source: trunk/src/STMath.cpp @ 2904

Last change on this file since 2904 was 2904, checked in by Takeshi Nakazato, 10 years ago

New Development: No

JIRA Issue: Yes CAS-5875

Ready for Test: Yes

Interface Changes: /No

What Interface Changed: Please list interface changes

Test Programs: test_sdcoadd

Put in Release Notes: No

Module(s): Module Names change impacts.

Description: Describe your changes here...

Support for numeric value for freq_tol in sd.merge.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 165.7 KB
Line 
1//
2// C++ Implementation: STMath
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2006
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12
13#include <sstream>
14
15#include <casa/iomanip.h>
16#include <casa/Arrays/MaskArrLogi.h>
17#include <casa/Arrays/MaskArrMath.h>
18#include <casa/Arrays/ArrayLogical.h>
19#include <casa/Arrays/ArrayMath.h>
20#include <casa/Arrays/Slice.h>
21#include <casa/Arrays/Slicer.h>
22#include <casa/BasicSL/String.h>
23#include <casa/Containers/Block.h>
24#include <casa/Containers/RecordField.h>
25#include <casa/Exceptions/Error.h>
26#include <casa/Logging/LogIO.h>
27#include <casa/Quanta/Quantum.h>
28
29#include <coordinates/Coordinates/CoordinateSystem.h>
30#include <coordinates/Coordinates/CoordinateUtil.h>
31#include <coordinates/Coordinates/FrequencyAligner.h>
32#include <coordinates/Coordinates/SpectralCoordinate.h>
33
34#include <lattices/Lattices/LatticeUtilities.h>
35
36#include <scimath/Functionals/Polynomial.h>
37#include <scimath/Mathematics/Convolver.h>
38#include <scimath/Mathematics/VectorKernel.h>
39
40#include <tables/Tables/ExprNode.h>
41#include <tables/Tables/ReadAsciiTable.h>
42#include <tables/Tables/TableCopy.h>
43#include <tables/Tables/TableIter.h>
44#include <tables/Tables/TableParse.h>
45#include <tables/Tables/TableRecord.h>
46#include <tables/Tables/TableRow.h>
47#include <tables/Tables/TableVector.h>
48#include <tables/Tables/TabVecMath.h>
49
50#include <atnf/PKSIO/SrcType.h>
51
52#include "RowAccumulator.h"
53#include "STAttr.h"
54#include "STMath.h"
55#include "STSelector.h"
56#include "Accelerator.h"
57#include "STIdxIter.h"
58
59using namespace casa;
60using namespace asap;
61
62// 2012/02/17 TN
63// Since STGrid is implemented, average doesn't consider direction
64// when accumulating
65// tolerance for direction comparison (rad)
66// #define TOL_OTF    1.0e-15
67// #define TOL_POINT  2.9088821e-4  // 1 arcmin
68
69STMath::STMath(bool insitu) :
70  insitu_(insitu)
71{
72}
73
74
75STMath::~STMath()
76{
77}
78
79CountedPtr<Scantable>
80STMath::average( const std::vector<CountedPtr<Scantable> >& in,
81                 const std::vector<bool>& mask,
82                 const std::string& weight,
83                 const std::string& avmode)
84{
85//    double t0, t1 ;
86//    t0 = mathutil::gettimeofday_sec() ;
87
88  LogIO os( LogOrigin( "STMath", "average()", WHERE ) ) ;
89  if ( avmode == "SCAN" && in.size() != 1 )
90    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
91                    "Use merge first."));
92  WeightType wtype = stringToWeight(weight);
93
94  // 2012/02/17 TN
95  // Since STGrid is implemented, average doesn't consider direction
96  // when accumulating
97  // check if OTF observation
98//   String obstype = in[0]->getHeader().obstype ;
99//   Double tol = 0.0 ;
100//   if ( (obstype.find( "OTF" ) != String::npos) || (obstype.find( "OBSERVE_TARGET" ) != String::npos) ) {
101//     tol = TOL_OTF ;
102//   }
103//   else {
104//     tol = TOL_POINT ;
105//   }
106
107  // output
108  // clone as this is non insitu
109  bool insitu = insitu_;
110  setInsitu(false);
111  CountedPtr< Scantable > out = getScantable(in[0], true);
112  setInsitu(insitu);
113  std::vector<CountedPtr<Scantable> >::const_iterator stit = in.begin();
114  ++stit;
115  while ( stit != in.end() ) {
116    out->appendToHistoryTable((*stit)->history());
117    ++stit;
118  }
119
120  Table& tout = out->table();
121
122  /// @todo check if all scantables are conformant
123
124  ArrayColumn<Float> specColOut(tout,"SPECTRA");
125  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
126  ArrayColumn<Float> tsysColOut(tout,"TSYS");
127  ScalarColumn<Double> mjdColOut(tout,"TIME");
128  ScalarColumn<Double> intColOut(tout,"INTERVAL");
129  ScalarColumn<uInt> cycColOut(tout,"CYCLENO");
130  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
131  ScalarColumn<uInt> flagRowColOut(tout,"FLAGROW");
132
133  // set up the output table rows. These are based on the structure of the
134  // FIRST scantable in the vector
135  const Table& baset = in[0]->table();
136
137  RowAccumulator acc(wtype);
138  Vector<Bool> cmask(mask);
139  acc.setUserMask(cmask);
140//   ROTableRow row(tout);
141  ROArrayColumn<Float> specCol, tsysCol;
142  ROArrayColumn<uChar> flagCol;
143  ROScalarColumn<Double> mjdCol, intCol;
144  ROScalarColumn<Int> scanIDCol;
145  ROScalarColumn<uInt> flagRowCol;
146
147  //Vector<uInt> rowstodelete;
148  Block<uInt> rowstodelB( in[0]->nrow() ) ;
149  uInt nrowdel = 0 ;
150
151//   Block<String> cols(3);
152  vector<string> cols(3) ;
153  cols[0] = String("BEAMNO");
154  cols[1] = String("IFNO");
155  cols[2] = String("POLNO");
156  if ( avmode == "SOURCE" ) {
157    cols.resize(4);
158    cols[3] = String("SRCNAME");
159  }
160  if ( avmode == "SCAN"  && in.size() == 1) {
161    //cols.resize(4);
162    //cols[3] = String("SCANNO");
163    cols.resize(5);
164    cols[3] = String("SRCNAME");
165    cols[4] = String("SCANNO");
166  }
167  uInt outrowCount = 0;
168  // use STIdxIterExAcc instead of TableIterator
169  STIdxIterExAcc iter( in[0], cols ) ;
170//   double t2 = 0 ;
171//   double t3 = 0 ;
172//   double t4 = 0 ;
173//   double t5 = 0 ;
174//   TableIterator iter(baset, cols);
175//   int count = 0 ;
176  while (!iter.pastEnd()) {
177    Vector<uInt> rows = iter.getRows( SHARE ) ;
178    if ( rows.nelements() == 0 ) {
179      iter.next() ;
180      continue ;
181    }
182    Vector<uInt> current = iter.current() ;
183    String srcname = iter.getSrcName() ;
184    //Table subt = iter.table();
185    // copy the first row of this selection into the new table
186    tout.addRow();
187//     t4 = mathutil::gettimeofday_sec() ;
188    // skip to copy SPECTRA, FLAGTRA, and TSYS since those heavy columns are
189    // overwritten in the following process
190    copyRows( tout, baset, outrowCount, rows[0], 1, False, False, False ) ;
191//     t5 += mathutil::gettimeofday_sec() - t4 ;
192    // re-index to 0
193    if ( avmode != "SCAN" && avmode != "SOURCE" ) {
194      scanColOut.put(outrowCount, uInt(0));
195    }
196
197    // 2012/02/17 TN
198    // Since STGrid is implemented, average doesn't consider direction
199    // when accumulating
200//     MDirection::ScalarColumn dircol ;
201//     dircol.attach( subt, "DIRECTION" ) ;
202//     Int length = subt.nrow() ;
203//     vector< Vector<Double> > dirs ;
204//     vector<int> indexes ;
205//     for ( Int i = 0 ; i < length ; i++ ) {
206//       Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
207//       //os << << count++ << ": " ;
208//       //os << "[" << t[0] << "," << t[1] << "]" << LogIO::POST ;
209//       bool adddir = true ;
210//       for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
211//         //if ( allTrue( t == dirs[j] ) ) {
212//         Double dx = t[0] - dirs[j][0] ;
213//         Double dy = t[1] - dirs[j][1] ;
214//         Double dd = sqrt( dx * dx + dy * dy ) ;
215//         //if ( allNearAbs( t, dirs[j], tol ) ) {
216//         if ( dd <= tol ) {
217//           adddir = false ;
218//           break ;
219//         }
220//       }
221//       if ( adddir ) {
222//         dirs.push_back( t ) ;
223//         indexes.push_back( i ) ;
224//       }
225//     }
226//     uInt rowNum = dirs.size() ;
227//     tout.addRow( rowNum ) ;
228//     for ( uInt i = 0 ; i < rowNum ; i++ ) {
229//       TableCopy::copyRows( tout, subt, outrowCount+i, indexes[i], 1 ) ;
230//       // re-index to 0
231//       if ( avmode != "SCAN" && avmode != "SOURCE" ) {
232//         scanColOut.put(outrowCount+i, uInt(0));
233//       }       
234//     }
235//     outrowCount += rowNum ;
236
237    // merge loop
238    uInt i = outrowCount ;
239    // in[0] is already selected by iterator
240    specCol.attach(baset,"SPECTRA");
241    flagCol.attach(baset,"FLAGTRA");
242    tsysCol.attach(baset,"TSYS");
243    intCol.attach(baset,"INTERVAL");
244    mjdCol.attach(baset,"TIME");
245    flagRowCol.attach(baset,"FLAGROW");
246    Vector<Float> spec,tsys;
247    Vector<uChar> flag;
248    Double inter,time;
249    uInt flagRow;
250
251    for (uInt l = 0; l < rows.nelements(); ++l ) {
252      uInt k = rows[l] ;
253      flagCol.get(k, flag);
254      Vector<Bool> bflag(flag.shape());
255      flagRowCol.get(k, flagRow);
256      if (flagRow > 0)
257        bflag = true;
258      else
259        convertArray(bflag, flag);
260      /*                                                                                                   
261        if ( allEQ(bflag, True) ) {                                                                         
262        continue;//don't accumulate                                                                         
263        }                                                                                                   
264      */
265      specCol.get(k, spec);
266      tsysCol.get(k, tsys);
267      intCol.get(k, inter);
268      mjdCol.get(k, time);
269      // spectrum has to be added last to enable weighting by the other values                             
270//       t2 = mathutil::gettimeofday_sec() ;
271      acc.add(spec, !bflag, tsys, inter, time);
272//       t3 += mathutil::gettimeofday_sec() - t2 ;
273     
274    }
275
276
277    // in[0] is already selected by TableIterator so that index is
278    // started from 1
279    for ( int j=1; j < int(in.size()); ++j ) {
280      const Table& tin = in[j]->table();
281      //const TableRecord& rec = row.get(i);
282      ROScalarColumn<Double> tmp(tin, "TIME");
283      Double td;tmp.get(0,td);
284
285#if 1
286      static char const*const colNames1[] = { "IFNO", "BEAMNO", "POLNO" };
287      //uInt const values1[] = { rec.asuInt("IFNO"), rec.asuInt("BEAMNO"), rec.asuInt("POLNO") };
288      uInt const values1[] = { current[1], current[0], current[2] };
289      SingleTypeEqPredicate<uInt, 3> myPred(tin, colNames1, values1);
290      CustomTableExprNodeRep myNodeRep(tin, myPred);
291      myNodeRep.link(); // to avoid automatic delete when myExpr is destructed.
292      CustomTableExprNode myExpr(myNodeRep);
293      Table basesubt = tin(myExpr);
294#else
295//       Table basesubt = tin( tin.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
296//                          && tin.col("IFNO") == Int(rec.asuInt("IFNO"))
297//                          && tin.col("POLNO") == Int(rec.asuInt("POLNO")) );
298      Table basesubt = tin( tin.col("BEAMNO") == current[0]
299                         && tin.col("IFNO") == current[1]
300                         && tin.col("POLNO") == current[2] );
301#endif
302      Table subt;
303      if ( avmode == "SOURCE") {
304//         subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME"));
305        subt = basesubt( basesubt.col("SRCNAME") == srcname );
306
307      } else if (avmode == "SCAN") {
308//         subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME")
309//                    && basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO")) );
310        subt = basesubt( basesubt.col("SRCNAME") == srcname
311                      && basesubt.col("SCANNO") == current[4] );
312      } else {
313        subt = basesubt;
314      }
315
316      // 2012/02/17 TN
317      // Since STGrid is implemented, average doesn't consider direction
318      // when accumulating
319//       vector<uInt> removeRows ;
320//       uInt nrsubt = subt.nrow() ;
321//       for ( uInt irow = 0 ; irow < nrsubt ; irow++ ) {
322//         //if ( !allTrue((subt.col("DIRECTION").getArrayDouble(TableExprId(irow)))==rec.asArrayDouble("DIRECTION")) ) {
323//         Vector<Double> x0 = (subt.col("DIRECTION").getArrayDouble(TableExprId(irow))) ;
324//         Vector<Double> x1 = rec.asArrayDouble("DIRECTION") ;
325//         double dx = x0[0] - x1[0];
326//         double dy = x0[1] - x1[1];
327//         Double dd = sqrt( dx * dx + dy * dy ) ;
328//         //if ( !allNearAbs((subt.col("DIRECTION").getArrayDouble(TableExprId(irow))), rec.asArrayDouble("DIRECTION"), tol ) ) {
329//         if ( dd > tol ) {
330//           removeRows.push_back( irow ) ;
331//         }
332//       }
333//       if ( removeRows.size() != 0 ) {
334//         subt.removeRow( removeRows ) ;
335//       }
336     
337//       if ( nrsubt == removeRows.size() )
338//         throw(AipsError("Averaging data is empty.")) ;
339
340      specCol.attach(subt,"SPECTRA");
341      flagCol.attach(subt,"FLAGTRA");
342      tsysCol.attach(subt,"TSYS");
343      intCol.attach(subt,"INTERVAL");
344      mjdCol.attach(subt,"TIME");
345      flagRowCol.attach(subt,"FLAGROW");
346      for (uInt k = 0; k < subt.nrow(); ++k ) {
347        flagCol.get(k, flag);
348        Vector<Bool> bflag(flag.shape());
349        flagRowCol.get(k, flagRow);
350        if (flagRow > 0)
351          bflag = true;
352        else
353          convertArray(bflag, flag);
354        /*
355        if ( allEQ(bflag, True) ) {
356        continue;//don't accumulate
357        }
358        */
359        specCol.get(k, spec);
360        //tsysCol.get(k, tsys);
361        tsys.assign( tsysCol(k) );
362        intCol.get(k, inter);
363        mjdCol.get(k, time);
364        // spectrum has to be added last to enable weighting by the other values
365//         t2 = mathutil::gettimeofday_sec() ;
366        acc.add(spec, !bflag, tsys, inter, time);
367//         t3 += mathutil::gettimeofday_sec() - t2 ;
368      }
369
370    }
371    const Vector<Bool>& msk = acc.getMask();
372    if ( allEQ(msk, False) ) {
373      rowstodelB[nrowdel] = i ;
374      nrowdel++ ;
375      continue;
376    }
377    //write out
378    if (acc.state()) {
379      // If there exists a channel at which all the input spectra are masked,
380      // spec has 'nan' values for that channel and it may affect the following
381      // processes. To avoid this, replacing 'nan' values in spec with
382      // weighted-mean of all spectra in the following line.
383      // (done for CAS-2776, 2011/04/07 by Wataru Kawasaki)
384      acc.replaceNaN();
385
386      Vector<uChar> flg(msk.shape());
387      convertArray(flg, !msk);
388      for (uInt k = 0; k < flg.nelements(); ++k) {
389        uChar userFlag = 1 << 7;
390        if (msk[k]==True) userFlag = 0 << 7;
391        flg(k) = userFlag;
392      }
393
394      flagColOut.put(i, flg);
395      specColOut.put(i, acc.getSpectrum());
396      tsysColOut.put(i, acc.getTsys());
397      intColOut.put(i, acc.getInterval());
398      mjdColOut.put(i, acc.getTime());
399      // we should only have one cycle now -> reset it to be 0
400      // frequency switched data has different CYCLENO for different IFNO
401      // which requires resetting this value
402      cycColOut.put(i, uInt(0));
403      // completely flagged rows are removed anyway
404      flagRowColOut.put(i, uInt(0));
405    } else {
406      os << "For output row="<<i<<", all input rows of data are flagged. no averaging" << LogIO::POST;
407    }
408    acc.reset();
409
410    // merge with while loop for preparing out table
411    ++outrowCount;
412//     ++iter ;
413    iter.next() ;
414  }
415
416  if ( nrowdel > 0 ) {
417    Vector<uInt> rowstodelete( IPosition(1,nrowdel), rowstodelB.storage(), SHARE ) ;
418    os << rowstodelete << LogIO::POST ;
419    tout.removeRow(rowstodelete);
420    if (tout.nrow() == 0) {
421      throw(AipsError("Can't average fully flagged data."));
422    }
423  }
424
425//    t1 = mathutil::gettimeofday_sec() ;
426//    cout << "elapsed time for average(): " << t1-t0 << " sec" << endl ;
427//    cout << "   elapsed time for acc.add(): " << t3 << " sec" << endl ;
428//    cout << "   elapsed time for copyRows(): " << t5 << " sec" << endl ;
429
430  return out;
431}
432
433CountedPtr< Scantable >
434STMath::averageChannel( const CountedPtr < Scantable > & in,
435                          const std::string & mode,
436                          const std::string& avmode )
437{
438  (void) mode; // currently unused
439  // 2012/02/17 TN
440  // Since STGrid is implemented, average doesn't consider direction
441  // when accumulating
442  // check if OTF observation
443//   String obstype = in->getHeader().obstype ;
444//   Double tol = 0.0 ;
445//   if ( obstype.find( "OTF" ) != String::npos ) {
446//     tol = TOL_OTF ;
447//   }
448//   else {
449//     tol = TOL_POINT ;
450//   }
451
452  // clone as this is non insitu
453  bool insitu = insitu_;
454  setInsitu(false);
455  CountedPtr< Scantable > out = getScantable(in, true);
456  setInsitu(insitu);
457  Table& tout = out->table();
458  ArrayColumn<Float> specColOut(tout,"SPECTRA");
459  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
460  ArrayColumn<Float> tsysColOut(tout,"TSYS");
461  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
462  ScalarColumn<Double> intColOut(tout, "INTERVAL");
463  Table tmp = in->table().sort("BEAMNO");
464  Block<String> cols(3);
465  cols[0] = String("BEAMNO");
466  cols[1] = String("IFNO");
467  cols[2] = String("POLNO");
468  if ( avmode == "SCAN") {
469    cols.resize(4);
470    cols[3] = String("SCANNO");
471  }
472  uInt outrowCount = 0;
473  uChar userflag = 1 << 7;
474  TableIterator iter(tmp, cols);
475  while (!iter.pastEnd()) {
476    Table subt = iter.table();
477    ROArrayColumn<Float> specCol, tsysCol;
478    ROArrayColumn<uChar> flagCol;
479    ROScalarColumn<Double> intCol(subt, "INTERVAL");
480    specCol.attach(subt,"SPECTRA");
481    flagCol.attach(subt,"FLAGTRA");
482    tsysCol.attach(subt,"TSYS");
483
484    tout.addRow();
485    TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
486    if ( avmode != "SCAN") {
487      scanColOut.put(outrowCount, uInt(0));
488    }
489    Vector<Float> tmp;
490    specCol.get(0, tmp);
491    uInt nchan = tmp.nelements();
492    // have to do channel by channel here as MaskedArrMath
493    // doesn't have partialMedians
494    Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
495    Vector<Float> outspec(nchan);
496    Vector<uChar> outflag(nchan,0);
497    Vector<Float> outtsys(1);/// @fixme when tsys is channel based
498    for (uInt i=0; i<nchan; ++i) {
499      Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
500      MaskedArray<Float> ma = maskedArray(specs,flags);
501      outspec[i] = median(ma);
502      if ( allEQ(ma.getMask(), False) )
503        outflag[i] = userflag;// flag data
504    }
505    outtsys[0] = median(tsysCol.getColumn());
506    specColOut.put(outrowCount, outspec);
507    flagColOut.put(outrowCount, outflag);
508    tsysColOut.put(outrowCount, outtsys);
509    Double intsum = sum(intCol.getColumn());
510    intColOut.put(outrowCount, intsum);
511    ++outrowCount;
512    ++iter;
513
514    // 2012/02/17 TN
515    // Since STGrid is implemented, average doesn't consider direction
516    // when accumulating
517//     MDirection::ScalarColumn dircol ;
518//     dircol.attach( subt, "DIRECTION" ) ;
519//     Int length = subt.nrow() ;
520//     vector< Vector<Double> > dirs ;
521//     vector<int> indexes ;
522//     // Handle MX mode averaging
523//     if (in->nbeam() > 1 ) {     
524//       length = 1;
525//     }
526//     for ( Int i = 0 ; i < length ; i++ ) {
527//       Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
528//       bool adddir = true ;
529//       for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
530//         //if ( allTrue( t == dirs[j] ) ) {
531//         Double dx = t[0] - dirs[j][0] ;
532//         Double dy = t[1] - dirs[j][1] ;
533//         Double dd = sqrt( dx * dx + dy * dy ) ;
534//         //if ( allNearAbs( t, dirs[j], tol ) ) {
535//         if ( dd <= tol ) {
536//           adddir = false ;
537//           break ;
538//         }
539//       }
540//       if ( adddir ) {
541//         dirs.push_back( t ) ;
542//         indexes.push_back( i ) ;
543//       }
544//     }
545//     uInt rowNum = dirs.size() ;
546//     tout.addRow( rowNum );
547//     for ( uInt i = 0 ; i < rowNum ; i++ ) {
548//       TableCopy::copyRows(tout, subt, outrowCount+i, indexes[i], 1) ;
549//       // Handle MX mode averaging
550//       if ( avmode != "SCAN") {
551//         scanColOut.put(outrowCount+i, uInt(0));
552//       }
553//     }
554//     MDirection::ScalarColumn dircolOut ;
555//     dircolOut.attach( tout, "DIRECTION" ) ;
556//     for ( uInt irow = 0 ; irow < rowNum ; irow++ ) {
557//       Vector<Double> t = \
558//      dircolOut(outrowCount+irow).getAngle(Unit(String("rad"))).getValue() ;
559//       Vector<Float> tmp;
560//       specCol.get(0, tmp);
561//       uInt nchan = tmp.nelements();
562//       // have to do channel by channel here as MaskedArrMath
563//       // doesn't have partialMedians
564//       Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
565//       // mask spectra for different DIRECTION
566//       for ( uInt jrow = 0 ; jrow < subt.nrow() ; jrow++ ) {
567//         Vector<Double> direction = \
568//        dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
569//         //if ( t[0] != direction[0] || t[1] != direction[1] ) {
570//         Double dx = t[0] - direction[0];
571//         Double dy = t[1] - direction[1];
572//         Double dd = sqrt(dx*dx + dy*dy);
573//         //if ( !allNearAbs( t, direction, tol ) ) {
574//         if ( dd > tol &&  in->nbeam() < 2 ) {
575//           flags[jrow] = userflag ;
576//         }
577//       }
578//       Vector<Float> outspec(nchan);
579//       Vector<uChar> outflag(nchan,0);
580//       Vector<Float> outtsys(1);/// @fixme when tsys is channel based
581//       for (uInt i=0; i<nchan; ++i) {
582//         Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
583//         MaskedArray<Float> ma = maskedArray(specs,flags);
584//         outspec[i] = median(ma);
585//         if ( allEQ(ma.getMask(), False) )
586//           outflag[i] = userflag;// flag data
587//       }
588//       outtsys[0] = median(tsysCol.getColumn());
589//       specColOut.put(outrowCount+irow, outspec);
590//       flagColOut.put(outrowCount+irow, outflag);
591//       tsysColOut.put(outrowCount+irow, outtsys);
592//       Vector<Double> integ = intCol.getColumn() ;
593//       MaskedArray<Double> mi = maskedArray( integ, flags ) ;
594//       Double intsum = sum(mi);
595//       intColOut.put(outrowCount+irow, intsum);
596//     }
597//     outrowCount += rowNum ;
598//     ++iter;
599  }
600  return out;
601}
602
603CountedPtr< Scantable > STMath::getScantable(const CountedPtr< Scantable >& in,
604                                             bool droprows)
605{
606  if (insitu_) {
607    return in;
608  }
609  else {
610    // clone
611    return CountedPtr<Scantable>(new Scantable(*in, Bool(droprows)));
612  }
613}
614
615CountedPtr< Scantable > STMath::unaryOperate( const CountedPtr< Scantable >& in,
616                                              float val,
617                                              const std::string& mode,
618                                              bool tsys )
619{
620  CountedPtr< Scantable > out = getScantable(in, false);
621  Table& tab = out->table();
622  ArrayColumn<Float> specCol(tab,"SPECTRA");
623  ArrayColumn<Float> tsysCol(tab,"TSYS");
624  if (mode=="DIV") val = 1.0/val ;
625  else if (mode=="SUB") val *= -1.0 ;
626  for (uInt i=0; i<tab.nrow(); ++i) {
627    Vector<Float> spec;
628    Vector<Float> ts;
629    specCol.get(i, spec);
630    tsysCol.get(i, ts);
631    if (mode == "MUL" || mode == "DIV") {
632      //if (mode == "DIV") val = 1.0/val;
633      spec *= val;
634      specCol.put(i, spec);
635      if ( tsys ) {
636        ts *= val;
637        tsysCol.put(i, ts);
638      }
639    } else if ( mode == "ADD"  || mode == "SUB") {
640      //if (mode == "SUB") val *= -1.0;
641      spec += val;
642      specCol.put(i, spec);
643      if ( tsys ) {
644        ts += val;
645        tsysCol.put(i, ts);
646      }
647    }
648  }
649  return out;
650}
651
652CountedPtr< Scantable > STMath::arrayOperate( const CountedPtr< Scantable >& in,
653                                              const std::vector<float> val,
654                                              const std::string& mode,
655                                              const std::string& opmode,
656                                              bool tsys )
657{
658  CountedPtr< Scantable > out ;
659  if ( opmode == "channel" ) {
660    out = arrayOperateChannel( in, val, mode, tsys ) ;
661  }
662  else if ( opmode == "row" ) {
663    out = arrayOperateRow( in, val, mode, tsys ) ;
664  }
665  else {
666    throw( AipsError( "Unknown array operation mode." ) ) ;
667  }
668  return out ;
669}
670
671CountedPtr< Scantable > STMath::arrayOperateChannel( const CountedPtr< Scantable >& in,
672                                                     const std::vector<float> val,
673                                                     const std::string& mode,
674                                                     bool tsys )
675{
676  if ( val.size() == 1 ){
677    return unaryOperate( in, val[0], mode, tsys ) ;
678  }
679
680  // conformity of SPECTRA and TSYS
681  if ( tsys ) {
682    TableIterator titer(in->table(), "IFNO");
683    while ( !titer.pastEnd() ) {
684      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
685      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
686      Array<Float> spec = specCol.getColumn() ;
687      Array<Float> ts = tsysCol.getColumn() ;
688      if ( !spec.conform( ts ) ) {
689        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
690      }
691      titer.next() ;
692    }
693  }
694
695  // check if all spectra in the scantable have the same number of channel
696  vector<uInt> nchans;
697  vector<uInt> ifnos = in->getIFNos() ;
698  for ( uInt i = 0 ; i < ifnos.size() ; i++ ) {
699    nchans.push_back( in->nchan( ifnos[i] ) ) ;
700  }
701  Vector<uInt> mchans( nchans ) ;
702  if ( anyNE( mchans, mchans[0] ) ) {
703    throw( AipsError("All spectra in the input scantable must have the same number of channel for vector operation." ) ) ;
704  }
705
706  // check if vector size is equal to nchan
707  Vector<Float> fact( val ) ;
708  if ( fact.nelements() != mchans[0] ) {
709    throw( AipsError("Vector size must be 1 or be same as number of channel.") ) ;
710  }
711
712  // check divided by zero
713  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
714    throw( AipsError("Divided by zero is not recommended." ) ) ;
715  }
716
717  CountedPtr< Scantable > out = getScantable(in, false);
718  Table& tab = out->table();
719  ArrayColumn<Float> specCol(tab,"SPECTRA");
720  ArrayColumn<Float> tsysCol(tab,"TSYS");
721  if (mode == "DIV") fact = (float)1.0 / fact;
722  else if (mode == "SUB") fact *= (float)-1.0 ;
723  for (uInt i=0; i<tab.nrow(); ++i) {
724    Vector<Float> spec;
725    Vector<Float> ts;
726    specCol.get(i, spec);
727    tsysCol.get(i, ts);
728    if (mode == "MUL" || mode == "DIV") {
729      //if (mode == "DIV") fact = (float)1.0 / fact;
730      spec *= fact;
731      specCol.put(i, spec);
732      if ( tsys ) {
733        ts *= fact;
734        tsysCol.put(i, ts);
735      }
736    } else if ( mode == "ADD"  || mode == "SUB") {
737      //if (mode == "SUB") fact *= (float)-1.0 ;
738      spec += fact;
739      specCol.put(i, spec);
740      if ( tsys ) {
741        ts += fact;
742        tsysCol.put(i, ts);
743      }
744    }
745  }
746  return out;
747}
748
749CountedPtr< Scantable > STMath::arrayOperateRow( const CountedPtr< Scantable >& in,
750                                                 const std::vector<float> val,
751                                                 const std::string& mode,
752                                                 bool tsys )
753{
754  if ( val.size() == 1 ) {
755    return unaryOperate( in, val[0], mode, tsys ) ;
756  }
757
758  // conformity of SPECTRA and TSYS
759  if ( tsys ) {
760    TableIterator titer(in->table(), "IFNO");
761    while ( !titer.pastEnd() ) {
762      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
763      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
764      Array<Float> spec = specCol.getColumn() ;
765      Array<Float> ts = tsysCol.getColumn() ;
766      if ( !spec.conform( ts ) ) {
767        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
768      }
769      titer.next() ;
770    }
771  }
772
773  // check if vector size is equal to nrow
774  Vector<Float> fact( val ) ;
775  if (fact.nelements() != uInt(in->nrow())) {
776    throw( AipsError("Vector size must be 1 or be same as number of row.") ) ;
777  }
778
779  // check divided by zero
780  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
781    throw( AipsError("Divided by zero is not recommended." ) ) ;
782  }
783
784  CountedPtr< Scantable > out = getScantable(in, false);
785  Table& tab = out->table();
786  ArrayColumn<Float> specCol(tab,"SPECTRA");
787  ArrayColumn<Float> tsysCol(tab,"TSYS");
788  if (mode == "DIV") fact = (float)1.0 / fact;
789  if (mode == "SUB") fact *= (float)-1.0 ;
790  for (uInt i=0; i<tab.nrow(); ++i) {
791    Vector<Float> spec;
792    Vector<Float> ts;
793    specCol.get(i, spec);
794    tsysCol.get(i, ts);
795    if (mode == "MUL" || mode == "DIV") {
796      spec *= fact[i];
797      specCol.put(i, spec);
798      if ( tsys ) {
799        ts *= fact[i];
800        tsysCol.put(i, ts);
801      }
802    } else if ( mode == "ADD"  || mode == "SUB") {
803      spec += fact[i];
804      specCol.put(i, spec);
805      if ( tsys ) {
806        ts += fact[i];
807        tsysCol.put(i, ts);
808      }
809    }
810  }
811  return out;
812}
813
814CountedPtr< Scantable > STMath::array2dOperate( const CountedPtr< Scantable >& in,
815                                                const std::vector< std::vector<float> > val,
816                                                const std::string& mode,
817                                                bool tsys )
818{
819  // conformity of SPECTRA and TSYS
820  if ( tsys ) {
821    TableIterator titer(in->table(), "IFNO");
822    while ( !titer.pastEnd() ) {
823      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
824      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
825      Array<Float> spec = specCol.getColumn() ;
826      Array<Float> ts = tsysCol.getColumn() ;
827      if ( !spec.conform( ts ) ) {
828        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
829      }
830      titer.next() ;
831    }
832  }
833
834  // some checks
835  vector<uInt> nchans;
836  for (Int i = 0 ; i < in->nrow() ; i++) {
837    nchans.push_back((in->getSpectrum(i)).size());
838  }
839  //Vector<uInt> mchans( nchans ) ;
840  vector< Vector<Float> > facts ;
841  for ( uInt i = 0 ; i < nchans.size() ; i++ ) {
842    Vector<Float> tmp( val[i] ) ;
843    // check divided by zero
844    if ( ( mode == "DIV" ) && anyEQ( tmp, (float)0.0 ) ) {
845      throw( AipsError("Divided by zero is not recommended." ) ) ;
846    }
847    // conformity check
848    if ( tmp.nelements() != nchans[i] ) {
849      stringstream ss ;
850      ss << "Row " << i << ": Vector size must be same as number of channel." ;
851      throw( AipsError( ss.str() ) ) ;
852    }
853    facts.push_back( tmp ) ;
854  }
855
856
857  CountedPtr< Scantable > out = getScantable(in, false);
858  Table& tab = out->table();
859  ArrayColumn<Float> specCol(tab,"SPECTRA");
860  ArrayColumn<Float> tsysCol(tab,"TSYS");
861  for (uInt i=0; i<tab.nrow(); ++i) {
862    Vector<Float> fact = facts[i] ;
863    Vector<Float> spec;
864    Vector<Float> ts;
865    specCol.get(i, spec);
866    tsysCol.get(i, ts);
867    if (mode == "MUL" || mode == "DIV") {
868      if (mode == "DIV") fact = (float)1.0 / fact;
869      spec *= fact;
870      specCol.put(i, spec);
871      if ( tsys ) {
872        ts *= fact;
873        tsysCol.put(i, ts);
874      }
875    } else if ( mode == "ADD"  || mode == "SUB") {
876      if (mode == "SUB") fact *= (float)-1.0 ;
877      spec += fact;
878      specCol.put(i, spec);
879      if ( tsys ) {
880        ts += fact;
881        tsysCol.put(i, ts);
882      }
883    }
884  }
885  return out;
886}
887
888CountedPtr<Scantable> STMath::binaryOperate(const CountedPtr<Scantable>& left,
889                                            const CountedPtr<Scantable>& right,
890                                            const std::string& mode)
891{
892  bool insitu = insitu_;
893  if ( ! left->conformant(*right) ) {
894    throw(AipsError("'left' and 'right' scantables are not conformant."));
895  }
896  setInsitu(false);
897  CountedPtr< Scantable > out = getScantable(left, false);
898  setInsitu(insitu);
899  Table& tout = out->table();
900  Block<String> coln(5);
901  coln[0] = "SCANNO";  coln[1] = "CYCLENO";  coln[2] = "BEAMNO";
902  coln[3] = "IFNO";  coln[4] = "POLNO";
903  Table tmpl = tout.sort(coln);
904  Table tmpr = right->table().sort(coln);
905  ArrayColumn<Float> lspecCol(tmpl,"SPECTRA");
906  ROArrayColumn<Float> rspecCol(tmpr,"SPECTRA");
907  ArrayColumn<uChar> lflagCol(tmpl,"FLAGTRA");
908  ROArrayColumn<uChar> rflagCol(tmpr,"FLAGTRA");
909
910  for (uInt i=0; i<tout.nrow(); ++i) {
911    Vector<Float> lspecvec, rspecvec;
912    Vector<uChar> lflagvec, rflagvec;
913    lspecvec = lspecCol(i);    rspecvec = rspecCol(i);
914    lflagvec = lflagCol(i);    rflagvec = rflagCol(i);
915    MaskedArray<Float> mleft = maskedArray(lspecvec, lflagvec);
916    MaskedArray<Float> mright = maskedArray(rspecvec, rflagvec);
917    if (mode == "ADD") {
918      mleft += mright;
919    } else if ( mode == "SUB") {
920      mleft -= mright;
921    } else if ( mode == "MUL") {
922      mleft *= mright;
923    } else if ( mode == "DIV") {
924      mleft /= mright;
925    } else {
926      throw(AipsError("Illegal binary operator"));
927    }
928    lspecCol.put(i, mleft.getArray());
929  }
930  return out;
931}
932
933
934
935MaskedArray<Float> STMath::maskedArray( const Vector<Float>& s,
936                                        const Vector<uChar>& f)
937{
938  Vector<Bool> mask;
939  mask.resize(f.shape());
940  convertArray(mask, f);
941  return MaskedArray<Float>(s,!mask);
942}
943
944MaskedArray<Double> STMath::maskedArray( const Vector<Double>& s,
945                                         const Vector<uChar>& f)
946{
947  Vector<Bool> mask;
948  mask.resize(f.shape());
949  convertArray(mask, f);
950  return MaskedArray<Double>(s,!mask);
951}
952
953Vector<uChar> STMath::flagsFromMA(const MaskedArray<Float>& ma)
954{
955  const Vector<Bool>& m = ma.getMask();
956  Vector<uChar> flags(m.shape());
957  convertArray(flags, !m);
958  return flags;
959}
960
961CountedPtr< Scantable > STMath::autoQuotient( const CountedPtr< Scantable >& in,
962                                              const std::string & mode,
963                                              bool preserve )
964{
965  /// @todo make other modes available
966  /// modes should be "nearest", "pair"
967  // make this operation non insitu
968  (void) mode; //currently unused
969  const Table& tin = in->table();
970  Table ons = tin(tin.col("SRCTYPE") == Int(SrcType::PSON));
971  Table offs = tin(tin.col("SRCTYPE") == Int(SrcType::PSOFF));
972  if ( offs.nrow() == 0 )
973    throw(AipsError("No 'off' scans present."));
974  // put all "on" scans into output table
975
976  bool insitu = insitu_;
977  setInsitu(false);
978  CountedPtr< Scantable > out = getScantable(in, true);
979  setInsitu(insitu);
980  Table& tout = out->table();
981
982  TableCopy::copyRows(tout, ons);
983  TableRow row(tout);
984  ROScalarColumn<Double> offtimeCol(offs, "TIME");
985  ArrayColumn<Float> outspecCol(tout, "SPECTRA");
986  ROArrayColumn<Float> outtsysCol(tout, "TSYS");
987  ArrayColumn<uChar> outflagCol(tout, "FLAGTRA");
988  for (uInt i=0; i < tout.nrow(); ++i) {
989    const TableRecord& rec = row.get(i);
990    Double ontime = rec.asDouble("TIME");
991    Table presel = offs(offs.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
992                        && offs.col("IFNO") == Int(rec.asuInt("IFNO"))
993                        && offs.col("POLNO") == Int(rec.asuInt("POLNO")) );
994    ROScalarColumn<Double> offtimeCol(presel, "TIME");
995
996    Double mindeltat = min(abs(offtimeCol.getColumn() - ontime));
997    // Timestamp may vary within a cycle ???!!!
998    // increase this by 0.01 sec in case of rounding errors...
999    // There might be a better way to do this.
1000    // fix to this fix. TIME is MJD, so 1.0d not 1.0s
1001    mindeltat += 0.01/24./60./60.;
1002    Table sel = presel( abs(presel.col("TIME")-ontime) <= mindeltat);
1003
1004    if ( sel.nrow() < 1 )  {
1005      throw(AipsError("No closest in time found... This could be a rounding "
1006                      "issue. Try quotient instead."));
1007    }
1008    TableRow offrow(sel);
1009    const TableRecord& offrec = offrow.get(0);//should only be one row
1010    RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
1011    RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
1012    RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
1013    /// @fixme this assumes tsys is a scalar not vector
1014    Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
1015    Vector<Float> specon, tsyson;
1016    outtsysCol.get(i, tsyson);
1017    outspecCol.get(i, specon);
1018    Vector<uChar> flagon;
1019    outflagCol.get(i, flagon);
1020    MaskedArray<Float> mon = maskedArray(specon, flagon);
1021    MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
1022    MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
1023    if (preserve) {
1024      quot -= tsysoffscalar;
1025    } else {
1026      quot -= tsyson[0];
1027    }
1028    outspecCol.put(i, quot.getArray());
1029    outflagCol.put(i, flagsFromMA(quot));
1030  }
1031  // renumber scanno
1032  TableIterator it(tout, "SCANNO");
1033  uInt i = 0;
1034  while ( !it.pastEnd() ) {
1035    Table t = it.table();
1036    TableVector<uInt> vec(t, "SCANNO");
1037    vec = i;
1038    ++i;
1039    ++it;
1040  }
1041  return out;
1042}
1043
1044
1045CountedPtr< Scantable > STMath::quotient( const CountedPtr< Scantable > & on,
1046                                          const CountedPtr< Scantable > & off,
1047                                          bool preserve )
1048{
1049  bool insitu = insitu_;
1050  if ( ! on->conformant(*off) ) {
1051    throw(AipsError("'on' and 'off' scantables are not conformant."));
1052  }
1053  setInsitu(false);
1054  CountedPtr< Scantable > out = getScantable(on, false);
1055  setInsitu(insitu);
1056  Table& tout = out->table();
1057  const Table& toff = off->table();
1058  TableIterator sit(tout, "SCANNO");
1059  TableIterator s2it(toff, "SCANNO");
1060  while ( !sit.pastEnd() ) {
1061    Table ton = sit.table();
1062    TableRow row(ton);
1063    Table t = s2it.table();
1064    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1065    ROArrayColumn<Float> outtsysCol(ton, "TSYS");
1066    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1067    for (uInt i=0; i < ton.nrow(); ++i) {
1068      const TableRecord& rec = row.get(i);
1069      Table offsel = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1070                          && t.col("IFNO") == Int(rec.asuInt("IFNO"))
1071                          && t.col("POLNO") == Int(rec.asuInt("POLNO")) );
1072      if ( offsel.nrow() == 0 )
1073        throw AipsError("STMath::quotient: no matching off");
1074      TableRow offrow(offsel);
1075      const TableRecord& offrec = offrow.get(0);//should be ncycles - take first
1076      RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
1077      RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
1078      RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
1079      Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
1080      Vector<Float> specon, tsyson;
1081      outtsysCol.get(i, tsyson);
1082      outspecCol.get(i, specon);
1083      Vector<uChar> flagon;
1084      outflagCol.get(i, flagon);
1085      MaskedArray<Float> mon = maskedArray(specon, flagon);
1086      MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
1087      MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
1088      if (preserve) {
1089        quot -= tsysoffscalar;
1090      } else {
1091        quot -= tsyson[0];
1092      }
1093      outspecCol.put(i, quot.getArray());
1094      outflagCol.put(i, flagsFromMA(quot));
1095    }
1096    ++sit;
1097    ++s2it;
1098    // take the first off for each on scan which doesn't have a
1099    // matching off scan
1100    // non <= noff:  matching pairs, non > noff matching pairs then first off
1101    if ( s2it.pastEnd() ) s2it.reset();
1102  }
1103  return out;
1104}
1105
1106// dototalpower (migration of GBTIDL procedure dototalpower.pro)
1107// calibrate the CAL on-off pair. It calculate Tsys and average CAL on-off subintegrations
1108// do it for each cycles in a specific scan.
1109CountedPtr< Scantable > STMath::dototalpower( const CountedPtr< Scantable >& calon,
1110                                              const CountedPtr< Scantable >& caloff, Float tcal )
1111{
1112  if ( ! calon->conformant(*caloff) ) {
1113    throw(AipsError("'CAL on' and 'CAL off' scantables are not conformant."));
1114  }
1115  setInsitu(false);
1116  CountedPtr< Scantable > out = getScantable(caloff, false);
1117  Table& tout = out->table();
1118  const Table& tcon = calon->table();
1119  Vector<Float> tcalout;
1120
1121  std::map<uInt,uInt> tcalIdToRecNoMap;
1122  const Table& calOffTcalTable = caloff->tcal().table();
1123  {
1124    ROScalarColumn<uInt> calOffTcalTable_IDcol(calOffTcalTable, "ID");
1125    const Vector<uInt> tcalIds(calOffTcalTable_IDcol.getColumn());
1126    size_t tcalIdsEnd = tcalIds.nelements();
1127    for (uInt i = 0; i < tcalIdsEnd; i++) {
1128      tcalIdToRecNoMap[tcalIds[i]] = i;
1129    }
1130  }
1131  ROArrayColumn<Float> calOffTcalTable_TCALcol(calOffTcalTable, "TCAL");
1132
1133  if ( tout.nrow() != tcon.nrow() ) {
1134    throw(AipsError("Mismatch in number of rows to form cal on - off pair."));
1135  }
1136  // iteration by scanno or cycle no.
1137  TableIterator sit(tout, "SCANNO");
1138  TableIterator s2it(tcon, "SCANNO");
1139  while ( !sit.pastEnd() ) {
1140    Table toff = sit.table();
1141    TableRow row(toff);
1142    Table t = s2it.table();
1143    ScalarColumn<Double> outintCol(toff, "INTERVAL");
1144    ArrayColumn<Float> outspecCol(toff, "SPECTRA");
1145    ArrayColumn<Float> outtsysCol(toff, "TSYS");
1146    ArrayColumn<uChar> outflagCol(toff, "FLAGTRA");
1147    ROScalarColumn<uInt> outtcalIdCol(toff, "TCAL_ID");
1148    ROScalarColumn<uInt> outpolCol(toff, "POLNO");
1149    ROScalarColumn<Double> onintCol(t, "INTERVAL");
1150    ROArrayColumn<Float> onspecCol(t, "SPECTRA");
1151    ROArrayColumn<Float> ontsysCol(t, "TSYS");
1152    ROArrayColumn<uChar> onflagCol(t, "FLAGTRA");
1153    //ROScalarColumn<uInt> ontcalIdCol(t, "TCAL_ID");
1154
1155    for (uInt i=0; i < toff.nrow(); ++i) {
1156      //skip these checks -> assumes the data order are the same between the cal on off pairs
1157      //
1158      Vector<Float> specCalon, specCaloff;
1159      // to store scalar (mean) tsys
1160      Vector<Float> tsysout(1);
1161      uInt tcalId, polno;
1162      Double offint, onint;
1163      outpolCol.get(i, polno);
1164      outspecCol.get(i, specCaloff);
1165      onspecCol.get(i, specCalon);
1166      Vector<uChar> flagCaloff, flagCalon;
1167      outflagCol.get(i, flagCaloff);
1168      onflagCol.get(i, flagCalon);
1169      outtcalIdCol.get(i, tcalId);
1170      outintCol.get(i, offint);
1171      onintCol.get(i, onint);
1172      // caluculate mean Tsys
1173      uInt nchan = specCaloff.nelements();
1174      // percentage of edge cut off
1175      uInt pc = 10;
1176      uInt bchan = nchan/pc;
1177      uInt echan = nchan-bchan;
1178
1179      Slicer chansl(IPosition(1,bchan-1), IPosition(1,echan-1), IPosition(1,1),Slicer::endIsLast);
1180      Vector<Float> testsubsp = specCaloff(chansl);
1181      MaskedArray<Float> spoff = maskedArray( specCaloff(chansl),flagCaloff(chansl) );
1182      MaskedArray<Float> spon = maskedArray( specCalon(chansl),flagCalon(chansl) );
1183      MaskedArray<Float> spdiff = spon-spoff;
1184      uInt noff = spoff.nelementsValid();
1185      //uInt non = spon.nelementsValid();
1186      uInt ndiff = spdiff.nelementsValid();
1187      Float meantsys;
1188
1189/**
1190      Double subspec, subdiff;
1191      uInt usednchan;
1192      subspec = 0;
1193      subdiff = 0;
1194      usednchan = 0;
1195      for(uInt k=(bchan-1); k<echan; k++) {
1196        subspec += specCaloff[k];
1197        subdiff += static_cast<Double>(specCalon[k]-specCaloff[k]);
1198        ++usednchan;
1199      }
1200**/
1201      // get tcal if input tcal <= 0
1202      Float tcalUsed;
1203      tcalUsed = tcal;
1204      if ( tcal <= 0.0 ) {
1205        uInt tcalRecNo = tcalIdToRecNoMap[tcalId];
1206        calOffTcalTable_TCALcol.get(tcalRecNo, tcalout);
1207//         if (polno<=3) {
1208//           tcalUsed = tcalout[polno];
1209//         }
1210//         else {
1211//           tcalUsed = tcalout[0];
1212//         }
1213        if ( tcalout.size() == 1 )
1214          tcalUsed = tcalout[0] ;
1215        else if ( tcalout.size() == nchan )
1216          tcalUsed = mean(tcalout) ;
1217        else {
1218          uInt ipol = polno ;
1219          if ( ipol > 3 ) ipol = 0 ;
1220          tcalUsed = tcalout[ipol] ;
1221        }
1222      }
1223
1224      Float meanoff;
1225      Float meandiff;
1226      if (noff && ndiff) {
1227         //Debug
1228         //if(noff!=ndiff) cerr<<"noff and ndiff is not equal"<<endl;
1229         //LogIO os( LogOrigin( "STMath", "dototalpower()", WHERE ) ) ;
1230         //if(noff!=ndiff) os<<"noff and ndiff is not equal"<<LogIO::POST;
1231         meanoff = sum(spoff)/noff;
1232         meandiff = sum(spdiff)/ndiff;
1233         meantsys= (meanoff/meandiff )*tcalUsed + tcalUsed/2;
1234      }
1235      else {
1236         meantsys=1;
1237      }
1238
1239      tsysout[0] = Float(meantsys);
1240      MaskedArray<Float> mcaloff = maskedArray(specCaloff, flagCaloff);
1241      MaskedArray<Float> mcalon = maskedArray(specCalon, flagCalon);
1242      MaskedArray<Float> sig =   Float(0.5) * (mcaloff + mcalon);
1243      //uInt ncaloff = mcaloff.nelementsValid();
1244      //uInt ncalon = mcalon.nelementsValid();
1245
1246      outintCol.put(i, offint+onint);
1247      outspecCol.put(i, sig.getArray());
1248      outflagCol.put(i, flagsFromMA(sig));
1249      outtsysCol.put(i, tsysout);
1250    }
1251    ++sit;
1252    ++s2it;
1253  }
1254  return out;
1255}
1256
1257//dosigref - migrated from GBT IDL's dosigref.pro, do calibration of position switch
1258// observatiions.
1259// input: sig and ref scantables, and an optional boxcar smoothing width(default width=0,
1260//        no smoothing).
1261// output: resultant scantable [= (sig-ref/ref)*tsys]
1262CountedPtr< Scantable > STMath::dosigref( const CountedPtr < Scantable >& sig,
1263                                          const CountedPtr < Scantable >& ref,
1264                                          int smoothref,
1265                                          casa::Float tsysv,
1266                                          casa::Float tau )
1267{
1268  LogIO os( casa::LogOrigin( "STMath", "dosigref()"));
1269if ( ! ref->conformant(*sig) ) {
1270    throw(AipsError("'sig' and 'ref' scantables are not conformant."));
1271  }
1272  setInsitu(false);
1273  CountedPtr< Scantable > out = getScantable(sig, false);
1274  CountedPtr< Scantable > smref;
1275  if ( smoothref > 1 ) {
1276    float fsmoothref = static_cast<float>(smoothref);
1277    std::string inkernel = "boxcar";
1278    smref = smooth(ref, inkernel, fsmoothref );
1279    ostringstream oss;
1280    os <<"Applied smoothing of "<<fsmoothref<<" on the reference."
1281       << LogIO::POST;
1282  }
1283  else {
1284    smref = ref;
1285  }
1286  Table& tout = out->table();
1287  const Table& tref = smref->table();
1288  if ( tout.nrow() != tref.nrow() ) {
1289    throw(AipsError("Mismatch in number of rows to form on-source and reference pair."));
1290  }
1291  // iteration by scanno? or cycle no.
1292  TableIterator sit(tout, "SCANNO");
1293  TableIterator s2it(tref, "SCANNO");
1294  while ( !sit.pastEnd() ) {
1295    Table ton = sit.table();
1296    Table t = s2it.table();
1297    ScalarColumn<Double> outintCol(ton, "INTERVAL");
1298    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1299    ArrayColumn<Float> outtsysCol(ton, "TSYS");
1300    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1301    ArrayColumn<Float> refspecCol(t, "SPECTRA");
1302    ROScalarColumn<Double> refintCol(t, "INTERVAL");
1303    ROArrayColumn<Float> reftsysCol(t, "TSYS");
1304    ArrayColumn<uChar> refflagCol(t, "FLAGTRA");
1305    ROScalarColumn<Float> refelevCol(t, "ELEVATION");
1306    for (uInt i=0; i < ton.nrow(); ++i) {
1307
1308      Double onint, refint;
1309      Vector<Float> specon, specref;
1310      // to store scalar (mean) tsys
1311      Vector<Float> tsysref;
1312      outintCol.get(i, onint);
1313      refintCol.get(i, refint);
1314      outspecCol.get(i, specon);
1315      refspecCol.get(i, specref);
1316      Vector<uChar> flagref, flagon;
1317      outflagCol.get(i, flagon);
1318      refflagCol.get(i, flagref);
1319      reftsysCol.get(i, tsysref);
1320
1321      Float tsysrefscalar;
1322      if ( tsysv > 0.0 ) {
1323        ostringstream oss;
1324        Float elev;
1325        refelevCol.get(i, elev);
1326        os << "user specified Tsys = " << tsysv;
1327        // do recalc elevation if EL = 0
1328        if ( elev == 0 ) {
1329          throw(AipsError("EL=0, elevation data is missing."));
1330        } else {
1331          if ( tau <= 0.0 ) {
1332            throw(AipsError("Valid tau is not supplied."));
1333          } else {
1334            tsysrefscalar = tsysv * exp(tau/elev);
1335          }
1336        }
1337        os << ", corrected (for El) tsys= "<<tsysrefscalar;
1338      }
1339      else {
1340        tsysrefscalar = tsysref[0];
1341      }
1342      //get quotient spectrum
1343      MaskedArray<Float> mref = maskedArray(specref, flagref);
1344      MaskedArray<Float> mon = maskedArray(specon, flagon);
1345      MaskedArray<Float> specres =   tsysrefscalar*((mon - mref)/mref);
1346      Double resint = onint*refint*smoothref/(onint+refint*smoothref);
1347
1348      //Debug
1349      //cerr<<"Tsys used="<<tsysrefscalar<<endl;
1350      //LogIO os( LogOrigin( "STMath", "dosigref", WHERE ) ) ;
1351      //os<<"Tsys used="<<tsysrefscalar<<LogIO::POST;
1352      // fill the result, replay signal tsys by reference tsys
1353      outintCol.put(i, resint);
1354      outspecCol.put(i, specres.getArray());
1355      outflagCol.put(i, flagsFromMA(specres));
1356      outtsysCol.put(i, tsysref);
1357    }
1358    ++sit;
1359    ++s2it;
1360  }
1361 
1362  out->setFluxUnit("K");
1363
1364  return out;
1365}
1366
1367CountedPtr< Scantable > STMath::donod(const casa::CountedPtr<Scantable>& s,
1368                                     const std::vector<int>& scans,
1369                                     int smoothref,
1370                                     casa::Float tsysv,
1371                                     casa::Float tau,
1372                                     casa::Float tcal )
1373
1374{
1375  setInsitu(false);
1376  LogIO os( casa::LogOrigin( "STMath", "donod()"));
1377  STSelector sel;
1378  std::vector<int> scan1, scan2, beams, types;
1379  std::vector< vector<int> > scanpair;
1380  //std::vector<string> calstate;
1381  std::vector<int> calstate;
1382  String msg;
1383
1384  CountedPtr< Scantable > s1b1on, s1b1off, s1b2on, s1b2off;
1385  CountedPtr< Scantable > s2b1on, s2b1off, s2b2on, s2b2off;
1386
1387  std::vector< CountedPtr< Scantable > > sctables;
1388  sctables.push_back(s1b1on);
1389  sctables.push_back(s1b1off);
1390  sctables.push_back(s1b2on);
1391  sctables.push_back(s1b2off);
1392  sctables.push_back(s2b1on);
1393  sctables.push_back(s2b1off);
1394  sctables.push_back(s2b2on);
1395  sctables.push_back(s2b2off);
1396
1397  //check scanlist
1398  int n=s->checkScanInfo(scans);
1399  if (n==1) {
1400     throw(AipsError("Incorrect scan pairs. "));
1401  }
1402
1403  // Assume scans contain only a pair of consecutive scan numbers.
1404  // It is assumed that first beam, b1,  is on target.
1405  // There is no check if the first beam is on or not.
1406  if ( scans.size()==1 ) {
1407    scan1.push_back(scans[0]);
1408    scan2.push_back(scans[0]+1);
1409  } else if ( scans.size()==2 ) {
1410   scan1.push_back(scans[0]);
1411   scan2.push_back(scans[1]);
1412  } else {
1413    if ( scans.size()%2 == 0 ) {
1414      for (uInt i=0; i<scans.size(); i++) {
1415        if (i%2 == 0) {
1416          scan1.push_back(scans[i]);
1417        }
1418        else {
1419          scan2.push_back(scans[i]);
1420        }
1421      }
1422    } else {
1423      throw(AipsError("Odd numbers of scans, cannot form pairs."));
1424    }
1425  }
1426  scanpair.push_back(scan1);
1427  scanpair.push_back(scan2);
1428  //calstate.push_back("*calon");
1429  //calstate.push_back("*[^calon]");
1430  calstate.push_back(SrcType::NODCAL);
1431  calstate.push_back(SrcType::NOD);
1432  CountedPtr< Scantable > ws = getScantable(s, false);
1433  uInt l=0;
1434  while ( l < sctables.size() ) {
1435    for (uInt i=0; i < 2; i++) {
1436      for (uInt j=0; j < 2; j++) {
1437        for (uInt k=0; k < 2; k++) {
1438          sel.reset();
1439          sel.setScans(scanpair[i]);
1440          //sel.setName(calstate[k]);
1441          types.clear();
1442          types.push_back(calstate[k]);
1443          sel.setTypes(types);
1444          beams.clear();
1445          beams.push_back(j);
1446          sel.setBeams(beams);
1447          ws->setSelection(sel);
1448          sctables[l]= getScantable(ws, false);
1449          l++;
1450        }
1451      }
1452    }
1453  }
1454
1455  // replace here by splitData or getData functionality
1456  CountedPtr< Scantable > sig1;
1457  CountedPtr< Scantable > ref1;
1458  CountedPtr< Scantable > sig2;
1459  CountedPtr< Scantable > ref2;
1460  CountedPtr< Scantable > calb1;
1461  CountedPtr< Scantable > calb2;
1462
1463  msg=String("Processing dototalpower for subset of the data");
1464  os << msg << LogIO::POST;
1465  // Debug for IRC CS data
1466  //float tcal1=7.0;
1467  //float tcal2=4.0;
1468  sig1 = dototalpower(sctables[0], sctables[1], tcal=tcal);
1469  ref1 = dototalpower(sctables[2], sctables[3], tcal=tcal);
1470  ref2 = dototalpower(sctables[4], sctables[5], tcal=tcal);
1471  sig2 = dototalpower(sctables[6], sctables[7], tcal=tcal);
1472
1473  // correction of user-specified tsys for elevation here
1474
1475  // dosigref calibration
1476  msg=String("Processing dosigref for subset of the data");
1477  os << msg  << endl;
1478  calb1=dosigref(sig1,ref2,smoothref,tsysv,tau);
1479  calb2=dosigref(sig2,ref1,smoothref,tsysv,tau);
1480
1481  // iteration by scanno or cycle no.
1482  Table& tcalb1 = calb1->table();
1483  Table& tcalb2 = calb2->table();
1484  TableIterator sit(tcalb1, "SCANNO");
1485  TableIterator s2it(tcalb2, "SCANNO");
1486  while ( !sit.pastEnd() ) {
1487    Table t1 = sit.table();
1488    Table t2= s2it.table();
1489    ArrayColumn<Float> outspecCol(t1, "SPECTRA");
1490    ArrayColumn<Float> outtsysCol(t1, "TSYS");
1491    ArrayColumn<uChar> outflagCol(t1, "FLAGTRA");
1492    ScalarColumn<Double> outintCol(t1, "INTERVAL");
1493    ArrayColumn<Float> t2specCol(t2, "SPECTRA");
1494    ROArrayColumn<Float> t2tsysCol(t2, "TSYS");
1495    ArrayColumn<uChar> t2flagCol(t2, "FLAGTRA");
1496    ROScalarColumn<Double> t2intCol(t2, "INTERVAL");
1497    for (uInt i=0; i < t1.nrow(); ++i) {
1498      Vector<Float> spec1, spec2;
1499      // to store scalar (mean) tsys
1500      Vector<Float> tsys1, tsys2;
1501      Vector<uChar> flag1, flag2;
1502      Double tint1, tint2;
1503      outspecCol.get(i, spec1);
1504      t2specCol.get(i, spec2);
1505      outflagCol.get(i, flag1);
1506      t2flagCol.get(i, flag2);
1507      outtsysCol.get(i, tsys1);
1508      t2tsysCol.get(i, tsys2);
1509      outintCol.get(i, tint1);
1510      t2intCol.get(i, tint2);
1511      // average
1512      // assume scalar tsys for weights
1513      Float wt1, wt2, tsyssq1, tsyssq2;
1514      tsyssq1 = tsys1[0]*tsys1[0];
1515      tsyssq2 = tsys2[0]*tsys2[0];
1516      wt1 = Float(tint1)/tsyssq1;
1517      wt2 = Float(tint2)/tsyssq2;
1518      Float invsumwt=1/(wt1+wt2);
1519      MaskedArray<Float> mspec1 = maskedArray(spec1, flag1);
1520      MaskedArray<Float> mspec2 = maskedArray(spec2, flag2);
1521      MaskedArray<Float> avspec =  invsumwt * (wt1*mspec1 + wt2*mspec2);
1522      //Array<Float> avtsys =  Float(0.5) * (tsys1 + tsys2);
1523      // cerr<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<endl;
1524      // LogIO os( LogOrigin( "STMath", "donod", WHERE ) ) ;
1525      // os<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<LogIO::POST;
1526      tsys1[0] = sqrt(tsyssq1 + tsyssq2);
1527      Array<Float> avtsys =  tsys1;
1528
1529      outspecCol.put(i, avspec.getArray());
1530      outflagCol.put(i, flagsFromMA(avspec));
1531      outtsysCol.put(i, avtsys);
1532    }
1533    ++sit;
1534    ++s2it;
1535  }
1536
1537  calb1->setFluxUnit("K");
1538 
1539  return calb1;
1540}
1541
1542//GBTIDL version of frequency switched data calibration
1543CountedPtr< Scantable > STMath::dofs( const CountedPtr< Scantable >& s,
1544                                      const std::vector<int>& scans,
1545                                      int smoothref,
1546                                      casa::Float tsysv,
1547                                      casa::Float tau,
1548                                      casa::Float tcal )
1549{
1550
1551
1552  (void) scans; //currently unused
1553  STSelector sel;
1554  CountedPtr< Scantable > ws = getScantable(s, false);
1555  CountedPtr< Scantable > sig, sigwcal, ref, refwcal;
1556  CountedPtr< Scantable > calsig, calref, out, out1, out2;
1557  Bool nofold=False;
1558  vector<int> types ;
1559
1560  //split the data
1561  //sel.setName("*_fs");
1562  types.push_back( SrcType::FSON ) ;
1563  sel.setTypes( types ) ;
1564  ws->setSelection(sel);
1565  sig = getScantable(ws,false);
1566  sel.reset();
1567  types.clear() ;
1568  //sel.setName("*_fs_calon");
1569  types.push_back( SrcType::FONCAL ) ;
1570  sel.setTypes( types ) ;
1571  ws->setSelection(sel);
1572  sigwcal = getScantable(ws,false);
1573  sel.reset();
1574  types.clear() ;
1575  //sel.setName("*_fsr");
1576  types.push_back( SrcType::FSOFF ) ;
1577  sel.setTypes( types ) ;
1578  ws->setSelection(sel);
1579  ref = getScantable(ws,false);
1580  sel.reset();
1581  types.clear() ;
1582  //sel.setName("*_fsr_calon");
1583  types.push_back( SrcType::FOFFCAL ) ;
1584  sel.setTypes( types ) ;
1585  ws->setSelection(sel);
1586  refwcal = getScantable(ws,false);
1587  sel.reset() ;
1588  types.clear() ;
1589
1590  calsig = dototalpower(sigwcal, sig, tcal=tcal);
1591  calref = dototalpower(refwcal, ref, tcal=tcal);
1592
1593  out1=dosigref(calsig,calref,smoothref,tsysv,tau);
1594  out2=dosigref(calref,calsig,smoothref,tsysv,tau);
1595
1596  Table& tabout1=out1->table();
1597  Table& tabout2=out2->table();
1598  ROScalarColumn<uInt> freqidCol1(tabout1, "FREQ_ID");
1599  ScalarColumn<uInt> freqidCol2(tabout2, "FREQ_ID");
1600  ROArrayColumn<Float> specCol(tabout2, "SPECTRA");
1601  Vector<Float> spec; specCol.get(0, spec);
1602  uInt nchan = spec.nelements();
1603  uInt freqid1; freqidCol1.get(0,freqid1);
1604  uInt freqid2; freqidCol2.get(0,freqid2);
1605  Double rp1, rp2, rv1, rv2, inc1, inc2;
1606  out1->frequencies().getEntry(rp1, rv1, inc1, freqid1);
1607  out2->frequencies().getEntry(rp2, rv2, inc2, freqid2);
1608  //cerr << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << endl ;
1609  //LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1610  //os << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << LogIO::POST ;
1611  if (rp1==rp2) {
1612    Double foffset = rv1 - rv2;
1613    uInt choffset = static_cast<uInt>(foffset/abs(inc2));
1614    if (choffset >= nchan) {
1615      //cerr<<"out-band frequency switching, no folding"<<endl;
1616      LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1617      os<<"out-band frequency switching, no folding"<<LogIO::POST;
1618      nofold = True;
1619    }
1620  }
1621
1622  if (nofold) {
1623    std::vector< CountedPtr< Scantable > > tabs;
1624    tabs.push_back(out1);
1625    tabs.push_back(out2);
1626    out = merge(tabs);
1627  }
1628  else {
1629    //out = out1;
1630    Double choffset = ( rv1 - rv2 ) / inc2 ;
1631    out = dofold( out1, out2, choffset ) ;
1632  }
1633   
1634  out->setFluxUnit("K");
1635
1636  return out;
1637}
1638
1639CountedPtr<Scantable> STMath::dofold( const CountedPtr<Scantable> &sig,
1640                                      const CountedPtr<Scantable> &ref,
1641                                      Double choffset,
1642                                      Double choffset2 )
1643{
1644  LogIO os( LogOrigin( "STMath", "dofold", WHERE ) ) ;
1645  os << "choffset=" << choffset << " choffset2=" << choffset2 << LogIO::POST ;
1646
1647  // output scantable
1648  CountedPtr<Scantable> out = getScantable( sig, false ) ;
1649
1650  // separate choffset to integer part and decimal part
1651  Int ioffset = (Int)choffset ;
1652  Double doffset = choffset - ioffset ;
1653  Int ioffset2 = (Int)choffset2 ;
1654  Double doffset2 = choffset2 - ioffset2 ;
1655  os << "ioffset=" << ioffset << " doffset=" << doffset << LogIO::POST ;
1656  os << "ioffset2=" << ioffset2 << " doffset2=" << doffset2 << LogIO::POST ; 
1657
1658  // get column
1659  ROArrayColumn<Float> specCol1( sig->table(), "SPECTRA" ) ;
1660  ROArrayColumn<Float> specCol2( ref->table(), "SPECTRA" ) ;
1661  ROArrayColumn<Float> tsysCol1( sig->table(), "TSYS" ) ;
1662  ROArrayColumn<Float> tsysCol2( ref->table(), "TSYS" ) ;
1663  ROArrayColumn<uChar> flagCol1( sig->table(), "FLAGTRA" ) ;
1664  ROArrayColumn<uChar> flagCol2( ref->table(), "FLAGTRA" ) ;
1665  ROScalarColumn<Double> mjdCol1( sig->table(), "TIME" ) ;
1666  ROScalarColumn<Double> mjdCol2( ref->table(), "TIME" ) ;
1667  ROScalarColumn<Double> intervalCol1( sig->table(), "INTERVAL" ) ;
1668  ROScalarColumn<Double> intervalCol2( ref->table(), "INTERVAL" ) ;
1669
1670  // check
1671  if ( ioffset == 0 ) {
1672    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1673    os << "channel offset is zero, no folding" << LogIO::POST ;
1674    return out ;
1675  }
1676  int nchan = ref->nchan() ;
1677  if ( abs(ioffset) >= nchan ) {
1678    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1679    os << "out-band frequency switching, no folding" << LogIO::POST ;
1680    return out ;
1681  }
1682
1683  // attach column for output scantable
1684  ArrayColumn<Float> specColOut( out->table(), "SPECTRA" ) ;
1685  ArrayColumn<uChar> flagColOut( out->table(), "FLAGTRA" ) ;
1686  ArrayColumn<Float> tsysColOut( out->table(), "TSYS" ) ;
1687  ScalarColumn<Double> mjdColOut( out->table(), "TIME" ) ;
1688  ScalarColumn<Double> intervalColOut( out->table(), "INTERVAL" ) ;
1689  ScalarColumn<uInt> fidColOut( out->table(), "FREQ_ID" ) ;
1690
1691  // for each row
1692  // assume that the data order are same between sig and ref
1693  RowAccumulator acc( asap::W_TINTSYS ) ;
1694  for ( int i = 0 ; i < sig->nrow() ; i++ ) {
1695    // get values
1696    Vector<Float> spsig ;
1697    specCol1.get( i, spsig ) ;
1698    Vector<Float> spref ;
1699    specCol2.get( i, spref ) ;
1700    Vector<Float> tsyssig ;
1701    tsysCol1.get( i, tsyssig ) ;
1702    Vector<Float> tsysref ;
1703    tsysCol2.get( i, tsysref ) ;
1704    Vector<uChar> flagsig ;
1705    flagCol1.get( i, flagsig ) ;
1706    Vector<uChar> flagref ;
1707    flagCol2.get( i, flagref ) ;
1708    Double timesig ;
1709    mjdCol1.get( i, timesig ) ;
1710    Double timeref ;
1711    mjdCol2.get( i, timeref ) ;
1712    Double intsig ;
1713    intervalCol1.get( i, intsig ) ;
1714    Double intref ;
1715    intervalCol2.get( i, intref ) ;
1716
1717    // shift reference spectra
1718    int refchan = spref.nelements() ;
1719    Vector<Float> sspref( spref.nelements() ) ;
1720    Vector<Float> stsysref( tsysref.nelements() ) ;
1721    Vector<uChar> sflagref( flagref.nelements() ) ;
1722    if ( ioffset > 0 ) {
1723      // SPECTRA and FLAGTRA
1724      for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1725        sspref[j] = spref[j+ioffset] ;
1726        sflagref[j] = flagref[j+ioffset] ;
1727      }
1728      for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1729        sspref[j] = spref[j-refchan+ioffset] ;
1730        sflagref[j] = flagref[j-refchan+ioffset] ;
1731      }
1732      spref = sspref.copy() ;
1733      flagref = sflagref.copy() ;
1734      for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1735        sspref[j] = doffset * spref[j+1] + ( 1.0 - doffset ) * spref[j] ;
1736        sflagref[j] = flagref[j+1] + flagref[j] ;
1737      }
1738      sspref[refchan-1] = doffset * spref[0] + ( 1.0 - doffset ) * spref[refchan-1] ;
1739      sflagref[refchan-1] = flagref[0] + flagref[refchan-1] ;
1740
1741      // TSYS
1742      if ( spref.nelements() == tsysref.nelements() ) {
1743        for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1744          stsysref[j] = tsysref[j+ioffset] ;
1745        }
1746        for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1747          stsysref[j] = tsysref[j-refchan+ioffset] ;
1748        }
1749        tsysref = stsysref.copy() ;
1750        for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1751          stsysref[j] = doffset * tsysref[j+1] + ( 1.0 - doffset ) * tsysref[j] ;
1752        }
1753        stsysref[refchan-1] = doffset * tsysref[0] + ( 1.0 - doffset ) * tsysref[refchan-1] ;
1754      }
1755    }
1756    else {
1757      // SPECTRA and FLAGTRA
1758      for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1759        sspref[j] = spref[refchan+ioffset+j] ;
1760        sflagref[j] = flagref[refchan+ioffset+j] ;
1761      }
1762      for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1763        sspref[j] = spref[j+ioffset] ;
1764        sflagref[j] = flagref[j+ioffset] ;
1765      }
1766      spref = sspref.copy() ;
1767      flagref = sflagref.copy() ;
1768      sspref[0] = doffset * spref[refchan-1] + ( 1.0 - doffset ) * spref[0] ;
1769      sflagref[0] = flagref[0] + flagref[refchan-1] ;
1770      for ( int j = 1 ; j < refchan ; j++ ) {
1771        sspref[j] = doffset * spref[j-1] + ( 1.0 - doffset ) * spref[j] ;
1772        sflagref[j] = flagref[j-1] + flagref[j] ;
1773      }
1774      // TSYS
1775      if ( spref.nelements() == tsysref.nelements() ) {
1776        for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1777          stsysref[j] = tsysref[refchan+ioffset+j] ;
1778        }
1779        for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1780          stsysref[j] = tsysref[j+ioffset] ;
1781        }
1782        tsysref = stsysref.copy() ;
1783        stsysref[0] = doffset * tsysref[refchan-1] + ( 1.0 - doffset ) * tsysref[0] ;
1784        for ( int j = 1 ; j < refchan ; j++ ) {
1785          stsysref[j] = doffset * tsysref[j-1] + ( 1.0 - doffset ) * tsysref[j] ;
1786        }
1787      }
1788    }
1789
1790    // shift signal spectra if necessary (only for APEX?)
1791    if ( choffset2 != 0.0 ) {
1792      int sigchan = spsig.nelements() ;
1793      Vector<Float> sspsig( spsig.nelements() ) ;
1794      Vector<Float> stsyssig( tsyssig.nelements() ) ;
1795      Vector<uChar> sflagsig( flagsig.nelements() ) ;
1796      if ( ioffset2 > 0 ) {
1797        // SPECTRA and FLAGTRA
1798        for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1799          sspsig[j] = spsig[j+ioffset2] ;
1800          sflagsig[j] = flagsig[j+ioffset2] ;
1801        }
1802        for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1803          sspsig[j] = spsig[j-sigchan+ioffset2] ;
1804          sflagsig[j] = flagsig[j-sigchan+ioffset2] ;
1805        }
1806        spsig = sspsig.copy() ;
1807        flagsig = sflagsig.copy() ;
1808        for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1809          sspsig[j] = doffset2 * spsig[j+1] + ( 1.0 - doffset2 ) * spsig[j] ;
1810          sflagsig[j] = flagsig[j+1] || flagsig[j] ;
1811        }
1812        sspsig[sigchan-1] = doffset2 * spsig[0] + ( 1.0 - doffset2 ) * spsig[sigchan-1] ;
1813        sflagsig[sigchan-1] = flagsig[0] || flagsig[sigchan-1] ;
1814        // TSTS
1815        if ( spsig.nelements() == tsyssig.nelements() ) {
1816          for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1817            stsyssig[j] = tsyssig[j+ioffset2] ;
1818          }
1819          for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1820            stsyssig[j] = tsyssig[j-sigchan+ioffset2] ;
1821          }
1822          tsyssig = stsyssig.copy() ;
1823          for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1824            stsyssig[j] = doffset2 * tsyssig[j+1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1825          }
1826          stsyssig[sigchan-1] = doffset2 * tsyssig[0] + ( 1.0 - doffset2 ) * tsyssig[sigchan-1] ;
1827        }
1828      }
1829      else {
1830        // SPECTRA and FLAGTRA
1831        for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1832          sspsig[j] = spsig[sigchan+ioffset2+j] ;
1833          sflagsig[j] = flagsig[sigchan+ioffset2+j] ;
1834        }
1835        for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1836          sspsig[j] = spsig[j+ioffset2] ;
1837          sflagsig[j] = flagsig[j+ioffset2] ;
1838        }
1839        spsig = sspsig.copy() ;
1840        flagsig = sflagsig.copy() ;
1841        sspsig[0] = doffset2 * spsig[sigchan-1] + ( 1.0 - doffset2 ) * spsig[0] ;
1842        sflagsig[0] = flagsig[0] + flagsig[sigchan-1] ;
1843        for ( int j = 1 ; j < sigchan ; j++ ) {
1844          sspsig[j] = doffset2 * spsig[j-1] + ( 1.0 - doffset2 ) * spsig[j] ;
1845          sflagsig[j] = flagsig[j-1] + flagsig[j] ;
1846        }
1847        // TSYS
1848        if ( spsig.nelements() == tsyssig.nelements() ) {
1849          for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1850            stsyssig[j] = tsyssig[sigchan+ioffset2+j] ;
1851          }
1852          for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1853            stsyssig[j] = tsyssig[j+ioffset2] ;
1854          }
1855          tsyssig = stsyssig.copy() ;
1856          stsyssig[0] = doffset2 * tsyssig[sigchan-1] + ( 1.0 - doffset2 ) * tsyssig[0] ;
1857          for ( int j = 1 ; j < sigchan ; j++ ) {
1858            stsyssig[j] = doffset2 * tsyssig[j-1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1859          }
1860        }
1861      }
1862    }
1863
1864    // folding
1865    acc.add( spsig, !flagsig, tsyssig, intsig, timesig ) ;
1866    acc.add( sspref, !sflagref, stsysref, intref, timeref ) ;
1867   
1868    // put result
1869    specColOut.put( i, acc.getSpectrum() ) ;
1870    const Vector<Bool> &msk = acc.getMask() ;
1871    Vector<uChar> flg( msk.shape() ) ;
1872    convertArray( flg, !msk ) ;
1873    flagColOut.put( i, flg ) ;
1874    tsysColOut.put( i, acc.getTsys() ) ;
1875    intervalColOut.put( i, acc.getInterval() ) ;
1876    mjdColOut.put( i, acc.getTime() ) ;
1877    // change FREQ_ID to unshifted IF setting (only for APEX?)
1878    if ( choffset2 != 0.0 ) {
1879      uInt freqid = fidColOut( 0 ) ; // assume single-IF data
1880      double refpix, refval, increment ;
1881      out->frequencies().getEntry( refpix, refval, increment, freqid ) ;
1882      refval -= choffset * increment ;
1883      uInt newfreqid = out->frequencies().addEntry( refpix, refval, increment ) ;
1884      Vector<uInt> freqids = fidColOut.getColumn() ;
1885      for ( uInt j = 0 ; j < freqids.nelements() ; j++ ) {
1886        if ( freqids[j] == freqid )
1887          freqids[j] = newfreqid ;
1888      }
1889      fidColOut.putColumn( freqids ) ;
1890    }
1891
1892    acc.reset() ;
1893  }
1894
1895  return out ;
1896}
1897
1898
1899CountedPtr< Scantable > STMath::freqSwitch( const CountedPtr< Scantable >& in )
1900{
1901  // make copy or reference
1902  CountedPtr< Scantable > out = getScantable(in, false);
1903  Table& tout = out->table();
1904  Block<String> cols(4);
1905  cols[0] = String("SCANNO");
1906  cols[1] = String("CYCLENO");
1907  cols[2] = String("BEAMNO");
1908  cols[3] = String("POLNO");
1909  TableIterator iter(tout, cols);
1910  while (!iter.pastEnd()) {
1911    Table subt = iter.table();
1912    // this should leave us with two rows for the two IFs....if not ignore
1913    if (subt.nrow() != 2 ) {
1914      continue;
1915    }
1916    ArrayColumn<Float> specCol(subt, "SPECTRA");
1917    ArrayColumn<Float> tsysCol(subt, "TSYS");
1918    ArrayColumn<uChar> flagCol(subt, "FLAGTRA");
1919    Vector<Float> onspec,offspec, ontsys, offtsys;
1920    Vector<uChar> onflag, offflag;
1921    tsysCol.get(0, ontsys);   tsysCol.get(1, offtsys);
1922    specCol.get(0, onspec);   specCol.get(1, offspec);
1923    flagCol.get(0, onflag);   flagCol.get(1, offflag);
1924    MaskedArray<Float> on  = maskedArray(onspec, onflag);
1925    MaskedArray<Float> off = maskedArray(offspec, offflag);
1926    MaskedArray<Float> oncopy = on.copy();
1927
1928    on /= off; on -= 1.0f;
1929    on *= ontsys[0];
1930    off /= oncopy; off -= 1.0f;
1931    off *= offtsys[0];
1932    specCol.put(0, on.getArray());
1933    const Vector<Bool>& m0 = on.getMask();
1934    Vector<uChar> flags0(m0.shape());
1935    convertArray(flags0, !m0);
1936    flagCol.put(0, flags0);
1937
1938    specCol.put(1, off.getArray());
1939    const Vector<Bool>& m1 = off.getMask();
1940    Vector<uChar> flags1(m1.shape());
1941    convertArray(flags1, !m1);
1942    flagCol.put(1, flags1);
1943    ++iter;
1944  }
1945
1946  return out;
1947}
1948
1949std::vector< float > STMath::statistic( const CountedPtr< Scantable > & in,
1950                                        const std::vector< bool > & mask,
1951                                        const std::string& which )
1952{
1953
1954  Vector<Bool> m(mask);
1955  const Table& tab = in->table();
1956  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1957  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1958  std::vector<float> out;
1959  for (uInt i=0; i < tab.nrow(); ++i ) {
1960    Vector<Float> spec; specCol.get(i, spec);
1961    Vector<uChar> flag; flagCol.get(i, flag);
1962    MaskedArray<Float> ma  = maskedArray(spec, flag);
1963    float outstat = 0.0;
1964    if ( spec.nelements() == m.nelements() ) {
1965      outstat = mathutil::statistics(which, ma(m));
1966    } else {
1967      outstat = mathutil::statistics(which, ma);
1968    }
1969    out.push_back(outstat);
1970  }
1971  return out;
1972}
1973
1974std::vector< float > STMath::statisticRow( const CountedPtr< Scantable > & in,
1975                                        const std::vector< bool > & mask,
1976                                        const std::string& which,
1977                                        int row )
1978{
1979
1980  Vector<Bool> m(mask);
1981  const Table& tab = in->table();
1982  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1983  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1984  std::vector<float> out;
1985
1986  Vector<Float> spec; specCol.get(row, spec);
1987  Vector<uChar> flag; flagCol.get(row, flag);
1988  MaskedArray<Float> ma  = maskedArray(spec, flag);
1989  float outstat = 0.0;
1990  if ( spec.nelements() == m.nelements() ) {
1991    outstat = mathutil::statistics(which, ma(m));
1992  } else {
1993    outstat = mathutil::statistics(which, ma);
1994  }
1995  out.push_back(outstat);
1996
1997  return out;
1998}
1999
2000std::vector< int > STMath::minMaxChan( const CountedPtr< Scantable > & in,
2001                                        const std::vector< bool > & mask,
2002                                        const std::string& which )
2003{
2004
2005  Vector<Bool> m(mask);
2006  const Table& tab = in->table();
2007  ROArrayColumn<Float> specCol(tab, "SPECTRA");
2008  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2009  std::vector<int> out;
2010  for (uInt i=0; i < tab.nrow(); ++i ) {
2011    Vector<Float> spec; specCol.get(i, spec);
2012    Vector<uChar> flag; flagCol.get(i, flag);
2013    MaskedArray<Float> ma  = maskedArray(spec, flag);
2014    if (ma.ndim() != 1) {
2015      throw (ArrayError(
2016          "std::vector<int> STMath::minMaxChan("
2017          "ContedPtr<Scantable> &in, std::vector<bool> &mask, "
2018          " std::string &which)"
2019          " - MaskedArray is not 1D"));
2020    }
2021    IPosition outpos(1,0);
2022    if ( spec.nelements() == m.nelements() ) {
2023      outpos = mathutil::minMaxPos(which, ma(m));
2024    } else {
2025      outpos = mathutil::minMaxPos(which, ma);
2026    }
2027    out.push_back(outpos[0]);
2028  }
2029  return out;
2030}
2031
2032CountedPtr< Scantable > STMath::bin( const CountedPtr< Scantable > & in,
2033                                     int width )
2034{
2035  if ( !in->getSelection().empty() ) throw(AipsError("Can't bin subset of the data."));
2036  CountedPtr< Scantable > out = getScantable(in, false);
2037  Table& tout = out->table();
2038  out->frequencies().rescale(width, "BIN");
2039  ArrayColumn<Float> specCol(tout, "SPECTRA");
2040  ArrayColumn<uChar> flagCol(tout, "FLAGTRA");
2041  ArrayColumn<Float> tsysCol(tout, "TSYS");
2042
2043  for (uInt i=0; i < tout.nrow(); ++i ) {
2044    MaskedArray<Float> main  = maskedArray(specCol(i), flagCol(i));
2045    MaskedArray<Float> maout;
2046    LatticeUtilities::bin(maout, main, 0, Int(width));
2047    specCol.put(i, maout.getArray());
2048    flagCol.put(i, flagsFromMA(maout));
2049    if (tsysCol(i).nelements() == specCol(i).nelements()) {
2050      MaskedArray<Float> matsysin = maskedArray(tsysCol(i), flagCol(i));
2051      MaskedArray<Float> matsysout;
2052      LatticeUtilities::bin(matsysout, matsysin, 0, Int(width));
2053      tsysCol.put(i, matsysout.getArray());
2054    }
2055    // take only the first binned spectrum's length for the deprecated
2056    // global header item nChan
2057    if (i==0) tout.rwKeywordSet().define(String("nChan"),
2058                                       Int(maout.getArray().nelements()));
2059  }
2060  return out;
2061}
2062
2063CountedPtr< Scantable > STMath::resample( const CountedPtr< Scantable >& in,
2064                                          const std::string& method,
2065                                          float width )
2066//
2067// Should add the possibility of width being specified in km/s. This means
2068// that for each freqID (SpectralCoordinate) we will need to convert to an
2069// average channel width (say at the reference pixel).  Then we would need
2070// to be careful to make sure each spectrum (of different freqID)
2071// is the same length.
2072//
2073{
2074  //InterpolateArray1D<Double,Float>::InterpolationMethod interp;
2075  Int interpMethod(stringToIMethod(method));
2076
2077  CountedPtr< Scantable > out = getScantable(in, false);
2078  Table& tout = out->table();
2079
2080// Resample SpectralCoordinates (one per freqID)
2081  out->frequencies().rescale(width, "RESAMPLE");
2082  TableIterator iter(tout, "IFNO");
2083  TableRow row(tout);
2084  while ( !iter.pastEnd() ) {
2085    Table tab = iter.table();
2086    ArrayColumn<Float> specCol(tab, "SPECTRA");
2087    //ArrayColumn<Float> tsysCol(tout, "TSYS");
2088    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2089    Vector<Float> spec;
2090    Vector<uChar> flag;
2091    specCol.get(0,spec); // the number of channels should be constant per IF
2092    uInt nChanIn = spec.nelements();
2093    Vector<Float> xIn(nChanIn); indgen(xIn);
2094    Int fac =  Int(nChanIn/width);
2095    Vector<Float> xOut(fac+10); // 10 to be safe - resize later
2096    uInt k = 0;
2097    Float x = 0.0;
2098    while (x < Float(nChanIn) ) {
2099      xOut(k) = x;
2100      k++;
2101      x += width;
2102    }
2103    uInt nChanOut = k;
2104    xOut.resize(nChanOut, True);
2105    // process all rows for this IFNO
2106    Vector<Float> specOut;
2107    Vector<Bool> maskOut;
2108    Vector<uChar> flagOut;
2109    for (uInt i=0; i < tab.nrow(); ++i) {
2110      specCol.get(i, spec);
2111      flagCol.get(i, flag);
2112      Vector<Bool> mask(flag.nelements());
2113      convertArray(mask, flag);
2114
2115      IPosition shapeIn(spec.shape());
2116      //sh.nchan = nChanOut;
2117      InterpolateArray1D<Float,Float>::interpolate(specOut, maskOut, xOut,
2118                                                   xIn, spec, mask,
2119                                                   interpMethod, True, True);
2120      /// @todo do the same for channel based Tsys
2121      flagOut.resize(maskOut.nelements());
2122      convertArray(flagOut, maskOut);
2123      specCol.put(i, specOut);
2124      flagCol.put(i, flagOut);
2125    }
2126    ++iter;
2127  }
2128
2129  return out;
2130}
2131
2132STMath::imethod STMath::stringToIMethod(const std::string& in)
2133{
2134  static STMath::imap lookup;
2135
2136  // initialize the lookup table if necessary
2137  if ( lookup.empty() ) {
2138    lookup["nearest"]   = InterpolateArray1D<Double,Float>::nearestNeighbour;
2139    lookup["linear"] = InterpolateArray1D<Double,Float>::linear;
2140    lookup["cubic"]  = InterpolateArray1D<Double,Float>::cubic;
2141    lookup["spline"]  = InterpolateArray1D<Double,Float>::spline;
2142  }
2143
2144  STMath::imap::const_iterator iter = lookup.find(in);
2145
2146  if ( lookup.end() == iter ) {
2147    std::string message = in;
2148    message += " is not a valid interpolation mode";
2149    throw(AipsError(message));
2150  }
2151  return iter->second;
2152}
2153
2154WeightType STMath::stringToWeight(const std::string& in)
2155{
2156  static std::map<std::string, WeightType> lookup;
2157
2158  // initialize the lookup table if necessary
2159  if ( lookup.empty() ) {
2160    lookup["NONE"]   = asap::W_NONE;
2161    lookup["TINT"] = asap::W_TINT;
2162    lookup["TINTSYS"]  = asap::W_TINTSYS;
2163    lookup["TSYS"]  = asap::W_TSYS;
2164    lookup["VAR"]  = asap::W_VAR;
2165  }
2166
2167  std::map<std::string, WeightType>::const_iterator iter = lookup.find(in);
2168
2169  if ( lookup.end() == iter ) {
2170    std::string message = in;
2171    message += " is not a valid weighting mode";
2172    throw(AipsError(message));
2173  }
2174  return iter->second;
2175}
2176
2177CountedPtr< Scantable > STMath::gainElevation( const CountedPtr< Scantable >& in,
2178                                               const vector< float > & coeff,
2179                                               const std::string & filename,
2180                                               const std::string& method)
2181{
2182  LogIO os( LogOrigin( "STMath", "gainElevation", WHERE ) ) ;
2183  // Get elevation data from Scantable and convert to degrees
2184  CountedPtr< Scantable > out = getScantable(in, false);
2185  Table& tab = out->table();
2186  ROScalarColumn<Float> elev(tab, "ELEVATION");
2187  Vector<Float> x = elev.getColumn();
2188  x *= Float(180 / C::pi);                        // Degrees
2189
2190  Vector<Float> coeffs(coeff);
2191  const uInt nc = coeffs.nelements();
2192  if ( filename.length() > 0 && nc > 0 ) {
2193    throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
2194  }
2195
2196  // Correct
2197  if ( nc > 0 || filename.length() == 0 ) {
2198    // Find instrument
2199    Bool throwit = True;
2200    Instrument inst =
2201      STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2202                                throwit);
2203
2204    // Set polynomial
2205    Polynomial<Float>* ppoly = 0;
2206    Vector<Float> coeff;
2207    String msg;
2208    if ( nc > 0 ) {
2209      ppoly = new Polynomial<Float>(nc-1);
2210      coeff = coeffs;
2211      msg = String("user");
2212    } else {
2213      STAttr sdAttr;
2214      coeff = sdAttr.gainElevationPoly(inst);
2215      ppoly = new Polynomial<Float>(coeff.nelements()-1);
2216      msg = String("built in");
2217    }
2218
2219    if ( coeff.nelements() > 0 ) {
2220      ppoly->setCoefficients(coeff);
2221    } else {
2222      delete ppoly;
2223      throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
2224    }
2225    os << "Making polynomial correction with " << msg << " coefficients:" << endl;
2226    os << "   " <<  coeff << LogIO::POST;
2227    const uInt nrow = tab.nrow();
2228    Vector<Float> factor(nrow);
2229    for ( uInt i=0; i < nrow; ++i ) {
2230      factor[i] = 1.0 / (*ppoly)(x[i]);
2231    }
2232    delete ppoly;
2233    scaleByVector(tab, factor, true);
2234
2235  } else {
2236    // Read and correct
2237    os << "Making correction from ascii Table" << LogIO::POST;
2238    scaleFromAsciiTable(tab, filename, method, x, true);
2239  }
2240  return out;
2241}
2242
2243void STMath::scaleFromAsciiTable(Table& in, const std::string& filename,
2244                                 const std::string& method,
2245                                 const Vector<Float>& xout, bool dotsys)
2246{
2247
2248// Read gain-elevation ascii file data into a Table.
2249
2250  String formatString;
2251  Table tbl = readAsciiTable(formatString, Table::Memory, filename, "", "", False);
2252  scaleFromTable(in, tbl, method, xout, dotsys);
2253}
2254
2255void STMath::scaleFromTable(Table& in,
2256                            const Table& table,
2257                            const std::string& method,
2258                            const Vector<Float>& xout, bool dotsys)
2259{
2260
2261  ROScalarColumn<Float> geElCol(table, "ELEVATION");
2262  ROScalarColumn<Float> geFacCol(table, "FACTOR");
2263  Vector<Float> xin = geElCol.getColumn();
2264  Vector<Float> yin = geFacCol.getColumn();
2265  Vector<Bool> maskin(xin.nelements(),True);
2266
2267  // Interpolate (and extrapolate) with desired method
2268
2269  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2270
2271   Vector<Float> yout;
2272   Vector<Bool> maskout;
2273   InterpolateArray1D<Float,Float>::interpolate(yout, maskout, xout,
2274                                                xin, yin, maskin, interp,
2275                                                True, True);
2276
2277   scaleByVector(in, Float(1.0)/yout, dotsys);
2278}
2279
2280void STMath::scaleByVector( Table& in,
2281                            const Vector< Float >& factor,
2282                            bool dotsys )
2283{
2284  uInt nrow = in.nrow();
2285  if ( factor.nelements() != nrow ) {
2286    throw(AipsError("factors.nelements() != table.nelements()"));
2287  }
2288  ArrayColumn<Float> specCol(in, "SPECTRA");
2289  ArrayColumn<uChar> flagCol(in, "FLAGTRA");
2290  ArrayColumn<Float> tsysCol(in, "TSYS");
2291  for (uInt i=0; i < nrow; ++i) {
2292    MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2293    ma *= factor[i];
2294    specCol.put(i, ma.getArray());
2295    flagCol.put(i, flagsFromMA(ma));
2296    if ( dotsys ) {
2297      Vector<Float> tsys = tsysCol(i);
2298      tsys *= factor[i];
2299      tsysCol.put(i,tsys);
2300    }
2301  }
2302}
2303
2304CountedPtr< Scantable > STMath::convertFlux( const CountedPtr< Scantable >& in,
2305                                             float d, float etaap,
2306                                             float jyperk )
2307{
2308  LogIO os( LogOrigin( "STMath", "convertFlux", WHERE ) ) ;
2309
2310  CountedPtr< Scantable > out = getScantable(in, false);
2311  Table& tab = in->table();
2312  Table& outtab = out->table();
2313  Unit fluxUnit(tab.keywordSet().asString("FluxUnit"));
2314  Unit K(String("K"));
2315  Unit JY(String("Jy"));
2316
2317  bool tokelvin = true;
2318  Double cfac = 1.0;
2319
2320  if ( fluxUnit == JY ) {
2321    os << "Converting to K" << LogIO::POST;
2322    Quantum<Double> t(1.0,fluxUnit);
2323    Quantum<Double> t2 = t.get(JY);
2324    cfac = (t2 / t).getValue();               // value to Jy
2325
2326    tokelvin = true;
2327    out->setFluxUnit("K");
2328  } else if ( fluxUnit == K ) {
2329    os << "Converting to Jy" << LogIO::POST;
2330    Quantum<Double> t(1.0,fluxUnit);
2331    Quantum<Double> t2 = t.get(K);
2332    cfac = (t2 / t).getValue();              // value to K
2333
2334    tokelvin = false;
2335    out->setFluxUnit("Jy");
2336  } else {
2337    throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
2338  }
2339  // Make sure input values are converted to either Jy or K first...
2340  Float factor = cfac;
2341
2342  // Select method
2343  if (jyperk > 0.0) {
2344    factor *= jyperk;
2345    if ( tokelvin ) factor = 1.0 / jyperk;
2346    os << "Jy/K = " << jyperk << LogIO::POST;
2347    Vector<Float> factors(outtab.nrow(), factor);
2348    scaleByVector(outtab,factors, false);
2349  } else if ( etaap > 0.0) {
2350    if (d < 0) {
2351      Instrument inst =
2352        STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2353                                  True);
2354      STAttr sda;
2355      d = sda.diameter(inst);
2356    }
2357    jyperk = STAttr::findJyPerK(etaap, d);
2358    os << "Jy/K = " << jyperk << LogIO::POST;
2359    factor *= jyperk;
2360    if ( tokelvin ) {
2361      factor = 1.0 / factor;
2362    }
2363    Vector<Float> factors(outtab.nrow(), factor);
2364    scaleByVector(outtab, factors, False);
2365  } else {
2366
2367    // OK now we must deal with automatic look up of values.
2368    // We must also deal with the fact that the factors need
2369    // to be computed per IF and may be different and may
2370    // change per integration.
2371
2372    os <<"Looking up conversion factors" << LogIO::POST;
2373    convertBrightnessUnits(out, tokelvin, cfac);
2374  }
2375
2376  return out;
2377}
2378
2379void STMath::convertBrightnessUnits( CountedPtr<Scantable>& in,
2380                                     bool tokelvin, float cfac )
2381{
2382  Table& table = in->table();
2383  Instrument inst =
2384    STAttr::convertInstrument(table.keywordSet().asString("AntennaName"), True);
2385  TableIterator iter(table, "FREQ_ID");
2386  STFrequencies stfreqs = in->frequencies();
2387  STAttr sdAtt;
2388  while (!iter.pastEnd()) {
2389    Table tab = iter.table();
2390    ArrayColumn<Float> specCol(tab, "SPECTRA");
2391    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2392    ROScalarColumn<uInt> freqidCol(tab, "FREQ_ID");
2393    MEpoch::ROScalarColumn timeCol(tab, "TIME");
2394
2395    uInt freqid; freqidCol.get(0, freqid);
2396    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2397    // STAttr.JyPerK has a Vector interface... change sometime.
2398    Vector<Float> freqs(1,stfreqs.getRefFreq(freqid, tmpspec.nelements()));
2399    for ( uInt i=0; i<tab.nrow(); ++i) {
2400      Float jyperk = (sdAtt.JyPerK(inst, timeCol(i), freqs))[0];
2401      Float factor = cfac * jyperk;
2402      if ( tokelvin ) factor = Float(1.0) / factor;
2403      MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2404      ma *= factor;
2405      specCol.put(i, ma.getArray());
2406      flagCol.put(i, flagsFromMA(ma));
2407    }
2408  ++iter;
2409  }
2410}
2411
2412CountedPtr< Scantable > STMath::opacity( const CountedPtr< Scantable > & in,
2413                                         const std::vector<float>& tau )
2414{
2415  CountedPtr< Scantable > out = getScantable(in, false);
2416
2417  Table outtab = out->table();
2418
2419  const Int ntau = uInt(tau.size());
2420  std::vector<float>::const_iterator tauit = tau.begin();
2421  AlwaysAssert((ntau == 1 || ntau == in->nif() || ntau == in->nif() * in->npol()),
2422               AipsError);
2423  TableIterator iiter(outtab, "IFNO");
2424  while ( !iiter.pastEnd() ) {
2425    Table itab = iiter.table();
2426    TableIterator piter(itab, "POLNO");
2427    while ( !piter.pastEnd() ) {
2428      Table tab = piter.table();
2429      ROScalarColumn<Float> elev(tab, "ELEVATION");
2430      ArrayColumn<Float> specCol(tab, "SPECTRA");
2431      ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2432      ArrayColumn<Float> tsysCol(tab, "TSYS");
2433      for ( uInt i=0; i<tab.nrow(); ++i) {
2434        Float zdist = Float(C::pi_2) - elev(i);
2435        Float factor = exp(*tauit/cos(zdist));
2436        MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2437        ma *= factor;
2438        specCol.put(i, ma.getArray());
2439        flagCol.put(i, flagsFromMA(ma));
2440        Vector<Float> tsys;
2441        tsysCol.get(i, tsys);
2442        tsys *= factor;
2443        tsysCol.put(i, tsys);
2444      }
2445      if (ntau == in->nif()*in->npol() ) {
2446        tauit++;
2447      }
2448      piter++;
2449    }
2450    if (ntau >= in->nif() ) {
2451      tauit++;
2452    }
2453    iiter++;
2454  }
2455  return out;
2456}
2457
2458CountedPtr< Scantable > STMath::smoothOther( const CountedPtr< Scantable >& in,
2459                                             const std::string& kernel,
2460                                             float width, int order)
2461{
2462  CountedPtr< Scantable > out = getScantable(in, false);
2463  Table table = out->table();
2464
2465  TableIterator iter(table, "IFNO");
2466  while (!iter.pastEnd()) {
2467    Table tab = iter.table();
2468    ArrayColumn<Float> specCol(tab, "SPECTRA");
2469    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2470    Vector<Float> spec;
2471    Vector<uChar> flag;
2472    for (uInt i = 0; i < tab.nrow(); ++i) {
2473      specCol.get(i, spec);
2474      flagCol.get(i, flag);
2475      Vector<Bool> mask(flag.nelements());
2476      convertArray(mask, flag);
2477      Vector<Float> specout;
2478      Vector<Bool> maskout;
2479      if (kernel == "hanning") {
2480        mathutil::hanning(specout, maskout, spec, !mask);
2481      } else if (kernel == "rmedian") {
2482        mathutil::runningMedian(specout, maskout, spec , mask, width);
2483      } else if (kernel == "poly") {
2484        mathutil::polyfit(specout, maskout, spec, !mask, width, order);
2485      }
2486
2487      for (uInt j = 0; j < flag.nelements(); ++j) {
2488        uChar userFlag = 1 << 7;
2489        if (maskout[j]==True) userFlag = 0 << 7;
2490        flag(j) = userFlag;
2491      }
2492
2493      flagCol.put(i, flag);
2494      specCol.put(i, specout);
2495    }
2496  ++iter;
2497  }
2498  return out;
2499}
2500
2501CountedPtr< Scantable > STMath::smooth( const CountedPtr< Scantable >& in,
2502                                        const std::string& kernel, float width,
2503                                        int order)
2504{
2505  if (kernel == "rmedian"  || kernel == "hanning" || kernel == "poly") {
2506    return smoothOther(in, kernel, width, order);
2507  }
2508  CountedPtr< Scantable > out = getScantable(in, false);
2509  Table& table = out->table();
2510  VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernel);
2511  // same IFNO should have same no of channels
2512  // this saves overhead
2513  TableIterator iter(table, "IFNO");
2514  while (!iter.pastEnd()) {
2515    Table tab = iter.table();
2516    ArrayColumn<Float> specCol(tab, "SPECTRA");
2517    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2518    Vector<Float> spec = specCol( 0 );
2519    uInt nchan = spec.nelements();
2520    Vector<Float> kvec = VectorKernel::make(type, width, nchan, True, False);
2521    Convolver<Float> conv(kvec, IPosition(1,nchan));
2522    Vector<uChar> flag;
2523    Vector<Bool> mask(nchan);
2524    for ( uInt i=0; i<tab.nrow(); ++i) {
2525      specCol.get(i, spec);
2526      flagCol.get(i, flag);
2527      convertArray(mask, flag);
2528      Vector<Float> specout;
2529      //mathutil::replaceMaskByZero(specout, mask);
2530      mathutil::replaceMaskByZero(spec, !mask);
2531      //std::vector<bool> vmask;
2532      //(!mask).tovector(vmask);
2533      //mathutil::doZeroOrderInterpolation(spec, vmask);
2534      conv.linearConv(specout, spec);
2535      specCol.put(i, specout);
2536    }
2537    ++iter;
2538  }
2539  return out;
2540}
2541
2542CountedPtr< Scantable >
2543STMath::merge( const std::vector< CountedPtr < Scantable > >& in,
2544               const std::string &freqTol )
2545{
2546  Double freqTolInHz = 0.0; // default is 0.0Hz (merge only when exact match)
2547  if (freqTol.size() > 0) {
2548    Quantum<Double> freqTolInQuantity;
2549    if (!Quantum<Double>::read(freqTolInQuantity, freqTol)) {
2550      throw(AipsError("Failed to convert freqTol string to quantity"));
2551    }
2552    if (!freqTolInQuantity.isConform("Hz")) {
2553      throw(AipsError("Invalid freqTol string"));
2554    }
2555    freqTolInHz = freqTolInQuantity.getValue("Hz");
2556    LogIO os(LogOrigin("STMath", "merge", WHERE));
2557    os << "frequency tolerance = " << freqTolInHz << "Hz" << LogIO::POST;
2558  }
2559 
2560  if ( in.size() < 2 ) {
2561    throw(AipsError("Need at least two scantables to perform a merge."));
2562  }
2563  std::vector<CountedPtr < Scantable > >::const_iterator it = in.begin();
2564  bool insitu = insitu_;
2565  setInsitu(false);
2566  CountedPtr< Scantable > out = getScantable(*it, false);
2567  setInsitu(insitu);
2568  Table& tout = out->table();
2569  ScalarColumn<uInt> freqidcol(tout,"FREQ_ID"), molidcol(tout, "MOLECULE_ID");
2570  ScalarColumn<uInt> scannocol(tout,"SCANNO"), focusidcol(tout,"FOCUS_ID");
2571  ScalarColumn<uInt> ifnocol(tout, "IFNO");
2572  // Renumber SCANNO to be 0-based
2573  Vector<uInt> scannos = scannocol.getColumn();
2574  uInt offset = min(scannos);
2575  scannos -= offset;
2576  scannocol.putColumn(scannos);
2577  uInt newscanno = max(scannos)+1;
2578  ++it;
2579
2580  // new IFNO
2581  uInt ifnoCounter = max(ifnocol.getColumn()) + 1;
2582 
2583  while ( it != in.end() ){
2584    // Check FREQUENCIES/BASEFRAME
2585    if ( out->frequencies().getFrame(true) != (*it)->frequencies().getFrame(true) ) {
2586      throw(AipsError("BASEFRAME is not identical"));
2587    }
2588   
2589    if ( ! (*it)->conformant(*out) ) {
2590      // non conformant.
2591      LogIO os( LogOrigin( "STMath", "merge()", WHERE ) ) ;
2592      os << LogIO::SEVERE << "Can't merge scantables as header informations (any one of AntennaName, Equinox, and FluxUnit) differ." << LogIO::EXCEPTION ;
2593    }
2594    out->appendToHistoryTable((*it)->history());
2595    const Table& tab = (*it)->table();
2596
2597    Block<String> cols(3);
2598    cols[0] = String("FREQ_ID");
2599    cols[1] = String("MOLECULE_ID");
2600    cols[2] = String("FOCUS_ID");
2601
2602    TableIterator scanit(tab, "SCANNO");
2603    while (!scanit.pastEnd()) {
2604      TableIterator subit(scanit.table(), cols);
2605      while ( !subit.pastEnd() ) {
2606        uInt nrow = tout.nrow();
2607        Table thetab = subit.table();
2608        ROTableRow row(thetab);
2609        Vector<uInt> thecolvals(thetab.nrow());
2610        // The selected subset of table should have
2611        // the equal FREQ_ID, MOLECULE_ID, and FOCUS_ID values.
2612        const TableRecord& rec = row.get(0);
2613        tout.addRow(thetab.nrow());
2614        TableCopy::copyRows(tout, thetab, nrow, 0, thetab.nrow());
2615
2616        Slicer slice(IPosition(1, nrow), IPosition(1, thetab.nrow()),
2617                     Slicer::endIsLength);
2618
2619        // Set the proper FREQ_ID
2620        Double rv,rp,inc;
2621        (*it)->frequencies().getEntry(rp, rv, inc, rec.asuInt("FREQ_ID"));
2622        uInt id;
2623       
2624        // default value is new unique IFNO
2625        uInt newifno = ifnoCounter;
2626        uInt nchan = rec.asArrayFloat("SPECTRA").shape()[0];
2627        //id = out->frequencies().addEntry(rp, rv, inc);
2628        if ( !out->frequencies().match(rp, rv, inc, freqTolInHz, id) ) {
2629          // add new entry to FREQUENCIES table
2630          id = out->frequencies().addEntry(rp, rv, inc);
2631
2632          // increment counter for IFNO
2633          ifnoCounter++;
2634        }
2635        else {
2636          // should renumber IFNO to be same as existing rows that have same FREQ_ID
2637          LogIO os(LogOrigin("STMath", "merge", WHERE));
2638          Table outFreqIdSelected = tout(tout.col("FREQ_ID") == id);
2639          TableIterator _iter(outFreqIdSelected, "IFNO");
2640          map<uInt, uInt> nchanMap;
2641          while (!_iter.pastEnd()) {
2642            const Table _table = _iter.table();
2643            ROTableRow _row(_table);
2644            const TableRecord &_rec = _row.get(0);
2645            uInt nchan = _rec.asArrayFloat("SPECTRA").shape()[0];
2646            if (nchanMap.find(nchan) != nchanMap.end()) {
2647              throw(AipsError("There are non-unique IFNOs assigned to spectra that have same FREQ_ID and same nchan. Something wrong."));
2648            }
2649            nchanMap[nchan] = _rec.asuInt("IFNO");
2650            _iter.next();
2651          }
2652
2653          os << LogIO::DEBUGGING << "nchanMap for " << id << ":" << LogIO::POST;
2654          for (map<uInt, uInt>::iterator i = nchanMap.begin(); i != nchanMap.end(); ++i) {
2655            os << LogIO::DEBUGGING << "nchanMap[" << i->first << "] = " << i->second << LogIO::POST;
2656          }
2657
2658          if (nchanMap.find(nchan) == nchanMap.end()) {
2659            // increment counter for IFNO
2660            ifnoCounter++;
2661          }
2662          else {
2663            // renumber IFNO to be same as existing value that corresponds to nchan
2664            newifno = nchanMap[nchan];
2665          }
2666          os << LogIO::DEBUGGING << "newifno = " << newifno << LogIO::POST;
2667        }
2668        thecolvals = id;
2669        freqidcol.putColumnRange(slice, thecolvals);
2670
2671        thecolvals = newifno;
2672        ifnocol.putColumnRange(slice, thecolvals);
2673       
2674        // Set the proper MOLECULE_ID
2675        Vector<String> name,fname;Vector<Double> rf;
2676        (*it)->molecules().getEntry(rf, name, fname, rec.asuInt("MOLECULE_ID"));
2677        id = out->molecules().addEntry(rf, name, fname);
2678        thecolvals = id;
2679        molidcol.putColumnRange(slice, thecolvals);
2680       
2681        // Set the proper FOCUS_ID
2682        Float fpa,frot,fax,ftan,fhand,fmount,fuser, fxy, fxyp;
2683        (*it)->focus().getEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2684                                fxy, fxyp, rec.asuInt("FOCUS_ID"));
2685        id = out->focus().addEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2686                                   fxy, fxyp);
2687        thecolvals = id;
2688        focusidcol.putColumnRange(slice, thecolvals);
2689
2690        // Set the proper SCANNO
2691        thecolvals = newscanno;
2692        scannocol.putColumnRange(slice, thecolvals);
2693
2694        ++subit;
2695      }
2696      ++newscanno;
2697      ++scanit;
2698    }
2699    ++it;
2700  }
2701  return out;
2702}
2703
2704CountedPtr< Scantable >
2705  STMath::invertPhase( const CountedPtr < Scantable >& in )
2706{
2707  return applyToPol(in, &STPol::invertPhase, Float(0.0));
2708}
2709
2710CountedPtr< Scantable >
2711  STMath::rotateXYPhase( const CountedPtr < Scantable >& in, float phase )
2712{
2713   return applyToPol(in, &STPol::rotatePhase, Float(phase));
2714}
2715
2716CountedPtr< Scantable >
2717  STMath::rotateLinPolPhase( const CountedPtr < Scantable >& in, float phase )
2718{
2719  return applyToPol(in, &STPol::rotateLinPolPhase, Float(phase));
2720}
2721
2722CountedPtr< Scantable > STMath::applyToPol( const CountedPtr<Scantable>& in,
2723                                             STPol::polOperation fptr,
2724                                             Float phase )
2725{
2726  CountedPtr< Scantable > out = getScantable(in, false);
2727  Table& tout = out->table();
2728  Block<String> cols(4);
2729  cols[0] = String("SCANNO");
2730  cols[1] = String("BEAMNO");
2731  cols[2] = String("IFNO");
2732  cols[3] = String("CYCLENO");
2733  TableIterator iter(tout, cols);
2734  CountedPtr<STPol> stpol = STPol::getPolClass(out->factories_,
2735                                               out->getPolType() );
2736  while (!iter.pastEnd()) {
2737    Table t = iter.table();
2738    ArrayColumn<Float> speccol(t, "SPECTRA");
2739    ScalarColumn<uInt> focidcol(t, "FOCUS_ID");
2740    Matrix<Float> pols(speccol.getColumn());
2741    try {
2742      stpol->setSpectra(pols);
2743      Float fang,fhand;
2744      fang = in->focusTable_.getTotalAngle(focidcol(0));
2745      fhand = in->focusTable_.getFeedHand(focidcol(0));
2746      stpol->setPhaseCorrections(fang, fhand);
2747      // use a member function pointer in STPol.  This only works on
2748      // the STPol pointer itself, not the Counted Pointer so
2749      // derefernce it.
2750      (&(*(stpol))->*fptr)(phase);
2751      speccol.putColumn(stpol->getSpectra());
2752    } catch (AipsError& e) {
2753      //delete stpol;stpol=0;
2754      throw(e);
2755    }
2756    ++iter;
2757  }
2758  //delete stpol;stpol=0;
2759  return out;
2760}
2761
2762CountedPtr< Scantable >
2763  STMath::swapPolarisations( const CountedPtr< Scantable > & in )
2764{
2765  CountedPtr< Scantable > out = getScantable(in, false);
2766  Table& tout = out->table();
2767  Table t0 = tout(tout.col("POLNO") == 0);
2768  Table t1 = tout(tout.col("POLNO") == 1);
2769  if ( t0.nrow() != t1.nrow() )
2770    throw(AipsError("Inconsistent number of polarisations"));
2771  ArrayColumn<Float> speccol0(t0, "SPECTRA");
2772  ArrayColumn<uChar> flagcol0(t0, "FLAGTRA");
2773  ArrayColumn<Float> speccol1(t1, "SPECTRA");
2774  ArrayColumn<uChar> flagcol1(t1, "FLAGTRA");
2775  Matrix<Float> s0 = speccol0.getColumn();
2776  Matrix<uChar> f0 = flagcol0.getColumn();
2777  speccol0.putColumn(speccol1.getColumn());
2778  flagcol0.putColumn(flagcol1.getColumn());
2779  speccol1.putColumn(s0);
2780  flagcol1.putColumn(f0);
2781  return out;
2782}
2783
2784CountedPtr< Scantable >
2785  STMath::averagePolarisations( const CountedPtr< Scantable > & in,
2786                                const std::vector<bool>& mask,
2787                                const std::string& weight )
2788{
2789  if (in->npol() < 2 )
2790    throw(AipsError("averagePolarisations can only be applied to two or more"
2791                    "polarisations"));
2792  bool insitu = insitu_;
2793  setInsitu(false);
2794  CountedPtr< Scantable > pols = getScantable(in, true);
2795  setInsitu(insitu);
2796  Table& tout = pols->table();
2797  std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
2798  Table tab = tableCommand(taql, in->table());
2799  if (tab.nrow() == 0 )
2800    throw(AipsError("Could not find  any rows with POLNO==0 and POLNO==1"));
2801  TableCopy::copyRows(tout, tab);
2802  TableVector<uInt> vec(tout, "POLNO");
2803  vec = 0;
2804  pols->table_.rwKeywordSet().define("nPol", Int(1));
2805  pols->table_.rwKeywordSet().define("POLTYPE", String("stokes"));
2806  //pols->table_.rwKeywordSet().define("POLTYPE", in->getPolType());
2807  std::vector<CountedPtr<Scantable> > vpols;
2808  vpols.push_back(pols);
2809  CountedPtr< Scantable > out = average(vpols, mask, weight, "SCAN");
2810  return out;
2811}
2812
2813CountedPtr< Scantable >
2814  STMath::averageBeams( const CountedPtr< Scantable > & in,
2815                        const std::vector<bool>& mask,
2816                        const std::string& weight )
2817{
2818  bool insitu = insitu_;
2819  setInsitu(false);
2820  CountedPtr< Scantable > beams = getScantable(in, false);
2821  setInsitu(insitu);
2822  Table& tout = beams->table();
2823  // give all rows the same BEAMNO
2824  TableVector<uInt> vec(tout, "BEAMNO");
2825  vec = 0;
2826  beams->table_.rwKeywordSet().define("nBeam", Int(1));
2827  std::vector<CountedPtr<Scantable> > vbeams;
2828  vbeams.push_back(beams);
2829  CountedPtr< Scantable > out = average(vbeams, mask, weight, "SCAN");
2830  return out;
2831}
2832
2833
2834CountedPtr< Scantable >
2835  asap::STMath::frequencyAlign( const CountedPtr< Scantable > & in,
2836                                const std::string & refTime,
2837                                const std::string & method)
2838{
2839  LogIO os( casa::LogOrigin("STMath", "frequencyAlign()", WHERE));
2840  // clone as this is not working insitu
2841  bool insitu = insitu_;
2842  setInsitu(false);
2843  CountedPtr< Scantable > out = getScantable(in, false);
2844  setInsitu(insitu);
2845  Table& tout = out->table();
2846  // Get reference Epoch to time of first row or given String
2847  Unit DAY(String("d"));
2848  MEpoch::Ref epochRef(in->getTimeReference());
2849  MEpoch refEpoch;
2850  if (refTime.length()>0) {
2851    Quantum<Double> qt;
2852    if (MVTime::read(qt,refTime)) {
2853      MVEpoch mv(qt);
2854      refEpoch = MEpoch(mv, epochRef);
2855   } else {
2856      throw(AipsError("Invalid format for Epoch string"));
2857   }
2858  } else {
2859    refEpoch = in->timeCol_(0);
2860  }
2861  MPosition refPos = in->getAntennaPosition();
2862
2863  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2864  /*
2865  // Comment from MV.
2866  // the following code has been commented out because different FREQ_IDs have to be aligned together even
2867  // if the frame doesn't change. So far, lack of this check didn't cause any problems.
2868  // test if user frame is different to base frame
2869  if ( in->frequencies().getFrameString(true)
2870       == in->frequencies().getFrameString(false) ) {
2871    throw(AipsError("Can't convert as no output frame has been set"
2872                    " (use set_freqframe) or it is aligned already."));
2873  }
2874  */
2875  MFrequency::Types system = in->frequencies().getFrame();
2876  MVTime mvt(refEpoch.getValue());
2877  String epochout = mvt.string(MVTime::YMD) + String(" (") + refEpoch.getRefString() + String(")");
2878  os << "Aligning at reference Epoch " << epochout
2879     << " in frame " << MFrequency::showType(system) << LogIO::POST;
2880  // set up the iterator
2881  Block<String> cols(4);
2882  // select by constant direction
2883  cols[0] = String("SRCNAME");
2884  cols[1] = String("BEAMNO");
2885  // select by IF ( no of channels varies over this )
2886  cols[2] = String("IFNO");
2887  // select by restfrequency
2888  cols[3] = String("MOLECULE_ID");
2889  TableIterator iter(tout, cols);
2890  while ( !iter.pastEnd() ) {
2891    Table t = iter.table();
2892    ROScalarColumn<String> snCol(t, "SRCNAME");
2893    os << "Aligning to position of source '" << snCol(0) << "'" << LogIO::POST;
2894    MDirection::ROScalarColumn dirCol(t, "DIRECTION");
2895    TableIterator fiter(t, "FREQ_ID");
2896    // determine nchan from the first row. This should work as
2897    // we are iterating over BEAMNO and IFNO   
2898    // we should have constant direction
2899
2900    ROArrayColumn<Float> sCol(t, "SPECTRA");
2901    const MDirection direction = dirCol(0);
2902    const uInt nchan = sCol(0).nelements();
2903
2904    // skip operations if there is nothing to align
2905    if (fiter.pastEnd()) {
2906        continue;
2907    }
2908
2909    Table ftab = fiter.table();
2910    // align all frequency ids with respect to the first encountered id
2911    ScalarColumn<uInt> freqidCol(ftab, "FREQ_ID");
2912    // get the SpectralCoordinate for the freqid, which we are iterating over
2913    SpectralCoordinate sC = \
2914      in->frequencies().getSpectralCoordinate(freqidCol(0));
2915    FrequencyAligner<Float> fa( sC, nchan, refEpoch,
2916                                direction, refPos, system );
2917    // realign the SpectralCoordinate and put into the output Scantable
2918    Vector<String> units(1);
2919    units = String("Hz");
2920    Bool linear=True;
2921    SpectralCoordinate sc2 = fa.alignedSpectralCoordinate(linear);
2922    sc2.setWorldAxisUnits(units);
2923    const uInt id = out->frequencies().addEntry(sc2.referencePixel()[0],
2924                                                sc2.referenceValue()[0],
2925                                                sc2.increment()[0]);
2926    while ( !fiter.pastEnd() ) {
2927     
2928      ftab = fiter.table();
2929      // spectral coordinate for the current FREQ_ID
2930      ScalarColumn<uInt> freqidCol2(ftab, "FREQ_ID");
2931      sC = in->frequencies().getSpectralCoordinate(freqidCol2(0));
2932      // create the "global" abcissa for alignment with same FREQ_ID
2933      Vector<Double> abc(nchan);
2934      for (uInt i=0; i<nchan; i++) {
2935           Double w;
2936           sC.toWorld(w,Double(i));
2937           abc[i] = w;
2938      }
2939      TableVector<uInt> tvec(ftab, "FREQ_ID");
2940      // assign new frequency id to all rows
2941      tvec = id;
2942      // cache abcissa for same time stamps, so iterate over those
2943      TableIterator timeiter(ftab, "TIME");
2944      while ( !timeiter.pastEnd() ) {
2945        Table tab = timeiter.table();
2946        ArrayColumn<Float> specCol(tab, "SPECTRA");
2947        ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2948        MEpoch::ROScalarColumn timeCol(tab, "TIME");
2949        // use align abcissa cache after the first row
2950        // these rows should be just be POLNO
2951        bool first = true;
2952        for (int i=0; i<int(tab.nrow()); ++i) {
2953          // input values
2954          Vector<uChar> flag = flagCol(i);
2955          Vector<Bool> mask(flag.shape());
2956          Vector<Float> specOut, spec;
2957          spec  = specCol(i);
2958          Vector<Bool> maskOut;Vector<uChar> flagOut;
2959          convertArray(mask, flag);
2960          // alignment
2961          Bool ok = fa.align(specOut, maskOut, abc, spec,
2962                             mask, timeCol(i), !first,
2963                             interp, False);
2964          (void) ok; // unused stop compiler nagging
2965          // back into scantable
2966          flagOut.resize(maskOut.nelements());
2967          convertArray(flagOut, maskOut);
2968          flagCol.put(i, flagOut);
2969          specCol.put(i, specOut);
2970          // start abcissa caching
2971          first = false;
2972        }
2973        // next timestamp
2974        ++timeiter;
2975      }
2976      // next FREQ_ID
2977      ++fiter;
2978    }
2979    // next aligner
2980    ++iter;
2981  }
2982  // set this afterwards to ensure we are doing insitu correctly.
2983  out->frequencies().setFrame(system, true);
2984  return out;
2985}
2986
2987CountedPtr<Scantable>
2988  asap::STMath::convertPolarisation( const CountedPtr<Scantable>& in,
2989                                     const std::string & newtype )
2990{
2991  if (in->npol() != 2 && in->npol() != 4)
2992    throw(AipsError("Can only convert two or four polarisations."));
2993  if ( in->getPolType() == newtype )
2994    throw(AipsError("No need to convert."));
2995  if ( ! in->selector_.empty() )
2996    throw(AipsError("Can only convert whole scantable. Unset the selection."));
2997  bool insitu = insitu_;
2998  setInsitu(false);
2999  CountedPtr< Scantable > out = getScantable(in, true);
3000  setInsitu(insitu);
3001  Table& tout = out->table();
3002  tout.rwKeywordSet().define("POLTYPE", String(newtype));
3003
3004  Block<String> cols(4);
3005  cols[0] = "SCANNO";
3006  cols[1] = "CYCLENO";
3007  cols[2] = "BEAMNO";
3008  cols[3] = "IFNO";
3009  TableIterator it(in->originalTable_, cols);
3010  String basetype = in->getPolType();
3011  STPol* stpol = STPol::getPolClass(in->factories_, basetype);
3012  try {
3013    while ( !it.pastEnd() ) {
3014      Table tab = it.table();
3015      uInt row = tab.rowNumbers()[0];
3016      stpol->setSpectra(in->getPolMatrix(row));
3017      Float fang,fhand;
3018      fang = in->focusTable_.getTotalAngle(in->mfocusidCol_(row));
3019      fhand = in->focusTable_.getFeedHand(in->mfocusidCol_(row));
3020      stpol->setPhaseCorrections(fang, fhand);
3021      Int npolout = 0;
3022      for (uInt i=0; i<tab.nrow(); ++i) {
3023        Vector<Float> outvec = stpol->getSpectrum(i, newtype);
3024        if ( outvec.nelements() > 0 ) {
3025          tout.addRow();
3026          TableCopy::copyRows(tout, tab, tout.nrow()-1, 0, 1);
3027          ArrayColumn<Float> sCol(tout,"SPECTRA");
3028          ScalarColumn<uInt> pCol(tout,"POLNO");
3029          sCol.put(tout.nrow()-1 ,outvec);
3030          pCol.put(tout.nrow()-1 ,uInt(npolout));
3031          npolout++;
3032       }
3033      }
3034      tout.rwKeywordSet().define("nPol", npolout);
3035      ++it;
3036    }
3037  } catch (AipsError& e) {
3038    delete stpol;
3039    throw(e);
3040  }
3041  delete stpol;
3042  return out;
3043}
3044
3045CountedPtr< Scantable >
3046  asap::STMath::mxExtract( const CountedPtr< Scantable > & in,
3047                           const std::string & scantype )
3048{
3049  bool insitu = insitu_;
3050  setInsitu(false);
3051  CountedPtr< Scantable > out = getScantable(in, true);
3052  setInsitu(insitu);
3053  Table& tout = out->table();
3054  std::string taql = "SELECT FROM $1 WHERE BEAMNO != REFBEAMNO";
3055  if (scantype == "on") {
3056    taql = "SELECT FROM $1 WHERE BEAMNO == REFBEAMNO";
3057  }
3058  Table tab = tableCommand(taql, in->table());
3059  TableCopy::copyRows(tout, tab);
3060  if (scantype == "on") {
3061    // re-index SCANNO to 0
3062    TableVector<uInt> vec(tout, "SCANNO");
3063    vec = 0;
3064  }
3065  return out;
3066}
3067
3068std::vector<float>
3069  asap::STMath::fft( const casa::CountedPtr< Scantable > & in,
3070                     const std::vector<int>& whichrow,
3071                     bool getRealImag )
3072{
3073  std::vector<float> res;
3074  Table tab = in->table();
3075  std::vector<bool> mask;
3076
3077  if (whichrow.size() < 1) {          // for all rows (by default)
3078    int nrow = int(tab.nrow());
3079    for (int i = 0; i < nrow; ++i) {
3080      res = in->execFFT(i, mask, getRealImag);
3081    }
3082  } else {                           // for specified rows
3083    for (uInt i = 0; i < whichrow.size(); ++i) {
3084      res = in->execFFT(i, mask, getRealImag);
3085    }
3086  }
3087
3088  return res;
3089}
3090
3091
3092CountedPtr<Scantable>
3093  asap::STMath::lagFlag( const CountedPtr<Scantable>& in,
3094                         double start, double end,
3095                         const std::string& mode )
3096{
3097  CountedPtr<Scantable> out = getScantable(in, false);
3098  Table& tout = out->table();
3099  TableIterator iter(tout, "FREQ_ID");
3100  FFTServer<Float,Complex> ffts;
3101
3102  while ( !iter.pastEnd() ) {
3103    Table tab = iter.table();
3104    Double rp,rv,inc;
3105    ROTableRow row(tab);
3106    const TableRecord& rec = row.get(0);
3107    uInt freqid = rec.asuInt("FREQ_ID");
3108    out->frequencies().getEntry(rp, rv, inc, freqid);
3109    ArrayColumn<Float> specCol(tab, "SPECTRA");
3110    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
3111
3112    for (int i=0; i<int(tab.nrow()); ++i) {
3113      Vector<Float> spec = specCol(i);
3114      Vector<uChar> flag = flagCol(i);
3115      std::vector<bool> mask;
3116      for (uInt j = 0; j < flag.nelements(); ++j) {
3117        mask.push_back(!(flag[j]>0));
3118      }
3119      mathutil::doZeroOrderInterpolation(spec, mask);
3120
3121      Vector<Complex> lags;
3122      ffts.fft0(lags, spec);
3123
3124      Int lag0(start+0.5);
3125      Int lag1(end+0.5);
3126      if (mode == "frequency") {
3127        lag0 = Int(spec.nelements()*abs(inc)/(start)+0.5);
3128        lag1 = Int(spec.nelements()*abs(inc)/(end)+0.5);
3129      }
3130      Int lstart =  max(0, lag0);
3131      Int lend   =  min(Int(lags.nelements()-1), lag1);
3132      if (lstart == lend) {
3133        lags[lstart] = Complex(0.0);
3134      } else {
3135        if (lstart > lend) {
3136          Int tmp = lend;
3137          lend = lstart;
3138          lstart = tmp;
3139        }
3140        for (int j=lstart; j <=lend ;++j) {
3141          lags[j] = Complex(0.0);
3142        }
3143      }
3144
3145      ffts.fft0(spec, lags);
3146
3147      specCol.put(i, spec);
3148    }
3149    ++iter;
3150  }
3151  return out;
3152}
3153
3154// Averaging spectra with different channel/resolution
3155CountedPtr<Scantable>
3156STMath::new_average( const std::vector<CountedPtr<Scantable> >& in,
3157                     const bool& compel,
3158                     const std::vector<bool>& mask,
3159                     const std::string& weight,
3160                     const std::string& avmode )
3161  throw ( casa::AipsError )
3162{
3163  LogIO os( LogOrigin( "STMath", "new_average()", WHERE ) ) ;
3164  if ( avmode == "SCAN" && in.size() != 1 )
3165    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
3166                    "Use merge first."));
3167 
3168  CountedPtr<Scantable> out ;     // processed result
3169  if ( compel ) {
3170    std::vector< CountedPtr<Scantable> > newin ; // input for average process
3171    uInt insize = in.size() ;    // number of input scantables
3172
3173    // setup newin
3174    bool oldInsitu = insitu_ ;
3175    setInsitu( false ) ;
3176    newin.resize( insize ) ;
3177    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3178      newin[itable] = getScantable( in[itable], false ) ;
3179    }
3180    setInsitu( oldInsitu ) ;
3181
3182    // warning
3183    os << "Average spectra with different spectral resolution" << LogIO::POST ;
3184
3185    // temporarily set coordinfo
3186    vector<string> oldinfo( insize ) ;
3187    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3188      vector<string> coordinfo = in[itable]->getCoordInfo() ;
3189      oldinfo[itable] = coordinfo[0] ;
3190      coordinfo[0] = "Hz" ;
3191      newin[itable]->setCoordInfo( coordinfo ) ;
3192    }
3193
3194    ostringstream oss ;
3195
3196    // check IF frequency coverage
3197    // freqid: list of FREQ_ID, which is used, in each table 
3198    // iffreq: list of minimum and maximum frequency for each FREQ_ID in
3199    //         each table
3200    // freqid[insize][numIF]
3201    // freqid: [[id00, id01, ...],
3202    //          [id10, id11, ...],
3203    //          ...
3204    //          [idn0, idn1, ...]]
3205    // iffreq[insize][numIF*2]
3206    // iffreq: [[min_id00, max_id00, min_id01, max_id01, ...],
3207    //          [min_id10, max_id10, min_id11, max_id11, ...],
3208    //          ...
3209    //          [min_idn0, max_idn0, min_idn1, max_idn1, ...]]
3210    //os << "Check IF settings in each table" << LogIO::POST ;
3211    vector< vector<uInt> > freqid( insize );
3212    vector< vector<double> > iffreq( insize ) ;
3213    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3214      Vector<uInt> freqIds = newin[itable]->mfreqidCol_.getColumn() ;
3215      vector<uInt> uniqueFreqId = newin[itable]->getNumbers(newin[itable]->mfreqidCol_) ;
3216      for ( vector<uInt>::iterator i = uniqueFreqId.begin() ;
3217            i != uniqueFreqId.end() ; i++ ) {
3218        //os << "itable = " << itable << ": IF " << id << " is included in the list" << LogIO::POST ;
3219        uInt target = 0 ;
3220        while ( freqIds[target] != *i )
3221          target++ ;
3222        vector<double> abcissa = newin[itable]->getAbcissa( target ) ;
3223        freqid[itable].push_back( *i ) ;
3224        double incr = abs( abcissa[1] - abcissa[0] ) ;
3225        iffreq[itable].push_back( (*min_element(abcissa.begin(),abcissa.end()))-0.5*incr ) ;
3226        iffreq[itable].push_back( (*max_element(abcissa.begin(),abcissa.end()))+0.5*incr ) ;
3227      }
3228    }
3229
3230    // debug
3231//     os << "IF settings summary:" << endl ;
3232//     for ( uInt i = 0 ; i < freqid.size() ; i++ ) {
3233//       os << "   Table" << i << endl ;
3234//       for ( uInt j = 0 ; j < freqid[i].size() ; j++ ) {
3235//         os << "      id = " << freqid[i][j] << " (min,max) = (" << iffreq[i][2*j] << "," << iffreq[i][2*j+1] << ")" << endl ;
3236//       }
3237//     }
3238//     os << endl ;
3239//     os.post() ;
3240
3241    // IF grouping based on their frequency coverage
3242    // ifgrp: number of member in each IF group
3243    // ifgrp[numgrp]
3244    // ifgrp: [n0, n1, ...]
3245    //os << "IF grouping based on their frequency coverage" << LogIO::POST ;
3246
3247    // parameter for IF grouping
3248    // groupmode = OR    retrieve all region
3249    //             AND   only retrieve overlaped region
3250    //string groupmode = "AND" ;
3251    string groupmode = "OR" ;
3252    uInt sizecr = 0 ;
3253    if ( groupmode == "AND" )
3254      sizecr = 1 ;
3255    else if ( groupmode == "OR" )
3256      sizecr = 0 ;
3257
3258    vector<double> sortedfreq ;
3259    for ( uInt i = 0 ; i < iffreq.size() ; i++ ) {
3260      for ( uInt j = 0 ; j < iffreq[i].size() ; j++ ) {
3261        if ( count( sortedfreq.begin(), sortedfreq.end(), iffreq[i][j] ) == 0 )
3262          sortedfreq.push_back( iffreq[i][j] ) ;
3263      }
3264    }
3265    sort( sortedfreq.begin(), sortedfreq.end() ) ;
3266    vector<uInt> ifgrp( sortedfreq.size()-1, 0 ) ;
3267    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3268      for ( uInt iif = 0 ; iif < freqid[itable].size() ; iif++ ) {
3269        double range0 = iffreq[itable][2*iif] ;
3270        double range1 = iffreq[itable][2*iif+1] ;
3271        for ( uInt j = 0 ; j < sortedfreq.size()-1 ; j++ ) {
3272          double fmin = max( range0, sortedfreq[j] ) ;
3273          double fmax = min( range1, sortedfreq[j+1] ) ;
3274          if ( fmin < fmax ) {
3275            ifgrp[j]++ ;
3276          }
3277        }
3278      }
3279    }
3280
3281    // Grouping continuous IF groups (without frequency gap)
3282    // freqgrp: list of IF group indexes in each frequency group
3283    // freqgrp[numgrp][nummember]
3284    // freqgrp: [[ifgrp00, ifgrp01, ifgrp02, ...],
3285    //           [ifgrp10, ifgrp11, ifgrp12, ...],
3286    //           ...
3287    //           [ifgrpn0, ifgrpn1, ifgrpn2, ...]]
3288    // grprange[2*numgrp]
3289    // grprange: [fmin0,fmax0,fmin1,fmax1,...]
3290    vector< vector<uInt> > freqgrp ;
3291    vector<double> grprange ;
3292    vector<uInt> grpedge ;
3293    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3294      if ( ifgrp[igrp] <= sizecr ) {
3295        grpedge.push_back( igrp ) ;
3296      }
3297    }
3298    grpedge.push_back( ifgrp.size() ) ;
3299    uInt itmp = 0 ;
3300    for ( uInt i = 0 ; i < grpedge.size() ; i++ ) {
3301      int n = grpedge[i] - itmp ;
3302      if ( n > 0 ) {
3303        vector<uInt> members( n ) ;
3304        for ( int j = 0 ; j < n ; j++ ) {
3305          members[j] = itmp+j ;
3306        }
3307        freqgrp.push_back( members ) ;
3308        grprange.push_back( sortedfreq[itmp] ) ;
3309        grprange.push_back( sortedfreq[grpedge[i]] ) ;
3310      }
3311      itmp += n + 1 ;
3312    }
3313
3314    // print frequency group
3315    oss.str("") ;
3316    oss << "Frequency Group summary: " << endl ;
3317    oss << "   GROUP_ID: [FREQ_MIN, FREQ_MAX]" << endl ;
3318    for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3319      oss << "   GROUP " << setw( 2 ) << i << ": [" << grprange[2*i] << "," << grprange[2*i+1] << "]" ;
3320      oss << endl ;
3321    }
3322    oss << endl ;
3323    os << oss.str() << LogIO::POST ;
3324
3325    // groups: list of frequency group index whose frequency range overlaps
3326    //         with that of each table and IF
3327    // groups[numtable][numIF]
3328    // groups: [[grpx, grpy,...],
3329    //          [grpa, grpb,...],
3330    //          ...
3331    //          [grpk, grpm,...]]
3332    vector< vector<uInt> > groups( insize ) ;
3333    for ( uInt i = 0 ; i < insize ; i++ ) {
3334      groups[i].resize( freqid[i].size() ) ;
3335    }
3336    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3337      for ( uInt ifreq = 0 ; ifreq < freqid[itable].size() ; ifreq++ ) {
3338        double minf = iffreq[itable][2*ifreq] ;
3339        uInt groupid ;
3340        for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3341          vector<uInt> memberlist = freqgrp[igrp] ;
3342          if ( (minf >= grprange[2*igrp]) && (minf <= grprange[2*igrp+1]) ) {
3343            groupid = igrp ;
3344            break ;
3345          }
3346        }
3347        groups[itable][ifreq] = groupid ;
3348      }
3349    }
3350                                                         
3351
3352    // print membership
3353    oss.str("") ;
3354    for ( uInt i = 0 ; i < insize ; i++ ) {
3355      oss << "Table " << i << endl ;
3356      for ( uInt j = 0 ; j < groups[i].size() ; j++ ) {
3357        oss << "   FREQ_ID " <<  setw( 2 ) << freqid[i][j] << ": " ;
3358        oss << setw( 2 ) << groups[i][j] ;
3359        oss << endl ;
3360      }
3361    }
3362    os << oss.str() << LogIO::POST ;
3363
3364    // reset SCANNO and IFNO/FREQ_ID: IF is reset by the result of sortation
3365    //os << "All IF number is set to IF group index" << LogIO::POST ;
3366    // reset SCANNO only when avmode != "SCAN"
3367    if ( avmode != "SCAN" ) {
3368      os << "All scan number is set to 0" << LogIO::POST ;
3369      for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3370        uInt nrow = newin[itable]->nrow() ;
3371        Vector<uInt> resetScan( nrow, 0 ) ;
3372        newin[itable]->scanCol_.putColumn( resetScan ) ;
3373      }
3374    }
3375
3376    // reset spectra and flagtra: align spectral resolution
3377    //os << "Align spectral resolution" << LogIO::POST ;
3378    // gmaxdnu: the coarsest frequency resolution in the frequency group
3379    // gminfreq: lower frequency edge of the frequency group
3380    // gnchan: number of channels for the frequency group
3381    vector<double> gmaxdnu( freqgrp.size(), 0.0 ) ;
3382    vector<double> gminfreq( freqgrp.size() ) ;
3383    vector<double> gnchan( freqgrp.size() ) ;
3384    for ( uInt i = 0 ; i < insize ; i++ ) {
3385      vector<uInt> members = groups[i] ;
3386      for ( uInt j = 0 ; j < members.size() ; j++ ) {
3387        uInt groupid = members[j] ;
3388        Double rp,rv,ic ;
3389        newin[i]->frequencies().getEntry( rp, rv, ic, j ) ;
3390        if ( abs(ic) > abs(gmaxdnu[groupid]) )
3391          gmaxdnu[groupid] = ic ;
3392      }
3393    }
3394    for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3395      gminfreq[igrp] = grprange[2*igrp] ;
3396      double maxfreq = grprange[2*igrp+1] ;
3397      gnchan[igrp] = (int)(abs((maxfreq-gminfreq[igrp])/gmaxdnu[igrp])+0.9) ;
3398    }
3399     
3400    // regrid spectral data and update frequency info
3401    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3402      Vector<uInt> oldFreqId = newin[itable]->mfreqidCol_.getColumn() ;
3403      Vector<uInt> newFreqId( oldFreqId.nelements() ) ;
3404
3405      // update MAIN
3406      for ( uInt irow = 0 ; irow < newin[itable]->nrow() ; irow++ ) {
3407        uInt groupid = groups[itable][oldFreqId[irow]] ;
3408        newFreqId[irow] = groupid ;
3409        newin[itable]->regridChannel( gnchan[groupid],
3410                                      gmaxdnu[groupid],
3411                                      gminfreq[groupid],
3412                                      irow ) ;
3413      }
3414      newin[itable]->mfreqidCol_.putColumn( newFreqId ) ;
3415      newin[itable]->ifCol_.putColumn( newFreqId ) ;
3416
3417      // update FREQUENCIES
3418      Table tab = newin[itable]->frequencies().table() ;
3419      ScalarColumn<uInt> fIdCol( tab, "ID" ) ;
3420      ScalarColumn<Double> fRefPixCol( tab, "REFPIX" ) ;
3421      ScalarColumn<Double> fRefValCol( tab, "REFVAL" ) ;
3422      ScalarColumn<Double> fIncrCol( tab, "INCREMENT" ) ;
3423      if ( freqgrp.size() > tab.nrow() ) {
3424        tab.addRow( freqgrp.size()-tab.nrow() ) ;
3425      }
3426      for ( uInt irow = 0 ; irow < freqgrp.size() ; irow++ ) {
3427        Double refval = gminfreq[irow] + 0.5 * abs(gmaxdnu[irow]) ;
3428        Double refpix = (gmaxdnu[irow] > 0.0) ? 0 : gnchan[irow]-1 ;
3429        Double increment = gmaxdnu[irow] ;
3430        fIdCol.put( irow, irow ) ;
3431        fRefPixCol.put( irow, refpix ) ;
3432        fRefValCol.put( irow, refval ) ;
3433        fIncrCol.put( irow, increment ) ;
3434      }
3435    }
3436
3437    // set back coordinfo
3438    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3439      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3440      coordinfo[0] = oldinfo[itable] ;
3441      newin[itable]->setCoordInfo( coordinfo ) ;
3442    }
3443
3444    // average
3445    out = average( newin, mask, weight, avmode ) ;
3446  }
3447  else {
3448    // simple average
3449    out =  average( in, mask, weight, avmode ) ;
3450  }
3451 
3452  return out;
3453}
3454
3455CountedPtr<Scantable> STMath::cwcal( const CountedPtr<Scantable>& s,
3456                                     const String calmode,
3457                                     const String antname )
3458{
3459  // frequency switch
3460  if ( calmode == "fs" ) {
3461    return cwcalfs( s, antname ) ;
3462  }
3463  else {
3464    vector<bool> masks = s->getMask( 0 ) ;
3465    vector<int> types ;
3466
3467    // save original table selection
3468    Table torg  = s->table_ ;
3469
3470    // sky scan
3471    bool insitu = insitu_ ;
3472    insitu_ = false ;
3473    // share calibration scans before average with out
3474    CountedPtr<Scantable> out = getScantable( s, true ) ;
3475    insitu_ = insitu ;
3476    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::SKY ) ;
3477    out->attach() ;
3478    CountedPtr<Scantable> asky = averageWithinSession( out,
3479                                                       masks,
3480                                                       "TINT" ) ;
3481    // hot scan
3482    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::HOT ) ;
3483    out->attach() ;
3484    CountedPtr<Scantable> ahot = averageWithinSession( out,
3485                                                       masks,
3486                                                       "TINT" ) ;
3487    // cold scan
3488    CountedPtr<Scantable> acold ;
3489//     out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::COLD ) ;
3490//     out->attach() ;
3491//     CountedPtr<Scantable> acold = averageWithinSession( out,
3492//                                                         masks,
3493//                                                         "TINT" ) ;
3494
3495    // off scan
3496    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSOFF ) ;
3497    out->attach() ;
3498    CountedPtr<Scantable> aoff = averageWithinSession( out,
3499                                                       masks,
3500                                                       "TINT" ) ;
3501   
3502    // on scan
3503    s->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSON ) ;
3504    s->attach() ;
3505    out->table_ = out->originalTable_ ;
3506    out->attach() ;
3507    out->table().addRow( s->nrow() ) ;
3508    copyRows( out->table(), s->table(), 0, 0, s->nrow(), False, True, False ) ;
3509   
3510    // process each on scan
3511    STSelector sel ;
3512    vector<string> cols( 3 ) ;
3513    cols[0] = "BEAMNO" ;
3514    cols[1] = "POLNO" ;
3515    cols[2] = "IFNO" ;
3516    STIdxIter *iter = new STIdxIterAcc( out, cols ) ;
3517    while ( !iter->pastEnd() ) {
3518      Vector<uInt> ids = iter->current() ;
3519      stringstream ss ;
3520      ss << "SELECT FROM $1 WHERE "
3521         << "BEAMNO==" << ids[0] << "&&"
3522         << "POLNO==" << ids[1] << "&&"
3523         << "IFNO==" << ids[2] ;
3524      //cout << "TaQL string: " << ss.str() << endl ;
3525      sel.setTaQL( ss.str() ) ;
3526      aoff->setSelection( sel ) ;
3527      ahot->setSelection( sel ) ;
3528      asky->setSelection( sel ) ;
3529      Vector<uInt> rows = iter->getRows( SHARE ) ;
3530      // out should be an exact copy of s except that SPECTRA column is empty
3531      calibrateCW( out, s, aoff, asky, ahot, acold, rows, antname ) ;
3532      aoff->unsetSelection() ;
3533      ahot->unsetSelection() ;
3534      asky->unsetSelection() ;
3535      sel.reset() ;
3536      iter->next() ;
3537    }
3538    delete iter ;
3539    s->table_ = torg ;
3540    s->attach() ;
3541
3542    // flux unit
3543    out->setFluxUnit( "K" ) ;
3544
3545    return out ;
3546  }
3547}
3548 
3549CountedPtr<Scantable> STMath::almacal( const CountedPtr<Scantable>& s,
3550                                       const String calmode )
3551{
3552  // frequency switch
3553  if ( calmode == "fs" ) {
3554    return almacalfs( s ) ;
3555  }
3556  else {
3557//     double t0, t1 ;
3558//     t0 = mathutil::gettimeofday_sec() ;
3559    vector<bool> masks = s->getMask( 0 ) ;
3560
3561    // save original table selection
3562    Table torg = s->table_ ;
3563
3564    // off scan
3565    // TODO 2010/01/08 TN
3566    // Grouping by time should be needed before averaging.
3567    // Each group must have own unique SCANNO (should be renumbered).
3568    // See PIPELINE/SDCalibration.py
3569    bool insitu = insitu_ ;
3570    insitu_ = false ;
3571    // share off scan before average with out
3572    CountedPtr<Scantable> out = getScantable( s, true ) ;
3573    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSOFF ) ;
3574    out->attach() ;
3575    insitu_ = insitu ;
3576    CountedPtr<Scantable> aoff = averageWithinSession( out,
3577                                                       masks,
3578                                                       "TINT" ) ;
3579
3580    // on scan
3581//     t0 = mathutil::gettimeofday_sec() ;
3582    s->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSON ) ;
3583    s->attach() ;
3584    out->table_ = out->originalTable_ ;
3585    out->attach() ;
3586    out->table().addRow( s->nrow() ) ;
3587    copyRows( out->table(), s->table(), 0, 0, s->nrow(), False ) ;
3588//     t1 = mathutil::gettimeofday_sec() ;
3589//     cout << "elapsed time for preparing output table: " << t1-t0 << " sec" << endl ;
3590
3591    // process each on scan
3592//     t0 = mathutil::gettimeofday_sec() ;
3593
3594    // using STIdxIterAcc
3595    vector<string> cols( 3 ) ;
3596    cols[0] = "BEAMNO" ;
3597    cols[1] = "POLNO" ;
3598    cols[2] = "IFNO" ;
3599    STIdxIter *iter = new STIdxIterAcc( out, cols ) ;
3600    STSelector sel ;
3601    while ( !iter->pastEnd() ) {
3602      Vector<uInt> ids = iter->current() ;
3603      stringstream ss ;
3604      ss << "SELECT FROM $1 WHERE "
3605         << "BEAMNO==" << ids[0] << "&&"
3606         << "POLNO==" << ids[1] << "&&"
3607         << "IFNO==" << ids[2] ;
3608      //cout << "TaQL string: " << ss.str() << endl ;
3609      sel.setTaQL( ss.str() ) ;
3610      aoff->setSelection( sel ) ;
3611      Vector<uInt> rows = iter->getRows( SHARE ) ;
3612      // out should be an exact copy of s except that SPECTRA column is empty
3613      calibrateALMA( out, s, aoff, rows ) ;
3614      aoff->unsetSelection() ;
3615      sel.reset() ;
3616      iter->next() ;
3617    }
3618    delete iter ;
3619    s->table_ = torg ;
3620    s->attach() ;
3621
3622//     t1 = mathutil::gettimeofday_sec() ;
3623//     cout << "elapsed time for calibration: " << t1-t0 << " sec" << endl ;
3624
3625    // flux unit
3626    out->setFluxUnit( "K" ) ;
3627
3628    return out ;
3629  }
3630}
3631
3632CountedPtr<Scantable> STMath::cwcalfs( const CountedPtr<Scantable>& s,
3633                                       const String antname )
3634{
3635  vector<int> types ;
3636
3637  // APEX calibration mode
3638  int apexcalmode = 1 ;
3639 
3640  if ( antname.find( "APEX" ) != string::npos ) {
3641    // check if off scan exists or not
3642    STSelector sel = STSelector() ;
3643    //sel.setName( offstr1 ) ;
3644    types.push_back( SrcType::FLOOFF ) ;
3645    sel.setTypes( types ) ;
3646    try {
3647      s->setSelection( sel ) ;
3648    }
3649    catch ( AipsError &e ) {
3650      apexcalmode = 0 ;
3651    }
3652    sel.reset() ;
3653  }
3654  s->unsetSelection() ;
3655  types.clear() ;
3656
3657  vector<bool> masks = s->getMask( 0 ) ;
3658  CountedPtr<Scantable> ssig, sref ;
3659  //CountedPtr<Scantable> out ;
3660  bool insitu = insitu_ ;
3661  insitu_ = False ;
3662  CountedPtr<Scantable> out = getScantable( s, true ) ;
3663  insitu_ = insitu ;
3664
3665  if ( antname.find( "APEX" ) != string::npos ) {
3666    // APEX calibration
3667    // sky scan
3668    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FLOSKY ) ;
3669    out->attach() ;
3670    CountedPtr<Scantable> askylo = averageWithinSession( out,
3671                                                         masks,
3672                                                         "TINT" ) ;
3673    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FHISKY ) ;
3674    out->attach() ;
3675    CountedPtr<Scantable> askyhi = averageWithinSession( out,
3676                                                         masks,
3677                                                         "TINT" ) ;
3678   
3679    // hot scan
3680    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FLOHOT ) ;
3681    out->attach() ;
3682    CountedPtr<Scantable> ahotlo = averageWithinSession( out,
3683                                                         masks,
3684                                                         "TINT" ) ;
3685    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FHIHOT ) ;
3686    out->attach() ;
3687    CountedPtr<Scantable> ahothi = averageWithinSession( out,
3688                                                         masks,
3689                                                         "TINT" ) ;
3690   
3691    // cold scan
3692    CountedPtr<Scantable> acoldlo, acoldhi ;
3693//     out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FLOCOLD ) ;
3694//     out->attach() ;
3695//     CountedPtr<Scantable> acoldlo = averageWithinSession( out,
3696//                                                           masks,
3697//                                                           "TINT" ) ;
3698//     out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FHICOLD ) ;
3699//     out->attach() ;
3700//     CountedPtr<Scantable> acoldhi = averageWithinSession( out,
3701//                                                           masks,
3702//                                                           "TINT" ) ;
3703
3704    // ref scan
3705    insitu_ = false ;
3706    sref = getScantable( s, true ) ;
3707    CountedPtr<Scantable> rref = getScantable( s, true ) ;
3708    insitu_ = insitu ;
3709    rref->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FSLO ) ;
3710    rref->attach() ;
3711    copyRows( sref->table_, rref->table_, 0, 0, rref->nrow(), False, True, False ) ;
3712   
3713    // sig scan
3714    insitu_ = false ;
3715    ssig = getScantable( s, true ) ;
3716    CountedPtr<Scantable> rsig = getScantable( s, true ) ;
3717    insitu_ = insitu ;
3718    rsig->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FSHI ) ;
3719    rsig->attach() ;
3720    copyRows( ssig->table_, rsig->table_, 0, 0, rsig->nrow(), False, True, False ) ;
3721         
3722    if ( apexcalmode == 0 ) {
3723      // using STIdxIterAcc
3724      vector<string> cols( 3 ) ;
3725      cols[0] = "BEAMNO" ;
3726      cols[1] = "POLNO" ;
3727      cols[2] = "IFNO" ;
3728      STIdxIter *iter = new STIdxIterAcc( ssig, cols ) ;
3729      STSelector sel ;
3730      vector< CountedPtr<Scantable> > on( 2 ) ;
3731      on[0] = rsig ;
3732      on[1] = rref ;
3733      vector< CountedPtr<Scantable> > sky( 2 ) ;
3734      sky[0] = askylo ;
3735      sky[1] = askyhi ;
3736      vector< CountedPtr<Scantable> > hot( 2 ) ;
3737      hot[0] = ahotlo ;
3738      hot[1] = ahothi ;
3739      vector< CountedPtr<Scantable> > cold( 2 ) ;
3740      while ( !iter->pastEnd() ) {
3741        Vector<uInt> ids = iter->current() ;
3742        stringstream ss ;
3743        ss << "SELECT FROM $1 WHERE "
3744           << "BEAMNO==" << ids[0] << "&&"
3745           << "POLNO==" << ids[1] << "&&"
3746           << "IFNO==" << ids[2] ;
3747        //cout << "TaQL string: " << ss.str() << endl ;
3748        sel.setTaQL( ss.str() ) ;
3749        sky[0]->setSelection( sel ) ;
3750        sky[1]->setSelection( sel ) ;
3751        hot[0]->setSelection( sel ) ;
3752        hot[1]->setSelection( sel ) ;
3753        Vector<uInt> rows = iter->getRows( SHARE ) ;
3754        calibrateAPEXFS( ssig, sref, on, sky, hot, cold, rows ) ;
3755        sky[0]->unsetSelection() ;
3756        sky[1]->unsetSelection() ;
3757        hot[0]->unsetSelection() ;
3758        hot[1]->unsetSelection() ;
3759        sel.reset() ;
3760        iter->next() ;
3761      }
3762      delete iter ;
3763
3764    }
3765    else if ( apexcalmode == 1 ) {
3766      // APEX fs data with off scan
3767      // off scan
3768      out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FLOOFF ) ;
3769      out->attach() ;
3770      CountedPtr<Scantable> aofflo = averageWithinSession( out,
3771                                                           masks,
3772                                                           "TINT" ) ;
3773      out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FHIOFF ) ;
3774      out->attach() ;
3775      CountedPtr<Scantable> aoffhi = averageWithinSession( out,
3776                                                           masks,
3777                                                           "TINT" ) ;
3778     
3779      // process each sig and ref scan
3780//       STSelector sel ;
3781      vector<string> cols( 3 ) ;
3782      cols[0] = "BEAMNO" ;
3783      cols[1] = "POLNO" ;
3784      cols[2] = "IFNO" ;
3785      STIdxIter *iter = new STIdxIterAcc( ssig, cols ) ;
3786      STSelector sel ;
3787      while ( !iter->pastEnd() ) {
3788        Vector<uInt> ids = iter->current() ;
3789        stringstream ss ;
3790        ss << "SELECT FROM $1 WHERE "
3791           << "BEAMNO==" << ids[0] << "&&"
3792           << "POLNO==" << ids[1] << "&&"
3793           << "IFNO==" << ids[2] ;
3794        //cout << "TaQL string: " << ss.str() << endl ;
3795        sel.setTaQL( ss.str() ) ;
3796        aofflo->setSelection( sel ) ;
3797        ahotlo->setSelection( sel ) ;
3798        askylo->setSelection( sel ) ;
3799        Vector<uInt> rows = iter->getRows( SHARE ) ;
3800        calibrateCW( ssig, rsig, aofflo, askylo, ahotlo, acoldlo, rows, antname ) ;
3801        aofflo->unsetSelection() ;
3802        ahotlo->unsetSelection() ;
3803        askylo->unsetSelection() ;
3804        sel.reset() ;
3805        iter->next() ;
3806      }
3807      delete iter ;
3808      iter = new STIdxIterAcc( sref, cols ) ;
3809      while ( !iter->pastEnd() ) {
3810        Vector<uInt> ids = iter->current() ;
3811        stringstream ss ;
3812        ss << "SELECT FROM $1 WHERE "
3813           << "BEAMNO==" << ids[0] << "&&"
3814           << "POLNO==" << ids[1] << "&&"
3815           << "IFNO==" << ids[2] ;
3816        //cout << "TaQL string: " << ss.str() << endl ;
3817        sel.setTaQL( ss.str() ) ;
3818        aoffhi->setSelection( sel ) ;
3819        ahothi->setSelection( sel ) ;
3820        askyhi->setSelection( sel ) ;
3821        Vector<uInt> rows = iter->getRows( SHARE ) ;
3822        calibrateCW( sref, rref, aoffhi, askyhi, ahothi, acoldhi, rows, antname ) ;
3823        aoffhi->unsetSelection() ;
3824        ahothi->unsetSelection() ;
3825        askyhi->unsetSelection() ;
3826        sel.reset() ;
3827        iter->next() ;
3828      }
3829      delete iter ;
3830    }
3831  }
3832  else {
3833    // non-APEX fs data
3834    // sky scan
3835    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::SKY ) ;
3836    out->attach() ;
3837    CountedPtr<Scantable> asky = averageWithinSession( out,
3838                                                       masks,
3839                                                       "TINT" ) ;
3840    STSelector sel = STSelector() ;
3841
3842    // hot scan
3843    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::HOT ) ;
3844    out->attach() ;
3845    CountedPtr<Scantable> ahot = averageWithinSession( out,
3846                                                       masks,
3847                                                       "TINT" ) ;
3848
3849    // cold scan
3850    CountedPtr<Scantable> acold ;
3851//     out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::COLD ) ;
3852//     out->attach() ;
3853//     CountedPtr<Scantable> acold = averageWithinSession( out,
3854//                                                         masks,
3855//                                                         "TINT" ) ;
3856   
3857    // ref scan
3858    bool insitu = insitu_ ;
3859    insitu_ = false ;
3860    sref = getScantable( s, true ) ;
3861    CountedPtr<Scantable> rref = getScantable( s, true ) ;
3862    insitu_ = insitu ;
3863    rref->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSOFF ) ;
3864    rref->attach() ;
3865    copyRows( sref->table_, rref->table_, 0, 0, rref->nrow(), False, True, False ) ;
3866   
3867    // sig scan
3868    insitu_ = false ;
3869    ssig = getScantable( s, true ) ;
3870    CountedPtr<Scantable> rsig = getScantable( s, true ) ;
3871    insitu_ = insitu ;
3872    rsig->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSON ) ;
3873    rsig->attach() ;
3874    copyRows( ssig->table_, rsig->table_, 0, 0, rsig->nrow(), False, True, False ) ;
3875
3876    // process each sig and ref scan
3877    vector<string> cols( 3 ) ;
3878    cols[0] = "BEAMNO" ;
3879    cols[1] = "POLNO" ;
3880    cols[2] = "IFNO" ;
3881    STIdxIter *iter = new STIdxIterAcc( ssig, cols ) ;
3882    while ( !iter->pastEnd() ) {
3883      Vector<uInt> ids = iter->current() ;
3884      stringstream ss ;
3885      ss << "SELECT FROM $1 WHERE "
3886         << "BEAMNO==" << ids[0] << "&&"
3887         << "POLNO==" << ids[1] << "&&"
3888         << "IFNO==" << ids[2] ;
3889      //cout << "TaQL string: " << ss.str() << endl ;
3890      sel.setTaQL( ss.str() ) ;
3891      ahot->setSelection( sel ) ;
3892      asky->setSelection( sel ) ;
3893      Vector<uInt> rows = iter->getRows( SHARE ) ;
3894      // out should be an exact copy of s except that SPECTRA column is empty
3895      calibrateFS( ssig, sref, rsig, rref, asky, ahot, acold, rows ) ;
3896      ahot->unsetSelection() ;
3897      asky->unsetSelection() ;
3898      sel.reset() ;
3899      iter->next() ;
3900    }
3901    delete iter ;
3902  }
3903
3904  // do folding if necessary
3905  Table sigtab = ssig->table() ;
3906  Table reftab = sref->table() ;
3907  ScalarColumn<uInt> reffidCol ;
3908  Int nchan = (Int)ssig->nchan() ;
3909  reffidCol.attach( reftab, "FREQ_ID" ) ;
3910  Vector<uInt> sfids = ssig->mfreqidCol_.getColumn() ;
3911  Vector<uInt> rfids = sref->mfreqidCol_.getColumn() ;
3912  vector<uInt> sfids_unique ;
3913  vector<uInt> rfids_unique ;
3914  vector<uInt> sifno_unique ;
3915  vector<uInt> rifno_unique ;
3916  for ( uInt i = 0 ; i < sfids.nelements() ; i++ ) {
3917    if ( count( sfids_unique.begin(), sfids_unique.end(), sfids[i] ) == 0 ) {
3918      sfids_unique.push_back( sfids[i] ) ;
3919      sifno_unique.push_back( ssig->getIF( i ) ) ;
3920    }
3921    if ( count( rfids_unique.begin(), rfids_unique.end(),  rfids[i] ) == 0 ) {
3922      rfids_unique.push_back( rfids[i] ) ;
3923      rifno_unique.push_back( sref->getIF( i ) ) ;
3924    }
3925  }
3926  double refpix_sig, refval_sig, increment_sig ;
3927  double refpix_ref, refval_ref, increment_ref ;
3928  vector< CountedPtr<Scantable> > tmp( sfids_unique.size() ) ;
3929  for ( uInt i = 0 ; i < sfids_unique.size() ; i++ ) {
3930    ssig->frequencies().getEntry( refpix_sig, refval_sig, increment_sig, sfids_unique[i] ) ;
3931    sref->frequencies().getEntry( refpix_ref, refval_ref, increment_ref, rfids_unique[i] ) ;
3932    if ( refpix_sig == refpix_ref ) {
3933      double foffset = refval_ref - refval_sig ;
3934      int choffset = static_cast<int>(foffset/increment_sig) ;
3935      double doffset = foffset / increment_sig ;
3936      if ( abs(choffset) >= nchan ) {
3937        LogIO os( LogOrigin( "STMath", "cwcalfs", WHERE ) ) ;
3938        os << "FREQ_ID=[" << sfids_unique[i] << "," << rfids_unique[i] << "]: out-band frequency switching, no folding" << LogIO::POST ;
3939        os << "Just return signal data" << LogIO::POST ;
3940        //std::vector< CountedPtr<Scantable> > tabs ;
3941        //tabs.push_back( ssig ) ;
3942        //tabs.push_back( sref ) ;
3943        //out = merge( tabs ) ;
3944        tmp[i] = ssig ;
3945      }
3946      else {
3947        STSelector sel = STSelector() ;
3948        vector<int> v( 1, sifno_unique[i] ) ;
3949        sel.setIFs( v ) ;
3950        ssig->setSelection( sel ) ;
3951        sel.reset() ;
3952        v[0] = rifno_unique[i] ;
3953        sel.setIFs( v ) ;
3954        sref->setSelection( sel ) ;
3955        sel.reset() ;
3956        if ( antname.find( "APEX" ) != string::npos ) {
3957          tmp[i] = dofold( ssig, sref, 0.5*doffset, -0.5*doffset ) ;
3958          //tmp[i] = dofold( ssig, sref, doffset ) ;
3959        }
3960        else {
3961          tmp[i] = dofold( ssig, sref, doffset ) ;
3962        }
3963        ssig->unsetSelection() ;
3964        sref->unsetSelection() ;
3965      }
3966    }
3967  }
3968
3969  if ( tmp.size() > 1 ) {
3970    out = merge( tmp ) ;
3971  }
3972  else {
3973    out = tmp[0] ;
3974  }
3975
3976  // flux unit
3977  out->setFluxUnit( "K" ) ;
3978
3979  return out ;
3980}
3981
3982CountedPtr<Scantable> STMath::almacalfs( const CountedPtr<Scantable>& s )
3983{
3984  (void) s; //currently unused
3985  CountedPtr<Scantable> out ;
3986
3987  return out ;
3988}
3989
3990Vector<Float> STMath::getSpectrumFromTime( double reftime,
3991                                           const Vector<Double> &timeVec,
3992                                           const vector<int> &idx,
3993                                           const Matrix<Float>& spectra,
3994                                           string mode )
3995{
3996  LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
3997  Vector<Float> sp ;
3998  uInt ncol = spectra.ncolumn() ;
3999
4000  if ( ncol == 0 ) {
4001    os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4002    return sp ;
4003  }
4004  else if ( ncol == 1 ) {
4005    //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4006    sp.reference( spectra.column( 0 ) ) ;
4007    return sp ;
4008  }
4009  else {
4010    if ( mode == "before" ) {
4011      int id = -1 ;
4012      if ( idx[0] != -1 ) {
4013        id = idx[0] ;
4014      }
4015      else if ( idx[1] != -1 ) {
4016        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4017        id = idx[1] ;
4018      }
4019      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4020      sp.reference( spectra.column( id ) ) ;
4021    }
4022    else if ( mode == "after" ) {
4023      int id = -1 ;
4024      if ( idx[1] != -1 ) {
4025        id = idx[1] ;
4026      }
4027      else if ( idx[0] != -1 ) {
4028        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4029        id = idx[1] ;
4030      }
4031      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4032      sp.reference( spectra.column( id ) ) ;
4033    }
4034    else if ( mode == "nearest" ) {
4035      int id = -1 ;
4036      if ( idx[0] == -1 ) {
4037        id = idx[1] ;
4038      }
4039      else if ( idx[1] == -1 ) {
4040        id = idx[0] ;
4041      }
4042      else if ( idx[0] == idx[1] ) {
4043        id = idx[0] ;
4044      }
4045      else {
4046        double t0 = timeVec[idx[0]] ;
4047        double t1 = timeVec[idx[1]] ;
4048        double tref = reftime ;
4049        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4050          id = idx[1] ;
4051        }
4052        else {
4053          id = idx[0] ;
4054        }
4055      }
4056      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4057      sp.reference( spectra.column( id ) ) ;
4058    }
4059    else if ( mode == "linear" ) {
4060      if ( idx[0] == -1 ) {
4061        // use after
4062        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4063        int id = idx[1] ;
4064        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4065        sp.reference( spectra.column( id ) ) ;
4066      }
4067      else if ( idx[1] == -1 ) {
4068        // use before
4069        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4070        int id = idx[0] ;
4071        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4072        sp.reference( spectra.column( id ) ) ;
4073      }
4074      else if ( idx[0] == idx[1] ) {
4075        // use before
4076        //os << "No need to interporate." << LogIO::POST ;
4077        int id = idx[0] ;
4078        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4079        sp.reference( spectra.column( id ) ) ;
4080      }
4081      else {
4082        // do interpolation
4083        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4084        double t0 = timeVec[idx[0]] ;
4085        double t1 = timeVec[idx[1]] ;
4086        double tref = reftime ;
4087        sp = spectra.column( idx[0] ).copy() ;
4088        Vector<Float> sp1( spectra.column( idx[1] ) ) ;
4089        double tfactor = ( tref - t0 ) / ( t1 - t0 ) ;
4090        for ( unsigned int i = 0 ; i < sp.size() ; i++ ) {
4091          sp[i] = ( sp1[i] - sp[i] ) * tfactor + sp[i] ;
4092        }
4093      }
4094    }
4095    else {
4096      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4097    }
4098    return sp ;
4099  }
4100}
4101
4102vector<int> STMath::getRowIdFromTime( double reftime, const Vector<Double> &t )
4103{
4104//   double reft = reftime ;
4105  double dtmin = 1.0e100 ;
4106  double dtmax = -1.0e100 ;
4107//   vector<double> dt ;
4108  int just_before = -1 ;
4109  int just_after = -1 ;
4110  Vector<Double> dt = t - reftime ;
4111  for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
4112    if ( dt[i] > 0.0 ) {
4113      // after reftime
4114      if ( dt[i] < dtmin ) {
4115        just_after = i ;
4116        dtmin = dt[i] ;
4117      }
4118    }
4119    else if ( dt[i] < 0.0 ) {
4120      // before reftime
4121      if ( dt[i] > dtmax ) {
4122        just_before = i ;
4123        dtmax = dt[i] ;
4124      }
4125    }
4126    else {
4127      // just a reftime
4128      just_before = i ;
4129      just_after = i ;
4130      dtmax = 0 ;
4131      dtmin = 0 ;
4132      break ;
4133    }
4134  }
4135
4136  vector<int> v(2) ;
4137  v[0] = just_before ;
4138  v[1] = just_after ;
4139
4140  return v ;
4141}
4142
4143Vector<Float> STMath::getTcalFromTime( double reftime,
4144                                       const Vector<Double> &timeVec,
4145                                       const vector<int> &idx,
4146                                       const CountedPtr<Scantable>& s,
4147                                       string mode )
4148{
4149  LogIO os( LogOrigin( "STMath", "getTcalFromTime", WHERE ) ) ;
4150  STTcal tcalTable = s->tcal() ;
4151  String time ;
4152  Vector<Float> tcalval ;
4153  if ( s->nrow() == 0 ) {
4154    os << LogIO::SEVERE << "No row in the input scantable. Return empty tcal." << LogIO::POST ;
4155    return tcalval ;
4156  }
4157  else if ( s->nrow() == 1 ) {
4158    uInt tcalid = s->getTcalId( 0 ) ;
4159    //os << "use row " << 0 << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4160    tcalTable.getEntry( time, tcalval, tcalid ) ;
4161    return tcalval ;
4162  }
4163  else {
4164    if ( mode == "before" ) {
4165      int id = -1 ;
4166      if ( idx[0] != -1 ) {
4167        id = idx[0] ;
4168      }
4169      else if ( idx[1] != -1 ) {
4170        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4171        id = idx[1] ;
4172      }
4173      uInt tcalid = s->getTcalId( id ) ;
4174      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4175      tcalTable.getEntry( time, tcalval, tcalid ) ;
4176    }
4177    else if ( mode == "after" ) {
4178      int id = -1 ;
4179      if ( idx[1] != -1 ) {
4180        id = idx[1] ;
4181      }
4182      else if ( idx[0] != -1 ) {
4183        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4184        id = idx[1] ;
4185      }
4186      uInt tcalid = s->getTcalId( id ) ;
4187      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4188      tcalTable.getEntry( time, tcalval, tcalid ) ;
4189    }
4190    else if ( mode == "nearest" ) {
4191      int id = -1 ;
4192      if ( idx[0] == -1 ) {
4193        id = idx[1] ;
4194      }
4195      else if ( idx[1] == -1 ) {
4196        id = idx[0] ;
4197      }
4198      else if ( idx[0] == idx[1] ) {
4199        id = idx[0] ;
4200      }
4201      else {
4202        double t0 = timeVec[idx[0]] ;
4203        double t1 = timeVec[idx[1]] ;
4204        if ( abs( t0 - reftime ) > abs( t1 - reftime ) ) {
4205          id = idx[1] ;
4206        }
4207        else {
4208          id = idx[0] ;
4209        }
4210      }
4211      uInt tcalid = s->getTcalId( id ) ;
4212      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4213      tcalTable.getEntry( time, tcalval, tcalid ) ;
4214    }
4215    else if ( mode == "linear" ) {
4216      if ( idx[0] == -1 ) {
4217        // use after
4218        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4219        int id = idx[1] ;
4220        uInt tcalid = s->getTcalId( id ) ;
4221        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4222        tcalTable.getEntry( time, tcalval, tcalid ) ;
4223      }
4224      else if ( idx[1] == -1 ) {
4225        // use before
4226        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4227        int id = idx[0] ;
4228        uInt tcalid = s->getTcalId( id ) ;
4229        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4230        tcalTable.getEntry( time, tcalval, tcalid ) ;
4231      }
4232      else if ( idx[0] == idx[1] ) {
4233        // use before
4234        //os << "No need to interporate." << LogIO::POST ;
4235        int id = idx[0] ;
4236        uInt tcalid = s->getTcalId( id ) ;
4237        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4238        tcalTable.getEntry( time, tcalval, tcalid ) ;
4239      }
4240      else {
4241        // do interpolation
4242        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4243        double t0 = timeVec[idx[0]] ;
4244        double t1 = timeVec[idx[1]] ;
4245        Vector<Float> tcal0 ;
4246        uInt tcalid0 = s->getTcalId( idx[0] ) ;
4247        uInt tcalid1 = s->getTcalId( idx[1] ) ;
4248        tcalTable.getEntry( time, tcal0, tcalid0 ) ;
4249        tcalTable.getEntry( time, tcalval, tcalid1 ) ;
4250        double tfactor = (reftime - t0) / (t1 - t0) ;
4251        for ( unsigned int i = 0 ; i < tcal0.size() ; i++ ) {
4252          tcalval[i] = ( tcalval[i] - tcal0[i] ) * tfactor + tcal0[i] ;
4253        }
4254      }
4255    }
4256    else {
4257      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4258    }
4259    return tcalval ;
4260  }
4261}
4262
4263Vector<Float> STMath::getTsysFromTime( double reftime,
4264                                       const Vector<Double> &timeVec,
4265                                       const vector<int> &idx,
4266                                       const CountedPtr<Scantable> &s,
4267                                       string mode )
4268{
4269  LogIO os( LogOrigin( "STMath", "getTsysFromTime", WHERE ) ) ;
4270  ArrayColumn<Float> tsysCol ;
4271  tsysCol.attach( s->table(), "TSYS" ) ;
4272  Vector<Float> tsysval ;
4273  if ( s->nrow() == 0 ) {
4274    os << LogIO::SEVERE << "No row in the input scantable. Return empty tsys." << LogIO::POST ;
4275    return tsysval ;
4276  }
4277  else if ( s->nrow() == 1 ) {
4278    //os << "use row " << 0 << LogIO::POST ;
4279    tsysval = tsysCol( 0 ) ;
4280    return tsysval ;
4281  }
4282  else {
4283    if ( mode == "before" ) {
4284      int id = -1 ;
4285      if ( idx[0] != -1 ) {
4286        id = idx[0] ;
4287      }
4288      else if ( idx[1] != -1 ) {
4289        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4290        id = idx[1] ;
4291      }
4292      //os << "use row " << id << LogIO::POST ;
4293      tsysval = tsysCol( id ) ;
4294    }
4295    else if ( mode == "after" ) {
4296      int id = -1 ;
4297      if ( idx[1] != -1 ) {
4298        id = idx[1] ;
4299      }
4300      else if ( idx[0] != -1 ) {
4301        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4302        id = idx[1] ;
4303      }
4304      //os << "use row " << id << LogIO::POST ;
4305      tsysval = tsysCol( id ) ;
4306    }
4307    else if ( mode == "nearest" ) {
4308      int id = -1 ;
4309      if ( idx[0] == -1 ) {
4310        id = idx[1] ;
4311      }
4312      else if ( idx[1] == -1 ) {
4313        id = idx[0] ;
4314      }
4315      else if ( idx[0] == idx[1] ) {
4316        id = idx[0] ;
4317      }
4318      else {
4319        double t0 = timeVec[idx[0]] ;
4320        double t1 = timeVec[idx[1]] ;
4321        if ( abs( t0 - reftime ) > abs( t1 - reftime ) ) {
4322          id = idx[1] ;
4323        }
4324        else {
4325          id = idx[0] ;
4326        }
4327      }
4328      //os << "use row " << id << LogIO::POST ;
4329      tsysval = tsysCol( id ) ;
4330    }
4331    else if ( mode == "linear" ) {
4332      if ( idx[0] == -1 ) {
4333        // use after
4334        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4335        int id = idx[1] ;
4336        //os << "use row " << id << LogIO::POST ;
4337        tsysval = tsysCol( id ) ;
4338      }
4339      else if ( idx[1] == -1 ) {
4340        // use before
4341        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4342        int id = idx[0] ;
4343        //os << "use row " << id << LogIO::POST ;
4344        tsysval = tsysCol( id ) ;
4345      }
4346      else if ( idx[0] == idx[1] ) {
4347        // use before
4348        //os << "No need to interporate." << LogIO::POST ;
4349        int id = idx[0] ;
4350        //os << "use row " << id << LogIO::POST ;
4351        tsysval = tsysCol( id ) ;
4352      }
4353      else {
4354        // do interpolation
4355        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4356        double t0 = timeVec[idx[0]] ;
4357        double t1 = timeVec[idx[1]] ;
4358        Vector<Float> tsys0 ;
4359        tsys0 = tsysCol( idx[0] ) ;
4360        tsysval = tsysCol( idx[1] ) ;
4361        double tfactor = (reftime - t0) / (t1 - t0) ;
4362        for ( unsigned int i = 0 ; i < tsys0.size() ; i++ ) {
4363          tsysval[i] = ( tsysval[i] - tsys0[i] ) * tfactor + tsys0[i] ;
4364        }
4365      }
4366    }
4367    else {
4368      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4369    }
4370    return tsysval ;
4371  }
4372}
4373
4374void STMath::calibrateCW( CountedPtr<Scantable> &out,
4375                          const CountedPtr<Scantable>& on,
4376                          const CountedPtr<Scantable>& off,
4377                          const CountedPtr<Scantable>& sky,
4378                          const CountedPtr<Scantable>& hot,
4379                          const CountedPtr<Scantable>& cold,
4380                          const Vector<uInt> &rows,
4381                          const String &antname )
4382{
4383  // 2012/05/22 TN
4384  // Assume that out has empty SPECTRA column
4385
4386  // if rows is empty, just return
4387  if ( rows.nelements() == 0 )
4388    return ;
4389  ROScalarColumn<Double> timeCol( off->table(), "TIME" ) ;
4390  Vector<Double> timeOff = timeCol.getColumn() ;
4391  timeCol.attach( sky->table(), "TIME" ) ;
4392  Vector<Double> timeSky = timeCol.getColumn() ;
4393  timeCol.attach( hot->table(), "TIME" ) ;
4394  Vector<Double> timeHot = timeCol.getColumn() ;
4395  timeCol.attach( on->table(), "TIME" ) ;
4396  ROArrayColumn<Float> arrayFloatCol( off->table(), "SPECTRA" ) ;
4397  Matrix<Float> offspectra = arrayFloatCol.getColumn() ;
4398  arrayFloatCol.attach( sky->table(), "SPECTRA" ) ;
4399  Matrix<Float> skyspectra = arrayFloatCol.getColumn() ;
4400  arrayFloatCol.attach( hot->table(), "SPECTRA" ) ;
4401  Matrix<Float> hotspectra = arrayFloatCol.getColumn() ;
4402  unsigned int spsize = on->nchan( on->getIF(rows[0]) ) ;
4403  // I know that the data is contiguous
4404  const uInt *p = rows.data() ;
4405  vector<int> ids( 2 ) ;
4406  Block<uInt> flagchan( spsize ) ;
4407  uInt nflag = 0 ;
4408  for ( int irow = 0 ; irow < rows.nelements() ; irow++ ) {
4409    double reftime = timeCol.asdouble(*p) ;
4410    ids = getRowIdFromTime( reftime, timeOff ) ;
4411    Vector<Float> spoff = getSpectrumFromTime( reftime, timeOff, ids, offspectra, "linear" ) ;
4412    ids = getRowIdFromTime( reftime, timeSky ) ;
4413    Vector<Float> spsky = getSpectrumFromTime( reftime, timeSky, ids, skyspectra, "linear" ) ;
4414    Vector<Float> tcal = getTcalFromTime( reftime, timeSky, ids, sky, "linear" ) ;
4415    Vector<Float> tsys = getTsysFromTime( reftime, timeSky, ids, sky, "linear" ) ;
4416    ids = getRowIdFromTime( reftime, timeHot ) ;
4417    Vector<Float> sphot = getSpectrumFromTime( reftime, timeHot, ids, hotspectra, "linear" ) ;
4418    Vector<Float> spec = on->specCol_( *p ) ;
4419    if ( antname.find( "APEX" ) != String::npos ) {
4420      // using gain array
4421      for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4422        if ( spoff[j] == 0.0 || (sphot[j]-spsky[j]) == 0.0 ) {
4423          spec[j] = 0.0 ;
4424          flagchan[nflag++] = j ;
4425        }
4426        else {
4427          spec[j] = ( ( spec[j] - spoff[j] ) / spoff[j] )
4428            * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
4429        }
4430      }
4431    }
4432    else {
4433      // Chopper-Wheel calibration (Ulich & Haas 1976)
4434      for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4435        if ( (sphot[j]-spsky[j]) == 0.0 ) {
4436          spec[j] = 0.0 ;
4437          flagchan[nflag++] = j ;
4438        }
4439        else {
4440          spec[j] = ( spec[j] - spoff[j] ) / ( sphot[j] - spsky[j] ) * tcal[j] ;
4441        }
4442      }
4443    }
4444    out->specCol_.put( *p, spec ) ;
4445    out->tsysCol_.put( *p, tsys ) ;
4446    if ( nflag > 0 ) {
4447      Vector<uChar> fl = out->flagsCol_( *p ) ;
4448      for ( unsigned int j = 0 ; j < nflag ; j++ ) {
4449        fl[flagchan[j]] = (uChar)True ;
4450      }
4451      out->flagsCol_.put( *p, fl ) ;
4452    }
4453    nflag = 0 ;
4454    p++ ;
4455  }
4456}
4457
4458void STMath::calibrateALMA( CountedPtr<Scantable>& out,
4459                            const CountedPtr<Scantable>& on,
4460                            const CountedPtr<Scantable>& off,
4461                            const Vector<uInt>& rows )
4462{
4463  // 2012/05/22 TN
4464  // Assume that out has empty SPECTRA column
4465
4466  // if rows is empty, just return
4467  if ( rows.nelements() == 0 )
4468    return ;
4469  ROScalarColumn<Double> timeCol( off->table(), "TIME" ) ;
4470  Vector<Double> timeVec = timeCol.getColumn() ;
4471  timeCol.attach( on->table(), "TIME" ) ;
4472  ROArrayColumn<Float> arrayFloatCol( off->table(), "SPECTRA" ) ;
4473  Matrix<Float> offspectra = arrayFloatCol.getColumn() ;
4474  unsigned int spsize = on->nchan( on->getIF(rows[0]) ) ;
4475  // I know that the data is contiguous
4476  const uInt *p = rows.data() ;
4477  vector<int> ids( 2 ) ;
4478  Block<uInt> flagchan( spsize ) ;
4479  uInt nflag = 0 ;
4480  for ( int irow = 0 ; irow < rows.nelements() ; irow++ ) {
4481    double reftime = timeCol.asdouble(*p) ;
4482    ids = getRowIdFromTime( reftime, timeVec ) ;
4483    Vector<Float> spoff = getSpectrumFromTime( reftime, timeVec, ids, offspectra, "linear" ) ;
4484    //Vector<Float> spoff = getSpectrumFromTime( reftime, timeVec, off, "linear" ) ;
4485    Vector<Float> spec = on->specCol_( *p ) ;
4486    Vector<Float> tsys = on->tsysCol_( *p ) ;
4487    // ALMA Calibration
4488    //
4489    // Ta* = Tsys * ( ON - OFF ) / OFF
4490    //
4491    // 2010/01/07 Takeshi Nakazato
4492    unsigned int tsyssize = tsys.nelements() ;
4493    for ( unsigned int j = 0 ; j < spsize ; j++ ) {
4494      if ( spoff[j] == 0.0 ) {
4495        spec[j] = 0.0 ;
4496        flagchan[nflag++] = j ;
4497      }
4498      else {
4499        spec[j] = ( spec[j] - spoff[j] ) / spoff[j] ;
4500      }
4501      if ( tsyssize == spsize )
4502        spec[j] *= tsys[j] ;
4503      else
4504        spec[j] *= tsys[0] ;
4505    }
4506    out->specCol_.put( *p, spec ) ;
4507    if ( nflag > 0 ) {
4508      Vector<uChar> fl = out->flagsCol_( *p ) ;
4509      for ( unsigned int j = 0 ; j < nflag ; j++ ) {
4510        fl[flagchan[j]] = (uChar)True ;
4511      }
4512      out->flagsCol_.put( *p, fl ) ;
4513    }
4514    nflag = 0 ;
4515    p++ ;
4516  }
4517}
4518
4519void STMath::calibrateAPEXFS( CountedPtr<Scantable> &sig,
4520                              CountedPtr<Scantable> &ref,
4521                              const vector< CountedPtr<Scantable> >& on,
4522                              const vector< CountedPtr<Scantable> >& sky,
4523                              const vector< CountedPtr<Scantable> >& hot,
4524                              const vector< CountedPtr<Scantable> >& cold,
4525                              const Vector<uInt> &rows )
4526{
4527  // if rows is empty, just return
4528  if ( rows.nelements() == 0 )
4529    return ;
4530  ROScalarColumn<Double> timeCol( sky[0]->table(), "TIME" ) ;
4531  Vector<Double> timeSkyS = timeCol.getColumn() ;
4532  timeCol.attach( sky[1]->table(), "TIME" ) ;
4533  Vector<Double> timeSkyR = timeCol.getColumn() ;
4534  timeCol.attach( hot[0]->table(), "TIME" ) ;
4535  Vector<Double> timeHotS = timeCol.getColumn() ;
4536  timeCol.attach( hot[1]->table(), "TIME" ) ;
4537  Vector<Double> timeHotR = timeCol.getColumn() ;
4538  timeCol.attach( sig->table(), "TIME" ) ;
4539  ROScalarColumn<Double> timeCol2( ref->table(), "TIME" ) ;
4540  ROArrayColumn<Float> arrayFloatCol( sky[0]->table(), "SPECTRA" ) ;
4541  Matrix<Float> skyspectraS = arrayFloatCol.getColumn() ;
4542  arrayFloatCol.attach( sky[1]->table(), "SPECTRA" ) ;
4543  Matrix<Float> skyspectraR = arrayFloatCol.getColumn() ;
4544  arrayFloatCol.attach( hot[0]->table(), "SPECTRA" ) ;
4545  Matrix<Float> hotspectraS = arrayFloatCol.getColumn() ;
4546  arrayFloatCol.attach( hot[1]->table(), "SPECTRA" ) ;
4547  Matrix<Float> hotspectraR = arrayFloatCol.getColumn() ;
4548  unsigned int spsize = sig->nchan( sig->getIF(rows[0]) ) ;
4549  Vector<Float> spec( spsize ) ;
4550  // I know that the data is contiguous
4551  const uInt *p = rows.data() ;
4552  vector<int> ids( 2 ) ;
4553  Block<uInt> flagchan( spsize ) ;
4554  uInt nflag = 0 ;
4555  for ( int irow = 0 ; irow < rows.nelements() ; irow++ ) {
4556    double reftime = timeCol.asdouble(*p) ;
4557    ids = getRowIdFromTime( reftime, timeSkyS ) ;
4558    Vector<Float> spskyS = getSpectrumFromTime( reftime, timeSkyS, ids, skyspectraS, "linear" ) ;
4559    Vector<Float> tcalS = getTcalFromTime( reftime, timeSkyS, ids, sky[0], "linear" ) ;
4560    Vector<Float> tsysS = getTsysFromTime( reftime, timeSkyS, ids, sky[0], "linear" ) ;
4561    ids = getRowIdFromTime( reftime, timeHotS ) ;
4562    Vector<Float> sphotS = getSpectrumFromTime( reftime, timeHotS, ids, hotspectraS ) ;
4563    reftime = timeCol2.asdouble(*p) ;
4564    ids = getRowIdFromTime( reftime, timeSkyR ) ;
4565    Vector<Float> spskyR = getSpectrumFromTime( reftime, timeSkyR, ids, skyspectraR, "linear" ) ;
4566    Vector<Float> tcalR = getTcalFromTime( reftime, timeSkyR, ids, sky[1], "linear" ) ;
4567    Vector<Float> tsysR = getTsysFromTime( reftime, timeSkyR, ids, sky[1], "linear" ) ;
4568    ids = getRowIdFromTime( reftime, timeHotR ) ;
4569    Vector<Float> sphotR = getSpectrumFromTime( reftime, timeHotR, ids, hotspectraR ) ;
4570    Vector<Float> spsig = on[0]->specCol_( *p ) ;
4571    Vector<Float> spref = on[1]->specCol_( *p ) ;
4572    for ( unsigned int j = 0 ; j < spsize ; j++ ) {
4573      if ( (sphotS[j]-spskyS[j]) == 0.0 || (sphotR[j]-spskyR[j]) == 0.0 ) {
4574        spec[j] = 0.0 ;
4575        flagchan[nflag++] = j ;
4576      }
4577      else {
4578        spec[j] = tcalS[j] * spsig[j] / ( sphotS[j] - spskyS[j] )
4579          - tcalR[j] * spref[j] / ( sphotR[j] - spskyR[j] ) ;
4580      }
4581    }
4582    sig->specCol_.put( *p, spec ) ;
4583    sig->tsysCol_.put( *p, tsysS ) ;
4584    spec *= (Float)-1.0 ;
4585    ref->specCol_.put( *p, spec ) ;
4586    ref->tsysCol_.put( *p, tsysR ) ;   
4587    if ( nflag > 0 ) {
4588      Vector<uChar> flsig = sig->flagsCol_( *p ) ;
4589      Vector<uChar> flref = ref->flagsCol_( *p ) ;
4590      for ( unsigned int j = 0 ; j < nflag ; j++ ) {
4591        flsig[flagchan[j]] = (uChar)True ;
4592        flref[flagchan[j]] = (uChar)True ;
4593      }
4594      sig->flagsCol_.put( *p, flsig ) ;
4595      ref->flagsCol_.put( *p, flref ) ;
4596    }
4597    nflag = 0 ;
4598    p++ ;
4599  }
4600}
4601
4602void STMath::calibrateFS( CountedPtr<Scantable> &sig,
4603                          CountedPtr<Scantable> &ref,
4604                          const CountedPtr<Scantable>& rsig,
4605                          const CountedPtr<Scantable>& rref,
4606                          const CountedPtr<Scantable>& sky,
4607                          const CountedPtr<Scantable>& hot,
4608                          const CountedPtr<Scantable>& cold,
4609                          const Vector<uInt> &rows )
4610{
4611  // if rows is empty, just return
4612  if ( rows.nelements() == 0 )
4613    return ;
4614  ROScalarColumn<Double> timeCol( sky->table(), "TIME" ) ;
4615  Vector<Double> timeSky = timeCol.getColumn() ;
4616  timeCol.attach( hot->table(), "TIME" ) ;
4617  Vector<Double> timeHot = timeCol.getColumn() ;
4618  timeCol.attach( sig->table(), "TIME" ) ;
4619  ROScalarColumn<Double> timeCol2( ref->table(), "TIME" ) ;
4620  ROArrayColumn<Float> arrayFloatCol( sky->table(), "SPECTRA" ) ;
4621  Matrix<Float> skyspectra = arrayFloatCol.getColumn() ;
4622  arrayFloatCol.attach( hot->table(), "SPECTRA" ) ;
4623  Matrix<Float> hotspectra = arrayFloatCol.getColumn() ;
4624  unsigned int spsize = sig->nchan( sig->getIF(rows[0]) ) ;
4625  Vector<Float> spec( spsize ) ;
4626  // I know that the data is contiguous
4627  const uInt *p = rows.data() ;
4628  vector<int> ids( 2 ) ;
4629  Block<uInt> flagchan( spsize ) ;
4630  uInt nflag = 0 ;
4631  for ( int irow = 0 ; irow < rows.nelements() ; irow++ ) {
4632    double reftime = timeCol.asdouble(*p) ;
4633    ids = getRowIdFromTime( reftime, timeSky ) ;
4634    Vector<Float> spsky = getSpectrumFromTime( reftime, timeSky, ids, skyspectra, "linear" ) ;
4635    Vector<Float> tcal = getTcalFromTime( reftime, timeSky, ids, sky, "linear" ) ;
4636    Vector<Float> tsys = getTsysFromTime( reftime, timeSky, ids, sky, "linear" ) ;
4637    ids = getRowIdFromTime( reftime, timeHot ) ;
4638    Vector<Float> sphot = getSpectrumFromTime( reftime, timeHot, ids, hotspectra ) ;
4639    Vector<Float> spsig = rsig->specCol_( *p ) ;
4640    Vector<Float> spref = rref->specCol_( *p ) ;
4641    // using gain array
4642    for ( unsigned int j = 0 ; j < spsize ; j++ ) {
4643      if ( spref[j] == 0.0 || (sphot[j]-spsky[j]) == 0.0 ) {
4644        spec[j] = 0.0 ;
4645        flagchan[nflag++] = j ;
4646      }
4647      else {
4648        spec[j] = ( ( spsig[j] - spref[j] ) / spref[j] )
4649          * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
4650      }
4651    }
4652    sig->specCol_.put( *p, spec ) ;
4653    sig->tsysCol_.put( *p, tsys ) ;
4654    if ( nflag > 0 ) {
4655      Vector<uChar> fl = sig->flagsCol_( *p ) ;
4656      for ( unsigned int j = 0 ; j < nflag ; j++ ) {
4657        fl[flagchan[j]] = (uChar)True ;
4658      }
4659      sig->flagsCol_.put( *p, fl ) ;
4660    }
4661    nflag = 0 ;
4662
4663    reftime = timeCol2.asdouble(*p) ;
4664    spsky = getSpectrumFromTime( reftime, timeSky, ids, skyspectra, "linear" ) ;
4665    tcal = getTcalFromTime( reftime, timeSky, ids, sky, "linear" ) ;
4666    tsys = getTsysFromTime( reftime, timeSky, ids, sky, "linear" ) ;
4667    ids = getRowIdFromTime( reftime, timeHot ) ;
4668    sphot = getSpectrumFromTime( reftime, timeHot, ids, hotspectra ) ;
4669    // using gain array
4670    for ( unsigned int j = 0 ; j < spsize ; j++ ) {
4671      if ( spsig[j] == 0.0 || (sphot[j]-spsky[j]) == 0.0 ) {
4672        spec[j] = 0.0 ;
4673        flagchan[nflag++] = j ;
4674      }
4675      else {
4676        spec[j] = ( ( spref[j] - spsig[j] ) / spsig[j] )
4677          * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
4678      }
4679    }
4680    ref->specCol_.put( *p, spec ) ;
4681    ref->tsysCol_.put( *p, tsys ) ;   
4682    if ( nflag > 0 ) {
4683      Vector<uChar> fl = ref->flagsCol_( *p ) ;
4684      for ( unsigned int j = 0 ; j < nflag ; j++ ) {
4685        fl[flagchan[j]] = (uChar)True ;
4686      }
4687      ref->flagsCol_.put( *p, fl ) ;
4688    }
4689    nflag = 0 ;
4690    p++ ;
4691  }
4692}
4693
4694void STMath::copyRows( Table &out,
4695                       const Table &in,
4696                       uInt startout,
4697                       uInt startin,
4698                       uInt nrow,
4699                       Bool copySpectra,
4700                       Bool copyFlagtra,
4701                       Bool copyTsys )
4702{
4703  uInt nexclude = 0 ;
4704  Block<String> excludeColsBlock( 3 ) ;
4705  if ( !copySpectra ) {
4706    excludeColsBlock[nexclude] = "SPECTRA" ;
4707    nexclude++ ;
4708  }
4709  if ( !copyFlagtra ) {
4710    excludeColsBlock[nexclude] = "FLAGTRA" ;
4711    nexclude++ ;
4712  }
4713  if ( !copyTsys ) {
4714    excludeColsBlock[nexclude] = "TSYS" ;
4715    nexclude++ ;
4716  }
4717  //  if ( nexclude < 3 ) {
4718  //    excludeCols.resize( nexclude, True ) ;
4719  //  }
4720  Vector<String> excludeCols( IPosition(1,nexclude),
4721                              excludeColsBlock.storage(),
4722                              SHARE ) ;
4723//   cout << "excludeCols=" << excludeCols << endl ;
4724  TableRow rowout( out, excludeCols, True ) ;
4725  ROTableRow rowin( in, excludeCols, True ) ;
4726  uInt rin = startin ;
4727  uInt rout = startout ;
4728  for ( uInt i = 0 ; i < nrow ; i++ ) {
4729    rowin.get( rin ) ;
4730    rowout.putMatchingFields( rout, rowin.record() ) ;
4731    rin++ ;
4732    rout++ ;
4733  }
4734}
4735
4736CountedPtr<Scantable> STMath::averageWithinSession( CountedPtr<Scantable> &s,
4737                                                    vector<bool> &mask,
4738                                                    string weight )
4739{
4740  // prepare output table
4741  bool insitu = insitu_ ;
4742  insitu_ = false ;
4743  CountedPtr<Scantable> a = getScantable( s, true ) ;
4744  insitu_ = insitu ;
4745  Table &atab = a->table() ;
4746  ScalarColumn<Double> timeColOut( atab, "TIME" ) ;
4747
4748  if ( s->nrow() == 0 )
4749    return a ;
4750
4751  // setup RowAccumulator
4752  WeightType wtype = stringToWeight( weight ) ;
4753  RowAccumulator acc( wtype ) ;
4754  Vector<Bool> cmask( mask ) ;
4755  acc.setUserMask( cmask ) ;
4756
4757  vector<string> cols( 3 ) ;
4758  cols[0] = "IFNO" ;
4759  cols[1] = "POLNO" ;
4760  cols[2] = "BEAMNO" ;
4761  STIdxIterAcc iter( s, cols ) ;
4762
4763  Table ttab = s->table() ;
4764  ROScalarColumn<Double> *timeCol = new ROScalarColumn<Double>( ttab, "TIME" ) ;
4765  Vector<Double> timeVec = timeCol->getColumn() ;
4766  delete timeCol ;
4767  Vector<Double> interval = s->integrCol_.getColumn() ;
4768  uInt nrow = timeVec.nelements() ;
4769  uInt outrow = 0 ;
4770
4771  while( !iter.pastEnd() ) {
4772
4773    Vector<uInt> rows = iter.getRows( SHARE ) ;
4774    uInt len = rows.nelements() ;
4775
4776    if ( len == 0 ) {
4777      iter.next() ;
4778      continue ;
4779    }
4780
4781    uInt nchan = s->nchan(s->getIF(rows[0])) ;
4782    Vector<uChar> flag( nchan ) ;
4783    Vector<Bool> bflag( nchan ) ;
4784    Vector<Float> spec( nchan ) ;
4785    Vector<Float> tsys( nchan ) ;
4786
4787    Vector<Double> timeSep( len-1 ) ;
4788    for ( uInt i = 0 ; i < len-1 ; i++ ) {
4789      timeSep[i] = timeVec[rows[i+1]] - timeVec[rows[i]] ;
4790    }
4791
4792    uInt irow ;
4793    uInt jrow ;
4794    for ( uInt i = 0 ; i < len-1 ; i++ ) {
4795      irow = rows[i] ;
4796      jrow = rows[i+1] ;
4797      // accumulate data
4798      s->flagsCol_.get( irow, flag ) ;
4799      convertArray( bflag, flag ) ;
4800      s->specCol_.get( irow, spec ) ;
4801      tsys.assign( s->tsysCol_( irow ) ) ;
4802      if ( !allEQ(bflag,True) )
4803        acc.add( spec, !bflag, tsys, interval[irow], timeVec[irow] ) ;
4804      double gap = 2.0 * 86400.0 * timeSep[i] / ( interval[jrow] + interval[irow] ) ;
4805      //cout << "gap[" << i << "]=" << setw(5) << gap << endl ;
4806      if ( gap > 1.1 ) {
4807        //cout << "detected gap between " << i << " and " << i+1 << endl ;
4808        // put data to output table
4809        // reset RowAccumulator
4810        if ( acc.state() ) {
4811          atab.addRow() ;
4812          copyRows( atab, ttab, outrow, irow, 1, False, False, False ) ;
4813          acc.replaceNaN() ;
4814          const Vector<Bool> &msk = acc.getMask() ;
4815          convertArray( flag, !msk ) ;
4816          for (uInt k = 0; k < nchan; ++k) {
4817            uChar userFlag = 1 << 7;
4818            if (msk[k]==True) userFlag = 0 << 7;
4819            flag(k) = userFlag;
4820          }
4821          a->flagsCol_.put( outrow, flag ) ;
4822          a->specCol_.put( outrow, acc.getSpectrum() ) ;
4823          a->tsysCol_.put( outrow, acc.getTsys() ) ;
4824          a->integrCol_.put( outrow, acc.getInterval() ) ;
4825          timeColOut.put( outrow, acc.getTime() ) ;
4826          a->cycleCol_.put( outrow, 0 ) ;
4827        }
4828        acc.reset() ;
4829        outrow++ ;
4830      }
4831    }
4832
4833    // accumulate and add last data
4834    irow = rows[len-1] ;
4835    s->flagsCol_.get( irow, flag ) ;
4836    convertArray( bflag, flag ) ;
4837    s->specCol_.get( irow, spec ) ;
4838    tsys.assign( s->tsysCol_( irow ) ) ;
4839    if (!allEQ(bflag,True) )
4840      acc.add( spec, !bflag, tsys, interval[irow], timeVec[irow] ) ;
4841    if ( acc.state() ) {
4842      atab.addRow() ;
4843      copyRows( atab, ttab, outrow, irow, 1, False, False, False ) ;
4844      acc.replaceNaN() ;
4845      const Vector<Bool> &msk = acc.getMask() ;
4846      convertArray( flag, !msk ) ;
4847      for (uInt k = 0; k < nchan; ++k) {
4848        uChar userFlag = 1 << 7;
4849        if (msk[k]==True) userFlag = 0 << 7;
4850        flag(k) = userFlag;
4851      }
4852      a->flagsCol_.put( outrow, flag ) ;
4853      a->specCol_.put( outrow, acc.getSpectrum() ) ;
4854      a->tsysCol_.put( outrow, acc.getTsys() ) ;
4855      a->integrCol_.put( outrow, acc.getInterval() ) ;
4856      timeColOut.put( outrow, acc.getTime() ) ;
4857      a->cycleCol_.put( outrow, 0 ) ;
4858    }
4859    acc.reset() ;
4860    outrow++ ;
4861
4862    iter.next() ;
4863  }
4864
4865  return a ;
4866}
Note: See TracBrowser for help on using the repository browser.