STPol::getPolClass(in->factories_, basetype);
3037  try {
3038    while ( !it.pastEnd() ) {
3039      Table tab = it.table();
3040      uInt row = tab.rowNumbers()[0];
3041      stpol->setSpectra(in->getPolMatrix(row));
3042      Float fang,fhand;
3043      fang = in->focusTable_.getTotalAngle(in->mfocusidCol_(row));
3044      fhand = in->focusTable_.getFeedHand(in->mfocusidCol_(row));
3045      stpol->setPhaseCorrections(fang, fhand);
3046      Int npolout = 0;
3047      for (uInt i=0; i<tab.nrow(); ++i) {
3048        Vector<Float> outvec = stpol->getSpectrum(i, newtype);
3049        if ( outvec.nelements() > 0 ) {
3050          tout.addRow();
3051          TableCopy::copyRows(tout, tab, tout.nrow()-1, 0, 1);
3052          ArrayColumn<Float> sCol(tout,"SPECTRA");
3053          ScalarColumn<uInt> pCol(tout,"POLNO");
3054          sCol.put(tout.nrow()-1 ,outvec);
3055          pCol.put(tout.nrow()-1 ,uInt(npolout));
3056          npolout++;
3057       }
3058      }
3059      tout.rwKeywordSet().define("nPol", npolout);
3060      ++it;
3061    }
3062  } catch (AipsError& e) {
3063    delete stpol;
3064    throw(e);
3065  }
3066  delete stpol;
3067  return out;
3068}
3069
3070CountedPtr< Scantable >
3071  asap::STMath::mxExtract( const CountedPtr< Scantable > & in,
3072                           const std::string & scantype )
3073{
3074  bool insitu = insitu_;
3075  setInsitu(false);
3076  CountedPtr< Scantable > out = getScantable(in, true);
3077  setInsitu(insitu);
3078  Table& tout = out->table();
3079  std::string taql = "SELECT FROM $1 WHERE BEAMNO != REFBEAMNO";
3080  if (scantype == "on") {
3081    taql = "SELECT FROM $1 WHERE BEAMNO == REFBEAMNO";
3082  }
3083  Table tab = tableCommand(taql, in->table());
3084  TableCopy::copyRows(tout, tab);
3085  if (scantype == "on") {
3086    // re-index SCANNO to 0
3087    TableVector<uInt> vec(tout, "SCANNO");
3088    vec = 0;
3089  }
3090  return out;
3091}
3092
3093std::vector<float>
3094  asap::STMath::fft( const casa::CountedPtr< Scantable > & in,
3095                     const std::vector<int>& whichrow,
3096                     bool getRealImag )
3097{
3098  std::vector<float> res;
3099  Table tab = in->table();
3100  std::vector<bool> mask;
3101
3102  if (whichrow.size() < 1) {          // for all rows (by default)
3103    int nrow = int(tab.nrow());
3104    for (int i = 0; i < nrow; ++i) {
3105      res = in->execFFT(i, mask, getRealImag);
3106    }
3107  } else {                           // for specified rows
3108    for (uInt i = 0; i < whichrow.size(); ++i) {
3109      res = in->execFFT(i, mask, getRealImag);
3110    }
3111  }
3112
3113  return res;
3114}
3115
3116
3117CountedPtr<Scantable>
3118  asap::STMath::lagFlag( const CountedPtr<Scantable>& in,
3119                         double start, double end,
3120                         const std::string& mode )
3121{
3122  CountedPtr<Scantable> out = getScantable(in, false);
3123  Table& tout = out->table();
3124  TableIterator iter(tout, "FREQ_ID");
3125  FFTServer<Float,Complex> ffts;
3126
3127  while ( !iter.pastEnd() ) {
3128    Table tab = iter.table();
3129    Double rp,rv,inc;
3130    ROTableRow row(tab);
3131    const TableRecord& rec = row.get(0);
3132    uInt freqid = rec.asuInt("FREQ_ID");
3133    out->frequencies().getEntry(rp, rv, inc, freqid);
3134    ArrayColumn<Float> specCol(tab, "SPECTRA");
3135    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
3136
3137    for (int i=0; i<int(tab.nrow()); ++i) {
3138      Vector<Float> spec = specCol(i);
3139      Vector<uChar> flag = flagCol(i);
3140      std::vector<bool> mask;
3141      for (uInt j = 0; j < flag.nelements(); ++j) {
3142        mask.push_back(!(flag[j]>0));
3143      }
3144      mathutil::doZeroOrderInterpolation(spec, mask);
3145
3146      Vector<Complex> lags;
3147      ffts.fft0(lags, spec);
3148
3149      Int lag0(start+0.5);
3150      Int lag1(end+0.5);
3151      if (mode == "frequency") {
3152        lag0 = Int(spec.nelements()*abs(inc)/(start)+0.5);
3153        lag1 = Int(spec.nelements()*abs(inc)/(end)+0.5);
3154      }
3155      Int lstart =  max(0, lag0);
3156      Int lend   =  min(Int(lags.nelements()-1), lag1);
3157      if (lstart == lend) {
3158        lags[lstart] = Complex(0.0);
3159      } else {
3160        if (lstart > lend) {
3161          Int tmp = lend;
3162          lend = lstart;
3163          lstart = tmp;
3164        }
3165        for (int j=lstart; j <=lend ;++j) {
3166          lags[j] = Complex(0.0);
3167        }
3168      }
3169
3170      ffts.fft0(spec, lags);
3171
3172      specCol.put(i, spec);
3173    }
3174    ++iter;
3175  }
3176  return out;
3177}
3178
3179// Averaging spectra with different channel/resolution
3180CountedPtr<Scantable>
3181STMath::new_average( const std::vector<CountedPtr<Scantable> >& in,
3182                     const bool& compel,
3183                     const std::vector<bool>& mask,
3184                     const std::string& weight,
3185                     const std::string& avmode )
3186  throw ( casa::AipsError )
3187{
3188  LogIO os( LogOrigin( "STMath", "new_average()", WHERE ) ) ;
3189  if ( avmode == "SCAN" && in.size() != 1 )
3190    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
3191                    "Use merge first."));
3192 
3193  CountedPtr<Scantable> out ;     // processed result
3194  if ( compel ) {
3195    std::vector< CountedPtr<Scantable> > newin ; // input for average process
3196    uInt insize = in.size() ;    // number of input scantables
3197
3198    // setup newin
3199    bool oldInsitu = insitu_ ;
3200    setInsitu( false ) ;
3201    newin.resize( insize ) ;
3202    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3203      newin[itable] = getScantable( in[itable], false ) ;
3204    }
3205    setInsitu( oldInsitu ) ;
3206
3207    // warning
3208    os << "Average spectra with different spectral resolution" << LogIO::POST ;
3209
3210    // temporarily set coordinfo
3211    vector<string> oldinfo( insize ) ;
3212    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3213      vector<string> coordinfo = in[itable]->getCoordInfo() ;
3214      oldinfo[itable] = coordinfo[0] ;
3215      coordinfo[0] = "Hz" ;
3216      newin[itable]->setCoordInfo( coordinfo ) ;
3217    }
3218
3219    ostringstream oss ;
3220
3221    // check IF frequency coverage
3222    // freqid: list of FREQ_ID, which is used, in each table 
3223    // iffreq: list of minimum and maximum frequency for each FREQ_ID in
3224    //         each table
3225    // freqid[insize][numIF]
3226    // freqid: [[id00, id01, ...],
3227    //          [id10, id11, ...],
3228    //          ...
3229    //          [idn0, idn1, ...]]
3230    // iffreq[insize][numIF*2]
3231    // iffreq: [[min_id00, max_id00, min_id01, max_id01, ...],
3232    //          [min_id10, max_id10, min_id11, max_id11, ...],
3233    //          ...
3234    //          [min_idn0, max_idn0, min_idn1, max_idn1, ...]]
3235    //os << "Check IF settings in each table" << LogIO::POST ;
3236    vector< vector<uInt> > freqid( insize );
3237    vector< vector<double> > iffreq( insize ) ;
3238    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3239      Vector<uInt> freqIds = newin[itable]->mfreqidCol_.getColumn() ;
3240      vector<uInt> uniqueFreqId = newin[itable]->getNumbers(newin[itable]->mfreqidCol_) ;
3241      for ( vector<uInt>::iterator i = uniqueFreqId.begin() ;
3242            i != uniqueFreqId.end() ; i++ ) {
3243        //os << "itable = " << itable << ": IF " << id << " is included in the list" << LogIO::POST ;
3244        uInt target = 0 ;
3245        while ( freqIds[target] != *i )
3246          target++ ;
3247        vector<double> abcissa = newin[itable]->getAbcissa( target ) ;
3248        freqid[itable].push_back( *i ) ;
3249        double incr = abs( abcissa[1] - abcissa[0] ) ;
3250        iffreq[itable].push_back( (*min_element(abcissa.begin(),abcissa.end()))-0.5*incr ) ;
3251        iffreq[itable].push_back( (*max_element(abcissa.begin(),abcissa.end()))+0.5*incr ) ;
3252      }
3253    }
3254
3255    // debug
3256//     os << "IF settings summary:" << endl ;
3257//     for ( uInt i = 0 ; i < freqid.size() ; i++ ) {
3258//       os << "   Table" << i << endl ;
3259//       for ( uInt j = 0 ; j < freqid[i].size() ; j++ ) {
3260//         os << "      id = " << freqid[i][j] << " (min,max) = (" << iffreq[i][2*j] << "," << iffreq[i][2*j+1] << ")" << endl ;
3261//       }
3262//     }
3263//     os << endl ;
3264//     os.post() ;
3265
3266    // IF grouping based on their frequency coverage
3267    // ifgrp: number of member in each IF group
3268    // ifgrp[numgrp]
3269    // ifgrp: [n0, n1, ...]
3270    //os << "IF grouping based on their frequency coverage" << LogIO::POST ;
3271
3272    // parameter for IF grouping
3273    // groupmode = OR    retrieve all region
3274    //             AND   only retrieve overlaped region
3275    //string groupmode = "AND" ;
3276    string groupmode = "OR" ;
3277    uInt sizecr = 0 ;
3278    if ( groupmode == "AND" )
3279      sizecr = 1 ;
3280    else if ( groupmode == "OR" )
3281      sizecr = 0 ;
3282
3283    vector<double> sortedfreq ;
3284    for ( uInt i = 0 ; i < iffreq.size() ; i++ ) {
3285      for ( uInt j = 0 ; j < iffreq[i].size() ; j++ ) {
3286        if ( count( sortedfreq.begin(), sortedfreq.end(), iffreq[i][j] ) == 0 )
3287          sortedfreq.push_back( iffreq[i][j] ) ;
3288      }
3289    }
3290    sort( sortedfreq.begin(), sortedfreq.end() ) ;
3291    vector<uInt> ifgrp( sortedfreq.size()-1, 0 ) ;
3292    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3293      for ( uInt iif = 0 ; iif < freqid[itable].size() ; iif++ ) {
3294        double range0 = iffreq[itable][2*iif] ;
3295        double range1 = iffreq[itable][2*iif+1] ;
3296        for ( uInt j = 0 ; j < sortedfreq.size()-1 ; j++ ) {
3297          double fmin = max( range0, sortedfreq[j] ) ;
3298          double fmax = min( range1, sortedfreq[j+1] ) ;
3299          if ( fmin < fmax ) {
3300            ifgrp[j]++ ;
3301          }
3302        }
3303      }
3304    }
3305
3306    // Grouping continuous IF groups (without frequency gap)
3307    // freqgrp: list of IF group indexes in each frequency group
3308    // freqgrp[numgrp][nummember]
3309    // freqgrp: [[ifgrp00, ifgrp01, ifgrp02, ...],
3310    //           [ifgrp10, ifgrp11, ifgrp12, ...],
3311    //           ...
3312    //           [ifgrpn0, ifgrpn1, ifgrpn2, ...]]
3313    // grprange[2*numgrp]
3314    // grprange: [fmin0,fmax0,fmin1,fmax1,...]
3315    vector< vector<uInt> > freqgrp ;
3316    vector<double> grprange ;
3317    vector<uInt> grpedge ;
3318    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3319      if ( ifgrp[igrp] <= sizecr ) {
3320        grpedge.push_back( igrp ) ;
3321      }
3322    }
3323    grpedge.push_back( ifgrp.size() ) ;
3324    uInt itmp = 0 ;
3325    for ( uInt i = 0 ; i < grpedge.size() ; i++ ) {
3326      int n = grpedge[i] - itmp ;
3327      if ( n > 0 ) {
3328        vector<uInt> members( n ) ;
3329        for ( int j = 0 ; j < n ; j++ ) {
3330          members[j] = itmp+j ;
3331        }
3332        freqgrp.push_back( members ) ;
3333        grprange.push_back( sortedfreq[itmp] ) ;
3334        grprange.push_back( sortedfreq[grpedge[i]] ) ;
3335      }
3336      itmp += n + 1 ;
3337    }
3338
3339    // print frequency group
3340    oss.str("") ;
3341    oss << "Frequency Group summary: " << endl ;
3342    oss << "   GROUP_ID: [FREQ_MIN, FREQ_MAX]" << endl ;
3343    for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3344      oss << "   GROUP " << setw( 2 ) << i << ": [" << grprange[2*i] << "," << grprange[2*i+1] << "]" ;
3345      oss << endl ;
3346    }
3347    oss << endl ;
3348    os << oss.str() << LogIO::POST ;
3349
3350    // groups: list of frequency group index whose frequency range overlaps
3351    //         with that of each table and IF
3352    // groups[numtable][numIF]
3353    // groups: [[grpx, grpy,...],
3354    //          [grpa, grpb,...],
3355    //          ...
3356    //          [grpk, grpm,...]]
3357    vector< vector<uInt> > groups( insize ) ;
3358    for ( uInt i = 0 ; i < insize ; i++ ) {
3359      groups[i].resize( freqid[i].size() ) ;
3360    }
3361    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3362      for ( uInt ifreq = 0 ; ifreq < freqid[itable].size() ; ifreq++ ) {
3363        double minf = iffreq[itable][2*ifreq] ;
3364        uInt groupid ;
3365        for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3366          vector<uInt> memberlist = freqgrp[igrp] ;
3367          if ( (minf >= grprange[2*igrp]) && (minf <= grprange[2*igrp+1]) ) {
3368            groupid = igrp ;
3369            break ;
3370          }
3371        }
3372        groups[itable][ifreq] = groupid ;
3373      }
3374    }
3375                                                         
3376
3377    // print membership
3378    oss.str("") ;
3379    for ( uInt i = 0 ; i < insize ; i++ ) {
3380      oss << "Table " << i << endl ;
3381      for ( uInt j = 0 ; j < groups[i].size() ; j++ ) {
3382        oss << "   FREQ_ID " <<  setw( 2 ) << freqid[i][j] << ": " ;
3383        oss << setw( 2 ) << groups[i][j] ;
3384        oss << endl ;
3385      }
3386    }
3387    os << oss.str() << LogIO::POST ;
3388
3389    // reset SCANNO and IFNO/FREQ_ID: IF is reset by the result of sortation
3390    //os << "All IF number is set to IF group index" << LogIO::POST ;
3391    // reset SCANNO only when avmode != "SCAN"
3392    if ( avmode != "SCAN" ) {
3393      os << "All scan number is set to 0" << LogIO::POST ;
3394      for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3395        uInt nrow = newin[itable]->nrow() ;
3396        Vector<uInt> resetScan( nrow, 0 ) ;
3397        newin[itable]->scanCol_.putColumn( resetScan ) ;
3398      }
3399    }
3400
3401    // reset spectra and flagtra: align spectral resolution
3402    //os << "Align spectral resolution" << LogIO::POST ;
3403    // gmaxdnu: the coarsest frequency resolution in the frequency group
3404    // gminfreq: lower frequency edge of the frequency group
3405    // gnchan: number of channels for the frequency group
3406    vector<double> gmaxdnu( freqgrp.size(), 0.0 ) ;
3407    vector<double> gminfreq( freqgrp.size() ) ;
3408    vector<double> gnchan( freqgrp.size() ) ;
3409    for ( uInt i = 0 ; i < insize ; i++ ) {
3410      vector<uInt> members = groups[i] ;
3411      for ( uInt j = 0 ; j < members.size() ; j++ ) {
3412        uInt groupid = members[j] ;
3413        Double rp,rv,ic ;
3414        newin[i]->frequencies().getEntry( rp, rv, ic, j ) ;
3415        if ( abs(ic) > abs(gmaxdnu[groupid]) )
3416          gmaxdnu[groupid] = ic ;
3417      }
3418    }
3419    for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3420      gminfreq[igrp] = grprange[2*igrp] ;
3421      double maxfreq = grprange[2*igrp+1] ;
3422      gnchan[igrp] = (int)(abs((maxfreq-gminfreq[igrp])/gmaxdnu[igrp])+0.9) ;
3423    }
3424     
3425    // regrid spectral data and update frequency info
3426    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3427      Vector<uInt> oldFreqId = newin[itable]->mfreqidCol_.getColumn() ;
3428      Vector<uInt> newFreqId( oldFreqId.nelements() ) ;
3429
3430      // update MAIN
3431      for ( uInt irow = 0 ; irow < newin[itable]->nrow() ; irow++ ) {
3432        uInt groupid = groups[itable][oldFreqId[irow]] ;
3433        newFreqId[irow] = groupid ;
3434        newin[itable]->regridChannel( gnchan[groupid],
3435                                      gmaxdnu[groupid],
3436                                      gminfreq[groupid],
3437                                      irow ) ;
3438      }
3439      newin[itable]->mfreqidCol_.putColumn( newFreqId ) ;
3440      newin[itable]->ifCol_.putColumn( newFreqId ) ;
3441
3442      // update FREQUENCIES
3443      Table tab = newin[itable]->frequencies().table() ;
3444      ScalarColumn<uInt> fIdCol( tab, "ID" ) ;
3445      ScalarColumn<Double> fRefPixCol( tab, "REFPIX" ) ;
3446      ScalarColumn<Double> fRefValCol( tab, "REFVAL" ) ;
3447      ScalarColumn<Double> fIncrCol( tab, "INCREMENT" ) ;
3448      if ( freqgrp.size() > tab.nrow() ) {
3449        tab.addRow( freqgrp.size()-tab.nrow() ) ;
3450      }
3451      for ( uInt irow = 0 ; irow < freqgrp.size() ; irow++ ) {
3452        Double refval = gminfreq[irow] + 0.5 * abs(gmaxdnu[irow]) ;
3453        Double refpix = (gmaxdnu[irow] > 0.0) ? 0 : gnchan[irow]-1 ;
3454        Double increment = gmaxdnu[irow] ;
3455        fIdCol.put( irow, irow ) ;
3456        fRefPixCol.put( irow, refpix ) ;
3457        fRefValCol.put( irow, refval ) ;
3458        fIncrCol.put( irow, increment ) ;
3459      }
3460    }
3461
3462    // set back coordinfo
3463    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3464      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3465      coordinfo[0] = oldinfo[itable] ;
3466      newin[itable]->setCoordInfo( coordinfo ) ;
3467    }
3468
3469    // average
3470    out = average( newin, mask, weight, avmode ) ;
3471  }
3472  else {
3473    // simple average
3474    out =  average( in, mask, weight, avmode ) ;
3475  }
3476 
3477  return out;
3478}
3479
3480CountedPtr<Scantable> STMath::cwcal( const CountedPtr<Scantable>& s,
3481                                     const String calmode,
3482                                     const String antname )
3483{
3484  // frequency switch
3485  if ( calmode == "fs" ) {
3486    return cwcalfs( s, antname ) ;
3487  }
3488  else {
3489    vector<bool> masks = s->getMask( 0 ) ;
3490    vector<int> types ;
3491
3492    // save original table selection
3493    Table torg  = s->table_ ;
3494
3495    // sky scan
3496    bool insitu = insitu_ ;
3497    insitu_ = false ;
3498    // share calibration scans before average with out
3499    CountedPtr<Scantable> out = getScantable( s, true ) ;
3500    insitu_ = insitu ;
3501    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::SKY ) ;
3502    out->attach() ;
3503    CountedPtr<Scantable> asky = averageWithinSession( out,
3504                                                       masks,
3505                                                       "TINT" ) ;
3506    // hot scan
3507    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::HOT ) ;
3508    out->attach() ;
3509    CountedPtr<Scantable> ahot = averageWithinSession( out,
3510                                                       masks,
3511                                                       "TINT" ) ;
3512    // cold scan
3513    CountedPtr<Scantable> acold ;
3514//     out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::COLD ) ;
3515//     out->attach() ;
3516//     CountedPtr<Scantable> acold = averageWithinSession( out,
3517//                                                         masks,
3518//                                                         "TINT" ) ;
3519
3520    // off scan
3521    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSOFF ) ;
3522    out->attach() ;
3523    CountedPtr<Scantable> aoff = averageWithinSession( out,
3524                                                       masks,
3525                                                       "TINT" ) ;
3526   
3527    // on scan
3528    s->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSON ) ;
3529    s->attach() ;
3530    out->table_ = out->originalTable_ ;
3531    out->attach() ;
3532    out->table().addRow( s->nrow() ) ;
3533    copyRows( out->table(), s->table(), 0, 0, s->nrow(), False, True, False ) ;
3534   
3535    // iterate throgh STIdxIter2
3536    ChopperWheelCalibrator cal(out, s, aoff, asky, ahot, acold);
3537    STIdxIter2::Iterate<ChopperWheelCalibrator>(cal, "BEAMNO,POLNO,IFNO");
3538
3539    s->table_ = torg ;
3540    s->attach() ;
3541
3542    // flux unit
3543    out->setFluxUnit( "K" ) ;
3544
3545    return out ;
3546  }
3547}
3548 
3549CountedPtr<Scantable> STMath::almacal( const CountedPtr<Scantable>& s,
3550                                       const String calmode )
3551{
3552  // frequency switch
3553  if ( calmode == "fs" ) {
3554    return almacalfs( s ) ;
3555  }
3556  else {
3557//     double t0, t1 ;
3558//     t0 = mathutil::gettimeofday_sec() ;
3559    vector<bool> masks = s->getMask( 0 ) ;
3560
3561    // save original table selection
3562    Table torg = s->table_ ;
3563
3564    // off scan
3565    // TODO 2010/01/08 TN
3566    // Grouping by time should be needed before averaging.
3567    // Each group must have own unique SCANNO (should be renumbered).
3568    // See PIPELINE/SDCalibration.py
3569    bool insitu = insitu_ ;
3570    insitu_ = false ;
3571    // share off scan before average with out
3572    CountedPtr<Scantable> out = getScantable( s, true ) ;
3573    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSOFF ) ;
3574    out->attach() ;
3575    insitu_ = insitu ;
3576    CountedPtr<Scantable> aoff = averageWithinSession( out,
3577                                                       masks,
3578                                                       "TINT" ) ;
3579
3580    // on scan
3581//     t0 = mathutil::gettimeofday_sec() ;
3582    s->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSON ) ;
3583    s->attach() ;
3584    out->table_ = out->originalTable_ ;
3585    out->attach() ;
3586    out->table().addRow( s->nrow() ) ;
3587    copyRows( out->table(), s->table(), 0, 0, s->nrow(), False ) ;
3588//     t1 = mathutil::gettimeofday_sec() ;
3589//     cout << "elapsed time for preparing output table: " << t1-t0 << " sec" << endl ;
3590
3591    // process each on scan
3592//     t0 = mathutil::gettimeofday_sec() ;
3593
3594    // iterate throgh STIdxIter2
3595    AlmaCalibrator cal(out, s, aoff);
3596    STIdxIter2::Iterate<AlmaCalibrator>(cal, "BEAMNO,POLNO,IFNO");
3597
3598    // finalize
3599    s->table_ = torg ;
3600    s->attach() ;
3601
3602//     t1 = mathutil::gettimeofday_sec() ;
3603//     cout << "elapsed time for calibration: " << t1-t0 << " sec" << endl ;
3604
3605    // flux unit
3606    out->setFluxUnit( "K" ) ;
3607
3608    return out ;
3609  }
3610}
3611
3612CountedPtr<Scantable> STMath::cwcalfs( const CountedPtr<Scantable>& s,
3613                                       const String antname )
3614{
3615  vector<int> types ;
3616
3617  // APEX calibration mode
3618  int apexcalmode = 1 ;
3619 
3620  if ( antname.find( "APEX" ) != string::npos ) {
3621    // check if off scan exists or not
3622    STSelector sel = STSelector() ;
3623    //sel.setName( offstr1 ) ;
3624    types.push_back( SrcType::FLOOFF ) ;
3625    sel.setTypes( types ) ;
3626    try {
3627      s->setSelection( sel ) ;
3628    }
3629    catch ( AipsError &e ) {
3630      apexcalmode = 0 ;
3631    }
3632    sel.reset() ;
3633  }
3634  s->unsetSelection() ;
3635  types.clear() ;
3636
3637  vector<bool> masks = s->getMask( 0 ) ;
3638  CountedPtr<Scantable> ssig, sref ;
3639  //CountedPtr<Scantable> out ;
3640  bool insitu = insitu_ ;
3641  insitu_ = False ;
3642  CountedPtr<Scantable> out = getScantable( s, true ) ;
3643  insitu_ = insitu ;
3644
3645  if ( antname.find( "APEX" ) != string::npos ) {
3646    // APEX calibration
3647    // sky scan
3648    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FLOSKY ) ;
3649    out->attach() ;
3650    CountedPtr<Scantable> askylo = averageWithinSession( out,
3651                                                         masks,
3652                                                         "TINT" ) ;
3653    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FHISKY ) ;
3654    out->attach() ;
3655    CountedPtr<Scantable> askyhi = averageWithinSession( out,
3656                                                         masks,
3657                                                         "TINT" ) ;
3658   
3659    // hot scan
3660    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FLOHOT ) ;
3661    out->attach() ;
3662    CountedPtr<Scantable> ahotlo = averageWithinSession( out,
3663                                                         masks,
3664                                                         "TINT" ) ;
3665    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FHIHOT ) ;
3666    out->attach() ;
3667    CountedPtr<Scantable> ahothi = averageWithinSession( out,
3668                                                         masks,
3669                                                         "TINT" ) ;
3670   
3671    // cold scan
3672    CountedPtr<Scantable> acoldlo, acoldhi ;
3673//     out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FLOCOLD ) ;
3674//     out->attach() ;
3675//     CountedPtr<Scantable> acoldlo = averageWithinSession( out,
3676//                                                           masks,
3677//                                                           "TINT" ) ;
3678//     out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FHICOLD ) ;
3679//     out->attach() ;
3680//     CountedPtr<Scantable> acoldhi = averageWithinSession( out,
3681//                                                           masks,
3682//                                                           "TINT" ) ;
3683
3684    // ref scan
3685    insitu_ = false ;
3686    sref = getScantable( s, true ) ;
3687    CountedPtr<Scantable> rref = getScantable( s, true ) ;
3688    insitu_ = insitu ;
3689    rref->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FSLO ) ;
3690    rref->attach() ;
3691    copyRows( sref->table_, rref->table_, 0, 0, rref->nrow(), False, True, False ) ;
3692   
3693    // sig scan
3694    insitu_ = false ;
3695    ssig = getScantable( s, true ) ;
3696    CountedPtr<Scantable> rsig = getScantable( s, true ) ;
3697    insitu_ = insitu ;
3698    rsig->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FSHI ) ;
3699    rsig->attach() ;
3700    copyRows( ssig->table_, rsig->table_, 0, 0, rsig->nrow(), False, True, False ) ;
3701         
3702    if ( apexcalmode == 0 ) {
3703      // using STIdxIter2
3704      vector<string> cols( 3 ) ;
3705      cols[0] = "BEAMNO" ;
3706      cols[1] = "POLNO" ;
3707      cols[2] = "IFNO" ;
3708      STIdxIter2 iter(ssig, cols) ;
3709      STSelector sel ;
3710      vector< CountedPtr<Scantable> > on( 2 ) ;
3711      on[0] = rsig ;
3712      on[1] = rref ;
3713      vector< CountedPtr<Scantable> > sky( 2 ) ;
3714      sky[0] = askylo ;
3715      sky[1] = askyhi ;
3716      vector< CountedPtr<Scantable> > hot( 2 ) ;
3717      hot[0] = ahotlo ;
3718      hot[1] = ahothi ;
3719      vector< CountedPtr<Scantable> > cold( 2 ) ;
3720      while ( !iter.pastEnd() ) {
3721        Record ids = iter.currentValue() ;
3722        stringstream ss ;
3723        ss << "SELECT FROM $1 WHERE "
3724           << "BEAMNO==" << ids.asuInt("BEAMNO") << "&&"
3725           << "POLNO==" << ids.asuInt("POLNO") << "&&"
3726           << "IFNO==" << ids.asuInt("IFNO") ;
3727        //cout << "TaQL string: " << ss.str() << endl ;
3728        sel.setTaQL( ss.str() ) ;
3729        sky[0]->setSelection( sel ) ;
3730        sky[1]->setSelection( sel ) ;
3731        hot[0]->setSelection( sel ) ;
3732        hot[1]->setSelection( sel ) ;
3733        Vector<uInt> rows = iter.getRows( SHARE ) ;
3734        calibrateAPEXFS( ssig, sref, on, sky, hot, cold, rows ) ;
3735        sky[0]->unsetSelection() ;
3736        sky[1]->unsetSelection() ;
3737        hot[0]->unsetSelection() ;
3738        hot[1]->unsetSelection() ;
3739        sel.reset() ;
3740        iter.next() ;
3741      }
3742
3743    }
3744    else if ( apexcalmode == 1 ) {
3745      // APEX fs data with off scan
3746      // off scan
3747      out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FLOOFF ) ;
3748      out->attach() ;
3749      CountedPtr<Scantable> aofflo = averageWithinSession( out,
3750                                                           masks,
3751                                                           "TINT" ) ;
3752      out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FHIOFF ) ;
3753      out->attach() ;
3754      CountedPtr<Scantable> aoffhi = averageWithinSession( out,
3755                                                           masks,
3756                                                           "TINT" ) ;
3757     
3758      // process each sig and ref scan
3759      // iterate throgh STIdxIter2
3760      ChopperWheelCalibrator cal_sig(ssig, rsig, aofflo, askylo, ahotlo, acoldlo);
3761      STIdxIter2::Iterate<ChopperWheelCalibrator>(cal_sig, "BEAMNO,POLNO,IFNO");
3762      ChopperWheelCalibrator cal_ref(sref, rref, aoffhi, askyhi, ahothi, acoldhi);
3763      STIdxIter2::Iterate<ChopperWheelCalibrator>(cal_ref, "BEAMNO,POLNO,IFNO");
3764    }
3765  }
3766  else {
3767    // non-APEX fs data
3768    // sky scan
3769    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::SKY ) ;
3770    out->attach() ;
3771    CountedPtr<Scantable> asky = averageWithinSession( out,
3772                                                       masks,
3773                                                       "TINT" ) ;
3774    STSelector sel = STSelector() ;
3775
3776    // hot scan
3777    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::HOT ) ;
3778    out->attach() ;
3779    CountedPtr<Scantable> ahot = averageWithinSession( out,
3780                                                       masks,
3781                                                       "TINT" ) ;
3782
3783    // cold scan
3784    CountedPtr<Scantable> acold ;
3785//     out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::COLD ) ;
3786//     out->attach() ;
3787//     CountedPtr<Scantable> acold = averageWithinSession( out,
3788//                                                         masks,
3789//                                                         "TINT" ) ;
3790   
3791    // ref scan
3792    bool insitu = insitu_ ;
3793    insitu_ = false ;
3794    sref = getScantable( s, true ) ;
3795    CountedPtr<Scantable> rref = getScantable( s, true ) ;
3796    insitu_ = insitu ;
3797    rref->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSOFF ) ;
3798    rref->attach() ;
3799    copyRows( sref->table_, rref->table_, 0, 0, rref->nrow(), False, True, False ) ;
3800   
3801    // sig scan
3802    insitu_ = false ;
3803    ssig = getScantable( s, true ) ;
3804    CountedPtr<Scantable> rsig = getScantable( s, true ) ;
3805    insitu_ = insitu ;
3806    rsig->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSON ) ;
3807    rsig->attach() ;
3808    copyRows( ssig->table_, rsig->table_, 0, 0, rsig->nrow(), False, True, False ) ;
3809
3810    // process each sig and ref scan
3811    vector<string> cols( 3 ) ;
3812    cols[0] = "BEAMNO" ;
3813    cols[1] = "POLNO" ;
3814    cols[2] = "IFNO" ;
3815    STIdxIter2 iter(ssig, cols);
3816    while ( !iter.pastEnd() ) {
3817      Record ids = iter.currentValue() ;
3818      stringstream ss ;
3819      ss << "SELECT FROM $1 WHERE "
3820         << "BEAMNO==" << ids.asuInt("BEAMNO") << "&&"
3821         << "POLNO==" << ids.asuInt("POLNO") << "&&"
3822         << "IFNO==" << ids.asuInt("IFNO") ;
3823      //cout << "TaQL string: " << ss.str() << endl ;
3824      sel.setTaQL( ss.str() ) ;
3825      ahot->setSelection( sel ) ;
3826      asky->setSelection( sel ) ;
3827      Vector<uInt> rows = iter.getRows( SHARE ) ;
3828      // out should be an exact copy of s except that SPECTRA column is empty
3829      calibrateFS( ssig, sref, rsig, rref, asky, ahot, acold, rows ) ;
3830      ahot->unsetSelection() ;
3831      asky->unsetSelection() ;
3832      sel.reset() ;
3833      iter.next() ;
3834    }
3835  }
3836
3837  // do folding if necessary
3838  Table sigtab = ssig->table() ;
3839  Table reftab = sref->table() ;
3840  ScalarColumn<uInt> reffidCol ;
3841  Int nchan = (Int)ssig->nchan() ;
3842  reffidCol.attach( reftab, "FREQ_ID" ) ;
3843  Vector<uInt> sfids = ssig->mfreqidCol_.getColumn() ;
3844  Vector<uInt> rfids = sref->mfreqidCol_.getColumn() ;
3845  vector<uInt> sfids_unique ;
3846  vector<uInt> rfids_unique ;
3847  vector<uInt> sifno_unique ;
3848  vector<uInt> rifno_unique ;
3849  for ( uInt i = 0 ; i < sfids.nelements() ; i++ ) {
3850    if ( count( sfids_unique.begin(), sfids_unique.end(), sfids[i] ) == 0 ) {
3851      sfids_unique.push_back( sfids[i] ) ;
3852      sifno_unique.push_back( ssig->getIF( i ) ) ;
3853    }
3854    if ( count( rfids_unique.begin(), rfids_unique.end(),  rfids[i] ) == 0 ) {
3855      rfids_unique.push_back( rfids[i] ) ;
3856      rifno_unique.push_back( sref->getIF( i ) ) ;
3857    }
3858  }
3859  double refpix_sig, refval_sig, increment_sig ;
3860  double refpix_ref, refval_ref, increment_ref ;
3861  vector< CountedPtr<Scantable> > tmp( sfids_unique.size() ) ;
3862  for ( uInt i = 0 ; i < sfids_unique.size() ; i++ ) {
3863    ssig->frequencies().getEntry( refpix_sig, refval_sig, increment_sig, sfids_unique[i] ) ;
3864    sref->frequencies().getEntry( refpix_ref, refval_ref, increment_ref, rfids_unique[i] ) ;
3865    if ( refpix_sig == refpix_ref ) {
3866      double foffset = refval_ref - refval_sig ;
3867      int choffset = static_cast<int>(foffset/increment_sig) ;
3868      double doffset = foffset / increment_sig ;
3869      if ( abs(choffset) >= nchan ) {
3870        LogIO os( LogOrigin( "STMath", "cwcalfs", WHERE ) ) ;
3871        os << "FREQ_ID=[" << sfids_unique[i] << "," << rfids_unique[i] << "]: out-band frequency switching, no folding" << LogIO::POST ;
3872        os << "Just return signal data" << LogIO::POST ;
3873        //std::vector< CountedPtr<Scantable> > tabs ;
3874        //tabs.push_back( ssig ) ;
3875        //tabs.push_back( sref ) ;
3876        //out = merge( tabs ) ;
3877        tmp[i] = ssig ;
3878      }
3879      else {
3880        STSelector sel = STSelector() ;
3881        vector<int> v( 1, sifno_unique[i] ) ;
3882        sel.setIFs( v ) ;
3883        ssig->setSelection( sel ) ;
3884        sel.reset() ;
3885        v[0] = rifno_unique[i] ;
3886        sel.setIFs( v ) ;
3887        sref->setSelection( sel ) ;
3888        sel.reset() ;
3889        if ( antname.find( "APEX" ) != string::npos ) {
3890          tmp[i] = dofold( ssig, sref, 0.5*doffset, -0.5*doffset ) ;
3891          //tmp[i] = dofold( ssig, sref, doffset ) ;
3892        }
3893        else {
3894          tmp[i] = dofold( ssig, sref, doffset ) ;
3895        }
3896        ssig->unsetSelection() ;
3897        sref->unsetSelection() ;
3898      }
3899    }
3900  }
3901
3902  if ( tmp.size() > 1 ) {
3903    out = merge( tmp ) ;
3904  }
3905  else {
3906    out = tmp[0] ;
3907  }
3908
3909  // flux unit
3910  out->setFluxUnit( "K" ) ;
3911
3912  return out ;
3913}
3914
3915CountedPtr<Scantable> STMath::almacalfs( const CountedPtr<Scantable>& s )
3916{
3917  (void) s; //currently unused
3918  CountedPtr<Scantable> out ;
3919
3920  return out ;
3921}
3922
3923void STMath::calibrateAPEXFS( CountedPtr<Scantable> &sig,
3924                              CountedPtr<Scantable> &ref,
3925                              const vector< CountedPtr<Scantable> >& on,
3926                              const vector< CountedPtr<Scantable> >& sky,
3927                              const vector< CountedPtr<Scantable> >& hot,
3928                              const vector< CountedPtr<Scantable> >& cold,
3929                              const Vector<uInt> &rows )
3930{
3931  // if rows is empty, just return
3932  if ( rows.nelements() == 0 )
3933    return ;
3934  ROScalarColumn<Double> timeCol( sky[0]->table(), "TIME" ) ;
3935  Vector<Double> timeSkyS = timeCol.getColumn() ;
3936  timeCol.attach( sky[1]->table(), "TIME" ) ;
3937  Vector<Double> timeSkyR = timeCol.getColumn() ;
3938  timeCol.attach( hot[0]->table(), "TIME" ) ;
3939  Vector<Double> timeHotS = timeCol.getColumn() ;
3940  timeCol.attach( hot[1]->table(), "TIME" ) ;
3941  Vector<Double> timeHotR = timeCol.getColumn() ;
3942  timeCol.attach( sig->table(), "TIME" ) ;
3943  ROScalarColumn<Double> timeCol2( ref->table(), "TIME" ) ;
3944  ROArrayColumn<Float> arrayFloatCol( sky[0]->table(), "SPECTRA" ) ;
3945  SpectralData skyspectraS(arrayFloatCol.getColumn());
3946  arrayFloatCol.attach( sky[1]->table(), "SPECTRA" ) ;
3947  SpectralData skyspectraR(arrayFloatCol.getColumn());
3948  arrayFloatCol.attach( hot[0]->table(), "SPECTRA" ) ;
3949  SpectralData hotspectraS(arrayFloatCol.getColumn());
3950  arrayFloatCol.attach( hot[1]->table(), "SPECTRA" ) ;
3951  SpectralData hotspectraR(arrayFloatCol.getColumn());
3952  TcalData tcaldataS(sky[0]);
3953  TsysData tsysdataS(sky[0]);
3954  TcalData tcaldataR(sky[1]);
3955  TsysData tsysdataR(sky[1]);
3956  unsigned int spsize = sig->nchan( sig->getIF(rows[0]) ) ;
3957  Vector<Float> spec( spsize ) ;
3958  // I know that the data is contiguous
3959  const uInt *p = rows.data() ;
3960  vector<int> ids( 2 ) ;
3961  Block<uInt> flagchan( spsize ) ;
3962  uInt nflag = 0 ;
3963  for ( int irow = 0 ; irow < rows.nelements() ; irow++ ) {
3964    double reftime = timeCol.asdouble(*p) ;
3965    ids = getRowIdFromTime( reftime, timeSkyS ) ;
3966    Vector<Float> spskyS = SimpleInterpolationHelper<SpectralData>::GetFromTime(reftime, timeSkyS, ids, skyspectraS, "linear");
3967    Vector<Float> tcalS = SimpleInterpolationHelper<TcalData>::GetFromTime(reftime, timeSkyS, ids, tcaldataS, "linear");
3968    Vector<Float> tsysS = SimpleInterpolationHelper<TsysData>::GetFromTime(reftime, timeSkyS, ids, tsysdataS, "linear");
3969    ids = getRowIdFromTime( reftime, timeHotS ) ;
3970    Vector<Float> sphotS = SimpleInterpolationHelper<SpectralData>::GetFromTime(reftime, timeHotS, ids, hotspectraS, "linear");
3971    reftime = timeCol2.asdouble(*p) ;
3972    ids = getRowIdFromTime( reftime, timeSkyR ) ;
3973    Vector<Float> spskyR = SimpleInterpolationHelper<SpectralData>::GetFromTime(reftime, timeSkyR, ids, skyspectraR, "linear");
3974    Vector<Float> tcalR = SimpleInterpolationHelper<TcalData>::GetFromTime(reftime, timeSkyR, ids, tcaldataR, "linear");
3975    Vector<Float> tsysR = SimpleInterpolationHelper<TsysData>::GetFromTime(reftime, timeSkyR, ids, tsysdataR, "linear");
3976    ids = getRowIdFromTime( reftime, timeHotR ) ;
3977    Vector<Float> sphotR = SimpleInterpolationHelper<SpectralData>::GetFromTime(reftime, timeHotR, ids, hotspectraR, "linear");
3978    Vector<Float> spsig = on[0]->specCol_( *p ) ;
3979    Vector<Float> spref = on[1]->specCol_( *p ) ;
3980    for ( unsigned int j = 0 ; j < spsize ; j++ ) {
3981      if ( (sphotS[j]-spskyS[j]) == 0.0 || (sphotR[j]-spskyR[j]) == 0.0 ) {
3982        spec[j] = 0.0 ;
3983        flagchan[nflag++] = j ;
3984      }
3985      else {
3986        spec[j] = tcalS[j] * spsig[j] / ( sphotS[j] - spskyS[j] )
3987          - tcalR[j] * spref[j] / ( sphotR[j] - spskyR[j] ) ;
3988      }
3989    }
3990    sig->specCol_.put( *p, spec ) ;
3991    sig->tsysCol_.put( *p, tsysS ) ;
3992    spec *= (Float)-1.0 ;
3993    ref->specCol_.put( *p, spec ) ;
3994    ref->tsysCol_.put( *p, tsysR ) ;   
3995    if ( nflag > 0 ) {
3996      Vector<uChar> flsig = sig->flagsCol_( *p ) ;
3997      Vector<uChar> flref = ref->flagsCol_( *p ) ;
3998      for ( unsigned int j = 0 ; j < nflag ; j++ ) {
3999        flsig[flagchan[j]] = (uChar)True ;
4000        flref[flagchan[j]] = (uChar)True ;
4001      }
4002      sig->flagsCol_.put( *p, flsig ) ;
4003      ref->flagsCol_.put( *p, flref ) ;
4004    }
4005    nflag = 0 ;
4006    p++ ;
4007  }
4008}
4009
4010void STMath::calibrateFS( CountedPtr<Scantable> &sig,
4011                          CountedPtr<Scantable> &ref,
4012                          const CountedPtr<Scantable>& rsig,
4013                          const CountedPtr<Scantable>& rref,
4014                          const CountedPtr<Scantable>& sky,
4015                          const CountedPtr<Scantable>& hot,
4016                          const CountedPtr<Scantable>& cold,
4017                          const Vector<uInt> &rows )
4018{
4019  // if rows is empty, just return
4020  if ( rows.nelements() == 0 )
4021    return ;
4022  ROScalarColumn<Double> timeCol( sky->table(), "TIME" ) ;
4023  Vector<Double> timeSky = timeCol.getColumn() ;
4024  timeCol.attach( hot->table(), "TIME" ) ;
4025  Vector<Double> timeHot = timeCol.getColumn() ;
4026  timeCol.attach( sig->table(), "TIME" ) ;
4027  ROScalarColumn<Double> timeCol2( ref->table(), "TIME" ) ;
4028  ROArrayColumn<Float> arrayFloatCol( sky->table(), "SPECTRA" ) ;
4029  SpectralData skyspectra(arrayFloatCol.getColumn());
4030  arrayFloatCol.attach( hot->table(), "SPECTRA" ) ;
4031  SpectralData hotspectra(arrayFloatCol.getColumn());
4032  TcalData tcaldata(sky);
4033  TsysData tsysdata(sky);
4034  unsigned int spsize = sig->nchan( sig->getIF(rows[0]) ) ;
4035  Vector<Float> spec( spsize ) ;
4036  // I know that the data is contiguous
4037  const uInt *p = rows.data() ;
4038  vector<int> ids( 2 ) ;
4039  Block<uInt> flagchan( spsize ) ;
4040  uInt nflag = 0 ;
4041  for ( int irow = 0 ; irow < rows.nelements() ; irow++ ) {
4042    double reftime = timeCol.asdouble(*p) ;
4043    ids = getRowIdFromTime( reftime, timeSky ) ;
4044    Vector<Float> spsky = SimpleInterpolationHelper<SpectralData>::GetFromTime(reftime, timeSky, ids, skyspectra, "linear");
4045    Vector<Float> tcal = SimpleInterpolationHelper<TcalData>::GetFromTime(reftime, timeSky, ids, tcaldata, "linear");
4046    Vector<Float> tsys = SimpleInterpolationHelper<TsysData>::GetFromTime(reftime, timeSky, ids, tsysdata, "linear");
4047    ids = getRowIdFromTime( reftime, timeHot ) ;
4048    Vector<Float> sphot = SimpleInterpolationHelper<SpectralData>::GetFromTime(reftime, timeHot, ids, hotspectra, "linear");
4049    Vector<Float> spsig = rsig->specCol_( *p ) ;
4050    Vector<Float> spref = rref->specCol_( *p ) ;
4051    // using gain array
4052    for ( unsigned int j = 0 ; j < spsize ; j++ ) {
4053      if ( spref[j] == 0.0 || (sphot[j]-spsky[j]) == 0.0 ) {
4054        spec[j] = 0.0 ;
4055        flagchan[nflag++] = j ;
4056      }
4057      else {
4058        spec[j] = ( ( spsig[j] - spref[j] ) / spref[j] )
4059          * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
4060      }
4061    }
4062    sig->specCol_.put( *p, spec ) ;
4063    sig->tsysCol_.put( *p, tsys ) ;
4064    if ( nflag > 0 ) {
4065      Vector<uChar> fl = sig->flagsCol_( *p ) ;
4066      for ( unsigned int j = 0 ; j < nflag ; j++ ) {
4067        fl[flagchan[j]] = (uChar)True ;
4068      }
4069      sig->flagsCol_.put( *p, fl ) ;
4070    }
4071    nflag = 0 ;
4072
4073    reftime = timeCol2.asdouble(*p) ;
4074    ids = getRowIdFromTime( reftime, timeSky ) ;
4075    spsky = SimpleInterpolationHelper<SpectralData>::GetFromTime(reftime, timeSky, ids, skyspectra, "linear");
4076    tcal = SimpleInterpolationHelper<TcalData>::GetFromTime(reftime, timeSky, ids, tcaldata, "linear");
4077    tsys = SimpleInterpolationHelper<TsysData>::GetFromTime(reftime, timeSky, ids, tsysdata, "linear");
4078    ids = getRowIdFromTime( reftime, timeHot ) ;
4079    sphot = SimpleInterpolationHelper<SpectralData>::GetFromTime(reftime, timeHot, ids, hotspectra, "linear");
4080    // using gain array
4081    for ( unsigned int j = 0 ; j < spsize ; j++ ) {
4082      if ( spsig[j] == 0.0 || (sphot[j]-spsky[j]) == 0.0 ) {
4083        spec[j] = 0.0 ;
4084        flagchan[nflag++] = j ;
4085      }
4086      else {
4087        spec[j] = ( ( spref[j] - spsig[j] ) / spsig[j] )
4088          * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
4089      }
4090    }
4091    ref->specCol_.put( *p, spec ) ;
4092    ref->tsysCol_.put( *p, tsys ) ;   
4093    if ( nflag > 0 ) {
4094      Vector<uChar> fl = ref->flagsCol_( *p ) ;
4095      for ( unsigned int j = 0 ; j < nflag ; j++ ) {
4096        fl[flagchan[j]] = (uChar)True ;
4097      }
4098      ref->flagsCol_.put( *p, fl ) ;
4099    }
4100    nflag = 0 ;
4101    p++ ;
4102  }
4103}
4104
4105void STMath::copyRows( Table &out,
4106                       const Table &in,
4107                       uInt startout,
4108                       uInt startin,
4109                       uInt nrow,
4110                       Bool copySpectra,
4111                       Bool copyFlagtra,
4112                       Bool copyTsys )
4113{
4114  uInt nexclude = 0 ;
4115  Block<String> excludeColsBlock( 3 ) ;
4116  if ( !copySpectra ) {
4117    excludeColsBlock[nexclude] = "SPECTRA" ;
4118    nexclude++ ;
4119  }
4120  if ( !copyFlagtra ) {
4121    excludeColsBlock[nexclude] = "FLAGTRA" ;
4122    nexclude++ ;
4123  }
4124  if ( !copyTsys ) {
4125    excludeColsBlock[nexclude] = "TSYS" ;
4126    nexclude++ ;
4127  }
4128  //  if ( nexclude < 3 ) {
4129  //    excludeCols.resize( nexclude, True ) ;
4130  //  }
4131  Vector<String> excludeCols( IPosition(1,nexclude),
4132                              excludeColsBlock.storage(),
4133                              SHARE ) ;
4134//   cout << "excludeCols=" << excludeCols << endl ;
4135  TableRow rowout( out, excludeCols, True ) ;
4136  ROTableRow rowin( in, excludeCols, True ) ;
4137  uInt rin = startin ;
4138  uInt rout = startout ;
4139  for ( uInt i = 0 ; i < nrow ; i++ ) {
4140    rowin.get( rin ) ;
4141    rowout.putMatchingFields( rout, rowin.record() ) ;
4142    rin++ ;
4143    rout++ ;
4144  }
4145}
4146
4147CountedPtr<Scantable> STMath::averageWithinSession( CountedPtr<Scantable> &s,
4148                                                    vector<bool> &mask,
4149                                                    string weight )
4150{
4151  // prepare output table
4152  bool insitu = insitu_ ;
4153  insitu_ = false ;
4154  CountedPtr<Scantable> a = getScantable( s, true ) ;
4155  insitu_ = insitu ;
4156  Table &atab = a->table() ;
4157  ScalarColumn<Double> timeColOut( atab, "TIME" ) ;
4158
4159  if ( s->nrow() == 0 )
4160    return a ;
4161
4162  // setup RowAccumulator
4163  WeightType wtype = stringToWeight( weight ) ;
4164  RowAccumulator acc( wtype ) ;
4165  Vector<Bool> cmask( mask ) ;
4166  acc.setUserMask( cmask ) ;
4167
4168  vector<string> cols( 3 ) ;
4169  cols[0] = "IFNO" ;
4170  cols[1] = "POLNO" ;
4171  cols[2] = "BEAMNO" ;
4172  STIdxIter2 iter( s, cols ) ;
4173
4174  Table ttab = s->table() ;
4175  ROScalarColumn<Double> *timeCol = new ROScalarColumn<Double>( ttab, "TIME" ) ;
4176  Vector<Double> timeVec = timeCol->getColumn() ;
4177  delete timeCol ;
4178  Vector<Double> interval = s->integrCol_.getColumn() ;
4179  uInt nrow = timeVec.nelements() ;
4180  uInt outrow = 0 ;
4181
4182  while( !iter.pastEnd() ) {
4183
4184    Vector<uInt> rows = iter.getRows( SHARE ) ;
4185    uInt len = rows.nelements() ;
4186
4187    if ( len == 0 ) {
4188      iter.next() ;
4189      continue ;
4190    }
4191
4192    uInt nchan = s->nchan(s->getIF(rows[0])) ;
4193    Vector<uChar> flag( nchan ) ;
4194    Vector<Bool> bflag( nchan ) ;
4195    Vector<Float> spec( nchan ) ;
4196    Vector<Float> tsys( nchan ) ;
4197
4198    Vector<Double> timeSep( len-1 ) ;
4199    for ( uInt i = 0 ; i < len-1 ; i++ ) {
4200      timeSep[i] = timeVec[rows[i+1]] - timeVec[rows[i]] ;
4201    }
4202
4203    uInt irow ;
4204    uInt jrow ;
4205    for ( uInt i = 0 ; i < len-1 ; i++ ) {
4206      irow = rows[i] ;
4207      jrow = rows[i+1] ;
4208      // accumulate data
4209      s->flagsCol_.get( irow, flag ) ;
4210      convertArray( bflag, flag ) ;
4211      s->specCol_.get( irow, spec ) ;
4212      tsys.assign( s->tsysCol_( irow ) ) ;
4213      if ( !allEQ(bflag,True) )
4214        acc.add( spec, !bflag, tsys, interval[irow], timeVec[irow] ) ;
4215      double gap = 2.0 * 86400.0 * timeSep[i] / ( interval[jrow] + interval[irow] ) ;
4216      //cout << "gap[" << i << "]=" << setw(5) << gap << endl ;
4217      if ( gap > 1.1 ) {
4218        //cout << "detected gap between " << i << " and " << i+1 << endl ;
4219        // put data to output table
4220        // reset RowAccumulator
4221        if ( acc.state() ) {
4222          atab.addRow() ;
4223          copyRows( atab, ttab, outrow, irow, 1, False, False, False ) ;
4224          acc.replaceNaN() ;
4225          const Vector<Bool> &msk = acc.getMask() ;
4226          convertArray( flag, !msk ) ;
4227          for (uInt k = 0; k < nchan; ++k) {
4228            uChar userFlag = 1 << 7;
4229            if (msk[k]==True) userFlag = 0 << 7;
4230            flag(k) = userFlag;
4231          }
4232          a->flagsCol_.put( outrow, flag ) ;
4233          a->specCol_.put( outrow, acc.getSpectrum() ) ;
4234          a->tsysCol_.put( outrow, acc.getTsys() ) ;
4235          a->integrCol_.put( outrow, acc.getInterval() ) ;
4236          timeColOut.put( outrow, acc.getTime() ) ;
4237          a->cycleCol_.put( outrow, 0 ) ;
4238        }
4239        acc.reset() ;
4240        outrow++ ;
4241      }
4242    }
4243
4244    // accumulate and add last data
4245    irow = rows[len-1] ;
4246    s->flagsCol_.get( irow, flag ) ;
4247    convertArray( bflag, flag ) ;
4248    s->specCol_.get( irow, spec ) ;
4249    tsys.assign( s->tsysCol_( irow ) ) ;
4250    if (!allEQ(bflag,True) )
4251      acc.add( spec, !bflag, tsys, interval[irow], timeVec[irow] ) ;
4252    if ( acc.state() ) {
4253      atab.addRow() ;
4254      copyRows( atab, ttab, outrow, irow, 1, False, False, False ) ;
4255      acc.replaceNaN() ;
4256      const Vector<Bool> &msk = acc.getMask() ;
4257      convertArray( flag, !msk ) ;
4258      for (uInt k = 0; k < nchan; ++k) {
4259        uChar userFlag = 1 << 7;
4260        if (msk[k]==True) userFlag = 0 << 7;
4261        flag(k) = userFlag;
4262      }
4263      a->flagsCol_.put( outrow, flag ) ;
4264      a->specCol_.put( outrow, acc.getSpectrum() ) ;
4265      a->tsysCol_.put( outrow, acc.getTsys() ) ;
4266      a->integrCol_.put( outrow, acc.getInterval() ) ;
4267      timeColOut.put( outrow, acc.getTime() ) ;
4268      a->cycleCol_.put( outrow, 0 ) ;
4269    }
4270    acc.reset() ;
4271    outrow++ ;
4272
4273    iter.next() ;
4274  }
4275
4276  return a ;
4277}
Note: See TracBrowser for help on using the repository browser.