source: trunk/src/STMath.cpp @ 2695

Last change on this file since 2695 was 2695, checked in by Takeshi Nakazato, 11 years ago

New Development: No

JIRA Issue: No

Ready for Test: Yes

Interface Changes: No

What Interface Changed: Please list interface changes

Test Programs: List test programs

Put in Release Notes: Yes/No?

Module(s): Module Names change impacts.

Description: Describe your changes here...

Ensure that units of calibrated spectra are K.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 162.5 KB
Line 
1//
2// C++ Implementation: STMath
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2006
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12
13#include <sstream>
14
15#include <casa/iomanip.h>
16#include <casa/Arrays/MaskArrLogi.h>
17#include <casa/Arrays/MaskArrMath.h>
18#include <casa/Arrays/ArrayLogical.h>
19#include <casa/Arrays/ArrayMath.h>
20#include <casa/Arrays/Slice.h>
21#include <casa/Arrays/Slicer.h>
22#include <casa/BasicSL/String.h>
23#include <casa/Containers/Block.h>
24#include <casa/Containers/RecordField.h>
25#include <casa/Exceptions/Error.h>
26#include <casa/Logging/LogIO.h>
27
28#include <coordinates/Coordinates/CoordinateSystem.h>
29#include <coordinates/Coordinates/CoordinateUtil.h>
30#include <coordinates/Coordinates/FrequencyAligner.h>
31#include <coordinates/Coordinates/SpectralCoordinate.h>
32
33#include <lattices/Lattices/LatticeUtilities.h>
34
35#include <scimath/Functionals/Polynomial.h>
36#include <scimath/Mathematics/Convolver.h>
37#include <scimath/Mathematics/VectorKernel.h>
38
39#include <tables/Tables/ExprNode.h>
40#include <tables/Tables/ReadAsciiTable.h>
41#include <tables/Tables/TableCopy.h>
42#include <tables/Tables/TableIter.h>
43#include <tables/Tables/TableParse.h>
44#include <tables/Tables/TableRecord.h>
45#include <tables/Tables/TableRow.h>
46#include <tables/Tables/TableVector.h>
47#include <tables/Tables/TabVecMath.h>
48
49#include <atnf/PKSIO/SrcType.h>
50
51#include "RowAccumulator.h"
52#include "STAttr.h"
53#include "STMath.h"
54#include "STSelector.h"
55#include "Accelerator.h"
56#include "STIdxIter.h"
57
58using namespace casa;
59using namespace asap;
60
61// 2012/02/17 TN
62// Since STGrid is implemented, average doesn't consider direction
63// when accumulating
64// tolerance for direction comparison (rad)
65// #define TOL_OTF    1.0e-15
66// #define TOL_POINT  2.9088821e-4  // 1 arcmin
67
68STMath::STMath(bool insitu) :
69  insitu_(insitu)
70{
71}
72
73
74STMath::~STMath()
75{
76}
77
78CountedPtr<Scantable>
79STMath::average( const std::vector<CountedPtr<Scantable> >& in,
80                 const std::vector<bool>& mask,
81                 const std::string& weight,
82                 const std::string& avmode)
83{
84//    double t0, t1 ;
85//    t0 = mathutil::gettimeofday_sec() ;
86
87  LogIO os( LogOrigin( "STMath", "average()", WHERE ) ) ;
88  if ( avmode == "SCAN" && in.size() != 1 )
89    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
90                    "Use merge first."));
91  WeightType wtype = stringToWeight(weight);
92
93  // 2012/02/17 TN
94  // Since STGrid is implemented, average doesn't consider direction
95  // when accumulating
96  // check if OTF observation
97//   String obstype = in[0]->getHeader().obstype ;
98//   Double tol = 0.0 ;
99//   if ( (obstype.find( "OTF" ) != String::npos) || (obstype.find( "OBSERVE_TARGET" ) != String::npos) ) {
100//     tol = TOL_OTF ;
101//   }
102//   else {
103//     tol = TOL_POINT ;
104//   }
105
106  // output
107  // clone as this is non insitu
108  bool insitu = insitu_;
109  setInsitu(false);
110  CountedPtr< Scantable > out = getScantable(in[0], true);
111  setInsitu(insitu);
112  std::vector<CountedPtr<Scantable> >::const_iterator stit = in.begin();
113  ++stit;
114  while ( stit != in.end() ) {
115    out->appendToHistoryTable((*stit)->history());
116    ++stit;
117  }
118
119  Table& tout = out->table();
120
121  /// @todo check if all scantables are conformant
122
123  ArrayColumn<Float> specColOut(tout,"SPECTRA");
124  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
125  ArrayColumn<Float> tsysColOut(tout,"TSYS");
126  ScalarColumn<Double> mjdColOut(tout,"TIME");
127  ScalarColumn<Double> intColOut(tout,"INTERVAL");
128  ScalarColumn<uInt> cycColOut(tout,"CYCLENO");
129  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
130
131  // set up the output table rows. These are based on the structure of the
132  // FIRST scantable in the vector
133  const Table& baset = in[0]->table();
134
135  RowAccumulator acc(wtype);
136  Vector<Bool> cmask(mask);
137  acc.setUserMask(cmask);
138//   ROTableRow row(tout);
139  ROArrayColumn<Float> specCol, tsysCol;
140  ROArrayColumn<uChar> flagCol;
141  ROScalarColumn<Double> mjdCol, intCol;
142  ROScalarColumn<Int> scanIDCol;
143
144  //Vector<uInt> rowstodelete;
145  Block<uInt> rowstodelB( in[0]->nrow() ) ;
146  uInt nrowdel = 0 ;
147
148//   Block<String> cols(3);
149  vector<string> cols(3) ;
150  cols[0] = String("BEAMNO");
151  cols[1] = String("IFNO");
152  cols[2] = String("POLNO");
153  if ( avmode == "SOURCE" ) {
154    cols.resize(4);
155    cols[3] = String("SRCNAME");
156  }
157  if ( avmode == "SCAN"  && in.size() == 1) {
158    //cols.resize(4);
159    //cols[3] = String("SCANNO");
160    cols.resize(5);
161    cols[3] = String("SRCNAME");
162    cols[4] = String("SCANNO");
163  }
164  uInt outrowCount = 0;
165  // use STIdxIterExAcc instead of TableIterator
166  STIdxIterExAcc iter( in[0], cols ) ;
167//   double t2 = 0 ;
168//   double t3 = 0 ;
169//   double t4 = 0 ;
170//   double t5 = 0 ;
171//   TableIterator iter(baset, cols);
172//   int count = 0 ;
173  while (!iter.pastEnd()) {
174    Vector<uInt> rows = iter.getRows( SHARE ) ;
175    if ( rows.nelements() == 0 ) {
176      iter.next() ;
177      continue ;
178    }
179    Vector<uInt> current = iter.current() ;
180    String srcname = iter.getSrcName() ;
181    //Table subt = iter.table();
182    // copy the first row of this selection into the new table
183    tout.addRow();
184//     t4 = mathutil::gettimeofday_sec() ;
185    // skip to copy SPECTRA, FLAGTRA, and TSYS since those heavy columns are
186    // overwritten in the following process
187    copyRows( tout, baset, outrowCount, rows[0], 1, False, False, False ) ;
188//     t5 += mathutil::gettimeofday_sec() - t4 ;
189    // re-index to 0
190    if ( avmode != "SCAN" && avmode != "SOURCE" ) {
191      scanColOut.put(outrowCount, uInt(0));
192    }
193
194    // 2012/02/17 TN
195    // Since STGrid is implemented, average doesn't consider direction
196    // when accumulating
197//     MDirection::ScalarColumn dircol ;
198//     dircol.attach( subt, "DIRECTION" ) ;
199//     Int length = subt.nrow() ;
200//     vector< Vector<Double> > dirs ;
201//     vector<int> indexes ;
202//     for ( Int i = 0 ; i < length ; i++ ) {
203//       Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
204//       //os << << count++ << ": " ;
205//       //os << "[" << t[0] << "," << t[1] << "]" << LogIO::POST ;
206//       bool adddir = true ;
207//       for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
208//         //if ( allTrue( t == dirs[j] ) ) {
209//         Double dx = t[0] - dirs[j][0] ;
210//         Double dy = t[1] - dirs[j][1] ;
211//         Double dd = sqrt( dx * dx + dy * dy ) ;
212//         //if ( allNearAbs( t, dirs[j], tol ) ) {
213//         if ( dd <= tol ) {
214//           adddir = false ;
215//           break ;
216//         }
217//       }
218//       if ( adddir ) {
219//         dirs.push_back( t ) ;
220//         indexes.push_back( i ) ;
221//       }
222//     }
223//     uInt rowNum = dirs.size() ;
224//     tout.addRow( rowNum ) ;
225//     for ( uInt i = 0 ; i < rowNum ; i++ ) {
226//       TableCopy::copyRows( tout, subt, outrowCount+i, indexes[i], 1 ) ;
227//       // re-index to 0
228//       if ( avmode != "SCAN" && avmode != "SOURCE" ) {
229//         scanColOut.put(outrowCount+i, uInt(0));
230//       }       
231//     }
232//     outrowCount += rowNum ;
233
234    // merge loop
235    uInt i = outrowCount ;
236    // in[0] is already selected by iterator
237    specCol.attach(baset,"SPECTRA");
238    flagCol.attach(baset,"FLAGTRA");
239    tsysCol.attach(baset,"TSYS");
240    intCol.attach(baset,"INTERVAL");
241    mjdCol.attach(baset,"TIME");
242    Vector<Float> spec,tsys;
243    Vector<uChar> flag;
244    Double inter,time;
245
246    for (uInt l = 0; l < rows.nelements(); ++l ) {
247      uInt k = rows[l] ;
248      flagCol.get(k, flag);
249      Vector<Bool> bflag(flag.shape());
250      convertArray(bflag, flag);
251      /*                                                                                                   
252        if ( allEQ(bflag, True) ) {                                                                         
253        continue;//don't accumulate                                                                         
254        }                                                                                                   
255      */
256      specCol.get(k, spec);
257      tsysCol.get(k, tsys);
258      intCol.get(k, inter);
259      mjdCol.get(k, time);
260      // spectrum has to be added last to enable weighting by the other values                             
261//       t2 = mathutil::gettimeofday_sec() ;
262      acc.add(spec, !bflag, tsys, inter, time);
263//       t3 += mathutil::gettimeofday_sec() - t2 ;
264     
265    }
266
267
268    // in[0] is already selected by TableIterator so that index is
269    // started from 1
270    for ( int j=1; j < int(in.size()); ++j ) {
271      const Table& tin = in[j]->table();
272      //const TableRecord& rec = row.get(i);
273      ROScalarColumn<Double> tmp(tin, "TIME");
274      Double td;tmp.get(0,td);
275
276#if 1
277      static char const*const colNames1[] = { "IFNO", "BEAMNO", "POLNO" };
278      //uInt const values1[] = { rec.asuInt("IFNO"), rec.asuInt("BEAMNO"), rec.asuInt("POLNO") };
279      uInt const values1[] = { current[1], current[0], current[2] };
280      SingleTypeEqPredicate<uInt, 3> myPred(tin, colNames1, values1);
281      CustomTableExprNodeRep myNodeRep(tin, myPred);
282      myNodeRep.link(); // to avoid automatic delete when myExpr is destructed.
283      CustomTableExprNode myExpr(myNodeRep);
284      Table basesubt = tin(myExpr);
285#else
286//       Table basesubt = tin( tin.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
287//                          && tin.col("IFNO") == Int(rec.asuInt("IFNO"))
288//                          && tin.col("POLNO") == Int(rec.asuInt("POLNO")) );
289      Table basesubt = tin( tin.col("BEAMNO") == current[0]
290                         && tin.col("IFNO") == current[1]
291                         && tin.col("POLNO") == current[2] );
292#endif
293      Table subt;
294      if ( avmode == "SOURCE") {
295//         subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME"));
296        subt = basesubt( basesubt.col("SRCNAME") == srcname );
297
298      } else if (avmode == "SCAN") {
299//         subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME")
300//                    && basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO")) );
301        subt = basesubt( basesubt.col("SRCNAME") == srcname
302                      && basesubt.col("SCANNO") == current[4] );
303      } else {
304        subt = basesubt;
305      }
306
307      // 2012/02/17 TN
308      // Since STGrid is implemented, average doesn't consider direction
309      // when accumulating
310//       vector<uInt> removeRows ;
311//       uInt nrsubt = subt.nrow() ;
312//       for ( uInt irow = 0 ; irow < nrsubt ; irow++ ) {
313//         //if ( !allTrue((subt.col("DIRECTION").getArrayDouble(TableExprId(irow)))==rec.asArrayDouble("DIRECTION")) ) {
314//         Vector<Double> x0 = (subt.col("DIRECTION").getArrayDouble(TableExprId(irow))) ;
315//         Vector<Double> x1 = rec.asArrayDouble("DIRECTION") ;
316//         double dx = x0[0] - x1[0];
317//         double dy = x0[1] - x1[1];
318//         Double dd = sqrt( dx * dx + dy * dy ) ;
319//         //if ( !allNearAbs((subt.col("DIRECTION").getArrayDouble(TableExprId(irow))), rec.asArrayDouble("DIRECTION"), tol ) ) {
320//         if ( dd > tol ) {
321//           removeRows.push_back( irow ) ;
322//         }
323//       }
324//       if ( removeRows.size() != 0 ) {
325//         subt.removeRow( removeRows ) ;
326//       }
327     
328//       if ( nrsubt == removeRows.size() )
329//         throw(AipsError("Averaging data is empty.")) ;
330
331      specCol.attach(subt,"SPECTRA");
332      flagCol.attach(subt,"FLAGTRA");
333      tsysCol.attach(subt,"TSYS");
334      intCol.attach(subt,"INTERVAL");
335      mjdCol.attach(subt,"TIME");
336      for (uInt k = 0; k < subt.nrow(); ++k ) {
337        flagCol.get(k, flag);
338        Vector<Bool> bflag(flag.shape());
339        convertArray(bflag, flag);
340        /*
341        if ( allEQ(bflag, True) ) {
342        continue;//don't accumulate
343        }
344        */
345        specCol.get(k, spec);
346        //tsysCol.get(k, tsys);
347        tsys.assign( tsysCol(k) );
348        intCol.get(k, inter);
349        mjdCol.get(k, time);
350        // spectrum has to be added last to enable weighting by the other values
351//         t2 = mathutil::gettimeofday_sec() ;
352        acc.add(spec, !bflag, tsys, inter, time);
353//         t3 += mathutil::gettimeofday_sec() - t2 ;
354      }
355
356    }
357    const Vector<Bool>& msk = acc.getMask();
358    if ( allEQ(msk, False) ) {
359      rowstodelB[nrowdel] = i ;
360      nrowdel++ ;
361      continue;
362    }
363    //write out
364    if (acc.state()) {
365      // If there exists a channel at which all the input spectra are masked,
366      // spec has 'nan' values for that channel and it may affect the following
367      // processes. To avoid this, replacing 'nan' values in spec with
368      // weighted-mean of all spectra in the following line.
369      // (done for CAS-2776, 2011/04/07 by Wataru Kawasaki)
370      acc.replaceNaN();
371
372      Vector<uChar> flg(msk.shape());
373      convertArray(flg, !msk);
374      for (uInt k = 0; k < flg.nelements(); ++k) {
375        uChar userFlag = 1 << 7;
376        if (msk[k]==True) userFlag = 0 << 7;
377        flg(k) = userFlag;
378      }
379
380      flagColOut.put(i, flg);
381      specColOut.put(i, acc.getSpectrum());
382      tsysColOut.put(i, acc.getTsys());
383      intColOut.put(i, acc.getInterval());
384      mjdColOut.put(i, acc.getTime());
385      // we should only have one cycle now -> reset it to be 0
386      // frequency switched data has different CYCLENO for different IFNO
387      // which requires resetting this value
388      cycColOut.put(i, uInt(0));
389    } else {
390      os << "For output row="<<i<<", all input rows of data are flagged. no averaging" << LogIO::POST;
391    }
392    acc.reset();
393
394    // merge with while loop for preparing out table
395    ++outrowCount;
396//     ++iter ;
397    iter.next() ;
398  }
399
400  if ( nrowdel > 0 ) {
401    Vector<uInt> rowstodelete( IPosition(1,nrowdel), rowstodelB.storage(), SHARE ) ;
402    os << rowstodelete << LogIO::POST ;
403    tout.removeRow(rowstodelete);
404    if (tout.nrow() == 0) {
405      throw(AipsError("Can't average fully flagged data."));
406    }
407  }
408
409//    t1 = mathutil::gettimeofday_sec() ;
410//    cout << "elapsed time for average(): " << t1-t0 << " sec" << endl ;
411//    cout << "   elapsed time for acc.add(): " << t3 << " sec" << endl ;
412//    cout << "   elapsed time for copyRows(): " << t5 << " sec" << endl ;
413
414  return out;
415}
416
417CountedPtr< Scantable >
418STMath::averageChannel( const CountedPtr < Scantable > & in,
419                          const std::string & mode,
420                          const std::string& avmode )
421{
422  (void) mode; // currently unused
423  // 2012/02/17 TN
424  // Since STGrid is implemented, average doesn't consider direction
425  // when accumulating
426  // check if OTF observation
427//   String obstype = in->getHeader().obstype ;
428//   Double tol = 0.0 ;
429//   if ( obstype.find( "OTF" ) != String::npos ) {
430//     tol = TOL_OTF ;
431//   }
432//   else {
433//     tol = TOL_POINT ;
434//   }
435
436  // clone as this is non insitu
437  bool insitu = insitu_;
438  setInsitu(false);
439  CountedPtr< Scantable > out = getScantable(in, true);
440  setInsitu(insitu);
441  Table& tout = out->table();
442  ArrayColumn<Float> specColOut(tout,"SPECTRA");
443  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
444  ArrayColumn<Float> tsysColOut(tout,"TSYS");
445  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
446  ScalarColumn<Double> intColOut(tout, "INTERVAL");
447  Table tmp = in->table().sort("BEAMNO");
448  Block<String> cols(3);
449  cols[0] = String("BEAMNO");
450  cols[1] = String("IFNO");
451  cols[2] = String("POLNO");
452  if ( avmode == "SCAN") {
453    cols.resize(4);
454    cols[3] = String("SCANNO");
455  }
456  uInt outrowCount = 0;
457  uChar userflag = 1 << 7;
458  TableIterator iter(tmp, cols);
459  while (!iter.pastEnd()) {
460    Table subt = iter.table();
461    ROArrayColumn<Float> specCol, tsysCol;
462    ROArrayColumn<uChar> flagCol;
463    ROScalarColumn<Double> intCol(subt, "INTERVAL");
464    specCol.attach(subt,"SPECTRA");
465    flagCol.attach(subt,"FLAGTRA");
466    tsysCol.attach(subt,"TSYS");
467
468    tout.addRow();
469    TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
470    if ( avmode != "SCAN") {
471      scanColOut.put(outrowCount, uInt(0));
472    }
473    Vector<Float> tmp;
474    specCol.get(0, tmp);
475    uInt nchan = tmp.nelements();
476    // have to do channel by channel here as MaskedArrMath
477    // doesn't have partialMedians
478    Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
479    Vector<Float> outspec(nchan);
480    Vector<uChar> outflag(nchan,0);
481    Vector<Float> outtsys(1);/// @fixme when tsys is channel based
482    for (uInt i=0; i<nchan; ++i) {
483      Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
484      MaskedArray<Float> ma = maskedArray(specs,flags);
485      outspec[i] = median(ma);
486      if ( allEQ(ma.getMask(), False) )
487        outflag[i] = userflag;// flag data
488    }
489    outtsys[0] = median(tsysCol.getColumn());
490    specColOut.put(outrowCount, outspec);
491    flagColOut.put(outrowCount, outflag);
492    tsysColOut.put(outrowCount, outtsys);
493    Double intsum = sum(intCol.getColumn());
494    intColOut.put(outrowCount, intsum);
495    ++outrowCount;
496    ++iter;
497
498    // 2012/02/17 TN
499    // Since STGrid is implemented, average doesn't consider direction
500    // when accumulating
501//     MDirection::ScalarColumn dircol ;
502//     dircol.attach( subt, "DIRECTION" ) ;
503//     Int length = subt.nrow() ;
504//     vector< Vector<Double> > dirs ;
505//     vector<int> indexes ;
506//     // Handle MX mode averaging
507//     if (in->nbeam() > 1 ) {     
508//       length = 1;
509//     }
510//     for ( Int i = 0 ; i < length ; i++ ) {
511//       Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
512//       bool adddir = true ;
513//       for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
514//         //if ( allTrue( t == dirs[j] ) ) {
515//         Double dx = t[0] - dirs[j][0] ;
516//         Double dy = t[1] - dirs[j][1] ;
517//         Double dd = sqrt( dx * dx + dy * dy ) ;
518//         //if ( allNearAbs( t, dirs[j], tol ) ) {
519//         if ( dd <= tol ) {
520//           adddir = false ;
521//           break ;
522//         }
523//       }
524//       if ( adddir ) {
525//         dirs.push_back( t ) ;
526//         indexes.push_back( i ) ;
527//       }
528//     }
529//     uInt rowNum = dirs.size() ;
530//     tout.addRow( rowNum );
531//     for ( uInt i = 0 ; i < rowNum ; i++ ) {
532//       TableCopy::copyRows(tout, subt, outrowCount+i, indexes[i], 1) ;
533//       // Handle MX mode averaging
534//       if ( avmode != "SCAN") {
535//         scanColOut.put(outrowCount+i, uInt(0));
536//       }
537//     }
538//     MDirection::ScalarColumn dircolOut ;
539//     dircolOut.attach( tout, "DIRECTION" ) ;
540//     for ( uInt irow = 0 ; irow < rowNum ; irow++ ) {
541//       Vector<Double> t = \
542//      dircolOut(outrowCount+irow).getAngle(Unit(String("rad"))).getValue() ;
543//       Vector<Float> tmp;
544//       specCol.get(0, tmp);
545//       uInt nchan = tmp.nelements();
546//       // have to do channel by channel here as MaskedArrMath
547//       // doesn't have partialMedians
548//       Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
549//       // mask spectra for different DIRECTION
550//       for ( uInt jrow = 0 ; jrow < subt.nrow() ; jrow++ ) {
551//         Vector<Double> direction = \
552//        dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
553//         //if ( t[0] != direction[0] || t[1] != direction[1] ) {
554//         Double dx = t[0] - direction[0];
555//         Double dy = t[1] - direction[1];
556//         Double dd = sqrt(dx*dx + dy*dy);
557//         //if ( !allNearAbs( t, direction, tol ) ) {
558//         if ( dd > tol &&  in->nbeam() < 2 ) {
559//           flags[jrow] = userflag ;
560//         }
561//       }
562//       Vector<Float> outspec(nchan);
563//       Vector<uChar> outflag(nchan,0);
564//       Vector<Float> outtsys(1);/// @fixme when tsys is channel based
565//       for (uInt i=0; i<nchan; ++i) {
566//         Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
567//         MaskedArray<Float> ma = maskedArray(specs,flags);
568//         outspec[i] = median(ma);
569//         if ( allEQ(ma.getMask(), False) )
570//           outflag[i] = userflag;// flag data
571//       }
572//       outtsys[0] = median(tsysCol.getColumn());
573//       specColOut.put(outrowCount+irow, outspec);
574//       flagColOut.put(outrowCount+irow, outflag);
575//       tsysColOut.put(outrowCount+irow, outtsys);
576//       Vector<Double> integ = intCol.getColumn() ;
577//       MaskedArray<Double> mi = maskedArray( integ, flags ) ;
578//       Double intsum = sum(mi);
579//       intColOut.put(outrowCount+irow, intsum);
580//     }
581//     outrowCount += rowNum ;
582//     ++iter;
583  }
584  return out;
585}
586
587CountedPtr< Scantable > STMath::getScantable(const CountedPtr< Scantable >& in,
588                                             bool droprows)
589{
590  if (insitu_) {
591    return in;
592  }
593  else {
594    // clone
595    return CountedPtr<Scantable>(new Scantable(*in, Bool(droprows)));
596  }
597}
598
599CountedPtr< Scantable > STMath::unaryOperate( const CountedPtr< Scantable >& in,
600                                              float val,
601                                              const std::string& mode,
602                                              bool tsys )
603{
604  CountedPtr< Scantable > out = getScantable(in, false);
605  Table& tab = out->table();
606  ArrayColumn<Float> specCol(tab,"SPECTRA");
607  ArrayColumn<Float> tsysCol(tab,"TSYS");
608  if (mode=="DIV") val = 1.0/val ;
609  else if (mode=="SUB") val *= -1.0 ;
610  for (uInt i=0; i<tab.nrow(); ++i) {
611    Vector<Float> spec;
612    Vector<Float> ts;
613    specCol.get(i, spec);
614    tsysCol.get(i, ts);
615    if (mode == "MUL" || mode == "DIV") {
616      //if (mode == "DIV") val = 1.0/val;
617      spec *= val;
618      specCol.put(i, spec);
619      if ( tsys ) {
620        ts *= val;
621        tsysCol.put(i, ts);
622      }
623    } else if ( mode == "ADD"  || mode == "SUB") {
624      //if (mode == "SUB") val *= -1.0;
625      spec += val;
626      specCol.put(i, spec);
627      if ( tsys ) {
628        ts += val;
629        tsysCol.put(i, ts);
630      }
631    }
632  }
633  return out;
634}
635
636CountedPtr< Scantable > STMath::arrayOperate( const CountedPtr< Scantable >& in,
637                                              const std::vector<float> val,
638                                              const std::string& mode,
639                                              const std::string& opmode,
640                                              bool tsys )
641{
642  CountedPtr< Scantable > out ;
643  if ( opmode == "channel" ) {
644    out = arrayOperateChannel( in, val, mode, tsys ) ;
645  }
646  else if ( opmode == "row" ) {
647    out = arrayOperateRow( in, val, mode, tsys ) ;
648  }
649  else {
650    throw( AipsError( "Unknown array operation mode." ) ) ;
651  }
652  return out ;
653}
654
655CountedPtr< Scantable > STMath::arrayOperateChannel( const CountedPtr< Scantable >& in,
656                                                     const std::vector<float> val,
657                                                     const std::string& mode,
658                                                     bool tsys )
659{
660  if ( val.size() == 1 ){
661    return unaryOperate( in, val[0], mode, tsys ) ;
662  }
663
664  // conformity of SPECTRA and TSYS
665  if ( tsys ) {
666    TableIterator titer(in->table(), "IFNO");
667    while ( !titer.pastEnd() ) {
668      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
669      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
670      Array<Float> spec = specCol.getColumn() ;
671      Array<Float> ts = tsysCol.getColumn() ;
672      if ( !spec.conform( ts ) ) {
673        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
674      }
675      titer.next() ;
676    }
677  }
678
679  // check if all spectra in the scantable have the same number of channel
680  vector<uInt> nchans;
681  vector<uInt> ifnos = in->getIFNos() ;
682  for ( uInt i = 0 ; i < ifnos.size() ; i++ ) {
683    nchans.push_back( in->nchan( ifnos[i] ) ) ;
684  }
685  Vector<uInt> mchans( nchans ) ;
686  if ( anyNE( mchans, mchans[0] ) ) {
687    throw( AipsError("All spectra in the input scantable must have the same number of channel for vector operation." ) ) ;
688  }
689
690  // check if vector size is equal to nchan
691  Vector<Float> fact( val ) ;
692  if ( fact.nelements() != mchans[0] ) {
693    throw( AipsError("Vector size must be 1 or be same as number of channel.") ) ;
694  }
695
696  // check divided by zero
697  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
698    throw( AipsError("Divided by zero is not recommended." ) ) ;
699  }
700
701  CountedPtr< Scantable > out = getScantable(in, false);
702  Table& tab = out->table();
703  ArrayColumn<Float> specCol(tab,"SPECTRA");
704  ArrayColumn<Float> tsysCol(tab,"TSYS");
705  if (mode == "DIV") fact = (float)1.0 / fact;
706  else if (mode == "SUB") fact *= (float)-1.0 ;
707  for (uInt i=0; i<tab.nrow(); ++i) {
708    Vector<Float> spec;
709    Vector<Float> ts;
710    specCol.get(i, spec);
711    tsysCol.get(i, ts);
712    if (mode == "MUL" || mode == "DIV") {
713      //if (mode == "DIV") fact = (float)1.0 / fact;
714      spec *= fact;
715      specCol.put(i, spec);
716      if ( tsys ) {
717        ts *= fact;
718        tsysCol.put(i, ts);
719      }
720    } else if ( mode == "ADD"  || mode == "SUB") {
721      //if (mode == "SUB") fact *= (float)-1.0 ;
722      spec += fact;
723      specCol.put(i, spec);
724      if ( tsys ) {
725        ts += fact;
726        tsysCol.put(i, ts);
727      }
728    }
729  }
730  return out;
731}
732
733CountedPtr< Scantable > STMath::arrayOperateRow( const CountedPtr< Scantable >& in,
734                                                 const std::vector<float> val,
735                                                 const std::string& mode,
736                                                 bool tsys )
737{
738  if ( val.size() == 1 ) {
739    return unaryOperate( in, val[0], mode, tsys ) ;
740  }
741
742  // conformity of SPECTRA and TSYS
743  if ( tsys ) {
744    TableIterator titer(in->table(), "IFNO");
745    while ( !titer.pastEnd() ) {
746      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
747      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
748      Array<Float> spec = specCol.getColumn() ;
749      Array<Float> ts = tsysCol.getColumn() ;
750      if ( !spec.conform( ts ) ) {
751        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
752      }
753      titer.next() ;
754    }
755  }
756
757  // check if vector size is equal to nrow
758  Vector<Float> fact( val ) ;
759  if (fact.nelements() != uInt(in->nrow())) {
760    throw( AipsError("Vector size must be 1 or be same as number of row.") ) ;
761  }
762
763  // check divided by zero
764  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
765    throw( AipsError("Divided by zero is not recommended." ) ) ;
766  }
767
768  CountedPtr< Scantable > out = getScantable(in, false);
769  Table& tab = out->table();
770  ArrayColumn<Float> specCol(tab,"SPECTRA");
771  ArrayColumn<Float> tsysCol(tab,"TSYS");
772  if (mode == "DIV") fact = (float)1.0 / fact;
773  if (mode == "SUB") fact *= (float)-1.0 ;
774  for (uInt i=0; i<tab.nrow(); ++i) {
775    Vector<Float> spec;
776    Vector<Float> ts;
777    specCol.get(i, spec);
778    tsysCol.get(i, ts);
779    if (mode == "MUL" || mode == "DIV") {
780      spec *= fact[i];
781      specCol.put(i, spec);
782      if ( tsys ) {
783        ts *= fact[i];
784        tsysCol.put(i, ts);
785      }
786    } else if ( mode == "ADD"  || mode == "SUB") {
787      spec += fact[i];
788      specCol.put(i, spec);
789      if ( tsys ) {
790        ts += fact[i];
791        tsysCol.put(i, ts);
792      }
793    }
794  }
795  return out;
796}
797
798CountedPtr< Scantable > STMath::array2dOperate( const CountedPtr< Scantable >& in,
799                                                const std::vector< std::vector<float> > val,
800                                                const std::string& mode,
801                                                bool tsys )
802{
803  // conformity of SPECTRA and TSYS
804  if ( tsys ) {
805    TableIterator titer(in->table(), "IFNO");
806    while ( !titer.pastEnd() ) {
807      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
808      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
809      Array<Float> spec = specCol.getColumn() ;
810      Array<Float> ts = tsysCol.getColumn() ;
811      if ( !spec.conform( ts ) ) {
812        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
813      }
814      titer.next() ;
815    }
816  }
817
818  // some checks
819  vector<uInt> nchans;
820  for (Int i = 0 ; i < in->nrow() ; i++) {
821    nchans.push_back((in->getSpectrum(i)).size());
822  }
823  //Vector<uInt> mchans( nchans ) ;
824  vector< Vector<Float> > facts ;
825  for ( uInt i = 0 ; i < nchans.size() ; i++ ) {
826    Vector<Float> tmp( val[i] ) ;
827    // check divided by zero
828    if ( ( mode == "DIV" ) && anyEQ( tmp, (float)0.0 ) ) {
829      throw( AipsError("Divided by zero is not recommended." ) ) ;
830    }
831    // conformity check
832    if ( tmp.nelements() != nchans[i] ) {
833      stringstream ss ;
834      ss << "Row " << i << ": Vector size must be same as number of channel." ;
835      throw( AipsError( ss.str() ) ) ;
836    }
837    facts.push_back( tmp ) ;
838  }
839
840
841  CountedPtr< Scantable > out = getScantable(in, false);
842  Table& tab = out->table();
843  ArrayColumn<Float> specCol(tab,"SPECTRA");
844  ArrayColumn<Float> tsysCol(tab,"TSYS");
845  for (uInt i=0; i<tab.nrow(); ++i) {
846    Vector<Float> fact = facts[i] ;
847    Vector<Float> spec;
848    Vector<Float> ts;
849    specCol.get(i, spec);
850    tsysCol.get(i, ts);
851    if (mode == "MUL" || mode == "DIV") {
852      if (mode == "DIV") fact = (float)1.0 / fact;
853      spec *= fact;
854      specCol.put(i, spec);
855      if ( tsys ) {
856        ts *= fact;
857        tsysCol.put(i, ts);
858      }
859    } else if ( mode == "ADD"  || mode == "SUB") {
860      if (mode == "SUB") fact *= (float)-1.0 ;
861      spec += fact;
862      specCol.put(i, spec);
863      if ( tsys ) {
864        ts += fact;
865        tsysCol.put(i, ts);
866      }
867    }
868  }
869  return out;
870}
871
872CountedPtr<Scantable> STMath::binaryOperate(const CountedPtr<Scantable>& left,
873                                            const CountedPtr<Scantable>& right,
874                                            const std::string& mode)
875{
876  bool insitu = insitu_;
877  if ( ! left->conformant(*right) ) {
878    throw(AipsError("'left' and 'right' scantables are not conformant."));
879  }
880  setInsitu(false);
881  CountedPtr< Scantable > out = getScantable(left, false);
882  setInsitu(insitu);
883  Table& tout = out->table();
884  Block<String> coln(5);
885  coln[0] = "SCANNO";  coln[1] = "CYCLENO";  coln[2] = "BEAMNO";
886  coln[3] = "IFNO";  coln[4] = "POLNO";
887  Table tmpl = tout.sort(coln);
888  Table tmpr = right->table().sort(coln);
889  ArrayColumn<Float> lspecCol(tmpl,"SPECTRA");
890  ROArrayColumn<Float> rspecCol(tmpr,"SPECTRA");
891  ArrayColumn<uChar> lflagCol(tmpl,"FLAGTRA");
892  ROArrayColumn<uChar> rflagCol(tmpr,"FLAGTRA");
893
894  for (uInt i=0; i<tout.nrow(); ++i) {
895    Vector<Float> lspecvec, rspecvec;
896    Vector<uChar> lflagvec, rflagvec;
897    lspecvec = lspecCol(i);    rspecvec = rspecCol(i);
898    lflagvec = lflagCol(i);    rflagvec = rflagCol(i);
899    MaskedArray<Float> mleft = maskedArray(lspecvec, lflagvec);
900    MaskedArray<Float> mright = maskedArray(rspecvec, rflagvec);
901    if (mode == "ADD") {
902      mleft += mright;
903    } else if ( mode == "SUB") {
904      mleft -= mright;
905    } else if ( mode == "MUL") {
906      mleft *= mright;
907    } else if ( mode == "DIV") {
908      mleft /= mright;
909    } else {
910      throw(AipsError("Illegal binary operator"));
911    }
912    lspecCol.put(i, mleft.getArray());
913  }
914  return out;
915}
916
917
918
919MaskedArray<Float> STMath::maskedArray( const Vector<Float>& s,
920                                        const Vector<uChar>& f)
921{
922  Vector<Bool> mask;
923  mask.resize(f.shape());
924  convertArray(mask, f);
925  return MaskedArray<Float>(s,!mask);
926}
927
928MaskedArray<Double> STMath::maskedArray( const Vector<Double>& s,
929                                         const Vector<uChar>& f)
930{
931  Vector<Bool> mask;
932  mask.resize(f.shape());
933  convertArray(mask, f);
934  return MaskedArray<Double>(s,!mask);
935}
936
937Vector<uChar> STMath::flagsFromMA(const MaskedArray<Float>& ma)
938{
939  const Vector<Bool>& m = ma.getMask();
940  Vector<uChar> flags(m.shape());
941  convertArray(flags, !m);
942  return flags;
943}
944
945CountedPtr< Scantable > STMath::autoQuotient( const CountedPtr< Scantable >& in,
946                                              const std::string & mode,
947                                              bool preserve )
948{
949  /// @todo make other modes available
950  /// modes should be "nearest", "pair"
951  // make this operation non insitu
952  (void) mode; //currently unused
953  const Table& tin = in->table();
954  Table ons = tin(tin.col("SRCTYPE") == Int(SrcType::PSON));
955  Table offs = tin(tin.col("SRCTYPE") == Int(SrcType::PSOFF));
956  if ( offs.nrow() == 0 )
957    throw(AipsError("No 'off' scans present."));
958  // put all "on" scans into output table
959
960  bool insitu = insitu_;
961  setInsitu(false);
962  CountedPtr< Scantable > out = getScantable(in, true);
963  setInsitu(insitu);
964  Table& tout = out->table();
965
966  TableCopy::copyRows(tout, ons);
967  TableRow row(tout);
968  ROScalarColumn<Double> offtimeCol(offs, "TIME");
969  ArrayColumn<Float> outspecCol(tout, "SPECTRA");
970  ROArrayColumn<Float> outtsysCol(tout, "TSYS");
971  ArrayColumn<uChar> outflagCol(tout, "FLAGTRA");
972  for (uInt i=0; i < tout.nrow(); ++i) {
973    const TableRecord& rec = row.get(i);
974    Double ontime = rec.asDouble("TIME");
975    Table presel = offs(offs.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
976                        && offs.col("IFNO") == Int(rec.asuInt("IFNO"))
977                        && offs.col("POLNO") == Int(rec.asuInt("POLNO")) );
978    ROScalarColumn<Double> offtimeCol(presel, "TIME");
979
980    Double mindeltat = min(abs(offtimeCol.getColumn() - ontime));
981    // Timestamp may vary within a cycle ???!!!
982    // increase this by 0.01 sec in case of rounding errors...
983    // There might be a better way to do this.
984    // fix to this fix. TIME is MJD, so 1.0d not 1.0s
985    mindeltat += 0.01/24./60./60.;
986    Table sel = presel( abs(presel.col("TIME")-ontime) <= mindeltat);
987
988    if ( sel.nrow() < 1 )  {
989      throw(AipsError("No closest in time found... This could be a rounding "
990                      "issue. Try quotient instead."));
991    }
992    TableRow offrow(sel);
993    const TableRecord& offrec = offrow.get(0);//should only be one row
994    RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
995    RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
996    RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
997    /// @fixme this assumes tsys is a scalar not vector
998    Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
999    Vector<Float> specon, tsyson;
1000    outtsysCol.get(i, tsyson);
1001    outspecCol.get(i, specon);
1002    Vector<uChar> flagon;
1003    outflagCol.get(i, flagon);
1004    MaskedArray<Float> mon = maskedArray(specon, flagon);
1005    MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
1006    MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
1007    if (preserve) {
1008      quot -= tsysoffscalar;
1009    } else {
1010      quot -= tsyson[0];
1011    }
1012    outspecCol.put(i, quot.getArray());
1013    outflagCol.put(i, flagsFromMA(quot));
1014  }
1015  // renumber scanno
1016  TableIterator it(tout, "SCANNO");
1017  uInt i = 0;
1018  while ( !it.pastEnd() ) {
1019    Table t = it.table();
1020    TableVector<uInt> vec(t, "SCANNO");
1021    vec = i;
1022    ++i;
1023    ++it;
1024  }
1025  return out;
1026}
1027
1028
1029CountedPtr< Scantable > STMath::quotient( const CountedPtr< Scantable > & on,
1030                                          const CountedPtr< Scantable > & off,
1031                                          bool preserve )
1032{
1033  bool insitu = insitu_;
1034  if ( ! on->conformant(*off) ) {
1035    throw(AipsError("'on' and 'off' scantables are not conformant."));
1036  }
1037  setInsitu(false);
1038  CountedPtr< Scantable > out = getScantable(on, false);
1039  setInsitu(insitu);
1040  Table& tout = out->table();
1041  const Table& toff = off->table();
1042  TableIterator sit(tout, "SCANNO");
1043  TableIterator s2it(toff, "SCANNO");
1044  while ( !sit.pastEnd() ) {
1045    Table ton = sit.table();
1046    TableRow row(ton);
1047    Table t = s2it.table();
1048    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1049    ROArrayColumn<Float> outtsysCol(ton, "TSYS");
1050    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1051    for (uInt i=0; i < ton.nrow(); ++i) {
1052      const TableRecord& rec = row.get(i);
1053      Table offsel = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1054                          && t.col("IFNO") == Int(rec.asuInt("IFNO"))
1055                          && t.col("POLNO") == Int(rec.asuInt("POLNO")) );
1056      if ( offsel.nrow() == 0 )
1057        throw AipsError("STMath::quotient: no matching off");
1058      TableRow offrow(offsel);
1059      const TableRecord& offrec = offrow.get(0);//should be ncycles - take first
1060      RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
1061      RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
1062      RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
1063      Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
1064      Vector<Float> specon, tsyson;
1065      outtsysCol.get(i, tsyson);
1066      outspecCol.get(i, specon);
1067      Vector<uChar> flagon;
1068      outflagCol.get(i, flagon);
1069      MaskedArray<Float> mon = maskedArray(specon, flagon);
1070      MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
1071      MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
1072      if (preserve) {
1073        quot -= tsysoffscalar;
1074      } else {
1075        quot -= tsyson[0];
1076      }
1077      outspecCol.put(i, quot.getArray());
1078      outflagCol.put(i, flagsFromMA(quot));
1079    }
1080    ++sit;
1081    ++s2it;
1082    // take the first off for each on scan which doesn't have a
1083    // matching off scan
1084    // non <= noff:  matching pairs, non > noff matching pairs then first off
1085    if ( s2it.pastEnd() ) s2it.reset();
1086  }
1087  return out;
1088}
1089
1090// dototalpower (migration of GBTIDL procedure dototalpower.pro)
1091// calibrate the CAL on-off pair. It calculate Tsys and average CAL on-off subintegrations
1092// do it for each cycles in a specific scan.
1093CountedPtr< Scantable > STMath::dototalpower( const CountedPtr< Scantable >& calon,
1094                                              const CountedPtr< Scantable >& caloff, Float tcal )
1095{
1096  if ( ! calon->conformant(*caloff) ) {
1097    throw(AipsError("'CAL on' and 'CAL off' scantables are not conformant."));
1098  }
1099  setInsitu(false);
1100  CountedPtr< Scantable > out = getScantable(caloff, false);
1101  Table& tout = out->table();
1102  const Table& tcon = calon->table();
1103  Vector<Float> tcalout;
1104
1105  std::map<uInt,uInt> tcalIdToRecNoMap;
1106  const Table& calOffTcalTable = caloff->tcal().table();
1107  {
1108    ROScalarColumn<uInt> calOffTcalTable_IDcol(calOffTcalTable, "ID");
1109    const Vector<uInt> tcalIds(calOffTcalTable_IDcol.getColumn());
1110    size_t tcalIdsEnd = tcalIds.nelements();
1111    for (uInt i = 0; i < tcalIdsEnd; i++) {
1112      tcalIdToRecNoMap[tcalIds[i]] = i;
1113    }
1114  }
1115  ROArrayColumn<Float> calOffTcalTable_TCALcol(calOffTcalTable, "TCAL");
1116
1117  if ( tout.nrow() != tcon.nrow() ) {
1118    throw(AipsError("Mismatch in number of rows to form cal on - off pair."));
1119  }
1120  // iteration by scanno or cycle no.
1121  TableIterator sit(tout, "SCANNO");
1122  TableIterator s2it(tcon, "SCANNO");
1123  while ( !sit.pastEnd() ) {
1124    Table toff = sit.table();
1125    TableRow row(toff);
1126    Table t = s2it.table();
1127    ScalarColumn<Double> outintCol(toff, "INTERVAL");
1128    ArrayColumn<Float> outspecCol(toff, "SPECTRA");
1129    ArrayColumn<Float> outtsysCol(toff, "TSYS");
1130    ArrayColumn<uChar> outflagCol(toff, "FLAGTRA");
1131    ROScalarColumn<uInt> outtcalIdCol(toff, "TCAL_ID");
1132    ROScalarColumn<uInt> outpolCol(toff, "POLNO");
1133    ROScalarColumn<Double> onintCol(t, "INTERVAL");
1134    ROArrayColumn<Float> onspecCol(t, "SPECTRA");
1135    ROArrayColumn<Float> ontsysCol(t, "TSYS");
1136    ROArrayColumn<uChar> onflagCol(t, "FLAGTRA");
1137    //ROScalarColumn<uInt> ontcalIdCol(t, "TCAL_ID");
1138
1139    for (uInt i=0; i < toff.nrow(); ++i) {
1140      //skip these checks -> assumes the data order are the same between the cal on off pairs
1141      //
1142      Vector<Float> specCalon, specCaloff;
1143      // to store scalar (mean) tsys
1144      Vector<Float> tsysout(1);
1145      uInt tcalId, polno;
1146      Double offint, onint;
1147      outpolCol.get(i, polno);
1148      outspecCol.get(i, specCaloff);
1149      onspecCol.get(i, specCalon);
1150      Vector<uChar> flagCaloff, flagCalon;
1151      outflagCol.get(i, flagCaloff);
1152      onflagCol.get(i, flagCalon);
1153      outtcalIdCol.get(i, tcalId);
1154      outintCol.get(i, offint);
1155      onintCol.get(i, onint);
1156      // caluculate mean Tsys
1157      uInt nchan = specCaloff.nelements();
1158      // percentage of edge cut off
1159      uInt pc = 10;
1160      uInt bchan = nchan/pc;
1161      uInt echan = nchan-bchan;
1162
1163      Slicer chansl(IPosition(1,bchan-1), IPosition(1,echan-1), IPosition(1,1),Slicer::endIsLast);
1164      Vector<Float> testsubsp = specCaloff(chansl);
1165      MaskedArray<Float> spoff = maskedArray( specCaloff(chansl),flagCaloff(chansl) );
1166      MaskedArray<Float> spon = maskedArray( specCalon(chansl),flagCalon(chansl) );
1167      MaskedArray<Float> spdiff = spon-spoff;
1168      uInt noff = spoff.nelementsValid();
1169      //uInt non = spon.nelementsValid();
1170      uInt ndiff = spdiff.nelementsValid();
1171      Float meantsys;
1172
1173/**
1174      Double subspec, subdiff;
1175      uInt usednchan;
1176      subspec = 0;
1177      subdiff = 0;
1178      usednchan = 0;
1179      for(uInt k=(bchan-1); k<echan; k++) {
1180        subspec += specCaloff[k];
1181        subdiff += static_cast<Double>(specCalon[k]-specCaloff[k]);
1182        ++usednchan;
1183      }
1184**/
1185      // get tcal if input tcal <= 0
1186      Float tcalUsed;
1187      tcalUsed = tcal;
1188      if ( tcal <= 0.0 ) {
1189        uInt tcalRecNo = tcalIdToRecNoMap[tcalId];
1190        calOffTcalTable_TCALcol.get(tcalRecNo, tcalout);
1191//         if (polno<=3) {
1192//           tcalUsed = tcalout[polno];
1193//         }
1194//         else {
1195//           tcalUsed = tcalout[0];
1196//         }
1197        if ( tcalout.size() == 1 )
1198          tcalUsed = tcalout[0] ;
1199        else if ( tcalout.size() == nchan )
1200          tcalUsed = mean(tcalout) ;
1201        else {
1202          uInt ipol = polno ;
1203          if ( ipol > 3 ) ipol = 0 ;
1204          tcalUsed = tcalout[ipol] ;
1205        }
1206      }
1207
1208      Float meanoff;
1209      Float meandiff;
1210      if (noff && ndiff) {
1211         //Debug
1212         //if(noff!=ndiff) cerr<<"noff and ndiff is not equal"<<endl;
1213         //LogIO os( LogOrigin( "STMath", "dototalpower()", WHERE ) ) ;
1214         //if(noff!=ndiff) os<<"noff and ndiff is not equal"<<LogIO::POST;
1215         meanoff = sum(spoff)/noff;
1216         meandiff = sum(spdiff)/ndiff;
1217         meantsys= (meanoff/meandiff )*tcalUsed + tcalUsed/2;
1218      }
1219      else {
1220         meantsys=1;
1221      }
1222
1223      tsysout[0] = Float(meantsys);
1224      MaskedArray<Float> mcaloff = maskedArray(specCaloff, flagCaloff);
1225      MaskedArray<Float> mcalon = maskedArray(specCalon, flagCalon);
1226      MaskedArray<Float> sig =   Float(0.5) * (mcaloff + mcalon);
1227      //uInt ncaloff = mcaloff.nelementsValid();
1228      //uInt ncalon = mcalon.nelementsValid();
1229
1230      outintCol.put(i, offint+onint);
1231      outspecCol.put(i, sig.getArray());
1232      outflagCol.put(i, flagsFromMA(sig));
1233      outtsysCol.put(i, tsysout);
1234    }
1235    ++sit;
1236    ++s2it;
1237  }
1238  return out;
1239}
1240
1241//dosigref - migrated from GBT IDL's dosigref.pro, do calibration of position switch
1242// observatiions.
1243// input: sig and ref scantables, and an optional boxcar smoothing width(default width=0,
1244//        no smoothing).
1245// output: resultant scantable [= (sig-ref/ref)*tsys]
1246CountedPtr< Scantable > STMath::dosigref( const CountedPtr < Scantable >& sig,
1247                                          const CountedPtr < Scantable >& ref,
1248                                          int smoothref,
1249                                          casa::Float tsysv,
1250                                          casa::Float tau )
1251{
1252  LogIO os( casa::LogOrigin( "STMath", "dosigref()"));
1253if ( ! ref->conformant(*sig) ) {
1254    throw(AipsError("'sig' and 'ref' scantables are not conformant."));
1255  }
1256  setInsitu(false);
1257  CountedPtr< Scantable > out = getScantable(sig, false);
1258  CountedPtr< Scantable > smref;
1259  if ( smoothref > 1 ) {
1260    float fsmoothref = static_cast<float>(smoothref);
1261    std::string inkernel = "boxcar";
1262    smref = smooth(ref, inkernel, fsmoothref );
1263    ostringstream oss;
1264    os <<"Applied smoothing of "<<fsmoothref<<" on the reference."
1265       << LogIO::POST;
1266  }
1267  else {
1268    smref = ref;
1269  }
1270  Table& tout = out->table();
1271  const Table& tref = smref->table();
1272  if ( tout.nrow() != tref.nrow() ) {
1273    throw(AipsError("Mismatch in number of rows to form on-source and reference pair."));
1274  }
1275  // iteration by scanno? or cycle no.
1276  TableIterator sit(tout, "SCANNO");
1277  TableIterator s2it(tref, "SCANNO");
1278  while ( !sit.pastEnd() ) {
1279    Table ton = sit.table();
1280    Table t = s2it.table();
1281    ScalarColumn<Double> outintCol(ton, "INTERVAL");
1282    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1283    ArrayColumn<Float> outtsysCol(ton, "TSYS");
1284    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1285    ArrayColumn<Float> refspecCol(t, "SPECTRA");
1286    ROScalarColumn<Double> refintCol(t, "INTERVAL");
1287    ROArrayColumn<Float> reftsysCol(t, "TSYS");
1288    ArrayColumn<uChar> refflagCol(t, "FLAGTRA");
1289    ROScalarColumn<Float> refelevCol(t, "ELEVATION");
1290    for (uInt i=0; i < ton.nrow(); ++i) {
1291
1292      Double onint, refint;
1293      Vector<Float> specon, specref;
1294      // to store scalar (mean) tsys
1295      Vector<Float> tsysref;
1296      outintCol.get(i, onint);
1297      refintCol.get(i, refint);
1298      outspecCol.get(i, specon);
1299      refspecCol.get(i, specref);
1300      Vector<uChar> flagref, flagon;
1301      outflagCol.get(i, flagon);
1302      refflagCol.get(i, flagref);
1303      reftsysCol.get(i, tsysref);
1304
1305      Float tsysrefscalar;
1306      if ( tsysv > 0.0 ) {
1307        ostringstream oss;
1308        Float elev;
1309        refelevCol.get(i, elev);
1310        os << "user specified Tsys = " << tsysv;
1311        // do recalc elevation if EL = 0
1312        if ( elev == 0 ) {
1313          throw(AipsError("EL=0, elevation data is missing."));
1314        } else {
1315          if ( tau <= 0.0 ) {
1316            throw(AipsError("Valid tau is not supplied."));
1317          } else {
1318            tsysrefscalar = tsysv * exp(tau/elev);
1319          }
1320        }
1321        os << ", corrected (for El) tsys= "<<tsysrefscalar;
1322      }
1323      else {
1324        tsysrefscalar = tsysref[0];
1325      }
1326      //get quotient spectrum
1327      MaskedArray<Float> mref = maskedArray(specref, flagref);
1328      MaskedArray<Float> mon = maskedArray(specon, flagon);
1329      MaskedArray<Float> specres =   tsysrefscalar*((mon - mref)/mref);
1330      Double resint = onint*refint*smoothref/(onint+refint*smoothref);
1331
1332      //Debug
1333      //cerr<<"Tsys used="<<tsysrefscalar<<endl;
1334      //LogIO os( LogOrigin( "STMath", "dosigref", WHERE ) ) ;
1335      //os<<"Tsys used="<<tsysrefscalar<<LogIO::POST;
1336      // fill the result, replay signal tsys by reference tsys
1337      outintCol.put(i, resint);
1338      outspecCol.put(i, specres.getArray());
1339      outflagCol.put(i, flagsFromMA(specres));
1340      outtsysCol.put(i, tsysref);
1341    }
1342    ++sit;
1343    ++s2it;
1344  }
1345 
1346  out->setFluxUnit("K");
1347
1348  return out;
1349}
1350
1351CountedPtr< Scantable > STMath::donod(const casa::CountedPtr<Scantable>& s,
1352                                     const std::vector<int>& scans,
1353                                     int smoothref,
1354                                     casa::Float tsysv,
1355                                     casa::Float tau,
1356                                     casa::Float tcal )
1357
1358{
1359  setInsitu(false);
1360  LogIO os( casa::LogOrigin( "STMath", "donod()"));
1361  STSelector sel;
1362  std::vector<int> scan1, scan2, beams, types;
1363  std::vector< vector<int> > scanpair;
1364  //std::vector<string> calstate;
1365  std::vector<int> calstate;
1366  String msg;
1367
1368  CountedPtr< Scantable > s1b1on, s1b1off, s1b2on, s1b2off;
1369  CountedPtr< Scantable > s2b1on, s2b1off, s2b2on, s2b2off;
1370
1371  std::vector< CountedPtr< Scantable > > sctables;
1372  sctables.push_back(s1b1on);
1373  sctables.push_back(s1b1off);
1374  sctables.push_back(s1b2on);
1375  sctables.push_back(s1b2off);
1376  sctables.push_back(s2b1on);
1377  sctables.push_back(s2b1off);
1378  sctables.push_back(s2b2on);
1379  sctables.push_back(s2b2off);
1380
1381  //check scanlist
1382  int n=s->checkScanInfo(scans);
1383  if (n==1) {
1384     throw(AipsError("Incorrect scan pairs. "));
1385  }
1386
1387  // Assume scans contain only a pair of consecutive scan numbers.
1388  // It is assumed that first beam, b1,  is on target.
1389  // There is no check if the first beam is on or not.
1390  if ( scans.size()==1 ) {
1391    scan1.push_back(scans[0]);
1392    scan2.push_back(scans[0]+1);
1393  } else if ( scans.size()==2 ) {
1394   scan1.push_back(scans[0]);
1395   scan2.push_back(scans[1]);
1396  } else {
1397    if ( scans.size()%2 == 0 ) {
1398      for (uInt i=0; i<scans.size(); i++) {
1399        if (i%2 == 0) {
1400          scan1.push_back(scans[i]);
1401        }
1402        else {
1403          scan2.push_back(scans[i]);
1404        }
1405      }
1406    } else {
1407      throw(AipsError("Odd numbers of scans, cannot form pairs."));
1408    }
1409  }
1410  scanpair.push_back(scan1);
1411  scanpair.push_back(scan2);
1412  //calstate.push_back("*calon");
1413  //calstate.push_back("*[^calon]");
1414  calstate.push_back(SrcType::NODCAL);
1415  calstate.push_back(SrcType::NOD);
1416  CountedPtr< Scantable > ws = getScantable(s, false);
1417  uInt l=0;
1418  while ( l < sctables.size() ) {
1419    for (uInt i=0; i < 2; i++) {
1420      for (uInt j=0; j < 2; j++) {
1421        for (uInt k=0; k < 2; k++) {
1422          sel.reset();
1423          sel.setScans(scanpair[i]);
1424          //sel.setName(calstate[k]);
1425          types.clear();
1426          types.push_back(calstate[k]);
1427          sel.setTypes(types);
1428          beams.clear();
1429          beams.push_back(j);
1430          sel.setBeams(beams);
1431          ws->setSelection(sel);
1432          sctables[l]= getScantable(ws, false);
1433          l++;
1434        }
1435      }
1436    }
1437  }
1438
1439  // replace here by splitData or getData functionality
1440  CountedPtr< Scantable > sig1;
1441  CountedPtr< Scantable > ref1;
1442  CountedPtr< Scantable > sig2;
1443  CountedPtr< Scantable > ref2;
1444  CountedPtr< Scantable > calb1;
1445  CountedPtr< Scantable > calb2;
1446
1447  msg=String("Processing dototalpower for subset of the data");
1448  os << msg << LogIO::POST;
1449  // Debug for IRC CS data
1450  //float tcal1=7.0;
1451  //float tcal2=4.0;
1452  sig1 = dototalpower(sctables[0], sctables[1], tcal=tcal);
1453  ref1 = dototalpower(sctables[2], sctables[3], tcal=tcal);
1454  ref2 = dototalpower(sctables[4], sctables[5], tcal=tcal);
1455  sig2 = dototalpower(sctables[6], sctables[7], tcal=tcal);
1456
1457  // correction of user-specified tsys for elevation here
1458
1459  // dosigref calibration
1460  msg=String("Processing dosigref for subset of the data");
1461  os << msg  << endl;
1462  calb1=dosigref(sig1,ref2,smoothref,tsysv,tau);
1463  calb2=dosigref(sig2,ref1,smoothref,tsysv,tau);
1464
1465  // iteration by scanno or cycle no.
1466  Table& tcalb1 = calb1->table();
1467  Table& tcalb2 = calb2->table();
1468  TableIterator sit(tcalb1, "SCANNO");
1469  TableIterator s2it(tcalb2, "SCANNO");
1470  while ( !sit.pastEnd() ) {
1471    Table t1 = sit.table();
1472    Table t2= s2it.table();
1473    ArrayColumn<Float> outspecCol(t1, "SPECTRA");
1474    ArrayColumn<Float> outtsysCol(t1, "TSYS");
1475    ArrayColumn<uChar> outflagCol(t1, "FLAGTRA");
1476    ScalarColumn<Double> outintCol(t1, "INTERVAL");
1477    ArrayColumn<Float> t2specCol(t2, "SPECTRA");
1478    ROArrayColumn<Float> t2tsysCol(t2, "TSYS");
1479    ArrayColumn<uChar> t2flagCol(t2, "FLAGTRA");
1480    ROScalarColumn<Double> t2intCol(t2, "INTERVAL");
1481    for (uInt i=0; i < t1.nrow(); ++i) {
1482      Vector<Float> spec1, spec2;
1483      // to store scalar (mean) tsys
1484      Vector<Float> tsys1, tsys2;
1485      Vector<uChar> flag1, flag2;
1486      Double tint1, tint2;
1487      outspecCol.get(i, spec1);
1488      t2specCol.get(i, spec2);
1489      outflagCol.get(i, flag1);
1490      t2flagCol.get(i, flag2);
1491      outtsysCol.get(i, tsys1);
1492      t2tsysCol.get(i, tsys2);
1493      outintCol.get(i, tint1);
1494      t2intCol.get(i, tint2);
1495      // average
1496      // assume scalar tsys for weights
1497      Float wt1, wt2, tsyssq1, tsyssq2;
1498      tsyssq1 = tsys1[0]*tsys1[0];
1499      tsyssq2 = tsys2[0]*tsys2[0];
1500      wt1 = Float(tint1)/tsyssq1;
1501      wt2 = Float(tint2)/tsyssq2;
1502      Float invsumwt=1/(wt1+wt2);
1503      MaskedArray<Float> mspec1 = maskedArray(spec1, flag1);
1504      MaskedArray<Float> mspec2 = maskedArray(spec2, flag2);
1505      MaskedArray<Float> avspec =  invsumwt * (wt1*mspec1 + wt2*mspec2);
1506      //Array<Float> avtsys =  Float(0.5) * (tsys1 + tsys2);
1507      // cerr<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<endl;
1508      // LogIO os( LogOrigin( "STMath", "donod", WHERE ) ) ;
1509      // os<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<LogIO::POST;
1510      tsys1[0] = sqrt(tsyssq1 + tsyssq2);
1511      Array<Float> avtsys =  tsys1;
1512
1513      outspecCol.put(i, avspec.getArray());
1514      outflagCol.put(i, flagsFromMA(avspec));
1515      outtsysCol.put(i, avtsys);
1516    }
1517    ++sit;
1518    ++s2it;
1519  }
1520
1521  calb1->setFluxUnit("K");
1522 
1523  return calb1;
1524}
1525
1526//GBTIDL version of frequency switched data calibration
1527CountedPtr< Scantable > STMath::dofs( const CountedPtr< Scantable >& s,
1528                                      const std::vector<int>& scans,
1529                                      int smoothref,
1530                                      casa::Float tsysv,
1531                                      casa::Float tau,
1532                                      casa::Float tcal )
1533{
1534
1535
1536  (void) scans; //currently unused
1537  STSelector sel;
1538  CountedPtr< Scantable > ws = getScantable(s, false);
1539  CountedPtr< Scantable > sig, sigwcal, ref, refwcal;
1540  CountedPtr< Scantable > calsig, calref, out, out1, out2;
1541  Bool nofold=False;
1542  vector<int> types ;
1543
1544  //split the data
1545  //sel.setName("*_fs");
1546  types.push_back( SrcType::FSON ) ;
1547  sel.setTypes( types ) ;
1548  ws->setSelection(sel);
1549  sig = getScantable(ws,false);
1550  sel.reset();
1551  types.clear() ;
1552  //sel.setName("*_fs_calon");
1553  types.push_back( SrcType::FONCAL ) ;
1554  sel.setTypes( types ) ;
1555  ws->setSelection(sel);
1556  sigwcal = getScantable(ws,false);
1557  sel.reset();
1558  types.clear() ;
1559  //sel.setName("*_fsr");
1560  types.push_back( SrcType::FSOFF ) ;
1561  sel.setTypes( types ) ;
1562  ws->setSelection(sel);
1563  ref = getScantable(ws,false);
1564  sel.reset();
1565  types.clear() ;
1566  //sel.setName("*_fsr_calon");
1567  types.push_back( SrcType::FOFFCAL ) ;
1568  sel.setTypes( types ) ;
1569  ws->setSelection(sel);
1570  refwcal = getScantable(ws,false);
1571  sel.reset() ;
1572  types.clear() ;
1573
1574  calsig = dototalpower(sigwcal, sig, tcal=tcal);
1575  calref = dototalpower(refwcal, ref, tcal=tcal);
1576
1577  out1=dosigref(calsig,calref,smoothref,tsysv,tau);
1578  out2=dosigref(calref,calsig,smoothref,tsysv,tau);
1579
1580  Table& tabout1=out1->table();
1581  Table& tabout2=out2->table();
1582  ROScalarColumn<uInt> freqidCol1(tabout1, "FREQ_ID");
1583  ScalarColumn<uInt> freqidCol2(tabout2, "FREQ_ID");
1584  ROArrayColumn<Float> specCol(tabout2, "SPECTRA");
1585  Vector<Float> spec; specCol.get(0, spec);
1586  uInt nchan = spec.nelements();
1587  uInt freqid1; freqidCol1.get(0,freqid1);
1588  uInt freqid2; freqidCol2.get(0,freqid2);
1589  Double rp1, rp2, rv1, rv2, inc1, inc2;
1590  out1->frequencies().getEntry(rp1, rv1, inc1, freqid1);
1591  out2->frequencies().getEntry(rp2, rv2, inc2, freqid2);
1592  //cerr << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << endl ;
1593  //LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1594  //os << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << LogIO::POST ;
1595  if (rp1==rp2) {
1596    Double foffset = rv1 - rv2;
1597    uInt choffset = static_cast<uInt>(foffset/abs(inc2));
1598    if (choffset >= nchan) {
1599      //cerr<<"out-band frequency switching, no folding"<<endl;
1600      LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1601      os<<"out-band frequency switching, no folding"<<LogIO::POST;
1602      nofold = True;
1603    }
1604  }
1605
1606  if (nofold) {
1607    std::vector< CountedPtr< Scantable > > tabs;
1608    tabs.push_back(out1);
1609    tabs.push_back(out2);
1610    out = merge(tabs);
1611  }
1612  else {
1613    //out = out1;
1614    Double choffset = ( rv1 - rv2 ) / inc2 ;
1615    out = dofold( out1, out2, choffset ) ;
1616  }
1617   
1618  out->setFluxUnit("K");
1619
1620  return out;
1621}
1622
1623CountedPtr<Scantable> STMath::dofold( const CountedPtr<Scantable> &sig,
1624                                      const CountedPtr<Scantable> &ref,
1625                                      Double choffset,
1626                                      Double choffset2 )
1627{
1628  LogIO os( LogOrigin( "STMath", "dofold", WHERE ) ) ;
1629  os << "choffset=" << choffset << " choffset2=" << choffset2 << LogIO::POST ;
1630
1631  // output scantable
1632  CountedPtr<Scantable> out = getScantable( sig, false ) ;
1633
1634  // separate choffset to integer part and decimal part
1635  Int ioffset = (Int)choffset ;
1636  Double doffset = choffset - ioffset ;
1637  Int ioffset2 = (Int)choffset2 ;
1638  Double doffset2 = choffset2 - ioffset2 ;
1639  os << "ioffset=" << ioffset << " doffset=" << doffset << LogIO::POST ;
1640  os << "ioffset2=" << ioffset2 << " doffset2=" << doffset2 << LogIO::POST ; 
1641
1642  // get column
1643  ROArrayColumn<Float> specCol1( sig->table(), "SPECTRA" ) ;
1644  ROArrayColumn<Float> specCol2( ref->table(), "SPECTRA" ) ;
1645  ROArrayColumn<Float> tsysCol1( sig->table(), "TSYS" ) ;
1646  ROArrayColumn<Float> tsysCol2( ref->table(), "TSYS" ) ;
1647  ROArrayColumn<uChar> flagCol1( sig->table(), "FLAGTRA" ) ;
1648  ROArrayColumn<uChar> flagCol2( ref->table(), "FLAGTRA" ) ;
1649  ROScalarColumn<Double> mjdCol1( sig->table(), "TIME" ) ;
1650  ROScalarColumn<Double> mjdCol2( ref->table(), "TIME" ) ;
1651  ROScalarColumn<Double> intervalCol1( sig->table(), "INTERVAL" ) ;
1652  ROScalarColumn<Double> intervalCol2( ref->table(), "INTERVAL" ) ;
1653
1654  // check
1655  if ( ioffset == 0 ) {
1656    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1657    os << "channel offset is zero, no folding" << LogIO::POST ;
1658    return out ;
1659  }
1660  int nchan = ref->nchan() ;
1661  if ( abs(ioffset) >= nchan ) {
1662    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1663    os << "out-band frequency switching, no folding" << LogIO::POST ;
1664    return out ;
1665  }
1666
1667  // attach column for output scantable
1668  ArrayColumn<Float> specColOut( out->table(), "SPECTRA" ) ;
1669  ArrayColumn<uChar> flagColOut( out->table(), "FLAGTRA" ) ;
1670  ArrayColumn<Float> tsysColOut( out->table(), "TSYS" ) ;
1671  ScalarColumn<Double> mjdColOut( out->table(), "TIME" ) ;
1672  ScalarColumn<Double> intervalColOut( out->table(), "INTERVAL" ) ;
1673  ScalarColumn<uInt> fidColOut( out->table(), "FREQ_ID" ) ;
1674
1675  // for each row
1676  // assume that the data order are same between sig and ref
1677  RowAccumulator acc( asap::W_TINTSYS ) ;
1678  for ( int i = 0 ; i < sig->nrow() ; i++ ) {
1679    // get values
1680    Vector<Float> spsig ;
1681    specCol1.get( i, spsig ) ;
1682    Vector<Float> spref ;
1683    specCol2.get( i, spref ) ;
1684    Vector<Float> tsyssig ;
1685    tsysCol1.get( i, tsyssig ) ;
1686    Vector<Float> tsysref ;
1687    tsysCol2.get( i, tsysref ) ;
1688    Vector<uChar> flagsig ;
1689    flagCol1.get( i, flagsig ) ;
1690    Vector<uChar> flagref ;
1691    flagCol2.get( i, flagref ) ;
1692    Double timesig ;
1693    mjdCol1.get( i, timesig ) ;
1694    Double timeref ;
1695    mjdCol2.get( i, timeref ) ;
1696    Double intsig ;
1697    intervalCol1.get( i, intsig ) ;
1698    Double intref ;
1699    intervalCol2.get( i, intref ) ;
1700
1701    // shift reference spectra
1702    int refchan = spref.nelements() ;
1703    Vector<Float> sspref( spref.nelements() ) ;
1704    Vector<Float> stsysref( tsysref.nelements() ) ;
1705    Vector<uChar> sflagref( flagref.nelements() ) ;
1706    if ( ioffset > 0 ) {
1707      // SPECTRA and FLAGTRA
1708      for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1709        sspref[j] = spref[j+ioffset] ;
1710        sflagref[j] = flagref[j+ioffset] ;
1711      }
1712      for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1713        sspref[j] = spref[j-refchan+ioffset] ;
1714        sflagref[j] = flagref[j-refchan+ioffset] ;
1715      }
1716      spref = sspref.copy() ;
1717      flagref = sflagref.copy() ;
1718      for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1719        sspref[j] = doffset * spref[j+1] + ( 1.0 - doffset ) * spref[j] ;
1720        sflagref[j] = flagref[j+1] + flagref[j] ;
1721      }
1722      sspref[refchan-1] = doffset * spref[0] + ( 1.0 - doffset ) * spref[refchan-1] ;
1723      sflagref[refchan-1] = flagref[0] + flagref[refchan-1] ;
1724
1725      // TSYS
1726      if ( spref.nelements() == tsysref.nelements() ) {
1727        for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1728          stsysref[j] = tsysref[j+ioffset] ;
1729        }
1730        for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1731          stsysref[j] = tsysref[j-refchan+ioffset] ;
1732        }
1733        tsysref = stsysref.copy() ;
1734        for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1735          stsysref[j] = doffset * tsysref[j+1] + ( 1.0 - doffset ) * tsysref[j] ;
1736        }
1737        stsysref[refchan-1] = doffset * tsysref[0] + ( 1.0 - doffset ) * tsysref[refchan-1] ;
1738      }
1739    }
1740    else {
1741      // SPECTRA and FLAGTRA
1742      for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1743        sspref[j] = spref[refchan+ioffset+j] ;
1744        sflagref[j] = flagref[refchan+ioffset+j] ;
1745      }
1746      for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1747        sspref[j] = spref[j+ioffset] ;
1748        sflagref[j] = flagref[j+ioffset] ;
1749      }
1750      spref = sspref.copy() ;
1751      flagref = sflagref.copy() ;
1752      sspref[0] = doffset * spref[refchan-1] + ( 1.0 - doffset ) * spref[0] ;
1753      sflagref[0] = flagref[0] + flagref[refchan-1] ;
1754      for ( int j = 1 ; j < refchan ; j++ ) {
1755        sspref[j] = doffset * spref[j-1] + ( 1.0 - doffset ) * spref[j] ;
1756        sflagref[j] = flagref[j-1] + flagref[j] ;
1757      }
1758      // TSYS
1759      if ( spref.nelements() == tsysref.nelements() ) {
1760        for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1761          stsysref[j] = tsysref[refchan+ioffset+j] ;
1762        }
1763        for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1764          stsysref[j] = tsysref[j+ioffset] ;
1765        }
1766        tsysref = stsysref.copy() ;
1767        stsysref[0] = doffset * tsysref[refchan-1] + ( 1.0 - doffset ) * tsysref[0] ;
1768        for ( int j = 1 ; j < refchan ; j++ ) {
1769          stsysref[j] = doffset * tsysref[j-1] + ( 1.0 - doffset ) * tsysref[j] ;
1770        }
1771      }
1772    }
1773
1774    // shift signal spectra if necessary (only for APEX?)
1775    if ( choffset2 != 0.0 ) {
1776      int sigchan = spsig.nelements() ;
1777      Vector<Float> sspsig( spsig.nelements() ) ;
1778      Vector<Float> stsyssig( tsyssig.nelements() ) ;
1779      Vector<uChar> sflagsig( flagsig.nelements() ) ;
1780      if ( ioffset2 > 0 ) {
1781        // SPECTRA and FLAGTRA
1782        for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1783          sspsig[j] = spsig[j+ioffset2] ;
1784          sflagsig[j] = flagsig[j+ioffset2] ;
1785        }
1786        for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1787          sspsig[j] = spsig[j-sigchan+ioffset2] ;
1788          sflagsig[j] = flagsig[j-sigchan+ioffset2] ;
1789        }
1790        spsig = sspsig.copy() ;
1791        flagsig = sflagsig.copy() ;
1792        for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1793          sspsig[j] = doffset2 * spsig[j+1] + ( 1.0 - doffset2 ) * spsig[j] ;
1794          sflagsig[j] = flagsig[j+1] || flagsig[j] ;
1795        }
1796        sspsig[sigchan-1] = doffset2 * spsig[0] + ( 1.0 - doffset2 ) * spsig[sigchan-1] ;
1797        sflagsig[sigchan-1] = flagsig[0] || flagsig[sigchan-1] ;
1798        // TSTS
1799        if ( spsig.nelements() == tsyssig.nelements() ) {
1800          for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1801            stsyssig[j] = tsyssig[j+ioffset2] ;
1802          }
1803          for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1804            stsyssig[j] = tsyssig[j-sigchan+ioffset2] ;
1805          }
1806          tsyssig = stsyssig.copy() ;
1807          for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1808            stsyssig[j] = doffset2 * tsyssig[j+1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1809          }
1810          stsyssig[sigchan-1] = doffset2 * tsyssig[0] + ( 1.0 - doffset2 ) * tsyssig[sigchan-1] ;
1811        }
1812      }
1813      else {
1814        // SPECTRA and FLAGTRA
1815        for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1816          sspsig[j] = spsig[sigchan+ioffset2+j] ;
1817          sflagsig[j] = flagsig[sigchan+ioffset2+j] ;
1818        }
1819        for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1820          sspsig[j] = spsig[j+ioffset2] ;
1821          sflagsig[j] = flagsig[j+ioffset2] ;
1822        }
1823        spsig = sspsig.copy() ;
1824        flagsig = sflagsig.copy() ;
1825        sspsig[0] = doffset2 * spsig[sigchan-1] + ( 1.0 - doffset2 ) * spsig[0] ;
1826        sflagsig[0] = flagsig[0] + flagsig[sigchan-1] ;
1827        for ( int j = 1 ; j < sigchan ; j++ ) {
1828          sspsig[j] = doffset2 * spsig[j-1] + ( 1.0 - doffset2 ) * spsig[j] ;
1829          sflagsig[j] = flagsig[j-1] + flagsig[j] ;
1830        }
1831        // TSYS
1832        if ( spsig.nelements() == tsyssig.nelements() ) {
1833          for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1834            stsyssig[j] = tsyssig[sigchan+ioffset2+j] ;
1835          }
1836          for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1837            stsyssig[j] = tsyssig[j+ioffset2] ;
1838          }
1839          tsyssig = stsyssig.copy() ;
1840          stsyssig[0] = doffset2 * tsyssig[sigchan-1] + ( 1.0 - doffset2 ) * tsyssig[0] ;
1841          for ( int j = 1 ; j < sigchan ; j++ ) {
1842            stsyssig[j] = doffset2 * tsyssig[j-1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1843          }
1844        }
1845      }
1846    }
1847
1848    // folding
1849    acc.add( spsig, !flagsig, tsyssig, intsig, timesig ) ;
1850    acc.add( sspref, !sflagref, stsysref, intref, timeref ) ;
1851   
1852    // put result
1853    specColOut.put( i, acc.getSpectrum() ) ;
1854    const Vector<Bool> &msk = acc.getMask() ;
1855    Vector<uChar> flg( msk.shape() ) ;
1856    convertArray( flg, !msk ) ;
1857    flagColOut.put( i, flg ) ;
1858    tsysColOut.put( i, acc.getTsys() ) ;
1859    intervalColOut.put( i, acc.getInterval() ) ;
1860    mjdColOut.put( i, acc.getTime() ) ;
1861    // change FREQ_ID to unshifted IF setting (only for APEX?)
1862    if ( choffset2 != 0.0 ) {
1863      uInt freqid = fidColOut( 0 ) ; // assume single-IF data
1864      double refpix, refval, increment ;
1865      out->frequencies().getEntry( refpix, refval, increment, freqid ) ;
1866      refval -= choffset * increment ;
1867      uInt newfreqid = out->frequencies().addEntry( refpix, refval, increment ) ;
1868      Vector<uInt> freqids = fidColOut.getColumn() ;
1869      for ( uInt j = 0 ; j < freqids.nelements() ; j++ ) {
1870        if ( freqids[j] == freqid )
1871          freqids[j] = newfreqid ;
1872      }
1873      fidColOut.putColumn( freqids ) ;
1874    }
1875
1876    acc.reset() ;
1877  }
1878
1879  return out ;
1880}
1881
1882
1883CountedPtr< Scantable > STMath::freqSwitch( const CountedPtr< Scantable >& in )
1884{
1885  // make copy or reference
1886  CountedPtr< Scantable > out = getScantable(in, false);
1887  Table& tout = out->table();
1888  Block<String> cols(4);
1889  cols[0] = String("SCANNO");
1890  cols[1] = String("CYCLENO");
1891  cols[2] = String("BEAMNO");
1892  cols[3] = String("POLNO");
1893  TableIterator iter(tout, cols);
1894  while (!iter.pastEnd()) {
1895    Table subt = iter.table();
1896    // this should leave us with two rows for the two IFs....if not ignore
1897    if (subt.nrow() != 2 ) {
1898      continue;
1899    }
1900    ArrayColumn<Float> specCol(subt, "SPECTRA");
1901    ArrayColumn<Float> tsysCol(subt, "TSYS");
1902    ArrayColumn<uChar> flagCol(subt, "FLAGTRA");
1903    Vector<Float> onspec,offspec, ontsys, offtsys;
1904    Vector<uChar> onflag, offflag;
1905    tsysCol.get(0, ontsys);   tsysCol.get(1, offtsys);
1906    specCol.get(0, onspec);   specCol.get(1, offspec);
1907    flagCol.get(0, onflag);   flagCol.get(1, offflag);
1908    MaskedArray<Float> on  = maskedArray(onspec, onflag);
1909    MaskedArray<Float> off = maskedArray(offspec, offflag);
1910    MaskedArray<Float> oncopy = on.copy();
1911
1912    on /= off; on -= 1.0f;
1913    on *= ontsys[0];
1914    off /= oncopy; off -= 1.0f;
1915    off *= offtsys[0];
1916    specCol.put(0, on.getArray());
1917    const Vector<Bool>& m0 = on.getMask();
1918    Vector<uChar> flags0(m0.shape());
1919    convertArray(flags0, !m0);
1920    flagCol.put(0, flags0);
1921
1922    specCol.put(1, off.getArray());
1923    const Vector<Bool>& m1 = off.getMask();
1924    Vector<uChar> flags1(m1.shape());
1925    convertArray(flags1, !m1);
1926    flagCol.put(1, flags1);
1927    ++iter;
1928  }
1929
1930  return out;
1931}
1932
1933std::vector< float > STMath::statistic( const CountedPtr< Scantable > & in,
1934                                        const std::vector< bool > & mask,
1935                                        const std::string& which )
1936{
1937
1938  Vector<Bool> m(mask);
1939  const Table& tab = in->table();
1940  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1941  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1942  std::vector<float> out;
1943  for (uInt i=0; i < tab.nrow(); ++i ) {
1944    Vector<Float> spec; specCol.get(i, spec);
1945    Vector<uChar> flag; flagCol.get(i, flag);
1946    MaskedArray<Float> ma  = maskedArray(spec, flag);
1947    float outstat = 0.0;
1948    if ( spec.nelements() == m.nelements() ) {
1949      outstat = mathutil::statistics(which, ma(m));
1950    } else {
1951      outstat = mathutil::statistics(which, ma);
1952    }
1953    out.push_back(outstat);
1954  }
1955  return out;
1956}
1957
1958std::vector< float > STMath::statisticRow( const CountedPtr< Scantable > & in,
1959                                        const std::vector< bool > & mask,
1960                                        const std::string& which,
1961                                        int row )
1962{
1963
1964  Vector<Bool> m(mask);
1965  const Table& tab = in->table();
1966  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1967  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1968  std::vector<float> out;
1969
1970  Vector<Float> spec; specCol.get(row, spec);
1971  Vector<uChar> flag; flagCol.get(row, flag);
1972  MaskedArray<Float> ma  = maskedArray(spec, flag);
1973  float outstat = 0.0;
1974  if ( spec.nelements() == m.nelements() ) {
1975    outstat = mathutil::statistics(which, ma(m));
1976  } else {
1977    outstat = mathutil::statistics(which, ma);
1978  }
1979  out.push_back(outstat);
1980
1981  return out;
1982}
1983
1984std::vector< int > STMath::minMaxChan( const CountedPtr< Scantable > & in,
1985                                        const std::vector< bool > & mask,
1986                                        const std::string& which )
1987{
1988
1989  Vector<Bool> m(mask);
1990  const Table& tab = in->table();
1991  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1992  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1993  std::vector<int> out;
1994  for (uInt i=0; i < tab.nrow(); ++i ) {
1995    Vector<Float> spec; specCol.get(i, spec);
1996    Vector<uChar> flag; flagCol.get(i, flag);
1997    MaskedArray<Float> ma  = maskedArray(spec, flag);
1998    if (ma.ndim() != 1) {
1999      throw (ArrayError(
2000          "std::vector<int> STMath::minMaxChan("
2001          "ContedPtr<Scantable> &in, std::vector<bool> &mask, "
2002          " std::string &which)"
2003          " - MaskedArray is not 1D"));
2004    }
2005    IPosition outpos(1,0);
2006    if ( spec.nelements() == m.nelements() ) {
2007      outpos = mathutil::minMaxPos(which, ma(m));
2008    } else {
2009      outpos = mathutil::minMaxPos(which, ma);
2010    }
2011    out.push_back(outpos[0]);
2012  }
2013  return out;
2014}
2015
2016CountedPtr< Scantable > STMath::bin( const CountedPtr< Scantable > & in,
2017                                     int width )
2018{
2019  if ( !in->getSelection().empty() ) throw(AipsError("Can't bin subset of the data."));
2020  CountedPtr< Scantable > out = getScantable(in, false);
2021  Table& tout = out->table();
2022  out->frequencies().rescale(width, "BIN");
2023  ArrayColumn<Float> specCol(tout, "SPECTRA");
2024  ArrayColumn<uChar> flagCol(tout, "FLAGTRA");
2025  ArrayColumn<Float> tsysCol(tout, "TSYS");
2026
2027  for (uInt i=0; i < tout.nrow(); ++i ) {
2028    MaskedArray<Float> main  = maskedArray(specCol(i), flagCol(i));
2029    MaskedArray<Float> maout;
2030    LatticeUtilities::bin(maout, main, 0, Int(width));
2031    specCol.put(i, maout.getArray());
2032    flagCol.put(i, flagsFromMA(maout));
2033    if (tsysCol(i).nelements() == specCol(i).nelements()) {
2034      MaskedArray<Float> matsysin = maskedArray(tsysCol(i), flagCol(i));
2035      MaskedArray<Float> matsysout;
2036      LatticeUtilities::bin(matsysout, matsysin, 0, Int(width));
2037      tsysCol.put(i, matsysout.getArray());
2038    }
2039    // take only the first binned spectrum's length for the deprecated
2040    // global header item nChan
2041    if (i==0) tout.rwKeywordSet().define(String("nChan"),
2042                                       Int(maout.getArray().nelements()));
2043  }
2044  return out;
2045}
2046
2047CountedPtr< Scantable > STMath::resample( const CountedPtr< Scantable >& in,
2048                                          const std::string& method,
2049                                          float width )
2050//
2051// Should add the possibility of width being specified in km/s. This means
2052// that for each freqID (SpectralCoordinate) we will need to convert to an
2053// average channel width (say at the reference pixel).  Then we would need
2054// to be careful to make sure each spectrum (of different freqID)
2055// is the same length.
2056//
2057{
2058  //InterpolateArray1D<Double,Float>::InterpolationMethod interp;
2059  Int interpMethod(stringToIMethod(method));
2060
2061  CountedPtr< Scantable > out = getScantable(in, false);
2062  Table& tout = out->table();
2063
2064// Resample SpectralCoordinates (one per freqID)
2065  out->frequencies().rescale(width, "RESAMPLE");
2066  TableIterator iter(tout, "IFNO");
2067  TableRow row(tout);
2068  while ( !iter.pastEnd() ) {
2069    Table tab = iter.table();
2070    ArrayColumn<Float> specCol(tab, "SPECTRA");
2071    //ArrayColumn<Float> tsysCol(tout, "TSYS");
2072    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2073    Vector<Float> spec;
2074    Vector<uChar> flag;
2075    specCol.get(0,spec); // the number of channels should be constant per IF
2076    uInt nChanIn = spec.nelements();
2077    Vector<Float> xIn(nChanIn); indgen(xIn);
2078    Int fac =  Int(nChanIn/width);
2079    Vector<Float> xOut(fac+10); // 10 to be safe - resize later
2080    uInt k = 0;
2081    Float x = 0.0;
2082    while (x < Float(nChanIn) ) {
2083      xOut(k) = x;
2084      k++;
2085      x += width;
2086    }
2087    uInt nChanOut = k;
2088    xOut.resize(nChanOut, True);
2089    // process all rows for this IFNO
2090    Vector<Float> specOut;
2091    Vector<Bool> maskOut;
2092    Vector<uChar> flagOut;
2093    for (uInt i=0; i < tab.nrow(); ++i) {
2094      specCol.get(i, spec);
2095      flagCol.get(i, flag);
2096      Vector<Bool> mask(flag.nelements());
2097      convertArray(mask, flag);
2098
2099      IPosition shapeIn(spec.shape());
2100      //sh.nchan = nChanOut;
2101      InterpolateArray1D<Float,Float>::interpolate(specOut, maskOut, xOut,
2102                                                   xIn, spec, mask,
2103                                                   interpMethod, True, True);
2104      /// @todo do the same for channel based Tsys
2105      flagOut.resize(maskOut.nelements());
2106      convertArray(flagOut, maskOut);
2107      specCol.put(i, specOut);
2108      flagCol.put(i, flagOut);
2109    }
2110    ++iter;
2111  }
2112
2113  return out;
2114}
2115
2116STMath::imethod STMath::stringToIMethod(const std::string& in)
2117{
2118  static STMath::imap lookup;
2119
2120  // initialize the lookup table if necessary
2121  if ( lookup.empty() ) {
2122    lookup["nearest"]   = InterpolateArray1D<Double,Float>::nearestNeighbour;
2123    lookup["linear"] = InterpolateArray1D<Double,Float>::linear;
2124    lookup["cubic"]  = InterpolateArray1D<Double,Float>::cubic;
2125    lookup["spline"]  = InterpolateArray1D<Double,Float>::spline;
2126  }
2127
2128  STMath::imap::const_iterator iter = lookup.find(in);
2129
2130  if ( lookup.end() == iter ) {
2131    std::string message = in;
2132    message += " is not a valid interpolation mode";
2133    throw(AipsError(message));
2134  }
2135  return iter->second;
2136}
2137
2138WeightType STMath::stringToWeight(const std::string& in)
2139{
2140  static std::map<std::string, WeightType> lookup;
2141
2142  // initialize the lookup table if necessary
2143  if ( lookup.empty() ) {
2144    lookup["NONE"]   = asap::W_NONE;
2145    lookup["TINT"] = asap::W_TINT;
2146    lookup["TINTSYS"]  = asap::W_TINTSYS;
2147    lookup["TSYS"]  = asap::W_TSYS;
2148    lookup["VAR"]  = asap::W_VAR;
2149  }
2150
2151  std::map<std::string, WeightType>::const_iterator iter = lookup.find(in);
2152
2153  if ( lookup.end() == iter ) {
2154    std::string message = in;
2155    message += " is not a valid weighting mode";
2156    throw(AipsError(message));
2157  }
2158  return iter->second;
2159}
2160
2161CountedPtr< Scantable > STMath::gainElevation( const CountedPtr< Scantable >& in,
2162                                               const vector< float > & coeff,
2163                                               const std::string & filename,
2164                                               const std::string& method)
2165{
2166  LogIO os( LogOrigin( "STMath", "gainElevation", WHERE ) ) ;
2167  // Get elevation data from Scantable and convert to degrees
2168  CountedPtr< Scantable > out = getScantable(in, false);
2169  Table& tab = out->table();
2170  ROScalarColumn<Float> elev(tab, "ELEVATION");
2171  Vector<Float> x = elev.getColumn();
2172  x *= Float(180 / C::pi);                        // Degrees
2173
2174  Vector<Float> coeffs(coeff);
2175  const uInt nc = coeffs.nelements();
2176  if ( filename.length() > 0 && nc > 0 ) {
2177    throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
2178  }
2179
2180  // Correct
2181  if ( nc > 0 || filename.length() == 0 ) {
2182    // Find instrument
2183    Bool throwit = True;
2184    Instrument inst =
2185      STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2186                                throwit);
2187
2188    // Set polynomial
2189    Polynomial<Float>* ppoly = 0;
2190    Vector<Float> coeff;
2191    String msg;
2192    if ( nc > 0 ) {
2193      ppoly = new Polynomial<Float>(nc-1);
2194      coeff = coeffs;
2195      msg = String("user");
2196    } else {
2197      STAttr sdAttr;
2198      coeff = sdAttr.gainElevationPoly(inst);
2199      ppoly = new Polynomial<Float>(coeff.nelements()-1);
2200      msg = String("built in");
2201    }
2202
2203    if ( coeff.nelements() > 0 ) {
2204      ppoly->setCoefficients(coeff);
2205    } else {
2206      delete ppoly;
2207      throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
2208    }
2209    os << "Making polynomial correction with " << msg << " coefficients:" << endl;
2210    os << "   " <<  coeff << LogIO::POST;
2211    const uInt nrow = tab.nrow();
2212    Vector<Float> factor(nrow);
2213    for ( uInt i=0; i < nrow; ++i ) {
2214      factor[i] = 1.0 / (*ppoly)(x[i]);
2215    }
2216    delete ppoly;
2217    scaleByVector(tab, factor, true);
2218
2219  } else {
2220    // Read and correct
2221    os << "Making correction from ascii Table" << LogIO::POST;
2222    scaleFromAsciiTable(tab, filename, method, x, true);
2223  }
2224  return out;
2225}
2226
2227void STMath::scaleFromAsciiTable(Table& in, const std::string& filename,
2228                                 const std::string& method,
2229                                 const Vector<Float>& xout, bool dotsys)
2230{
2231
2232// Read gain-elevation ascii file data into a Table.
2233
2234  String formatString;
2235  Table tbl = readAsciiTable(formatString, Table::Memory, filename, "", "", False);
2236  scaleFromTable(in, tbl, method, xout, dotsys);
2237}
2238
2239void STMath::scaleFromTable(Table& in,
2240                            const Table& table,
2241                            const std::string& method,
2242                            const Vector<Float>& xout, bool dotsys)
2243{
2244
2245  ROScalarColumn<Float> geElCol(table, "ELEVATION");
2246  ROScalarColumn<Float> geFacCol(table, "FACTOR");
2247  Vector<Float> xin = geElCol.getColumn();
2248  Vector<Float> yin = geFacCol.getColumn();
2249  Vector<Bool> maskin(xin.nelements(),True);
2250
2251  // Interpolate (and extrapolate) with desired method
2252
2253  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2254
2255   Vector<Float> yout;
2256   Vector<Bool> maskout;
2257   InterpolateArray1D<Float,Float>::interpolate(yout, maskout, xout,
2258                                                xin, yin, maskin, interp,
2259                                                True, True);
2260
2261   scaleByVector(in, Float(1.0)/yout, dotsys);
2262}
2263
2264void STMath::scaleByVector( Table& in,
2265                            const Vector< Float >& factor,
2266                            bool dotsys )
2267{
2268  uInt nrow = in.nrow();
2269  if ( factor.nelements() != nrow ) {
2270    throw(AipsError("factors.nelements() != table.nelements()"));
2271  }
2272  ArrayColumn<Float> specCol(in, "SPECTRA");
2273  ArrayColumn<uChar> flagCol(in, "FLAGTRA");
2274  ArrayColumn<Float> tsysCol(in, "TSYS");
2275  for (uInt i=0; i < nrow; ++i) {
2276    MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2277    ma *= factor[i];
2278    specCol.put(i, ma.getArray());
2279    flagCol.put(i, flagsFromMA(ma));
2280    if ( dotsys ) {
2281      Vector<Float> tsys = tsysCol(i);
2282      tsys *= factor[i];
2283      tsysCol.put(i,tsys);
2284    }
2285  }
2286}
2287
2288CountedPtr< Scantable > STMath::convertFlux( const CountedPtr< Scantable >& in,
2289                                             float d, float etaap,
2290                                             float jyperk )
2291{
2292  LogIO os( LogOrigin( "STMath", "convertFlux", WHERE ) ) ;
2293
2294  CountedPtr< Scantable > out = getScantable(in, false);
2295  Table& tab = in->table();
2296  Table& outtab = out->table();
2297  Unit fluxUnit(tab.keywordSet().asString("FluxUnit"));
2298  Unit K(String("K"));
2299  Unit JY(String("Jy"));
2300
2301  bool tokelvin = true;
2302  Double cfac = 1.0;
2303
2304  if ( fluxUnit == JY ) {
2305    os << "Converting to K" << LogIO::POST;
2306    Quantum<Double> t(1.0,fluxUnit);
2307    Quantum<Double> t2 = t.get(JY);
2308    cfac = (t2 / t).getValue();               // value to Jy
2309
2310    tokelvin = true;
2311    out->setFluxUnit("K");
2312  } else if ( fluxUnit == K ) {
2313    os << "Converting to Jy" << LogIO::POST;
2314    Quantum<Double> t(1.0,fluxUnit);
2315    Quantum<Double> t2 = t.get(K);
2316    cfac = (t2 / t).getValue();              // value to K
2317
2318    tokelvin = false;
2319    out->setFluxUnit("Jy");
2320  } else {
2321    throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
2322  }
2323  // Make sure input values are converted to either Jy or K first...
2324  Float factor = cfac;
2325
2326  // Select method
2327  if (jyperk > 0.0) {
2328    factor *= jyperk;
2329    if ( tokelvin ) factor = 1.0 / jyperk;
2330    os << "Jy/K = " << jyperk << LogIO::POST;
2331    Vector<Float> factors(outtab.nrow(), factor);
2332    scaleByVector(outtab,factors, false);
2333  } else if ( etaap > 0.0) {
2334    if (d < 0) {
2335      Instrument inst =
2336        STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2337                                  True);
2338      STAttr sda;
2339      d = sda.diameter(inst);
2340    }
2341    jyperk = STAttr::findJyPerK(etaap, d);
2342    os << "Jy/K = " << jyperk << LogIO::POST;
2343    factor *= jyperk;
2344    if ( tokelvin ) {
2345      factor = 1.0 / factor;
2346    }
2347    Vector<Float> factors(outtab.nrow(), factor);
2348    scaleByVector(outtab, factors, False);
2349  } else {
2350
2351    // OK now we must deal with automatic look up of values.
2352    // We must also deal with the fact that the factors need
2353    // to be computed per IF and may be different and may
2354    // change per integration.
2355
2356    os <<"Looking up conversion factors" << LogIO::POST;
2357    convertBrightnessUnits(out, tokelvin, cfac);
2358  }
2359
2360  return out;
2361}
2362
2363void STMath::convertBrightnessUnits( CountedPtr<Scantable>& in,
2364                                     bool tokelvin, float cfac )
2365{
2366  Table& table = in->table();
2367  Instrument inst =
2368    STAttr::convertInstrument(table.keywordSet().asString("AntennaName"), True);
2369  TableIterator iter(table, "FREQ_ID");
2370  STFrequencies stfreqs = in->frequencies();
2371  STAttr sdAtt;
2372  while (!iter.pastEnd()) {
2373    Table tab = iter.table();
2374    ArrayColumn<Float> specCol(tab, "SPECTRA");
2375    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2376    ROScalarColumn<uInt> freqidCol(tab, "FREQ_ID");
2377    MEpoch::ROScalarColumn timeCol(tab, "TIME");
2378
2379    uInt freqid; freqidCol.get(0, freqid);
2380    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2381    // STAttr.JyPerK has a Vector interface... change sometime.
2382    Vector<Float> freqs(1,stfreqs.getRefFreq(freqid, tmpspec.nelements()));
2383    for ( uInt i=0; i<tab.nrow(); ++i) {
2384      Float jyperk = (sdAtt.JyPerK(inst, timeCol(i), freqs))[0];
2385      Float factor = cfac * jyperk;
2386      if ( tokelvin ) factor = Float(1.0) / factor;
2387      MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2388      ma *= factor;
2389      specCol.put(i, ma.getArray());
2390      flagCol.put(i, flagsFromMA(ma));
2391    }
2392  ++iter;
2393  }
2394}
2395
2396CountedPtr< Scantable > STMath::opacity( const CountedPtr< Scantable > & in,
2397                                         const std::vector<float>& tau )
2398{
2399  CountedPtr< Scantable > out = getScantable(in, false);
2400
2401  Table outtab = out->table();
2402
2403  const Int ntau = uInt(tau.size());
2404  std::vector<float>::const_iterator tauit = tau.begin();
2405  AlwaysAssert((ntau == 1 || ntau == in->nif() || ntau == in->nif() * in->npol()),
2406               AipsError);
2407  TableIterator iiter(outtab, "IFNO");
2408  while ( !iiter.pastEnd() ) {
2409    Table itab = iiter.table();
2410    TableIterator piter(itab, "POLNO");
2411    while ( !piter.pastEnd() ) {
2412      Table tab = piter.table();
2413      ROScalarColumn<Float> elev(tab, "ELEVATION");
2414      ArrayColumn<Float> specCol(tab, "SPECTRA");
2415      ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2416      ArrayColumn<Float> tsysCol(tab, "TSYS");
2417      for ( uInt i=0; i<tab.nrow(); ++i) {
2418        Float zdist = Float(C::pi_2) - elev(i);
2419        Float factor = exp(*tauit/cos(zdist));
2420        MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2421        ma *= factor;
2422        specCol.put(i, ma.getArray());
2423        flagCol.put(i, flagsFromMA(ma));
2424        Vector<Float> tsys;
2425        tsysCol.get(i, tsys);
2426        tsys *= factor;
2427        tsysCol.put(i, tsys);
2428      }
2429      if (ntau == in->nif()*in->npol() ) {
2430        tauit++;
2431      }
2432      piter++;
2433    }
2434    if (ntau >= in->nif() ) {
2435      tauit++;
2436    }
2437    iiter++;
2438  }
2439  return out;
2440}
2441
2442CountedPtr< Scantable > STMath::smoothOther( const CountedPtr< Scantable >& in,
2443                                             const std::string& kernel,
2444                                             float width, int order)
2445{
2446  CountedPtr< Scantable > out = getScantable(in, false);
2447  Table table = out->table();
2448
2449  TableIterator iter(table, "IFNO");
2450  while (!iter.pastEnd()) {
2451    Table tab = iter.table();
2452    ArrayColumn<Float> specCol(tab, "SPECTRA");
2453    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2454    Vector<Float> spec;
2455    Vector<uChar> flag;
2456    for (uInt i = 0; i < tab.nrow(); ++i) {
2457      specCol.get(i, spec);
2458      flagCol.get(i, flag);
2459      Vector<Bool> mask(flag.nelements());
2460      convertArray(mask, flag);
2461      Vector<Float> specout;
2462      Vector<Bool> maskout;
2463      if (kernel == "hanning") {
2464        mathutil::hanning(specout, maskout, spec, !mask);
2465      } else if (kernel == "rmedian") {
2466        mathutil::runningMedian(specout, maskout, spec , mask, width);
2467      } else if (kernel == "poly") {
2468        mathutil::polyfit(specout, maskout, spec, !mask, width, order);
2469      }
2470
2471      for (uInt j = 0; j < flag.nelements(); ++j) {
2472        uChar userFlag = 1 << 7;
2473        if (maskout[j]==True) userFlag = 0 << 7;
2474        flag(j) = userFlag;
2475      }
2476
2477      flagCol.put(i, flag);
2478      specCol.put(i, specout);
2479    }
2480  ++iter;
2481  }
2482  return out;
2483}
2484
2485CountedPtr< Scantable > STMath::smooth( const CountedPtr< Scantable >& in,
2486                                        const std::string& kernel, float width,
2487                                        int order)
2488{
2489  if (kernel == "rmedian"  || kernel == "hanning" || kernel == "poly") {
2490    return smoothOther(in, kernel, width, order);
2491  }
2492  CountedPtr< Scantable > out = getScantable(in, false);
2493  Table& table = out->table();
2494  VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernel);
2495  // same IFNO should have same no of channels
2496  // this saves overhead
2497  TableIterator iter(table, "IFNO");
2498  while (!iter.pastEnd()) {
2499    Table tab = iter.table();
2500    ArrayColumn<Float> specCol(tab, "SPECTRA");
2501    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2502    Vector<Float> spec = specCol( 0 );
2503    uInt nchan = spec.nelements();
2504    Vector<Float> kvec = VectorKernel::make(type, width, nchan, True, False);
2505    Convolver<Float> conv(kvec, IPosition(1,nchan));
2506    Vector<uChar> flag;
2507    Vector<Bool> mask(nchan);
2508    for ( uInt i=0; i<tab.nrow(); ++i) {
2509      specCol.get(i, spec);
2510      flagCol.get(i, flag);
2511      convertArray(mask, flag);
2512      Vector<Float> specout;
2513      mathutil::replaceMaskByZero(specout, mask);
2514      conv.linearConv(specout, spec);
2515      specCol.put(i, specout);
2516    }
2517    ++iter;
2518  }
2519  return out;
2520}
2521
2522CountedPtr< Scantable >
2523  STMath::merge( const std::vector< CountedPtr < Scantable > >& in )
2524{
2525  if ( in.size() < 2 ) {
2526    throw(AipsError("Need at least two scantables to perform a merge."));
2527  }
2528  std::vector<CountedPtr < Scantable > >::const_iterator it = in.begin();
2529  bool insitu = insitu_;
2530  setInsitu(false);
2531  CountedPtr< Scantable > out = getScantable(*it, false);
2532  setInsitu(insitu);
2533  Table& tout = out->table();
2534  ScalarColumn<uInt> freqidcol(tout,"FREQ_ID"), molidcol(tout, "MOLECULE_ID");
2535  ScalarColumn<uInt> scannocol(tout,"SCANNO"), focusidcol(tout,"FOCUS_ID");
2536  // Renumber SCANNO to be 0-based
2537  Vector<uInt> scannos = scannocol.getColumn();
2538  uInt offset = min(scannos);
2539  scannos -= offset;
2540  scannocol.putColumn(scannos);
2541  uInt newscanno = max(scannos)+1;
2542  ++it;
2543  while ( it != in.end() ){
2544    if ( ! (*it)->conformant(*out) ) {
2545      // non conformant.
2546      LogIO os( LogOrigin( "STMath", "merge()", WHERE ) ) ;
2547      os << LogIO::SEVERE << "Can't merge scantables as header informations (any one of AntennaName, Equinox, and FluxUnit) differ." << LogIO::EXCEPTION ;
2548    }
2549    out->appendToHistoryTable((*it)->history());
2550    const Table& tab = (*it)->table();
2551
2552    Block<String> cols(3);
2553    cols[0] = String("FREQ_ID");
2554    cols[1] = String("MOLECULE_ID");
2555    cols[2] = String("FOCUS_ID");
2556
2557    TableIterator scanit(tab, "SCANNO");
2558    while (!scanit.pastEnd()) {
2559      ScalarColumn<uInt> thescannocol(scanit.table(),"SCANNO");
2560      Vector<uInt> thescannos(thescannocol.nrow(),newscanno);
2561      thescannocol.putColumn(thescannos);
2562      TableIterator subit(scanit.table(), cols);
2563      while ( !subit.pastEnd() ) {
2564        uInt nrow = tout.nrow();
2565        Table thetab = subit.table();
2566        ROTableRow row(thetab);
2567        Vector<uInt> thecolvals(thetab.nrow());
2568        ScalarColumn<uInt> thefreqidcol(thetab,"FREQ_ID");
2569        ScalarColumn<uInt> themolidcol(thetab, "MOLECULE_ID");
2570        ScalarColumn<uInt> thefocusidcol(thetab,"FOCUS_ID");
2571        // The selected subset of table should have
2572        // the equal FREQ_ID, MOLECULE_ID, and FOCUS_ID values.
2573        const TableRecord& rec = row.get(0);
2574        // Set the proper FREQ_ID
2575        Double rv,rp,inc;
2576        (*it)->frequencies().getEntry(rp, rv, inc, rec.asuInt("FREQ_ID"));
2577        uInt id;
2578        id = out->frequencies().addEntry(rp, rv, inc);
2579        thecolvals = id;
2580        thefreqidcol.putColumn(thecolvals);
2581        // Set the proper MOLECULE_ID
2582        Vector<String> name,fname;Vector<Double> rf;
2583        (*it)->molecules().getEntry(rf, name, fname, rec.asuInt("MOLECULE_ID"));
2584        id = out->molecules().addEntry(rf, name, fname);
2585        thecolvals = id;
2586        themolidcol.putColumn(thecolvals);
2587        // Set the proper FOCUS_ID
2588        Float fpa,frot,fax,ftan,fhand,fmount,fuser, fxy, fxyp;
2589        (*it)->focus().getEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2590                                fxy, fxyp, rec.asuInt("FOCUS_ID"));
2591        id = out->focus().addEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2592                                   fxy, fxyp);
2593        thecolvals = id;
2594        thefocusidcol.putColumn(thecolvals);
2595
2596        tout.addRow(thetab.nrow());
2597        TableCopy::copyRows(tout, thetab, nrow, 0, thetab.nrow());
2598
2599        ++subit;
2600      }
2601      ++newscanno;
2602      ++scanit;
2603    }
2604    ++it;
2605  }
2606  return out;
2607}
2608
2609CountedPtr< Scantable >
2610  STMath::invertPhase( const CountedPtr < Scantable >& in )
2611{
2612  return applyToPol(in, &STPol::invertPhase, Float(0.0));
2613}
2614
2615CountedPtr< Scantable >
2616  STMath::rotateXYPhase( const CountedPtr < Scantable >& in, float phase )
2617{
2618   return applyToPol(in, &STPol::rotatePhase, Float(phase));
2619}
2620
2621CountedPtr< Scantable >
2622  STMath::rotateLinPolPhase( const CountedPtr < Scantable >& in, float phase )
2623{
2624  return applyToPol(in, &STPol::rotateLinPolPhase, Float(phase));
2625}
2626
2627CountedPtr< Scantable > STMath::applyToPol( const CountedPtr<Scantable>& in,
2628                                             STPol::polOperation fptr,
2629                                             Float phase )
2630{
2631  CountedPtr< Scantable > out = getScantable(in, false);
2632  Table& tout = out->table();
2633  Block<String> cols(4);
2634  cols[0] = String("SCANNO");
2635  cols[1] = String("BEAMNO");
2636  cols[2] = String("IFNO");
2637  cols[3] = String("CYCLENO");
2638  TableIterator iter(tout, cols);
2639  CountedPtr<STPol> stpol = STPol::getPolClass(out->factories_,
2640                                               out->getPolType() );
2641  while (!iter.pastEnd()) {
2642    Table t = iter.table();
2643    ArrayColumn<Float> speccol(t, "SPECTRA");
2644    ScalarColumn<uInt> focidcol(t, "FOCUS_ID");
2645    Matrix<Float> pols(speccol.getColumn());
2646    try {
2647      stpol->setSpectra(pols);
2648      Float fang,fhand;
2649      fang = in->focusTable_.getTotalAngle(focidcol(0));
2650      fhand = in->focusTable_.getFeedHand(focidcol(0));
2651      stpol->setPhaseCorrections(fang, fhand);
2652      // use a member function pointer in STPol.  This only works on
2653      // the STPol pointer itself, not the Counted Pointer so
2654      // derefernce it.
2655      (&(*(stpol))->*fptr)(phase);
2656      speccol.putColumn(stpol->getSpectra());
2657    } catch (AipsError& e) {
2658      //delete stpol;stpol=0;
2659      throw(e);
2660    }
2661    ++iter;
2662  }
2663  //delete stpol;stpol=0;
2664  return out;
2665}
2666
2667CountedPtr< Scantable >
2668  STMath::swapPolarisations( const CountedPtr< Scantable > & in )
2669{
2670  CountedPtr< Scantable > out = getScantable(in, false);
2671  Table& tout = out->table();
2672  Table t0 = tout(tout.col("POLNO") == 0);
2673  Table t1 = tout(tout.col("POLNO") == 1);
2674  if ( t0.nrow() != t1.nrow() )
2675    throw(AipsError("Inconsistent number of polarisations"));
2676  ArrayColumn<Float> speccol0(t0, "SPECTRA");
2677  ArrayColumn<uChar> flagcol0(t0, "FLAGTRA");
2678  ArrayColumn<Float> speccol1(t1, "SPECTRA");
2679  ArrayColumn<uChar> flagcol1(t1, "FLAGTRA");
2680  Matrix<Float> s0 = speccol0.getColumn();
2681  Matrix<uChar> f0 = flagcol0.getColumn();
2682  speccol0.putColumn(speccol1.getColumn());
2683  flagcol0.putColumn(flagcol1.getColumn());
2684  speccol1.putColumn(s0);
2685  flagcol1.putColumn(f0);
2686  return out;
2687}
2688
2689CountedPtr< Scantable >
2690  STMath::averagePolarisations( const CountedPtr< Scantable > & in,
2691                                const std::vector<bool>& mask,
2692                                const std::string& weight )
2693{
2694  if (in->npol() < 2 )
2695    throw(AipsError("averagePolarisations can only be applied to two or more"
2696                    "polarisations"));
2697  bool insitu = insitu_;
2698  setInsitu(false);
2699  CountedPtr< Scantable > pols = getScantable(in, true);
2700  setInsitu(insitu);
2701  Table& tout = pols->table();
2702  std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
2703  Table tab = tableCommand(taql, in->table());
2704  if (tab.nrow() == 0 )
2705    throw(AipsError("Could not find  any rows with POLNO==0 and POLNO==1"));
2706  TableCopy::copyRows(tout, tab);
2707  TableVector<uInt> vec(tout, "POLNO");
2708  vec = 0;
2709  pols->table_.rwKeywordSet().define("nPol", Int(1));
2710  pols->table_.rwKeywordSet().define("POLTYPE", String("stokes"));
2711  //pols->table_.rwKeywordSet().define("POLTYPE", in->getPolType());
2712  std::vector<CountedPtr<Scantable> > vpols;
2713  vpols.push_back(pols);
2714  CountedPtr< Scantable > out = average(vpols, mask, weight, "SCAN");
2715  return out;
2716}
2717
2718CountedPtr< Scantable >
2719  STMath::averageBeams( const CountedPtr< Scantable > & in,
2720                        const std::vector<bool>& mask,
2721                        const std::string& weight )
2722{
2723  bool insitu = insitu_;
2724  setInsitu(false);
2725  CountedPtr< Scantable > beams = getScantable(in, false);
2726  setInsitu(insitu);
2727  Table& tout = beams->table();
2728  // give all rows the same BEAMNO
2729  TableVector<uInt> vec(tout, "BEAMNO");
2730  vec = 0;
2731  beams->table_.rwKeywordSet().define("nBeam", Int(1));
2732  std::vector<CountedPtr<Scantable> > vbeams;
2733  vbeams.push_back(beams);
2734  CountedPtr< Scantable > out = average(vbeams, mask, weight, "SCAN");
2735  return out;
2736}
2737
2738
2739CountedPtr< Scantable >
2740  asap::STMath::frequencyAlign( const CountedPtr< Scantable > & in,
2741                                const std::string & refTime,
2742                                const std::string & method)
2743{
2744  LogIO os( casa::LogOrigin("STMath", "frequencyAlign()", WHERE));
2745  // clone as this is not working insitu
2746  bool insitu = insitu_;
2747  setInsitu(false);
2748  CountedPtr< Scantable > out = getScantable(in, false);
2749  setInsitu(insitu);
2750  Table& tout = out->table();
2751  // Get reference Epoch to time of first row or given String
2752  Unit DAY(String("d"));
2753  MEpoch::Ref epochRef(in->getTimeReference());
2754  MEpoch refEpoch;
2755  if (refTime.length()>0) {
2756    Quantum<Double> qt;
2757    if (MVTime::read(qt,refTime)) {
2758      MVEpoch mv(qt);
2759      refEpoch = MEpoch(mv, epochRef);
2760   } else {
2761      throw(AipsError("Invalid format for Epoch string"));
2762   }
2763  } else {
2764    refEpoch = in->timeCol_(0);
2765  }
2766  MPosition refPos = in->getAntennaPosition();
2767
2768  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2769  /*
2770  // Comment from MV.
2771  // the following code has been commented out because different FREQ_IDs have to be aligned together even
2772  // if the frame doesn't change. So far, lack of this check didn't cause any problems.
2773  // test if user frame is different to base frame
2774  if ( in->frequencies().getFrameString(true)
2775       == in->frequencies().getFrameString(false) ) {
2776    throw(AipsError("Can't convert as no output frame has been set"
2777                    " (use set_freqframe) or it is aligned already."));
2778  }
2779  */
2780  MFrequency::Types system = in->frequencies().getFrame();
2781  MVTime mvt(refEpoch.getValue());
2782  String epochout = mvt.string(MVTime::YMD) + String(" (") + refEpoch.getRefString() + String(")");
2783  os << "Aligned at reference Epoch " << epochout
2784     << " in frame " << MFrequency::showType(system) << LogIO::POST;
2785  // set up the iterator
2786  Block<String> cols(4);
2787  // select by constant direction
2788  cols[0] = String("SRCNAME");
2789  cols[1] = String("BEAMNO");
2790  // select by IF ( no of channels varies over this )
2791  cols[2] = String("IFNO");
2792  // select by restfrequency
2793  cols[3] = String("MOLECULE_ID");
2794  TableIterator iter(tout, cols);
2795  while ( !iter.pastEnd() ) {
2796    Table t = iter.table();
2797    MDirection::ROScalarColumn dirCol(t, "DIRECTION");
2798    TableIterator fiter(t, "FREQ_ID");
2799    // determine nchan from the first row. This should work as
2800    // we are iterating over BEAMNO and IFNO    // we should have constant direction
2801
2802    ROArrayColumn<Float> sCol(t, "SPECTRA");
2803    const MDirection direction = dirCol(0);
2804    const uInt nchan = sCol(0).nelements();
2805
2806    // skip operations if there is nothing to align
2807    if (fiter.pastEnd()) {
2808        continue;
2809    }
2810
2811    Table ftab = fiter.table();
2812    // align all frequency ids with respect to the first encountered id
2813    ScalarColumn<uInt> freqidCol(ftab, "FREQ_ID");
2814    // get the SpectralCoordinate for the freqid, which we are iterating over
2815    SpectralCoordinate sC = in->frequencies().getSpectralCoordinate(freqidCol(0));
2816    FrequencyAligner<Float> fa( sC, nchan, refEpoch,
2817                                direction, refPos, system );
2818    // realign the SpectralCoordinate and put into the output Scantable
2819    Vector<String> units(1);
2820    units = String("Hz");
2821    Bool linear=True;
2822    SpectralCoordinate sc2 = fa.alignedSpectralCoordinate(linear);
2823    sc2.setWorldAxisUnits(units);
2824    const uInt id = out->frequencies().addEntry(sc2.referencePixel()[0],
2825                                                sc2.referenceValue()[0],
2826                                                sc2.increment()[0]);
2827    while ( !fiter.pastEnd() ) {
2828      ftab = fiter.table();
2829      // spectral coordinate for the current FREQ_ID
2830      ScalarColumn<uInt> freqidCol2(ftab, "FREQ_ID");
2831      sC = in->frequencies().getSpectralCoordinate(freqidCol2(0));
2832      // create the "global" abcissa for alignment with same FREQ_ID
2833      Vector<Double> abc(nchan);
2834      for (uInt i=0; i<nchan; i++) {
2835           Double w;
2836           sC.toWorld(w,Double(i));
2837           abc[i] = w;
2838      }
2839      TableVector<uInt> tvec(ftab, "FREQ_ID");
2840      // assign new frequency id to all rows
2841      tvec = id;
2842      // cache abcissa for same time stamps, so iterate over those
2843      TableIterator timeiter(ftab, "TIME");
2844      while ( !timeiter.pastEnd() ) {
2845        Table tab = timeiter.table();
2846        ArrayColumn<Float> specCol(tab, "SPECTRA");
2847        ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2848        MEpoch::ROScalarColumn timeCol(tab, "TIME");
2849        // use align abcissa cache after the first row
2850        // these rows should be just be POLNO
2851        bool first = true;
2852        for (int i=0; i<int(tab.nrow()); ++i) {
2853          // input values
2854          Vector<uChar> flag = flagCol(i);
2855          Vector<Bool> mask(flag.shape());
2856          Vector<Float> specOut, spec;
2857          spec  = specCol(i);
2858          Vector<Bool> maskOut;Vector<uChar> flagOut;
2859          convertArray(mask, flag);
2860          // alignment
2861          Bool ok = fa.align(specOut, maskOut, abc, spec,
2862                             mask, timeCol(i), !first,
2863                             interp, False);
2864          (void) ok; // unused stop compiler nagging
2865          // back into scantable
2866          flagOut.resize(maskOut.nelements());
2867          convertArray(flagOut, maskOut);
2868          flagCol.put(i, flagOut);
2869          specCol.put(i, specOut);
2870          // start abcissa caching
2871          first = false;
2872        }
2873        // next timestamp
2874        ++timeiter;
2875      }
2876      // next FREQ_ID
2877      ++fiter;
2878    }
2879    // next aligner
2880    ++iter;
2881  }
2882  // set this afterwards to ensure we are doing insitu correctly.
2883  out->frequencies().setFrame(system, true);
2884  return out;
2885}
2886
2887CountedPtr<Scantable>
2888  asap::STMath::convertPolarisation( const CountedPtr<Scantable>& in,
2889                                     const std::string & newtype )
2890{
2891  if (in->npol() != 2 && in->npol() != 4)
2892    throw(AipsError("Can only convert two or four polarisations."));
2893  if ( in->getPolType() == newtype )
2894    throw(AipsError("No need to convert."));
2895  if ( ! in->selector_.empty() )
2896    throw(AipsError("Can only convert whole scantable. Unset the selection."));
2897  bool insitu = insitu_;
2898  setInsitu(false);
2899  CountedPtr< Scantable > out = getScantable(in, true);
2900  setInsitu(insitu);
2901  Table& tout = out->table();
2902  tout.rwKeywordSet().define("POLTYPE", String(newtype));
2903
2904  Block<String> cols(4);
2905  cols[0] = "SCANNO";
2906  cols[1] = "CYCLENO";
2907  cols[2] = "BEAMNO";
2908  cols[3] = "IFNO";
2909  TableIterator it(in->originalTable_, cols);
2910  String basetype = in->getPolType();
2911  STPol* stpol = STPol::getPolClass(in->factories_, basetype);
2912  try {
2913    while ( !it.pastEnd() ) {
2914      Table tab = it.table();
2915      uInt row = tab.rowNumbers()[0];
2916      stpol->setSpectra(in->getPolMatrix(row));
2917      Float fang,fhand;
2918      fang = in->focusTable_.getTotalAngle(in->mfocusidCol_(row));
2919      fhand = in->focusTable_.getFeedHand(in->mfocusidCol_(row));
2920      stpol->setPhaseCorrections(fang, fhand);
2921      Int npolout = 0;
2922      for (uInt i=0; i<tab.nrow(); ++i) {
2923        Vector<Float> outvec = stpol->getSpectrum(i, newtype);
2924        if ( outvec.nelements() > 0 ) {
2925          tout.addRow();
2926          TableCopy::copyRows(tout, tab, tout.nrow()-1, 0, 1);
2927          ArrayColumn<Float> sCol(tout,"SPECTRA");
2928          ScalarColumn<uInt> pCol(tout,"POLNO");
2929          sCol.put(tout.nrow()-1 ,outvec);
2930          pCol.put(tout.nrow()-1 ,uInt(npolout));
2931          npolout++;
2932       }
2933      }
2934      tout.rwKeywordSet().define("nPol", npolout);
2935      ++it;
2936    }
2937  } catch (AipsError& e) {
2938    delete stpol;
2939    throw(e);
2940  }
2941  delete stpol;
2942  return out;
2943}
2944
2945CountedPtr< Scantable >
2946  asap::STMath::mxExtract( const CountedPtr< Scantable > & in,
2947                           const std::string & scantype )
2948{
2949  bool insitu = insitu_;
2950  setInsitu(false);
2951  CountedPtr< Scantable > out = getScantable(in, true);
2952  setInsitu(insitu);
2953  Table& tout = out->table();
2954  std::string taql = "SELECT FROM $1 WHERE BEAMNO != REFBEAMNO";
2955  if (scantype == "on") {
2956    taql = "SELECT FROM $1 WHERE BEAMNO == REFBEAMNO";
2957  }
2958  Table tab = tableCommand(taql, in->table());
2959  TableCopy::copyRows(tout, tab);
2960  if (scantype == "on") {
2961    // re-index SCANNO to 0
2962    TableVector<uInt> vec(tout, "SCANNO");
2963    vec = 0;
2964  }
2965  return out;
2966}
2967
2968std::vector<float>
2969  asap::STMath::fft( const casa::CountedPtr< Scantable > & in,
2970                     const std::vector<int>& whichrow,
2971                     bool getRealImag )
2972{
2973  std::vector<float> res;
2974  Table tab = in->table();
2975  std::vector<bool> mask;
2976
2977  if (whichrow.size() < 1) {          // for all rows (by default)
2978    int nrow = int(tab.nrow());
2979    for (int i = 0; i < nrow; ++i) {
2980      res = in->execFFT(i, mask, getRealImag);
2981    }
2982  } else {                           // for specified rows
2983    for (uInt i = 0; i < whichrow.size(); ++i) {
2984      res = in->execFFT(i, mask, getRealImag);
2985    }
2986  }
2987
2988  return res;
2989}
2990
2991
2992CountedPtr<Scantable>
2993  asap::STMath::lagFlag( const CountedPtr<Scantable>& in,
2994                         double start, double end,
2995                         const std::string& mode )
2996{
2997  CountedPtr<Scantable> out = getScantable(in, false);
2998  Table& tout = out->table();
2999  TableIterator iter(tout, "FREQ_ID");
3000  FFTServer<Float,Complex> ffts;
3001
3002  while ( !iter.pastEnd() ) {
3003    Table tab = iter.table();
3004    Double rp,rv,inc;
3005    ROTableRow row(tab);
3006    const TableRecord& rec = row.get(0);
3007    uInt freqid = rec.asuInt("FREQ_ID");
3008    out->frequencies().getEntry(rp, rv, inc, freqid);
3009    ArrayColumn<Float> specCol(tab, "SPECTRA");
3010    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
3011
3012    for (int i=0; i<int(tab.nrow()); ++i) {
3013      Vector<Float> spec = specCol(i);
3014      Vector<uChar> flag = flagCol(i);
3015      std::vector<bool> mask;
3016      for (uInt j = 0; j < flag.nelements(); ++j) {
3017        mask.push_back(!(flag[j]>0));
3018      }
3019      mathutil::doZeroOrderInterpolation(spec, mask);
3020
3021      Vector<Complex> lags;
3022      ffts.fft0(lags, spec);
3023
3024      Int lag0(start+0.5);
3025      Int lag1(end+0.5);
3026      if (mode == "frequency") {
3027        lag0 = Int(spec.nelements()*abs(inc)/(start)+0.5);
3028        lag1 = Int(spec.nelements()*abs(inc)/(end)+0.5);
3029      }
3030      Int lstart =  max(0, lag0);
3031      Int lend   =  min(Int(lags.nelements()-1), lag1);
3032      if (lstart == lend) {
3033        lags[lstart] = Complex(0.0);
3034      } else {
3035        if (lstart > lend) {
3036          Int tmp = lend;
3037          lend = lstart;
3038          lstart = tmp;
3039        }
3040        for (int j=lstart; j <=lend ;++j) {
3041          lags[j] = Complex(0.0);
3042        }
3043      }
3044
3045      ffts.fft0(spec, lags);
3046
3047      specCol.put(i, spec);
3048    }
3049    ++iter;
3050  }
3051  return out;
3052}
3053
3054// Averaging spectra with different channel/resolution
3055CountedPtr<Scantable>
3056STMath::new_average( const std::vector<CountedPtr<Scantable> >& in,
3057                     const bool& compel,
3058                     const std::vector<bool>& mask,
3059                     const std::string& weight,
3060                     const std::string& avmode )
3061  throw ( casa::AipsError )
3062{
3063  LogIO os( LogOrigin( "STMath", "new_average()", WHERE ) ) ;
3064  if ( avmode == "SCAN" && in.size() != 1 )
3065    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
3066                    "Use merge first."));
3067 
3068  CountedPtr<Scantable> out ;     // processed result
3069  if ( compel ) {
3070    std::vector< CountedPtr<Scantable> > newin ; // input for average process
3071    uInt insize = in.size() ;    // number of input scantables
3072
3073    // setup newin
3074    bool oldInsitu = insitu_ ;
3075    setInsitu( false ) ;
3076    newin.resize( insize ) ;
3077    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3078      newin[itable] = getScantable( in[itable], false ) ;
3079    }
3080    setInsitu( oldInsitu ) ;
3081
3082    // warning
3083    os << "Average spectra with different spectral resolution" << LogIO::POST ;
3084
3085    // temporarily set coordinfo
3086    vector<string> oldinfo( insize ) ;
3087    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3088      vector<string> coordinfo = in[itable]->getCoordInfo() ;
3089      oldinfo[itable] = coordinfo[0] ;
3090      coordinfo[0] = "Hz" ;
3091      newin[itable]->setCoordInfo( coordinfo ) ;
3092    }
3093
3094    ostringstream oss ;
3095
3096    // check IF frequency coverage
3097    // freqid: list of FREQ_ID, which is used, in each table 
3098    // iffreq: list of minimum and maximum frequency for each FREQ_ID in
3099    //         each table
3100    // freqid[insize][numIF]
3101    // freqid: [[id00, id01, ...],
3102    //          [id10, id11, ...],
3103    //          ...
3104    //          [idn0, idn1, ...]]
3105    // iffreq[insize][numIF*2]
3106    // iffreq: [[min_id00, max_id00, min_id01, max_id01, ...],
3107    //          [min_id10, max_id10, min_id11, max_id11, ...],
3108    //          ...
3109    //          [min_idn0, max_idn0, min_idn1, max_idn1, ...]]
3110    //os << "Check IF settings in each table" << LogIO::POST ;
3111    vector< vector<uInt> > freqid( insize );
3112    vector< vector<double> > iffreq( insize ) ;
3113    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3114      Vector<uInt> freqIds = newin[itable]->mfreqidCol_.getColumn() ;
3115      vector<uInt> uniqueFreqId = newin[itable]->getNumbers(newin[itable]->mfreqidCol_) ;
3116      for ( vector<uInt>::iterator i = uniqueFreqId.begin() ;
3117            i != uniqueFreqId.end() ; i++ ) {
3118        //os << "itable = " << itable << ": IF " << id << " is included in the list" << LogIO::POST ;
3119        uInt target = 0 ;
3120        while ( freqIds[target] != *i )
3121          target++ ;
3122        vector<double> abcissa = newin[itable]->getAbcissa( target ) ;
3123        freqid[itable].push_back( *i ) ;
3124        double incr = abs( abcissa[1] - abcissa[0] ) ;
3125        iffreq[itable].push_back( (*min_element(abcissa.begin(),abcissa.end()))-0.5*incr ) ;
3126        iffreq[itable].push_back( (*max_element(abcissa.begin(),abcissa.end()))+0.5*incr ) ;
3127      }
3128    }
3129
3130    // debug
3131//     os << "IF settings summary:" << endl ;
3132//     for ( uInt i = 0 ; i < freqid.size() ; i++ ) {
3133//       os << "   Table" << i << endl ;
3134//       for ( uInt j = 0 ; j < freqid[i].size() ; j++ ) {
3135//         os << "      id = " << freqid[i][j] << " (min,max) = (" << iffreq[i][2*j] << "," << iffreq[i][2*j+1] << ")" << endl ;
3136//       }
3137//     }
3138//     os << endl ;
3139//     os.post() ;
3140
3141    // IF grouping based on their frequency coverage
3142    // ifgrp: number of member in each IF group
3143    // ifgrp[numgrp]
3144    // ifgrp: [n0, n1, ...]
3145    //os << "IF grouping based on their frequency coverage" << LogIO::POST ;
3146
3147    // parameter for IF grouping
3148    // groupmode = OR    retrieve all region
3149    //             AND   only retrieve overlaped region
3150    //string groupmode = "AND" ;
3151    string groupmode = "OR" ;
3152    uInt sizecr = 0 ;
3153    if ( groupmode == "AND" )
3154      sizecr = 1 ;
3155    else if ( groupmode == "OR" )
3156      sizecr = 0 ;
3157
3158    vector<double> sortedfreq ;
3159    for ( uInt i = 0 ; i < iffreq.size() ; i++ ) {
3160      for ( uInt j = 0 ; j < iffreq[i].size() ; j++ ) {
3161        if ( count( sortedfreq.begin(), sortedfreq.end(), iffreq[i][j] ) == 0 )
3162          sortedfreq.push_back( iffreq[i][j] ) ;
3163      }
3164    }
3165    sort( sortedfreq.begin(), sortedfreq.end() ) ;
3166    vector<uInt> ifgrp( sortedfreq.size()-1, 0 ) ;
3167    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3168      for ( uInt iif = 0 ; iif < freqid[itable].size() ; iif++ ) {
3169        double range0 = iffreq[itable][2*iif] ;
3170        double range1 = iffreq[itable][2*iif+1] ;
3171        for ( uInt j = 0 ; j < sortedfreq.size()-1 ; j++ ) {
3172          double fmin = max( range0, sortedfreq[j] ) ;
3173          double fmax = min( range1, sortedfreq[j+1] ) ;
3174          if ( fmin < fmax ) {
3175            ifgrp[j]++ ;
3176          }
3177        }
3178      }
3179    }
3180
3181    // Grouping continuous IF groups (without frequency gap)
3182    // freqgrp: list of IF group indexes in each frequency group
3183    // freqgrp[numgrp][nummember]
3184    // freqgrp: [[ifgrp00, ifgrp01, ifgrp02, ...],
3185    //           [ifgrp10, ifgrp11, ifgrp12, ...],
3186    //           ...
3187    //           [ifgrpn0, ifgrpn1, ifgrpn2, ...]]
3188    // grprange[2*numgrp]
3189    // grprange: [fmin0,fmax0,fmin1,fmax1,...]
3190    vector< vector<uInt> > freqgrp ;
3191    vector<double> grprange ;
3192    vector<uInt> grpedge ;
3193    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3194      if ( ifgrp[igrp] <= sizecr ) {
3195        grpedge.push_back( igrp ) ;
3196      }
3197    }
3198    grpedge.push_back( ifgrp.size() ) ;
3199    uInt itmp = 0 ;
3200    for ( uInt i = 0 ; i < grpedge.size() ; i++ ) {
3201      int n = grpedge[i] - itmp ;
3202      if ( n > 0 ) {
3203        vector<uInt> members( n ) ;
3204        for ( int j = 0 ; j < n ; j++ ) {
3205          members[j] = itmp+j ;
3206        }
3207        freqgrp.push_back( members ) ;
3208        grprange.push_back( sortedfreq[itmp] ) ;
3209        grprange.push_back( sortedfreq[grpedge[i]] ) ;
3210      }
3211      itmp += n + 1 ;
3212    }
3213
3214    // print frequency group
3215    oss.str("") ;
3216    oss << "Frequency Group summary: " << endl ;
3217    oss << "   GROUP_ID: [FREQ_MIN, FREQ_MAX]" << endl ;
3218    for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3219      oss << "   GROUP " << setw( 2 ) << i << ": [" << grprange[2*i] << "," << grprange[2*i+1] << "]" ;
3220      oss << endl ;
3221    }
3222    oss << endl ;
3223    os << oss.str() << LogIO::POST ;
3224
3225    // groups: list of frequency group index whose frequency range overlaps
3226    //         with that of each table and IF
3227    // groups[numtable][numIF]
3228    // groups: [[grpx, grpy,...],
3229    //          [grpa, grpb,...],
3230    //          ...
3231    //          [grpk, grpm,...]]
3232    vector< vector<uInt> > groups( insize ) ;
3233    for ( uInt i = 0 ; i < insize ; i++ ) {
3234      groups[i].resize( freqid[i].size() ) ;
3235    }
3236    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3237      for ( uInt ifreq = 0 ; ifreq < freqid[itable].size() ; ifreq++ ) {
3238        double minf = iffreq[itable][2*ifreq] ;
3239        uInt groupid ;
3240        for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3241          vector<uInt> memberlist = freqgrp[igrp] ;
3242          if ( (minf >= grprange[2*igrp]) && (minf <= grprange[2*igrp+1]) ) {
3243            groupid = igrp ;
3244            break ;
3245          }
3246        }
3247        groups[itable][ifreq] = groupid ;
3248      }
3249    }
3250                                                         
3251
3252    // print membership
3253    oss.str("") ;
3254    for ( uInt i = 0 ; i < insize ; i++ ) {
3255      oss << "Table " << i << endl ;
3256      for ( uInt j = 0 ; j < groups[i].size() ; j++ ) {
3257        oss << "   FREQ_ID " <<  setw( 2 ) << freqid[i][j] << ": " ;
3258        oss << setw( 2 ) << groups[i][j] ;
3259        oss << endl ;
3260      }
3261    }
3262    os << oss.str() << LogIO::POST ;
3263
3264    // reset SCANNO and IFNO/FREQ_ID: IF is reset by the result of sortation
3265    //os << "All IF number is set to IF group index" << LogIO::POST ;
3266    // reset SCANNO only when avmode != "SCAN"
3267    if ( avmode != "SCAN" ) {
3268      os << "All scan number is set to 0" << LogIO::POST ;
3269      for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3270        uInt nrow = newin[itable]->nrow() ;
3271        Vector<uInt> resetScan( nrow, 0 ) ;
3272        newin[itable]->scanCol_.putColumn( resetScan ) ;
3273      }
3274    }
3275
3276    // reset spectra and flagtra: align spectral resolution
3277    //os << "Align spectral resolution" << LogIO::POST ;
3278    // gmaxdnu: the coarsest frequency resolution in the frequency group
3279    // gminfreq: lower frequency edge of the frequency group
3280    // gnchan: number of channels for the frequency group
3281    vector<double> gmaxdnu( freqgrp.size(), 0.0 ) ;
3282    vector<double> gminfreq( freqgrp.size() ) ;
3283    vector<double> gnchan( freqgrp.size() ) ;
3284    for ( uInt i = 0 ; i < insize ; i++ ) {
3285      vector<uInt> members = groups[i] ;
3286      for ( uInt j = 0 ; j < members.size() ; j++ ) {
3287        uInt groupid = members[j] ;
3288        Double rp,rv,ic ;
3289        newin[i]->frequencies().getEntry( rp, rv, ic, j ) ;
3290        if ( abs(ic) > abs(gmaxdnu[groupid]) )
3291          gmaxdnu[groupid] = ic ;
3292      }
3293    }
3294    for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3295      gminfreq[igrp] = grprange[2*igrp] ;
3296      double maxfreq = grprange[2*igrp+1] ;
3297      gnchan[igrp] = (int)(abs((maxfreq-gminfreq[igrp])/gmaxdnu[igrp])+0.9) ;
3298    }
3299     
3300    // regrid spectral data and update frequency info
3301    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3302      Vector<uInt> oldFreqId = newin[itable]->mfreqidCol_.getColumn() ;
3303      Vector<uInt> newFreqId( oldFreqId.nelements() ) ;
3304
3305      // update MAIN
3306      for ( uInt irow = 0 ; irow < newin[itable]->nrow() ; irow++ ) {
3307        uInt groupid = groups[itable][oldFreqId[irow]] ;
3308        newFreqId[irow] = groupid ;
3309        newin[itable]->regridChannel( gnchan[groupid],
3310                                      gmaxdnu[groupid],
3311                                      gminfreq[groupid],
3312                                      irow ) ;
3313      }
3314      newin[itable]->mfreqidCol_.putColumn( newFreqId ) ;
3315      newin[itable]->ifCol_.putColumn( newFreqId ) ;
3316
3317      // update FREQUENCIES
3318      Table tab = newin[itable]->frequencies().table() ;
3319      ScalarColumn<uInt> fIdCol( tab, "ID" ) ;
3320      ScalarColumn<Double> fRefPixCol( tab, "REFPIX" ) ;
3321      ScalarColumn<Double> fRefValCol( tab, "REFVAL" ) ;
3322      ScalarColumn<Double> fIncrCol( tab, "INCREMENT" ) ;
3323      if ( freqgrp.size() > tab.nrow() ) {
3324        tab.addRow( freqgrp.size()-tab.nrow() ) ;
3325      }
3326      for ( uInt irow = 0 ; irow < freqgrp.size() ; irow++ ) {
3327        Double refval = gminfreq[irow] + 0.5 * abs(gmaxdnu[irow]) ;
3328        Double refpix = (gmaxdnu[irow] > 0.0) ? 0 : gnchan[irow]-1 ;
3329        Double increment = gmaxdnu[irow] ;
3330        fIdCol.put( irow, irow ) ;
3331        fRefPixCol.put( irow, refpix ) ;
3332        fRefValCol.put( irow, refval ) ;
3333        fIncrCol.put( irow, increment ) ;
3334      }
3335    }
3336
3337    // set back coordinfo
3338    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3339      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3340      coordinfo[0] = oldinfo[itable] ;
3341      newin[itable]->setCoordInfo( coordinfo ) ;
3342    }
3343
3344    // average
3345    out = average( newin, mask, weight, avmode ) ;
3346  }
3347  else {
3348    // simple average
3349    out =  average( in, mask, weight, avmode ) ;
3350  }
3351 
3352  return out;
3353}
3354
3355CountedPtr<Scantable> STMath::cwcal( const CountedPtr<Scantable>& s,
3356                                     const String calmode,
3357                                     const String antname )
3358{
3359  // frequency switch
3360  if ( calmode == "fs" ) {
3361    return cwcalfs( s, antname ) ;
3362  }
3363  else {
3364    vector<bool> masks = s->getMask( 0 ) ;
3365    vector<int> types ;
3366
3367    // save original table selection
3368    Table torg  = s->table_ ;
3369
3370    // sky scan
3371    bool insitu = insitu_ ;
3372    insitu_ = false ;
3373    // share calibration scans before average with out
3374    CountedPtr<Scantable> out = getScantable( s, true ) ;
3375    insitu_ = insitu ;
3376    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::SKY ) ;
3377    out->attach() ;
3378    CountedPtr<Scantable> asky = averageWithinSession( out,
3379                                                       masks,
3380                                                       "TINT" ) ;
3381    // hot scan
3382    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::HOT ) ;
3383    out->attach() ;
3384    CountedPtr<Scantable> ahot = averageWithinSession( out,
3385                                                       masks,
3386                                                       "TINT" ) ;
3387    // cold scan
3388    CountedPtr<Scantable> acold ;
3389//     out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::COLD ) ;
3390//     out->attach() ;
3391//     CountedPtr<Scantable> acold = averageWithinSession( out,
3392//                                                         masks,
3393//                                                         "TINT" ) ;
3394
3395    // off scan
3396    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSOFF ) ;
3397    out->attach() ;
3398    CountedPtr<Scantable> aoff = averageWithinSession( out,
3399                                                       masks,
3400                                                       "TINT" ) ;
3401   
3402    // on scan
3403    s->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSON ) ;
3404    s->attach() ;
3405    out->table_ = out->originalTable_ ;
3406    out->attach() ;
3407    out->table().addRow( s->nrow() ) ;
3408    copyRows( out->table(), s->table(), 0, 0, s->nrow(), False, True, False ) ;
3409   
3410    // process each on scan
3411    STSelector sel ;
3412    vector<string> cols( 3 ) ;
3413    cols[0] = "BEAMNO" ;
3414    cols[1] = "POLNO" ;
3415    cols[2] = "IFNO" ;
3416    STIdxIter *iter = new STIdxIterAcc( out, cols ) ;
3417    while ( !iter->pastEnd() ) {
3418      Vector<uInt> ids = iter->current() ;
3419      stringstream ss ;
3420      ss << "SELECT FROM $1 WHERE "
3421         << "BEAMNO==" << ids[0] << "&&"
3422         << "POLNO==" << ids[1] << "&&"
3423         << "IFNO==" << ids[2] ;
3424      //cout << "TaQL string: " << ss.str() << endl ;
3425      sel.setTaQL( ss.str() ) ;
3426      aoff->setSelection( sel ) ;
3427      ahot->setSelection( sel ) ;
3428      asky->setSelection( sel ) ;
3429      Vector<uInt> rows = iter->getRows( SHARE ) ;
3430      // out should be an exact copy of s except that SPECTRA column is empty
3431      calibrateCW( out, s, aoff, asky, ahot, acold, rows, antname ) ;
3432      aoff->unsetSelection() ;
3433      ahot->unsetSelection() ;
3434      asky->unsetSelection() ;
3435      sel.reset() ;
3436      iter->next() ;
3437    }
3438    delete iter ;
3439    s->table_ = torg ;
3440    s->attach() ;
3441
3442    // flux unit
3443    out->setFluxUnit( "K" ) ;
3444
3445    return out ;
3446  }
3447}
3448 
3449CountedPtr<Scantable> STMath::almacal( const CountedPtr<Scantable>& s,
3450                                       const String calmode )
3451{
3452  // frequency switch
3453  if ( calmode == "fs" ) {
3454    return almacalfs( s ) ;
3455  }
3456  else {
3457//     double t0, t1 ;
3458//     t0 = mathutil::gettimeofday_sec() ;
3459    vector<bool> masks = s->getMask( 0 ) ;
3460
3461    // save original table selection
3462    Table torg = s->table_ ;
3463
3464    // off scan
3465    // TODO 2010/01/08 TN
3466    // Grouping by time should be needed before averaging.
3467    // Each group must have own unique SCANNO (should be renumbered).
3468    // See PIPELINE/SDCalibration.py
3469    bool insitu = insitu_ ;
3470    insitu_ = false ;
3471    // share off scan before average with out
3472    CountedPtr<Scantable> out = getScantable( s, true ) ;
3473    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSOFF ) ;
3474    out->attach() ;
3475    insitu_ = insitu ;
3476    CountedPtr<Scantable> aoff = averageWithinSession( out,
3477                                                       masks,
3478                                                       "TINT" ) ;
3479
3480    // on scan
3481//     t0 = mathutil::gettimeofday_sec() ;
3482    s->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSON ) ;
3483    s->attach() ;
3484    out->table_ = out->originalTable_ ;
3485    out->attach() ;
3486    out->table().addRow( s->nrow() ) ;
3487    copyRows( out->table(), s->table(), 0, 0, s->nrow(), False ) ;
3488//     t1 = mathutil::gettimeofday_sec() ;
3489//     cout << "elapsed time for preparing output table: " << t1-t0 << " sec" << endl ;
3490
3491    // process each on scan
3492//     t0 = mathutil::gettimeofday_sec() ;
3493
3494    // using STIdxIterAcc
3495    vector<string> cols( 3 ) ;
3496    cols[0] = "BEAMNO" ;
3497    cols[1] = "POLNO" ;
3498    cols[2] = "IFNO" ;
3499    STIdxIter *iter = new STIdxIterAcc( out, cols ) ;
3500    STSelector sel ;
3501    while ( !iter->pastEnd() ) {
3502      Vector<uInt> ids = iter->current() ;
3503      stringstream ss ;
3504      ss << "SELECT FROM $1 WHERE "
3505         << "BEAMNO==" << ids[0] << "&&"
3506         << "POLNO==" << ids[1] << "&&"
3507         << "IFNO==" << ids[2] ;
3508      //cout << "TaQL string: " << ss.str() << endl ;
3509      sel.setTaQL( ss.str() ) ;
3510      aoff->setSelection( sel ) ;
3511      Vector<uInt> rows = iter->getRows( SHARE ) ;
3512      // out should be an exact copy of s except that SPECTRA column is empty
3513      calibrateALMA( out, s, aoff, rows ) ;
3514      aoff->unsetSelection() ;
3515      sel.reset() ;
3516      iter->next() ;
3517    }
3518    delete iter ;
3519    s->table_ = torg ;
3520    s->attach() ;
3521
3522//     t1 = mathutil::gettimeofday_sec() ;
3523//     cout << "elapsed time for calibration: " << t1-t0 << " sec" << endl ;
3524
3525    // flux unit
3526    out->setFluxUnit( "K" ) ;
3527
3528    return out ;
3529  }
3530}
3531
3532CountedPtr<Scantable> STMath::cwcalfs( const CountedPtr<Scantable>& s,
3533                                       const String antname )
3534{
3535  vector<int> types ;
3536
3537  // APEX calibration mode
3538  int apexcalmode = 1 ;
3539 
3540  if ( antname.find( "APEX" ) != string::npos ) {
3541    // check if off scan exists or not
3542    STSelector sel = STSelector() ;
3543    //sel.setName( offstr1 ) ;
3544    types.push_back( SrcType::FLOOFF ) ;
3545    sel.setTypes( types ) ;
3546    try {
3547      s->setSelection( sel ) ;
3548    }
3549    catch ( AipsError &e ) {
3550      apexcalmode = 0 ;
3551    }
3552    sel.reset() ;
3553  }
3554  s->unsetSelection() ;
3555  types.clear() ;
3556
3557  vector<bool> masks = s->getMask( 0 ) ;
3558  CountedPtr<Scantable> ssig, sref ;
3559  //CountedPtr<Scantable> out ;
3560  bool insitu = insitu_ ;
3561  insitu_ = False ;
3562  CountedPtr<Scantable> out = getScantable( s, true ) ;
3563  insitu_ = insitu ;
3564
3565  if ( antname.find( "APEX" ) != string::npos ) {
3566    // APEX calibration
3567    // sky scan
3568    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FLOSKY ) ;
3569    out->attach() ;
3570    CountedPtr<Scantable> askylo = averageWithinSession( out,
3571                                                         masks,
3572                                                         "TINT" ) ;
3573    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FHISKY ) ;
3574    out->attach() ;
3575    CountedPtr<Scantable> askyhi = averageWithinSession( out,
3576                                                         masks,
3577                                                         "TINT" ) ;
3578   
3579    // hot scan
3580    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FLOHOT ) ;
3581    out->attach() ;
3582    CountedPtr<Scantable> ahotlo = averageWithinSession( out,
3583                                                         masks,
3584                                                         "TINT" ) ;
3585    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FHIHOT ) ;
3586    out->attach() ;
3587    CountedPtr<Scantable> ahothi = averageWithinSession( out,
3588                                                         masks,
3589                                                         "TINT" ) ;
3590   
3591    // cold scan
3592    CountedPtr<Scantable> acoldlo, acoldhi ;
3593//     out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FLOCOLD ) ;
3594//     out->attach() ;
3595//     CountedPtr<Scantable> acoldlo = averageWithinSession( out,
3596//                                                           masks,
3597//                                                           "TINT" ) ;
3598//     out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FHICOLD ) ;
3599//     out->attach() ;
3600//     CountedPtr<Scantable> acoldhi = averageWithinSession( out,
3601//                                                           masks,
3602//                                                           "TINT" ) ;
3603
3604    // ref scan
3605    insitu_ = false ;
3606    sref = getScantable( s, true ) ;
3607    CountedPtr<Scantable> rref = getScantable( s, true ) ;
3608    insitu_ = insitu ;
3609    rref->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FSLO ) ;
3610    rref->attach() ;
3611    copyRows( sref->table_, rref->table_, 0, 0, rref->nrow(), False, True, False ) ;
3612   
3613    // sig scan
3614    insitu_ = false ;
3615    ssig = getScantable( s, true ) ;
3616    CountedPtr<Scantable> rsig = getScantable( s, true ) ;
3617    insitu_ = insitu ;
3618    rsig->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FSHI ) ;
3619    rsig->attach() ;
3620    copyRows( ssig->table_, rsig->table_, 0, 0, rsig->nrow(), False, True, False ) ;
3621         
3622    if ( apexcalmode == 0 ) {
3623      // using STIdxIterAcc
3624      vector<string> cols( 3 ) ;
3625      cols[0] = "BEAMNO" ;
3626      cols[1] = "POLNO" ;
3627      cols[2] = "IFNO" ;
3628      STIdxIter *iter = new STIdxIterAcc( ssig, cols ) ;
3629      STSelector sel ;
3630      vector< CountedPtr<Scantable> > on( 2 ) ;
3631      on[0] = rsig ;
3632      on[1] = rref ;
3633      vector< CountedPtr<Scantable> > sky( 2 ) ;
3634      sky[0] = askylo ;
3635      sky[1] = askyhi ;
3636      vector< CountedPtr<Scantable> > hot( 2 ) ;
3637      hot[0] = ahotlo ;
3638      hot[1] = ahothi ;
3639      vector< CountedPtr<Scantable> > cold( 2 ) ;
3640      while ( !iter->pastEnd() ) {
3641        Vector<uInt> ids = iter->current() ;
3642        stringstream ss ;
3643        ss << "SELECT FROM $1 WHERE "
3644           << "BEAMNO==" << ids[0] << "&&"
3645           << "POLNO==" << ids[1] << "&&"
3646           << "IFNO==" << ids[2] ;
3647        //cout << "TaQL string: " << ss.str() << endl ;
3648        sel.setTaQL( ss.str() ) ;
3649        sky[0]->setSelection( sel ) ;
3650        sky[1]->setSelection( sel ) ;
3651        hot[0]->setSelection( sel ) ;
3652        hot[1]->setSelection( sel ) ;
3653        Vector<uInt> rows = iter->getRows( SHARE ) ;
3654        calibrateAPEXFS( ssig, sref, on, sky, hot, cold, rows ) ;
3655        sky[0]->unsetSelection() ;
3656        sky[1]->unsetSelection() ;
3657        hot[0]->unsetSelection() ;
3658        hot[1]->unsetSelection() ;
3659        sel.reset() ;
3660        iter->next() ;
3661      }
3662      delete iter ;
3663
3664    }
3665    else if ( apexcalmode == 1 ) {
3666      // APEX fs data with off scan
3667      // off scan
3668      out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FLOOFF ) ;
3669      out->attach() ;
3670      CountedPtr<Scantable> aofflo = averageWithinSession( out,
3671                                                           masks,
3672                                                           "TINT" ) ;
3673      out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::FHIOFF ) ;
3674      out->attach() ;
3675      CountedPtr<Scantable> aoffhi = averageWithinSession( out,
3676                                                           masks,
3677                                                           "TINT" ) ;
3678     
3679      // process each sig and ref scan
3680//       STSelector sel ;
3681      vector<string> cols( 3 ) ;
3682      cols[0] = "BEAMNO" ;
3683      cols[1] = "POLNO" ;
3684      cols[2] = "IFNO" ;
3685      STIdxIter *iter = new STIdxIterAcc( ssig, cols ) ;
3686      STSelector sel ;
3687      while ( !iter->pastEnd() ) {
3688        Vector<uInt> ids = iter->current() ;
3689        stringstream ss ;
3690        ss << "SELECT FROM $1 WHERE "
3691           << "BEAMNO==" << ids[0] << "&&"
3692           << "POLNO==" << ids[1] << "&&"
3693           << "IFNO==" << ids[2] ;
3694        //cout << "TaQL string: " << ss.str() << endl ;
3695        sel.setTaQL( ss.str() ) ;
3696        aofflo->setSelection( sel ) ;
3697        ahotlo->setSelection( sel ) ;
3698        askylo->setSelection( sel ) ;
3699        Vector<uInt> rows = iter->getRows( SHARE ) ;
3700        calibrateCW( ssig, rsig, aofflo, askylo, ahotlo, acoldlo, rows, antname ) ;
3701        aofflo->unsetSelection() ;
3702        ahotlo->unsetSelection() ;
3703        askylo->unsetSelection() ;
3704        sel.reset() ;
3705        iter->next() ;
3706      }
3707      delete iter ;
3708      iter = new STIdxIterAcc( sref, cols ) ;
3709      while ( !iter->pastEnd() ) {
3710        Vector<uInt> ids = iter->current() ;
3711        stringstream ss ;
3712        ss << "SELECT FROM $1 WHERE "
3713           << "BEAMNO==" << ids[0] << "&&"
3714           << "POLNO==" << ids[1] << "&&"
3715           << "IFNO==" << ids[2] ;
3716        //cout << "TaQL string: " << ss.str() << endl ;
3717        sel.setTaQL( ss.str() ) ;
3718        aoffhi->setSelection( sel ) ;
3719        ahothi->setSelection( sel ) ;
3720        askyhi->setSelection( sel ) ;
3721        Vector<uInt> rows = iter->getRows( SHARE ) ;
3722        calibrateCW( sref, rref, aoffhi, askyhi, ahothi, acoldhi, rows, antname ) ;
3723        aoffhi->unsetSelection() ;
3724        ahothi->unsetSelection() ;
3725        askyhi->unsetSelection() ;
3726        sel.reset() ;
3727        iter->next() ;
3728      }
3729      delete iter ;
3730    }
3731  }
3732  else {
3733    // non-APEX fs data
3734    // sky scan
3735    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::SKY ) ;
3736    out->attach() ;
3737    CountedPtr<Scantable> asky = averageWithinSession( out,
3738                                                       masks,
3739                                                       "TINT" ) ;
3740    STSelector sel = STSelector() ;
3741
3742    // hot scan
3743    out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::HOT ) ;
3744    out->attach() ;
3745    CountedPtr<Scantable> ahot = averageWithinSession( out,
3746                                                       masks,
3747                                                       "TINT" ) ;
3748
3749    // cold scan
3750    CountedPtr<Scantable> acold ;
3751//     out->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::COLD ) ;
3752//     out->attach() ;
3753//     CountedPtr<Scantable> acold = averageWithinSession( out,
3754//                                                         masks,
3755//                                                         "TINT" ) ;
3756   
3757    // ref scan
3758    bool insitu = insitu_ ;
3759    insitu_ = false ;
3760    sref = getScantable( s, true ) ;
3761    CountedPtr<Scantable> rref = getScantable( s, true ) ;
3762    insitu_ = insitu ;
3763    rref->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSOFF ) ;
3764    rref->attach() ;
3765    copyRows( sref->table_, rref->table_, 0, 0, rref->nrow(), False, True, False ) ;
3766   
3767    // sig scan
3768    insitu_ = false ;
3769    ssig = getScantable( s, true ) ;
3770    CountedPtr<Scantable> rsig = getScantable( s, true ) ;
3771    insitu_ = insitu ;
3772    rsig->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSON ) ;
3773    rsig->attach() ;
3774    copyRows( ssig->table_, rsig->table_, 0, 0, rsig->nrow(), False, True, False ) ;
3775
3776    // process each sig and ref scan
3777    vector<string> cols( 3 ) ;
3778    cols[0] = "BEAMNO" ;
3779    cols[1] = "POLNO" ;
3780    cols[2] = "IFNO" ;
3781    STIdxIter *iter = new STIdxIterAcc( ssig, cols ) ;
3782    while ( !iter->pastEnd() ) {
3783      Vector<uInt> ids = iter->current() ;
3784      stringstream ss ;
3785      ss << "SELECT FROM $1 WHERE "
3786         << "BEAMNO==" << ids[0] << "&&"
3787         << "POLNO==" << ids[1] << "&&"
3788         << "IFNO==" << ids[2] ;
3789      //cout << "TaQL string: " << ss.str() << endl ;
3790      sel.setTaQL( ss.str() ) ;
3791      ahot->setSelection( sel ) ;
3792      asky->setSelection( sel ) ;
3793      Vector<uInt> rows = iter->getRows( SHARE ) ;
3794      // out should be an exact copy of s except that SPECTRA column is empty
3795      calibrateFS( ssig, sref, rsig, rref, asky, ahot, acold, rows ) ;
3796      ahot->unsetSelection() ;
3797      asky->unsetSelection() ;
3798      sel.reset() ;
3799      iter->next() ;
3800    }
3801    delete iter ;
3802  }
3803
3804  // do folding if necessary
3805  Table sigtab = ssig->table() ;
3806  Table reftab = sref->table() ;
3807  ScalarColumn<uInt> reffidCol ;
3808  Int nchan = (Int)ssig->nchan() ;
3809  reffidCol.attach( reftab, "FREQ_ID" ) ;
3810  Vector<uInt> sfids = ssig->mfreqidCol_.getColumn() ;
3811  Vector<uInt> rfids = sref->mfreqidCol_.getColumn() ;
3812  vector<uInt> sfids_unique ;
3813  vector<uInt> rfids_unique ;
3814  vector<uInt> sifno_unique ;
3815  vector<uInt> rifno_unique ;
3816  for ( uInt i = 0 ; i < sfids.nelements() ; i++ ) {
3817    if ( count( sfids_unique.begin(), sfids_unique.end(), sfids[i] ) == 0 ) {
3818      sfids_unique.push_back( sfids[i] ) ;
3819      sifno_unique.push_back( ssig->getIF( i ) ) ;
3820    }
3821    if ( count( rfids_unique.begin(), rfids_unique.end(),  rfids[i] ) == 0 ) {
3822      rfids_unique.push_back( rfids[i] ) ;
3823      rifno_unique.push_back( sref->getIF( i ) ) ;
3824    }
3825  }
3826  double refpix_sig, refval_sig, increment_sig ;
3827  double refpix_ref, refval_ref, increment_ref ;
3828  vector< CountedPtr<Scantable> > tmp( sfids_unique.size() ) ;
3829  for ( uInt i = 0 ; i < sfids_unique.size() ; i++ ) {
3830    ssig->frequencies().getEntry( refpix_sig, refval_sig, increment_sig, sfids_unique[i] ) ;
3831    sref->frequencies().getEntry( refpix_ref, refval_ref, increment_ref, rfids_unique[i] ) ;
3832    if ( refpix_sig == refpix_ref ) {
3833      double foffset = refval_ref - refval_sig ;
3834      int choffset = static_cast<int>(foffset/increment_sig) ;
3835      double doffset = foffset / increment_sig ;
3836      if ( abs(choffset) >= nchan ) {
3837        LogIO os( LogOrigin( "STMath", "cwcalfs", WHERE ) ) ;
3838        os << "FREQ_ID=[" << sfids_unique[i] << "," << rfids_unique[i] << "]: out-band frequency switching, no folding" << LogIO::POST ;
3839        os << "Just return signal data" << LogIO::POST ;
3840        //std::vector< CountedPtr<Scantable> > tabs ;
3841        //tabs.push_back( ssig ) ;
3842        //tabs.push_back( sref ) ;
3843        //out = merge( tabs ) ;
3844        tmp[i] = ssig ;
3845      }
3846      else {
3847        STSelector sel = STSelector() ;
3848        vector<int> v( 1, sifno_unique[i] ) ;
3849        sel.setIFs( v ) ;
3850        ssig->setSelection( sel ) ;
3851        sel.reset() ;
3852        v[0] = rifno_unique[i] ;
3853        sel.setIFs( v ) ;
3854        sref->setSelection( sel ) ;
3855        sel.reset() ;
3856        if ( antname.find( "APEX" ) != string::npos ) {
3857          tmp[i] = dofold( ssig, sref, 0.5*doffset, -0.5*doffset ) ;
3858          //tmp[i] = dofold( ssig, sref, doffset ) ;
3859        }
3860        else {
3861          tmp[i] = dofold( ssig, sref, doffset ) ;
3862        }
3863        ssig->unsetSelection() ;
3864        sref->unsetSelection() ;
3865      }
3866    }
3867  }
3868
3869  if ( tmp.size() > 1 ) {
3870    out = merge( tmp ) ;
3871  }
3872  else {
3873    out = tmp[0] ;
3874  }
3875
3876  // flux unit
3877  out->setFluxUnit( "K" ) ;
3878
3879  return out ;
3880}
3881
3882CountedPtr<Scantable> STMath::almacalfs( const CountedPtr<Scantable>& s )
3883{
3884  (void) s; //currently unused
3885  CountedPtr<Scantable> out ;
3886
3887  return out ;
3888}
3889
3890Vector<Float> STMath::getSpectrumFromTime( double reftime,
3891                                           const Vector<Double> &timeVec,
3892                                           const vector<int> &idx,
3893                                           const Matrix<Float>& spectra,
3894                                           string mode )
3895{
3896  LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
3897  Vector<Float> sp ;
3898  uInt ncol = spectra.ncolumn() ;
3899
3900  if ( ncol == 0 ) {
3901    os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
3902    return sp ;
3903  }
3904  else if ( ncol == 1 ) {
3905    //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
3906    sp.reference( spectra.column( 0 ) ) ;
3907    return sp ;
3908  }
3909  else {
3910    if ( mode == "before" ) {
3911      int id = -1 ;
3912      if ( idx[0] != -1 ) {
3913        id = idx[0] ;
3914      }
3915      else if ( idx[1] != -1 ) {
3916        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
3917        id = idx[1] ;
3918      }
3919      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
3920      sp.reference( spectra.column( id ) ) ;
3921    }
3922    else if ( mode == "after" ) {
3923      int id = -1 ;
3924      if ( idx[1] != -1 ) {
3925        id = idx[1] ;
3926      }
3927      else if ( idx[0] != -1 ) {
3928        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
3929        id = idx[1] ;
3930      }
3931      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
3932      sp.reference( spectra.column( id ) ) ;
3933    }
3934    else if ( mode == "nearest" ) {
3935      int id = -1 ;
3936      if ( idx[0] == -1 ) {
3937        id = idx[1] ;
3938      }
3939      else if ( idx[1] == -1 ) {
3940        id = idx[0] ;
3941      }
3942      else if ( idx[0] == idx[1] ) {
3943        id = idx[0] ;
3944      }
3945      else {
3946        double t0 = timeVec[idx[0]] ;
3947        double t1 = timeVec[idx[1]] ;
3948        double tref = reftime ;
3949        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
3950          id = idx[1] ;
3951        }
3952        else {
3953          id = idx[0] ;
3954        }
3955      }
3956      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
3957      sp.reference( spectra.column( id ) ) ;
3958    }
3959    else if ( mode == "linear" ) {
3960      if ( idx[0] == -1 ) {
3961        // use after
3962        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
3963        int id = idx[1] ;
3964        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
3965        sp.reference( spectra.column( id ) ) ;
3966      }
3967      else if ( idx[1] == -1 ) {
3968        // use before
3969        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
3970        int id = idx[0] ;
3971        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
3972        sp.reference( spectra.column( id ) ) ;
3973      }
3974      else if ( idx[0] == idx[1] ) {
3975        // use before
3976        //os << "No need to interporate." << LogIO::POST ;
3977        int id = idx[0] ;
3978        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
3979        sp.reference( spectra.column( id ) ) ;
3980      }
3981      else {
3982        // do interpolation
3983        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
3984        double t0 = timeVec[idx[0]] ;
3985        double t1 = timeVec[idx[1]] ;
3986        double tref = reftime ;
3987        sp = spectra.column( idx[0] ).copy() ;
3988        Vector<Float> sp1( spectra.column( idx[1] ) ) ;
3989        double tfactor = ( tref - t0 ) / ( t1 - t0 ) ;
3990        for ( unsigned int i = 0 ; i < sp.size() ; i++ ) {
3991          sp[i] = ( sp1[i] - sp[i] ) * tfactor + sp[i] ;
3992        }
3993      }
3994    }
3995    else {
3996      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
3997    }
3998    return sp ;
3999  }
4000}
4001
4002vector<int> STMath::getRowIdFromTime( double reftime, const Vector<Double> &t )
4003{
4004//   double reft = reftime ;
4005  double dtmin = 1.0e100 ;
4006  double dtmax = -1.0e100 ;
4007//   vector<double> dt ;
4008  int just_before = -1 ;
4009  int just_after = -1 ;
4010  Vector<Double> dt = t - reftime ;
4011  for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
4012    if ( dt[i] > 0.0 ) {
4013      // after reftime
4014      if ( dt[i] < dtmin ) {
4015        just_after = i ;
4016        dtmin = dt[i] ;
4017      }
4018    }
4019    else if ( dt[i] < 0.0 ) {
4020      // before reftime
4021      if ( dt[i] > dtmax ) {
4022        just_before = i ;
4023        dtmax = dt[i] ;
4024      }
4025    }
4026    else {
4027      // just a reftime
4028      just_before = i ;
4029      just_after = i ;
4030      dtmax = 0 ;
4031      dtmin = 0 ;
4032      break ;
4033    }
4034  }
4035
4036  vector<int> v(2) ;
4037  v[0] = just_before ;
4038  v[1] = just_after ;
4039
4040  return v ;
4041}
4042
4043Vector<Float> STMath::getTcalFromTime( double reftime,
4044                                       const Vector<Double> &timeVec,
4045                                       const vector<int> &idx,
4046                                       const CountedPtr<Scantable>& s,
4047                                       string mode )
4048{
4049  LogIO os( LogOrigin( "STMath", "getTcalFromTime", WHERE ) ) ;
4050  STTcal tcalTable = s->tcal() ;
4051  String time ;
4052  Vector<Float> tcalval ;
4053  if ( s->nrow() == 0 ) {
4054    os << LogIO::SEVERE << "No row in the input scantable. Return empty tcal." << LogIO::POST ;
4055    return tcalval ;
4056  }
4057  else if ( s->nrow() == 1 ) {
4058    uInt tcalid = s->getTcalId( 0 ) ;
4059    //os << "use row " << 0 << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4060    tcalTable.getEntry( time, tcalval, tcalid ) ;
4061    return tcalval ;
4062  }
4063  else {
4064    if ( mode == "before" ) {
4065      int id = -1 ;
4066      if ( idx[0] != -1 ) {
4067        id = idx[0] ;
4068      }
4069      else if ( idx[1] != -1 ) {
4070        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4071        id = idx[1] ;
4072      }
4073      uInt tcalid = s->getTcalId( id ) ;
4074      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4075      tcalTable.getEntry( time, tcalval, tcalid ) ;
4076    }
4077    else if ( mode == "after" ) {
4078      int id = -1 ;
4079      if ( idx[1] != -1 ) {
4080        id = idx[1] ;
4081      }
4082      else if ( idx[0] != -1 ) {
4083        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4084        id = idx[1] ;
4085      }
4086      uInt tcalid = s->getTcalId( id ) ;
4087      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4088      tcalTable.getEntry( time, tcalval, tcalid ) ;
4089    }
4090    else if ( mode == "nearest" ) {
4091      int id = -1 ;
4092      if ( idx[0] == -1 ) {
4093        id = idx[1] ;
4094      }
4095      else if ( idx[1] == -1 ) {
4096        id = idx[0] ;
4097      }
4098      else if ( idx[0] == idx[1] ) {
4099        id = idx[0] ;
4100      }
4101      else {
4102        double t0 = timeVec[idx[0]] ;
4103        double t1 = timeVec[idx[1]] ;
4104        if ( abs( t0 - reftime ) > abs( t1 - reftime ) ) {
4105          id = idx[1] ;
4106        }
4107        else {
4108          id = idx[0] ;
4109        }
4110      }
4111      uInt tcalid = s->getTcalId( id ) ;
4112      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4113      tcalTable.getEntry( time, tcalval, tcalid ) ;
4114    }
4115    else if ( mode == "linear" ) {
4116      if ( idx[0] == -1 ) {
4117        // use after
4118        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4119        int id = idx[1] ;
4120        uInt tcalid = s->getTcalId( id ) ;
4121        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4122        tcalTable.getEntry( time, tcalval, tcalid ) ;
4123      }
4124      else if ( idx[1] == -1 ) {
4125        // use before
4126        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4127        int id = idx[0] ;
4128        uInt tcalid = s->getTcalId( id ) ;
4129        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4130        tcalTable.getEntry( time, tcalval, tcalid ) ;
4131      }
4132      else if ( idx[0] == idx[1] ) {
4133        // use before
4134        //os << "No need to interporate." << LogIO::POST ;
4135        int id = idx[0] ;
4136        uInt tcalid = s->getTcalId( id ) ;
4137        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4138        tcalTable.getEntry( time, tcalval, tcalid ) ;
4139      }
4140      else {
4141        // do interpolation
4142        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4143        double t0 = timeVec[idx[0]] ;
4144        double t1 = timeVec[idx[1]] ;
4145        Vector<Float> tcal0 ;
4146        uInt tcalid0 = s->getTcalId( idx[0] ) ;
4147        uInt tcalid1 = s->getTcalId( idx[1] ) ;
4148        tcalTable.getEntry( time, tcal0, tcalid0 ) ;
4149        tcalTable.getEntry( time, tcalval, tcalid1 ) ;
4150        double tfactor = (reftime - t0) / (t1 - t0) ;
4151        for ( unsigned int i = 0 ; i < tcal0.size() ; i++ ) {
4152          tcalval[i] = ( tcalval[i] - tcal0[i] ) * tfactor + tcal0[i] ;
4153        }
4154      }
4155    }
4156    else {
4157      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4158    }
4159    return tcalval ;
4160  }
4161}
4162
4163Vector<Float> STMath::getTsysFromTime( double reftime,
4164                                       const Vector<Double> &timeVec,
4165                                       const vector<int> &idx,
4166                                       const CountedPtr<Scantable> &s,
4167                                       string mode )
4168{
4169  LogIO os( LogOrigin( "STMath", "getTsysFromTime", WHERE ) ) ;
4170  ArrayColumn<Float> tsysCol ;
4171  tsysCol.attach( s->table(), "TSYS" ) ;
4172  Vector<Float> tsysval ;
4173  if ( s->nrow() == 0 ) {
4174    os << LogIO::SEVERE << "No row in the input scantable. Return empty tsys." << LogIO::POST ;
4175    return tsysval ;
4176  }
4177  else if ( s->nrow() == 1 ) {
4178    //os << "use row " << 0 << LogIO::POST ;
4179    tsysval = tsysCol( 0 ) ;
4180    return tsysval ;
4181  }
4182  else {
4183    if ( mode == "before" ) {
4184      int id = -1 ;
4185      if ( idx[0] != -1 ) {
4186        id = idx[0] ;
4187      }
4188      else if ( idx[1] != -1 ) {
4189        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4190        id = idx[1] ;
4191      }
4192      //os << "use row " << id << LogIO::POST ;
4193      tsysval = tsysCol( id ) ;
4194    }
4195    else if ( mode == "after" ) {
4196      int id = -1 ;
4197      if ( idx[1] != -1 ) {
4198        id = idx[1] ;
4199      }
4200      else if ( idx[0] != -1 ) {
4201        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4202        id = idx[1] ;
4203      }
4204      //os << "use row " << id << LogIO::POST ;
4205      tsysval = tsysCol( id ) ;
4206    }
4207    else if ( mode == "nearest" ) {
4208      int id = -1 ;
4209      if ( idx[0] == -1 ) {
4210        id = idx[1] ;
4211      }
4212      else if ( idx[1] == -1 ) {
4213        id = idx[0] ;
4214      }
4215      else if ( idx[0] == idx[1] ) {
4216        id = idx[0] ;
4217      }
4218      else {
4219        double t0 = timeVec[idx[0]] ;
4220        double t1 = timeVec[idx[1]] ;
4221        if ( abs( t0 - reftime ) > abs( t1 - reftime ) ) {
4222          id = idx[1] ;
4223        }
4224        else {
4225          id = idx[0] ;
4226        }
4227      }
4228      //os << "use row " << id << LogIO::POST ;
4229      tsysval = tsysCol( id ) ;
4230    }
4231    else if ( mode == "linear" ) {
4232      if ( idx[0] == -1 ) {
4233        // use after
4234        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4235        int id = idx[1] ;
4236        //os << "use row " << id << LogIO::POST ;
4237        tsysval = tsysCol( id ) ;
4238      }
4239      else if ( idx[1] == -1 ) {
4240        // use before
4241        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4242        int id = idx[0] ;
4243        //os << "use row " << id << LogIO::POST ;
4244        tsysval = tsysCol( id ) ;
4245      }
4246      else if ( idx[0] == idx[1] ) {
4247        // use before
4248        //os << "No need to interporate." << LogIO::POST ;
4249        int id = idx[0] ;
4250        //os << "use row " << id << LogIO::POST ;
4251        tsysval = tsysCol( id ) ;
4252      }
4253      else {
4254        // do interpolation
4255        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4256        double t0 = timeVec[idx[0]] ;
4257        double t1 = timeVec[idx[1]] ;
4258        Vector<Float> tsys0 ;
4259        tsys0 = tsysCol( idx[0] ) ;
4260        tsysval = tsysCol( idx[1] ) ;
4261        double tfactor = (reftime - t0) / (t1 - t0) ;
4262        for ( unsigned int i = 0 ; i < tsys0.size() ; i++ ) {
4263          tsysval[i] = ( tsysval[i] - tsys0[i] ) * tfactor + tsys0[i] ;
4264        }
4265      }
4266    }
4267    else {
4268      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4269    }
4270    return tsysval ;
4271  }
4272}
4273
4274void STMath::calibrateCW( CountedPtr<Scantable> &out,
4275                          const CountedPtr<Scantable>& on,
4276                          const CountedPtr<Scantable>& off,
4277                          const CountedPtr<Scantable>& sky,
4278                          const CountedPtr<Scantable>& hot,
4279                          const CountedPtr<Scantable>& cold,
4280                          const Vector<uInt> &rows,
4281                          const String &antname )
4282{
4283  // 2012/05/22 TN
4284  // Assume that out has empty SPECTRA column
4285
4286  // if rows is empty, just return
4287  if ( rows.nelements() == 0 )
4288    return ;
4289  ROScalarColumn<Double> timeCol( off->table(), "TIME" ) ;
4290  Vector<Double> timeOff = timeCol.getColumn() ;
4291  timeCol.attach( sky->table(), "TIME" ) ;
4292  Vector<Double> timeSky = timeCol.getColumn() ;
4293  timeCol.attach( hot->table(), "TIME" ) ;
4294  Vector<Double> timeHot = timeCol.getColumn() ;
4295  timeCol.attach( on->table(), "TIME" ) ;
4296  ROArrayColumn<Float> arrayFloatCol( off->table(), "SPECTRA" ) ;
4297  Matrix<Float> offspectra = arrayFloatCol.getColumn() ;
4298  arrayFloatCol.attach( sky->table(), "SPECTRA" ) ;
4299  Matrix<Float> skyspectra = arrayFloatCol.getColumn() ;
4300  arrayFloatCol.attach( hot->table(), "SPECTRA" ) ;
4301  Matrix<Float> hotspectra = arrayFloatCol.getColumn() ;
4302  unsigned int spsize = on->nchan( on->getIF(rows[0]) ) ;
4303  // I know that the data is contiguous
4304  const uInt *p = rows.data() ;
4305  vector<int> ids( 2 ) ;
4306  Block<uInt> flagchan( spsize ) ;
4307  uInt nflag = 0 ;
4308  for ( int irow = 0 ; irow < rows.nelements() ; irow++ ) {
4309    double reftime = timeCol.asdouble(*p) ;
4310    ids = getRowIdFromTime( reftime, timeOff ) ;
4311    Vector<Float> spoff = getSpectrumFromTime( reftime, timeOff, ids, offspectra, "linear" ) ;
4312    ids = getRowIdFromTime( reftime, timeSky ) ;
4313    Vector<Float> spsky = getSpectrumFromTime( reftime, timeSky, ids, skyspectra, "linear" ) ;
4314    Vector<Float> tcal = getTcalFromTime( reftime, timeSky, ids, sky, "linear" ) ;
4315    Vector<Float> tsys = getTsysFromTime( reftime, timeSky, ids, sky, "linear" ) ;
4316    ids = getRowIdFromTime( reftime, timeHot ) ;
4317    Vector<Float> sphot = getSpectrumFromTime( reftime, timeHot, ids, hotspectra, "linear" ) ;
4318    Vector<Float> spec = on->specCol_( *p ) ;
4319    if ( antname.find( "APEX" ) != String::npos ) {
4320      // using gain array
4321      for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4322        if ( spoff[j] == 0.0 || (sphot[j]-spsky[j]) == 0.0 ) {
4323          spec[j] = 0.0 ;
4324          flagchan[nflag++] = j ;
4325        }
4326        else {
4327          spec[j] = ( ( spec[j] - spoff[j] ) / spoff[j] )
4328            * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
4329        }
4330      }
4331    }
4332    else {
4333      // Chopper-Wheel calibration (Ulich & Haas 1976)
4334      for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4335        if ( (sphot[j]-spsky[j]) == 0.0 ) {
4336          spec[j] = 0.0 ;
4337          flagchan[nflag++] = j ;
4338        }
4339        else {
4340          spec[j] = ( spec[j] - spoff[j] ) / ( sphot[j] - spsky[j] ) * tcal[j] ;
4341        }
4342      }
4343    }
4344    out->specCol_.put( *p, spec ) ;
4345    out->tsysCol_.put( *p, tsys ) ;
4346    if ( nflag > 0 ) {
4347      Vector<uChar> fl = out->flagsCol_( *p ) ;
4348      for ( unsigned int j = 0 ; j < nflag ; j++ ) {
4349        fl[flagchan[j]] = (uChar)True ;
4350      }
4351      out->flagsCol_.put( *p, fl ) ;
4352    }
4353    nflag = 0 ;
4354    p++ ;
4355  }
4356}
4357
4358void STMath::calibrateALMA( CountedPtr<Scantable>& out,
4359                            const CountedPtr<Scantable>& on,
4360                            const CountedPtr<Scantable>& off,
4361                            const Vector<uInt>& rows )
4362{
4363  // 2012/05/22 TN
4364  // Assume that out has empty SPECTRA column
4365
4366  // if rows is empty, just return
4367  if ( rows.nelements() == 0 )
4368    return ;
4369  ROScalarColumn<Double> timeCol( off->table(), "TIME" ) ;
4370  Vector<Double> timeVec = timeCol.getColumn() ;
4371  timeCol.attach( on->table(), "TIME" ) ;
4372  ROArrayColumn<Float> arrayFloatCol( off->table(), "SPECTRA" ) ;
4373  Matrix<Float> offspectra = arrayFloatCol.getColumn() ;
4374  unsigned int spsize = on->nchan( on->getIF(rows[0]) ) ;
4375  // I know that the data is contiguous
4376  const uInt *p = rows.data() ;
4377  vector<int> ids( 2 ) ;
4378  Block<uInt> flagchan( spsize ) ;
4379  uInt nflag = 0 ;
4380  for ( int irow = 0 ; irow < rows.nelements() ; irow++ ) {
4381    double reftime = timeCol.asdouble(*p) ;
4382    ids = getRowIdFromTime( reftime, timeVec ) ;
4383    Vector<Float> spoff = getSpectrumFromTime( reftime, timeVec, ids, offspectra, "linear" ) ;
4384    //Vector<Float> spoff = getSpectrumFromTime( reftime, timeVec, off, "linear" ) ;
4385    Vector<Float> spec = on->specCol_( *p ) ;
4386    Vector<Float> tsys = on->tsysCol_( *p ) ;
4387    // ALMA Calibration
4388    //
4389    // Ta* = Tsys * ( ON - OFF ) / OFF
4390    //
4391    // 2010/01/07 Takeshi Nakazato
4392    unsigned int tsyssize = tsys.nelements() ;
4393    for ( unsigned int j = 0 ; j < spsize ; j++ ) {
4394      if ( spoff[j] == 0.0 ) {
4395        spec[j] = 0.0 ;
4396        flagchan[nflag++] = j ;
4397      }
4398      else {
4399        spec[j] = ( spec[j] - spoff[j] ) / spoff[j] ;
4400      }
4401      if ( tsyssize == spsize )
4402        spec[j] *= tsys[j] ;
4403      else
4404        spec[j] *= tsys[0] ;
4405    }
4406    out->specCol_.put( *p, spec ) ;
4407    if ( nflag > 0 ) {
4408      Vector<uChar> fl = out->flagsCol_( *p ) ;
4409      for ( unsigned int j = 0 ; j < nflag ; j++ ) {
4410        fl[flagchan[j]] = (uChar)True ;
4411      }
4412      out->flagsCol_.put( *p, fl ) ;
4413    }
4414    nflag = 0 ;
4415    p++ ;
4416  }
4417}
4418
4419void STMath::calibrateAPEXFS( CountedPtr<Scantable> &sig,
4420                              CountedPtr<Scantable> &ref,
4421                              const vector< CountedPtr<Scantable> >& on,
4422                              const vector< CountedPtr<Scantable> >& sky,
4423                              const vector< CountedPtr<Scantable> >& hot,
4424                              const vector< CountedPtr<Scantable> >& cold,
4425                              const Vector<uInt> &rows )
4426{
4427  // if rows is empty, just return
4428  if ( rows.nelements() == 0 )
4429    return ;
4430  ROScalarColumn<Double> timeCol( sky[0]->table(), "TIME" ) ;
4431  Vector<Double> timeSkyS = timeCol.getColumn() ;
4432  timeCol.attach( sky[1]->table(), "TIME" ) ;
4433  Vector<Double> timeSkyR = timeCol.getColumn() ;
4434  timeCol.attach( hot[0]->table(), "TIME" ) ;
4435  Vector<Double> timeHotS = timeCol.getColumn() ;
4436  timeCol.attach( hot[1]->table(), "TIME" ) ;
4437  Vector<Double> timeHotR = timeCol.getColumn() ;
4438  timeCol.attach( sig->table(), "TIME" ) ;
4439  ROScalarColumn<Double> timeCol2( ref->table(), "TIME" ) ;
4440  ROArrayColumn<Float> arrayFloatCol( sky[0]->table(), "SPECTRA" ) ;
4441  Matrix<Float> skyspectraS = arrayFloatCol.getColumn() ;
4442  arrayFloatCol.attach( sky[1]->table(), "SPECTRA" ) ;
4443  Matrix<Float> skyspectraR = arrayFloatCol.getColumn() ;
4444  arrayFloatCol.attach( hot[0]->table(), "SPECTRA" ) ;
4445  Matrix<Float> hotspectraS = arrayFloatCol.getColumn() ;
4446  arrayFloatCol.attach( hot[1]->table(), "SPECTRA" ) ;
4447  Matrix<Float> hotspectraR = arrayFloatCol.getColumn() ;
4448  unsigned int spsize = sig->nchan( sig->getIF(rows[0]) ) ;
4449  Vector<Float> spec( spsize ) ;
4450  // I know that the data is contiguous
4451  const uInt *p = rows.data() ;
4452  vector<int> ids( 2 ) ;
4453  Block<uInt> flagchan( spsize ) ;
4454  uInt nflag = 0 ;
4455  for ( int irow = 0 ; irow < rows.nelements() ; irow++ ) {
4456    double reftime = timeCol.asdouble(*p) ;
4457    ids = getRowIdFromTime( reftime, timeSkyS ) ;
4458    Vector<Float> spskyS = getSpectrumFromTime( reftime, timeSkyS, ids, skyspectraS, "linear" ) ;
4459    Vector<Float> tcalS = getTcalFromTime( reftime, timeSkyS, ids, sky[0], "linear" ) ;
4460    Vector<Float> tsysS = getTsysFromTime( reftime, timeSkyS, ids, sky[0], "linear" ) ;
4461    ids = getRowIdFromTime( reftime, timeHotS ) ;
4462    Vector<Float> sphotS = getSpectrumFromTime( reftime, timeHotS, ids, hotspectraS ) ;
4463    reftime = timeCol2.asdouble(*p) ;
4464    ids = getRowIdFromTime( reftime, timeSkyR ) ;
4465    Vector<Float> spskyR = getSpectrumFromTime( reftime, timeSkyR, ids, skyspectraR, "linear" ) ;
4466    Vector<Float> tcalR = getTcalFromTime( reftime, timeSkyR, ids, sky[1], "linear" ) ;
4467    Vector<Float> tsysR = getTsysFromTime( reftime, timeSkyR, ids, sky[1], "linear" ) ;
4468    ids = getRowIdFromTime( reftime, timeHotR ) ;
4469    Vector<Float> sphotR = getSpectrumFromTime( reftime, timeHotR, ids, hotspectraR ) ;
4470    Vector<Float> spsig = on[0]->specCol_( *p ) ;
4471    Vector<Float> spref = on[1]->specCol_( *p ) ;
4472    for ( unsigned int j = 0 ; j < spsize ; j++ ) {
4473      if ( (sphotS[j]-spskyS[j]) == 0.0 || (sphotR[j]-spskyR[j]) == 0.0 ) {
4474        spec[j] = 0.0 ;
4475        flagchan[nflag++] = j ;
4476      }
4477      else {
4478        spec[j] = tcalS[j] * spsig[j] / ( sphotS[j] - spskyS[j] )
4479          - tcalR[j] * spref[j] / ( sphotR[j] - spskyR[j] ) ;
4480      }
4481    }
4482    sig->specCol_.put( *p, spec ) ;
4483    sig->tsysCol_.put( *p, tsysS ) ;
4484    spec *= (Float)-1.0 ;
4485    ref->specCol_.put( *p, spec ) ;
4486    ref->tsysCol_.put( *p, tsysR ) ;   
4487    if ( nflag > 0 ) {
4488      Vector<uChar> flsig = sig->flagsCol_( *p ) ;
4489      Vector<uChar> flref = ref->flagsCol_( *p ) ;
4490      for ( unsigned int j = 0 ; j < nflag ; j++ ) {
4491        flsig[flagchan[j]] = (uChar)True ;
4492        flref[flagchan[j]] = (uChar)True ;
4493      }
4494      sig->flagsCol_.put( *p, flsig ) ;
4495      ref->flagsCol_.put( *p, flref ) ;
4496    }
4497    nflag = 0 ;
4498    p++ ;
4499  }
4500}
4501
4502void STMath::calibrateFS( CountedPtr<Scantable> &sig,
4503                          CountedPtr<Scantable> &ref,
4504                          const CountedPtr<Scantable>& rsig,
4505                          const CountedPtr<Scantable>& rref,
4506                          const CountedPtr<Scantable>& sky,
4507                          const CountedPtr<Scantable>& hot,
4508                          const CountedPtr<Scantable>& cold,
4509                          const Vector<uInt> &rows )
4510{
4511  // if rows is empty, just return
4512  if ( rows.nelements() == 0 )
4513    return ;
4514  ROScalarColumn<Double> timeCol( sky->table(), "TIME" ) ;
4515  Vector<Double> timeSky = timeCol.getColumn() ;
4516  timeCol.attach( hot->table(), "TIME" ) ;
4517  Vector<Double> timeHot = timeCol.getColumn() ;
4518  timeCol.attach( sig->table(), "TIME" ) ;
4519  ROScalarColumn<Double> timeCol2( ref->table(), "TIME" ) ;
4520  ROArrayColumn<Float> arrayFloatCol( sky->table(), "SPECTRA" ) ;
4521  Matrix<Float> skyspectra = arrayFloatCol.getColumn() ;
4522  arrayFloatCol.attach( hot->table(), "SPECTRA" ) ;
4523  Matrix<Float> hotspectra = arrayFloatCol.getColumn() ;
4524  unsigned int spsize = sig->nchan( sig->getIF(rows[0]) ) ;
4525  Vector<Float> spec( spsize ) ;
4526  // I know that the data is contiguous
4527  const uInt *p = rows.data() ;
4528  vector<int> ids( 2 ) ;
4529  Block<uInt> flagchan( spsize ) ;
4530  uInt nflag = 0 ;
4531  for ( int irow = 0 ; irow < rows.nelements() ; irow++ ) {
4532    double reftime = timeCol.asdouble(*p) ;
4533    ids = getRowIdFromTime( reftime, timeSky ) ;
4534    Vector<Float> spsky = getSpectrumFromTime( reftime, timeSky, ids, skyspectra, "linear" ) ;
4535    Vector<Float> tcal = getTcalFromTime( reftime, timeSky, ids, sky, "linear" ) ;
4536    Vector<Float> tsys = getTsysFromTime( reftime, timeSky, ids, sky, "linear" ) ;
4537    ids = getRowIdFromTime( reftime, timeHot ) ;
4538    Vector<Float> sphot = getSpectrumFromTime( reftime, timeHot, ids, hotspectra ) ;
4539    Vector<Float> spsig = rsig->specCol_( *p ) ;
4540    Vector<Float> spref = rref->specCol_( *p ) ;
4541    // using gain array
4542    for ( unsigned int j = 0 ; j < spsize ; j++ ) {
4543      if ( spref[j] == 0.0 || (sphot[j]-spsky[j]) == 0.0 ) {
4544        spec[j] = 0.0 ;
4545        flagchan[nflag++] = j ;
4546      }
4547      else {
4548        spec[j] = ( ( spsig[j] - spref[j] ) / spref[j] )
4549          * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
4550      }
4551    }
4552    sig->specCol_.put( *p, spec ) ;
4553    sig->tsysCol_.put( *p, tsys ) ;
4554    if ( nflag > 0 ) {
4555      Vector<uChar> fl = sig->flagsCol_( *p ) ;
4556      for ( unsigned int j = 0 ; j < nflag ; j++ ) {
4557        fl[flagchan[j]] = (uChar)True ;
4558      }
4559      sig->flagsCol_.put( *p, fl ) ;
4560    }
4561    nflag = 0 ;
4562
4563    reftime = timeCol2.asdouble(*p) ;
4564    spsky = getSpectrumFromTime( reftime, timeSky, ids, skyspectra, "linear" ) ;
4565    tcal = getTcalFromTime( reftime, timeSky, ids, sky, "linear" ) ;
4566    tsys = getTsysFromTime( reftime, timeSky, ids, sky, "linear" ) ;
4567    ids = getRowIdFromTime( reftime, timeHot ) ;
4568    sphot = getSpectrumFromTime( reftime, timeHot, ids, hotspectra ) ;
4569    // using gain array
4570    for ( unsigned int j = 0 ; j < spsize ; j++ ) {
4571      if ( spsig[j] == 0.0 || (sphot[j]-spsky[j]) == 0.0 ) {
4572        spec[j] = 0.0 ;
4573        flagchan[nflag++] = j ;
4574      }
4575      else {
4576        spec[j] = ( ( spref[j] - spsig[j] ) / spsig[j] )
4577          * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
4578      }
4579    }
4580    ref->specCol_.put( *p, spec ) ;
4581    ref->tsysCol_.put( *p, tsys ) ;   
4582    if ( nflag > 0 ) {
4583      Vector<uChar> fl = ref->flagsCol_( *p ) ;
4584      for ( unsigned int j = 0 ; j < nflag ; j++ ) {
4585        fl[flagchan[j]] = (uChar)True ;
4586      }
4587      ref->flagsCol_.put( *p, fl ) ;
4588    }
4589    nflag = 0 ;
4590    p++ ;
4591  }
4592}
4593
4594void STMath::copyRows( Table &out,
4595                       const Table &in,
4596                       uInt startout,
4597                       uInt startin,
4598                       uInt nrow,
4599                       Bool copySpectra,
4600                       Bool copyFlagtra,
4601                       Bool copyTsys )
4602{
4603  uInt nexclude = 0 ;
4604  Block<String> excludeColsBlock( 3 ) ;
4605  if ( !copySpectra ) {
4606    excludeColsBlock[nexclude] = "SPECTRA" ;
4607    nexclude++ ;
4608  }
4609  if ( !copyFlagtra ) {
4610    excludeColsBlock[nexclude] = "FLAGTRA" ;
4611    nexclude++ ;
4612  }
4613  if ( !copyTsys ) {
4614    excludeColsBlock[nexclude] = "TSYS" ;
4615    nexclude++ ;
4616  }
4617  //  if ( nexclude < 3 ) {
4618  //    excludeCols.resize( nexclude, True ) ;
4619  //  }
4620  Vector<String> excludeCols( IPosition(1,nexclude),
4621                              excludeColsBlock.storage(),
4622                              SHARE ) ;
4623//   cout << "excludeCols=" << excludeCols << endl ;
4624  TableRow rowout( out, excludeCols, True ) ;
4625  ROTableRow rowin( in, excludeCols, True ) ;
4626  uInt rin = startin ;
4627  uInt rout = startout ;
4628  for ( uInt i = 0 ; i < nrow ; i++ ) {
4629    rowin.get( rin ) ;
4630    rowout.putMatchingFields( rout, rowin.record() ) ;
4631    rin++ ;
4632    rout++ ;
4633  }
4634}
4635
4636CountedPtr<Scantable> STMath::averageWithinSession( CountedPtr<Scantable> &s,
4637                                                    vector<bool> &mask,
4638                                                    string weight )
4639{
4640  // prepare output table
4641  bool insitu = insitu_ ;
4642  insitu_ = false ;
4643  CountedPtr<Scantable> a = getScantable( s, true ) ;
4644  insitu_ = insitu ;
4645  Table &atab = a->table() ;
4646  ScalarColumn<Double> timeColOut( atab, "TIME" ) ;
4647
4648  if ( s->nrow() == 0 )
4649    return a ;
4650
4651  // setup RowAccumulator
4652  WeightType wtype = stringToWeight( weight ) ;
4653  RowAccumulator acc( wtype ) ;
4654  Vector<Bool> cmask( mask ) ;
4655  acc.setUserMask( cmask ) ;
4656
4657  vector<string> cols( 3 ) ;
4658  cols[0] = "IFNO" ;
4659  cols[1] = "POLNO" ;
4660  cols[2] = "BEAMNO" ;
4661  STIdxIterAcc iter( s, cols ) ;
4662
4663  Table ttab = s->table() ;
4664  ROScalarColumn<Double> *timeCol = new ROScalarColumn<Double>( ttab, "TIME" ) ;
4665  Vector<Double> timeVec = timeCol->getColumn() ;
4666  delete timeCol ;
4667  Vector<Double> interval = s->integrCol_.getColumn() ;
4668  uInt nrow = timeVec.nelements() ;
4669  uInt outrow = 0 ;
4670
4671  while( !iter.pastEnd() ) {
4672
4673    Vector<uInt> rows = iter.getRows( SHARE ) ;
4674    uInt len = rows.nelements() ;
4675
4676    if ( len == 0 ) {
4677      iter.next() ;
4678      continue ;
4679    }
4680
4681    uInt nchan = s->nchan(s->getIF(rows[0])) ;
4682    Vector<uChar> flag( nchan ) ;
4683    Vector<Bool> bflag( nchan ) ;
4684    Vector<Float> spec( nchan ) ;
4685    Vector<Float> tsys( nchan ) ;
4686
4687    Vector<Double> timeSep( len-1 ) ;
4688    for ( uInt i = 0 ; i < len-1 ; i++ ) {
4689      timeSep[i] = timeVec[rows[i+1]] - timeVec[rows[i]] ;
4690    }
4691
4692    uInt irow ;
4693    uInt jrow ;
4694    for ( uInt i = 0 ; i < len-1 ; i++ ) {
4695      irow = rows[i] ;
4696      jrow = rows[i+1] ;
4697      // accumulate data
4698      s->flagsCol_.get( irow, flag ) ;
4699      convertArray( bflag, flag ) ;
4700      s->specCol_.get( irow, spec ) ;
4701      tsys.assign( s->tsysCol_( irow ) ) ;
4702      if ( !allEQ(bflag,True) )
4703        acc.add( spec, !bflag, tsys, interval[irow], timeVec[irow] ) ;
4704      double gap = 2.0 * 86400.0 * timeSep[i] / ( interval[jrow] + interval[irow] ) ;
4705      //cout << "gap[" << i << "]=" << setw(5) << gap << endl ;
4706      if ( gap > 1.1 ) {
4707        //cout << "detected gap between " << i << " and " << i+1 << endl ;
4708        // put data to output table
4709        // reset RowAccumulator
4710        if ( acc.state() ) {
4711          atab.addRow() ;
4712          copyRows( atab, ttab, outrow, irow, 1, False, False, False ) ;
4713          acc.replaceNaN() ;
4714          const Vector<Bool> &msk = acc.getMask() ;
4715          convertArray( flag, !msk ) ;
4716          for (uInt k = 0; k < nchan; ++k) {
4717            uChar userFlag = 1 << 7;
4718            if (msk[k]==True) userFlag = 0 << 7;
4719            flag(k) = userFlag;
4720          }
4721          a->flagsCol_.put( outrow, flag ) ;
4722          a->specCol_.put( outrow, acc.getSpectrum() ) ;
4723          a->tsysCol_.put( outrow, acc.getTsys() ) ;
4724          a->integrCol_.put( outrow, acc.getInterval() ) ;
4725          timeColOut.put( outrow, acc.getTime() ) ;
4726          a->cycleCol_.put( outrow, 0 ) ;
4727        }
4728        acc.reset() ;
4729        outrow++ ;
4730      }
4731    }
4732
4733    // accumulate and add last data
4734    irow = rows[len-1] ;
4735    s->flagsCol_.get( irow, flag ) ;
4736    convertArray( bflag, flag ) ;
4737    s->specCol_.get( irow, spec ) ;
4738    tsys.assign( s->tsysCol_( irow ) ) ;
4739    if (!allEQ(bflag,True) )
4740      acc.add( spec, !bflag, tsys, interval[irow], timeVec[irow] ) ;
4741    if ( acc.state() ) {
4742      atab.addRow() ;
4743      copyRows( atab, ttab, outrow, irow, 1, False, False, False ) ;
4744      acc.replaceNaN() ;
4745      const Vector<Bool> &msk = acc.getMask() ;
4746      convertArray( flag, !msk ) ;
4747      for (uInt k = 0; k < nchan; ++k) {
4748        uChar userFlag = 1 << 7;
4749        if (msk[k]==True) userFlag = 0 << 7;
4750        flag(k) = userFlag;
4751      }
4752      a->flagsCol_.put( outrow, flag ) ;
4753      a->specCol_.put( outrow, acc.getSpectrum() ) ;
4754      a->tsysCol_.put( outrow, acc.getTsys() ) ;
4755      a->integrCol_.put( outrow, acc.getInterval() ) ;
4756      timeColOut.put( outrow, acc.getTime() ) ;
4757      a->cycleCol_.put( outrow, 0 ) ;
4758    }
4759    acc.reset() ;
4760    outrow++ ;
4761
4762    iter.next() ;
4763  }
4764
4765  return a ;
4766}
Note: See TracBrowser for help on using the repository browser.