source: trunk/src/STMath.cpp @ 2900

Last change on this file since 2900 was 2900, checked in by Takeshi Nakazato, 10 years ago

New Development: No

JIRA Issue: Yes CAS-5875

Ready for Test: Yes

Interface Changes: No

What Interface Changed: Please list interface changes

Test Programs: test_sdcoadd

Put in Release Notes: No

Module(s): sd

Description: Describe your changes here...

Added freq_tol parameter to asapmath.merge.
The freq_tol allows to specify frequency tolerance as
numeric value (1.0e6) or string ('1MHz'). The value will
be used to merge FREQUENCIES rows, FREQ_ID, and IFNO.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 165.6 KB
Line 
1//
2// C++ Implementation: STMath
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2006
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12
13#include <sstream>
14
15#include <casa/iomanip.h>
16#include <casa/Arrays/MaskArrLogi.h>
17#include <casa/Arrays/MaskArrMath.h>
18#include <casa/Arrays/ArrayLogical.h>
19#include <casa/Arrays/ArrayMath.h>
20#include <casa/Arrays/Slice.h>
21#include <casa/Arrays/Slicer.h>
22#include <casa/BasicSL/String.h>
23#include <casa/Containers/Block.h>
24#include <casa/Containers/RecordField.h>
25#include <casa/Exceptions/Error.h>
26#include <casa/Logging/LogIO.h>
27#include <casa/Quanta/Quantum.h>
28
29#include <coordinates/Coordinates/CoordinateSystem.h>
30#include <coordinates/Coordinates/CoordinateUtil.h>
31#include <coordinates/Coordinates/FrequencyAligner.h>
32#include <coordinates/Coordinates/SpectralCoordinate.h>
33
34#include <lattices/Lattices/LatticeUtilities.h>
35
36#include <scimath/Functionals/Polynomial.h>
37#include <scimath/Mathematics/Convolver.h>
38#include <scimath/Mathematics/VectorKernel.h>
39
40#include <tables/Tables/ExprNode.h>
41#include <tables/Tables/ReadAsciiTable.h>
42#include <tables/Tables/TableCopy.h>
43#include <tables/Tables/TableIter.h>
44#include <tables/Tables/TableParse.h>
45#include <tables/Tables/TableRecord.h>
46#include <tables/Tables/TableRow.h>
47#include <tables/Tables/TableVector.h>
48#include <tables/Tables/TabVecMath.h>
49
50#include <atnf/PKSIO/SrcType.h>
51
52#include "RowAccumulator.h"
53#include "STAttr.h"
54#include "STMath.h"
55#include "STSelector.h"
56#include "Accelerator.h"
57#include "STIdxIter.h"
58
59using namespace casa;
60using namespace asap;
61
62// 2012/02/17 TN
63// Since STGrid is implemented, average doesn't consider direction
64// when accumulating
65// tolerance for direction comparison (rad)
66// #define TOL_OTF    1.0e-15
67// #define TOL_POINT  2.9088821e-4  // 1 arcmin
68
69STMath::STMath(bool insitu) :
70  insitu_(insitu)
71{
72}
73
74
75STMath::~STMath()
76{
77}
78
79CountedPtr<Scantable>
80STMath::average( const std::vector<CountedPtr<Scantable> >& in,
81                 const std::vector<bool>& mask,
82                 const std::string& weight,
83                 const std::string& avmode)
84{
85//    double t0, t1 ;
86//    t0 = mathutil::gettimeofday_sec() ;
87
88  LogIO os( LogOrigin( "STMath", "average()", WHERE ) ) ;
89  if ( avmode == "SCAN" && in.size() != 1 )
90    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
91                    "Use merge first."));
92  WeightType wtype = stringToWeight(weight);
93
94  // 2012/02/17 TN
95  // Since STGrid is implemented, average doesn't consider direction
96  // when accumulating
97  // check if OTF observation
98//   String obstype = in[0]->getHeader().obstype ;
99//   Double tol = 0.0 ;
100//   if ( (obstype.find( "OTF" ) != String::npos) || (obstype.find( "OBSERVE_TARGET" ) != String::npos) ) {
101//     tol = TOL_OTF ;
102//   }
103//   else {
104//     tol = TOL_POINT ;
105//   }
106
107  // output
108  // clone as this is non insitu
109  bool insitu = insitu_;
110  setInsitu(false);
111  CountedPtr< Scantable > out = getScantable(in[0], true);
112  setInsitu(insitu);
113  std::vector<CountedPtr<Scantable> >::const_iterator stit = in.begin();
114  ++stit;
115  while ( stit != in.end() ) {
116    out->appendToHistoryTable((*stit)->history());
117    ++stit;
118  }
119
120  Table& tout = out->table();
121
122  /// @todo check if all scantables are conformant
123
124  ArrayColumn<Float> specColOut(tout,"SPECTRA");
125  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
126  ArrayColumn<Float> tsysColOut(tout,"TSYS");
127  ScalarColumn<Double> mjdColOut(tout,"TIME");
128  ScalarColumn<Double> intColOut(tout,"INTERVAL");
129  ScalarColumn<uInt> cycColOut(tout,"CYCLENO");
130  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
131  ScalarColumn<uInt> flagRowColOut(tout,"FLAGROW");
132
133  // set up the output table rows. These are based on the structure of the
134  // FIRST scantable in the vector
135  const Table& baset = in[0]->table();
136
137  RowAccumulator acc(wtype);
138  Vector<Bool> cmask(mask);
139  acc.setUserMask(cmask);
140//   ROTableRow row(tout);
141  ROArrayColumn<Float> specCol, tsysCol;
142  ROArrayColumn<uChar> flagCol;
143  ROScalarColumn<Double> mjdCol, intCol;
144  ROScalarColumn<Int> scanIDCol;
145  ROScalarColumn<uInt> flagRowCol;
146
147  //Vector<uInt> rowstodelete;
148  Block<uInt> rowstodelB( in[0]->nrow() ) ;
149  uInt nrowdel = 0 ;
150
151//   Block<String> cols(3);
152  vector<string> cols(3) ;
153  cols[0] = String("BEAMNO");
154  cols[1] = String("IFNO");
155  cols[2] = String("POLNO");
156  if ( avmode == "SOURCE" ) {
157    cols.resize(4);
158    cols[3] = String("SRCNAME");
159  }
160  if ( avmode == "SCAN"  && in.size() == 1) {
161    //cols.resize(4);
162    //cols[3] = String("SCANNO");
163    cols.resize(5);
164    cols[3] = String("SRCNAME");
165    cols[4] = String("SCANNO");
166  }
167  uInt outrowCount = 0;
168  // use STIdxIterExAcc instead of TableIterator
169  STIdxIterExAcc iter( in[0], cols ) ;
170//   double t2 = 0 ;
171//   double t3 = 0 ;
172//   double t4 = 0 ;
173//   double t5 = 0 ;
174//   TableIterator iter(baset, cols);
175//   int count = 0 ;
176  while (!iter.pastEnd()) {
177    Vector<uInt> rows = iter.getRows( SHARE ) ;
178    if ( rows.nelements() == 0 ) {
179      iter.next() ;
180      continue ;
181    }
182    Vector<uInt> current = iter.current() ;
183    String srcname = iter.getSrcName() ;
184    //Table subt = iter.table();
185    // copy the first row of this selection into the new table
186    tout.addRow();
187//     t4 = mathutil::gettimeofday_sec() ;
188    // skip to copy SPECTRA, FLAGTRA, and TSYS since those heavy columns are
189    // overwritten in the following process
190    copyRows( tout, baset, outrowCount, rows[0], 1, False, False, False ) ;
191//     t5 += mathutil::gettimeofday_sec() - t4 ;
192    // re-index to 0
193    if ( avmode != "SCAN" && avmode != "SOURCE" ) {
194      scanColOut.put(outrowCount, uInt(0));
195    }
196
197    // 2012/02/17 TN
198    // Since STGrid is implemented, average doesn't consider direction
199    // when accumulating
200//     MDirection::ScalarColumn dircol ;
201//     dircol.attach( subt, "DIRECTION" ) ;
202//     Int length = subt.nrow() ;
203//     vector< Vector<Double> > dirs ;
204//     vector<int> indexes ;
205//     for ( Int i = 0 ; i < length ; i++ ) {
206//       Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
207//       //os << << count++ << ": " ;
208//       //os << "[" << t[0] << "," << t[1] << "]" << LogIO::POST ;
209//       bool adddir = true ;
210//       for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
211//         //if ( allTrue( t == dirs[j] ) ) {
212//         Double dx = t[0] - dirs[j][0] ;
213//         Double dy = t[1] - dirs[j][1] ;
214//         Double dd = sqrt( dx * dx + dy * dy ) ;
215//         //if ( allNearAbs( t, dirs[j], tol ) ) {
216//         if ( dd <= tol ) {
217//           adddir = false ;
218//           break ;
219//         }
220//       }
221//       if ( adddir ) {
222//         dirs.push_back( t ) ;
223//         indexes.push_back( i ) ;
224//       }
225//     }
226//     uInt rowNum = dirs.size() ;
227//     tout.addRow( rowNum ) ;
228//     for ( uInt i = 0 ; i < rowNum ; i++ ) {
229//       TableCopy::copyRows( tout, subt, outrowCount+i, indexes[i], 1 ) ;
230//       // re-index to 0
231//       if ( avmode != "SCAN" && avmode != "SOURCE" ) {
232//         scanColOut.put(outrowCount+i, uInt(0));
233//       }       
234//     }
235//     outrowCount += rowNum ;
236
237    // merge loop
238    uInt i = outrowCount ;
239    // in[0] is already selected by iterator
240    specCol.attach(baset,"SPECTRA");
241    flagCol.attach(baset,"FLAGTRA");
242    tsysCol.attach(baset,"TSYS");
243    intCol.attach(baset,"INTERVAL");
244    mjdCol.attach(baset,"TIME");
245    flagRowCol.attach(baset,"FLAGROW");
246    Vector<Float> spec,tsys;
247    Vector<uChar> flag;
248    Double inter,time;
249    uInt flagRow;
250
251    for (uInt l = 0; l < rows.nelements(); ++l ) {
252      uInt k = rows[l] ;
253      flagCol.get(k, flag);
254      Vector<Bool> bflag(flag.shape());
255      flagRowCol.get(k, flagRow);
256      if (flagRow > 0)
257        bflag = true;
258      else
259        convertArray(bflag, flag);
260      /*                                                                                                   
261        if ( allEQ(bflag, True) ) {                                                                         
262        continue;//don't accumulate                                                                         
263        }                                                                                                   
264      */
265      specCol.get(k, spec);
266      tsysCol.get(k, tsys);
267      intCol.get(k, inter);
268      mjdCol.get(k, time);
269      // spectrum has to be added last to enable weighting by the other values                             
270//       t2 = mathutil::gettimeofday_sec() ;
271      acc.add(spec, !bflag, tsys, inter, time);
272//       t3 += mathutil::gettimeofday_sec() - t2 ;
273     
274    }
275
276
277    // in[0] is already selected by TableIterator so that index is
278    // started from 1
279    for ( int j=1; j < int(in.size()); ++j ) {
280      const Table& tin = in[j]->table();
281      //const TableRecord& rec = row.get(i);
282      ROScalarColumn<Double> tmp(tin, "TIME");
283      Double td;tmp.get(0,td);
284
285#if 1
286      static char const*const colNames1[] = { "IFNO", "BEAMNO", "POLNO" };
287      //uInt const values1[] = { rec.asuInt("IFNO"), rec.asuInt("BEAMNO"), rec.asuInt("POLNO") };
288      uInt const values1[] = { current[1], current[0], current[2] };
289      SingleTypeEqPredicate<uInt, 3> myPred(tin, colNames1, values1);
290      CustomTableExprNodeRep myNodeRep(tin, myPred);
291      myNodeRep.link(); // to avoid automatic delete when myExpr is destructed.
292      CustomTableExprNode myExpr(myNodeRep);
293      Table basesubt = tin(myExpr);
294#else
295//       Table basesubt = tin( tin.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
296//                          && tin.col("IFNO") == Int(rec.asuInt("IFNO"))
297//                          && tin.col("POLNO") == Int(rec.asuInt("POLNO")) );
298      Table basesubt = tin( tin.col("BEAMNO") == current[0]
299                         && tin.col("IFNO") == current[1]
300                         && tin.col("POLNO") == current[2] );
301#endif
302      Table subt;
303      if ( avmode == "SOURCE") {
304//         subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME"));
305        subt = basesubt( basesubt.col("SRCNAME") == srcname );
306
307      } else if (avmode == "SCAN") {
308//         subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME")
309//                    && basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO")) );
310        subt = basesubt( basesubt.col("SRCNAME") == srcname
311                      && basesubt.col("SCANNO") == current[4] );
312      } else {
313        subt = basesubt;
314      }
315
316      // 2012/02/17 TN
317      // Since STGrid is implemented, average doesn't consider direction
318      // when accumulating
319//       vector<uInt> removeRows ;
320//       uInt nrsubt = subt.nrow() ;
321//       for ( uInt irow = 0 ; irow < nrsubt ; irow++ ) {
322//         //if ( !allTrue((subt.col("DIRECTION").getArrayDouble(TableExprId(irow)))==rec.asArrayDouble("DIRECTION")) ) {
323//         Vector<Double> x0 = (subt.col("DIRECTION").getArrayDouble(TableExprId(irow))) ;
324//         Vector<Double> x1 = rec.asArrayDouble("DIRECTION") ;
325//         double dx = x0[0] - x1[0];
326//         double dy = x0[1] - x1[1];
327//         Double dd = sqrt( dx * dx + dy * dy ) ;
328//         //if ( !allNearAbs((subt.col("DIRECTION").getArrayDouble(TableExprId(irow))), rec.asArrayDouble("DIRECTION"), tol ) ) {
329//         if ( dd > tol ) {
330//           removeRows.push_back( irow ) ;
331//         }
332//       }
333//       if ( removeRows.size() != 0 ) {
334//         subt.removeRow( removeRows ) ;
335//       }
336     
337//       if ( nrsubt == removeRows.size() )
338//         throw(AipsError("Averaging data is empty.")) ;
339
340      specCol.attach(subt,"SPECTRA");
341      flagCol.attach(subt,"FLAGTRA");
342      tsysCol.attach(subt,"TSYS");
343      intCol.attach(subt,"INTERVAL");
344      mjdCol.attach(subt,"TIME");
345      flagRowCol.attach(subt,"FLAGROW");
346      for (uInt k = 0; k < subt.nrow(); ++k ) {
347        flagCol.get(k, flag);
348        Vector<Bool> bflag(flag.shape());
349        flagRowCol.get(k, flagRow);
350        if (flagRow > 0)
351          bflag = true;
352        else
353          convertArray(bflag, flag);
354        /*
355        if ( allEQ(bflag, True) ) {
356        continue;//don't accumulate
357        }
358        */
359        specCol.get(k, spec);
360        //tsysCol.get(k, tsys);
361        tsys.assign( tsysCol(k) );
362        intCol.get(k, inter);
363        mjdCol.get(k, time);
364        // spectrum has to be added last to enable weighting by the other values
365//         t2 = mathutil::gettimeofday_sec() ;
366        acc.add(spec, !bflag, tsys, inter, time);
367//         t3 += mathutil::gettimeofday_sec() - t2 ;
368      }
369
370    }
371    const Vector<Bool>& msk = acc.getMask();
372    if ( allEQ(msk, False) ) {
373      rowstodelB[nrowdel] = i ;
374      nrowdel++ ;
375      continue;
376    }
377    //write out
378    if (acc.state()) {
379      // If there exists a channel at which all the input spectra are masked,
380      // spec has 'nan' values for that channel and it may affect the following
381      // processes. To avoid this, replacing 'nan' values in spec with
382      // weighted-mean of all spectra in the following line.
383      // (done for CAS-2776, 2011/04/07 by Wataru Kawasaki)
384      acc.replaceNaN();
385
386      Vector<uChar> flg(msk.shape());
387      convertArray(flg, !msk);
388      for (uInt k = 0; k < flg.nelements(); ++k) {
389        uChar userFlag = 1 << 7;
390        if (msk[k]==True) userFlag = 0 << 7;
391        flg(k) = userFlag;
392      }
393
394      flagColOut.put(i, flg);
395      specColOut.put(i, acc.getSpectrum());
396      tsysColOut.put(i, acc.getTsys());
397      intColOut.put(i, acc.getInterval());
398      mjdColOut.put(i, acc.getTime());
399      // we should only have one cycle now -> reset it to be 0
400      // frequency switched data has different CYCLENO for different IFNO
401      // which requires resetting this value
402      cycColOut.put(i, uInt(0));
403      // completely flagged rows are removed anyway
404      flagRowColOut.put(i, uInt(0));
405    } else {
406      os << "For output row="<<i<<", all input rows of data are flagged. no averaging" << LogIO::POST;
407    }
408    acc.reset();
409
410    // merge with while loop for preparing out table
411    ++outrowCount;
412//     ++iter ;
413    iter.next() ;
414  }
415
416  if ( nrowdel > 0 ) {
417    Vector<uInt> rowstodelete( IPosition(1,nrowdel), rowstodelB.storage(), SHARE ) ;
418    os << rowstodelete << LogIO::POST ;
419    tout.removeRow(rowstodelete);
420    if (tout.nrow() == 0) {
421      throw(AipsError("Can't average fully flagged data."));
422    }
423  }
424
425//    t1 = mathutil::gettimeofday_sec() ;
426//    cout << "elapsed time for average(): " << t1-t0 << " sec" << endl ;
427//    cout << "   elapsed time for acc.add(): " << t3 << " sec" << endl ;
428//    cout << "   elapsed time for copyRows(): " << t5 << " sec" << endl ;
429
430  return out;
431}
432
433CountedPtr< Scantable >
434STMath::averageChannel( const CountedPtr < Scantable > & in,
435                          const std::string & mode,
436                          const std::string& avmode )
437{
438  (void) mode; // currently unused
439  // 2012/02/17 TN
440  // Since STGrid is implemented, average doesn't consider direction
441  // when accumulating
442  // check if OTF observation
443//   String obstype = in->getHeader().obstype ;
444//   Double tol = 0.0 ;
445//   if ( obstype.find( "OTF" ) != String::npos ) {
446//     tol = TOL_OTF ;
447//   }
448//   else {
449//     tol = TOL_POINT ;
450//   }
451
452  // clone as this is non insitu
453  bool insitu = insitu_;
454  setInsitu(false);
455  CountedPtr< Scantable > out = getScantable(in, true);
456  setInsitu(insitu);
457  Table& tout = out->table();
458  ArrayColumn<Float> specColOut(tout,"SPECTRA");
459  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
460  ArrayColumn<Float> tsysColOut(tout,"TSYS");
461  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
462  ScalarColumn<Double> intColOut(tout, "INTERVAL");
463  Table tmp = in->table().sort("BEAMNO");
464  Block<String> cols(3);
465  cols[0] = String("BEAMNO");
466  cols[1] = String("IFNO");
467  cols[2] = String("POLNO");
468  if ( avmode == "SCAN") {
469    cols.resize(4);
470    cols[3] = String("SCANNO");
471  }
472  uInt outrowCount = 0;
473  uChar userflag = 1 << 7;
474  TableIterator iter(tmp, cols);
475  while (!iter.pastEnd()) {
476    Table subt = iter.table();
477    ROArrayColumn<Float> specCol, tsysCol;
478    ROArrayColumn<uChar> flagCol;
479    ROScalarColumn<Double> intCol(subt, "INTERVAL");
480    specCol.attach(subt,"SPECTRA");
481    flagCol.attach(subt,"FLAGTRA");
482    tsysCol.attach(subt,"TSYS");
483
484    tout.addRow();
485    TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
486    if ( avmode != "SCAN") {
487      scanColOut.put(outrowCount, uInt(0));
488    }
489    Vector<Float> tmp;
490    specCol.get(0, tmp);
491    uInt nchan = tmp.nelements();
492    // have to do channel by channel here as MaskedArrMath
493    // doesn't have partialMedians
494    Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
495    Vector<Float> outspec(nchan);
496    Vector<uChar> outflag(nchan,0);
497    Vector<Float> outtsys(1);/// @fixme when tsys is channel based
498    for (uInt i=0; i<nchan; ++i) {
499      Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
500      MaskedArray<Float> ma = maskedArray(specs,flags);
501      outspec[i] = median(ma);
502      if ( allEQ(ma.getMask(), False) )
503        outflag[i] = userflag;// flag data
504    }
505    outtsys[0] = median(tsysCol.getColumn());
506    specColOut.put(outrowCount, outspec);
507    flagColOut.put(outrowCount, outflag);
508    tsysColOut.put(outrowCount, outtsys);
509    Double intsum = sum(intCol.getColumn());
510    intColOut.put(outrowCount, intsum);
511    ++outrowCount;
512    ++iter;
513
514    // 2012/02/17 TN
515    // Since STGrid is implemented, average doesn't consider direction
516    // when accumulating
517//     MDirection::ScalarColumn dircol ;
518//     dircol.attach( subt, "DIRECTION" ) ;
519//     Int length = subt.nrow() ;
520//     vector< Vector<Double> > dirs ;
521//     vector<int> indexes ;
522//     // Handle MX mode averaging
523//     if (in->nbeam() > 1 ) {     
524//       length = 1;
525//     }
526//     for ( Int i = 0 ; i < length ; i++ ) {
527//       Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
528//       bool adddir = true ;
529//       for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
530//         //if ( allTrue( t == dirs[j] ) ) {
531//         Double dx = t[0] - dirs[j][0] ;
532//         Double dy = t[1] - dirs[j][1] ;
533//         Double dd = sqrt( dx * dx + dy * dy ) ;
534//         //if ( allNearAbs( t, dirs[j], tol ) ) {
535//         if ( dd <= tol ) {
536//           adddir = false ;
537//           break ;
538//         }
539//       }
540//       if ( adddir ) {
541//         dirs.push_back( t ) ;
542//         indexes.push_back( i ) ;
543//       }
544//     }
545//     uInt rowNum = dirs.size() ;
546//     tout.addRow( rowNum );
547//     for ( uInt i = 0 ; i < rowNum ; i++ ) {
548//       TableCopy::copyRows(tout, subt, outrowCount+i, indexes[i], 1) ;
549//       // Handle MX mode averaging
550//       if ( avmode != "SCAN") {
551//         scanColOut.put(outrowCount+i, uInt(0));
552//       }
553//     }
554//     MDirection::ScalarColumn dircolOut ;
555//     dircolOut.attach( tout, "DIRECTION" ) ;
556//     for ( uInt irow = 0 ; irow < rowNum ; irow++ ) {
557//       Vector<Double> t = \
558//      dircolOut(outrowCount+irow).getAngle(Unit(String("rad"))).getValue() ;
559//       Vector<Float> tmp;
560//       specCol.get(0, tmp);
561//       uInt nchan = tmp.nelements();
562//       // have to do channel by channel here as MaskedArrMath
563//       // doesn't have partialMedians
564//       Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
565//       // mask spectra for different DIRECTION
566//       for ( uInt jrow = 0 ; jrow < subt.nrow() ; jrow++ ) {
567//         Vector<Double> direction = \
568//        dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
569//         //if ( t[0] != direction[0] || t[1] != direction[1] ) {
570//         Double dx = t[0] - direction[0];
571//         Double dy = t[1] - direction[1];
572//         Double dd = sqrt(dx*dx + dy*dy);
573//         //if ( !allNearAbs( t, direction, tol ) ) {
574//         if ( dd > tol &&  in->nbeam() < 2 ) {
575//           flags[jrow] = userflag ;
576//         }
577//       }
578//       Vector<Float> outspec(nchan);
579//       Vector<uChar> outflag(nchan,0);
580//       Vector<Float> outtsys(1);/// @fixme when tsys is channel based
581//       for (uInt i=0; i<nchan; ++i) {
582//         Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
583//         MaskedArray<Float> ma = maskedArray(specs,flags);
584//         outspec[i] = median(ma);
585//         if ( allEQ(ma.getMask(), False) )
586//           outflag[i] = userflag;// flag data
587//       }
588//       outtsys[0] = median(tsysCol.getColumn());
589//       specColOut.put(outrowCount+irow, outspec);
590//       flagColOut.put(outrowCount+irow, outflag);
591//       tsysColOut.put(outrowCount+irow, outtsys);
592//       Vector<Double> integ = intCol.getColumn() ;
593//       MaskedArray<Double> mi = maskedArray( integ, flags ) ;
594//       Double intsum = sum(mi);
595//       intColOut.put(outrowCount+irow, intsum);
596//     }
597//     outrowCount += rowNum ;
598//     ++iter;
599  }
600  return out;
601}
602
603CountedPtr< Scantable > STMath::getScantable(const CountedPtr< Scantable >& in,
604                                             bool droprows)
605{
606  if (insitu_) {
607    return in;
608  }
609  else {
610    // clone
611    return CountedPtr<Scantable>(new Scantable(*in, Bool(droprows)));
612  }
613}
614
615CountedPtr< Scantable > STMath::unaryOperate( const CountedPtr< Scantable >& in,
616                                              float val,
617                                              const std::string& mode,
618                                              bool tsys )
619{
620  CountedPtr< Scantable > out = getScantable(in, false);
621  Table& tab = out->table();
622  ArrayColumn<Float> specCol(tab,"SPECTRA");
623  ArrayColumn<Float> tsysCol(tab,"TSYS");
624  if (mode=="DIV") val = 1.0/val ;
625  else if (mode=="SUB") val *= -1.0 ;
626  for (uInt i=0; i<tab.nrow(); ++i) {
627    Vector<Float> spec;
628    Vector<Float> ts;
629    specCol.get(i, spec);
630    tsysCol.get(i, ts);
631    if (mode == "MUL" || mode == "DIV") {
632      //if (mode == "DIV") val = 1.0/val;
633      spec *= val;
634      specCol.put(i, spec);
635      if ( tsys ) {
636        ts *= val;
637        tsysCol.put(i, ts);
638      }
639    } else if ( mode == "ADD"  || mode == "SUB") {
640      //if (mode == "SUB") val *= -1.0;
641      spec += val;
642      specCol.put(i, spec);
643      if ( tsys ) {
644        ts += val;
645        tsysCol.put(i, ts);
646      }
647    }
648  }
649  return out;
650}
651
652CountedPtr< Scantable > STMath::arrayOperate( const CountedPtr< Scantable >& in,
653                                              const std::vector<float> val,
654                                              const std::string& mode,
655                                              const std::string& opmode,
656                                              bool tsys )
657{
658  CountedPtr< Scantable > out ;
659  if ( opmode == "channel" ) {
660    out = arrayOperateChannel( in, val, mode, tsys ) ;
661  }
662  else if ( opmode == "row" ) {
663    out = arrayOperateRow( in, val, mode, tsys ) ;
664  }
665  else {
666    throw( AipsError( "Unknown array operation mode." ) ) ;
667  }
668  return out ;
669}
670
671CountedPtr< Scantable > STMath::arrayOperateChannel( const CountedPtr< Scantable >& in,
672                                                     const std::vector<float> val,
673                                                     const std::string& mode,
674                                                     bool tsys )
675{
676  if ( val.size() == 1 ){
677    return unaryOperate( in, val[0], mode, tsys ) ;
678  }
679
680  // conformity of SPECTRA and TSYS
681  if ( tsys ) {
682    TableIterator titer(in->table(), "IFNO");
683    while ( !titer.pastEnd() ) {
684      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
685      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
686      Array<Float> spec = specCol.getColumn() ;
687      Array<Float> ts = tsysCol.getColumn() ;
688      if ( !spec.conform( ts ) ) {
689        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
690      }
691      titer.next() ;
692    }
693  }
694
695  // check if all spectra in the scantable have the same number of channel
696  vector<uInt> nchans;
697  vector<uInt> ifnos = in->getIFNos() ;
698  for ( uInt i = 0 ; i < ifnos.size() ; i++ ) {
699    nchans.push_back( in->nchan( ifnos[i] ) ) ;
700  }
701  Vector<uInt> mchans( nchans ) ;
702  if ( anyNE( mchans, mchans[0] ) ) {
703    throw( AipsError("All spectra in the input scantable must have the same number of channel for vector operation." ) ) ;
704  }
705
706  // check if vector size is equal to nchan
707  Vector<Float> fact( val ) ;
708  if ( fact.nelements() != mchans[0] ) {
709    throw( AipsError("Vector size must be 1 or be same as number of channel.") ) ;
710  }
711
712  // check divided by zero
713  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
714    throw( AipsError("Divided by zero is not recommended." ) ) ;
715  }
716
717  CountedPtr< Scantable > out = getScantable(in, false);
718  Table& tab = out->table();
719  ArrayColumn<Float> specCol(tab,"SPECTRA");
720  ArrayColumn<Float> tsysCol(tab,"TSYS");
721  if (mode == "DIV") fact = (float)1.0 / fact;
722  else if (mode == "SUB") fact *= (float)-1.0 ;
723  for (uInt i=0; i<tab.nrow(); ++i) {
724    Vector<Float> spec;
725    Vector<Float> ts;
726    specCol.get(i, spec);
727    tsysCol.get(i, ts);
728    if (mode == "MUL" || mode == "DIV") {
729      //if (mode == "DIV") fact = (float)1.0 / fact;
730      spec *= fact;
731      specCol.put(i, spec);
732      if ( tsys ) {
733        ts *= fact;
734        tsysCol.put(i, ts);
735      }
736    } else if ( mode == "ADD"  || mode == "SUB") {
737      //if (mode == "SUB") fact *= (float)-1.0 ;
738      spec += fact;
739      specCol.put(i, spec);
740      if ( tsys ) {
741        ts += fact;
742        tsysCol.put(i, ts);
743      }
744    }
745  }
746  return out;
747}
748
749CountedPtr< Scantable > STMath::arrayOperateRow( const CountedPtr< Scantable >& in,
750                                                 const std::vector<float> val,
751                                                 const std::string& mode,
752                                                 bool tsys )
753{
754  if ( val.size() == 1 ) {
755    return unaryOperate( in, val[0], mode, tsys ) ;
756  }
757
758  // conformity of SPECTRA and TSYS
759  if ( tsys ) {
760    TableIterator titer(in->table(), "IFNO");
761    while ( !titer.pastEnd() ) {
762      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
763      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
764      Array<Float> spec = specCol.getColumn() ;
765      Array<Float> ts = tsysCol.getColumn() ;
766      if ( !spec.conform( ts ) ) {
767        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
768      }
769      titer.next() ;
770    }
771  }
772
773  // check if vector size is equal to nrow
774  Vector<Float> fact( val ) ;
775  if (fact.nelements() != uInt(in->nrow())) {
776    throw( AipsError("Vector size must be 1 or be same as number of row.") ) ;
777  }
778
779  // check divided by zero
780  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
781    throw( AipsError("Divided by zero is not recommended." ) ) ;
782  }
783
784  CountedPtr< Scantable > out = getScantable(in, false);
785  Table& tab = out->table();
786  ArrayColumn<Float> specCol(tab,"SPECTRA");
787  ArrayColumn<Float> tsysCol(tab,"TSYS");
788  if (mode == "DIV") fact = (float)1.0 / fact;
789  if (mode == "SUB") fact *= (float)-1.0 ;
790  for (uInt i=0; i<tab.nrow(); ++i) {
791    Vector<Float> spec;
792    Vector<Float> ts;
793    specCol.get(i, spec);
794    tsysCol.get(i, ts);
795    if (mode == "MUL" || mode == "DIV") {
796      spec *= fact[i];
797      specCol.put(i, spec);
798      if ( tsys ) {
799        ts *= fact[i];
800        tsysCol.put(i, ts);
801      }
802    } else if ( mode == "ADD"  || mode == "SUB") {
803      spec += fact[i];
804      specCol.put(i, spec);
805      if ( tsys ) {
806        ts += fact[i];
807        tsysCol.put(i, ts);
808      }
809    }
810  }
811  return out;
812}
813
814CountedPtr< Scantable > STMath::array2dOperate( const CountedPtr< Scantable >& in,
815                                                const std::vector< std::vector<float> > val,
816                                                const std::string& mode,
817                                                bool tsys )
818{
819  // conformity of SPECTRA and TSYS
820  if ( tsys ) {
821    TableIterator titer(in->table(), "IFNO");
822    while ( !titer.pastEnd() ) {
823      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
824      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
825      Array<Float> spec = specCol.getColumn() ;
826      Array<Float> ts = tsysCol.getColumn() ;
827      if ( !spec.conform( ts ) ) {
828        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
829      }
830      titer.next() ;
831    }
832  }
833
834  // some checks
835  vector<uInt> nchans;
836  for (Int i = 0 ; i < in->nrow() ; i++) {
837    nchans.push_back((in->getSpectrum(i)).size());
838  }
839  //Vector<uInt> mchans( nchans ) ;
840  vector< Vector<Float> > facts ;
841  for ( uInt i = 0 ; i < nchans.size() ; i++ ) {
842    Vector<Float> tmp( val[i] ) ;
843    // check divided by zero
844    if ( ( mode == "DIV" ) && anyEQ( tmp, (float)0.0 ) ) {
845      throw( AipsError("Divided by zero is not recommended." ) ) ;
846    }
847    // conformity check
848    if ( tmp.nelements() != nchans[i] ) {
849      stringstream ss ;
850      ss << "Row " << i << ": Vector size must be same as number of channel." ;
851      throw( AipsError( ss.str() ) ) ;
852    }
853    facts.push_back( tmp ) ;
854  }
855
856
857  CountedPtr< Scantable > out = getScantable(in, false);
858  Table& tab = out->table();
859  ArrayColumn<Float> specCol(tab,"SPECTRA");
860  ArrayColumn<Float> tsysCol(tab,"TSYS");
861  for (uInt i=0; i<tab.nrow(); ++i) {
862    Vector<Float> fact = facts[i] ;
863    Vector<Float> spec;
864    Vector<Float> ts;
865    specCol.get(i, spec);
866    tsysCol.get(i, ts);
867    if (mode == "MUL" || mode == "DIV") {
868      if (mode == "DIV") fact = (float)1.0 / fact;
869      spec *= fact;
870      specCol.put(i, spec);
871      if ( tsys ) {
872        ts *= fact;
873        tsysCol.put(i, ts);
874      }
875    } else if ( mode == "ADD"  || mode == "SUB") {
876      if (mode == "SUB") fact *= (float)-1.0 ;
877      spec += fact;
878      specCol.put(i, spec);
879      if ( tsys ) {
880        ts += fact;
881        tsysCol.put(i, ts);
882      }
883    }
884  }
885  return out;
886}
887
888CountedPtr<Scantable> STMath::binaryOperate(const CountedPtr<Scantable>& left,
889                                            const CountedPtr<Scantable>& right,
890                                            const std::string& mode)
891{
892  bool insitu = insitu_;
893  if ( ! left->conformant(*right) ) {
894    throw(AipsError("'left' and 'right' scantables are not conformant."));
895  }
896  setInsitu(false);
897  CountedPtr< Scantable > out = getScantable(left, false);
898  setInsitu(insitu);
899  Table& tout = out->table();
900  Block<String> coln(5);
901  coln[0] = "SCANNO";  coln[1] = "CYCLENO";  coln[2] = "BEAMNO";
902  coln[3] = "IFNO";  coln[4] = "POLNO";
903  Table tmpl = tout.sort(coln);
904  Table tmpr = right->table().sort(coln);
905  ArrayColumn<Float> lspecCol(tmpl,"SPECTRA");
906  ROArrayColumn<Float> rspecCol(tmpr,"SPECTRA");
907  ArrayColumn<uChar> lflagCol(tmpl,"FLAGTRA");
908  ROArrayColumn<uChar> rflagCol(tmpr,"FLAGTRA");
909
910  for (uInt i=0; i<tout.nrow(); ++i) {
911    Vector<Float> lspecvec, rspecvec;
912    Vector<uChar> lflagvec, rflagvec;
913    lspecvec = lspecCol(i);    rspecvec = rspecCol(i);
914    lflagvec = lflagCol(i);    rflagvec = rflagCol(i);
915    MaskedArray<Float> mleft = maskedArray(lspecvec, lflagvec);
916    MaskedArray<Float> mright = maskedArray(rspecvec, rflagvec);
917    if (mode == "ADD") {
918      mleft += mright;
919    } else if ( mode == "SUB") {
920      mleft -= mright;
921    } else if ( mode == "MUL") {
922      mleft *= mright;
923    } else if ( mode == "DIV") {
924      mleft /= mright;
925    } else {
926      throw(AipsError("Illegal binary operator"));
927    }
928    lspecCol.put(i, mleft.getArray());
929  }
930  return out;
931}
932
933
934
935MaskedArray<Float> STMath::maskedArray( const Vector<Float>& s,
936                                        const Vector<uChar>& f)
937{
938  Vector<Bool> mask;
939  mask.resize(f.shape());
940  convertArray(mask, f);
941  return MaskedArray<Float>(s,!mask);
942}
943
944MaskedArray<Double> STMath::maskedArray( const Vector<Double>& s,
945                                         const Vector<uChar>& f)
946{
947  Vector<Bool> mask;
948  mask.resize(f.shape());
949  convertArray(mask, f);
950  return MaskedArray<Double>(s,!mask);
951}
952
953Vector<uChar> STMath::flagsFromMA(const MaskedArray<Float>& ma)
954{
955  const Vector<Bool>& m = ma.getMask();
956  Vector<uChar> flags(m.shape());
957  convertArray(flags, !m);
958  return flags;
959}
960
961CountedPtr< Scantable > STMath::autoQuotient( const CountedPtr< Scantable >& in,
962                                              const std::string & mode,
963                                              bool preserve )
964{
965  /// @todo make other modes available
966  /// modes should be "nearest", "pair"
967  // make this operation non insitu
968  (void) mode; //currently unused
969  const Table& tin = in->table();
970  Table ons = tin(tin.col("SRCTYPE") == Int(SrcType::PSON));
971  Table offs = tin(tin.col("SRCTYPE") == Int(SrcType::PSOFF));
972  if ( offs.nrow() == 0 )
973    throw(AipsError("No 'off' scans present."));
974  // put all "on" scans into output table
975
976  bool insitu = insitu_;
977  setInsitu(false);
978  CountedPtr< Scantable > out = getScantable(in, true);
979  setInsitu(insitu);
980  Table& tout = out->table();
981
982  TableCopy::copyRows(tout, ons);
983  TableRow row(tout);
984  ROScalarColumn<Double> offtimeCol(offs, "TIME");
985  ArrayColumn<Float> outspecCol(tout, "SPECTRA");
986  ROArrayColumn<Float> outtsysCol(tout, "TSYS");
987  ArrayColumn<uChar> outflagCol(tout, "FLAGTRA");
988  for (uInt i=0; i < tout.nrow(); ++i) {
989    const TableRecord& rec = row.get(i);
990    Double ontime = rec.asDouble("TIME");
991    Table presel = offs(offs.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
992                        && offs.col("IFNO") == Int(rec.asuInt("IFNO"))
993                        && offs.col("POLNO") == Int(rec.asuInt("POLNO")) );
994    ROScalarColumn<Double> offtimeCol(presel, "TIME");
995
996    Double mindeltat = min(abs(offtimeCol.getColumn() - ontime));
997    // Timestamp may vary within a cycle ???!!!
998    // increase this by 0.01 sec in case of rounding errors...
999    // There might be a better way to do this.
1000    // fix to this fix. TIME is MJD, so 1.0d not 1.0s
1001    mindeltat += 0.01/24./60./60.;
1002    Table sel = presel( abs(presel.col("TIME")-ontime) <= mindeltat);
1003
1004    if ( sel.nrow() < 1 )  {
1005      throw(AipsError("No closest in time found... This could be a rounding "
1006                      "issue. Try quotient instead."));
1007    }
1008    TableRow offrow(sel);
1009    const TableRecord& offrec = offrow.get(0);//should only be one row
1010    RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
1011    RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
1012    RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
1013    /// @fixme this assumes tsys is a scalar not vector
1014    Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
1015    Vector<Float> specon, tsyson;
1016    outtsysCol.get(i, tsyson);
1017    outspecCol.get(i, specon);
1018    Vector<uChar> flagon;
1019    outflagCol.get(i, flagon);
1020    MaskedArray<Float> mon = maskedArray(specon, flagon);
1021    MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
1022    MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
1023    if (preserve) {
1024      quot -= tsysoffscalar;
1025    } else {
1026      quot -= tsyson[0];
1027    }
1028    outspecCol.put(i, quot.getArray());
1029    outflagCol.put(i, flagsFromMA(quot));
1030  }
1031  // renumber scanno
1032  TableIterator it(tout, "SCANNO");
1033  uInt i = 0;
1034  while ( !it.pastEnd() ) {
1035    Table t = it.table();
1036    TableVector<uInt> vec(t, "SCANNO");
1037    vec = i;
1038    ++i;
1039    ++it;
1040  }
1041  return out;
1042}
1043
1044
1045CountedPtr< Scantable > STMath::quotient( const CountedPtr< Scantable > & on,
1046                                          const CountedPtr< Scantable > & off,
1047                                          bool preserve )
1048{
1049  bool insitu = insitu_;
1050  if ( ! on->conformant(*off) ) {
1051    throw(AipsError("'on' and 'off' scantables are not conformant."));
1052  }
1053  setInsitu(false);
1054  CountedPtr< Scantable > out = getScantable(on, false);
1055  setInsitu(insitu);
1056  Table& tout = out->table();
1057  const Table& toff = off->table();
1058  TableIterator sit(tout, "SCANNO");
1059  TableIterator s2it(toff, "SCANNO");
1060  while ( !sit.pastEnd() ) {
1061    Table ton = sit.table();
1062    TableRow row(ton);
1063    Table t = s2it.table();
1064    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1065    ROArrayColumn<Float> outtsysCol(ton, "TSYS");
1066    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1067    for (uInt i=0; i < ton.nrow(); ++i) {
1068      const TableRecord& rec = row.get(i);
1069      Table offsel = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1070                          && t.col("IFNO") == Int(rec.asuInt("IFNO"))
1071                          && t.col("POLNO") == Int(rec.asuInt("POLNO")) );
1072      if ( offsel.nrow() == 0 )
1073        throw AipsError("STMath::quotient: no matching off");
1074      TableRow offrow(offsel);
1075      const TableRecord& offrec = offrow.get(0);//should be ncycles - take first
1076      RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
1077      RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
1078      RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
1079      Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
1080      Vector<Float> specon, tsyson;
1081      outtsysCol.get(i, tsyson);
1082      outspecCol.get(i, specon);
1083      Vector<uChar> flagon;
1084      outflagCol.get(i, flagon);
1085      MaskedArray<Float> mon = maskedArray(specon, flagon);
1086      MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
1087      MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
1088      if (preserve) {
1089        quot -= tsysoffscalar;
1090      } else {
1091        quot -= tsyson[0];
1092      }
1093      outspecCol.put(i, quot.getArray());
1094      outflagCol.put(i, flagsFromMA(quot));
1095    }
1096    ++sit;
1097    ++s2it;
1098    // take the first off for each on scan which doesn't have a
1099    // matching off scan
1100    // non <= noff:  matching pairs, non > noff matching pairs then first off
1101    if ( s2it.pastEnd() ) s2it.reset();
1102  }
1103  return out;
1104}
1105
1106// dototalpower (migration of GBTIDL procedure dototalpower.pro)
1107// calibrate the CAL on-off pair. It calculate Tsys and average CAL on-off subintegrations
1108// do it for each cycles in a specific scan.
1109CountedPtr< Scantable > STMath::dototalpower( const CountedPtr< Scantable >& calon,
1110                                              const CountedPtr< Scantable >& caloff, Float tcal )
1111{
1112  if ( ! calon->conformant(*caloff) ) {
1113    throw(AipsError("'CAL on' and 'CAL off' scantables are not conformant."));
1114  }
1115  setInsitu(false);
1116  CountedPtr< Scantable > out = getScantable(caloff, false);
1117  Table& tout = out->table();
1118  const Table& tcon = calon->table();
1119  Vector<Float> tcalout;
1120
1121  std::map<uInt,uInt> tcalIdToRecNoMap;
1122  const Table& calOffTcalTable = caloff->tcal().table();
1123  {
1124    ROScalarColumn<uInt> calOffTcalTable_IDcol(calOffTcalTable, "ID");
1125    const Vector<uInt> tcalIds(calOffTcalTable_IDcol.getColumn());
1126    size_t tcalIdsEnd = tcalIds.nelements();
1127    for (uInt i = 0; i < tcalIdsEnd; i++) {
1128      tcalIdToRecNoMap[tcalIds[i]] = i;
1129    }
1130  }
1131  ROArrayColumn<Float> calOffTcalTable_TCALcol(calOffTcalTable, "TCAL");
1132
1133  if ( tout.nrow() != tcon.nrow() ) {
1134    throw(AipsError("Mismatch in number of rows to form cal on - off pair."));
1135  }
1136  // iteration by scanno or cycle no.
1137  TableIterator sit(tout, "SCANNO");
1138  TableIterator s2it(tcon, "SCANNO");
1139  while ( !sit.pastEnd() ) {
1140    Table toff = sit.table();
1141    TableRow row(toff);
1142    Table t = s2it.table();
1143    ScalarColumn<Double> outintCol(toff, "INTERVAL");
1144    ArrayColumn<Float> outspecCol(toff, "SPECTRA");
1145    ArrayColumn<Float> outtsysCol(toff, "TSYS");
1146    ArrayColumn<uChar> outflagCol(toff, "FLAGTRA");
1147    ROScalarColumn<uInt> outtcalIdCol(toff, "TCAL_ID");
1148    ROScalarColumn<uInt> outpolCol(toff, "POLNO");
1149    ROScalarColumn<Double> onintCol(t, "INTERVAL");
1150    ROArrayColumn<Float> onspecCol(t, "SPECTRA");
1151    ROArrayColumn<Float> ontsysCol(t, "TSYS");
1152    ROArrayColumn<uChar> onflagCol(t, "FLAGTRA");
1153    //ROScalarColumn<uInt> ontcalIdCol(t, "TCAL_ID");
1154
1155    for (uInt i=0; i < toff.nrow(); ++i) {
1156      //skip these checks -> assumes the data order are the same between the cal on off pairs
1157      //
1158      Vector<Float> specCalon, specCaloff;
1159      // to store scalar (mean) tsys
1160      Vector<Float> tsysout(1);
1161      uInt tcalId, polno;
1162      Double offint, onint;
1163      outpolCol.get(i, polno);
1164      outspecCol.get(i, specCaloff);
1165      onspecCol.get(i, specCalon);
1166      Vector<uChar> flagCaloff, flagCalon;
1167      outflagCol.get(i, flagCaloff);
1168      onflagCol.get(i, flagCalon);
1169      outtcalIdCol.get(i, tcalId);
1170      outintCol.get(i, offint);
1171      onintCol.get(i, onint);
1172      // caluculate mean Tsys
1173      uInt nchan = specCaloff.nelements();
1174      // percentage of edge cut off
1175      uInt pc = 10;
1176      uInt bchan = nchan/pc;
1177      uInt echan = nchan-bchan;
1178
1179      Slicer chansl(IPosition(1,bchan-1), IPosition(1,echan-1), IPosition(1,1),Slicer::endIsLast);
1180      Vector<Float> testsubsp = specCaloff(chansl);
1181      MaskedArray<Float> spoff = maskedArray( specCaloff(chansl),flagCaloff(chansl) );
1182      MaskedArray<Float> spon = maskedArray( specCalon(chansl),flagCalon(chansl) );
1183      MaskedArray<Float> spdiff = spon-spoff;
1184      uInt noff = spoff.nelementsValid();
1185      //uInt non = spon.nelementsValid();
1186      uInt ndiff = spdiff.nelementsValid();
1187      Float meantsys;
1188
1189/**
1190      Double subspec, subdiff;
1191      uInt usednchan;
1192      subspec = 0;
1193      subdiff = 0;
1194      usednchan = 0;
1195      for(uInt k=(bchan-1); k<echan; k++) {
1196        subspec += specCaloff[k];
1197        subdiff += static_cast<Double>(specCalon[k]-specCaloff[k]);
1198        ++usednchan;
1199      }
1200**/
1201      // get tcal if input tcal <= 0
1202      Float tcalUsed;
1203      tcalUsed = tcal;
1204      if ( tcal <= 0.0 ) {
1205        uInt tcalRecNo = tcalIdToRecNoMap[tcalId];
1206        calOffTcalTable_TCALcol.get(tcalRecNo, tcalout);
1207//         if (polno<=3) {
1208//           tcalUsed = tcalout[polno];
1209//         }
1210//         else {
1211//           tcalUsed = tcalout[0];
1212//         }
1213        if ( tcalout.size() == 1 )
1214          tcalUsed = tcalout[0] ;
1215        else if ( tcalout.size() == nchan )
1216          tcalUsed = mean(tcalout) ;
1217        else {
1218          uInt ipol = polno ;
1219          if ( ipol > 3 ) ipol = 0 ;
1220          tcalUsed = tcalout[ipol] ;
1221        }
1222      }
1223
1224      Float meanoff;
1225      Float meandiff;
1226      if (noff && ndiff) {
1227         //Debug
1228         //if(noff!=ndiff) cerr<<"noff and ndiff is not equal"<<endl;
1229         //LogIO os( LogOrigin( "STMath", "dototalpower()", WHERE ) ) ;
1230         //if(noff!=ndiff) os<<"noff and ndiff is not equal"<<LogIO::POST;
1231         meanoff = sum(spoff)/noff;
1232         meandiff = sum(spdiff)/ndiff;
1233         meantsys= (meanoff/meandiff )*tcalUsed + tcalUsed/2;
1234      }
1235      else {
1236         meantsys=1;
1237      }
1238
1239      tsysout[0] = Float(meantsys);
1240      MaskedArray<Float> mcaloff = maskedArray(specCaloff, flagCaloff);
1241      MaskedArray<Float> mcalon = maskedArray(specCalon, flagCalon);
1242      MaskedArray<Float> sig =   Float(0.5) * (mcaloff + mcalon);
1243      //uInt ncaloff = mcaloff.nelementsValid();
1244      //uInt ncalon = mcalon.nelementsValid();
1245
1246      outintCol.put(i, offint+onint);
1247      outspecCol.put(i, sig.getArray());
1248      outflagCol.put(i, flagsFromMA(sig));
1249      outtsysCol.put(i, tsysout);
1250    }
1251    ++sit;
1252    ++s2it;
1253  }
1254  return out;
1255}
1256
1257//dosigref - migrated from GBT IDL's dosigref.pro, do calibration of position switch
1258// observatiions.
1259// input: sig and ref scantables, and an optional boxcar smoothing width(default width=0,
1260//        no smoothing).
1261// output: resultant scantable [= (sig-ref/ref)*tsys]
1262CountedPtr< Scantable > STMath::dosigref( const CountedPtr < Scantable >& sig,
1263                                          const CountedPtr < Scantable >& ref,
1264                                          int smoothref,
1265                                          casa::Float tsysv,
1266                                          casa::Float tau )
1267{
1268  LogIO os( casa::LogOrigin( "STMath", "dosigref()"));
1269if ( ! ref->conformant(*sig) ) {
1270    throw(AipsError("'sig' and 'ref' scantables are not conformant."));
1271  }
1272  setInsitu(false);
1273  CountedPtr< Scantable > out = getScantable(sig, false);
1274  CountedPtr< Scantable > smref;
1275  if ( smoothref > 1 ) {
1276    float fsmoothref = static_cast<float>(smoothref);
1277    std::string inkernel = "boxcar";
1278    smref = smooth(ref, inkernel, fsmoothref );
1279    ostringstream oss;
1280    os <<"Applied smoothing of "<<fsmoothref<<" on the reference."
1281       << LogIO::POST;
1282  }
1283  else {
1284    smref = ref;
1285  }
1286  Table& tout = out->table();
1287  const Table& tref = smref->table();
1288  if ( tout.nrow() != tref.nrow() ) {
1289    throw(AipsError("Mismatch in number of rows to form on-source and reference pair."));
1290  }
1291  // iteration by scanno? or cycle no.
1292  TableIterator sit(tout, "SCANNO");
1293  TableIterator s2it(tref, "SCANNO");
1294  while ( !sit.pastEnd() ) {
1295    Table ton = sit.table();
1296    Table t = s2it.table();
1297    ScalarColumn<Double> outintCol(ton, "INTERVAL");
1298    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1299    ArrayColumn<Float> outtsysCol(ton, "TSYS");
1300    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1301    ArrayColumn<Float> refspecCol(t, "SPECTRA");
1302    ROScalarColumn<Double> refintCol(t, "INTERVAL");
1303    ROArrayColumn<Float> reftsysCol(t, "TSYS");
1304    ArrayColumn<uChar> refflagCol(t, "FLAGTRA");
1305    ROScalarColumn<Float> refelevCol(t, "ELEVATION");
1306    for (uInt i=0; i < ton.nrow(); ++i) {
1307
1308      Double onint, refint;
1309      Vector<Float> specon, specref;
1310      // to store scalar (mean) tsys
1311      Vector<Float> tsysref;
1312      outintCol.get(i, onint);
1313      refintCol.get(i, refint);
1314      outspecCol.get(i, specon);
1315      refspecCol.get(i, specref);
1316      Vector<uChar> flagref, flagon;
1317      outflagCol.get(i, flagon);
1318      refflagCol.get(i, flagref);
1319      reftsysCol.get(i, tsysref);
1320
1321      Float tsysrefscalar;
1322      if ( tsysv > 0.0 ) {
1323        ostringstream oss;
1324        Float elev;
1325        refelevCol.get(i, elev);
1326        os << "user specified Tsys = " << tsysv;
1327        // do recalc elevation if EL = 0
1328        if ( elev == 0 ) {
1329          throw(AipsError("EL=0, elevation data is missing."));
1330        } else {
1331          if ( tau <= 0.0 ) {
1332            throw(AipsError("Valid tau is not supplied."));
1333          } else {
1334            tsysrefscalar = tsysv * exp(tau/elev);
1335          }
1336        }
1337        os << ", corrected (for El) tsys= "<<tsysrefscalar;
1338      }
1339      else {
1340        tsysrefscalar = tsysref[0];
1341      }
1342      //get quotient spectrum
1343      MaskedArray<Float> mref = maskedArray(specref, flagref);
1344      MaskedArray<Float> mon = maskedArray(specon, flagon);
1345      MaskedArray<Float> specres =   tsysrefscalar*((mon - mref)/mref);
1346      Double resint = onint*refint*smoothref/(onint+refint*smoothref);
1347
1348      //Debug
1349      //cerr<<"Tsys used="<<tsysrefscalar<<endl;
1350      //LogIO os( LogOrigin( "STMath", "dosigref", WHERE ) ) ;
1351      //os<<"Tsys used="<<tsysrefscalar<<LogIO::POST;
1352      // fill the result, replay signal tsys by reference tsys
1353      outintCol.put(i, resint);
1354      outspecCol.put(i, specres.getArray());
1355      outflagCol.put(i, flagsFromMA(specres));
1356      outtsysCol.put(i, tsysref);
1357    }
1358    ++sit;
1359    ++s2it;
1360  }
1361 
1362  out->setFluxUnit("K");
1363
1364  return out;
1365}
1366
1367CountedPtr< Scantable > STMath::donod(const casa::CountedPtr<Scantable>& s,
1368                                     const std::vector<int>& scans,
1369                                     int smoothref,
1370                                     casa::Float tsysv,
1371                                     casa::Float tau,
1372                                     casa::Float tcal )
1373
1374{
1375  setInsitu(false);
1376  LogIO os( casa::LogOrigin( "STMath", "donod()"));
1377  STSelector sel;
1378  std::vector<int> scan1, scan2, beams, types;
1379  std::vector< vector<int> > scanpair;
1380  //std::vector<string> calstate;
1381  std::vector<int> calstate;
1382  String msg;
1383
1384  CountedPtr< Scantable > s1b1on, s1b1off, s1b2on, s1b2off;
1385  CountedPtr< Scantable > s2b1on, s2b1off, s2b2on, s2b2off;
1386
1387  std::vector< CountedPtr< Scantable > > sctables;
1388  sctables.push_back(s1b1on);
1389  sctables.push_back(s1b1off);
1390  sctables.push_back(s1b2on);
1391  sctables.push_back(s1b2off);
1392  sctables.push_back(s2b1on);
1393  sctables.push_back(s2b1off);
1394  sctables.push_back(s2b2on);
1395  sctables.push_back(s2b2off);
1396
1397  //check scanlist
1398  int n=s->checkScanInfo(scans);
1399  if (n==1) {
1400     throw(AipsError("Incorrect scan pairs. "));
1401  }
1402
1403  // Assume scans contain only a pair of consecutive scan numbers.
1404  // It is assumed that first beam, b1,  is on target.
1405  // There is no check if the first beam is on or not.
1406  if ( scans.size()==1 ) {
1407    scan1.push_back(scans[0]);
1408    scan2.push_back(scans[0]+1);
1409  } else if ( scans.size()==2 ) {
1410   scan1.push_back(scans[0]);
1411   scan2.push_back(scans[1]);
1412  } else {
1413    if ( scans.size()%2 == 0 ) {
1414      for (uInt i=0; i<scans.size(); i++) {
1415        if (i%2 == 0) {
1416          scan1.push_back(scans[i]);
1417        }
1418        else {
1419          scan2.push_back(scans[i]);
1420        }
1421      }
1422    } else {
1423      throw(AipsError("Odd numbers of scans, cannot form pairs."));
1424    }
1425  }
1426  scanpair.push_back(scan1);
1427  scanpair.push_back(scan2);
1428  //calstate.push_back("*calon");
1429  //calstate.push_back("*[^calon]");
1430  calstate.push_back(SrcType::NODCAL);
1431  calstate.push_back(SrcType::NOD);
1432  CountedPtr< Scantable > ws = getScantable(s, false);
1433  uInt l=0;
1434  while ( l < sctables.size() ) {
1435    for (uInt i=0; i < 2; i++) {
1436      for (uInt j=0; j < 2; j++) {
1437        for (uInt k=0; k < 2; k++) {
1438          sel.reset();
1439          sel.setScans(scanpair[i]);
1440          //sel.setName(calstate[k]);
1441          types.clear();
1442          types.push_back(calstate[k]);
1443          sel.setTypes(types);
1444          beams.clear();
1445          beams.push_back(j);
1446          sel.setBeams(beams);
1447          ws->setSelection(sel);
1448          sctables[l]= getScantable(ws, false);
1449          l++;
1450        }
1451      }
1452    }
1453  }
1454
1455  // replace here by splitData or getData functionality
1456  CountedPtr< Scantable > sig1;
1457  CountedPtr< Scantable > ref1;
1458  CountedPtr< Scantable > sig2;
1459  CountedPtr< Scantable > ref2;
1460  CountedPtr< Scantable > calb1;
1461  CountedPtr< Scantable > calb2;
1462
1463  msg=String("Processing dototalpower for subset of the data");
1464  os << msg << LogIO::POST;
1465  // Debug for IRC CS data
1466  //float tcal1=7.0;
1467  //float tcal2=4.0;
1468  sig1 = dototalpower(sctables[0], sctables[1], tcal=tcal);
1469  ref1 = dototalpower(sctables[2], sctables[3], tcal=tcal);
1470  ref2 = dototalpower(sctables[4], sctables[5], tcal=tcal);
1471  sig2 = dototalpower(sctables[6], sctables[7], tcal=tcal);
1472
1473  // correction of user-specified tsys for elevation here
1474
1475  // dosigref calibration
1476  msg=String("Processing dosigref for subset of the data");
1477  os << msg  << endl;
1478  calb1=dosigref(sig1,ref2,smoothref,tsysv,tau);
1479  calb2=dosigref(sig2,ref1,smoothref,tsysv,tau);
1480
1481  // iteration by scanno or cycle no.
1482  Table& tcalb1 = calb1->table();
1483  Table& tcalb2 = calb2->table();
1484  TableIterator sit(tcalb1, "SCANNO");
1485  TableIterator s2it(tcalb2, "SCANNO");
1486  while ( !sit.pastEnd() ) {
1487    Table t1 = sit.table();
1488    Table t2= s2it.table();
1489    ArrayColumn<Float> outspecCol(t1, "SPECTRA");
1490    ArrayColumn<Float> outtsysCol(t1, "TSYS");
1491    ArrayColumn<uChar> outflagCol(t1, "FLAGTRA");
1492    ScalarColumn<Double> outintCol(t1, "INTERVAL");
1493    ArrayColumn<Float> t2specCol(t2, "SPECTRA");
1494    ROArrayColumn<Float> t2tsysCol(t2, "TSYS");
1495    ArrayColumn<uChar> t2flagCol(t2, "FLAGTRA");
1496    ROScalarColumn<Double> t2intCol(t2, "INTERVAL");
1497    for (uInt i=0; i < t1.nrow(); ++i) {
1498      Vector<Float> spec1, spec2;
1499      // to store scalar (mean) tsys
1500      Vector<Float> tsys1, tsys2;
1501      Vector<uChar> flag1, flag2;
1502      Double tint1, tint2;
1503      outspecCol.get(i, spec1);
1504      t2specCol.get(i, spec2);
1505      outflagCol.get(i, flag1);
1506      t2flagCol.get(i, flag2);
1507      outtsysCol.get(i, tsys1);
1508      t2tsysCol.get(i, tsys2);
1509      outintCol.get(i, tint1);
1510      t2intCol.get(i, tint2);
1511      // average
1512      // assume scalar tsys for weights
1513      Float wt1, wt2, tsyssq1, tsyssq2;
1514      tsyssq1 = tsys1[0]*tsys1[0];
1515      tsyssq2 = tsys2[0]*tsys2[0];
1516      wt1 = Float(tint1)/tsyssq1;
1517      wt2 = Float(tint2)/tsyssq2;
1518      Float invsumwt=1/(wt1+wt2);
1519      MaskedArray<Float> mspec1 = maskedArray(spec1, flag1);
1520      MaskedArray<Float> mspec2 = maskedArray(spec2, flag2);
1521      MaskedArray<Float> avspec =  invsumwt * (wt1*mspec1 + wt2*mspec2);
1522      //Array<Float> avtsys =  Float(0.5) * (tsys1 + tsys2);
1523      // cerr<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<endl;
1524      // LogIO os( LogOrigin( "STMath", "donod", WHERE ) ) ;
1525      // os<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<LogIO::POST;
1526      tsys1[0] = sqrt(tsyssq1 + tsyssq2);
1527      Array<Float> avtsys =  tsys1;
1528
1529      outspecCol.put(i, avspec.getArray());
1530      outflagCol.put(i, flagsFromMA(avspec));
1531      outtsysCol.put(i, avtsys);
1532    }
1533    ++sit;
1534    ++s2it;
1535  }
1536
1537  calb1->setFluxUnit("K");
1538 
1539  return calb1;
1540}
1541
1542//GBTIDL version of frequency switched data calibration
1543CountedPtr< Scantable > STMath::dofs( const CountedPtr< Scantable >& s,
1544                                      const std::vector<int>& scans,
1545                                      int smoothref,
1546                                      casa::Float tsysv,
1547                                      casa::Float tau,
1548                                      casa::Float tcal )
1549{
1550
1551
1552  (void) scans; //currently unused
1553  STSelector sel;
1554  CountedPtr< Scantable > ws = getScantable(s, false);
1555  CountedPtr< Scantable > sig, sigwcal, ref, refwcal;
1556  CountedPtr< Scantable > calsig, calref, out, out1, out2;
1557  Bool nofold=False;
1558  vector<int> types ;
1559
1560  //split the data
1561  //sel.setName("*_fs");
1562  types.push_back( SrcType::FSON ) ;
1563  sel.setTypes( types ) ;
1564  ws->setSelection(sel);
1565  sig = getScantable(ws,false);
1566  sel.reset();
1567  types.clear() ;
1568  //sel.setName("*_fs_calon");
1569  types.push_back( SrcType::FONCAL ) ;
1570  sel.setTypes( types ) ;
1571  ws->setSelection(sel);
1572  sigwcal = getScantable(ws,false);
1573  sel.reset();
1574  types.clear() ;
1575  //sel.setName("*_fsr");
1576  types.push_back( SrcType::FSOFF ) ;
1577  sel.setTypes( types ) ;
1578  ws->setSelection(sel);
1579  ref = getScantable(ws,false);
1580  sel.reset();
1581  types.clear() ;
1582  //sel.setName("*_fsr_calon");
1583  types.push_back( SrcType::FOFFCAL ) ;
1584  sel.setTypes( types ) ;
1585  ws->setSelection(sel);
1586  refwcal = getScantable(ws,false);
1587  sel.reset() ;
1588  types.clear() ;
1589
1590  calsig = dototalpower(sigwcal, sig, tcal=tcal);
1591  calref = dototalpower(refwcal, ref, tcal=tcal);
1592
1593  out1=dosigref(calsig,calref,smoothref,tsysv,tau);
1594  out2=dosigref(calref,calsig,smoothref,tsysv,tau);
1595
1596  Table& tabout1=out1->table();
1597  Table& tabout2=out2->table();
1598  ROScalarColumn<uInt> freqidCol1(tabout1, "FREQ_ID");
1599  ScalarColumn<uInt> freqidCol2(tabout2, "FREQ_ID");
1600  ROArrayColumn<Float> specCol(tabout2, "SPECTRA");
1601  Vector<Float> spec; specCol.get(0, spec);
1602  uInt nchan = spec.nelements();
1603  uInt freqid1; freqidCol1.get(0,freqid1);
1604  uInt freqid2; freqidCol2.get(0,freqid2);
1605  Double rp1, rp2, rv1, rv2, inc1, inc2;
1606  out1->frequencies().getEntry(rp1, rv1, inc1, freqid1);
1607  out2->frequencies().getEntry(rp2, rv2, inc2, freqid2);
1608  //cerr << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << endl ;
1609  //LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1610  //os << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << LogIO::POST ;
1611  if (rp1==rp2) {
1612    Double foffset = rv1 - rv2;
1613    uInt choffset = static_cast<uInt>(foffset/abs(inc2));
1614    if (choffset >= nchan) {
1615      //cerr<<"out-band frequency switching, no folding"<<endl;
1616      LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1617      os<<"out-band frequency switching, no folding"<<LogIO::POST;
1618      nofold = True;
1619    }
1620  }
1621
1622  if (nofold) {
1623    std::vector< CountedPtr< Scantable > > tabs;
1624    tabs.push_back(out1);
1625    tabs.push_back(out2);
1626    out = merge(tabs);
1627  }
1628  else {
1629    //out = out1;
1630    Double choffset = ( rv1 - rv2 ) / inc2 ;
1631    out = dofold( out1, out2, choffset ) ;
1632  }
1633   
1634  out->setFluxUnit("K");
1635
1636  return out;
1637}
1638
1639CountedPtr<Scantable> STMath::dofold( const CountedPtr<Scantable> &sig,
1640                                      const CountedPtr<Scantable> &ref,
1641                                      Double choffset,
1642                                      Double choffset2 )
1643{
1644  LogIO os( LogOrigin( "STMath", "dofold", WHERE ) ) ;
1645  os << "choffset=" << choffset << " choffset2=" << choffset2 << LogIO::POST ;
1646
1647  // output scantable
1648  CountedPtr<Scantable> out = getScantable( sig, false ) ;
1649
1650  // separate choffset to integer part and decimal part
1651  Int ioffset = (Int)choffset ;
1652  Double doffset = choffset - ioffset ;
1653  Int ioffset2 = (Int)choffset2 ;
1654  Double doffset2 = choffset2 - ioffset2 ;
1655  os << "ioffset=" << ioffset << " doffset=" << doffset << LogIO::POST ;
1656  os << "ioffset2=" << ioffset2 << " doffset2=" << doffset2 << LogIO::POST ; 
1657
1658  // get column
1659  ROArrayColumn<Float> specCol1( sig->table(), "SPECTRA" ) ;
1660  ROArrayColumn<Float> specCol2( ref->table(), "SPECTRA" ) ;
1661  ROArrayColumn<Float> tsysCol1( sig->table(), "TSYS" ) ;
1662  ROArrayColumn<Float> tsysCol2( ref->table(), "TSYS" ) ;
1663  ROArrayColumn<uChar> flagCol1( sig->table(), "FLAGTRA" ) ;
1664  ROArrayColumn<uChar> flagCol2( ref->table(), "FLAGTRA" ) ;
1665  ROScalarColumn<Double> mjdCol1( sig->table(), "TIME" ) ;
1666  ROScalarColumn<Double> mjdCol2( ref->table(), "TIME" ) ;
1667  ROScalarColumn<Double> intervalCol1( sig->table(), "INTERVAL" ) ;
1668  ROScalarColumn<Double> intervalCol2( ref->table(), "INTERVAL" ) ;
1669
1670  // check
1671  if ( ioffset == 0 ) {
1672    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1673    os << "channel offset is zero, no folding" << LogIO::POST ;
1674    return out ;
1675  }
1676  int nchan = ref->nchan() ;
1677  if ( abs(ioffset) >= nchan ) {
1678    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1679    os << "out-band frequency switching, no folding" << LogIO::POST ;
1680    return out ;
1681  }
1682
1683  // attach column for output scantable
1684  ArrayColumn<Float> specColOut( out->table(), "SPECTRA" ) ;
1685  ArrayColumn<uChar> flagColOut( out->table(), "FLAGTRA" ) ;
1686  ArrayColumn<Float> tsysColOut( out->table(), "TSYS" ) ;
1687  ScalarColumn<Double> mjdColOut( out->table(), "TIME" ) ;
1688  ScalarColumn<Double> intervalColOut( out->table(), "INTERVAL" ) ;
1689  ScalarColumn<uInt> fidColOut( out->table(), "FREQ_ID" ) ;
1690
1691  // for each row
1692  // assume that the data order are same between sig and ref
1693  RowAccumulator acc( asap::W_TINTSYS ) ;
1694  for ( int i = 0 ; i < sig->nrow() ; i++ ) {
1695    // get values
1696    Vector<Float> spsig ;
1697    specCol1.get( i, spsig ) ;
1698    Vector<Float> spref ;
1699    specCol2.get( i, spref ) ;
1700    Vector<Float> tsyssig ;
1701    tsysCol1.get( i, tsyssig ) ;
1702    Vector<Float> tsysref ;
1703    tsysCol2.get( i, tsysref ) ;
1704    Vector<uChar> flagsig ;
1705    flagCol1.get( i, flagsig ) ;
1706    Vector<uChar> flagref ;
1707    flagCol2.get( i, flagref ) ;
1708    Double timesig ;
1709    mjdCol1.get( i, timesig ) ;
1710    Double timeref ;
1711    mjdCol2.get( i, timeref ) ;
1712    Double intsig ;
1713    intervalCol1.get( i, intsig ) ;
1714    Double intref ;
1715    intervalCol2.get( i, intref ) ;
1716
1717    // shift reference spectra
1718    int refchan = spref.nelements() ;
1719    Vector<Float> sspref( spref.nelements() ) ;
1720    Vector<Float> stsysref( tsysref.nelements() ) ;
1721    Vector<uChar> sflagref( flagref.nelements() ) ;
1722    if ( ioffset > 0 ) {
1723      // SPECTRA and FLAGTRA
1724      for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1725        sspref[j] = spref[j+ioffset] ;
1726        sflagref[j] = flagref[j+ioffset] ;
1727      }
1728      for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1729        sspref[j] = spref[j-refchan+ioffset] ;
1730        sflagref[j] = flagref[j-refchan+ioffset] ;
1731      }
1732      spref = sspref.copy() ;
1733      flagref = sflagref.copy() ;
1734      for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1735        sspref[j] = doffset * spref[j+1] + ( 1.0 - doffset ) * spref[j] ;
1736        sflagref[j] = flagref[j+1] + flagref[j] ;
1737      }
1738      sspref[refchan-1] = doffset * spref[0] + ( 1.0 - doffset ) * spref[refchan-1] ;
1739      sflagref[refchan-1] = flagref[0] + flagref[refchan-1] ;
1740
1741      // TSYS
1742      if ( spref.nelements() == tsysref.nelements() ) {
1743        for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1744          stsysref[j] = tsysref[j+ioffset] ;
1745        }
1746        for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1747          stsysref[j] = tsysref[j-refchan+ioffset] ;
1748        }
1749        tsysref = stsysref.copy() ;
1750        for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1751          stsysref[j] = doffset * tsysref[j+1] + ( 1.0 - doffset ) * tsysref[j] ;
1752        }
1753        stsysref[refchan-1] = doffset * tsysref[0] + ( 1.0 - doffset ) * tsysref[refchan-1] ;
1754      }
1755    }
1756    else {
1757      // SPECTRA and FLAGTRA
1758      for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1759        sspref[j] = spref[refchan+ioffset+j] ;
1760        sflagref[j] = flagref[refchan+ioffset+j] ;
1761      }
1762      for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1763        sspref[j] = spref[j+ioffset] ;
1764        sflagref[j] = flagref[j+ioffset] ;
1765      }
1766      spref = sspref.copy() ;
1767      flagref = sflagref.copy() ;
1768      sspref[0] = doffset * spref[refchan-1] + ( 1.0 - doffset ) * spref[0] ;
1769      sflagref[0] = flagref[0] + flagref[refchan-1] ;
1770      for ( int j = 1 ; j < refchan ; j++ ) {
1771        sspref[j] = doffset * spref[j-1] + ( 1.0 - doffset ) * spref[j] ;
1772        sflagref[j] = flagref[j-1] + flagref[j] ;
1773      }
1774      // TSYS
1775      if ( spref.nelements() == tsysref.nelements() ) {
1776        for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1777          stsysref[j] = tsysref[refchan+ioffset+j] ;
1778        }
1779        for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1780          stsysref[j] = tsysref[j+ioffset] ;
1781        }
1782        tsysref = stsysref.copy() ;
1783        stsysref[0] = doffset * tsysref[refchan-1] + ( 1.0 - doffset ) * tsysref[0] ;
1784        for ( int j = 1 ; j < refchan ; j++ ) {
1785          stsysref[j] = doffset * tsysref[j-1] + ( 1.0 - doffset ) * tsysref[j] ;
1786        }
1787      }
1788    }
1789
1790    // shift signal spectra if necessary (only for APEX?)
1791    if ( choffset2 != 0.0 ) {
1792      int sigchan = spsig.nelements() ;
1793      Vector<Float> sspsig( spsig.nelements() ) ;
1794      Vector<Float> stsyssig( tsyssig.nelements() ) ;
1795      Vector<uChar> sflagsig( flagsig.nelements() ) ;
1796      if ( ioffset2 > 0 ) {
1797        // SPECTRA and FLAGTRA
1798        for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1799          sspsig[j] = spsig[j+ioffset2] ;
1800          sflagsig[j] = flagsig[j+ioffset2] ;
1801        }
1802        for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1803          sspsig[j] = spsig[j-sigchan+ioffset2] ;
1804          sflagsig[j] = flagsig[j-sigchan+ioffset2] ;
1805        }
1806        spsig = sspsig.copy() ;
1807        flagsig = sflagsig.copy() ;
1808        for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1809          sspsig[j] = doffset2 * spsig[j+1] + ( 1.0 - doffset2 ) * spsig[j] ;
1810          sflagsig[j] = flagsig[j+1] || flagsig[j] ;
1811        }
1812        sspsig[sigchan-1] = doffset2 * spsig[0] + ( 1.0 - doffset2 ) * spsig[sigchan-1] ;
1813        sflagsig[sigchan-1] = flagsig[0] || flagsig[sigchan-1] ;
1814        // TSTS
1815        if ( spsig.nelements() == tsyssig.nelements() ) {
1816          for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1817            stsyssig[j] = tsyssig[j+ioffset2] ;
1818          }
1819          for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1820            stsyssig[j] = tsyssig[j-sigchan+ioffset2] ;
1821          }
1822          tsyssig = stsyssig.copy() ;
1823          for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1824            stsyssig[j] = doffset2 * tsyssig[j+1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1825          }
1826          stsyssig[sigchan-1] = doffset2 * tsyssig[0] + ( 1.0 - doffset2 ) * tsyssig[sigchan-1] ;
1827        }
1828      }
1829      else {
1830        // SPECTRA and FLAGTRA
1831        for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1832          sspsig[j] = spsig[sigchan+ioffset2+j] ;
1833          sflagsig[j] = flagsig[sigchan+ioffset2+j] ;
1834        }
1835        for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1836          sspsig[j] = spsig[j+ioffset2] ;
1837          sflagsig[j] = flagsig[j+ioffset2] ;
1838        }
1839        spsig = sspsig.copy() ;
1840        flagsig = sflagsig.copy() ;
1841        sspsig[0] = doffset2 * spsig[sigchan-1] + ( 1.0 - doffset2 ) * spsig[0] ;
1842        sflagsig[0] = flagsig[0] + flagsig[sigchan-1] ;
1843        for ( int j = 1 ; j < sigchan ; j++ ) {
1844          sspsig[j] = doffset2 * spsig[j-1] + ( 1.0 - doffset2 ) * spsig[j] ;
1845          sflagsig[j] = flagsig[j-1] + flagsig[j] ;
1846        }
1847        // TSYS
1848        if ( spsig.nelements() == tsyssig.nelements() ) {
1849          for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1850            stsyssig[j] = tsyssig[sigchan+ioffset2+j] ;
1851          }
1852          for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1853            stsyssig[j] = tsyssig[j+ioffset2] ;
1854          }
1855          tsyssig = stsyssig.copy() ;
1856          stsyssig[0] = doffset2 * tsyssig[sigchan-1] + ( 1.0 - doffset2 ) * tsyssig[0] ;
1857          for ( int j = 1 ; j < sigchan ; j++ ) {
1858            stsyssig[j] = doffset2 * tsyssig[j-1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1859          }
1860        }
1861      }
1862    }
1863
1864    // folding
1865    acc.add( spsig, !flagsig, tsyssig, intsig, timesig ) ;
1866    acc.add( sspref, !sflagref, stsysref, intref, timeref ) ;
1867   
1868    // put result
1869    specColOut.put( i, acc.getSpectrum() ) ;
1870    const Vector<Bool> &msk = acc.getMask() ;
1871    Vector<uChar> flg( msk.shape() ) ;
1872    convertArray( flg, !msk ) ;
1873    flagColOut.put( i, flg ) ;
1874    tsysColOut.put( i, acc.getTsys() ) ;
1875    intervalColOut.put( i, acc.getInterval() ) ;
1876    mjdColOut.put( i, acc.getTime() ) ;
1877    // change FREQ_ID to unshifted IF setting (only for APEX?)
1878    if ( choffset2 != 0.0 ) {
1879      uInt freqid = fidColOut( 0 ) ; // assume single-IF data
1880      double refpix, refval, increment ;
1881      out->frequencies().getEntry( refpix, refval, increment, freqid ) ;
1882      refval -= choffset * increment ;
1883      uInt newfreqid = out->frequencies().addEntry( refpix, refval, increment ) ;
1884      Vector<uInt> freqids = fidColOut.getColumn() ;
1885      for ( uInt j = 0 ; j < freqids.nelements() ; j++ ) {
1886        if ( freqids[j] == freqid )
1887          freqids[j] = newfreqid ;
1888      }
1889      fidColOut.putColumn( freqids ) ;
1890    }
1891
1892    acc.reset() ;
1893  }
1894
1895  return out ;
1896}
1897
1898
1899CountedPtr< Scantable > STMath::freqSwitch( const CountedPtr< Scantable >& in )
1900{
1901  // make copy or reference
1902  CountedPtr< Scantable > out = getScantable(in, false);
1903  Table& tout = out->table();
1904  Block<String> cols(4);
1905  cols[0] = String("SCANNO");
1906  cols[1] = String("CYCLENO");
1907  cols[2] = String("BEAMNO");
1908  cols[3] = String("POLNO");
1909  TableIterator iter(tout, cols);
1910  while (!iter.pastEnd()) {
1911    Table subt = iter.table();
1912    // this should leave us with two rows for the two IFs....if not ignore
1913    if (subt.nrow() != 2 ) {
1914      continue;
1915    }
1916    ArrayColumn<Float> specCol(subt, "SPECTRA");
1917    ArrayColumn<Float> tsysCol(subt, "TSYS");
1918    ArrayColumn<uChar> flagCol(subt, "FLAGTRA");
1919    Vector<Float> onspec,offspec, ontsys, offtsys;
1920    Vector<uChar> onflag, offflag;
1921    tsysCol.get(0, ontsys);   tsysCol.get(1, offtsys);
1922    specCol.get(0, onspec);   specCol.get(1, offspec);
1923    flagCol.get(0, onflag);   flagCol.get(1, offflag);
1924    MaskedArray<Float> on  = maskedArray(onspec, onflag);
1925    MaskedArray<Float> off = maskedArray(offspec, offflag);
1926    MaskedArray<Float> oncopy = on.copy();
1927
1928    on /= off; on -= 1.0f;
1929    on *= ontsys[0];
1930    off /= oncopy; off -= 1.0f;
1931    off *= offtsys[0];
1932    specCol.put(0, on.getArray());
1933    const Vector<Bool>& m0 = on.getMask();
1934    Vector<uChar> flags0(m0.shape());
1935    convertArray(flags0, !m0);
1936    flagCol.put(0, flags0);
1937
1938    specCol.put(1, off.getArray());
1939    const Vector<Bool>& m1 = off.getMask();
1940    Vector<uChar> flags1(m1.shape());
1941    convertArray(flags1, !m1);
1942    flagCol.put(1, flags1);
1943    ++iter;
1944  }
1945
1946  return out;
1947}
1948
1949std::vector< float > STMath::statistic( const CountedPtr< Scantable > & in,
1950                                        const std::vector< bool > & mask,
1951                                        const std::string& which )
1952{
1953
1954  Vector<Bool> m(mask);
1955  const Table& tab = in->table();
1956  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1957  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1958  std::vector<float> out;
1959  for (uInt i=0; i < tab.nrow(); ++i ) {
1960    Vector<Float> spec; specCol.get(i, spec);
1961    Vector<uChar> flag; flagCol.get(i, flag);
1962    MaskedArray<Float> ma  = maskedArray(spec, flag);
1963    float outstat = 0.0;
1964    if ( spec.nelements() == m.nelements() ) {
1965      outstat = mathutil::statistics(which, ma(m));
1966    } else {
1967      outstat = mathutil::statistics(which, ma);
1968    }
1969    out.push_back(outstat);
1970  }
1971  return out;
1972}
1973
1974std::vector< float > STMath::statisticRow( const CountedPtr< Scantable > & in,
1975                                        const std::vector< bool > & mask,
1976                                        const std::string& which,
1977                                        int row )
1978{
1979
1980  Vector<Bool> m(mask);
1981  const Table& tab = in->table();
1982  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1983  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1984  std::vector<float> out;
1985
1986  Vector<Float> spec; specCol.get(row, spec);
1987  Vector<uChar> flag; flagCol.get(row, flag);
1988  MaskedArray<Float> ma  = maskedArray(spec, flag);
1989  float outstat = 0.0;
1990  if ( spec.nelements() == m.nelements() ) {
1991    outstat = mathutil::statistics(which, ma(m));
1992  } else {
1993    outstat = mathutil::statistics(which, ma);
1994  }
1995  out.push_back(outstat);
1996
1997  return out;
1998}
1999
2000std::vector< int > STMath::minMaxChan( const CountedPtr< Scantable > & in,
2001                                        const std::vector< bool > & mask,
2002                                        const std::string& which )
2003{
2004
2005  Vector<Bool> m(mask);
2006  const Table& tab = in->table();
2007  ROArrayColumn<Float> specCol(tab, "SPECTRA");
2008  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2009  std::vector<int> out;
2010  for (uInt i=0; i < tab.nrow(); ++i ) {
2011    Vector<Float> spec; specCol.get(i, spec);
2012    Vector<uChar> flag; flagCol.get(i, flag);
2013    MaskedArray<Float> ma  = maskedArray(spec, flag);
2014    if (ma.ndim() != 1) {
2015      throw (ArrayError(
2016          "std::vector<int> STMath::minMaxChan("
2017          "ContedPtr<Scantable> &in, std::vector<bool> &mask, "
2018          " std::string &which)"
2019          " - MaskedArray is not 1D"));
2020    }
2021    IPosition outpos(1,0);
2022    if ( spec.nelements() == m.nelements() ) {
2023      outpos = mathutil::minMaxPos(which, ma(m));
2024    } else {
2025      outpos = mathutil::minMaxPos(which, ma);
2026    }
2027    out.push_back(outpos[0]);
2028  }
2029  return out;
2030}
2031
2032CountedPtr< Scantable > STMath::bin( const CountedPtr< Scantable > & in,
2033                                     int width )
2034{
2035  if ( !in->getSelection().empty() ) throw(AipsError("Can't bin subset of the data."));
2036  CountedPtr< Scantable > out = getScantable(in, false);
2037  Table& tout = out->table();
2038  out->frequencies().rescale(width, "BIN");
2039  ArrayColumn<Float> specCol(tout, "SPECTRA");
2040  ArrayColumn<uChar> flagCol(tout, "FLAGTRA");
2041  ArrayColumn<Float> tsysCol(tout, "TSYS");
2042
2043  for (uInt i=0; i < tout.nrow(); ++i ) {
2044    MaskedArray<Float> main  = maskedArray(specCol(i), flagCol(i));
2045    MaskedArray<Float> maout;
2046    LatticeUtilities::bin(maout, main, 0, Int(width));
2047    specCol.put(i, maout.getArray());
2048    flagCol.put(i, flagsFromMA(maout));
2049    if (tsysCol(i).nelements() == specCol(i).nelements()) {
2050      MaskedArray<Float> matsysin = maskedArray(tsysCol(i), flagCol(i));
2051      MaskedArray<Float> matsysout;
2052      LatticeUtilities::bin(matsysout, matsysin, 0, Int(width));
2053      tsysCol.put(i, matsysout.getArray());
2054    }
2055    // take only the first binned spectrum's length for the deprecated
2056    // global header item nChan
2057    if (i==0) tout.rwKeywordSet().define(String("nChan"),
2058                                       Int(maout.getArray().nelements()));
2059  }
2060  return out;
2061}
2062
2063CountedPtr< Scantable > STMath::resample( const CountedPtr< Scantable >& in,
2064                                          const std::string& method,
2065                                          float width )
2066//
2067// Should add the possibility of width being specified in km/s. This means
2068// that for each freqID (SpectralCoordinate) we will need to convert to an
2069// average channel width (say at the reference pixel).  Then we would need
2070// to be careful to make sure each spectrum (of different freqID)
2071// is the same length.
2072//
2073{
2074  //InterpolateArray1D<Double,Float>::InterpolationMethod interp;
2075  Int interpMethod(stringToIMethod(method));
2076
2077  CountedPtr< Scantable > out = getScantable(in, false);
2078  Table& tout = out->table();
2079
2080// Resample SpectralCoordinates (one per freqID)
2081  out->frequencies().rescale(width, "RESAMPLE");
2082  TableIterator iter(tout, "IFNO");
2083  TableRow row(tout);
2084  while ( !iter.pastEnd() ) {
2085    Table tab = iter.table();
2086    ArrayColumn<Float> specCol(tab, "SPECTRA");
2087    //ArrayColumn<Float> tsysCol(tout, "TSYS");
2088    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2089    Vector<Float> spec;
2090    Vector<uChar> flag;
2091    specCol.get(0,spec); // the number of channels should be constant per IF
2092    uInt nChanIn = spec.nelements();
2093    Vector<Float> xIn(nChanIn); indgen(xIn);
2094    Int fac =  Int(nChanIn/width);
2095    Vector<Float> xOut(fac+10); // 10 to be safe - resize later
2096    uInt k = 0;
2097    Float x = 0.0;
2098    while (x < Float(nChanIn) ) {
2099      xOut(k) = x;
2100      k++;
2101      x += width;
2102    }
2103    uInt nChanOut = k;
2104    xOut.resize(nChanOut, True);
2105    // process all rows for this IFNO
2106    Vector<Float> specOut;
2107    Vector<Bool> maskOut;
2108    Vector<uChar> flagOut;
2109    for (uInt i=0; i < tab.nrow(); ++i) {
2110      specCol.get(i, spec);
2111      flagCol.get(i, flag);
2112      Vector<Bool> mask(flag.nelements());
2113      convertArray(mask, flag);
2114
2115      IPosition shapeIn(spec.shape());
2116      //sh.nchan = nChanOut;
2117      InterpolateArray1D<Float,Float>::interpolate(specOut, maskOut, xOut,
2118                                                   xIn, spec, mask,
2119                                                   interpMethod, True, True);
2120      /// @todo do the same for channel based Tsys
2121      flagOut.resize(maskOut.nelements());
2122      convertArray(flagOut, maskOut);
2123      specCol.put(i, specOut);
2124      flagCol.put(i, flagOut);
2125    }
2126    ++iter;
2127  }
2128
2129  return out;
2130}
2131
2132STMath::imethod STMath::stringToIMethod(const std::string& in)
2133{
2134  static STMath::imap lookup;
2135
2136  // initialize the lookup table if necessary
2137  if ( lookup.empty() ) {
2138    lookup["nearest"]   = InterpolateArray1D<Double,Float>::nearestNeighbour;
2139    lookup["linear"] = InterpolateArray1D<Double,Float>::linear;
2140    lookup["cubic"]  = InterpolateArray1D<Double,Float>::cubic;
2141    lookup["spline"]  = InterpolateArray1D<Double,Float>::spline;
2142  }
2143
2144  STMath::imap::const_iterator iter = lookup.find(in);
2145
2146  if ( lookup.end() == iter ) {
2147    std::string message = in;
2148    message += " is not a valid interpolation mode";
2149    throw(AipsError(message));
2150  }
2151  return iter->second;
2152}
2153
2154WeightType STMath::stringToWeight(const std::string& in)
2155{
2156  static std::map<std::string, WeightType> lookup;
2157
2158  // initialize the lookup table if necessary
2159  if ( lookup.empty() ) {
2160    lookup["NONE"]   = asap::W_NONE;
2161    lookup["TINT"] = asap::W_TINT;
2162    lookup["TINTSYS"]  = asap::W_TINTSYS;
2163    lookup["TSYS"]  = asap::W_TSYS;
2164    lookup["VAR"]  = asap::W_VAR;
2165  }
2166
2167  std::map<std::string, WeightType>::const_iterator iter = lookup.find(in);
2168
2169  if ( lookup.end() == iter ) {
2170    std::string message = in;
2171    message += " is not a valid weighting mode";
2172    throw(AipsError(message));
2173  }
2174  return iter->second;
2175}
2176
2177CountedPtr< Scantable > STMath::gainElevation( const CountedPtr< Scantable >& in,
2178                                               const vector< float > & coeff,
2179                                               const std::string & filename,
2180                                               const std::string& method)
2181{
2182  LogIO os( LogOrigin( "STMath", "gainElevation", WHERE ) ) ;
2183  // Get elevation data from Scantable and convert to degrees
2184  CountedPtr< Scantable > out = getScantable(in, false);
2185  Table& tab = out->table();
2186  ROScalarColumn<Float> elev(tab, "ELEVATION");
2187  Vector<Float> x = elev.getColumn();
2188  x *= Float(180 / C::pi);                        // Degrees
2189
2190  Vector<Float> coeffs(coeff);
2191  const uInt nc = coeffs.nelements();
2192  if ( filename.length() > 0 && nc > 0 ) {
2193    throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
2194  }
2195
2196  // Correct
2197  if ( nc > 0 || filename.length() == 0 ) {
2198    // Find instrument
2199    Bool throwit = True;
2200    Instrument inst =
2201      STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2202                                throwit);
2203
2204    // Set polynomial
2205    Polynomial<Float>* ppoly = 0;
2206    Vector<Float> coeff;
2207    String msg;
2208    if ( nc > 0 ) {
2209      ppoly = new Polynomial<Float>(nc-1);
2210      coeff = coeffs;
2211      msg = String("user");
2212    } else {
2213      STAttr sdAttr;
2214      coeff = sdAttr.gainElevationPoly(inst);
2215      ppoly = new Polynomial<Float>(coeff.nelements()-1);
2216      msg = String("built in");
2217    }
2218
2219    if ( coeff.nelements() > 0 ) {
2220      ppoly->setCoefficients(coeff);
2221    } else {
2222      delete ppoly;
2223      throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
2224    }
2225    os << "Making polynomial correction with " << msg << " coefficients:" << endl;
2226    os << "   " <<  coeff << LogIO::POST;
2227    const uInt nrow = tab.nrow();
2228    Vector<Float> factor(nrow);
2229    for ( uInt i=0; i < nrow; ++i ) {
2230      factor[i] = 1.0 / (*ppoly)(x[i]);
2231    }
2232    delete ppoly;
2233    scaleByVector(tab, factor, true);
2234
2235  } else {
2236    // Read and correct
2237    os << "Making correction from ascii Table" << LogIO::POST;
2238    scaleFromAsciiTable(tab, filename, method, x, true);
2239  }
2240  return out;
2241}
2242
2243void STMath::scaleFromAsciiTable(Table& in, const std::string& filename,
2244                                 const std::string& method,
2245                                 const Vector<Float>& xout, bool dotsys)
2246{
2247
2248// Read gain-elevation ascii file data into a Table.
2249
2250  String formatString;
2251  Table tbl = readAsciiTable(formatString, Table::Memory, filename, "", "", False);
2252  scaleFromTable(in, tbl, method, xout, dotsys);
2253}
2254
2255void STMath::scaleFromTable(Table& in,
2256                            const Table& table,
2257                            const std::string& method,
2258                            const Vector<Float>& xout, bool dotsys)
2259{
2260
2261  ROScalarColumn<Float> geElCol(table, "ELEVATION");
2262  ROScalarColumn<Float> geFacCol(table, "FACTOR");
2263  Vector<Float> xin = geElCol.getColumn();
2264  Vector<Float> yin = geFacCol.getColumn();
2265  Vector<Bool> maskin(xin.nelements(),True);
2266
2267  // Interpolate (and extrapolate) with desired method
2268
2269  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2270
2271   Vector<Float> yout;
2272   Vector<Bool> maskout;
2273   InterpolateArray1D<Float,Float>::interpolate(yout, maskout, xout,
2274                                                xin, yin, maskin, interp,
2275                                                True, True);
2276
2277   scaleByVector(in, Float(1.0)/yout, dotsys);
2278}
2279
2280void STMath::scaleByVector( Table& in,
2281                            const Vector< Float >& factor,
2282                            bool dotsys )
2283{
2284  uInt nrow = in.nrow();
2285  if ( factor.nelements() != nrow ) {
2286    throw(AipsError("factors.nelements() != table.nelements()"));
2287  }
2288  ArrayColumn<Float> specCol(in, "SPECTRA");
2289  ArrayColumn<uChar> flagCol(in, "FLAGTRA");
2290  ArrayColumn<Float> tsysCol(in, "TSYS");
2291  for (uInt i=0; i < nrow; ++i) {
2292    MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2293    ma *= factor[i];
2294    specCol.put(i, ma.getArray());
2295    flagCol.put(i, flagsFromMA(ma));
2296    if ( dotsys ) {
2297      Vector<Float> tsys = tsysCol(i);
2298      tsys *= factor[i];
2299      tsysCol.put(i,tsys);
2300    }
2301  }
2302}
2303
2304CountedPtr< Scantable > STMath::convertFlux( const CountedPtr< Scantable >& in,
2305                                             float d, float etaap,
2306                                             float jyperk )
2307{
2308  LogIO os( LogOrigin( "STMath", "convertFlux", WHERE ) ) ;
2309
2310  CountedPtr< Scantable > out = getScantable(in, false);
2311  Table& tab = in->table();
2312  Table& outtab = out->table();
2313  Unit fluxUnit(tab.keywordSet().asString("FluxUnit"));
2314  Unit K(String("K"));
2315  Unit JY(String("Jy"));
2316
2317  bool tokelvin = true;
2318  Double cfac = 1.0;
2319
2320  if ( fluxUnit == JY ) {
2321    os << "Converting to K" << LogIO::POST;
2322    Quantum<Double> t(1.0,fluxUnit);
2323    Quantum<Double> t2 = t.get(JY);
2324    cfac = (t2 / t).getValue();               // value to Jy
2325
2326    tokelvin = true;
2327    out->setFluxUnit("K");
2328  } else if ( fluxUnit == K ) {
2329    os << "Converting to Jy" << LogIO::POST;
2330    Quantum<Double> t(1.0,fluxUnit);
2331    Quantum<Double> t2 = t.get(K);
2332    cfac = (t2 / t).getValue();              // value to K
2333
2334    tokelvin = false;
2335    out->setFluxUnit("Jy");
2336  } else {
2337    throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
2338  }
2339  // Make sure input values are converted to either Jy or K first...
2340  Float factor = cfac;
2341
2342  // Select method
2343  if (jyperk > 0.0) {
2344    factor *= jyperk;
2345    if ( tokelvin ) factor = 1.0 / jyperk;
2346    os << "Jy/K = " << jyperk << LogIO::POST;
2347    Vector<Float> factors(outtab.nrow(), factor);
2348    scaleByVector(outtab,factors, false);
2349  } else if ( etaap > 0.0) {
2350    if (d < 0) {
2351      Instrument inst =
2352        STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2353                                  True);
2354      STAttr sda;
2355      d = sda.diameter(inst);
2356    }
2357    jyperk = STAttr::findJyPerK(etaap, d);
2358    os << "Jy/K = " << jyperk << LogIO::POST;
2359    factor *= jyperk;
2360    if ( tokelvin ) {
2361      factor = 1.0 / factor;
2362    }
2363    Vector<Float> factors(outtab.nrow(), factor);
2364    scaleByVector(outtab, factors, False);
2365  } else {
2366
2367    // OK now we must deal with automatic look up of values.
2368    // We must also deal with the fact that the factors need
2369    // to be computed per IF and may be different and may
2370    // change per integration.
2371
2372    os <<"Looking up conversion factors" << LogIO::POST;
2373    convertBrightnessUnits(out, tokelvin, cfac);
2374  }
2375
2376  return out;
2377}
2378
2379void STMath::convertBrightnessUnits( CountedPtr<Scantable>& in,
2380                                     bool tokelvin, float cfac )
2381{
2382  Table& table = in->table();
2383  Instrument inst =
2384    STAttr::convertInstrument(table.keywordSet().asString("AntennaName"), True);
2385  TableIterator iter(table, "FREQ_ID");
2386  STFrequencies stfreqs = in->frequencies();
2387  STAttr sdAtt;
2388  while (!iter.pastEnd()) {
2389    Table tab = iter.table();
2390    ArrayColumn<Float> specCol(tab, "SPECTRA");
2391    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2392    ROScalarColumn<uInt> freqidCol(tab, "FREQ_ID");
2393    MEpoch::ROScalarColumn timeCol(tab, "TIME");
2394
2395    uInt freqid; freqidCol.get(0, freqid);
2396    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2397    // STAttr.JyPerK has a Vector interface... change sometime.
2398    Vector<Float> freqs(1,stfreqs.getRefFreq(freqid, tmpspec.nelements()));
2399    for ( uInt i=0; i<tab.nrow(); ++i) {
2400      Float jyperk = (sdAtt.JyPerK(inst, timeCol(i), freqs))[0];
2401      Float factor = cfac * jyperk;
2402      if ( tokelvin ) factor = Float(1.0) / factor;
2403      MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2404      ma *= factor;
2405      specCol.put(i, ma.getArray());
2406      flagCol.put(i, flagsFromMA(ma));
2407    }
2408  ++iter;
2409  }
2410}
2411
2412CountedPtr< Scantable > STMath::opacity( const CountedPtr< Scantable > & in,
2413                                         const std::vector<float>& tau )
2414{
2415  CountedPtr< Scantable > out = getScantable(in, false);
2416
2417  Table outtab = out->table();
2418
2419  const Int ntau = uInt(tau.size());
2420  std::vector<float>::const_iterator tauit = tau.begin();
2421  AlwaysAssert((ntau == 1 || ntau == in->nif() || ntau == in->nif() * in->npol()),
2422               AipsError);
2423  TableIterator iiter(outtab, "IFNO");
2424  while ( !iiter.pastEnd() ) {
2425    Table itab = iiter.table();
2426    TableIterator piter(itab, "POLNO");
2427    while ( !piter.pastEnd() ) {
2428      Table tab = piter.table();
2429      ROScalarColumn<Float> elev(tab, "ELEVATION");
2430      ArrayColumn<Float> specCol(tab, "SPECTRA");
2431      ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2432      ArrayColumn<Float> tsysCol(tab, "TSYS");
2433      for ( uInt i=0; i<tab.nrow(); ++i) {
2434        Float zdist = Float(C::pi_2) - elev(i);
2435        Float factor = exp(*tauit/cos(zdist));
2436        MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2437        ma *= factor;
2438        specCol.put(i, ma.getArray());
2439        flagCol.put(i, flagsFromMA(ma));
2440        Vector<Float> tsys;
2441        tsysCol.get(i, tsys);
2442        tsys *= factor;
2443        tsysCol.put(i, tsys);
2444      }
2445      if (ntau == in->nif()*in->npol() ) {
2446        tauit++;
2447      }
2448      piter++;
2449    }
2450    if (ntau >= in->nif() ) {
2451      tauit++;
2452    }
2453    iiter++;
2454  }
2455  return out;
2456}
2457
2458CountedPtr< Scantable > STMath::smoothOther( const CountedPtr< Scantable >& in,
2459                                             const std::string& kernel,
2460                                             float width, int order)
2461{
2462  CountedPtr< Scantable > out = getScantable(in, false);
2463  Table table = out->table();
2464
2465  TableIterator iter(table, "IFNO");
2466  while (!iter.pastEnd()) {
2467    Table tab = iter.table();
2468    ArrayColumn<Float> specCol(tab, "SPECTRA");
2469    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2470    Vector<Float> spec;
2471    Vector<uChar> flag;
2472    for (uInt i = 0; i < tab.nrow(); ++i) {
2473      specCol.get(i, spec);
2474      flagCol.get(i, flag);
2475      Vector<Bool> mask(flag.nelements());
2476      convertArray(mask, flag);
2477      Vector<Float> specout;
2478      Vector<Bool> maskout;
2479      if (kernel == "hanning") {
2480        mathutil::hanning(specout, maskout, spec, !mask);
2481      } else if (kernel == "rmedian") {
2482        mathutil::runningMedian(specout, maskout, spec , mask, width);
2483      } else if (kernel == "poly") {
2484        mathutil::polyfit(specout, maskout, spec, !mask, width, order);
2485      }
2486
2487      for (uInt j = 0; j < flag.nelements(); ++j) {
2488        uChar userFlag = 1 << 7;
2489        if (maskout[j]==True) userFlag = 0 << 7;
2490        flag(j) = userFlag;
2491      }
2492
2493      flagCol.put(i, flag);
2494      specCol.put(i, specout);
2495    }
2496  ++iter;
2497  }
2498  return out;
2499}
2500
2501CountedPtr< Scantable > STMath::smooth( const CountedPtr< Scantable >& in,
2502                                        const std::string& kernel, float width,
2503                                        int order)
2504{
2505  if (kernel == "rmedian"  || kernel == "hanning" || kernel == "poly") {
2506    return smoothOther(in, kernel, width, order);
2507  }
2508  CountedPtr< Scantable > out = getScantable(in, false);
2509  Table& table = out->table();
2510  VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernel);
2511  // same IFNO should have same no of channels
2512  // this saves overhead
2513  TableIterator iter(table, "IFNO");
2514  while (!iter.pastEnd()) {
2515    Table tab = iter.table();
2516    ArrayColumn<Float> specCol(tab, "SPECTRA");
2517    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2518    Vector<Float> spec = specCol( 0 );
2519    uInt nchan = spec.nelements();
2520    Vector<Float> kvec = VectorKernel::make(type, width, nchan, True, False);
2521    Convolver<Float> conv(kvec, IPosition(1,nchan));
2522    Vector<uChar> flag;
2523    Vector<Bool> mask(nchan);
2524    for ( uInt i=0; i<tab.nrow(); ++i) {
2525      specCol.get(i, spec);
2526      flagCol.get(i, flag);
2527      convertArray(mask, flag);
2528      Vector<Float> specout;
2529      //mathutil::replaceMaskByZero(specout, mask);
2530      mathutil::replaceMaskByZero(spec, !mask);
2531      //std::vector<bool> vmask;
2532      //(!mask).tovector(vmask);
2533      //mathutil::doZeroOrderInterpolation(spec, vmask);
2534      conv.linearConv(specout, spec);
2535      specCol.put(i, specout);
2536    }
2537    ++iter;
2538  }
2539  return out;
2540}
2541
2542CountedPtr< Scantable >
2543STMath::merge( const std::vector< CountedPtr < Scantable > >& in,
2544               const std::string &freqTol )
2545{
2546  Double freqTolInHz = 1.0; // default is 1.0Hz according to concat task
2547  if (freqTol.size() > 0) {
2548    Quantum<Double> freqTolInQuantity;
2549    if (!Quantum<Double>::read(freqTolInQuantity, freqTol)) {
2550      throw(AipsError("Failed to convert freqTol string to quantity"));
2551    }
2552    if (!freqTolInQuantity.isConform("Hz")) {
2553      throw(AipsError("Invalid freqTol string"));
2554    }
2555    freqTolInHz = freqTolInQuantity.getValue("Hz");
2556  }
2557 
2558  if ( in.size() < 2 ) {
2559    throw(AipsError("Need at least two scantables to perform a merge."));
2560  }
2561  std::vector<CountedPtr < Scantable > >::const_iterator it = in.begin();
2562  bool insitu = insitu_;
2563  setInsitu(false);
2564  CountedPtr< Scantable > out = getScantable(*it, false);
2565  setInsitu(insitu);
2566  Table& tout = out->table();
2567  ScalarColumn<uInt> freqidcol(tout,"FREQ_ID"), molidcol(tout, "MOLECULE_ID");
2568  ScalarColumn<uInt> scannocol(tout,"SCANNO"), focusidcol(tout,"FOCUS_ID");
2569  ScalarColumn<uInt> ifnocol(tout, "IFNO");
2570  // Renumber SCANNO to be 0-based
2571  Vector<uInt> scannos = scannocol.getColumn();
2572  uInt offset = min(scannos);
2573  scannos -= offset;
2574  scannocol.putColumn(scannos);
2575  uInt newscanno = max(scannos)+1;
2576  ++it;
2577
2578  // new IFNO
2579  uInt ifnoCounter = max(ifnocol.getColumn()) + 1;
2580 
2581  while ( it != in.end() ){
2582    // Check FREQUENCIES/BASEFRAME
2583    if ( out->frequencies().getFrame(true) != (*it)->frequencies().getFrame(true) ) {
2584      throw(AipsError("BASEFRAME is not identical"));
2585    }
2586   
2587    if ( ! (*it)->conformant(*out) ) {
2588      // non conformant.
2589      LogIO os( LogOrigin( "STMath", "merge()", WHERE ) ) ;
2590      os << LogIO::SEVERE << "Can't merge scantables as header informations (any one of AntennaName, Equinox, and FluxUnit) differ." << LogIO::EXCEPTION ;
2591    }
2592    out->appendToHistoryTable((*it)->history());
2593    const Table& tab = (*it)->table();
2594
2595    Block<String> cols(3);
2596    cols[0] = String("FREQ_ID");
2597    cols[1] = String("MOLECULE_ID");
2598    cols[2] = String("FOCUS_ID");
2599
2600    TableIterator scanit(tab, "SCANNO");
2601    while (!scanit.pastEnd()) {
2602      TableIterator subit(scanit.table(), cols);
2603      while ( !subit.pastEnd() ) {
2604        uInt nrow = tout.nrow();
2605        Table thetab = subit.table();
2606        ROTableRow row(thetab);
2607        Vector<uInt> thecolvals(thetab.nrow());
2608        // The selected subset of table should have
2609        // the equal FREQ_ID, MOLECULE_ID, and FOCUS_ID values.
2610        const TableRecord& rec = row.get(0);
2611        tout.addRow(thetab.nrow());
2612        TableCopy::copyRows(tout, thetab, nrow, 0, thetab.nrow());
2613
2614        Slicer slice(IPosition(1, nrow), IPosition(1, thetab.nrow()),
2615                     Slicer::endIsLength);
2616
2617        // Set the proper FREQ_ID
2618        Double rv,rp,inc;
2619        (*it)->frequencies().getEntry(rp, rv, inc, rec.asuInt("FREQ_ID"));
2620        uInt id;
2621       
2622        // default value is new unique IFNO
2623        uInt newifno = ifnoCounter;
2624        uInt nchan = rec.asArrayFloat("SPECTRA").shape()[0];
2625        //id = out->frequencies().addEntry(rp, rv, inc);
2626        if ( !out->frequencies().match(rp, rv, inc, freqTolInHz, id) ) {
2627          // add new entry to FREQUENCIES table
2628          id = out->frequencies().addEntry(rp, rv, inc);
2629
2630          // increment counter for IFNO
2631          ifnoCounter++;
2632        }
2633        else {
2634          // should renumber IFNO to be same as existing rows that have same FREQ_ID
2635          LogIO os(LogOrigin("STMath", "merge", WHERE));
2636          Table outFreqIdSelected = tout(tout.col("FREQ_ID") == id);
2637          TableIterator _iter(outFreqIdSelected, "IFNO");
2638          map<uInt, uInt> nchanMap;
2639          while (!_iter.pastEnd()) {
2640            const Table _table = _iter.table();
2641            ROTableRow _row(_table);
2642            const TableRecord &_rec = _row.get(0);
2643            uInt nchan = _rec.asArrayFloat("SPECTRA").shape()[0];
2644            if (nchanMap.find(nchan) != nchanMap.end()) {
2645              throw(AipsError("There are non-unique IFNOs assigned to spectra that have same FREQ_ID and same nchan. Something wrong."));
2646            }
2647            nchanMap[nchan] = _rec.asuInt("IFNO");
2648            _iter.next();
2649          }
2650
2651          os << LogIO::DEBUGGING << "nchanMap for " << id << ":" << LogIO::POST;
2652          for (map<uInt, uInt>::iterator i = nchanMap.begin(); i != nchanMap.end(); ++i) {
2653            os << LogIO::DEBUGGING << "nchanMap[" << i->first << "] = " << i->second << LogIO::POST;
2654          }
2655
2656          if (nchanMap.find(nchan) == nchanMap.end()) {
2657            // increment counter for IFNO
2658            ifnoCounter++;
2659          }
2660          else {
2661            // renumber IFNO to be same as existing value that corresponds to nchan
2662            newifno = nchanMap[nchan];
2663          }
2664          os << LogIO::DEBUGGING << "newifno = " << newifno << LogIO::POST;
2665        }
2666        thecolvals = id;
2667        freqidcol.putColumnRange(slice, thecolvals);
2668
2669        thecolvals = newifno;
2670        ifnocol.putColumnRange(slice, thecolvals);
2671       
2672        // Set the proper MOLECULE_ID
2673        Vector<String> name,fname;Vector<Double> rf;
2674        (*it)->molecules().getEntry(rf, name, fname, rec.asuInt("MOLECULE_ID"));
2675        id = out->molecules().addEntry(rf, name, fname);
2676        thecolvals = id;
2677        molidcol.putColumnRange(slice, thecolvals);
2678       
2679        // Set the proper FOCUS_ID
2680        Float fpa,frot,fax,ftan,fhand,fmount,fuser, fxy, fxyp;
2681        (*it)->focus().getEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2682                                fxy, fxyp, rec.asuInt("FOCUS_ID"));
2683        id = out->focus().addEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2684                                   fxy, fxyp);
2685        thecolvals = id;
2686        focusidcol.putColumnRange(slice, thecolvals);
2687
2688        // Set the proper SCANNO
2689        thecolvals = newscanno;
2690        scannocol.putColumnRange(slice, thecolvals);
2691
2692        ++subit;
2693      }
2694      ++newscanno;
2695      ++scanit;
2696    }
2697    ++it;
2698  }
2699  return out;
2700}
2701
2702CountedPtr< Scantable >
2703  STMath::invertPhase( const CountedPtr < Scantable >& in )
2704{
2705  return applyToPol(in, &STPol::invertPhase, Float(0.0));
2706}
2707
2708CountedPtr< Scantable >
2709  STMath::rotateXYPhase( const CountedPtr < Scantable >& in, float phase )
2710{
2711   return applyToPol(in, &STPol::rotatePhase, Float(phase));
2712}
2713
2714CountedPtr< Scantable >
2715  STMath::rotateLinPolPhase( const CountedPtr < Scantable >& in, float phase )
2716{
2717  return applyToPol(in, &STPol::rotateLinPolPhase, Float(phase));
2718}
2719
2720CountedPtr< Scantable > STMath::applyToPol( const CountedPtr<Scantable>& in,
2721                                             STPol::polOperation fptr,
2722                                             Float phase )
2723{
2724  CountedPtr< Scantable > out = getScantable(in, false);
2725  Table& tout = out->table();
2726  Block<String> cols(4);
2727  cols[0] = String("SCANNO");
2728  cols[1] = String("BEAMNO");
2729  cols[2] = String("IFNO");
2730  cols[3] = String("CYCLENO");
2731  TableIterator iter(tout, cols);
2732  CountedPtr<STPol> stpol = STPol::getPolClass(out->factories_,
2733                                               out->getPolType() );
2734  while (!iter.pastEnd()) {
2735    Table t = iter.table();
2736    ArrayColumn<Float> speccol(t, "SPECTRA");
2737    ScalarColumn<uInt> focidcol(t, "FOCUS_ID");
2738    Matrix<Float> pols(speccol.getColumn());
2739    try {
2740      stpol->setSpectra(pols);
2741      Float fang,fhand;
2742      fang = in->focusTable_.getTotalAngle(focidcol(0));
2743      fhand = in->focusTable_.getFeedHand(focidcol(0));
2744      stpol->setPhaseCorrections(fang, fhand);
2745      // use a member function pointer in STPol.  This only works on
2746      // the STPol pointer itself, not the Counted Pointer so
2747      // derefernce it.
2748      (&(*(stpol))->*fptr)(phase);
2749      speccol.putColumn(stpol->getSpectra());
2750    } catch (AipsError& e) {
2751      //delete stpol;stpol=0;
2752      throw(e);
2753    }
2754    ++iter;
2755  }
2756  //delete stpol;stpol=0;
2757  return out;
2758}
2759
2760CountedPtr< Scantable >
2761  STMath::swapPolarisations( const CountedPtr< Scantable > & in )
2762{
2763  CountedPtr< Scantable > out = getScantable(in, false);
2764  Table& tout = out->table();
2765  Table t0 = tout(tout.col("POLNO") == 0);
2766  Table t1 = tout(tout.col("POLNO") == 1);
2767  if ( t0.nrow() != t1.nrow() )
2768    throw(AipsError("Inconsistent number of polarisations"));
2769  ArrayColumn<Float> speccol0(t0, "SPECTRA");
2770  ArrayColumn<uChar> flagcol0(t0, "FLAGTRA");
2771  ArrayColumn<Float> speccol1(t1, "SPECTRA");
2772  ArrayColumn<uChar> flagcol1(t1, "FLAGTRA");
2773  Matrix<Float> s0 = speccol0.getColumn();
2774  Matrix<uChar> f0 = flagcol0.getColumn();
2775  speccol0.putColumn(speccol1.getColumn());
2776  flagcol0.putColumn(flagcol1.getColumn());
2777  speccol1.putColumn(s0);
2778  flagcol1.putColumn(f0);
2779  return out;
2780}
2781
2782CountedPtr< Scantable >
2783  STMath::averagePolarisations( const CountedPtr< Scantable > & in,
2784                                const std::vector<bool>& mask,
2785                                const std::string& weight )
2786{
2787  if (in->npol() < 2 )
2788    throw(AipsError("averagePolarisations can only be applied to two or more"
2789                    "polarisations"));
2790  bool insitu = insitu_;
2791  setInsitu(false);
2792  CountedPtr< Scantable > pols = getScantable(in, true);
2793  setInsitu(insitu);
2794  Table& tout = pols->table();
2795  std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
2796  Table tab = tableCommand(taql, in->table());
2797  if (tab.nrow() == 0 )
2798    throw(AipsError("Could not find  any rows with POLNO==0 and POLNO==1"));
2799  TableCopy::copyRows(tout, tab);
2800  TableVector<uInt> vec(tout, "POLNO");
2801  vec = 0;
2802  pols->table_.rwKeywordSet().define("nPol", Int(1));
2803  pols->table_.rwKeywordSet().define("POLTYPE", String("stokes"));
2804  //pols->table_.rwKeywordSet().define("POLTYPE", in->getPolType());
2805  std::vector<CountedPtr<Scantable> > vpols;
2806  vpols.push_back(pols);
2807  CountedPtr< Scantable > out = average(vpols, mask, weight, "SCAN");
2808  return out;
2809}
2810
2811CountedPtr< Scantable >
2812  STMath::averageBeams( const CountedPtr< Scantable > & in,
2813                        const std::vector<bool>& mask,
2814                        const std::string& weight )
2815{
2816  bool insitu = insitu_;
2817  setInsitu(false);
2818  CountedPtr< Scantable > beams = getScantable(in, false);
2819  setInsitu(insitu);
2820  Table& tout = beams->table();
2821  // give all rows the same BEAMNO
2822  TableVector<uInt> vec(tout, "BEAMNO");
2823  vec = 0;
2824  beams->table_.rwKeywordSet().define("nBeam", Int(1));
2825  std::vector<CountedPtr<Scantable> > vbeams;
2826  vbeams.push_back(beams);
2827  CountedPtr< Scantable > out = average(vbeams, mask, weight, "SCAN");
2828  return out;
2829}
2830
2831
2832CountedPtr< Scantable >
2833  asap::STMath::frequencyAlign( const CountedPtr< Scantable > & in,
2834                                const std::string & refTime,
2835                                const std::string & method)
2836{
2837  LogIO os( casa::LogOrigin("STMath", "frequencyAlign()", WHERE));
2838  // clone as this is not working insitu
2839  bool insitu = insitu_;
2840  setInsitu(false);
2841  CountedPtr< Scantable > out = getScantable(in, false);
2842  setInsitu(insitu);
2843  Table& tout = out->table();
2844  // Get reference Epoch to time of first row or given String
2845  Unit DAY(String("d"));
2846  MEpoch::Ref epochRef(in->getTimeReference());
2847  MEpoch refEpoch;
2848  if (refTime.length()>0) {
2849    Quantum<Double> qt;
2850    if (MVTime::read(qt,refTime)) {
2851      MVEpoch mv(qt);
2852      refEpoch = MEpoch(mv, epochRef);
2853   } else {
2854      throw(AipsError("Invalid format for Epoch string"));
2855   }
2856  } else {
2857    refEpoch = in->timeCol_(0);
2858  }
2859  MPosition refPos = in->getAntennaPosition();
2860
2861  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2862  /*
2863  // Comment from MV.
2864  // the following code has been commented out because different FREQ_IDs have to be aligned together even
2865  // if the frame doesn't change. So far, lack of this check didn't cause any problems.
2866  // test if user frame is different to base frame
2867  if ( in->frequencies().getFrameString(true)
2868       == in->frequencies().getFrameString(false) ) {
2869    throw(AipsError("Can't convert as no output frame has been set"
2870                    " (use set_freqframe) or it is aligned already."));
2871  }
2872  */
2873  MFrequency::Types system = in->frequencies().getFrame();
2874  MVTime mvt(refEpoch.getValue());
2875  String epochout = mvt.string(MVTime::YMD) + String(" (") + refEpoch.getRefString() + String(")");
2876  os << "Aligning at reference Epoch " << epochout
2877     << " in frame " << MFrequency::showType(system) << LogIO::POST;
2878  // set up the iterator
2879  Block<String> cols(4);
2880  // select by constant direction
2881  cols[0] = String("SRCNAME");
2882  cols[1] = String("BEAMNO");
2883  // select by IF ( no of channels varies over this )
2884  cols[2] = String("IFNO");
2885  // select by restfrequency
2886  cols[3] = String("MOLECULE_ID");
2887  TableIterator iter(tout, cols);
2888  while ( !iter.pastEnd() ) {
2889    Table t = iter.table();
2890    ROScalarColumn<String> snCol(t, "SRCNAME");
2891    os << "Aligning to position of source '" << snCol(0) << "'" << LogIO::POST;
2892    MDirection::ROScalarColumn dirCol(t, "DIRECTION");
2893    TableIterator fiter(t, "FREQ_ID");
2894    // determine nchan from the first row. This should work as
2895    // we are iterating over BEAMNO and IFNO   
2896    // we should have constant direction
2897
2898    ROArrayColumn<Float> sCol(t, "SPECTRA");
2899    const MDirection direction = dirCol(0);
2900    const uInt nchan = sCol(0).nelements();
2901
2902    // skip operations if there is nothing to align
2903    if (fiter.pastEnd()) {
2904        continue;
2905    }
2906
2907    Table ftab = fiter.table();
2908    // align all frequency ids with respect to the first encountered id
2909    ScalarColumn<uInt> freqidCol(ftab, "FREQ_ID");
2910    // get the SpectralCoordinate for the freqid, which we are iterating over
2911    SpectralCoordinate sC = \
2912      in->frequencies().getSpectralCoordinate(freqidCol(0));
2913    FrequencyAligner<Float> fa( sC, nchan, refEpoch,
2914                                direction, refPos, system );
2915    // realign the SpectralCoordinate and put into the output Scantable
2916    Vector<String> units(1);
2917    units = String("Hz");
2918    Bool linear=True;
2919    SpectralCoordinate sc2 = fa.alignedSpectralCoordinate(linear);
2920    sc2.setWorldAxisUnits(units);
2921    const uInt id = out->frequencies().addEntry(sc2.referencePixel()[0],
2922                                                sc2.referenceValue()[0],
2923                                                sc2.increment()[0]);
2924    while ( !fiter.pastEnd() ) {
2925     
2926      ftab = fiter.table();
2927      // spectral coordinate for the current FREQ_ID
2928      ScalarColumn<uInt> freqidCol2(ftab, "FREQ_ID");
2929      sC = in->frequencies().getSpectralCoordinate(freqidCol2(0));
2930      // create the "global" abcissa for alignment with same FREQ_ID
2931      Vector<Double> abc(nchan);
2932      for (uInt i=0; i<nchan; i++) {
2933           Double w;
2934           sC.toWorld(w,Double(i));
2935           abc[i] = w;
2936      }
2937      TableVector<uInt> tvec(ftab, "FREQ_ID");
2938      // assign new frequency id to all rows
2939      tvec = id;
2940      // cache abcissa for same time stamps, so iterate over those
2941      TableIterator timeiter(ftab, "TIME");
2942      while ( !timeiter.pastEnd() ) {
2943        Table tab = timeiter.table();
2944        ArrayColumn<Float> specCol(tab, "SPECTRA");
2945        ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2946        MEpoch::ROScalarColumn timeCol(tab, "TIME");
2947        // use align abcissa cache after the first row
2948        // these rows should be just be POLNO
2949        bool first = true;
2950        for (int i=0; i<int(tab.nrow()); ++i) {
2951          // input values
2952          Vector<uChar> flag = flagCol(i);
2953          Vector<Bool> mask(flag.shape());
2954          Vector<Float> specOut, spec;
2955          spec  = specCol(i);
2956          Vector<Bool> maskOut;Vector<uChar> flagOut;
2957          convertArray(mask, flag);
2958          // alignment
2959          Bool ok = fa.align(specOut, maskOut, abc, spec,
2960                             mask, timeCol(i), !first,
2961                             interp, False);
2962          (void) ok; // unused stop compiler nagging
2963          // back into scantable
2964          flagOut.resize(maskOut.nelements());
2965          convertArray(flagOut, maskOut);
2966          flagCol.put(i, flagOut);
2967          specCol.put(i, specOut);
2968          // start abcissa caching
2969          first = false;
2970        }
2971        // next timestamp
2972        ++timeiter;
2973      }
2974      // next FREQ_ID
2975      ++fiter;
2976    }
2977    // next aligner
2978    ++iter;
2979  }
2980  // set this afterwards to ensure we are doing insitu correctly.
2981  out->frequencies().setFrame(system, true);
2982  return out;
2983}
2984
2985CountedPtr<Scantable>
2986  asap::STMath::convertPolarisation( const CountedPtr<Scantable>& in,
2987                                     const std::string & newtype )
2988{
2989  if (in->npol() != 2 && in->npol() != 4)
2990    throw(AipsError("Can only convert two or four polarisations."));
2991  if ( in->getPolType() == newtype )
2992    throw(AipsError("No need to convert."));
2993  if ( ! in->selector_.empty() )
2994    throw(AipsError("Can only convert whole scantable. Unset the selection."));
2995  bool insitu = insitu_;
2996  setInsitu(false);
2997  CountedPtr< Scantable > out = getScantable(in, true);
2998  setInsitu(insitu);
2999  Table& tout = out->table();
3000  tout.rwKeywordSet().define("POLTYPE", String(newtype));
3001
3002  Block<String> cols(4);
3003  cols[0] = "SCANNO";
3004  cols[1] = "CYCLENO";
3005  cols[2] = "BEAMNO";
3006  cols[3] = "IFNO";
3007  TableIterator it(in->originalTable_, cols);
3008  String basetype = in->getPolType();
3009  STPol* stpol = STPol::getPolClass(in->factories_, basetype);
3010  try {
3011    while ( !it.pastEnd() ) {
3012      Table tab = it.table();
3013      uInt row = tab.rowNumbers()[0];
3014      stpol->setSpectra(in->getPolMatrix(row));
3015      Float fang,fhand;
3016      fang = in->focusTable_.getTotalAngle(in->mfocusidCol_(row));
3017      fhand = in->focusTable_.getFeedHand(in->mfocusidCol_(row));
3018      stpol->setPhaseCorrections(fang, fhand);
3019      Int npolout = 0;
3020      for (uInt i=0; i<tab.nrow(); ++i) {
3021        Vector<Float> outvec = stpol->getSpectrum(i, newtype);
3022        if ( outvec.nelements() > 0 ) {
3023          tout.addRow();
3024          TableCopy::copyRows(tout, tab, tout.nrow()-1, 0, 1);
3025          ArrayColumn<Float> sCol(tout,"SPECTRA");
3026          ScalarColumn<uInt> pCol(tout,"POLNO");
3027          sCol.put(tout.nrow()-1 ,outvec);
3028          pCol.put(tout.nrow()-1 ,uInt(npolout));
3029          npolout++;
3030       }
3031      }
3032      tout.rwKeywordSet().define("nPol", npolout);
3033      ++it;
3034    }
3035  } catch (AipsError& e) {
3036    delete stpol;
3037    throw(e);
3038  }
3039  delete stpol;
3040  return out;
3041}
3042
3043CountedPtr< Scantable >
3044  asap::STMath::mxExtract( const CountedPtr< Scantable > & in,
3045                           const std::string & scantype )
3046{
3047  bool insitu = insitu_;
3048  setInsitu(false);
3049  CountedPtr< Scantable > out = getScantable(in, true);
3050  setInsitu(insitu);
3051  Table& tout = out->table();
3052  std::string taql = "SELECT FROM $1 WHERE BEAMNO != REFBEAMNO";
3053  if (scantype == "on") {
3054    taql = "SELECT FROM $1 WHERE BEAMNO == REFBEAMNO";
3055  }
3056  Table tab = tableCommand(taql, in->table());
3057  TableCopy::copyRows(tout, tab);
3058  if (scantype == "on") {
3059    // re-index SCANNO to 0
3060    TableVector<uInt> vec(tout, "SCANNO");
3061    vec = 0;
3062  }
3063  return out;
3064}
3065
3066std::vector<float>
3067  asap::STMath::fft( const casa::CountedPtr< Scantable > & in,
3068                     const std::vector<int>& whichrow,
3069                     bool getRealImag )
3070{
3071  std::vector<float> res;
3072  Table tab = in->table();
3073  std::vector<bool> mask;
3074
3075  if (whichrow.size() < 1) {          // for all rows (by default)
3076    int nrow = int(tab.nrow());
3077    for (int i = 0; i < nrow; ++i) {
3078      res = in->execFFT(i, mask, getRealImag);
3079    }
3080  } else {                           // for specified rows
3081    for (uInt i = 0; i < whichrow.size(); ++i) {
3082      res = in->execFFT(i, mask, getRealImag);
3083    }
3084  }
3085
3086  return res;
3087}
3088
3089
3090CountedPtr<Scantable>
3091  asap::STMath::lagFlag( const CountedPtr<Scantable>& in,
3092                         double start, double end,
3093                         const std::string& mode )
3094{
3095  CountedPtr<Scantable> out = getScantable(in, false);
3096  Table& tout = out->table();
3097  TableIterator iter(tout, "FREQ_ID");
3098  FFTServer<Float,Complex> ffts;
3099
3100  while ( !iter.pastEnd() ) {
3101    Table tab = iter.table();
3102    Double rp,rv,inc;
3103    ROTableRow row(tab);
3104    const TableRecord& rec = row.get(0);
3105    uInt freqid = rec.asuInt("FREQ_ID");
3106    out->frequencies().getEntry(rp, rv, inc, freqid);
3107    ArrayColumn<Float> specCol(tab, "SPECTRA");
3108    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
3109
3110    for (int i=0; i<int(tab.nrow()); ++i) {
3111      Vector<Float> spec = specCol(i);
3112      Vector<uChar> flag = flagCol(i);
3113      std::vector<bool> mask;
3114      for (uInt j = 0; j < flag.nelements(); ++j) {
3115        mask.push_back(!(flag[j]>0));
3116      }
3117      mathutil::doZeroOrderInterpolation(spec, mask);
3118
3119      Vector<Complex> lags;
3120      ffts.fft0(lags, spec);
3121
3122      Int lag0(start+0.5);
3123      Int lag1(end+0.5);
3124      if (mode == "frequency") {
3125        lag0 = Int(spec.nelements()*abs(inc)/(start)+0.5);
3126        lag1 = Int(spec.nelements()*abs(inc)/(end)+0.5);
3127      }
3128      Int lstart =  max(0, lag0);
3129      Int lend   =  min(Int(lags.nelements()-1), lag1);
3130      if (lstart == lend) {
3131        lags[lstart] = Complex(0.0);
3132      } else {
3133        if (lstart > lend) {
3134          Int tmp = lend;
3135          lend = lstart;
3136          lstart = tmp;
3137        }
3138        for (int j=lstart; j <=lend ;++j) {
3139          lags[j] = Complex(0.0);
3140        }
3141      }
3142
3143      ffts.fft0(spec, lags);
3144
3145      specCol.put(i, spec);
3146    }
3147    ++iter;
3148  }
3149  return out;
3150}
3151
3152// Averaging spectra with different channel/resolution
3153CountedPtr<Scantable>
3154STMath::new_average( const std::vector<CountedPtr<Scantable> >& in,
3155                     const bool& compel,
3156                     const std::vector<bool>& mask,
3157                     const std::string& weight,
3158                     const std::string& avmode )
3159  throw ( casa::AipsError )
3160{
3161  LogIO os( LogOrigin( "STMath", "new_average()", WHERE ) ) ;
3162  if ( avmode == "SCAN" && in.size() != 1 )
3163    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
3164                    "Use merge first."));
3165 
3166  CountedPtr<Scantable> out ;     // processed result
3167  if ( compel ) {
3168    std::vector< CountedPtr<Scantable> > newin ; // input for average process
3169    uInt insize = in.size() ;    // number of input scantables
3170
3171    // setup newin
3172    bool oldInsitu = insitu_ ;
3173    setInsitu( false ) ;
3174    newin.resize( insize ) ;
3175    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3176      newin[itable] = getScantable( in[itable], false ) ;
3177    }
3178    setInsitu( oldInsitu ) ;
3179
3180    // warning
3181    os << "Average spectra with different spectral resolution" << LogIO::POST ;
3182
3183    // temporarily set coordinfo
3184    vector<string> oldinfo( insize ) ;
3185    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3186      vector<string> coordinfo = in[itable]->getCoordInfo() ;
3187      oldinfo[itable] = coordinfo[0] ;
3188      coordinfo[0] = "Hz" ;
3189      newin[itable]->setCoordInfo( coordinfo ) ;
3190    }
3191
3192    ostringstream oss ;
3193
3194    // check IF frequency coverage
3195    // freqid: list of FREQ_ID, which is used, in each table 
3196    // iffreq: list of minimum and maximum frequency for each FREQ_ID in
3197    //         each table
3198    // freqid[insize][numIF]
3199    // freqid: [[id00, id01, ...],
3200    //          [id10, id11, ...],
3201    //          ...
3202    //          [idn0, idn1, ...]]
3203    // iffreq[insize][numIF*2]
3204    // iffreq: [[min_id00, max_id00, min_id01, max_id01, ...],
3205    //          [min_id10, max_id10, min_id11, max_id11, ...],
3206    //          ...
3207    //          [min_idn0, max_idn0, min_idn1, max_idn1, ...]]
3208    //os << "Check IF settings in each table" << LogIO::POST ;
3209    vector< vector<uInt> > freqid( insize );
3210    vector< vector<double> > iffreq( insize ) ;
3211    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3212      Vector<uInt> freqIds = newin[itable]->mfreqidCol_.getColumn() ;
3213      vector<uInt> uniqueFreqId = newin[itable]->getNumbers(newin[itable]->mfreqidCol_) ;
3214      for ( vector<uInt>::iterator i = uniqueFreqId.begin() ;
3215            i != uniqueFreqId.end() ; i++ ) {
3216        //os << "itable = " << itable << ": IF " << id << " is included in the list" << LogIO::POST ;
3217        uInt target = 0 ;
3218        while ( freqIds[target] != *i )
3219          target++ ;
3220        vector<double> abcissa = newin[itable]->getAbcissa( target ) ;
3221        freqid[itable].push_back( *i ) ;
3222        double incr = abs( abcissa[1] - abcissa[0] ) ;
3223        iffreq[itable].push_back( (*min_element(abcissa.begin(),abcissa.end()))-0.5*incr ) ;
3224        iffreq[itable].push_back( (*max_element(abcissa.begin(),abcissa.end()))+0.5*incr ) ;
3225      }
3226    }
3227
3228    // debug
3229//     os << "IF settings summary:" << endl ;
3230//     for ( uInt i = 0 ; i < freqid.size() ; i++ ) {
3231//       os << "   Table" << i << endl ;
3232//       for ( uInt j = 0 ; j < freqid[i].size() ; j++ ) {
3233//         os << "      id = " << freqid[i][j] << " (min,max) = (" << iffreq[i][2*j] << "," << iffreq[i][2*j+1] << ")" << endl ;
3234//       }
3235//     }
3236//     os << endl ;
3237//     os.post() ;
3238
3239    // IF grouping based on their frequency coverage
3240    // ifgrp: number of member in each IF group
3241    // ifgrp[numgrp]
3242    // ifgrp: [n0, n1, ...]
3243    //os << "IF grouping based on their frequency coverage" << LogIO::POST ;
3244
3245    // parameter for IF grouping
3246    // groupmode = OR    retrieve all region
3247    //             AND   only retrieve overlaped region
3248    //string groupmode = "AND" ;
3249    string groupmode = "OR" ;
3250    uInt sizecr = 0 ;
3251    if ( groupmode == "AND" )
3252      sizecr = 1 ;
3253    else if ( groupmode == "OR" )
3254      sizecr = 0 ;
3255
3256    vector<double> sortedfreq ;
3257    for ( uInt i = 0 ; i < iffreq.size() ; i++ ) {
3258      for ( uInt j = 0 ; j < iffreq[i].size() ; j++ ) {
3259        if ( count( sortedfreq.begin(), sortedfreq.end(), iffreq[i][j] ) == 0 )
3260          sortedfreq.push_back( iffreq[i][j] ) ;
3261      }
3262    }
3263    sort( sortedfreq.begin(), sortedfreq.end() ) ;
3264    vector<uInt> ifgrp( sortedfreq.size()-1, 0 ) ;
3265    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3266      for ( uInt iif = 0 ; iif < freqid[itable].size() ; iif++ ) {
3267        double range0 = iffreq[itable][2*iif] ;
3268        double range1 = iffreq[itable][2*iif+1] ;
3269        for ( uInt j = 0 ; j < sortedfreq.size()-1 ; j++ ) {
3270          double fmin = max( range0, sortedfreq[j] ) ;
3271          double fmax = min( range1, sortedfreq[j+1] ) ;
3272          if ( fmin < fmax ) {
3273            ifgrp[j]++ ;
3274          }
3275        }
3276      }
3277    }
3278
3279    // Grouping continuous IF groups (without frequency gap)
3280    // freqgrp: list of IF group indexes in each frequency group
3281    // freqgrp[numgrp][nummember]
3282    // freqgrp: [[ifgrp00, ifgrp01, ifgrp02, ...],
3283    //           [ifgrp10, ifgrp11, ifgrp12, ...],
3284    //           ...
3285    //           [ifgrpn0, ifgrpn1, ifgrpn2, ...]]
3286    // grprange[2*numgrp]
3287    // grprange: [fmin0,fmax0,fmin1,fmax1,...]
3288    vector< vector<uInt> > freqgrp ;
3289    vector<double> grprange ;
3290    vector<uInt> grpedge ;
3291    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3292      if ( ifgrp[igrp] <= sizecr ) {
3293        grpedge.push_back( igrp ) ;
3294      }
3295    }
3296    grpedge.push_back( ifgrp.size() ) ;
3297    uInt itmp = 0 ;
3298    for ( uInt i = 0 ; i < grpedge.size() ; i++ ) {
3299      int n = grpedge[i] - itmp ;
3300      if ( n > 0 ) {
3301        vector<uInt> members( n ) ;
3302        for ( int j = 0 ; j < n ; j++ ) {
3303          members[j] = itmp+j ;
3304        }
3305        freqgrp.push_back( members ) ;
3306        grprange.push_back( sortedfreq[itmp] ) ;
3307        grprange.push_back( sortedfreq[grpedge[i]] ) ;
3308      }
3309      itmp += n + 1 ;
3310    }
3311
3312    // print frequency group
3313    oss.str("") ;
3314    oss << "Frequency Group summary: " << endl ;
3315    oss << "   GROUP_ID: [FREQ_MIN, FREQ_MAX]" << endl ;
3316    for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3317      oss << "   GROUP " << setw( 2 ) << i << ": [" << grprange[2*i] << "," << grprange[2*i+1] << "]" ;
3318      oss << endl ;
3319    }
3320    oss << endl ;
3321    os << oss.str() << LogIO::POST ;
3322
3323    // groups: list of frequency group index whose frequency range overlaps
3324    //         with that of each table and IF
3325    // groups[numtable][numIF]
3326    // groups: [[grpx, grpy,...],
3327    //          [grpa, grpb,...],
3328    //          ...
3329    //          [grpk, grpm,...]]
3330    vector< vector<uInt> > groups( insize ) ;
3331    for ( uInt i = 0 ; i < insize ; i++ ) {
3332      groups[i].resize( freqid[i].size() ) ;
3333    }
3334    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3335      for ( uInt ifreq = 0 ; ifreq < freqid[itable].size() ; ifreq++ ) {
3336        double minf = iffreq[itable][2*ifreq] ;
3337        uInt groupid ;
3338        for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3339          vector<uInt> memberlist = freqgrp[igrp] ;
3340          if ( (minf >= grprange[2*igrp]) && (minf <= grprange[2*igrp+1]) ) {
3341            groupid = igrp ;
3342            break ;
3343          }
3344        }
3345        groups[itable][ifreq] = groupid ;
3346      }
3347    }
3348                                                         
3349
3350    // print membership
3351    oss.str("") ;
3352    for ( uInt i = 0 ; i < insize ; i++ ) {
3353      oss << "Table " << i << endl ;
3354      for ( uInt j = 0 ; j < groups[i].size() ; j++ ) {
3355        oss << "   FREQ_ID " <<  setw( 2 ) << freqid[i][j] << ": " ;
3356        oss << setw( 2 ) << groups[i][j] ;
3357        oss << endl ;
3358      }
3359    }
3360    os << oss.str() << LogIO::POST ;
3361
3362    // reset SCANNO and IFNO/FREQ_ID: IF is reset by the result of sortation
3363    //os << "All IF number is set to IF group index" << LogIO::POST ;
3364    // reset SCANNO only when avmode != "SCAN"
3365    if ( avmode != "SCAN" ) {
3366      os << "All scan number is set to 0" << LogIO::POST ;
3367      for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3368        uInt nrow = newin[itable]->nrow() ;
3369        Vector<uInt> resetScan( nrow, 0 ) ;
3370        newin[itable]->scanCol_.putColumn( resetScan ) ;
3371      }
3372    }
3373
3374    // reset spectra and flagtra: align spectral resolution
3375    //os << "Align spectral resolution" << LogIO::POST ;
3376    // gmaxdnu: the coarsest frequency resolution in the frequency group
3377    // gminfreq: lower frequency edge of the frequency group
3378    // gnchan: number of channels for the frequency group
3379    vector<double> gmaxdnu( freqgrp.size(), 0.0 ) ;
3380    vector<double> gminfreq( freqgrp.size() ) ;
3381    vector<double> gnchan( freqgrp.size() ) ;
3382    for ( uInt i = 0 ; i < insize ; i++ ) {
3383      vector<uInt> members = groups[i] ;
3384      for ( uInt j = 0 ; j < members.size() ; j++ ) {
3385        uInt groupid = members[j] ;
3386        Double rp,rv,ic ;
3387        newin[i]->frequencies().getEntry( rp, rv, ic, j ) ;
3388        if ( abs(ic) > abs(gmaxdnu[groupid]) )
3389          gmaxdnu[groupid] = ic ;
3390      }
3391    }
3392    for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3393      gminfreq[igrp] = grprange[2*igrp] ;
3394      double maxfreq = grprange[2*igrp+1] ;
3395      gnchan[igrp] = (int)(abs((maxfreq-gminfreq[igrp])/gmaxdnu[igrp])+0.9) ;
3396    }
3397     
3398    // regrid spectral data and update frequency info
3399    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3400      Vector<uInt> oldFreqId = newin[itable]->mfreqidCol_.getColumn() ;
3401      Vector<uInt> newFreqId( oldFreqId.nelements() ) ;
3402
3403      // update MAIN
3404      for ( uInt irow = 0 ; irow < newin[itable]->nrow() ; irow++ ) {
3405        uInt groupid = groups[itable][oldFreqId[irow]] ;
3406        newFreqId[irow] = groupid ;
3407        newin[itable]->regridChannel( gnchan[groupid],
3408                                      gmaxdnu[groupid],
3409                                      gminfreq[groupid],
3410                                      irow ) ;
3411      }
3412      newin[itable]->mfreqidCol_.putColumn( newFreqId ) ;
3413      newin[itable]->ifCol_.putColumn( newFreqId ) ;
3414
3415      // update FREQUENCIES
3416      Table tab = newin[itable]->frequencies().table() ;
3417      ScalarColumn<uInt> fIdCol( tab, "ID" ) ;
3418      ScalarColumn<Double> fRefPixCol( tab, "REFPIX" ) ;
3419      ScalarColumn<Double> fRefValCol( tab, "REFVAL" ) ;
3420      ScalarColumn<Double> fIncrCol( tab, "INCREMENT" ) ;
3421      if ( freqgrp.size() > tab.nrow() ) {
3422        tab.addRow( freqgrp.size()-tab.nrow() ) ;
3423      }
3424      for ( uInt irow = 0 ; irow < freqgrp.size() ; irow++ ) {
3425        Double refval = gminfreq[irow] + 0.5 * abs(gmaxdnu[irow]) ;
3426        Double refpix = (gmaxdnu[irow] > 0.0) ? 0 : gnchan[irow]-1 ;
3427        Double increment = gmaxdnu[irow] ;
3428        fIdCol.put( irow, irow ) ;
3429        fRefPixCol.put( irow, refpix ) ;
3430        fRefValCol.put( irow, refval ) ;
3431        fIncrCol.put( irow, increment ) ;
3432      }
3433    }
3434
3435    // set back coordinfo
3436    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3437      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3438      coordinfo[0] = oldinfo[itable] ;
3439      newin[itable]->setCoordInfo( coordinfo ) ;
3440    }
3441
3442    // average
3443    out = average( newin, mask, weight, avmode ) ;
3444  }
3445  else {
3446    // simple average
3447    out =  average( in, mask, weight, avmode ) ;
3448  }
3449 
3450  return out;
3451}
3452
3453CountedPtr<Scantable> STMath::cwcal( const CountedPtr<Scantable>& s,
3454                                     const String calmode,
3455                                     const String antname )
3456{
3457  // frequency switch
3458  if ( calmode == "fs" ) {
3459    return cwcalfs( s, antname ) ;
3460  }
3461  else {
3462    vector<bool> masks = s->getMask( 0 ) ;
3463    vector<int> types ;
3464
3465    // save original table selection
3466    Table torg  = s->table_ ;
3467
3468    // sky scan
3469    bool insitu = insitu_ ;
3470    insitu_ = false ;
3471    // share calibration scans before average with out
3472    CountedPtr<Scantable> out = getScantable( s, true ) ;
3473    insitu_ = insitu ;
3474    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::SKY ) ;
3475    out->attach() ;
3476    CountedPtr<Scantable> asky = averageWithinSession( out,
3477                                                       masks,
3478                                                       "TINT" ) ;
3479    // hot scan
3480    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::HOT ) ;
3481    out->attach() ;
3482    CountedPtr<Scantable> ahot = averageWithinSession( out,
3483                                                       masks,
3484                                                       "TINT" ) ;
3485    // cold scan
3486    CountedPtr<Scantable> acold ;
3487//     out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::COLD ) ;
3488//     out->attach() ;
3489//     CountedPtr<Scantable> acold = averageWithinSession( out,
3490//                                                         masks,
3491//                                                         "TINT" ) ;
3492
3493    // off scan
3494    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSOFF ) ;
3495    out->attach() ;
3496    CountedPtr<Scantable> aoff = averageWithinSession( out,
3497                                                       masks,
3498                                                       "TINT" ) ;
3499   
3500    // on scan
3501    s->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSON ) ;
3502    s->attach() ;
3503    out->table_ = out->originalTable_ ;
3504    out->attach() ;
3505    out->table().addRow( s->nrow() ) ;
3506    copyRows( out->table(), s->table(), 0, 0, s->nrow(), False, True, False ) ;
3507   
3508    // process each on scan
3509    STSelector sel ;
3510    vector<string> cols( 3 ) ;
3511    cols[0] = "BEAMNO" ;
3512    cols[1] = "POLNO" ;
3513    cols[2] = "IFNO" ;
3514    STIdxIter *iter = new STIdxIterAcc( out, cols ) ;
3515    while ( !iter->pastEnd() ) {
3516      Vector<uInt> ids = iter->current() ;
3517      stringstream ss ;
3518      ss << "SELECT FROM $1 WHERE "
3519         << "BEAMNO==" << ids[0] << "&&"
3520         << "POLNO==" << ids[1] << "&&"
3521         << "IFNO==" << ids[2] ;
3522      //cout << "TaQL string: " << ss.str() << endl ;
3523      sel.setTaQL( ss.str() ) ;
3524      aoff->setSelection( sel ) ;
3525      ahot->setSelection( sel ) ;
3526      asky->setSelection( sel ) ;
3527      Vector<uInt> rows = iter->getRows( SHARE ) ;
3528      // out should be an exact copy of s except that SPECTRA column is empty
3529      calibrateCW( out, s, aoff, asky, ahot, acold, rows, antname ) ;
3530      aoff->unsetSelection() ;
3531      ahot->unsetSelection() ;
3532      asky->unsetSelection() ;
3533      sel.reset() ;
3534      iter->next() ;
3535    }
3536    delete iter ;
3537    s->table_ = torg ;
3538    s->attach() ;
3539
3540    // flux unit
3541    out->setFluxUnit( "K" ) ;
3542
3543    return out ;
3544  }
3545}
3546 
3547CountedPtr<Scantable> STMath::almacal( const CountedPtr<Scantable>& s,
3548                                       const String calmode )
3549{
3550  // frequency switch
3551  if ( calmode == "fs" ) {
3552    return almacalfs( s ) ;
3553  }
3554  else {
3555//     double t0, t1 ;
3556//     t0 = mathutil::gettimeofday_sec() ;
3557    vector<bool> masks = s->getMask( 0 ) ;
3558
3559    // save original table selection
3560    Table torg = s->table_ ;
3561
3562    // off scan
3563    // TODO 2010/01/08 TN
3564    // Grouping by time should be needed before averaging.
3565    // Each group must have own unique SCANNO (should be renumbered).
3566    // See PIPELINE/SDCalibration.py
3567    bool insitu = insitu_ ;
3568    insitu_ = false ;
3569    // share off scan before average with out
3570    CountedPtr<Scantable> out = getScantable( s, true ) ;
3571    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSOFF ) ;
3572    out->attach() ;
3573    insitu_ = insitu ;
3574    CountedPtr<Scantable> aoff = averageWithinSession( out,
3575                                                       masks,
3576                                                       "TINT" ) ;
3577
3578    // on scan
3579//     t0 = mathutil::gettimeofday_sec() ;
3580    s->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSON ) ;
3581    s->attach() ;
3582    out->table_ = out->originalTable_ ;
3583    out->attach() ;
3584    out->table().addRow( s->nrow() ) ;
3585    copyRows( out->table(), s->table(), 0, 0, s->nrow(), False ) ;
3586//     t1 = mathutil::gettimeofday_sec() ;
3587//     cout << "elapsed time for preparing output table: " << t1-t0 << " sec" << endl ;
3588
3589    // process each on scan
3590//     t0 = mathutil::gettimeofday_sec() ;
3591
3592    // using STIdxIterAcc
3593    vector<string> cols( 3 ) ;
3594    cols[0] = "BEAMNO" ;
3595    cols[1] = "POLNO" ;
3596    cols[2] = "IFNO" ;
3597    STIdxIter *iter = new STIdxIterAcc( out, cols ) ;
3598    STSelector sel ;
3599    while ( !iter->pastEnd() ) {
3600      Vector<uInt> ids = iter->current() ;
3601      stringstream ss ;
3602      ss << "SELECT FROM $1 WHERE "
3603         << "BEAMNO==" << ids[0] << "&&"
3604         << "POLNO==" << ids[1] << "&&"
3605         << "IFNO==" << ids[2] ;
3606      //cout << "TaQL string: " << ss.str() << endl ;
3607      sel.setTaQL( ss.str() ) ;
3608      aoff->setSelection( sel ) ;
3609      Vector<uInt> rows = iter->getRows( SHARE ) ;
3610      // out should be an exact copy of s except that SPECTRA column is empty
3611      calibrateALMA( out, s, aoff, rows ) ;
3612      aoff->unsetSelection() ;
3613      sel.reset() ;
3614      iter->next() ;
3615    }
3616    delete iter ;
3617    s->table_ = torg ;
3618    s->attach() ;
3619
3620//     t1 = mathutil::gettimeofday_sec() ;
3621//     cout << "elapsed time for calibration: " << t1-t0 << " sec" << endl ;
3622
3623    // flux unit
3624    out->setFluxUnit( "K" ) ;
3625
3626    return out ;
3627  }
3628}
3629
3630CountedPtr<Scantable> STMath::cwcalfs( const CountedPtr<Scantable>& s,
3631                                       const String antname )
3632{
3633  vector<int> types ;
3634
3635  // APEX calibration mode
3636  int apexcalmode = 1 ;
3637 
3638  if ( antname.find( "APEX" ) != string::npos ) {
3639    // check if off scan exists or not
3640    STSelector sel = STSelector() ;
3641    //sel.setName( offstr1 ) ;
3642    types.push_back( SrcType::FLOOFF ) ;
3643    sel.setTypes( types ) ;
3644    try {
3645      s->setSelection( sel ) ;
3646    }
3647    catch ( AipsError &e ) {
3648      apexcalmode = 0 ;
3649    }
3650    sel.reset() ;
3651  }
3652  s->unsetSelection() ;
3653  types.clear() ;
3654
3655  vector<bool> masks = s->getMask( 0 ) ;
3656  CountedPtr<Scantable> ssig, sref ;
3657  //CountedPtr<Scantable> out ;
3658  bool insitu = insitu_ ;
3659  insitu_ = False ;
3660  CountedPtr<Scantable> out = getScantable( s, true ) ;
3661  insitu_ = insitu ;
3662
3663  if ( antname.find( "APEX" ) != string::npos ) {
3664    // APEX calibration
3665    // sky scan
3666    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FLOSKY ) ;
3667    out->attach() ;
3668    CountedPtr<Scantable> askylo = averageWithinSession( out,
3669                                                         masks,
3670                                                         "TINT" ) ;
3671    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FHISKY ) ;
3672    out->attach() ;
3673    CountedPtr<Scantable> askyhi = averageWithinSession( out,
3674                                                         masks,
3675                                                         "TINT" ) ;
3676   
3677    // hot scan
3678    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FLOHOT ) ;
3679    out->attach() ;
3680    CountedPtr<Scantable> ahotlo = averageWithinSession( out,
3681                                                         masks,
3682                                                         "TINT" ) ;
3683    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FHIHOT ) ;
3684    out->attach() ;
3685    CountedPtr<Scantable> ahothi = averageWithinSession( out,
3686                                                         masks,
3687                                                         "TINT" ) ;
3688   
3689    // cold scan
3690    CountedPtr<Scantable> acoldlo, acoldhi ;
3691//     out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FLOCOLD ) ;
3692//     out->attach() ;
3693//     CountedPtr<Scantable> acoldlo = averageWithinSession( out,
3694//                                                           masks,
3695//                                                           "TINT" ) ;
3696//     out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FHICOLD ) ;
3697//     out->attach() ;
3698//     CountedPtr<Scantable> acoldhi = averageWithinSession( out,
3699//                                                           masks,
3700//                                                           "TINT" ) ;
3701
3702    // ref scan
3703    insitu_ = false ;
3704    sref = getScantable( s, true ) ;
3705    CountedPtr<Scantable> rref = getScantable( s, true ) ;
3706    insitu_ = insitu ;
3707    rref->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FSLO ) ;
3708    rref->attach() ;
3709    copyRows( sref->table_, rref->table_, 0, 0, rref->nrow(), False, True, False ) ;
3710   
3711    // sig scan
3712    insitu_ = false ;
3713    ssig = getScantable( s, true ) ;
3714    CountedPtr<Scantable> rsig = getScantable( s, true ) ;
3715    insitu_ = insitu ;
3716    rsig->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FSHI ) ;
3717    rsig->attach() ;
3718    copyRows( ssig->table_, rsig->table_, 0, 0, rsig->nrow(), False, True, False ) ;
3719         
3720    if ( apexcalmode == 0 ) {
3721      // using STIdxIterAcc
3722      vector<string> cols( 3 ) ;
3723      cols[0] = "BEAMNO" ;
3724      cols[1] = "POLNO" ;
3725      cols[2] = "IFNO" ;
3726      STIdxIter *iter = new STIdxIterAcc( ssig, cols ) ;
3727      STSelector sel ;
3728      vector< CountedPtr<Scantable> > on( 2 ) ;
3729      on[0] = rsig ;
3730      on[1] = rref ;
3731      vector< CountedPtr<Scantable> > sky( 2 ) ;
3732      sky[0] = askylo ;
3733      sky[1] = askyhi ;
3734      vector< CountedPtr<Scantable> > hot( 2 ) ;
3735      hot[0] = ahotlo ;
3736      hot[1] = ahothi ;
3737      vector< CountedPtr<Scantable> > cold( 2 ) ;
3738      while ( !iter->pastEnd() ) {
3739        Vector<uInt> ids = iter->current() ;
3740        stringstream ss ;
3741        ss << "SELECT FROM $1 WHERE "
3742           << "BEAMNO==" << ids[0] << "&&"
3743           << "POLNO==" << ids[1] << "&&"
3744           << "IFNO==" << ids[2] ;
3745        //cout << "TaQL string: " << ss.str() << endl ;
3746        sel.setTaQL( ss.str() ) ;
3747        sky[0]->setSelection( sel ) ;
3748        sky[1]->setSelection( sel ) ;
3749        hot[0]->setSelection( sel ) ;
3750        hot[1]->setSelection( sel ) ;
3751        Vector<uInt> rows = iter->getRows( SHARE ) ;
3752        calibrateAPEXFS( ssig, sref, on, sky, hot, cold, rows ) ;
3753        sky[0]->unsetSelection() ;
3754        sky[1]->unsetSelection() ;
3755        hot[0]->unsetSelection() ;
3756        hot[1]->unsetSelection() ;
3757        sel.reset() ;
3758        iter->next() ;
3759      }
3760      delete iter ;
3761
3762    }
3763    else if ( apexcalmode == 1 ) {
3764      // APEX fs data with off scan
3765      // off scan
3766      out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FLOOFF ) ;
3767      out->attach() ;
3768      CountedPtr<Scantable> aofflo = averageWithinSession( out,
3769                                                           masks,
3770                                                           "TINT" ) ;
3771      out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FHIOFF ) ;
3772      out->attach() ;
3773      CountedPtr<Scantable> aoffhi = averageWithinSession( out,
3774                                                           masks,
3775                                                           "TINT" ) ;
3776     
3777      // process each sig and ref scan
3778//       STSelector sel ;
3779      vector<string> cols( 3 ) ;
3780      cols[0] = "BEAMNO" ;
3781      cols[1] = "POLNO" ;
3782      cols[2] = "IFNO" ;
3783      STIdxIter *iter = new STIdxIterAcc( ssig, cols ) ;
3784      STSelector sel ;
3785      while ( !iter->pastEnd() ) {
3786        Vector<uInt> ids = iter->current() ;
3787        stringstream ss ;
3788        ss << "SELECT FROM $1 WHERE "
3789           << "BEAMNO==" << ids[0] << "&&"
3790           << "POLNO==" << ids[1] << "&&"
3791           << "IFNO==" << ids[2] ;
3792        //cout << "TaQL string: " << ss.str() << endl ;
3793        sel.setTaQL( ss.str() ) ;
3794        aofflo->setSelection( sel ) ;
3795        ahotlo->setSelection( sel ) ;
3796        askylo->setSelection( sel ) ;
3797        Vector<uInt> rows = iter->getRows( SHARE ) ;
3798        calibrateCW( ssig, rsig, aofflo, askylo, ahotlo, acoldlo, rows, antname ) ;
3799        aofflo->unsetSelection() ;
3800        ahotlo->unsetSelection() ;
3801        askylo->unsetSelection() ;
3802        sel.reset() ;
3803        iter->next() ;
3804      }
3805      delete iter ;
3806      iter = new STIdxIterAcc( sref, cols ) ;
3807      while ( !iter->pastEnd() ) {
3808        Vector<uInt> ids = iter->current() ;
3809        stringstream ss ;
3810        ss << "SELECT FROM $1 WHERE "
3811           << "BEAMNO==" << ids[0] << "&&"
3812           << "POLNO==" << ids[1] << "&&"
3813           << "IFNO==" << ids[2] ;
3814        //cout << "TaQL string: " << ss.str() << endl ;
3815        sel.setTaQL( ss.str() ) ;
3816        aoffhi->setSelection( sel ) ;
3817        ahothi->setSelection( sel ) ;
3818        askyhi->setSelection( sel ) ;
3819        Vector<uInt> rows = iter->getRows( SHARE ) ;
3820        calibrateCW( sref, rref, aoffhi, askyhi, ahothi, acoldhi, rows, antname ) ;
3821        aoffhi->unsetSelection() ;
3822        ahothi->unsetSelection() ;
3823        askyhi->unsetSelection() ;
3824        sel.reset() ;
3825        iter->next() ;
3826      }
3827      delete iter ;
3828    }
3829  }
3830  else {
3831    // non-APEX fs data
3832    // sky scan
3833    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::SKY ) ;
3834    out->attach() ;
3835    CountedPtr<Scantable> asky = averageWithinSession( out,
3836                                                       masks,
3837                                                       "TINT" ) ;
3838    STSelector sel = STSelector() ;
3839
3840    // hot scan
3841    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::HOT ) ;
3842    out->attach() ;
3843    CountedPtr<Scantable> ahot = averageWithinSession( out,
3844                                                       masks,
3845                                                       "TINT" ) ;
3846
3847    // cold scan
3848    CountedPtr<Scantable> acold ;
3849//     out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::COLD ) ;
3850//     out->attach() ;
3851//     CountedPtr<Scantable> acold = averageWithinSession( out,
3852//                                                         masks,
3853//                                                         "TINT" ) ;
3854   
3855    // ref scan
3856    bool insitu = insitu_ ;
3857    insitu_ = false ;
3858    sref = getScantable( s, true ) ;
3859    CountedPtr<Scantable> rref = getScantable( s, true ) ;
3860    insitu_ = insitu ;
3861    rref->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSOFF ) ;
3862    rref->attach() ;
3863    copyRows( sref->table_, rref->table_, 0, 0, rref->nrow(), False, True, False ) ;
3864   
3865    // sig scan
3866    insitu_ = false ;
3867    ssig = getScantable( s, true ) ;
3868    CountedPtr<Scantable> rsig = getScantable( s, true ) ;
3869    insitu_ = insitu ;
3870    rsig->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSON ) ;
3871    rsig->attach() ;
3872    copyRows( ssig->table_, rsig->table_, 0, 0, rsig->nrow(), False, True, False ) ;
3873
3874    // process each sig and ref scan
3875    vector<string> cols( 3 ) ;
3876    cols[0] = "BEAMNO" ;
3877    cols[1] = "POLNO" ;
3878    cols[2] = "IFNO" ;
3879    STIdxIter *iter = new STIdxIterAcc( ssig, cols ) ;
3880    while ( !iter->pastEnd() ) {
3881      Vector<uInt> ids = iter->current() ;
3882      stringstream ss ;
3883      ss << "SELECT FROM $1 WHERE "
3884         << "BEAMNO==" << ids[0] << "&&"
3885         << "POLNO==" << ids[1] << "&&"
3886         << "IFNO==" << ids[2] ;
3887      //cout << "TaQL string: " << ss.str() << endl ;
3888      sel.setTaQL( ss.str() ) ;
3889      ahot->setSelection( sel ) ;
3890      asky->setSelection( sel ) ;
3891      Vector<uInt> rows = iter->getRows( SHARE ) ;
3892      // out should be an exact copy of s except that SPECTRA column is empty
3893      calibrateFS( ssig, sref, rsig, rref, asky, ahot, acold, rows ) ;
3894      ahot->unsetSelection() ;
3895      asky->unsetSelection() ;
3896      sel.reset() ;
3897      iter->next() ;
3898    }
3899    delete iter ;
3900  }
3901
3902  // do folding if necessary
3903  Table sigtab = ssig->table() ;
3904  Table reftab = sref->table() ;
3905  ScalarColumn<uInt> reffidCol ;
3906  Int nchan = (Int)ssig->nchan() ;
3907  reffidCol.attach( reftab, "FREQ_ID" ) ;
3908  Vector<uInt> sfids = ssig->mfreqidCol_.getColumn() ;
3909  Vector<uInt> rfids = sref->mfreqidCol_.getColumn() ;
3910  vector<uInt> sfids_unique ;
3911  vector<uInt> rfids_unique ;
3912  vector<uInt> sifno_unique ;
3913  vector<uInt> rifno_unique ;
3914  for ( uInt i = 0 ; i < sfids.nelements() ; i++ ) {
3915    if ( count( sfids_unique.begin(), sfids_unique.end(), sfids[i] ) == 0 ) {
3916      sfids_unique.push_back( sfids[i] ) ;
3917      sifno_unique.push_back( ssig->getIF( i ) ) ;
3918    }
3919    if ( count( rfids_unique.begin(), rfids_unique.end(),  rfids[i] ) == 0 ) {
3920      rfids_unique.push_back( rfids[i] ) ;
3921      rifno_unique.push_back( sref->getIF( i ) ) ;
3922    }
3923  }
3924  double refpix_sig, refval_sig, increment_sig ;
3925  double refpix_ref, refval_ref, increment_ref ;
3926  vector< CountedPtr<Scantable> > tmp( sfids_unique.size() ) ;
3927  for ( uInt i = 0 ; i < sfids_unique.size() ; i++ ) {
3928    ssig->frequencies().getEntry( refpix_sig, refval_sig, increment_sig, sfids_unique[i] ) ;
3929    sref->frequencies().getEntry( refpix_ref, refval_ref, increment_ref, rfids_unique[i] ) ;
3930    if ( refpix_sig == refpix_ref ) {
3931      double foffset = refval_ref - refval_sig ;
3932      int choffset = static_cast<int>(foffset/increment_sig) ;
3933      double doffset = foffset / increment_sig ;
3934      if ( abs(choffset) >= nchan ) {
3935        LogIO os( LogOrigin( "STMath", "cwcalfs", WHERE ) ) ;
3936        os << "FREQ_ID=[" << sfids_unique[i] << "," << rfids_unique[i] << "]: out-band frequency switching, no folding" << LogIO::POST ;
3937        os << "Just return signal data" << LogIO::POST ;
3938        //std::vector< CountedPtr<Scantable> > tabs ;
3939        //tabs.push_back( ssig ) ;
3940        //tabs.push_back( sref ) ;
3941        //out = merge( tabs ) ;
3942        tmp[i] = ssig ;
3943      }
3944      else {
3945        STSelector sel = STSelector() ;
3946        vector<int> v( 1, sifno_unique[i] ) ;
3947        sel.setIFs( v ) ;
3948        ssig->setSelection( sel ) ;
3949        sel.reset() ;
3950        v[0] = rifno_unique[i] ;
3951        sel.setIFs( v ) ;
3952        sref->setSelection( sel ) ;
3953        sel.reset() ;
3954        if ( antname.find( "APEX" ) != string::npos ) {
3955          tmp[i] = dofold( ssig, sref, 0.5*doffset, -0.5*doffset ) ;
3956          //tmp[i] = dofold( ssig, sref, doffset ) ;
3957        }
3958        else {
3959          tmp[i] = dofold( ssig, sref, doffset ) ;
3960        }
3961        ssig->unsetSelection() ;
3962        sref->unsetSelection() ;
3963      }
3964    }
3965  }
3966
3967  if ( tmp.size() > 1 ) {
3968    out = merge( tmp ) ;
3969  }
3970  else {
3971    out = tmp[0] ;
3972  }
3973
3974  // flux unit
3975  out->setFluxUnit( "K" ) ;
3976
3977  return out ;
3978}
3979
3980CountedPtr<Scantable> STMath::almacalfs( const CountedPtr<Scantable>& s )
3981{
3982  (void) s; //currently unused
3983  CountedPtr<Scantable> out ;
3984
3985  return out ;
3986}
3987
3988Vector<Float> STMath::getSpectrumFromTime( double reftime,
3989                                           const Vector<Double> &timeVec,
3990                                           const vector<int> &idx,
3991                                           const Matrix<Float>& spectra,
3992                                           string mode )
3993{
3994  LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
3995  Vector<Float> sp ;
3996  uInt ncol = spectra.ncolumn() ;
3997
3998  if ( ncol == 0 ) {
3999    os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4000    return sp ;
4001  }
4002  else if ( ncol == 1 ) {
4003    //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4004    sp.reference( spectra.column( 0 ) ) ;
4005    return sp ;
4006  }
4007  else {
4008    if ( mode == "before" ) {
4009      int id = -1 ;
4010      if ( idx[0] != -1 ) {
4011        id = idx[0] ;
4012      }
4013      else if ( idx[1] != -1 ) {
4014        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4015        id = idx[1] ;
4016      }
4017      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4018      sp.reference( spectra.column( id ) ) ;
4019    }
4020    else if ( mode == "after" ) {
4021      int id = -1 ;
4022      if ( idx[1] != -1 ) {
4023        id = idx[1] ;
4024      }
4025      else if ( idx[0] != -1 ) {
4026        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4027        id = idx[1] ;
4028      }
4029      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4030      sp.reference( spectra.column( id ) ) ;
4031    }
4032    else if ( mode == "nearest" ) {
4033      int id = -1 ;
4034      if ( idx[0] == -1 ) {
4035        id = idx[1] ;
4036      }
4037      else if ( idx[1] == -1 ) {
4038        id = idx[0] ;
4039      }
4040      else if ( idx[0] == idx[1] ) {
4041        id = idx[0] ;
4042      }
4043      else {
4044        double t0 = timeVec[idx[0]] ;
4045        double t1 = timeVec[idx[1]] ;
4046        double tref = reftime ;
4047        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4048          id = idx[1] ;
4049        }
4050        else {
4051          id = idx[0] ;
4052        }
4053      }
4054      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4055      sp.reference( spectra.column( id ) ) ;
4056    }
4057    else if ( mode == "linear" ) {
4058      if ( idx[0] == -1 ) {
4059        // use after
4060        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4061        int id = idx[1] ;
4062        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4063        sp.reference( spectra.column( id ) ) ;
4064      }
4065      else if ( idx[1] == -1 ) {
4066        // use before
4067        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4068        int id = idx[0] ;
4069        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4070        sp.reference( spectra.column( id ) ) ;
4071      }
4072      else if ( idx[0] == idx[1] ) {
4073        // use before
4074        //os << "No need to interporate." << LogIO::POST ;
4075        int id = idx[0] ;
4076        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4077        sp.reference( spectra.column( id ) ) ;
4078      }
4079      else {
4080        // do interpolation
4081        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4082        double t0 = timeVec[idx[0]] ;
4083        double t1 = timeVec[idx[1]] ;
4084        double tref = reftime ;
4085        sp = spectra.column( idx[0] ).copy() ;
4086        Vector<Float> sp1( spectra.column( idx[1] ) ) ;
4087        double tfactor = ( tref - t0 ) / ( t1 - t0 ) ;
4088        for ( unsigned int i = 0 ; i < sp.size() ; i++ ) {
4089          sp[i] = ( sp1[i] - sp[i] ) * tfactor + sp[i] ;
4090        }
4091      }
4092    }
4093    else {
4094      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4095    }
4096    return sp ;
4097  }
4098}
4099
4100vector<int> STMath::getRowIdFromTime( double reftime, const Vector<Double> &t )
4101{
4102//   double reft = reftime ;
4103  double dtmin = 1.0e100 ;
4104  double dtmax = -1.0e100 ;
4105//   vector<double> dt ;
4106  int just_before = -1 ;
4107  int just_after = -1 ;
4108  Vector<Double> dt = t - reftime ;
4109  for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
4110    if ( dt[i] > 0.0 ) {
4111      // after reftime
4112      if ( dt[i] < dtmin ) {
4113        just_after = i ;
4114        dtmin = dt[i] ;
4115      }
4116    }
4117    else if ( dt[i] < 0.0 ) {
4118      // before reftime
4119      if ( dt[i] > dtmax ) {
4120        just_before = i ;
4121        dtmax = dt[i] ;
4122      }
4123    }
4124    else {
4125      // just a reftime
4126      just_before = i ;
4127      just_after = i ;
4128      dtmax = 0 ;
4129      dtmin = 0 ;
4130      break ;
4131    }
4132  }
4133
4134  vector<int> v(2) ;
4135  v[0] = just_before ;
4136  v[1] = just_after ;
4137
4138  return v ;
4139}
4140
4141Vector<Float> STMath::getTcalFromTime( double reftime,
4142                                       const Vector<Double> &timeVec,
4143                                       const vector<int> &idx,
4144                                       const CountedPtr<Scantable>& s,
4145                                       string mode )
4146{
4147  LogIO os( LogOrigin( "STMath", "getTcalFromTime", WHERE ) ) ;
4148  STTcal tcalTable = s->tcal() ;
4149  String time ;
4150  Vector<Float> tcalval ;
4151  if ( s->nrow() == 0 ) {
4152    os << LogIO::SEVERE << "No row in the input scantable. Return empty tcal." << LogIO::POST ;
4153    return tcalval ;
4154  }
4155  else if ( s->nrow() == 1 ) {
4156    uInt tcalid = s->getTcalId( 0 ) ;
4157    //os << "use row " << 0 << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4158    tcalTable.getEntry( time, tcalval, tcalid ) ;
4159    return tcalval ;
4160  }
4161  else {
4162    if ( mode == "before" ) {
4163      int id = -1 ;
4164      if ( idx[0] != -1 ) {
4165        id = idx[0] ;
4166      }
4167      else if ( idx[1] != -1 ) {
4168        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4169        id = idx[1] ;
4170      }
4171      uInt tcalid = s->getTcalId( id ) ;
4172      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4173      tcalTable.getEntry( time, tcalval, tcalid ) ;
4174    }
4175    else if ( mode == "after" ) {
4176      int id = -1 ;
4177      if ( idx[1] != -1 ) {
4178        id = idx[1] ;
4179      }
4180      else if ( idx[0] != -1 ) {
4181        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4182        id = idx[1] ;
4183      }
4184      uInt tcalid = s->getTcalId( id ) ;
4185      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4186      tcalTable.getEntry( time, tcalval, tcalid ) ;
4187    }
4188    else if ( mode == "nearest" ) {
4189      int id = -1 ;
4190      if ( idx[0] == -1 ) {
4191        id = idx[1] ;
4192      }
4193      else if ( idx[1] == -1 ) {
4194        id = idx[0] ;
4195      }
4196      else if ( idx[0] == idx[1] ) {
4197        id = idx[0] ;
4198      }
4199      else {
4200        double t0 = timeVec[idx[0]] ;
4201        double t1 = timeVec[idx[1]] ;
4202        if ( abs( t0 - reftime ) > abs( t1 - reftime ) ) {
4203          id = idx[1] ;
4204        }
4205        else {
4206          id = idx[0] ;
4207        }
4208      }
4209      uInt tcalid = s->getTcalId( id ) ;
4210      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4211      tcalTable.getEntry( time, tcalval, tcalid ) ;
4212    }
4213    else if ( mode == "linear" ) {
4214      if ( idx[0] == -1 ) {
4215        // use after
4216        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4217        int id = idx[1] ;
4218        uInt tcalid = s->getTcalId( id ) ;
4219        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4220        tcalTable.getEntry( time, tcalval, tcalid ) ;
4221      }
4222      else if ( idx[1] == -1 ) {
4223        // use before
4224        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4225        int id = idx[0] ;
4226        uInt tcalid = s->getTcalId( id ) ;
4227        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4228        tcalTable.getEntry( time, tcalval, tcalid ) ;
4229      }
4230      else if ( idx[0] == idx[1] ) {
4231        // use before
4232        //os << "No need to interporate." << LogIO::POST ;
4233        int id = idx[0] ;
4234        uInt tcalid = s->getTcalId( id ) ;
4235        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4236        tcalTable.getEntry( time, tcalval, tcalid ) ;
4237      }
4238      else {
4239        // do interpolation
4240        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4241        double t0 = timeVec[idx[0]] ;
4242        double t1 = timeVec[idx[1]] ;
4243        Vector<Float> tcal0 ;
4244        uInt tcalid0 = s->getTcalId( idx[0] ) ;
4245        uInt tcalid1 = s->getTcalId( idx[1] ) ;
4246        tcalTable.getEntry( time, tcal0, tcalid0 ) ;
4247        tcalTable.getEntry( time, tcalval, tcalid1 ) ;
4248        double tfactor = (reftime - t0) / (t1 - t0) ;
4249        for ( unsigned int i = 0 ; i < tcal0.size() ; i++ ) {
4250          tcalval[i] = ( tcalval[i] - tcal0[i] ) * tfactor + tcal0[i] ;
4251        }
4252      }
4253    }
4254    else {
4255      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4256    }
4257    return tcalval ;
4258  }
4259}
4260
4261Vector<Float> STMath::getTsysFromTime( double reftime,
4262                                       const Vector<Double> &timeVec,
4263                                       const vector<int> &idx,
4264                                       const CountedPtr<Scantable> &s,
4265                                       string mode )
4266{
4267  LogIO os( LogOrigin( "STMath", "getTsysFromTime", WHERE ) ) ;
4268  ArrayColumn<Float> tsysCol ;
4269  tsysCol.attach( s->table(), "TSYS" ) ;
4270  Vector<Float> tsysval ;
4271  if ( s->nrow() == 0 ) {
4272    os << LogIO::SEVERE << "No row in the input scantable. Return empty tsys." << LogIO::POST ;
4273    return tsysval ;
4274  }
4275  else if ( s->nrow() == 1 ) {
4276    //os << "use row " << 0 << LogIO::POST ;
4277    tsysval = tsysCol( 0 ) ;
4278    return tsysval ;
4279  }
4280  else {
4281    if ( mode == "before" ) {
4282      int id = -1 ;
4283      if ( idx[0] != -1 ) {
4284        id = idx[0] ;
4285      }
4286      else if ( idx[1] != -1 ) {
4287        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4288        id = idx[1] ;
4289      }
4290      //os << "use row " << id << LogIO::POST ;
4291      tsysval = tsysCol( id ) ;
4292    }
4293    else if ( mode == "after" ) {
4294      int id = -1 ;
4295      if ( idx[1] != -1 ) {
4296        id = idx[1] ;
4297      }
4298      else if ( idx[0] != -1 ) {
4299        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4300        id = idx[1] ;
4301      }
4302      //os << "use row " << id << LogIO::POST ;
4303      tsysval = tsysCol( id ) ;
4304    }
4305    else if ( mode == "nearest" ) {
4306      int id = -1 ;
4307      if ( idx[0] == -1 ) {
4308        id = idx[1] ;
4309      }
4310      else if ( idx[1] == -1 ) {
4311        id = idx[0] ;
4312      }
4313      else if ( idx[0] == idx[1] ) {
4314        id = idx[0] ;
4315      }
4316      else {
4317        double t0 = timeVec[idx[0]] ;
4318        double t1 = timeVec[idx[1]] ;
4319        if ( abs( t0 - reftime ) > abs( t1 - reftime ) ) {
4320          id = idx[1] ;
4321        }
4322        else {
4323          id = idx[0] ;
4324        }
4325      }
4326      //os << "use row " << id << LogIO::POST ;
4327      tsysval = tsysCol( id ) ;
4328    }
4329    else if ( mode == "linear" ) {
4330      if ( idx[0] == -1 ) {
4331        // use after
4332        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4333        int id = idx[1] ;
4334        //os << "use row " << id << LogIO::POST ;
4335        tsysval = tsysCol( id ) ;
4336      }
4337      else if ( idx[1] == -1 ) {
4338        // use before
4339        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4340        int id = idx[0] ;
4341        //os << "use row " << id << LogIO::POST ;
4342        tsysval = tsysCol( id ) ;
4343      }
4344      else if ( idx[0] == idx[1] ) {
4345        // use before
4346        //os << "No need to interporate." << LogIO::POST ;
4347        int id = idx[0] ;
4348        //os << "use row " << id << LogIO::POST ;
4349        tsysval = tsysCol( id ) ;
4350      }
4351      else {
4352        // do interpolation
4353        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4354        double t0 = timeVec[idx[0]] ;
4355        double t1 = timeVec[idx[1]] ;
4356        Vector<Float> tsys0 ;
4357        tsys0 = tsysCol( idx[0] ) ;
4358        tsysval = tsysCol( idx[1] ) ;
4359        double tfactor = (reftime - t0) / (t1 - t0) ;
4360        for ( unsigned int i = 0 ; i < tsys0.size() ; i++ ) {
4361          tsysval[i] = ( tsysval[i] - tsys0[i] ) * tfactor + tsys0[i] ;
4362        }
4363      }
4364    }
4365    else {
4366      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4367    }
4368    return tsysval ;
4369  }
4370}
4371
4372void STMath::calibrateCW( CountedPtr<Scantable> &out,
4373                          const CountedPtr<Scantable>& on,
4374                          const CountedPtr<Scantable>& off,
4375                          const CountedPtr<Scantable>& sky,
4376                          const CountedPtr<Scantable>& hot,
4377                          const CountedPtr<Scantable>& cold,
4378                          const Vector<uInt> &rows,
4379                          const String &antname )
4380{
4381  // 2012/05/22 TN
4382  // Assume that out has empty SPECTRA column
4383
4384  // if rows is empty, just return
4385  if ( rows.nelements() == 0 )
4386    return ;
4387  ROScalarColumn<Double> timeCol( off->table(), "TIME" ) ;
4388  Vector<Double> timeOff = timeCol.getColumn() ;
4389  timeCol.attach( sky->table(), "TIME" ) ;
4390  Vector<Double> timeSky = timeCol.getColumn() ;
4391  timeCol.attach( hot->table(), "TIME" ) ;
4392  Vector<Double> timeHot = timeCol.getColumn() ;
4393  timeCol.attach( on->table(), "TIME" ) ;
4394  ROArrayColumn<Float> arrayFloatCol( off->table(), "SPECTRA" ) ;
4395  Matrix<Float> offspectra = arrayFloatCol.getColumn() ;
4396  arrayFloatCol.attach( sky->table(), "SPECTRA" ) ;
4397  Matrix<Float> skyspectra = arrayFloatCol.getColumn() ;
4398  arrayFloatCol.attach( hot->table(), "SPECTRA" ) ;
4399  Matrix<Float> hotspectra = arrayFloatCol.getColumn() ;
4400  unsigned int spsize = on->nchan( on->getIF(rows[0]) ) ;
4401  // I know that the data is contiguous
4402  const uInt *p = rows.data() ;
4403  vector<int> ids( 2 ) ;
4404  Block<uInt> flagchan( spsize ) ;
4405  uInt nflag = 0 ;
4406  for ( int irow = 0 ; irow < rows.nelements() ; irow++ ) {
4407    double reftime = timeCol.asdouble(*p) ;
4408    ids = getRowIdFromTime( reftime, timeOff ) ;
4409    Vector<Float> spoff = getSpectrumFromTime( reftime, timeOff, ids, offspectra, "linear" ) ;
4410    ids = getRowIdFromTime( reftime, timeSky ) ;
4411    Vector<Float> spsky = getSpectrumFromTime( reftime, timeSky, ids, skyspectra, "linear" ) ;
4412    Vector<Float> tcal = getTcalFromTime( reftime, timeSky, ids, sky, "linear" ) ;
4413    Vector<Float> tsys = getTsysFromTime( reftime, timeSky, ids, sky, "linear" ) ;
4414    ids = getRowIdFromTime( reftime, timeHot ) ;
4415    Vector<Float> sphot = getSpectrumFromTime( reftime, timeHot, ids, hotspectra, "linear" ) ;
4416    Vector<Float> spec = on->specCol_( *p ) ;
4417    if ( antname.find( "APEX" ) != String::npos ) {
4418      // using gain array
4419      for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4420        if ( spoff[j] == 0.0 || (sphot[j]-spsky[j]) == 0.0 ) {
4421          spec[j] = 0.0 ;
4422          flagchan[nflag++] = j ;
4423        }
4424        else {
4425          spec[j] = ( ( spec[j] - spoff[j] ) / spoff[j] )
4426            * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
4427        }
4428      }
4429    }
4430    else {
4431      // Chopper-Wheel calibration (Ulich & Haas 1976)
4432      for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4433        if ( (sphot[j]-spsky[j]) == 0.0 ) {
4434          spec[j] = 0.0 ;
4435          flagchan[nflag++] = j ;
4436        }
4437        else {
4438          spec[j] = ( spec[j] - spoff[j] ) / ( sphot[j] - spsky[j] ) * tcal[j] ;
4439        }
4440      }
4441    }
4442    out->specCol_.put( *p, spec ) ;
4443    out->tsysCol_.put( *p, tsys ) ;
4444    if ( nflag > 0 ) {
4445      Vector<uChar> fl = out->flagsCol_( *p ) ;
4446      for ( unsigned int j = 0 ; j < nflag ; j++ ) {
4447        fl[flagchan[j]] = (uChar)True ;
4448      }
4449      out->flagsCol_.put( *p, fl ) ;
4450    }
4451    nflag = 0 ;
4452    p++ ;
4453  }
4454}
4455
4456void STMath::calibrateALMA( CountedPtr<Scantable>& out,
4457                            const CountedPtr<Scantable>& on,
4458                            const CountedPtr<Scantable>& off,
4459                            const Vector<uInt>& rows )
4460{
4461  // 2012/05/22 TN
4462  // Assume that out has empty SPECTRA column
4463
4464  // if rows is empty, just return
4465  if ( rows.nelements() == 0 )
4466    return ;
4467  ROScalarColumn<Double> timeCol( off->table(), "TIME" ) ;
4468  Vector<Double> timeVec = timeCol.getColumn() ;
4469  timeCol.attach( on->table(), "TIME" ) ;
4470  ROArrayColumn<Float> arrayFloatCol( off->table(), "SPECTRA" ) ;
4471  Matrix<Float> offspectra = arrayFloatCol.getColumn() ;
4472  unsigned int spsize = on->nchan( on->getIF(rows[0]) ) ;
4473  // I know that the data is contiguous
4474  const uInt *p = rows.data() ;
4475  vector<int> ids( 2 ) ;
4476  Block<uInt> flagchan( spsize ) ;
4477  uInt nflag = 0 ;
4478  for ( int irow = 0 ; irow < rows.nelements() ; irow++ ) {
4479    double reftime = timeCol.asdouble(*p) ;
4480    ids = getRowIdFromTime( reftime, timeVec ) ;
4481    Vector<Float> spoff = getSpectrumFromTime( reftime, timeVec, ids, offspectra, "linear" ) ;
4482    //Vector<Float> spoff = getSpectrumFromTime( reftime, timeVec, off, "linear" ) ;
4483    Vector<Float> spec = on->specCol_( *p ) ;
4484    Vector<Float> tsys = on->tsysCol_( *p ) ;
4485    // ALMA Calibration
4486    //
4487    // Ta* = Tsys * ( ON - OFF ) / OFF
4488    //
4489    // 2010/01/07 Takeshi Nakazato
4490    unsigned int tsyssize = tsys.nelements() ;
4491    for ( unsigned int j = 0 ; j < spsize ; j++ ) {
4492      if ( spoff[j] == 0.0 ) {
4493        spec[j] = 0.0 ;
4494        flagchan[nflag++] = j ;
4495      }
4496      else {
4497        spec[j] = ( spec[j] - spoff[j] ) / spoff[j] ;
4498      }
4499      if ( tsyssize == spsize )
4500        spec[j] *= tsys[j] ;
4501      else
4502        spec[j] *= tsys[0] ;
4503    }
4504    out->specCol_.put( *p, spec ) ;
4505    if ( nflag > 0 ) {
4506      Vector<uChar> fl = out->flagsCol_( *p ) ;
4507      for ( unsigned int j = 0 ; j < nflag ; j++ ) {
4508        fl[flagchan[j]] = (uChar)True ;
4509      }
4510      out->flagsCol_.put( *p, fl ) ;
4511    }
4512    nflag = 0 ;
4513    p++ ;
4514  }
4515}
4516
4517void STMath::calibrateAPEXFS( CountedPtr<Scantable> &sig,
4518                              CountedPtr<Scantable> &ref,
4519                              const vector< CountedPtr<Scantable> >& on,
4520                              const vector< CountedPtr<Scantable> >& sky,
4521                              const vector< CountedPtr<Scantable> >& hot,
4522                              const vector< CountedPtr<Scantable> >& cold,
4523                              const Vector<uInt> &rows )
4524{
4525  // if rows is empty, just return
4526  if ( rows.nelements() == 0 )
4527    return ;
4528  ROScalarColumn<Double> timeCol( sky[0]->table(), "TIME" ) ;
4529  Vector<Double> timeSkyS = timeCol.getColumn() ;
4530  timeCol.attach( sky[1]->table(), "TIME" ) ;
4531  Vector<Double> timeSkyR = timeCol.getColumn() ;
4532  timeCol.attach( hot[0]->table(), "TIME" ) ;
4533  Vector<Double> timeHotS = timeCol.getColumn() ;
4534  timeCol.attach( hot[1]->table(), "TIME" ) ;
4535  Vector<Double> timeHotR = timeCol.getColumn() ;
4536  timeCol.attach( sig->table(), "TIME" ) ;
4537  ROScalarColumn<Double> timeCol2( ref->table(), "TIME" ) ;
4538  ROArrayColumn<Float> arrayFloatCol( sky[0]->table(), "SPECTRA" ) ;
4539  Matrix<Float> skyspectraS = arrayFloatCol.getColumn() ;
4540  arrayFloatCol.attach( sky[1]->table(), "SPECTRA" ) ;
4541  Matrix<Float> skyspectraR = arrayFloatCol.getColumn() ;
4542  arrayFloatCol.attach( hot[0]->table(), "SPECTRA" ) ;
4543  Matrix<Float> hotspectraS = arrayFloatCol.getColumn() ;
4544  arrayFloatCol.attach( hot[1]->table(), "SPECTRA" ) ;
4545  Matrix<Float> hotspectraR = arrayFloatCol.getColumn() ;
4546  unsigned int spsize = sig->nchan( sig->getIF(rows[0]) ) ;
4547  Vector<Float> spec( spsize ) ;
4548  // I know that the data is contiguous
4549  const uInt *p = rows.data() ;
4550  vector<int> ids( 2 ) ;
4551  Block<uInt> flagchan( spsize ) ;
4552  uInt nflag = 0 ;
4553  for ( int irow = 0 ; irow < rows.nelements() ; irow++ ) {
4554    double reftime = timeCol.asdouble(*p) ;
4555    ids = getRowIdFromTime( reftime, timeSkyS ) ;
4556    Vector<Float> spskyS = getSpectrumFromTime( reftime, timeSkyS, ids, skyspectraS, "linear" ) ;
4557    Vector<Float> tcalS = getTcalFromTime( reftime, timeSkyS, ids, sky[0], "linear" ) ;
4558    Vector<Float> tsysS = getTsysFromTime( reftime, timeSkyS, ids, sky[0], "linear" ) ;
4559    ids = getRowIdFromTime( reftime, timeHotS ) ;
4560    Vector<Float> sphotS = getSpectrumFromTime( reftime, timeHotS, ids, hotspectraS ) ;
4561    reftime = timeCol2.asdouble(*p) ;
4562    ids = getRowIdFromTime( reftime, timeSkyR ) ;
4563    Vector<Float> spskyR = getSpectrumFromTime( reftime, timeSkyR, ids, skyspectraR, "linear" ) ;
4564    Vector<Float> tcalR = getTcalFromTime( reftime, timeSkyR, ids, sky[1], "linear" ) ;
4565    Vector<Float> tsysR = getTsysFromTime( reftime, timeSkyR, ids, sky[1], "linear" ) ;
4566    ids = getRowIdFromTime( reftime, timeHotR ) ;
4567    Vector<Float> sphotR = getSpectrumFromTime( reftime, timeHotR, ids, hotspectraR ) ;
4568    Vector<Float> spsig = on[0]->specCol_( *p ) ;
4569    Vector<Float> spref = on[1]->specCol_( *p ) ;
4570    for ( unsigned int j = 0 ; j < spsize ; j++ ) {
4571      if ( (sphotS[j]-spskyS[j]) == 0.0 || (sphotR[j]-spskyR[j]) == 0.0 ) {
4572        spec[j] = 0.0 ;
4573        flagchan[nflag++] = j ;
4574      }
4575      else {
4576        spec[j] = tcalS[j] * spsig[j] / ( sphotS[j] - spskyS[j] )
4577          - tcalR[j] * spref[j] / ( sphotR[j] - spskyR[j] ) ;
4578      }
4579    }
4580    sig->specCol_.put( *p, spec ) ;
4581    sig->tsysCol_.put( *p, tsysS ) ;
4582    spec *= (Float)-1.0 ;
4583    ref->specCol_.put( *p, spec ) ;
4584    ref->tsysCol_.put( *p, tsysR ) ;   
4585    if ( nflag > 0 ) {
4586      Vector<uChar> flsig = sig->flagsCol_( *p ) ;
4587      Vector<uChar> flref = ref->flagsCol_( *p ) ;
4588      for ( unsigned int j = 0 ; j < nflag ; j++ ) {
4589        flsig[flagchan[j]] = (uChar)True ;
4590        flref[flagchan[j]] = (uChar)True ;
4591      }
4592      sig->flagsCol_.put( *p, flsig ) ;
4593      ref->flagsCol_.put( *p, flref ) ;
4594    }
4595    nflag = 0 ;
4596    p++ ;
4597  }
4598}
4599
4600void STMath::calibrateFS( CountedPtr<Scantable> &sig,
4601                          CountedPtr<Scantable> &ref,
4602                          const CountedPtr<Scantable>& rsig,
4603                          const CountedPtr<Scantable>& rref,
4604                          const CountedPtr<Scantable>& sky,
4605                          const CountedPtr<Scantable>& hot,
4606                          const CountedPtr<Scantable>& cold,
4607                          const Vector<uInt> &rows )
4608{
4609  // if rows is empty, just return
4610  if ( rows.nelements() == 0 )
4611    return ;
4612  ROScalarColumn<Double> timeCol( sky->table(), "TIME" ) ;
4613  Vector<Double> timeSky = timeCol.getColumn() ;
4614  timeCol.attach( hot->table(), "TIME" ) ;
4615  Vector<Double> timeHot = timeCol.getColumn() ;
4616  timeCol.attach( sig->table(), "TIME" ) ;
4617  ROScalarColumn<Double> timeCol2( ref->table(), "TIME" ) ;
4618  ROArrayColumn<Float> arrayFloatCol( sky->table(), "SPECTRA" ) ;
4619  Matrix<Float> skyspectra = arrayFloatCol.getColumn() ;
4620  arrayFloatCol.attach( hot->table(), "SPECTRA" ) ;
4621  Matrix<Float> hotspectra = arrayFloatCol.getColumn() ;
4622  unsigned int spsize = sig->nchan( sig->getIF(rows[0]) ) ;
4623  Vector<Float> spec( spsize ) ;
4624  // I know that the data is contiguous
4625  const uInt *p = rows.data() ;
4626  vector<int> ids( 2 ) ;
4627  Block<uInt> flagchan( spsize ) ;
4628  uInt nflag = 0 ;
4629  for ( int irow = 0 ; irow < rows.nelements() ; irow++ ) {
4630    double reftime = timeCol.asdouble(*p) ;
4631    ids = getRowIdFromTime( reftime, timeSky ) ;
4632    Vector<Float> spsky = getSpectrumFromTime( reftime, timeSky, ids, skyspectra, "linear" ) ;
4633    Vector<Float> tcal = getTcalFromTime( reftime, timeSky, ids, sky, "linear" ) ;
4634    Vector<Float> tsys = getTsysFromTime( reftime, timeSky, ids, sky, "linear" ) ;
4635    ids = getRowIdFromTime( reftime, timeHot ) ;
4636    Vector<Float> sphot = getSpectrumFromTime( reftime, timeHot, ids, hotspectra ) ;
4637    Vector<Float> spsig = rsig->specCol_( *p ) ;
4638    Vector<Float> spref = rref->specCol_( *p ) ;
4639    // using gain array
4640    for ( unsigned int j = 0 ; j < spsize ; j++ ) {
4641      if ( spref[j] == 0.0 || (sphot[j]-spsky[j]) == 0.0 ) {
4642        spec[j] = 0.0 ;
4643        flagchan[nflag++] = j ;
4644      }
4645      else {
4646        spec[j] = ( ( spsig[j] - spref[j] ) / spref[j] )
4647          * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
4648      }
4649    }
4650    sig->specCol_.put( *p, spec ) ;
4651    sig->tsysCol_.put( *p, tsys ) ;
4652    if ( nflag > 0 ) {
4653      Vector<uChar> fl = sig->flagsCol_( *p ) ;
4654      for ( unsigned int j = 0 ; j < nflag ; j++ ) {
4655        fl[flagchan[j]] = (uChar)True ;
4656      }
4657      sig->flagsCol_.put( *p, fl ) ;
4658    }
4659    nflag = 0 ;
4660
4661    reftime = timeCol2.asdouble(*p) ;
4662    spsky = getSpectrumFromTime( reftime, timeSky, ids, skyspectra, "linear" ) ;
4663    tcal = getTcalFromTime( reftime, timeSky, ids, sky, "linear" ) ;
4664    tsys = getTsysFromTime( reftime, timeSky, ids, sky, "linear" ) ;
4665    ids = getRowIdFromTime( reftime, timeHot ) ;
4666    sphot = getSpectrumFromTime( reftime, timeHot, ids, hotspectra ) ;
4667    // using gain array
4668    for ( unsigned int j = 0 ; j < spsize ; j++ ) {
4669      if ( spsig[j] == 0.0 || (sphot[j]-spsky[j]) == 0.0 ) {
4670        spec[j] = 0.0 ;
4671        flagchan[nflag++] = j ;
4672      }
4673      else {
4674        spec[j] = ( ( spref[j] - spsig[j] ) / spsig[j] )
4675          * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
4676      }
4677    }
4678    ref->specCol_.put( *p, spec ) ;
4679    ref->tsysCol_.put( *p, tsys ) ;   
4680    if ( nflag > 0 ) {
4681      Vector<uChar> fl = ref->flagsCol_( *p ) ;
4682      for ( unsigned int j = 0 ; j < nflag ; j++ ) {
4683        fl[flagchan[j]] = (uChar)True ;
4684      }
4685      ref->flagsCol_.put( *p, fl ) ;
4686    }
4687    nflag = 0 ;
4688    p++ ;
4689  }
4690}
4691
4692void STMath::copyRows( Table &out,
4693                       const Table &in,
4694                       uInt startout,
4695                       uInt startin,
4696                       uInt nrow,
4697                       Bool copySpectra,
4698                       Bool copyFlagtra,
4699                       Bool copyTsys )
4700{
4701  uInt nexclude = 0 ;
4702  Block<String> excludeColsBlock( 3 ) ;
4703  if ( !copySpectra ) {
4704    excludeColsBlock[nexclude] = "SPECTRA" ;
4705    nexclude++ ;
4706  }
4707  if ( !copyFlagtra ) {
4708    excludeColsBlock[nexclude] = "FLAGTRA" ;
4709    nexclude++ ;
4710  }
4711  if ( !copyTsys ) {
4712    excludeColsBlock[nexclude] = "TSYS" ;
4713    nexclude++ ;
4714  }
4715  //  if ( nexclude < 3 ) {
4716  //    excludeCols.resize( nexclude, True ) ;
4717  //  }
4718  Vector<String> excludeCols( IPosition(1,nexclude),
4719                              excludeColsBlock.storage(),
4720                              SHARE ) ;
4721//   cout << "excludeCols=" << excludeCols << endl ;
4722  TableRow rowout( out, excludeCols, True ) ;
4723  ROTableRow rowin( in, excludeCols, True ) ;
4724  uInt rin = startin ;
4725  uInt rout = startout ;
4726  for ( uInt i = 0 ; i < nrow ; i++ ) {
4727    rowin.get( rin ) ;
4728    rowout.putMatchingFields( rout, rowin.record() ) ;
4729    rin++ ;
4730    rout++ ;
4731  }
4732}
4733
4734CountedPtr<Scantable> STMath::averageWithinSession( CountedPtr<Scantable> &s,
4735                                                    vector<bool> &mask,
4736                                                    string weight )
4737{
4738  // prepare output table
4739  bool insitu = insitu_ ;
4740  insitu_ = false ;
4741  CountedPtr<Scantable> a = getScantable( s, true ) ;
4742  insitu_ = insitu ;
4743  Table &atab = a->table() ;
4744  ScalarColumn<Double> timeColOut( atab, "TIME" ) ;
4745
4746  if ( s->nrow() == 0 )
4747    return a ;
4748
4749  // setup RowAccumulator
4750  WeightType wtype = stringToWeight( weight ) ;
4751  RowAccumulator acc( wtype ) ;
4752  Vector<Bool> cmask( mask ) ;
4753  acc.setUserMask( cmask ) ;
4754
4755  vector<string> cols( 3 ) ;
4756  cols[0] = "IFNO" ;
4757  cols[1] = "POLNO" ;
4758  cols[2] = "BEAMNO" ;
4759  STIdxIterAcc iter( s, cols ) ;
4760
4761  Table ttab = s->table() ;
4762  ROScalarColumn<Double> *timeCol = new ROScalarColumn<Double>( ttab, "TIME" ) ;
4763  Vector<Double> timeVec = timeCol->getColumn() ;
4764  delete timeCol ;
4765  Vector<Double> interval = s->integrCol_.getColumn() ;
4766  uInt nrow = timeVec.nelements() ;
4767  uInt outrow = 0 ;
4768
4769  while( !iter.pastEnd() ) {
4770
4771    Vector<uInt> rows = iter.getRows( SHARE ) ;
4772    uInt len = rows.nelements() ;
4773
4774    if ( len == 0 ) {
4775      iter.next() ;
4776      continue ;
4777    }
4778
4779    uInt nchan = s->nchan(s->getIF(rows[0])) ;
4780    Vector<uChar> flag( nchan ) ;
4781    Vector<Bool> bflag( nchan ) ;
4782    Vector<Float> spec( nchan ) ;
4783    Vector<Float> tsys( nchan ) ;
4784
4785    Vector<Double> timeSep( len-1 ) ;
4786    for ( uInt i = 0 ; i < len-1 ; i++ ) {
4787      timeSep[i] = timeVec[rows[i+1]] - timeVec[rows[i]] ;
4788    }
4789
4790    uInt irow ;
4791    uInt jrow ;
4792    for ( uInt i = 0 ; i < len-1 ; i++ ) {
4793      irow = rows[i] ;
4794      jrow = rows[i+1] ;
4795      // accumulate data
4796      s->flagsCol_.get( irow, flag ) ;
4797      convertArray( bflag, flag ) ;
4798      s->specCol_.get( irow, spec ) ;
4799      tsys.assign( s->tsysCol_( irow ) ) ;
4800      if ( !allEQ(bflag,True) )
4801        acc.add( spec, !bflag, tsys, interval[irow], timeVec[irow] ) ;
4802      double gap = 2.0 * 86400.0 * timeSep[i] / ( interval[jrow] + interval[irow] ) ;
4803      //cout << "gap[" << i << "]=" << setw(5) << gap << endl ;
4804      if ( gap > 1.1 ) {
4805        //cout << "detected gap between " << i << " and " << i+1 << endl ;
4806        // put data to output table
4807        // reset RowAccumulator
4808        if ( acc.state() ) {
4809          atab.addRow() ;
4810          copyRows( atab, ttab, outrow, irow, 1, False, False, False ) ;
4811          acc.replaceNaN() ;
4812          const Vector<Bool> &msk = acc.getMask() ;
4813          convertArray( flag, !msk ) ;
4814          for (uInt k = 0; k < nchan; ++k) {
4815            uChar userFlag = 1 << 7;
4816            if (msk[k]==True) userFlag = 0 << 7;
4817            flag(k) = userFlag;
4818          }
4819          a->flagsCol_.put( outrow, flag ) ;
4820          a->specCol_.put( outrow, acc.getSpectrum() ) ;
4821          a->tsysCol_.put( outrow, acc.getTsys() ) ;
4822          a->integrCol_.put( outrow, acc.getInterval() ) ;
4823          timeColOut.put( outrow, acc.getTime() ) ;
4824          a->cycleCol_.put( outrow, 0 ) ;
4825        }
4826        acc.reset() ;
4827        outrow++ ;
4828      }
4829    }
4830
4831    // accumulate and add last data
4832    irow = rows[len-1] ;
4833    s->flagsCol_.get( irow, flag ) ;
4834    convertArray( bflag, flag ) ;
4835    s->specCol_.get( irow, spec ) ;
4836    tsys.assign( s->tsysCol_( irow ) ) ;
4837    if (!allEQ(bflag,True) )
4838      acc.add( spec, !bflag, tsys, interval[irow], timeVec[irow] ) ;
4839    if ( acc.state() ) {
4840      atab.addRow() ;
4841      copyRows( atab, ttab, outrow, irow, 1, False, False, False ) ;
4842      acc.replaceNaN() ;
4843      const Vector<Bool> &msk = acc.getMask() ;
4844      convertArray( flag, !msk ) ;
4845      for (uInt k = 0; k < nchan; ++k) {
4846        uChar userFlag = 1 << 7;
4847        if (msk[k]==True) userFlag = 0 << 7;
4848        flag(k) = userFlag;
4849      }
4850      a->flagsCol_.put( outrow, flag ) ;
4851      a->specCol_.put( outrow, acc.getSpectrum() ) ;
4852      a->tsysCol_.put( outrow, acc.getTsys() ) ;
4853      a->integrCol_.put( outrow, acc.getInterval() ) ;
4854      timeColOut.put( outrow, acc.getTime() ) ;
4855      a->cycleCol_.put( outrow, 0 ) ;
4856    }
4857    acc.reset() ;
4858    outrow++ ;
4859
4860    iter.next() ;
4861  }
4862
4863  return a ;
4864}
Note: See TracBrowser for help on using the repository browser.