source: trunk/src/STMath.cpp @ 2479

Last change on this file since 2479 was 2479, checked in by Takeshi Nakazato, 12 years ago

New Development: No

JIRA Issue: No

Ready for Test: Yes

Interface Changes: No

What Interface Changed: Please list interface changes

Test Programs: List test programs

Put in Release Notes: Yes/No?

Module(s): Module Names change impacts.

Description: Describe your changes here...

bug fixes in STMath::new_average

  • proper handling of scan average
  • proper handling of multi-beam data


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 171.7 KB
Line 
1//
2// C++ Implementation: STMath
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2006
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12
13#include <sstream>
14
15#include <casa/iomanip.h>
16#include <casa/Arrays/MaskArrLogi.h>
17#include <casa/Arrays/MaskArrMath.h>
18#include <casa/Arrays/ArrayLogical.h>
19#include <casa/Arrays/ArrayMath.h>
20#include <casa/Arrays/Slice.h>
21#include <casa/Arrays/Slicer.h>
22#include <casa/BasicSL/String.h>
23#include <casa/Containers/Block.h>
24#include <casa/Containers/RecordField.h>
25#include <casa/Exceptions/Error.h>
26#include <casa/Logging/LogIO.h>
27
28#include <coordinates/Coordinates/CoordinateSystem.h>
29#include <coordinates/Coordinates/CoordinateUtil.h>
30#include <coordinates/Coordinates/FrequencyAligner.h>
31#include <coordinates/Coordinates/SpectralCoordinate.h>
32
33#include <lattices/Lattices/LatticeUtilities.h>
34
35#include <scimath/Functionals/Polynomial.h>
36#include <scimath/Mathematics/Convolver.h>
37#include <scimath/Mathematics/VectorKernel.h>
38
39#include <tables/Tables/ExprNode.h>
40#include <tables/Tables/ReadAsciiTable.h>
41#include <tables/Tables/TableCopy.h>
42#include <tables/Tables/TableIter.h>
43#include <tables/Tables/TableParse.h>
44#include <tables/Tables/TableRecord.h>
45#include <tables/Tables/TableRow.h>
46#include <tables/Tables/TableVector.h>
47#include <tables/Tables/TabVecMath.h>
48
49#include <atnf/PKSIO/SrcType.h>
50
51#include "RowAccumulator.h"
52#include "STAttr.h"
53#include "STMath.h"
54#include "STSelector.h"
55
56using namespace casa;
57using namespace asap;
58
59// 2012/02/17 TN
60// Since STGrid is implemented, average doesn't consider direction
61// when accumulating
62// tolerance for direction comparison (rad)
63// #define TOL_OTF    1.0e-15
64// #define TOL_POINT  2.9088821e-4  // 1 arcmin
65
66STMath::STMath(bool insitu) :
67  insitu_(insitu)
68{
69}
70
71
72STMath::~STMath()
73{
74}
75
76CountedPtr<Scantable>
77STMath::average( const std::vector<CountedPtr<Scantable> >& in,
78                 const std::vector<bool>& mask,
79                 const std::string& weight,
80                 const std::string& avmode)
81{
82  LogIO os( LogOrigin( "STMath", "average()", WHERE ) ) ;
83  if ( avmode == "SCAN" && in.size() != 1 )
84    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
85                    "Use merge first."));
86  WeightType wtype = stringToWeight(weight);
87
88  // 2012/02/17 TN
89  // Since STGrid is implemented, average doesn't consider direction
90  // when accumulating
91  // check if OTF observation
92//   String obstype = in[0]->getHeader().obstype ;
93//   Double tol = 0.0 ;
94//   if ( (obstype.find( "OTF" ) != String::npos) || (obstype.find( "OBSERVE_TARGET" ) != String::npos) ) {
95//     tol = TOL_OTF ;
96//   }
97//   else {
98//     tol = TOL_POINT ;
99//   }
100
101  // output
102  // clone as this is non insitu
103  bool insitu = insitu_;
104  setInsitu(false);
105  CountedPtr< Scantable > out = getScantable(in[0], true);
106  setInsitu(insitu);
107  std::vector<CountedPtr<Scantable> >::const_iterator stit = in.begin();
108  ++stit;
109  while ( stit != in.end() ) {
110    out->appendToHistoryTable((*stit)->history());
111    ++stit;
112  }
113
114  Table& tout = out->table();
115
116  /// @todo check if all scantables are conformant
117
118  ArrayColumn<Float> specColOut(tout,"SPECTRA");
119  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
120  ArrayColumn<Float> tsysColOut(tout,"TSYS");
121  ScalarColumn<Double> mjdColOut(tout,"TIME");
122  ScalarColumn<Double> intColOut(tout,"INTERVAL");
123  ScalarColumn<uInt> cycColOut(tout,"CYCLENO");
124  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
125
126  // set up the output table rows. These are based on the structure of the
127  // FIRST scantable in the vector
128  const Table& baset = in[0]->table();
129
130  Block<String> cols(3);
131  cols[0] = String("BEAMNO");
132  cols[1] = String("IFNO");
133  cols[2] = String("POLNO");
134  if ( avmode == "SOURCE" ) {
135    cols.resize(4);
136    cols[3] = String("SRCNAME");
137  }
138  if ( avmode == "SCAN"  && in.size() == 1) {
139    //cols.resize(4);
140    //cols[3] = String("SCANNO");
141    cols.resize(5);
142    cols[3] = String("SRCNAME");
143    cols[4] = String("SCANNO");
144  }
145  uInt outrowCount = 0;
146  TableIterator iter(baset, cols);
147//   int count = 0 ;
148  while (!iter.pastEnd()) {
149    Table subt = iter.table();
150    // copy the first row of this selection into the new table
151    tout.addRow();
152    TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
153    // re-index to 0
154    if ( avmode != "SCAN" && avmode != "SOURCE" ) {
155      scanColOut.put(outrowCount, uInt(0));
156    }
157    ++outrowCount;
158    // 2012/02/17 TN
159    // Since STGrid is implemented, average doesn't consider direction
160    // when accumulating
161//     MDirection::ScalarColumn dircol ;
162//     dircol.attach( subt, "DIRECTION" ) ;
163//     Int length = subt.nrow() ;
164//     vector< Vector<Double> > dirs ;
165//     vector<int> indexes ;
166//     for ( Int i = 0 ; i < length ; i++ ) {
167//       Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
168//       //os << << count++ << ": " ;
169//       //os << "[" << t[0] << "," << t[1] << "]" << LogIO::POST ;
170//       bool adddir = true ;
171//       for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
172//         //if ( allTrue( t == dirs[j] ) ) {
173//         Double dx = t[0] - dirs[j][0] ;
174//         Double dy = t[1] - dirs[j][1] ;
175//         Double dd = sqrt( dx * dx + dy * dy ) ;
176//         //if ( allNearAbs( t, dirs[j], tol ) ) {
177//         if ( dd <= tol ) {
178//           adddir = false ;
179//           break ;
180//         }
181//       }
182//       if ( adddir ) {
183//         dirs.push_back( t ) ;
184//         indexes.push_back( i ) ;
185//       }
186//     }
187//     uInt rowNum = dirs.size() ;
188//     tout.addRow( rowNum ) ;
189//     for ( uInt i = 0 ; i < rowNum ; i++ ) {
190//       TableCopy::copyRows( tout, subt, outrowCount+i, indexes[i], 1 ) ;
191//       // re-index to 0
192//       if ( avmode != "SCAN" && avmode != "SOURCE" ) {
193//         scanColOut.put(outrowCount+i, uInt(0));
194//       }       
195//     }
196//     outrowCount += rowNum ;
197    ++iter;
198  }
199  RowAccumulator acc(wtype);
200  Vector<Bool> cmask(mask);
201  acc.setUserMask(cmask);
202  ROTableRow row(tout);
203  ROArrayColumn<Float> specCol, tsysCol;
204  ROArrayColumn<uChar> flagCol;
205  ROScalarColumn<Double> mjdCol, intCol;
206  ROScalarColumn<Int> scanIDCol;
207
208  Vector<uInt> rowstodelete;
209
210  for (uInt i=0; i < tout.nrow(); ++i) {
211    for ( int j=0; j < int(in.size()); ++j ) {
212      const Table& tin = in[j]->table();
213      const TableRecord& rec = row.get(i);
214      ROScalarColumn<Double> tmp(tin, "TIME");
215      Double td;tmp.get(0,td);
216      Table basesubt = tin( tin.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
217                         && tin.col("IFNO") == Int(rec.asuInt("IFNO"))
218                         && tin.col("POLNO") == Int(rec.asuInt("POLNO")) );
219      Table subt;
220      if ( avmode == "SOURCE") {
221        subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME"));
222      } else if (avmode == "SCAN") {
223        subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME")
224                      && basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO")) );
225      } else {
226        subt = basesubt;
227      }
228
229      // 2012/02/17 TN
230      // Since STGrid is implemented, average doesn't consider direction
231      // when accumulating
232//       vector<uInt> removeRows ;
233//       uInt nrsubt = subt.nrow() ;
234//       for ( uInt irow = 0 ; irow < nrsubt ; irow++ ) {
235//         //if ( !allTrue((subt.col("DIRECTION").getArrayDouble(TableExprId(irow)))==rec.asArrayDouble("DIRECTION")) ) {
236//         Vector<Double> x0 = (subt.col("DIRECTION").getArrayDouble(TableExprId(irow))) ;
237//         Vector<Double> x1 = rec.asArrayDouble("DIRECTION") ;
238//         double dx = x0[0] - x1[0];
239//         double dy = x0[1] - x1[1];
240//         Double dd = sqrt( dx * dx + dy * dy ) ;
241//         //if ( !allNearAbs((subt.col("DIRECTION").getArrayDouble(TableExprId(irow))), rec.asArrayDouble("DIRECTION"), tol ) ) {
242//         if ( dd > tol ) {
243//           removeRows.push_back( irow ) ;
244//         }
245//       }
246//       if ( removeRows.size() != 0 ) {
247//         subt.removeRow( removeRows ) ;
248//       }
249     
250//       if ( nrsubt == removeRows.size() )
251//         throw(AipsError("Averaging data is empty.")) ;
252
253      specCol.attach(subt,"SPECTRA");
254      flagCol.attach(subt,"FLAGTRA");
255      tsysCol.attach(subt,"TSYS");
256      intCol.attach(subt,"INTERVAL");
257      mjdCol.attach(subt,"TIME");
258      Vector<Float> spec,tsys;
259      Vector<uChar> flag;
260      Double inter,time;
261      for (uInt k = 0; k < subt.nrow(); ++k ) {
262        flagCol.get(k, flag);
263        Vector<Bool> bflag(flag.shape());
264        convertArray(bflag, flag);
265        /*
266        if ( allEQ(bflag, True) ) {
267        continue;//don't accumulate
268        }
269        */
270        specCol.get(k, spec);
271        //tsysCol.get(k, tsys);
272        tsys.assign( tsysCol(k) );
273        intCol.get(k, inter);
274        mjdCol.get(k, time);
275        // spectrum has to be added last to enable weighting by the other values
276        acc.add(spec, !bflag, tsys, inter, time);
277      }
278
279      // If there exists a channel at which all the input spectra are masked,
280      // spec has 'nan' values for that channel and it may affect the following
281      // processes. To avoid this, replacing 'nan' values in spec with
282      // weighted-mean of all spectra in the following line.
283      // (done for CAS-2776, 2011/04/07 by Wataru Kawasaki)
284      acc.replaceNaN();
285    }
286    const Vector<Bool>& msk = acc.getMask();
287    if ( allEQ(msk, False) ) {
288      uint n = rowstodelete.nelements();
289      rowstodelete.resize(n+1, True);
290      rowstodelete[n] = i;
291      continue;
292    }
293    //write out
294    if (acc.state()) {
295      Vector<uChar> flg(msk.shape());
296      convertArray(flg, !msk);
297      for (uInt k = 0; k < flg.nelements(); ++k) {
298        uChar userFlag = 1 << 7;
299        if (msk[k]==True) userFlag = 0 << 7;
300        flg(k) = userFlag;
301      }
302
303      flagColOut.put(i, flg);
304      specColOut.put(i, acc.getSpectrum());
305      tsysColOut.put(i, acc.getTsys());
306      intColOut.put(i, acc.getInterval());
307      mjdColOut.put(i, acc.getTime());
308      // we should only have one cycle now -> reset it to be 0
309      // frequency switched data has different CYCLENO for different IFNO
310      // which requires resetting this value
311      cycColOut.put(i, uInt(0));
312    } else {
313      ostringstream oss;
314      oss << "For output row="<<i<<", all input rows of data are flagged. no averaging" << endl;
315      pushLog(String(oss));
316    }
317    acc.reset();
318  }
319
320  if (rowstodelete.nelements() > 0) {
321    os << rowstodelete << LogIO::POST ;
322    tout.removeRow(rowstodelete);
323    if (tout.nrow() == 0) {
324      throw(AipsError("Can't average fully flagged data."));
325    }
326  }
327  return out;
328}
329
330CountedPtr< Scantable >
331STMath::averageChannel( const CountedPtr < Scantable > & in,
332                          const std::string & mode,
333                          const std::string& avmode )
334{
335  (void) mode; // currently unused
336  // 2012/02/17 TN
337  // Since STGrid is implemented, average doesn't consider direction
338  // when accumulating
339  // check if OTF observation
340//   String obstype = in->getHeader().obstype ;
341//   Double tol = 0.0 ;
342//   if ( obstype.find( "OTF" ) != String::npos ) {
343//     tol = TOL_OTF ;
344//   }
345//   else {
346//     tol = TOL_POINT ;
347//   }
348
349  // clone as this is non insitu
350  bool insitu = insitu_;
351  setInsitu(false);
352  CountedPtr< Scantable > out = getScantable(in, true);
353  setInsitu(insitu);
354  Table& tout = out->table();
355  ArrayColumn<Float> specColOut(tout,"SPECTRA");
356  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
357  ArrayColumn<Float> tsysColOut(tout,"TSYS");
358  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
359  ScalarColumn<Double> intColOut(tout, "INTERVAL");
360  Table tmp = in->table().sort("BEAMNO");
361  Block<String> cols(3);
362  cols[0] = String("BEAMNO");
363  cols[1] = String("IFNO");
364  cols[2] = String("POLNO");
365  if ( avmode == "SCAN") {
366    cols.resize(4);
367    cols[3] = String("SCANNO");
368  }
369  uInt outrowCount = 0;
370  uChar userflag = 1 << 7;
371  TableIterator iter(tmp, cols);
372  while (!iter.pastEnd()) {
373    Table subt = iter.table();
374    ROArrayColumn<Float> specCol, tsysCol;
375    ROArrayColumn<uChar> flagCol;
376    ROScalarColumn<Double> intCol(subt, "INTERVAL");
377    specCol.attach(subt,"SPECTRA");
378    flagCol.attach(subt,"FLAGTRA");
379    tsysCol.attach(subt,"TSYS");
380
381    tout.addRow();
382    TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
383    if ( avmode != "SCAN") {
384      scanColOut.put(outrowCount, uInt(0));
385    }
386    Vector<Float> tmp;
387    specCol.get(0, tmp);
388    uInt nchan = tmp.nelements();
389    // have to do channel by channel here as MaskedArrMath
390    // doesn't have partialMedians
391    Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
392    Vector<Float> outspec(nchan);
393    Vector<uChar> outflag(nchan,0);
394    Vector<Float> outtsys(1);/// @fixme when tsys is channel based
395    for (uInt i=0; i<nchan; ++i) {
396      Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
397      MaskedArray<Float> ma = maskedArray(specs,flags);
398      outspec[i] = median(ma);
399      if ( allEQ(ma.getMask(), False) )
400        outflag[i] = userflag;// flag data
401    }
402    outtsys[0] = median(tsysCol.getColumn());
403    specColOut.put(outrowCount, outspec);
404    flagColOut.put(outrowCount, outflag);
405    tsysColOut.put(outrowCount, outtsys);
406    Double intsum = sum(intCol.getColumn());
407    intColOut.put(outrowCount, intsum);
408    ++outrowCount;
409    ++iter;
410
411    // 2012/02/17 TN
412    // Since STGrid is implemented, average doesn't consider direction
413    // when accumulating
414//     MDirection::ScalarColumn dircol ;
415//     dircol.attach( subt, "DIRECTION" ) ;
416//     Int length = subt.nrow() ;
417//     vector< Vector<Double> > dirs ;
418//     vector<int> indexes ;
419//     // Handle MX mode averaging
420//     if (in->nbeam() > 1 ) {     
421//       length = 1;
422//     }
423//     for ( Int i = 0 ; i < length ; i++ ) {
424//       Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
425//       bool adddir = true ;
426//       for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
427//         //if ( allTrue( t == dirs[j] ) ) {
428//         Double dx = t[0] - dirs[j][0] ;
429//         Double dy = t[1] - dirs[j][1] ;
430//         Double dd = sqrt( dx * dx + dy * dy ) ;
431//         //if ( allNearAbs( t, dirs[j], tol ) ) {
432//         if ( dd <= tol ) {
433//           adddir = false ;
434//           break ;
435//         }
436//       }
437//       if ( adddir ) {
438//         dirs.push_back( t ) ;
439//         indexes.push_back( i ) ;
440//       }
441//     }
442//     uInt rowNum = dirs.size() ;
443//     tout.addRow( rowNum );
444//     for ( uInt i = 0 ; i < rowNum ; i++ ) {
445//       TableCopy::copyRows(tout, subt, outrowCount+i, indexes[i], 1) ;
446//       // Handle MX mode averaging
447//       if ( avmode != "SCAN") {
448//         scanColOut.put(outrowCount+i, uInt(0));
449//       }
450//     }
451//     MDirection::ScalarColumn dircolOut ;
452//     dircolOut.attach( tout, "DIRECTION" ) ;
453//     for ( uInt irow = 0 ; irow < rowNum ; irow++ ) {
454//       Vector<Double> t = \
455//      dircolOut(outrowCount+irow).getAngle(Unit(String("rad"))).getValue() ;
456//       Vector<Float> tmp;
457//       specCol.get(0, tmp);
458//       uInt nchan = tmp.nelements();
459//       // have to do channel by channel here as MaskedArrMath
460//       // doesn't have partialMedians
461//       Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
462//       // mask spectra for different DIRECTION
463//       for ( uInt jrow = 0 ; jrow < subt.nrow() ; jrow++ ) {
464//         Vector<Double> direction = \
465//        dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
466//         //if ( t[0] != direction[0] || t[1] != direction[1] ) {
467//         Double dx = t[0] - direction[0];
468//         Double dy = t[1] - direction[1];
469//         Double dd = sqrt(dx*dx + dy*dy);
470//         //if ( !allNearAbs( t, direction, tol ) ) {
471//         if ( dd > tol &&  in->nbeam() < 2 ) {
472//           flags[jrow] = userflag ;
473//         }
474//       }
475//       Vector<Float> outspec(nchan);
476//       Vector<uChar> outflag(nchan,0);
477//       Vector<Float> outtsys(1);/// @fixme when tsys is channel based
478//       for (uInt i=0; i<nchan; ++i) {
479//         Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
480//         MaskedArray<Float> ma = maskedArray(specs,flags);
481//         outspec[i] = median(ma);
482//         if ( allEQ(ma.getMask(), False) )
483//           outflag[i] = userflag;// flag data
484//       }
485//       outtsys[0] = median(tsysCol.getColumn());
486//       specColOut.put(outrowCount+irow, outspec);
487//       flagColOut.put(outrowCount+irow, outflag);
488//       tsysColOut.put(outrowCount+irow, outtsys);
489//       Vector<Double> integ = intCol.getColumn() ;
490//       MaskedArray<Double> mi = maskedArray( integ, flags ) ;
491//       Double intsum = sum(mi);
492//       intColOut.put(outrowCount+irow, intsum);
493//     }
494//     outrowCount += rowNum ;
495//     ++iter;
496  }
497  return out;
498}
499
500CountedPtr< Scantable > STMath::getScantable(const CountedPtr< Scantable >& in,
501                                             bool droprows)
502{
503  if (insitu_) {
504    return in;
505  }
506  else {
507    // clone
508    return CountedPtr<Scantable>(new Scantable(*in, Bool(droprows)));
509  }
510}
511
512CountedPtr< Scantable > STMath::unaryOperate( const CountedPtr< Scantable >& in,
513                                              float val,
514                                              const std::string& mode,
515                                              bool tsys )
516{
517  CountedPtr< Scantable > out = getScantable(in, false);
518  Table& tab = out->table();
519  ArrayColumn<Float> specCol(tab,"SPECTRA");
520  ArrayColumn<Float> tsysCol(tab,"TSYS");
521  if (mode=="DIV") val = 1.0/val ;
522  else if (mode=="SUB") val *= -1.0 ;
523  for (uInt i=0; i<tab.nrow(); ++i) {
524    Vector<Float> spec;
525    Vector<Float> ts;
526    specCol.get(i, spec);
527    tsysCol.get(i, ts);
528    if (mode == "MUL" || mode == "DIV") {
529      //if (mode == "DIV") val = 1.0/val;
530      spec *= val;
531      specCol.put(i, spec);
532      if ( tsys ) {
533        ts *= val;
534        tsysCol.put(i, ts);
535      }
536    } else if ( mode == "ADD"  || mode == "SUB") {
537      //if (mode == "SUB") val *= -1.0;
538      spec += val;
539      specCol.put(i, spec);
540      if ( tsys ) {
541        ts += val;
542        tsysCol.put(i, ts);
543      }
544    }
545  }
546  return out;
547}
548
549CountedPtr< Scantable > STMath::arrayOperate( const CountedPtr< Scantable >& in,
550                                              const std::vector<float> val,
551                                              const std::string& mode,
552                                              const std::string& opmode,
553                                              bool tsys )
554{
555  CountedPtr< Scantable > out ;
556  if ( opmode == "channel" ) {
557    out = arrayOperateChannel( in, val, mode, tsys ) ;
558  }
559  else if ( opmode == "row" ) {
560    out = arrayOperateRow( in, val, mode, tsys ) ;
561  }
562  else {
563    throw( AipsError( "Unknown array operation mode." ) ) ;
564  }
565  return out ;
566}
567
568CountedPtr< Scantable > STMath::arrayOperateChannel( const CountedPtr< Scantable >& in,
569                                                     const std::vector<float> val,
570                                                     const std::string& mode,
571                                                     bool tsys )
572{
573  if ( val.size() == 1 ){
574    return unaryOperate( in, val[0], mode, tsys ) ;
575  }
576
577  // conformity of SPECTRA and TSYS
578  if ( tsys ) {
579    TableIterator titer(in->table(), "IFNO");
580    while ( !titer.pastEnd() ) {
581      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
582      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
583      Array<Float> spec = specCol.getColumn() ;
584      Array<Float> ts = tsysCol.getColumn() ;
585      if ( !spec.conform( ts ) ) {
586        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
587      }
588      titer.next() ;
589    }
590  }
591
592  // check if all spectra in the scantable have the same number of channel
593  vector<uInt> nchans;
594  vector<uInt> ifnos = in->getIFNos() ;
595  for ( uInt i = 0 ; i < ifnos.size() ; i++ ) {
596    nchans.push_back( in->nchan( ifnos[i] ) ) ;
597  }
598  Vector<uInt> mchans( nchans ) ;
599  if ( anyNE( mchans, mchans[0] ) ) {
600    throw( AipsError("All spectra in the input scantable must have the same number of channel for vector operation." ) ) ;
601  }
602
603  // check if vector size is equal to nchan
604  Vector<Float> fact( val ) ;
605  if ( fact.nelements() != mchans[0] ) {
606    throw( AipsError("Vector size must be 1 or be same as number of channel.") ) ;
607  }
608
609  // check divided by zero
610  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
611    throw( AipsError("Divided by zero is not recommended." ) ) ;
612  }
613
614  CountedPtr< Scantable > out = getScantable(in, false);
615  Table& tab = out->table();
616  ArrayColumn<Float> specCol(tab,"SPECTRA");
617  ArrayColumn<Float> tsysCol(tab,"TSYS");
618  if (mode == "DIV") fact = (float)1.0 / fact;
619  else if (mode == "SUB") fact *= (float)-1.0 ;
620  for (uInt i=0; i<tab.nrow(); ++i) {
621    Vector<Float> spec;
622    Vector<Float> ts;
623    specCol.get(i, spec);
624    tsysCol.get(i, ts);
625    if (mode == "MUL" || mode == "DIV") {
626      //if (mode == "DIV") fact = (float)1.0 / fact;
627      spec *= fact;
628      specCol.put(i, spec);
629      if ( tsys ) {
630        ts *= fact;
631        tsysCol.put(i, ts);
632      }
633    } else if ( mode == "ADD"  || mode == "SUB") {
634      //if (mode == "SUB") fact *= (float)-1.0 ;
635      spec += fact;
636      specCol.put(i, spec);
637      if ( tsys ) {
638        ts += fact;
639        tsysCol.put(i, ts);
640      }
641    }
642  }
643  return out;
644}
645
646CountedPtr< Scantable > STMath::arrayOperateRow( const CountedPtr< Scantable >& in,
647                                                 const std::vector<float> val,
648                                                 const std::string& mode,
649                                                 bool tsys )
650{
651  if ( val.size() == 1 ) {
652    return unaryOperate( in, val[0], mode, tsys ) ;
653  }
654
655  // conformity of SPECTRA and TSYS
656  if ( tsys ) {
657    TableIterator titer(in->table(), "IFNO");
658    while ( !titer.pastEnd() ) {
659      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
660      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
661      Array<Float> spec = specCol.getColumn() ;
662      Array<Float> ts = tsysCol.getColumn() ;
663      if ( !spec.conform( ts ) ) {
664        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
665      }
666      titer.next() ;
667    }
668  }
669
670  // check if vector size is equal to nrow
671  Vector<Float> fact( val ) ;
672  if (fact.nelements() != uInt(in->nrow())) {
673    throw( AipsError("Vector size must be 1 or be same as number of row.") ) ;
674  }
675
676  // check divided by zero
677  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
678    throw( AipsError("Divided by zero is not recommended." ) ) ;
679  }
680
681  CountedPtr< Scantable > out = getScantable(in, false);
682  Table& tab = out->table();
683  ArrayColumn<Float> specCol(tab,"SPECTRA");
684  ArrayColumn<Float> tsysCol(tab,"TSYS");
685  if (mode == "DIV") fact = (float)1.0 / fact;
686  if (mode == "SUB") fact *= (float)-1.0 ;
687  for (uInt i=0; i<tab.nrow(); ++i) {
688    Vector<Float> spec;
689    Vector<Float> ts;
690    specCol.get(i, spec);
691    tsysCol.get(i, ts);
692    if (mode == "MUL" || mode == "DIV") {
693      spec *= fact[i];
694      specCol.put(i, spec);
695      if ( tsys ) {
696        ts *= fact[i];
697        tsysCol.put(i, ts);
698      }
699    } else if ( mode == "ADD"  || mode == "SUB") {
700      spec += fact[i];
701      specCol.put(i, spec);
702      if ( tsys ) {
703        ts += fact[i];
704        tsysCol.put(i, ts);
705      }
706    }
707  }
708  return out;
709}
710
711CountedPtr< Scantable > STMath::array2dOperate( const CountedPtr< Scantable >& in,
712                                                const std::vector< std::vector<float> > val,
713                                                const std::string& mode,
714                                                bool tsys )
715{
716  // conformity of SPECTRA and TSYS
717  if ( tsys ) {
718    TableIterator titer(in->table(), "IFNO");
719    while ( !titer.pastEnd() ) {
720      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
721      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
722      Array<Float> spec = specCol.getColumn() ;
723      Array<Float> ts = tsysCol.getColumn() ;
724      if ( !spec.conform( ts ) ) {
725        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
726      }
727      titer.next() ;
728    }
729  }
730
731  // some checks
732  vector<uInt> nchans;
733  for (Int i = 0 ; i < in->nrow() ; i++) {
734    nchans.push_back((in->getSpectrum(i)).size());
735  }
736  //Vector<uInt> mchans( nchans ) ;
737  vector< Vector<Float> > facts ;
738  for ( uInt i = 0 ; i < nchans.size() ; i++ ) {
739    Vector<Float> tmp( val[i] ) ;
740    // check divided by zero
741    if ( ( mode == "DIV" ) && anyEQ( tmp, (float)0.0 ) ) {
742      throw( AipsError("Divided by zero is not recommended." ) ) ;
743    }
744    // conformity check
745    if ( tmp.nelements() != nchans[i] ) {
746      stringstream ss ;
747      ss << "Row " << i << ": Vector size must be same as number of channel." ;
748      throw( AipsError( ss.str() ) ) ;
749    }
750    facts.push_back( tmp ) ;
751  }
752
753
754  CountedPtr< Scantable > out = getScantable(in, false);
755  Table& tab = out->table();
756  ArrayColumn<Float> specCol(tab,"SPECTRA");
757  ArrayColumn<Float> tsysCol(tab,"TSYS");
758  for (uInt i=0; i<tab.nrow(); ++i) {
759    Vector<Float> fact = facts[i] ;
760    Vector<Float> spec;
761    Vector<Float> ts;
762    specCol.get(i, spec);
763    tsysCol.get(i, ts);
764    if (mode == "MUL" || mode == "DIV") {
765      if (mode == "DIV") fact = (float)1.0 / fact;
766      spec *= fact;
767      specCol.put(i, spec);
768      if ( tsys ) {
769        ts *= fact;
770        tsysCol.put(i, ts);
771      }
772    } else if ( mode == "ADD"  || mode == "SUB") {
773      if (mode == "SUB") fact *= (float)-1.0 ;
774      spec += fact;
775      specCol.put(i, spec);
776      if ( tsys ) {
777        ts += fact;
778        tsysCol.put(i, ts);
779      }
780    }
781  }
782  return out;
783}
784
785CountedPtr<Scantable> STMath::binaryOperate(const CountedPtr<Scantable>& left,
786                                            const CountedPtr<Scantable>& right,
787                                            const std::string& mode)
788{
789  bool insitu = insitu_;
790  if ( ! left->conformant(*right) ) {
791    throw(AipsError("'left' and 'right' scantables are not conformant."));
792  }
793  setInsitu(false);
794  CountedPtr< Scantable > out = getScantable(left, false);
795  setInsitu(insitu);
796  Table& tout = out->table();
797  Block<String> coln(5);
798  coln[0] = "SCANNO";  coln[1] = "CYCLENO";  coln[2] = "BEAMNO";
799  coln[3] = "IFNO";  coln[4] = "POLNO";
800  Table tmpl = tout.sort(coln);
801  Table tmpr = right->table().sort(coln);
802  ArrayColumn<Float> lspecCol(tmpl,"SPECTRA");
803  ROArrayColumn<Float> rspecCol(tmpr,"SPECTRA");
804  ArrayColumn<uChar> lflagCol(tmpl,"FLAGTRA");
805  ROArrayColumn<uChar> rflagCol(tmpr,"FLAGTRA");
806
807  for (uInt i=0; i<tout.nrow(); ++i) {
808    Vector<Float> lspecvec, rspecvec;
809    Vector<uChar> lflagvec, rflagvec;
810    lspecvec = lspecCol(i);    rspecvec = rspecCol(i);
811    lflagvec = lflagCol(i);    rflagvec = rflagCol(i);
812    MaskedArray<Float> mleft = maskedArray(lspecvec, lflagvec);
813    MaskedArray<Float> mright = maskedArray(rspecvec, rflagvec);
814    if (mode == "ADD") {
815      mleft += mright;
816    } else if ( mode == "SUB") {
817      mleft -= mright;
818    } else if ( mode == "MUL") {
819      mleft *= mright;
820    } else if ( mode == "DIV") {
821      mleft /= mright;
822    } else {
823      throw(AipsError("Illegal binary operator"));
824    }
825    lspecCol.put(i, mleft.getArray());
826  }
827  return out;
828}
829
830
831
832MaskedArray<Float> STMath::maskedArray( const Vector<Float>& s,
833                                        const Vector<uChar>& f)
834{
835  Vector<Bool> mask;
836  mask.resize(f.shape());
837  convertArray(mask, f);
838  return MaskedArray<Float>(s,!mask);
839}
840
841MaskedArray<Double> STMath::maskedArray( const Vector<Double>& s,
842                                         const Vector<uChar>& f)
843{
844  Vector<Bool> mask;
845  mask.resize(f.shape());
846  convertArray(mask, f);
847  return MaskedArray<Double>(s,!mask);
848}
849
850Vector<uChar> STMath::flagsFromMA(const MaskedArray<Float>& ma)
851{
852  const Vector<Bool>& m = ma.getMask();
853  Vector<uChar> flags(m.shape());
854  convertArray(flags, !m);
855  return flags;
856}
857
858CountedPtr< Scantable > STMath::autoQuotient( const CountedPtr< Scantable >& in,
859                                              const std::string & mode,
860                                              bool preserve )
861{
862  /// @todo make other modes available
863  /// modes should be "nearest", "pair"
864  // make this operation non insitu
865  (void) mode; //currently unused
866  const Table& tin = in->table();
867  Table ons = tin(tin.col("SRCTYPE") == Int(SrcType::PSON));
868  Table offs = tin(tin.col("SRCTYPE") == Int(SrcType::PSOFF));
869  if ( offs.nrow() == 0 )
870    throw(AipsError("No 'off' scans present."));
871  // put all "on" scans into output table
872
873  bool insitu = insitu_;
874  setInsitu(false);
875  CountedPtr< Scantable > out = getScantable(in, true);
876  setInsitu(insitu);
877  Table& tout = out->table();
878
879  TableCopy::copyRows(tout, ons);
880  TableRow row(tout);
881  ROScalarColumn<Double> offtimeCol(offs, "TIME");
882  ArrayColumn<Float> outspecCol(tout, "SPECTRA");
883  ROArrayColumn<Float> outtsysCol(tout, "TSYS");
884  ArrayColumn<uChar> outflagCol(tout, "FLAGTRA");
885  for (uInt i=0; i < tout.nrow(); ++i) {
886    const TableRecord& rec = row.get(i);
887    Double ontime = rec.asDouble("TIME");
888    Table presel = offs(offs.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
889                        && offs.col("IFNO") == Int(rec.asuInt("IFNO"))
890                        && offs.col("POLNO") == Int(rec.asuInt("POLNO")) );
891    ROScalarColumn<Double> offtimeCol(presel, "TIME");
892
893    Double mindeltat = min(abs(offtimeCol.getColumn() - ontime));
894    // Timestamp may vary within a cycle ???!!!
895    // increase this by 0.01 sec in case of rounding errors...
896    // There might be a better way to do this.
897    // fix to this fix. TIME is MJD, so 1.0d not 1.0s
898    mindeltat += 0.01/24./60./60.;
899    Table sel = presel( abs(presel.col("TIME")-ontime) <= mindeltat);
900
901    if ( sel.nrow() < 1 )  {
902      throw(AipsError("No closest in time found... This could be a rounding "
903                      "issue. Try quotient instead."));
904    }
905    TableRow offrow(sel);
906    const TableRecord& offrec = offrow.get(0);//should only be one row
907    RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
908    RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
909    RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
910    /// @fixme this assumes tsys is a scalar not vector
911    Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
912    Vector<Float> specon, tsyson;
913    outtsysCol.get(i, tsyson);
914    outspecCol.get(i, specon);
915    Vector<uChar> flagon;
916    outflagCol.get(i, flagon);
917    MaskedArray<Float> mon = maskedArray(specon, flagon);
918    MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
919    MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
920    if (preserve) {
921      quot -= tsysoffscalar;
922    } else {
923      quot -= tsyson[0];
924    }
925    outspecCol.put(i, quot.getArray());
926    outflagCol.put(i, flagsFromMA(quot));
927  }
928  // renumber scanno
929  TableIterator it(tout, "SCANNO");
930  uInt i = 0;
931  while ( !it.pastEnd() ) {
932    Table t = it.table();
933    TableVector<uInt> vec(t, "SCANNO");
934    vec = i;
935    ++i;
936    ++it;
937  }
938  return out;
939}
940
941
942CountedPtr< Scantable > STMath::quotient( const CountedPtr< Scantable > & on,
943                                          const CountedPtr< Scantable > & off,
944                                          bool preserve )
945{
946  bool insitu = insitu_;
947  if ( ! on->conformant(*off) ) {
948    throw(AipsError("'on' and 'off' scantables are not conformant."));
949  }
950  setInsitu(false);
951  CountedPtr< Scantable > out = getScantable(on, false);
952  setInsitu(insitu);
953  Table& tout = out->table();
954  const Table& toff = off->table();
955  TableIterator sit(tout, "SCANNO");
956  TableIterator s2it(toff, "SCANNO");
957  while ( !sit.pastEnd() ) {
958    Table ton = sit.table();
959    TableRow row(ton);
960    Table t = s2it.table();
961    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
962    ROArrayColumn<Float> outtsysCol(ton, "TSYS");
963    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
964    for (uInt i=0; i < ton.nrow(); ++i) {
965      const TableRecord& rec = row.get(i);
966      Table offsel = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
967                          && t.col("IFNO") == Int(rec.asuInt("IFNO"))
968                          && t.col("POLNO") == Int(rec.asuInt("POLNO")) );
969      if ( offsel.nrow() == 0 )
970        throw AipsError("STMath::quotient: no matching off");
971      TableRow offrow(offsel);
972      const TableRecord& offrec = offrow.get(0);//should be ncycles - take first
973      RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
974      RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
975      RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
976      Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
977      Vector<Float> specon, tsyson;
978      outtsysCol.get(i, tsyson);
979      outspecCol.get(i, specon);
980      Vector<uChar> flagon;
981      outflagCol.get(i, flagon);
982      MaskedArray<Float> mon = maskedArray(specon, flagon);
983      MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
984      MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
985      if (preserve) {
986        quot -= tsysoffscalar;
987      } else {
988        quot -= tsyson[0];
989      }
990      outspecCol.put(i, quot.getArray());
991      outflagCol.put(i, flagsFromMA(quot));
992    }
993    ++sit;
994    ++s2it;
995    // take the first off for each on scan which doesn't have a
996    // matching off scan
997    // non <= noff:  matching pairs, non > noff matching pairs then first off
998    if ( s2it.pastEnd() ) s2it.reset();
999  }
1000  return out;
1001}
1002
1003// dototalpower (migration of GBTIDL procedure dototalpower.pro)
1004// calibrate the CAL on-off pair. It calculate Tsys and average CAL on-off subintegrations
1005// do it for each cycles in a specific scan.
1006CountedPtr< Scantable > STMath::dototalpower( const CountedPtr< Scantable >& calon,
1007                                              const CountedPtr< Scantable >& caloff, Float tcal )
1008{
1009  if ( ! calon->conformant(*caloff) ) {
1010    throw(AipsError("'CAL on' and 'CAL off' scantables are not conformant."));
1011  }
1012  setInsitu(false);
1013  CountedPtr< Scantable > out = getScantable(caloff, false);
1014  Table& tout = out->table();
1015  const Table& tcon = calon->table();
1016  Vector<Float> tcalout;
1017
1018  std::map<uInt,uInt> tcalIdToRecNoMap;
1019  const Table& calOffTcalTable = caloff->tcal().table();
1020  {
1021    ROScalarColumn<uInt> calOffTcalTable_IDcol(calOffTcalTable, "ID");
1022    const Vector<uInt> tcalIds(calOffTcalTable_IDcol.getColumn());
1023    size_t tcalIdsEnd = tcalIds.nelements();
1024    for (uInt i = 0; i < tcalIdsEnd; i++) {
1025      tcalIdToRecNoMap[tcalIds[i]] = i;
1026    }
1027  }
1028  ROArrayColumn<Float> calOffTcalTable_TCALcol(calOffTcalTable, "TCAL");
1029
1030  if ( tout.nrow() != tcon.nrow() ) {
1031    throw(AipsError("Mismatch in number of rows to form cal on - off pair."));
1032  }
1033  // iteration by scanno or cycle no.
1034  TableIterator sit(tout, "SCANNO");
1035  TableIterator s2it(tcon, "SCANNO");
1036  while ( !sit.pastEnd() ) {
1037    Table toff = sit.table();
1038    TableRow row(toff);
1039    Table t = s2it.table();
1040    ScalarColumn<Double> outintCol(toff, "INTERVAL");
1041    ArrayColumn<Float> outspecCol(toff, "SPECTRA");
1042    ArrayColumn<Float> outtsysCol(toff, "TSYS");
1043    ArrayColumn<uChar> outflagCol(toff, "FLAGTRA");
1044    ROScalarColumn<uInt> outtcalIdCol(toff, "TCAL_ID");
1045    ROScalarColumn<uInt> outpolCol(toff, "POLNO");
1046    ROScalarColumn<Double> onintCol(t, "INTERVAL");
1047    ROArrayColumn<Float> onspecCol(t, "SPECTRA");
1048    ROArrayColumn<Float> ontsysCol(t, "TSYS");
1049    ROArrayColumn<uChar> onflagCol(t, "FLAGTRA");
1050    //ROScalarColumn<uInt> ontcalIdCol(t, "TCAL_ID");
1051
1052    for (uInt i=0; i < toff.nrow(); ++i) {
1053      //skip these checks -> assumes the data order are the same between the cal on off pairs
1054      //
1055      Vector<Float> specCalon, specCaloff;
1056      // to store scalar (mean) tsys
1057      Vector<Float> tsysout(1);
1058      uInt tcalId, polno;
1059      Double offint, onint;
1060      outpolCol.get(i, polno);
1061      outspecCol.get(i, specCaloff);
1062      onspecCol.get(i, specCalon);
1063      Vector<uChar> flagCaloff, flagCalon;
1064      outflagCol.get(i, flagCaloff);
1065      onflagCol.get(i, flagCalon);
1066      outtcalIdCol.get(i, tcalId);
1067      outintCol.get(i, offint);
1068      onintCol.get(i, onint);
1069      // caluculate mean Tsys
1070      uInt nchan = specCaloff.nelements();
1071      // percentage of edge cut off
1072      uInt pc = 10;
1073      uInt bchan = nchan/pc;
1074      uInt echan = nchan-bchan;
1075
1076      Slicer chansl(IPosition(1,bchan-1), IPosition(1,echan-1), IPosition(1,1),Slicer::endIsLast);
1077      Vector<Float> testsubsp = specCaloff(chansl);
1078      MaskedArray<Float> spoff = maskedArray( specCaloff(chansl),flagCaloff(chansl) );
1079      MaskedArray<Float> spon = maskedArray( specCalon(chansl),flagCalon(chansl) );
1080      MaskedArray<Float> spdiff = spon-spoff;
1081      uInt noff = spoff.nelementsValid();
1082      //uInt non = spon.nelementsValid();
1083      uInt ndiff = spdiff.nelementsValid();
1084      Float meantsys;
1085
1086/**
1087      Double subspec, subdiff;
1088      uInt usednchan;
1089      subspec = 0;
1090      subdiff = 0;
1091      usednchan = 0;
1092      for(uInt k=(bchan-1); k<echan; k++) {
1093        subspec += specCaloff[k];
1094        subdiff += static_cast<Double>(specCalon[k]-specCaloff[k]);
1095        ++usednchan;
1096      }
1097**/
1098      // get tcal if input tcal <= 0
1099      Float tcalUsed;
1100      tcalUsed = tcal;
1101      if ( tcal <= 0.0 ) {
1102        uInt tcalRecNo = tcalIdToRecNoMap[tcalId];
1103        calOffTcalTable_TCALcol.get(tcalRecNo, tcalout);
1104//         if (polno<=3) {
1105//           tcalUsed = tcalout[polno];
1106//         }
1107//         else {
1108//           tcalUsed = tcalout[0];
1109//         }
1110        if ( tcalout.size() == 1 )
1111          tcalUsed = tcalout[0] ;
1112        else if ( tcalout.size() == nchan )
1113          tcalUsed = mean(tcalout) ;
1114        else {
1115          uInt ipol = polno ;
1116          if ( ipol > 3 ) ipol = 0 ;
1117          tcalUsed = tcalout[ipol] ;
1118        }
1119      }
1120
1121      Float meanoff;
1122      Float meandiff;
1123      if (noff && ndiff) {
1124         //Debug
1125         //if(noff!=ndiff) cerr<<"noff and ndiff is not equal"<<endl;
1126         //LogIO os( LogOrigin( "STMath", "dototalpower()", WHERE ) ) ;
1127         //if(noff!=ndiff) os<<"noff and ndiff is not equal"<<LogIO::POST;
1128         meanoff = sum(spoff)/noff;
1129         meandiff = sum(spdiff)/ndiff;
1130         meantsys= (meanoff/meandiff )*tcalUsed + tcalUsed/2;
1131      }
1132      else {
1133         meantsys=1;
1134      }
1135
1136      tsysout[0] = Float(meantsys);
1137      MaskedArray<Float> mcaloff = maskedArray(specCaloff, flagCaloff);
1138      MaskedArray<Float> mcalon = maskedArray(specCalon, flagCalon);
1139      MaskedArray<Float> sig =   Float(0.5) * (mcaloff + mcalon);
1140      //uInt ncaloff = mcaloff.nelementsValid();
1141      //uInt ncalon = mcalon.nelementsValid();
1142
1143      outintCol.put(i, offint+onint);
1144      outspecCol.put(i, sig.getArray());
1145      outflagCol.put(i, flagsFromMA(sig));
1146      outtsysCol.put(i, tsysout);
1147    }
1148    ++sit;
1149    ++s2it;
1150  }
1151  return out;
1152}
1153
1154//dosigref - migrated from GBT IDL's dosigref.pro, do calibration of position switch
1155// observatiions.
1156// input: sig and ref scantables, and an optional boxcar smoothing width(default width=0,
1157//        no smoothing).
1158// output: resultant scantable [= (sig-ref/ref)*tsys]
1159CountedPtr< Scantable > STMath::dosigref( const CountedPtr < Scantable >& sig,
1160                                          const CountedPtr < Scantable >& ref,
1161                                          int smoothref,
1162                                          casa::Float tsysv,
1163                                          casa::Float tau )
1164{
1165if ( ! ref->conformant(*sig) ) {
1166    throw(AipsError("'sig' and 'ref' scantables are not conformant."));
1167  }
1168  setInsitu(false);
1169  CountedPtr< Scantable > out = getScantable(sig, false);
1170  CountedPtr< Scantable > smref;
1171  if ( smoothref > 1 ) {
1172    float fsmoothref = static_cast<float>(smoothref);
1173    std::string inkernel = "boxcar";
1174    smref = smooth(ref, inkernel, fsmoothref );
1175    ostringstream oss;
1176    oss<<"Applied smoothing of "<<fsmoothref<<" on the reference."<<endl;
1177    pushLog(String(oss));
1178  }
1179  else {
1180    smref = ref;
1181  }
1182  Table& tout = out->table();
1183  const Table& tref = smref->table();
1184  if ( tout.nrow() != tref.nrow() ) {
1185    throw(AipsError("Mismatch in number of rows to form on-source and reference pair."));
1186  }
1187  // iteration by scanno? or cycle no.
1188  TableIterator sit(tout, "SCANNO");
1189  TableIterator s2it(tref, "SCANNO");
1190  while ( !sit.pastEnd() ) {
1191    Table ton = sit.table();
1192    Table t = s2it.table();
1193    ScalarColumn<Double> outintCol(ton, "INTERVAL");
1194    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1195    ArrayColumn<Float> outtsysCol(ton, "TSYS");
1196    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1197    ArrayColumn<Float> refspecCol(t, "SPECTRA");
1198    ROScalarColumn<Double> refintCol(t, "INTERVAL");
1199    ROArrayColumn<Float> reftsysCol(t, "TSYS");
1200    ArrayColumn<uChar> refflagCol(t, "FLAGTRA");
1201    ROScalarColumn<Float> refelevCol(t, "ELEVATION");
1202    for (uInt i=0; i < ton.nrow(); ++i) {
1203
1204      Double onint, refint;
1205      Vector<Float> specon, specref;
1206      // to store scalar (mean) tsys
1207      Vector<Float> tsysref;
1208      outintCol.get(i, onint);
1209      refintCol.get(i, refint);
1210      outspecCol.get(i, specon);
1211      refspecCol.get(i, specref);
1212      Vector<uChar> flagref, flagon;
1213      outflagCol.get(i, flagon);
1214      refflagCol.get(i, flagref);
1215      reftsysCol.get(i, tsysref);
1216
1217      Float tsysrefscalar;
1218      if ( tsysv > 0.0 ) {
1219        ostringstream oss;
1220        Float elev;
1221        refelevCol.get(i, elev);
1222        oss << "user specified Tsys = " << tsysv;
1223        // do recalc elevation if EL = 0
1224        if ( elev == 0 ) {
1225          throw(AipsError("EL=0, elevation data is missing."));
1226        } else {
1227          if ( tau <= 0.0 ) {
1228            throw(AipsError("Valid tau is not supplied."));
1229          } else {
1230            tsysrefscalar = tsysv * exp(tau/elev);
1231          }
1232        }
1233        oss << ", corrected (for El) tsys= "<<tsysrefscalar;
1234        pushLog(String(oss));
1235      }
1236      else {
1237        tsysrefscalar = tsysref[0];
1238      }
1239      //get quotient spectrum
1240      MaskedArray<Float> mref = maskedArray(specref, flagref);
1241      MaskedArray<Float> mon = maskedArray(specon, flagon);
1242      MaskedArray<Float> specres =   tsysrefscalar*((mon - mref)/mref);
1243      Double resint = onint*refint*smoothref/(onint+refint*smoothref);
1244
1245      //Debug
1246      //cerr<<"Tsys used="<<tsysrefscalar<<endl;
1247      //LogIO os( LogOrigin( "STMath", "dosigref", WHERE ) ) ;
1248      //os<<"Tsys used="<<tsysrefscalar<<LogIO::POST;
1249      // fill the result, replay signal tsys by reference tsys
1250      outintCol.put(i, resint);
1251      outspecCol.put(i, specres.getArray());
1252      outflagCol.put(i, flagsFromMA(specres));
1253      outtsysCol.put(i, tsysref);
1254    }
1255    ++sit;
1256    ++s2it;
1257  }
1258  return out;
1259}
1260
1261CountedPtr< Scantable > STMath::donod(const casa::CountedPtr<Scantable>& s,
1262                                     const std::vector<int>& scans,
1263                                     int smoothref,
1264                                     casa::Float tsysv,
1265                                     casa::Float tau,
1266                                     casa::Float tcal )
1267
1268{
1269  setInsitu(false);
1270  STSelector sel;
1271  std::vector<int> scan1, scan2, beams, types;
1272  std::vector< vector<int> > scanpair;
1273  //std::vector<string> calstate;
1274  std::vector<int> calstate;
1275  String msg;
1276
1277  CountedPtr< Scantable > s1b1on, s1b1off, s1b2on, s1b2off;
1278  CountedPtr< Scantable > s2b1on, s2b1off, s2b2on, s2b2off;
1279
1280  std::vector< CountedPtr< Scantable > > sctables;
1281  sctables.push_back(s1b1on);
1282  sctables.push_back(s1b1off);
1283  sctables.push_back(s1b2on);
1284  sctables.push_back(s1b2off);
1285  sctables.push_back(s2b1on);
1286  sctables.push_back(s2b1off);
1287  sctables.push_back(s2b2on);
1288  sctables.push_back(s2b2off);
1289
1290  //check scanlist
1291  int n=s->checkScanInfo(scans);
1292  if (n==1) {
1293     throw(AipsError("Incorrect scan pairs. "));
1294  }
1295
1296  // Assume scans contain only a pair of consecutive scan numbers.
1297  // It is assumed that first beam, b1,  is on target.
1298  // There is no check if the first beam is on or not.
1299  if ( scans.size()==1 ) {
1300    scan1.push_back(scans[0]);
1301    scan2.push_back(scans[0]+1);
1302  } else if ( scans.size()==2 ) {
1303   scan1.push_back(scans[0]);
1304   scan2.push_back(scans[1]);
1305  } else {
1306    if ( scans.size()%2 == 0 ) {
1307      for (uInt i=0; i<scans.size(); i++) {
1308        if (i%2 == 0) {
1309          scan1.push_back(scans[i]);
1310        }
1311        else {
1312          scan2.push_back(scans[i]);
1313        }
1314      }
1315    } else {
1316      throw(AipsError("Odd numbers of scans, cannot form pairs."));
1317    }
1318  }
1319  scanpair.push_back(scan1);
1320  scanpair.push_back(scan2);
1321  //calstate.push_back("*calon");
1322  //calstate.push_back("*[^calon]");
1323  calstate.push_back(SrcType::NODCAL);
1324  calstate.push_back(SrcType::NOD);
1325  CountedPtr< Scantable > ws = getScantable(s, false);
1326  uInt l=0;
1327  while ( l < sctables.size() ) {
1328    for (uInt i=0; i < 2; i++) {
1329      for (uInt j=0; j < 2; j++) {
1330        for (uInt k=0; k < 2; k++) {
1331          sel.reset();
1332          sel.setScans(scanpair[i]);
1333          //sel.setName(calstate[k]);
1334          types.clear();
1335          types.push_back(calstate[k]);
1336          sel.setTypes(types);
1337          beams.clear();
1338          beams.push_back(j);
1339          sel.setBeams(beams);
1340          ws->setSelection(sel);
1341          sctables[l]= getScantable(ws, false);
1342          l++;
1343        }
1344      }
1345    }
1346  }
1347
1348  // replace here by splitData or getData functionality
1349  CountedPtr< Scantable > sig1;
1350  CountedPtr< Scantable > ref1;
1351  CountedPtr< Scantable > sig2;
1352  CountedPtr< Scantable > ref2;
1353  CountedPtr< Scantable > calb1;
1354  CountedPtr< Scantable > calb2;
1355
1356  msg=String("Processing dototalpower for subset of the data");
1357  ostringstream oss1;
1358  oss1 << msg  << endl;
1359  pushLog(String(oss1));
1360  // Debug for IRC CS data
1361  //float tcal1=7.0;
1362  //float tcal2=4.0;
1363  sig1 = dototalpower(sctables[0], sctables[1], tcal=tcal);
1364  ref1 = dototalpower(sctables[2], sctables[3], tcal=tcal);
1365  ref2 = dototalpower(sctables[4], sctables[5], tcal=tcal);
1366  sig2 = dototalpower(sctables[6], sctables[7], tcal=tcal);
1367
1368  // correction of user-specified tsys for elevation here
1369
1370  // dosigref calibration
1371  msg=String("Processing dosigref for subset of the data");
1372  ostringstream oss2;
1373  oss2 << msg  << endl;
1374  pushLog(String(oss2));
1375  calb1=dosigref(sig1,ref2,smoothref,tsysv,tau);
1376  calb2=dosigref(sig2,ref1,smoothref,tsysv,tau);
1377
1378  // iteration by scanno or cycle no.
1379  Table& tcalb1 = calb1->table();
1380  Table& tcalb2 = calb2->table();
1381  TableIterator sit(tcalb1, "SCANNO");
1382  TableIterator s2it(tcalb2, "SCANNO");
1383  while ( !sit.pastEnd() ) {
1384    Table t1 = sit.table();
1385    Table t2= s2it.table();
1386    ArrayColumn<Float> outspecCol(t1, "SPECTRA");
1387    ArrayColumn<Float> outtsysCol(t1, "TSYS");
1388    ArrayColumn<uChar> outflagCol(t1, "FLAGTRA");
1389    ScalarColumn<Double> outintCol(t1, "INTERVAL");
1390    ArrayColumn<Float> t2specCol(t2, "SPECTRA");
1391    ROArrayColumn<Float> t2tsysCol(t2, "TSYS");
1392    ArrayColumn<uChar> t2flagCol(t2, "FLAGTRA");
1393    ROScalarColumn<Double> t2intCol(t2, "INTERVAL");
1394    for (uInt i=0; i < t1.nrow(); ++i) {
1395      Vector<Float> spec1, spec2;
1396      // to store scalar (mean) tsys
1397      Vector<Float> tsys1, tsys2;
1398      Vector<uChar> flag1, flag2;
1399      Double tint1, tint2;
1400      outspecCol.get(i, spec1);
1401      t2specCol.get(i, spec2);
1402      outflagCol.get(i, flag1);
1403      t2flagCol.get(i, flag2);
1404      outtsysCol.get(i, tsys1);
1405      t2tsysCol.get(i, tsys2);
1406      outintCol.get(i, tint1);
1407      t2intCol.get(i, tint2);
1408      // average
1409      // assume scalar tsys for weights
1410      Float wt1, wt2, tsyssq1, tsyssq2;
1411      tsyssq1 = tsys1[0]*tsys1[0];
1412      tsyssq2 = tsys2[0]*tsys2[0];
1413      wt1 = Float(tint1)/tsyssq1;
1414      wt2 = Float(tint2)/tsyssq2;
1415      Float invsumwt=1/(wt1+wt2);
1416      MaskedArray<Float> mspec1 = maskedArray(spec1, flag1);
1417      MaskedArray<Float> mspec2 = maskedArray(spec2, flag2);
1418      MaskedArray<Float> avspec =  invsumwt * (wt1*mspec1 + wt2*mspec2);
1419      //Array<Float> avtsys =  Float(0.5) * (tsys1 + tsys2);
1420      // cerr<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<endl;
1421      // LogIO os( LogOrigin( "STMath", "donod", WHERE ) ) ;
1422      // os<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<LogIO::POST;
1423      tsys1[0] = sqrt(tsyssq1 + tsyssq2);
1424      Array<Float> avtsys =  tsys1;
1425
1426      outspecCol.put(i, avspec.getArray());
1427      outflagCol.put(i, flagsFromMA(avspec));
1428      outtsysCol.put(i, avtsys);
1429    }
1430    ++sit;
1431    ++s2it;
1432  }
1433  return calb1;
1434}
1435
1436//GBTIDL version of frequency switched data calibration
1437CountedPtr< Scantable > STMath::dofs( const CountedPtr< Scantable >& s,
1438                                      const std::vector<int>& scans,
1439                                      int smoothref,
1440                                      casa::Float tsysv,
1441                                      casa::Float tau,
1442                                      casa::Float tcal )
1443{
1444
1445
1446  (void) scans; //currently unused
1447  STSelector sel;
1448  CountedPtr< Scantable > ws = getScantable(s, false);
1449  CountedPtr< Scantable > sig, sigwcal, ref, refwcal;
1450  CountedPtr< Scantable > calsig, calref, out, out1, out2;
1451  Bool nofold=False;
1452  vector<int> types ;
1453
1454  //split the data
1455  //sel.setName("*_fs");
1456  types.push_back( SrcType::FSON ) ;
1457  sel.setTypes( types ) ;
1458  ws->setSelection(sel);
1459  sig = getScantable(ws,false);
1460  sel.reset();
1461  types.clear() ;
1462  //sel.setName("*_fs_calon");
1463  types.push_back( SrcType::FONCAL ) ;
1464  sel.setTypes( types ) ;
1465  ws->setSelection(sel);
1466  sigwcal = getScantable(ws,false);
1467  sel.reset();
1468  types.clear() ;
1469  //sel.setName("*_fsr");
1470  types.push_back( SrcType::FSOFF ) ;
1471  sel.setTypes( types ) ;
1472  ws->setSelection(sel);
1473  ref = getScantable(ws,false);
1474  sel.reset();
1475  types.clear() ;
1476  //sel.setName("*_fsr_calon");
1477  types.push_back( SrcType::FOFFCAL ) ;
1478  sel.setTypes( types ) ;
1479  ws->setSelection(sel);
1480  refwcal = getScantable(ws,false);
1481  sel.reset() ;
1482  types.clear() ;
1483
1484  calsig = dototalpower(sigwcal, sig, tcal=tcal);
1485  calref = dototalpower(refwcal, ref, tcal=tcal);
1486
1487  out1=dosigref(calsig,calref,smoothref,tsysv,tau);
1488  out2=dosigref(calref,calsig,smoothref,tsysv,tau);
1489
1490  Table& tabout1=out1->table();
1491  Table& tabout2=out2->table();
1492  ROScalarColumn<uInt> freqidCol1(tabout1, "FREQ_ID");
1493  ScalarColumn<uInt> freqidCol2(tabout2, "FREQ_ID");
1494  ROArrayColumn<Float> specCol(tabout2, "SPECTRA");
1495  Vector<Float> spec; specCol.get(0, spec);
1496  uInt nchan = spec.nelements();
1497  uInt freqid1; freqidCol1.get(0,freqid1);
1498  uInt freqid2; freqidCol2.get(0,freqid2);
1499  Double rp1, rp2, rv1, rv2, inc1, inc2;
1500  out1->frequencies().getEntry(rp1, rv1, inc1, freqid1);
1501  out2->frequencies().getEntry(rp2, rv2, inc2, freqid2);
1502  //cerr << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << endl ;
1503  //LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1504  //os << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << LogIO::POST ;
1505  if (rp1==rp2) {
1506    Double foffset = rv1 - rv2;
1507    uInt choffset = static_cast<uInt>(foffset/abs(inc2));
1508    if (choffset >= nchan) {
1509      //cerr<<"out-band frequency switching, no folding"<<endl;
1510      LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1511      os<<"out-band frequency switching, no folding"<<LogIO::POST;
1512      nofold = True;
1513    }
1514  }
1515
1516  if (nofold) {
1517    std::vector< CountedPtr< Scantable > > tabs;
1518    tabs.push_back(out1);
1519    tabs.push_back(out2);
1520    out = merge(tabs);
1521  }
1522  else {
1523    //out = out1;
1524    Double choffset = ( rv1 - rv2 ) / inc2 ;
1525    out = dofold( out1, out2, choffset ) ;
1526  }
1527   
1528  return out;
1529}
1530
1531CountedPtr<Scantable> STMath::dofold( const CountedPtr<Scantable> &sig,
1532                                      const CountedPtr<Scantable> &ref,
1533                                      Double choffset,
1534                                      Double choffset2 )
1535{
1536  LogIO os( LogOrigin( "STMath", "dofold", WHERE ) ) ;
1537  os << "choffset=" << choffset << " choffset2=" << choffset2 << LogIO::POST ;
1538
1539  // output scantable
1540  CountedPtr<Scantable> out = getScantable( sig, false ) ;
1541
1542  // separate choffset to integer part and decimal part
1543  Int ioffset = (Int)choffset ;
1544  Double doffset = choffset - ioffset ;
1545  Int ioffset2 = (Int)choffset2 ;
1546  Double doffset2 = choffset2 - ioffset2 ;
1547  os << "ioffset=" << ioffset << " doffset=" << doffset << LogIO::POST ;
1548  os << "ioffset2=" << ioffset2 << " doffset2=" << doffset2 << LogIO::POST ; 
1549
1550  // get column
1551  ROArrayColumn<Float> specCol1( sig->table(), "SPECTRA" ) ;
1552  ROArrayColumn<Float> specCol2( ref->table(), "SPECTRA" ) ;
1553  ROArrayColumn<Float> tsysCol1( sig->table(), "TSYS" ) ;
1554  ROArrayColumn<Float> tsysCol2( ref->table(), "TSYS" ) ;
1555  ROArrayColumn<uChar> flagCol1( sig->table(), "FLAGTRA" ) ;
1556  ROArrayColumn<uChar> flagCol2( ref->table(), "FLAGTRA" ) ;
1557  ROScalarColumn<Double> mjdCol1( sig->table(), "TIME" ) ;
1558  ROScalarColumn<Double> mjdCol2( ref->table(), "TIME" ) ;
1559  ROScalarColumn<Double> intervalCol1( sig->table(), "INTERVAL" ) ;
1560  ROScalarColumn<Double> intervalCol2( ref->table(), "INTERVAL" ) ;
1561
1562  // check
1563  if ( ioffset == 0 ) {
1564    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1565    os << "channel offset is zero, no folding" << LogIO::POST ;
1566    return out ;
1567  }
1568  int nchan = ref->nchan() ;
1569  if ( abs(ioffset) >= nchan ) {
1570    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1571    os << "out-band frequency switching, no folding" << LogIO::POST ;
1572    return out ;
1573  }
1574
1575  // attach column for output scantable
1576  ArrayColumn<Float> specColOut( out->table(), "SPECTRA" ) ;
1577  ArrayColumn<uChar> flagColOut( out->table(), "FLAGTRA" ) ;
1578  ArrayColumn<Float> tsysColOut( out->table(), "TSYS" ) ;
1579  ScalarColumn<Double> mjdColOut( out->table(), "TIME" ) ;
1580  ScalarColumn<Double> intervalColOut( out->table(), "INTERVAL" ) ;
1581  ScalarColumn<uInt> fidColOut( out->table(), "FREQ_ID" ) ;
1582
1583  // for each row
1584  // assume that the data order are same between sig and ref
1585  RowAccumulator acc( asap::W_TINTSYS ) ;
1586  for ( int i = 0 ; i < sig->nrow() ; i++ ) {
1587    // get values
1588    Vector<Float> spsig ;
1589    specCol1.get( i, spsig ) ;
1590    Vector<Float> spref ;
1591    specCol2.get( i, spref ) ;
1592    Vector<Float> tsyssig ;
1593    tsysCol1.get( i, tsyssig ) ;
1594    Vector<Float> tsysref ;
1595    tsysCol2.get( i, tsysref ) ;
1596    Vector<uChar> flagsig ;
1597    flagCol1.get( i, flagsig ) ;
1598    Vector<uChar> flagref ;
1599    flagCol2.get( i, flagref ) ;
1600    Double timesig ;
1601    mjdCol1.get( i, timesig ) ;
1602    Double timeref ;
1603    mjdCol2.get( i, timeref ) ;
1604    Double intsig ;
1605    intervalCol1.get( i, intsig ) ;
1606    Double intref ;
1607    intervalCol2.get( i, intref ) ;
1608
1609    // shift reference spectra
1610    int refchan = spref.nelements() ;
1611    Vector<Float> sspref( spref.nelements() ) ;
1612    Vector<Float> stsysref( tsysref.nelements() ) ;
1613    Vector<uChar> sflagref( flagref.nelements() ) ;
1614    if ( ioffset > 0 ) {
1615      // SPECTRA and FLAGTRA
1616      for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1617        sspref[j] = spref[j+ioffset] ;
1618        sflagref[j] = flagref[j+ioffset] ;
1619      }
1620      for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1621        sspref[j] = spref[j-refchan+ioffset] ;
1622        sflagref[j] = flagref[j-refchan+ioffset] ;
1623      }
1624      spref = sspref.copy() ;
1625      flagref = sflagref.copy() ;
1626      for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1627        sspref[j] = doffset * spref[j+1] + ( 1.0 - doffset ) * spref[j] ;
1628        sflagref[j] = flagref[j+1] + flagref[j] ;
1629      }
1630      sspref[refchan-1] = doffset * spref[0] + ( 1.0 - doffset ) * spref[refchan-1] ;
1631      sflagref[refchan-1] = flagref[0] + flagref[refchan-1] ;
1632
1633      // TSYS
1634      if ( spref.nelements() == tsysref.nelements() ) {
1635        for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1636          stsysref[j] = tsysref[j+ioffset] ;
1637        }
1638        for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1639          stsysref[j] = tsysref[j-refchan+ioffset] ;
1640        }
1641        tsysref = stsysref.copy() ;
1642        for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1643          stsysref[j] = doffset * tsysref[j+1] + ( 1.0 - doffset ) * tsysref[j] ;
1644        }
1645        stsysref[refchan-1] = doffset * tsysref[0] + ( 1.0 - doffset ) * tsysref[refchan-1] ;
1646      }
1647    }
1648    else {
1649      // SPECTRA and FLAGTRA
1650      for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1651        sspref[j] = spref[refchan+ioffset+j] ;
1652        sflagref[j] = flagref[refchan+ioffset+j] ;
1653      }
1654      for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1655        sspref[j] = spref[j+ioffset] ;
1656        sflagref[j] = flagref[j+ioffset] ;
1657      }
1658      spref = sspref.copy() ;
1659      flagref = sflagref.copy() ;
1660      sspref[0] = doffset * spref[refchan-1] + ( 1.0 - doffset ) * spref[0] ;
1661      sflagref[0] = flagref[0] + flagref[refchan-1] ;
1662      for ( int j = 1 ; j < refchan ; j++ ) {
1663        sspref[j] = doffset * spref[j-1] + ( 1.0 - doffset ) * spref[j] ;
1664        sflagref[j] = flagref[j-1] + flagref[j] ;
1665      }
1666      // TSYS
1667      if ( spref.nelements() == tsysref.nelements() ) {
1668        for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1669          stsysref[j] = tsysref[refchan+ioffset+j] ;
1670        }
1671        for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1672          stsysref[j] = tsysref[j+ioffset] ;
1673        }
1674        tsysref = stsysref.copy() ;
1675        stsysref[0] = doffset * tsysref[refchan-1] + ( 1.0 - doffset ) * tsysref[0] ;
1676        for ( int j = 1 ; j < refchan ; j++ ) {
1677          stsysref[j] = doffset * tsysref[j-1] + ( 1.0 - doffset ) * tsysref[j] ;
1678        }
1679      }
1680    }
1681
1682    // shift signal spectra if necessary (only for APEX?)
1683    if ( choffset2 != 0.0 ) {
1684      int sigchan = spsig.nelements() ;
1685      Vector<Float> sspsig( spsig.nelements() ) ;
1686      Vector<Float> stsyssig( tsyssig.nelements() ) ;
1687      Vector<uChar> sflagsig( flagsig.nelements() ) ;
1688      if ( ioffset2 > 0 ) {
1689        // SPECTRA and FLAGTRA
1690        for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1691          sspsig[j] = spsig[j+ioffset2] ;
1692          sflagsig[j] = flagsig[j+ioffset2] ;
1693        }
1694        for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1695          sspsig[j] = spsig[j-sigchan+ioffset2] ;
1696          sflagsig[j] = flagsig[j-sigchan+ioffset2] ;
1697        }
1698        spsig = sspsig.copy() ;
1699        flagsig = sflagsig.copy() ;
1700        for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1701          sspsig[j] = doffset2 * spsig[j+1] + ( 1.0 - doffset2 ) * spsig[j] ;
1702          sflagsig[j] = flagsig[j+1] || flagsig[j] ;
1703        }
1704        sspsig[sigchan-1] = doffset2 * spsig[0] + ( 1.0 - doffset2 ) * spsig[sigchan-1] ;
1705        sflagsig[sigchan-1] = flagsig[0] || flagsig[sigchan-1] ;
1706        // TSTS
1707        if ( spsig.nelements() == tsyssig.nelements() ) {
1708          for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1709            stsyssig[j] = tsyssig[j+ioffset2] ;
1710          }
1711          for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1712            stsyssig[j] = tsyssig[j-sigchan+ioffset2] ;
1713          }
1714          tsyssig = stsyssig.copy() ;
1715          for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1716            stsyssig[j] = doffset2 * tsyssig[j+1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1717          }
1718          stsyssig[sigchan-1] = doffset2 * tsyssig[0] + ( 1.0 - doffset2 ) * tsyssig[sigchan-1] ;
1719        }
1720      }
1721      else {
1722        // SPECTRA and FLAGTRA
1723        for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1724          sspsig[j] = spsig[sigchan+ioffset2+j] ;
1725          sflagsig[j] = flagsig[sigchan+ioffset2+j] ;
1726        }
1727        for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1728          sspsig[j] = spsig[j+ioffset2] ;
1729          sflagsig[j] = flagsig[j+ioffset2] ;
1730        }
1731        spsig = sspsig.copy() ;
1732        flagsig = sflagsig.copy() ;
1733        sspsig[0] = doffset2 * spsig[sigchan-1] + ( 1.0 - doffset2 ) * spsig[0] ;
1734        sflagsig[0] = flagsig[0] + flagsig[sigchan-1] ;
1735        for ( int j = 1 ; j < sigchan ; j++ ) {
1736          sspsig[j] = doffset2 * spsig[j-1] + ( 1.0 - doffset2 ) * spsig[j] ;
1737          sflagsig[j] = flagsig[j-1] + flagsig[j] ;
1738        }
1739        // TSYS
1740        if ( spsig.nelements() == tsyssig.nelements() ) {
1741          for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1742            stsyssig[j] = tsyssig[sigchan+ioffset2+j] ;
1743          }
1744          for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1745            stsyssig[j] = tsyssig[j+ioffset2] ;
1746          }
1747          tsyssig = stsyssig.copy() ;
1748          stsyssig[0] = doffset2 * tsyssig[sigchan-1] + ( 1.0 - doffset2 ) * tsyssig[0] ;
1749          for ( int j = 1 ; j < sigchan ; j++ ) {
1750            stsyssig[j] = doffset2 * tsyssig[j-1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1751          }
1752        }
1753      }
1754    }
1755
1756    // folding
1757    acc.add( spsig, !flagsig, tsyssig, intsig, timesig ) ;
1758    acc.add( sspref, !sflagref, stsysref, intref, timeref ) ;
1759   
1760    // put result
1761    specColOut.put( i, acc.getSpectrum() ) ;
1762    const Vector<Bool> &msk = acc.getMask() ;
1763    Vector<uChar> flg( msk.shape() ) ;
1764    convertArray( flg, !msk ) ;
1765    flagColOut.put( i, flg ) ;
1766    tsysColOut.put( i, acc.getTsys() ) ;
1767    intervalColOut.put( i, acc.getInterval() ) ;
1768    mjdColOut.put( i, acc.getTime() ) ;
1769    // change FREQ_ID to unshifted IF setting (only for APEX?)
1770    if ( choffset2 != 0.0 ) {
1771      uInt freqid = fidColOut( 0 ) ; // assume single-IF data
1772      double refpix, refval, increment ;
1773      out->frequencies().getEntry( refpix, refval, increment, freqid ) ;
1774      refval -= choffset * increment ;
1775      uInt newfreqid = out->frequencies().addEntry( refpix, refval, increment ) ;
1776      Vector<uInt> freqids = fidColOut.getColumn() ;
1777      for ( uInt j = 0 ; j < freqids.nelements() ; j++ ) {
1778        if ( freqids[j] == freqid )
1779          freqids[j] = newfreqid ;
1780      }
1781      fidColOut.putColumn( freqids ) ;
1782    }
1783
1784    acc.reset() ;
1785  }
1786
1787  return out ;
1788}
1789
1790
1791CountedPtr< Scantable > STMath::freqSwitch( const CountedPtr< Scantable >& in )
1792{
1793  // make copy or reference
1794  CountedPtr< Scantable > out = getScantable(in, false);
1795  Table& tout = out->table();
1796  Block<String> cols(4);
1797  cols[0] = String("SCANNO");
1798  cols[1] = String("CYCLENO");
1799  cols[2] = String("BEAMNO");
1800  cols[3] = String("POLNO");
1801  TableIterator iter(tout, cols);
1802  while (!iter.pastEnd()) {
1803    Table subt = iter.table();
1804    // this should leave us with two rows for the two IFs....if not ignore
1805    if (subt.nrow() != 2 ) {
1806      continue;
1807    }
1808    ArrayColumn<Float> specCol(subt, "SPECTRA");
1809    ArrayColumn<Float> tsysCol(subt, "TSYS");
1810    ArrayColumn<uChar> flagCol(subt, "FLAGTRA");
1811    Vector<Float> onspec,offspec, ontsys, offtsys;
1812    Vector<uChar> onflag, offflag;
1813    tsysCol.get(0, ontsys);   tsysCol.get(1, offtsys);
1814    specCol.get(0, onspec);   specCol.get(1, offspec);
1815    flagCol.get(0, onflag);   flagCol.get(1, offflag);
1816    MaskedArray<Float> on  = maskedArray(onspec, onflag);
1817    MaskedArray<Float> off = maskedArray(offspec, offflag);
1818    MaskedArray<Float> oncopy = on.copy();
1819
1820    on /= off; on -= 1.0f;
1821    on *= ontsys[0];
1822    off /= oncopy; off -= 1.0f;
1823    off *= offtsys[0];
1824    specCol.put(0, on.getArray());
1825    const Vector<Bool>& m0 = on.getMask();
1826    Vector<uChar> flags0(m0.shape());
1827    convertArray(flags0, !m0);
1828    flagCol.put(0, flags0);
1829
1830    specCol.put(1, off.getArray());
1831    const Vector<Bool>& m1 = off.getMask();
1832    Vector<uChar> flags1(m1.shape());
1833    convertArray(flags1, !m1);
1834    flagCol.put(1, flags1);
1835    ++iter;
1836  }
1837
1838  return out;
1839}
1840
1841std::vector< float > STMath::statistic( const CountedPtr< Scantable > & in,
1842                                        const std::vector< bool > & mask,
1843                                        const std::string& which )
1844{
1845
1846  Vector<Bool> m(mask);
1847  const Table& tab = in->table();
1848  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1849  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1850  std::vector<float> out;
1851  for (uInt i=0; i < tab.nrow(); ++i ) {
1852    Vector<Float> spec; specCol.get(i, spec);
1853    Vector<uChar> flag; flagCol.get(i, flag);
1854    MaskedArray<Float> ma  = maskedArray(spec, flag);
1855    float outstat = 0.0;
1856    if ( spec.nelements() == m.nelements() ) {
1857      outstat = mathutil::statistics(which, ma(m));
1858    } else {
1859      outstat = mathutil::statistics(which, ma);
1860    }
1861    out.push_back(outstat);
1862  }
1863  return out;
1864}
1865
1866std::vector< float > STMath::statisticRow( const CountedPtr< Scantable > & in,
1867                                        const std::vector< bool > & mask,
1868                                        const std::string& which,
1869                                        int row )
1870{
1871
1872  Vector<Bool> m(mask);
1873  const Table& tab = in->table();
1874  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1875  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1876  std::vector<float> out;
1877
1878  Vector<Float> spec; specCol.get(row, spec);
1879  Vector<uChar> flag; flagCol.get(row, flag);
1880  MaskedArray<Float> ma  = maskedArray(spec, flag);
1881  float outstat = 0.0;
1882  if ( spec.nelements() == m.nelements() ) {
1883    outstat = mathutil::statistics(which, ma(m));
1884  } else {
1885    outstat = mathutil::statistics(which, ma);
1886  }
1887  out.push_back(outstat);
1888
1889  return out;
1890}
1891
1892std::vector< int > STMath::minMaxChan( const CountedPtr< Scantable > & in,
1893                                        const std::vector< bool > & mask,
1894                                        const std::string& which )
1895{
1896
1897  Vector<Bool> m(mask);
1898  const Table& tab = in->table();
1899  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1900  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1901  std::vector<int> out;
1902  for (uInt i=0; i < tab.nrow(); ++i ) {
1903    Vector<Float> spec; specCol.get(i, spec);
1904    Vector<uChar> flag; flagCol.get(i, flag);
1905    MaskedArray<Float> ma  = maskedArray(spec, flag);
1906    if (ma.ndim() != 1) {
1907      throw (ArrayError(
1908          "std::vector<int> STMath::minMaxChan("
1909          "ContedPtr<Scantable> &in, std::vector<bool> &mask, "
1910          " std::string &which)"
1911          " - MaskedArray is not 1D"));
1912    }
1913    IPosition outpos(1,0);
1914    if ( spec.nelements() == m.nelements() ) {
1915      outpos = mathutil::minMaxPos(which, ma(m));
1916    } else {
1917      outpos = mathutil::minMaxPos(which, ma);
1918    }
1919    out.push_back(outpos[0]);
1920  }
1921  return out;
1922}
1923
1924CountedPtr< Scantable > STMath::bin( const CountedPtr< Scantable > & in,
1925                                     int width )
1926{
1927  if ( !in->getSelection().empty() ) throw(AipsError("Can't bin subset of the data."));
1928  CountedPtr< Scantable > out = getScantable(in, false);
1929  Table& tout = out->table();
1930  out->frequencies().rescale(width, "BIN");
1931  ArrayColumn<Float> specCol(tout, "SPECTRA");
1932  ArrayColumn<uChar> flagCol(tout, "FLAGTRA");
1933  ArrayColumn<Float> tsysCol(tout, "TSYS");
1934
1935  for (uInt i=0; i < tout.nrow(); ++i ) {
1936    MaskedArray<Float> main  = maskedArray(specCol(i), flagCol(i));
1937    MaskedArray<Float> maout;
1938    LatticeUtilities::bin(maout, main, 0, Int(width));
1939    specCol.put(i, maout.getArray());
1940    flagCol.put(i, flagsFromMA(maout));
1941    if (tsysCol(i).nelements() == specCol(i).nelements()) {
1942      MaskedArray<Float> matsysin = maskedArray(tsysCol(i), flagCol(i));
1943      MaskedArray<Float> matsysout;
1944      LatticeUtilities::bin(matsysout, matsysin, 0, Int(width));
1945      tsysCol.put(i, matsysout.getArray());
1946    }
1947    // take only the first binned spectrum's length for the deprecated
1948    // global header item nChan
1949    if (i==0) tout.rwKeywordSet().define(String("nChan"),
1950                                       Int(maout.getArray().nelements()));
1951  }
1952  return out;
1953}
1954
1955CountedPtr< Scantable > STMath::resample( const CountedPtr< Scantable >& in,
1956                                          const std::string& method,
1957                                          float width )
1958//
1959// Should add the possibility of width being specified in km/s. This means
1960// that for each freqID (SpectralCoordinate) we will need to convert to an
1961// average channel width (say at the reference pixel).  Then we would need
1962// to be careful to make sure each spectrum (of different freqID)
1963// is the same length.
1964//
1965{
1966  //InterpolateArray1D<Double,Float>::InterpolationMethod interp;
1967  Int interpMethod(stringToIMethod(method));
1968
1969  CountedPtr< Scantable > out = getScantable(in, false);
1970  Table& tout = out->table();
1971
1972// Resample SpectralCoordinates (one per freqID)
1973  out->frequencies().rescale(width, "RESAMPLE");
1974  TableIterator iter(tout, "IFNO");
1975  TableRow row(tout);
1976  while ( !iter.pastEnd() ) {
1977    Table tab = iter.table();
1978    ArrayColumn<Float> specCol(tab, "SPECTRA");
1979    //ArrayColumn<Float> tsysCol(tout, "TSYS");
1980    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1981    Vector<Float> spec;
1982    Vector<uChar> flag;
1983    specCol.get(0,spec); // the number of channels should be constant per IF
1984    uInt nChanIn = spec.nelements();
1985    Vector<Float> xIn(nChanIn); indgen(xIn);
1986    Int fac =  Int(nChanIn/width);
1987    Vector<Float> xOut(fac+10); // 10 to be safe - resize later
1988    uInt k = 0;
1989    Float x = 0.0;
1990    while (x < Float(nChanIn) ) {
1991      xOut(k) = x;
1992      k++;
1993      x += width;
1994    }
1995    uInt nChanOut = k;
1996    xOut.resize(nChanOut, True);
1997    // process all rows for this IFNO
1998    Vector<Float> specOut;
1999    Vector<Bool> maskOut;
2000    Vector<uChar> flagOut;
2001    for (uInt i=0; i < tab.nrow(); ++i) {
2002      specCol.get(i, spec);
2003      flagCol.get(i, flag);
2004      Vector<Bool> mask(flag.nelements());
2005      convertArray(mask, flag);
2006
2007      IPosition shapeIn(spec.shape());
2008      //sh.nchan = nChanOut;
2009      InterpolateArray1D<Float,Float>::interpolate(specOut, maskOut, xOut,
2010                                                   xIn, spec, mask,
2011                                                   interpMethod, True, True);
2012      /// @todo do the same for channel based Tsys
2013      flagOut.resize(maskOut.nelements());
2014      convertArray(flagOut, maskOut);
2015      specCol.put(i, specOut);
2016      flagCol.put(i, flagOut);
2017    }
2018    ++iter;
2019  }
2020
2021  return out;
2022}
2023
2024STMath::imethod STMath::stringToIMethod(const std::string& in)
2025{
2026  static STMath::imap lookup;
2027
2028  // initialize the lookup table if necessary
2029  if ( lookup.empty() ) {
2030    lookup["nearest"]   = InterpolateArray1D<Double,Float>::nearestNeighbour;
2031    lookup["linear"] = InterpolateArray1D<Double,Float>::linear;
2032    lookup["cubic"]  = InterpolateArray1D<Double,Float>::cubic;
2033    lookup["spline"]  = InterpolateArray1D<Double,Float>::spline;
2034  }
2035
2036  STMath::imap::const_iterator iter = lookup.find(in);
2037
2038  if ( lookup.end() == iter ) {
2039    std::string message = in;
2040    message += " is not a valid interpolation mode";
2041    throw(AipsError(message));
2042  }
2043  return iter->second;
2044}
2045
2046WeightType STMath::stringToWeight(const std::string& in)
2047{
2048  static std::map<std::string, WeightType> lookup;
2049
2050  // initialize the lookup table if necessary
2051  if ( lookup.empty() ) {
2052    lookup["NONE"]   = asap::W_NONE;
2053    lookup["TINT"] = asap::W_TINT;
2054    lookup["TINTSYS"]  = asap::W_TINTSYS;
2055    lookup["TSYS"]  = asap::W_TSYS;
2056    lookup["VAR"]  = asap::W_VAR;
2057  }
2058
2059  std::map<std::string, WeightType>::const_iterator iter = lookup.find(in);
2060
2061  if ( lookup.end() == iter ) {
2062    std::string message = in;
2063    message += " is not a valid weighting mode";
2064    throw(AipsError(message));
2065  }
2066  return iter->second;
2067}
2068
2069CountedPtr< Scantable > STMath::gainElevation( const CountedPtr< Scantable >& in,
2070                                               const vector< float > & coeff,
2071                                               const std::string & filename,
2072                                               const std::string& method)
2073{
2074  // Get elevation data from Scantable and convert to degrees
2075  CountedPtr< Scantable > out = getScantable(in, false);
2076  Table& tab = out->table();
2077  ROScalarColumn<Float> elev(tab, "ELEVATION");
2078  Vector<Float> x = elev.getColumn();
2079  x *= Float(180 / C::pi);                        // Degrees
2080
2081  Vector<Float> coeffs(coeff);
2082  const uInt nc = coeffs.nelements();
2083  if ( filename.length() > 0 && nc > 0 ) {
2084    throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
2085  }
2086
2087  // Correct
2088  if ( nc > 0 || filename.length() == 0 ) {
2089    // Find instrument
2090    Bool throwit = True;
2091    Instrument inst =
2092      STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2093                                throwit);
2094
2095    // Set polynomial
2096    Polynomial<Float>* ppoly = 0;
2097    Vector<Float> coeff;
2098    String msg;
2099    if ( nc > 0 ) {
2100      ppoly = new Polynomial<Float>(nc-1);
2101      coeff = coeffs;
2102      msg = String("user");
2103    } else {
2104      STAttr sdAttr;
2105      coeff = sdAttr.gainElevationPoly(inst);
2106      ppoly = new Polynomial<Float>(coeff.nelements()-1);
2107      msg = String("built in");
2108    }
2109
2110    if ( coeff.nelements() > 0 ) {
2111      ppoly->setCoefficients(coeff);
2112    } else {
2113      delete ppoly;
2114      throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
2115    }
2116    ostringstream oss;
2117    oss << "Making polynomial correction with " << msg << " coefficients:" << endl;
2118    oss << "   " <<  coeff;
2119    pushLog(String(oss));
2120    const uInt nrow = tab.nrow();
2121    Vector<Float> factor(nrow);
2122    for ( uInt i=0; i < nrow; ++i ) {
2123      factor[i] = 1.0 / (*ppoly)(x[i]);
2124    }
2125    delete ppoly;
2126    scaleByVector(tab, factor, true);
2127
2128  } else {
2129    // Read and correct
2130    pushLog("Making correction from ascii Table");
2131    scaleFromAsciiTable(tab, filename, method, x, true);
2132  }
2133  return out;
2134}
2135
2136void STMath::scaleFromAsciiTable(Table& in, const std::string& filename,
2137                                 const std::string& method,
2138                                 const Vector<Float>& xout, bool dotsys)
2139{
2140
2141// Read gain-elevation ascii file data into a Table.
2142
2143  String formatString;
2144  Table tbl = readAsciiTable(formatString, Table::Memory, filename, "", "", False);
2145  scaleFromTable(in, tbl, method, xout, dotsys);
2146}
2147
2148void STMath::scaleFromTable(Table& in,
2149                            const Table& table,
2150                            const std::string& method,
2151                            const Vector<Float>& xout, bool dotsys)
2152{
2153
2154  ROScalarColumn<Float> geElCol(table, "ELEVATION");
2155  ROScalarColumn<Float> geFacCol(table, "FACTOR");
2156  Vector<Float> xin = geElCol.getColumn();
2157  Vector<Float> yin = geFacCol.getColumn();
2158  Vector<Bool> maskin(xin.nelements(),True);
2159
2160  // Interpolate (and extrapolate) with desired method
2161
2162  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2163
2164   Vector<Float> yout;
2165   Vector<Bool> maskout;
2166   InterpolateArray1D<Float,Float>::interpolate(yout, maskout, xout,
2167                                                xin, yin, maskin, interp,
2168                                                True, True);
2169
2170   scaleByVector(in, Float(1.0)/yout, dotsys);
2171}
2172
2173void STMath::scaleByVector( Table& in,
2174                            const Vector< Float >& factor,
2175                            bool dotsys )
2176{
2177  uInt nrow = in.nrow();
2178  if ( factor.nelements() != nrow ) {
2179    throw(AipsError("factors.nelements() != table.nelements()"));
2180  }
2181  ArrayColumn<Float> specCol(in, "SPECTRA");
2182  ArrayColumn<uChar> flagCol(in, "FLAGTRA");
2183  ArrayColumn<Float> tsysCol(in, "TSYS");
2184  for (uInt i=0; i < nrow; ++i) {
2185    MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2186    ma *= factor[i];
2187    specCol.put(i, ma.getArray());
2188    flagCol.put(i, flagsFromMA(ma));
2189    if ( dotsys ) {
2190      Vector<Float> tsys = tsysCol(i);
2191      tsys *= factor[i];
2192      tsysCol.put(i,tsys);
2193    }
2194  }
2195}
2196
2197CountedPtr< Scantable > STMath::convertFlux( const CountedPtr< Scantable >& in,
2198                                             float d, float etaap,
2199                                             float jyperk )
2200{
2201  CountedPtr< Scantable > out = getScantable(in, false);
2202  Table& tab = in->table();
2203  Table& outtab = out->table();
2204  Unit fluxUnit(tab.keywordSet().asString("FluxUnit"));
2205  Unit K(String("K"));
2206  Unit JY(String("Jy"));
2207
2208  bool tokelvin = true;
2209  Double cfac = 1.0;
2210
2211  if ( fluxUnit == JY ) {
2212    pushLog("Converting to K");
2213    Quantum<Double> t(1.0,fluxUnit);
2214    Quantum<Double> t2 = t.get(JY);
2215    cfac = (t2 / t).getValue();               // value to Jy
2216
2217    tokelvin = true;
2218    out->setFluxUnit("K");
2219  } else if ( fluxUnit == K ) {
2220    pushLog("Converting to Jy");
2221    Quantum<Double> t(1.0,fluxUnit);
2222    Quantum<Double> t2 = t.get(K);
2223    cfac = (t2 / t).getValue();              // value to K
2224
2225    tokelvin = false;
2226    out->setFluxUnit("Jy");
2227  } else {
2228    throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
2229  }
2230  // Make sure input values are converted to either Jy or K first...
2231  Float factor = cfac;
2232
2233  // Select method
2234  if (jyperk > 0.0) {
2235    factor *= jyperk;
2236    if ( tokelvin ) factor = 1.0 / jyperk;
2237    ostringstream oss;
2238    oss << "Jy/K = " << jyperk;
2239    pushLog(String(oss));
2240    Vector<Float> factors(outtab.nrow(), factor);
2241    scaleByVector(outtab,factors, false);
2242  } else if ( etaap > 0.0) {
2243    if (d < 0) {
2244      Instrument inst =
2245        STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2246                                  True);
2247      STAttr sda;
2248      d = sda.diameter(inst);
2249    }
2250    jyperk = STAttr::findJyPerK(etaap, d);
2251    ostringstream oss;
2252    oss << "Jy/K = " << jyperk;
2253    pushLog(String(oss));
2254    factor *= jyperk;
2255    if ( tokelvin ) {
2256      factor = 1.0 / factor;
2257    }
2258    Vector<Float> factors(outtab.nrow(), factor);
2259    scaleByVector(outtab, factors, False);
2260  } else {
2261
2262    // OK now we must deal with automatic look up of values.
2263    // We must also deal with the fact that the factors need
2264    // to be computed per IF and may be different and may
2265    // change per integration.
2266
2267    pushLog("Looking up conversion factors");
2268    convertBrightnessUnits(out, tokelvin, cfac);
2269  }
2270
2271  return out;
2272}
2273
2274void STMath::convertBrightnessUnits( CountedPtr<Scantable>& in,
2275                                     bool tokelvin, float cfac )
2276{
2277  Table& table = in->table();
2278  Instrument inst =
2279    STAttr::convertInstrument(table.keywordSet().asString("AntennaName"), True);
2280  TableIterator iter(table, "FREQ_ID");
2281  STFrequencies stfreqs = in->frequencies();
2282  STAttr sdAtt;
2283  while (!iter.pastEnd()) {
2284    Table tab = iter.table();
2285    ArrayColumn<Float> specCol(tab, "SPECTRA");
2286    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2287    ROScalarColumn<uInt> freqidCol(tab, "FREQ_ID");
2288    MEpoch::ROScalarColumn timeCol(tab, "TIME");
2289
2290    uInt freqid; freqidCol.get(0, freqid);
2291    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2292    // STAttr.JyPerK has a Vector interface... change sometime.
2293    Vector<Float> freqs(1,stfreqs.getRefFreq(freqid, tmpspec.nelements()));
2294    for ( uInt i=0; i<tab.nrow(); ++i) {
2295      Float jyperk = (sdAtt.JyPerK(inst, timeCol(i), freqs))[0];
2296      Float factor = cfac * jyperk;
2297      if ( tokelvin ) factor = Float(1.0) / factor;
2298      MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2299      ma *= factor;
2300      specCol.put(i, ma.getArray());
2301      flagCol.put(i, flagsFromMA(ma));
2302    }
2303  ++iter;
2304  }
2305}
2306
2307CountedPtr< Scantable > STMath::opacity( const CountedPtr< Scantable > & in,
2308                                         const std::vector<float>& tau )
2309{
2310  CountedPtr< Scantable > out = getScantable(in, false);
2311
2312  Table outtab = out->table();
2313
2314  const Int ntau = uInt(tau.size());
2315  std::vector<float>::const_iterator tauit = tau.begin();
2316  AlwaysAssert((ntau == 1 || ntau == in->nif() || ntau == in->nif() * in->npol()),
2317               AipsError);
2318  TableIterator iiter(outtab, "IFNO");
2319  while ( !iiter.pastEnd() ) {
2320    Table itab = iiter.table();
2321    TableIterator piter(itab, "POLNO");
2322    while ( !piter.pastEnd() ) {
2323      Table tab = piter.table();
2324      ROScalarColumn<Float> elev(tab, "ELEVATION");
2325      ArrayColumn<Float> specCol(tab, "SPECTRA");
2326      ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2327      ArrayColumn<Float> tsysCol(tab, "TSYS");
2328      for ( uInt i=0; i<tab.nrow(); ++i) {
2329        Float zdist = Float(C::pi_2) - elev(i);
2330        Float factor = exp(*tauit/cos(zdist));
2331        MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2332        ma *= factor;
2333        specCol.put(i, ma.getArray());
2334        flagCol.put(i, flagsFromMA(ma));
2335        Vector<Float> tsys;
2336        tsysCol.get(i, tsys);
2337        tsys *= factor;
2338        tsysCol.put(i, tsys);
2339      }
2340      if (ntau == in->nif()*in->npol() ) {
2341        tauit++;
2342      }
2343      piter++;
2344    }
2345    if (ntau >= in->nif() ) {
2346      tauit++;
2347    }
2348    iiter++;
2349  }
2350  return out;
2351}
2352
2353CountedPtr< Scantable > STMath::smoothOther( const CountedPtr< Scantable >& in,
2354                                             const std::string& kernel,
2355                                             float width, int order)
2356{
2357  CountedPtr< Scantable > out = getScantable(in, false);
2358  Table table = out->table();
2359
2360  TableIterator iter(table, "IFNO");
2361  while (!iter.pastEnd()) {
2362    Table tab = iter.table();
2363    ArrayColumn<Float> specCol(tab, "SPECTRA");
2364    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2365    Vector<Float> spec;
2366    Vector<uChar> flag;
2367    for (uInt i = 0; i < tab.nrow(); ++i) {
2368      specCol.get(i, spec);
2369      flagCol.get(i, flag);
2370      Vector<Bool> mask(flag.nelements());
2371      convertArray(mask, flag);
2372      Vector<Float> specout;
2373      Vector<Bool> maskout;
2374      if (kernel == "hanning") {
2375        mathutil::hanning(specout, maskout, spec, !mask);
2376        convertArray(flag, !maskout);
2377      } else if (kernel == "rmedian") {
2378        mathutil::runningMedian(specout, maskout, spec , mask, width);
2379        convertArray(flag, maskout);
2380      } else if (kernel == "poly") {
2381        mathutil::polyfit(specout, maskout, spec, !mask, width, order);
2382        convertArray(flag, !maskout);
2383      }
2384
2385      for (uInt j = 0; j < flag.nelements(); ++j) {
2386        uChar userFlag = 1 << 7;
2387        if (maskout[j]==True) userFlag = 0 << 7;
2388        flag(j) = userFlag;
2389      }
2390
2391      flagCol.put(i, flag);
2392      specCol.put(i, specout);
2393    }
2394  ++iter;
2395  }
2396  return out;
2397}
2398
2399CountedPtr< Scantable > STMath::smooth( const CountedPtr< Scantable >& in,
2400                                        const std::string& kernel, float width,
2401                                        int order)
2402{
2403  if (kernel == "rmedian"  || kernel == "hanning" || kernel == "poly") {
2404    return smoothOther(in, kernel, width, order);
2405  }
2406  CountedPtr< Scantable > out = getScantable(in, false);
2407  Table& table = out->table();
2408  VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernel);
2409  // same IFNO should have same no of channels
2410  // this saves overhead
2411  TableIterator iter(table, "IFNO");
2412  while (!iter.pastEnd()) {
2413    Table tab = iter.table();
2414    ArrayColumn<Float> specCol(tab, "SPECTRA");
2415    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2416    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2417    uInt nchan = tmpspec.nelements();
2418    Vector<Float> kvec = VectorKernel::make(type, width, nchan, True, False);
2419    Convolver<Float> conv(kvec, IPosition(1,nchan));
2420    Vector<Float> spec;
2421    Vector<uChar> flag;
2422    for ( uInt i=0; i<tab.nrow(); ++i) {
2423      specCol.get(i, spec);
2424      flagCol.get(i, flag);
2425      Vector<Bool> mask(flag.nelements());
2426      convertArray(mask, flag);
2427      Vector<Float> specout;
2428      mathutil::replaceMaskByZero(specout, mask);
2429      conv.linearConv(specout, spec);
2430      specCol.put(i, specout);
2431    }
2432    ++iter;
2433  }
2434  return out;
2435}
2436
2437CountedPtr< Scantable >
2438  STMath::merge( const std::vector< CountedPtr < Scantable > >& in )
2439{
2440  if ( in.size() < 2 ) {
2441    throw(AipsError("Need at least two scantables to perform a merge."));
2442  }
2443  std::vector<CountedPtr < Scantable > >::const_iterator it = in.begin();
2444  bool insitu = insitu_;
2445  setInsitu(false);
2446  CountedPtr< Scantable > out = getScantable(*it, false);
2447  setInsitu(insitu);
2448  Table& tout = out->table();
2449  ScalarColumn<uInt> freqidcol(tout,"FREQ_ID"), molidcol(tout, "MOLECULE_ID");
2450  ScalarColumn<uInt> scannocol(tout,"SCANNO"), focusidcol(tout,"FOCUS_ID");
2451  // Renumber SCANNO to be 0-based
2452  Vector<uInt> scannos = scannocol.getColumn();
2453  uInt offset = min(scannos);
2454  scannos -= offset;
2455  scannocol.putColumn(scannos);
2456  uInt newscanno = max(scannos)+1;
2457  ++it;
2458  while ( it != in.end() ){
2459    if ( ! (*it)->conformant(*out) ) {
2460      // non conformant.
2461      //pushLog(String("Warning: Can't merge scantables as header info differs."));
2462      LogIO os( LogOrigin( "STMath", "merge()", WHERE ) ) ;
2463      os << LogIO::SEVERE << "Can't merge scantables as header informations (any one of AntennaName, Equinox, and FluxUnit) differ." << LogIO::EXCEPTION ;
2464    }
2465    out->appendToHistoryTable((*it)->history());
2466    const Table& tab = (*it)->table();
2467
2468    Block<String> cols(3);
2469    cols[0] = String("FREQ_ID");
2470    cols[1] = String("MOLECULE_ID");
2471    cols[2] = String("FOCUS_ID");
2472
2473    TableIterator scanit(tab, "SCANNO");
2474    while (!scanit.pastEnd()) {
2475      ScalarColumn<uInt> thescannocol(scanit.table(),"SCANNO");
2476      Vector<uInt> thescannos(thescannocol.nrow(),newscanno);
2477      thescannocol.putColumn(thescannos);
2478      TableIterator subit(scanit.table(), cols);
2479      while ( !subit.pastEnd() ) {
2480        uInt nrow = tout.nrow();
2481        Table thetab = subit.table();
2482        ROTableRow row(thetab);
2483        Vector<uInt> thecolvals(thetab.nrow());
2484        ScalarColumn<uInt> thefreqidcol(thetab,"FREQ_ID");
2485        ScalarColumn<uInt> themolidcol(thetab, "MOLECULE_ID");
2486        ScalarColumn<uInt> thefocusidcol(thetab,"FOCUS_ID");
2487        // The selected subset of table should have
2488        // the equal FREQ_ID, MOLECULE_ID, and FOCUS_ID values.
2489        const TableRecord& rec = row.get(0);
2490        // Set the proper FREQ_ID
2491        Double rv,rp,inc;
2492        (*it)->frequencies().getEntry(rp, rv, inc, rec.asuInt("FREQ_ID"));
2493        uInt id;
2494        id = out->frequencies().addEntry(rp, rv, inc);
2495        thecolvals = id;
2496        thefreqidcol.putColumn(thecolvals);
2497        // Set the proper MOLECULE_ID
2498        Vector<String> name,fname;Vector<Double> rf;
2499        (*it)->molecules().getEntry(rf, name, fname, rec.asuInt("MOLECULE_ID"));
2500        id = out->molecules().addEntry(rf, name, fname);
2501        thecolvals = id;
2502        themolidcol.putColumn(thecolvals);
2503        // Set the proper FOCUS_ID
2504        Float fpa,frot,fax,ftan,fhand,fmount,fuser, fxy, fxyp;
2505        (*it)->focus().getEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2506                                fxy, fxyp, rec.asuInt("FOCUS_ID"));
2507        id = out->focus().addEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2508                                   fxy, fxyp);
2509        thecolvals = id;
2510        thefocusidcol.putColumn(thecolvals);
2511
2512        tout.addRow(thetab.nrow());
2513        TableCopy::copyRows(tout, thetab, nrow, 0, thetab.nrow());
2514
2515        ++subit;
2516      }
2517      ++newscanno;
2518      ++scanit;
2519    }
2520    ++it;
2521  }
2522  return out;
2523}
2524
2525CountedPtr< Scantable >
2526  STMath::invertPhase( const CountedPtr < Scantable >& in )
2527{
2528  return applyToPol(in, &STPol::invertPhase, Float(0.0));
2529}
2530
2531CountedPtr< Scantable >
2532  STMath::rotateXYPhase( const CountedPtr < Scantable >& in, float phase )
2533{
2534   return applyToPol(in, &STPol::rotatePhase, Float(phase));
2535}
2536
2537CountedPtr< Scantable >
2538  STMath::rotateLinPolPhase( const CountedPtr < Scantable >& in, float phase )
2539{
2540  return applyToPol(in, &STPol::rotateLinPolPhase, Float(phase));
2541}
2542
2543CountedPtr< Scantable > STMath::applyToPol( const CountedPtr<Scantable>& in,
2544                                             STPol::polOperation fptr,
2545                                             Float phase )
2546{
2547  CountedPtr< Scantable > out = getScantable(in, false);
2548  Table& tout = out->table();
2549  Block<String> cols(4);
2550  cols[0] = String("SCANNO");
2551  cols[1] = String("BEAMNO");
2552  cols[2] = String("IFNO");
2553  cols[3] = String("CYCLENO");
2554  TableIterator iter(tout, cols);
2555  CountedPtr<STPol> stpol = STPol::getPolClass(out->factories_,
2556                                               out->getPolType() );
2557  while (!iter.pastEnd()) {
2558    Table t = iter.table();
2559    ArrayColumn<Float> speccol(t, "SPECTRA");
2560    ScalarColumn<uInt> focidcol(t, "FOCUS_ID");
2561    Matrix<Float> pols(speccol.getColumn());
2562    try {
2563      stpol->setSpectra(pols);
2564      Float fang,fhand;
2565      fang = in->focusTable_.getTotalAngle(focidcol(0));
2566      fhand = in->focusTable_.getFeedHand(focidcol(0));
2567      stpol->setPhaseCorrections(fang, fhand);
2568      // use a member function pointer in STPol.  This only works on
2569      // the STPol pointer itself, not the Counted Pointer so
2570      // derefernce it.
2571      (&(*(stpol))->*fptr)(phase);
2572      speccol.putColumn(stpol->getSpectra());
2573    } catch (AipsError& e) {
2574      //delete stpol;stpol=0;
2575      throw(e);
2576    }
2577    ++iter;
2578  }
2579  //delete stpol;stpol=0;
2580  return out;
2581}
2582
2583CountedPtr< Scantable >
2584  STMath::swapPolarisations( const CountedPtr< Scantable > & in )
2585{
2586  CountedPtr< Scantable > out = getScantable(in, false);
2587  Table& tout = out->table();
2588  Table t0 = tout(tout.col("POLNO") == 0);
2589  Table t1 = tout(tout.col("POLNO") == 1);
2590  if ( t0.nrow() != t1.nrow() )
2591    throw(AipsError("Inconsistent number of polarisations"));
2592  ArrayColumn<Float> speccol0(t0, "SPECTRA");
2593  ArrayColumn<uChar> flagcol0(t0, "FLAGTRA");
2594  ArrayColumn<Float> speccol1(t1, "SPECTRA");
2595  ArrayColumn<uChar> flagcol1(t1, "FLAGTRA");
2596  Matrix<Float> s0 = speccol0.getColumn();
2597  Matrix<uChar> f0 = flagcol0.getColumn();
2598  speccol0.putColumn(speccol1.getColumn());
2599  flagcol0.putColumn(flagcol1.getColumn());
2600  speccol1.putColumn(s0);
2601  flagcol1.putColumn(f0);
2602  return out;
2603}
2604
2605CountedPtr< Scantable >
2606  STMath::averagePolarisations( const CountedPtr< Scantable > & in,
2607                                const std::vector<bool>& mask,
2608                                const std::string& weight )
2609{
2610  if (in->npol() < 2 )
2611    throw(AipsError("averagePolarisations can only be applied to two or more"
2612                    "polarisations"));
2613  bool insitu = insitu_;
2614  setInsitu(false);
2615  CountedPtr< Scantable > pols = getScantable(in, true);
2616  setInsitu(insitu);
2617  Table& tout = pols->table();
2618  std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
2619  Table tab = tableCommand(taql, in->table());
2620  if (tab.nrow() == 0 )
2621    throw(AipsError("Could not find  any rows with POLNO==0 and POLNO==1"));
2622  TableCopy::copyRows(tout, tab);
2623  TableVector<uInt> vec(tout, "POLNO");
2624  vec = 0;
2625  pols->table_.rwKeywordSet().define("nPol", Int(1));
2626  pols->table_.rwKeywordSet().define("POLTYPE", String("stokes"));
2627  //pols->table_.rwKeywordSet().define("POLTYPE", in->getPolType());
2628  std::vector<CountedPtr<Scantable> > vpols;
2629  vpols.push_back(pols);
2630  CountedPtr< Scantable > out = average(vpols, mask, weight, "SCAN");
2631  return out;
2632}
2633
2634CountedPtr< Scantable >
2635  STMath::averageBeams( const CountedPtr< Scantable > & in,
2636                        const std::vector<bool>& mask,
2637                        const std::string& weight )
2638{
2639  bool insitu = insitu_;
2640  setInsitu(false);
2641  CountedPtr< Scantable > beams = getScantable(in, false);
2642  setInsitu(insitu);
2643  Table& tout = beams->table();
2644  // give all rows the same BEAMNO
2645  TableVector<uInt> vec(tout, "BEAMNO");
2646  vec = 0;
2647  beams->table_.rwKeywordSet().define("nBeam", Int(1));
2648  std::vector<CountedPtr<Scantable> > vbeams;
2649  vbeams.push_back(beams);
2650  CountedPtr< Scantable > out = average(vbeams, mask, weight, "SCAN");
2651  return out;
2652}
2653
2654
2655CountedPtr< Scantable >
2656  asap::STMath::frequencyAlign( const CountedPtr< Scantable > & in,
2657                                const std::string & refTime,
2658                                const std::string & method)
2659{
2660  // clone as this is not working insitu
2661  bool insitu = insitu_;
2662  setInsitu(false);
2663  CountedPtr< Scantable > out = getScantable(in, false);
2664  setInsitu(insitu);
2665  Table& tout = out->table();
2666  // Get reference Epoch to time of first row or given String
2667  Unit DAY(String("d"));
2668  MEpoch::Ref epochRef(in->getTimeReference());
2669  MEpoch refEpoch;
2670  if (refTime.length()>0) {
2671    Quantum<Double> qt;
2672    if (MVTime::read(qt,refTime)) {
2673      MVEpoch mv(qt);
2674      refEpoch = MEpoch(mv, epochRef);
2675   } else {
2676      throw(AipsError("Invalid format for Epoch string"));
2677   }
2678  } else {
2679    refEpoch = in->timeCol_(0);
2680  }
2681  MPosition refPos = in->getAntennaPosition();
2682
2683  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2684  /*
2685  // Comment from MV.
2686  // the following code has been commented out because different FREQ_IDs have to be aligned together even
2687  // if the frame doesn't change. So far, lack of this check didn't cause any problems.
2688  // test if user frame is different to base frame
2689  if ( in->frequencies().getFrameString(true)
2690       == in->frequencies().getFrameString(false) ) {
2691    throw(AipsError("Can't convert as no output frame has been set"
2692                    " (use set_freqframe) or it is aligned already."));
2693  }
2694  */
2695  MFrequency::Types system = in->frequencies().getFrame();
2696  MVTime mvt(refEpoch.getValue());
2697  String epochout = mvt.string(MVTime::YMD) + String(" (") + refEpoch.getRefString() + String(")");
2698  ostringstream oss;
2699  oss << "Aligned at reference Epoch " << epochout
2700      << " in frame " << MFrequency::showType(system);
2701  pushLog(String(oss));
2702  // set up the iterator
2703  Block<String> cols(4);
2704  // select by constant direction
2705  cols[0] = String("SRCNAME");
2706  cols[1] = String("BEAMNO");
2707  // select by IF ( no of channels varies over this )
2708  cols[2] = String("IFNO");
2709  // select by restfrequency
2710  cols[3] = String("MOLECULE_ID");
2711  TableIterator iter(tout, cols);
2712  while ( !iter.pastEnd() ) {
2713    Table t = iter.table();
2714    MDirection::ROScalarColumn dirCol(t, "DIRECTION");
2715    TableIterator fiter(t, "FREQ_ID");
2716    // determine nchan from the first row. This should work as
2717    // we are iterating over BEAMNO and IFNO    // we should have constant direction
2718
2719    ROArrayColumn<Float> sCol(t, "SPECTRA");
2720    const MDirection direction = dirCol(0);
2721    const uInt nchan = sCol(0).nelements();
2722
2723    // skip operations if there is nothing to align
2724    if (fiter.pastEnd()) {
2725        continue;
2726    }
2727
2728    Table ftab = fiter.table();
2729    // align all frequency ids with respect to the first encountered id
2730    ScalarColumn<uInt> freqidCol(ftab, "FREQ_ID");
2731    // get the SpectralCoordinate for the freqid, which we are iterating over
2732    SpectralCoordinate sC = in->frequencies().getSpectralCoordinate(freqidCol(0));
2733    FrequencyAligner<Float> fa( sC, nchan, refEpoch,
2734                                direction, refPos, system );
2735    // realign the SpectralCoordinate and put into the output Scantable
2736    Vector<String> units(1);
2737    units = String("Hz");
2738    Bool linear=True;
2739    SpectralCoordinate sc2 = fa.alignedSpectralCoordinate(linear);
2740    sc2.setWorldAxisUnits(units);
2741    const uInt id = out->frequencies().addEntry(sc2.referencePixel()[0],
2742                                                sc2.referenceValue()[0],
2743                                                sc2.increment()[0]);
2744    while ( !fiter.pastEnd() ) {
2745      ftab = fiter.table();
2746      // spectral coordinate for the current FREQ_ID
2747      ScalarColumn<uInt> freqidCol2(ftab, "FREQ_ID");
2748      sC = in->frequencies().getSpectralCoordinate(freqidCol2(0));
2749      // create the "global" abcissa for alignment with same FREQ_ID
2750      Vector<Double> abc(nchan);
2751      for (uInt i=0; i<nchan; i++) {
2752           Double w;
2753           sC.toWorld(w,Double(i));
2754           abc[i] = w;
2755      }
2756      TableVector<uInt> tvec(ftab, "FREQ_ID");
2757      // assign new frequency id to all rows
2758      tvec = id;
2759      // cache abcissa for same time stamps, so iterate over those
2760      TableIterator timeiter(ftab, "TIME");
2761      while ( !timeiter.pastEnd() ) {
2762        Table tab = timeiter.table();
2763        ArrayColumn<Float> specCol(tab, "SPECTRA");
2764        ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2765        MEpoch::ROScalarColumn timeCol(tab, "TIME");
2766        // use align abcissa cache after the first row
2767        // these rows should be just be POLNO
2768        bool first = true;
2769        for (int i=0; i<int(tab.nrow()); ++i) {
2770          // input values
2771          Vector<uChar> flag = flagCol(i);
2772          Vector<Bool> mask(flag.shape());
2773          Vector<Float> specOut, spec;
2774          spec  = specCol(i);
2775          Vector<Bool> maskOut;Vector<uChar> flagOut;
2776          convertArray(mask, flag);
2777          // alignment
2778          Bool ok = fa.align(specOut, maskOut, abc, spec,
2779                             mask, timeCol(i), !first,
2780                             interp, False);
2781          (void) ok; // unused stop compiler nagging
2782          // back into scantable
2783          flagOut.resize(maskOut.nelements());
2784          convertArray(flagOut, maskOut);
2785          flagCol.put(i, flagOut);
2786          specCol.put(i, specOut);
2787          // start abcissa caching
2788          first = false;
2789        }
2790        // next timestamp
2791        ++timeiter;
2792      }
2793      // next FREQ_ID
2794      ++fiter;
2795    }
2796    // next aligner
2797    ++iter;
2798  }
2799  // set this afterwards to ensure we are doing insitu correctly.
2800  out->frequencies().setFrame(system, true);
2801  return out;
2802}
2803
2804CountedPtr<Scantable>
2805  asap::STMath::convertPolarisation( const CountedPtr<Scantable>& in,
2806                                     const std::string & newtype )
2807{
2808  if (in->npol() != 2 && in->npol() != 4)
2809    throw(AipsError("Can only convert two or four polarisations."));
2810  if ( in->getPolType() == newtype )
2811    throw(AipsError("No need to convert."));
2812  if ( ! in->selector_.empty() )
2813    throw(AipsError("Can only convert whole scantable. Unset the selection."));
2814  bool insitu = insitu_;
2815  setInsitu(false);
2816  CountedPtr< Scantable > out = getScantable(in, true);
2817  setInsitu(insitu);
2818  Table& tout = out->table();
2819  tout.rwKeywordSet().define("POLTYPE", String(newtype));
2820
2821  Block<String> cols(4);
2822  cols[0] = "SCANNO";
2823  cols[1] = "CYCLENO";
2824  cols[2] = "BEAMNO";
2825  cols[3] = "IFNO";
2826  TableIterator it(in->originalTable_, cols);
2827  String basetype = in->getPolType();
2828  STPol* stpol = STPol::getPolClass(in->factories_, basetype);
2829  try {
2830    while ( !it.pastEnd() ) {
2831      Table tab = it.table();
2832      uInt row = tab.rowNumbers()[0];
2833      stpol->setSpectra(in->getPolMatrix(row));
2834      Float fang,fhand;
2835      fang = in->focusTable_.getTotalAngle(in->mfocusidCol_(row));
2836      fhand = in->focusTable_.getFeedHand(in->mfocusidCol_(row));
2837      stpol->setPhaseCorrections(fang, fhand);
2838      Int npolout = 0;
2839      for (uInt i=0; i<tab.nrow(); ++i) {
2840        Vector<Float> outvec = stpol->getSpectrum(i, newtype);
2841        if ( outvec.nelements() > 0 ) {
2842          tout.addRow();
2843          TableCopy::copyRows(tout, tab, tout.nrow()-1, 0, 1);
2844          ArrayColumn<Float> sCol(tout,"SPECTRA");
2845          ScalarColumn<uInt> pCol(tout,"POLNO");
2846          sCol.put(tout.nrow()-1 ,outvec);
2847          pCol.put(tout.nrow()-1 ,uInt(npolout));
2848          npolout++;
2849       }
2850      }
2851      tout.rwKeywordSet().define("nPol", npolout);
2852      ++it;
2853    }
2854  } catch (AipsError& e) {
2855    delete stpol;
2856    throw(e);
2857  }
2858  delete stpol;
2859  return out;
2860}
2861
2862CountedPtr< Scantable >
2863  asap::STMath::mxExtract( const CountedPtr< Scantable > & in,
2864                           const std::string & scantype )
2865{
2866  bool insitu = insitu_;
2867  setInsitu(false);
2868  CountedPtr< Scantable > out = getScantable(in, true);
2869  setInsitu(insitu);
2870  Table& tout = out->table();
2871  std::string taql = "SELECT FROM $1 WHERE BEAMNO != REFBEAMNO";
2872  if (scantype == "on") {
2873    taql = "SELECT FROM $1 WHERE BEAMNO == REFBEAMNO";
2874  }
2875  Table tab = tableCommand(taql, in->table());
2876  TableCopy::copyRows(tout, tab);
2877  if (scantype == "on") {
2878    // re-index SCANNO to 0
2879    TableVector<uInt> vec(tout, "SCANNO");
2880    vec = 0;
2881  }
2882  return out;
2883}
2884
2885std::vector<float>
2886  asap::STMath::fft( const casa::CountedPtr< Scantable > & in,
2887                     const std::vector<int>& whichrow,
2888                     bool getRealImag )
2889{
2890  std::vector<float> res;
2891  Table tab = in->table();
2892  std::vector<bool> mask;
2893
2894  if (whichrow.size() < 1) {          // for all rows (by default)
2895    int nrow = int(tab.nrow());
2896    for (int i = 0; i < nrow; ++i) {
2897      res = in->execFFT(i, mask, getRealImag);
2898    }
2899  } else {                           // for specified rows
2900    for (uInt i = 0; i < whichrow.size(); ++i) {
2901      res = in->execFFT(i, mask, getRealImag);
2902    }
2903  }
2904
2905  return res;
2906}
2907
2908
2909CountedPtr<Scantable>
2910  asap::STMath::lagFlag( const CountedPtr<Scantable>& in,
2911                         double start, double end,
2912                         const std::string& mode )
2913{
2914  CountedPtr<Scantable> out = getScantable(in, false);
2915  Table& tout = out->table();
2916  TableIterator iter(tout, "FREQ_ID");
2917  FFTServer<Float,Complex> ffts;
2918
2919  while ( !iter.pastEnd() ) {
2920    Table tab = iter.table();
2921    Double rp,rv,inc;
2922    ROTableRow row(tab);
2923    const TableRecord& rec = row.get(0);
2924    uInt freqid = rec.asuInt("FREQ_ID");
2925    out->frequencies().getEntry(rp, rv, inc, freqid);
2926    ArrayColumn<Float> specCol(tab, "SPECTRA");
2927    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2928
2929    for (int i=0; i<int(tab.nrow()); ++i) {
2930      Vector<Float> spec = specCol(i);
2931      Vector<uChar> flag = flagCol(i);
2932      std::vector<bool> mask;
2933      for (uInt j = 0; j < flag.nelements(); ++j) {
2934        mask.push_back(!(flag[j]>0));
2935      }
2936      mathutil::doZeroOrderInterpolation(spec, mask);
2937
2938      Vector<Complex> lags;
2939      ffts.fft0(lags, spec);
2940
2941      Int lag0(start+0.5);
2942      Int lag1(end+0.5);
2943      if (mode == "frequency") {
2944        lag0 = Int(spec.nelements()*abs(inc)/(start)+0.5);
2945        lag1 = Int(spec.nelements()*abs(inc)/(end)+0.5);
2946      }
2947      Int lstart =  max(0, lag0);
2948      Int lend   =  min(Int(lags.nelements()-1), lag1);
2949      if (lstart == lend) {
2950        lags[lstart] = Complex(0.0);
2951      } else {
2952        if (lstart > lend) {
2953          Int tmp = lend;
2954          lend = lstart;
2955          lstart = tmp;
2956        }
2957        for (int j=lstart; j <=lend ;++j) {
2958          lags[j] = Complex(0.0);
2959        }
2960      }
2961
2962      ffts.fft0(spec, lags);
2963
2964      specCol.put(i, spec);
2965    }
2966    ++iter;
2967  }
2968  return out;
2969}
2970
2971// Averaging spectra with different channel/resolution
2972CountedPtr<Scantable>
2973STMath::new_average( const std::vector<CountedPtr<Scantable> >& in,
2974                     const bool& compel,
2975                     const std::vector<bool>& mask,
2976                     const std::string& weight,
2977                     const std::string& avmode )
2978  throw ( casa::AipsError )
2979{
2980  LogIO os( LogOrigin( "STMath", "new_average()", WHERE ) ) ;
2981  if ( avmode == "SCAN" && in.size() != 1 )
2982    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
2983                    "Use merge first."));
2984 
2985  // 2012/02/17 TN
2986  // Since STGrid is implemented, average doesn't consider direction
2987  // when accumulating
2988  // check if OTF observation
2989//   String obstype = in[0]->getHeader().obstype ;
2990//   Double tol = 0.0 ;
2991//   if ( obstype.find( "OTF" ) != String::npos ) {
2992//     tol = TOL_OTF ;
2993//   }
2994//   else {
2995//     tol = TOL_POINT ;
2996//   }
2997
2998  CountedPtr<Scantable> out ;     // processed result
2999  if ( compel ) {
3000    std::vector< CountedPtr<Scantable> > newin ; // input for average process
3001    uInt insize = in.size() ;    // number of input scantables
3002
3003    // TEST: do normal average in each table before IF grouping
3004    os << "Do preliminary averaging" << LogIO::POST ;
3005    vector< CountedPtr<Scantable> > tmpin( insize ) ;
3006    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3007      vector< CountedPtr<Scantable> > v( 1, in[itable] ) ;
3008      tmpin[itable] = average( v, mask, weight, avmode ) ;
3009    }
3010
3011    // warning
3012    os << "Average spectra with different spectral resolution" << LogIO::POST ;
3013
3014    // temporarily set coordinfo
3015    vector<string> oldinfo( insize ) ;
3016    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3017      vector<string> coordinfo = in[itable]->getCoordInfo() ;
3018      oldinfo[itable] = coordinfo[0] ;
3019      coordinfo[0] = "Hz" ;
3020      tmpin[itable]->setCoordInfo( coordinfo ) ;
3021    }
3022
3023    // columns
3024    ScalarColumn<uInt> freqIDCol ;
3025    ScalarColumn<uInt> ifnoCol ;
3026    ScalarColumn<uInt> scannoCol ;
3027
3028
3029    // check IF frequency coverage
3030    // freqid: list of FREQ_ID, which is used, in each table 
3031    // iffreq: list of minimum and maximum frequency for each FREQ_ID in
3032    //         each table
3033    // freqid[insize][numIF]
3034    // freqid: [[id00, id01, ...],
3035    //          [id10, id11, ...],
3036    //          ...
3037    //          [idn0, idn1, ...]]
3038    // iffreq[insize][numIF*2]
3039    // iffreq: [[min_id00, max_id00, min_id01, max_id01, ...],
3040    //          [min_id10, max_id10, min_id11, max_id11, ...],
3041    //          ...
3042    //          [min_idn0, max_idn0, min_idn1, max_idn1, ...]]
3043    //os << "Check IF settings in each table" << LogIO::POST ;
3044    vector< vector<uInt> > freqid( insize );
3045    vector< vector<double> > iffreq( insize ) ;
3046    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3047      uInt rows = tmpin[itable]->nrow() ;
3048      uInt freqnrows = tmpin[itable]->frequencies().table().nrow() ;
3049      freqIDCol.attach( tmpin[itable]->table(), "FREQ_ID" ) ;
3050      //ifnoCol.attach( tmpin[itable]->table(), "IFNO" ) ;
3051      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3052        if ( freqid[itable].size() == freqnrows ) {
3053          break ;
3054        }
3055        else {
3056          uInt id = freqIDCol( irow ) ;
3057          if ( freqid[itable].size() == 0 || count( freqid[itable].begin(), freqid[itable].end(), id ) == 0 ) {
3058            //os << "itable = " << itable << ": IF " << id << " is included in the list" << LogIO::POST ;
3059            vector<double> abcissa = tmpin[itable]->getAbcissa( irow ) ;
3060            double lbedge, rbedge;
3061            freqid[itable].push_back( id ) ;
3062            lbedge = abcissa[0] - 0.5 * ( abcissa[1] - abcissa[0] );
3063            rbedge = abcissa[abcissa.size()-1] + 0.5 * ( abcissa[1] - abcissa[0] );
3064            iffreq[itable].push_back( min(lbedge, rbedge) ) ;
3065            iffreq[itable].push_back( max(lbedge, rbedge) ) ;
3066          }
3067        }
3068      }
3069    }
3070
3071    // debug
3072    //os << "IF settings summary:" << endl ;
3073    //for ( uInt i = 0 ; i < freqid.size() ; i++ ) {
3074    //os << "   Table" << i << endl ;
3075    //for ( uInt j = 0 ; j < freqid[i].size() ; j++ ) {
3076    //os << "      id = " << freqid[i][j] << " (min,max) = (" << iffreq[i][2*j] << "," << iffreq[i][2*j+1] << ")" << endl ;
3077    //}
3078    //}
3079    //os << endl ;
3080    //os.post() ;
3081
3082    // IF grouping based on their frequency coverage
3083    // ifgrp: list of table index and FREQ_ID for all members in each IF group
3084    // ifgfreq: list of minimum and maximum frequency in each IF group
3085    // ifgrp[numgrp][nummember*2]
3086    // ifgrp: [[table00, freqrow00, table01, freqrow01, ...],
3087    //         [table10, freqrow10, table11, freqrow11, ...],
3088    //         ...
3089    //         [tablen0, freqrown0, tablen1, freqrown1, ...]]
3090    // ifgfreq[numgrp*2]
3091    // ifgfreq: [min0_grp0, max0_grp0, min1_grp1, max1_grp1, ...]
3092    //os << "IF grouping based on their frequency coverage" << LogIO::POST ;
3093    vector< vector<uInt> > ifgrp ;
3094    vector<double> ifgfreq ;
3095
3096    // parameter for IF grouping
3097    // groupmode = OR    retrieve all region
3098    //             AND   only retrieve overlaped region
3099    //string groupmode = "AND" ;
3100    string groupmode = "OR" ;
3101    uInt sizecr = 0 ;
3102    if ( groupmode == "AND" )
3103      sizecr = 1 ;
3104    else if ( groupmode == "OR" )
3105      sizecr = 0 ;
3106
3107    vector<double> sortedfreq ;
3108    for ( uInt i = 0 ; i < iffreq.size() ; i++ ) {
3109      for ( uInt j = 0 ; j < iffreq[i].size() ; j++ ) {
3110        if ( count( sortedfreq.begin(), sortedfreq.end(), iffreq[i][j] ) == 0 )
3111          sortedfreq.push_back( iffreq[i][j] ) ;
3112      }
3113    }
3114    sort( sortedfreq.begin(), sortedfreq.end() ) ;
3115    for ( vector<double>::iterator i = sortedfreq.begin() ; i != sortedfreq.end()-1 ; i++ ) {
3116      ifgfreq.push_back( *i ) ;
3117      ifgfreq.push_back( *(i+1) ) ;
3118    }
3119    ifgrp.resize( ifgfreq.size()/2 ) ;
3120    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3121      for ( uInt iif = 0 ; iif < freqid[itable].size() ; iif++ ) {
3122        double range0 = iffreq[itable][2*iif] ;
3123        double range1 = iffreq[itable][2*iif+1] ;
3124        for ( uInt j = 0 ; j < ifgrp.size() ; j++ ) {
3125          double fmin = max( range0, ifgfreq[2*j] ) ;
3126          double fmax = min( range1, ifgfreq[2*j+1] ) ;
3127          if ( fmin < fmax ) {
3128            ifgrp[j].push_back( itable ) ;
3129            ifgrp[j].push_back( freqid[itable][iif] ) ;
3130          }
3131        }
3132      }
3133    }
3134    vector< vector<uInt> >::iterator fiter = ifgrp.begin() ;
3135    vector<double>::iterator giter = ifgfreq.begin() ;
3136    while( fiter != ifgrp.end() ) {
3137      if ( fiter->size() <= sizecr ) {
3138        fiter = ifgrp.erase( fiter ) ;
3139        giter = ifgfreq.erase( giter ) ;
3140        giter = ifgfreq.erase( giter ) ;
3141      }
3142      else {
3143        fiter++ ;
3144        advance( giter, 2 ) ;
3145      }
3146    }
3147
3148    // Grouping continuous IF groups (without frequency gap)
3149    // freqgrp: list of IF group indexes in each frequency group
3150    // freqgrp[numgrp][nummember]
3151    // freqgrp: [[ifgrp00, ifgrp01, ifgrp02, ...],
3152    //           [ifgrp10, ifgrp11, ifgrp12, ...],
3153    //           ...
3154    //           [ifgrpn0, ifgrpn1, ifgrpn2, ...]]
3155    vector< vector<uInt> > freqgrp ;
3156    double freqrange = 0.0 ;
3157    uInt grpnum = 0 ;
3158    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3159      // Assumed that ifgfreq was sorted
3160      if ( grpnum != 0 && freqrange == ifgfreq[2*i] ) {
3161        freqgrp[grpnum-1].push_back( i ) ;
3162      }
3163      else {
3164        vector<uInt> grp0( 1, i ) ;
3165        freqgrp.push_back( grp0 ) ;
3166        grpnum++ ;
3167      }
3168      freqrange = ifgfreq[2*i+1] ;
3169    }
3170
3171
3172    // print IF groups
3173    ostringstream oss ;
3174    oss << "IF Group summary: " << endl ;
3175    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3176    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3177      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3178      for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3179        oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3180      }
3181      oss << endl ;
3182    }
3183    oss << endl ;
3184    os << oss.str() << LogIO::POST ;
3185   
3186    // print frequency group
3187    oss.str("") ;
3188    oss << "Frequency Group summary: " << endl ;
3189    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: IF_GROUP_ID" << endl ;
3190    for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3191      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*freqgrp[i][0]] << "," << ifgfreq[2*freqgrp[i][freqgrp[i].size()-1]+1] << "]: " ;
3192      for ( uInt j = 0 ; j < freqgrp[i].size() ; j++ ) {
3193        oss << freqgrp[i][j] << " " ;
3194      }
3195      oss << endl ;
3196    }
3197    oss << endl ;
3198    os << oss.str() << LogIO::POST ;
3199
3200    // membership check
3201    // groups: list of IF group indexes whose frequency range overlaps with
3202    //         that of each table and IF
3203    // groups[numtable][numIF][nummembership]
3204    // groups: [[[grp, grp,...], [grp, grp,...],...],
3205    //          [[grp, grp,...], [grp, grp,...],...],
3206    //          ...
3207    //          [[grp, grp,...], [grp, grp,...],...]]
3208    vector< vector< vector<uInt> > > groups( insize ) ;
3209    for ( uInt i = 0 ; i < insize ; i++ ) {
3210      groups[i].resize( freqid[i].size() ) ;
3211    }
3212    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3213      for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3214        uInt tableid = ifgrp[igrp][2*imem] ;
3215        vector<uInt>::iterator iter = find( freqid[tableid].begin(), freqid[tableid].end(), ifgrp[igrp][2*imem+1] ) ;
3216        if ( iter != freqid[tableid].end() ) {
3217          uInt rowid = distance( freqid[tableid].begin(), iter ) ;
3218          groups[tableid][rowid].push_back( igrp ) ;
3219        }
3220      }
3221    }
3222
3223    // print membership
3224//     oss.str("") ;
3225//     for ( uInt i = 0 ; i < insize ; i++ ) {
3226//       oss << "Table " << i << endl ;
3227//       for ( uInt j = 0 ; j < groups[i].size() ; j++ ) {
3228//         oss << "   FREQ_ID " <<  setw( 2 ) << freqid[i][j] << ": " ;
3229//         for ( uInt k = 0 ; k < groups[i][j].size() ; k++ ) {
3230//           oss << setw( 2 ) << groups[i][j][k] << " " ;
3231//         }
3232//         oss << endl ;
3233//       }
3234//     }
3235//     os << oss.str() << LogIO::POST ;
3236
3237    // set back coordinfo
3238    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3239      vector<string> coordinfo = tmpin[itable]->getCoordInfo() ;
3240      coordinfo[0] = oldinfo[itable] ;
3241      tmpin[itable]->setCoordInfo( coordinfo ) ;
3242    }
3243
3244    // Create additional table if needed
3245    bool oldInsitu = insitu_ ;
3246    setInsitu( false ) ;
3247    vector< vector<uInt> > addrow( insize ) ;
3248    vector<uInt> addtable( insize, 0 ) ;
3249    vector<uInt> newtableids( insize ) ;
3250    vector<uInt> newifids( insize, 0 ) ;
3251    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3252      //os << "Table " << itable << ": " ;
3253      for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3254        addrow[itable].push_back( groups[itable][ifrow].size()-1 ) ;
3255        //os << addrow[itable][ifrow] << " " ;
3256      }
3257      addtable[itable] = *max_element( addrow[itable].begin(), addrow[itable].end() ) ;
3258      //os << "(" << addtable[itable] << ")" << LogIO::POST ;
3259    }
3260    newin.resize( insize ) ;
3261    copy( tmpin.begin(), tmpin.end(), newin.begin() ) ;
3262    for ( uInt i = 0 ; i < insize ; i++ ) {
3263      newtableids[i] = i ;
3264    }
3265    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3266      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3267        CountedPtr<Scantable> add = getScantable( newin[itable], false ) ;
3268        vector<int> freqidlist ;
3269        for ( uInt i = 0 ; i < groups[itable].size() ; i++ ) {
3270          if ( groups[itable][i].size() > iadd + 1 ) {
3271            freqidlist.push_back( freqid[itable][i] ) ;
3272          }
3273        }
3274        stringstream taqlstream ;
3275        taqlstream << "SELECT FROM $1 WHERE FREQ_ID IN [" ;
3276        for ( uInt i = 0 ; i < freqidlist.size() ; i++ ) {
3277          taqlstream << freqidlist[i] ;
3278          if ( i < freqidlist.size() - 1 )
3279            taqlstream << "," ;
3280          else
3281            taqlstream << "]" ;
3282        }
3283        string taql = taqlstream.str() ;
3284        //os << "taql = " << taql << LogIO::POST ;
3285        STSelector selector = STSelector() ;
3286        selector.setTaQL( taql ) ;
3287        add->setSelection( selector ) ;
3288        newin.push_back( add ) ;
3289        newtableids.push_back( itable ) ;
3290        newifids.push_back( iadd + 1 ) ;
3291      }
3292    }
3293
3294    // udpate ifgrp
3295    uInt offset = insize ;
3296    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3297      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3298        for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3299          if ( groups[itable][ifrow].size() > iadd + 1 ) {
3300            uInt igrp = groups[itable][ifrow][iadd+1] ;
3301            for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3302              if ( ifgrp[igrp][2*imem] == newtableids[offset+iadd] && ifgrp[igrp][2*imem+1] == freqid[newtableids[offset+iadd]][ifrow] ) {
3303                ifgrp[igrp][2*imem] = offset + iadd ;
3304              }
3305            }
3306          }
3307        }
3308      }
3309      offset += addtable[itable] ;
3310    }
3311
3312    // print IF groups again for debug
3313//     oss.str( "" ) ;
3314//     oss << "IF Group summary: " << endl ;
3315//     oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3316//     for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3317//       oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3318//       for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3319//         oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3320//       }
3321//       oss << endl ;
3322//     }
3323//     oss << endl ;
3324//     os << oss.str() << LogIO::POST ;
3325
3326    // reset SCANNO and IFNO/FREQ_ID: IF is reset by the result of sortation
3327    //os << "All IF number is set to IF group index" << LogIO::POST ;
3328    insize = newin.size() ;
3329    // reset SCANNO only when avmode != "SCAN"
3330    if ( avmode != "SCAN" ) {
3331      os << "All scan number is set to 0" << LogIO::POST ;
3332      for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3333        uInt nrow = newin[itable]->nrow() ;
3334        Table &tmpt = newin[itable]->table() ;
3335        scannoCol.attach( tmpt, "SCANNO" ) ;
3336        for ( uInt irow = 0 ; irow < nrow ; irow++ )
3337          scannoCol.put( irow, 0 ) ;
3338      }
3339    }
3340    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3341      uInt rows = newin[itable]->nrow() ;
3342      Table &tmpt = newin[itable]->table() ;
3343      freqIDCol.attach( tmpt, "FREQ_ID" ) ;
3344      ifnoCol.attach( tmpt, "IFNO" ) ;
3345      for ( uInt irow=0 ; irow < rows ; irow++ ) {
3346        uInt freqID = freqIDCol( irow ) ;
3347        vector<uInt>::iterator iter = find( freqid[newtableids[itable]].begin(), freqid[newtableids[itable]].end(), freqID ) ;
3348        if ( iter != freqid[newtableids[itable]].end() ) {
3349          uInt index = distance( freqid[newtableids[itable]].begin(), iter ) ;
3350          ifnoCol.put( irow, groups[newtableids[itable]][index][newifids[itable]] ) ;
3351        }
3352        else {
3353          throw(AipsError("IF grouping was wrong in additional tables.")) ;
3354        }
3355      }
3356    }
3357    oldinfo.resize( insize ) ;
3358    setInsitu( oldInsitu ) ;
3359
3360    // temporarily set coordinfo
3361    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3362      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3363      oldinfo[itable] = coordinfo[0] ;
3364      coordinfo[0] = "Hz" ;
3365      newin[itable]->setCoordInfo( coordinfo ) ;
3366    }
3367
3368    // save column values in the vector
3369    vector< vector<uInt> > freqIdVec( insize ) ;
3370    vector< vector<uInt> > ifNoVec( insize ) ;
3371    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3372      ifnoCol.attach( newin[itable]->table(), "IFNO" ) ;
3373      freqIDCol.attach( newin[itable]->table(), "FREQ_ID" ) ;
3374      for ( uInt irow = 0 ; irow < newin[itable]->table().nrow() ; irow++ ) {
3375        freqIdVec[itable].push_back( freqIDCol( irow ) ) ;
3376        ifNoVec[itable].push_back( ifnoCol( irow ) ) ;
3377      }
3378    }
3379
3380    // reset spectra and flagtra: pick up common part of frequency coverage
3381    //os << "Pick common frequency range and align resolution" << LogIO::POST ;
3382    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3383      uInt rows = newin[itable]->nrow() ;
3384      int nminchan = -1 ;
3385      int nmaxchan = -1 ;
3386      vector<uInt> freqIdUpdate ;
3387      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3388        uInt ifno = ifNoVec[itable][irow] ;  // IFNO is reset by group index (IF group index)
3389        double minfreq = ifgfreq[2*ifno] ;
3390        double maxfreq = ifgfreq[2*ifno+1] ;
3391        //os << "frequency range: [" << minfreq << "," << maxfreq << "]" << LogIO::POST ;
3392        vector<double> abcissa = newin[itable]->getAbcissa( irow ) ;
3393        int nchan = abcissa.size() ;
3394        double resol = abcissa[1] - abcissa[0] ;
3395        //os << "abcissa range  : [" << abcissa[0] << "," << abcissa[nchan-1] << "]" << LogIO::POST ;
3396        uInt imin, imax;
3397        int sigres;
3398        if ( resol >= 0. ) {
3399          imin = 0;
3400          imax = nchan - 1 ;
3401          sigres = 1 ;
3402        } else {
3403          imin = nchan - 1 ;
3404          imax = 0 ;
3405          sigres = -1 ;
3406          resol = abs(resol) ;
3407        }
3408        if ( minfreq <= abcissa[imin] )
3409          nminchan = imin ;
3410        else {
3411          //double cfreq = ( minfreq - abcissa[0] ) / resol ;
3412          double cfreq = ( minfreq - abcissa[imin] + 0.5 * resol ) / resol ;
3413          nminchan = imin + sigres * (int(cfreq) + ( ( cfreq - int(cfreq) <= 0.5 ) ? 0 : 1 )) ;
3414        }
3415        if ( maxfreq >= abcissa[imax] )
3416          nmaxchan = imax;
3417        else {
3418          //double cfreq = ( abcissa[abcissa.size()-1] - maxfreq ) / resol ;
3419          double cfreq = ( abcissa[imax] - maxfreq + 0.5 * resol ) / resol ;
3420          nmaxchan = imax - sigres * (int(cfreq) +( ( cfreq - int(cfreq) >= 0.5 ) ? 1 : 0 )) ;
3421        }
3422        //os << "channel range (" << irow << "): [" << nminchan << "," << nmaxchan << "]" << LogIO::POST ;
3423        if ( nmaxchan < nminchan ) {
3424          int tmp = nmaxchan ;
3425          nmaxchan = nminchan ;
3426          nminchan = tmp ;
3427        }
3428        if ( nmaxchan > nminchan ) {
3429          newin[itable]->reshapeSpectrum( nminchan, nmaxchan, irow ) ;
3430          int newchan = nmaxchan - nminchan + 1 ;
3431          if ( count( freqIdUpdate.begin(), freqIdUpdate.end(), freqIdVec[itable][irow] ) == 0 && newchan < nchan ) {
3432            freqIdUpdate.push_back( freqIdVec[itable][irow] ) ;
3433
3434            // Update before nminchan is lost
3435            uInt freqId = freqIdVec[itable][irow] ;
3436            Double refpix ;
3437            Double refval ;
3438            Double increment ;
3439            newin[itable]->frequencies().getEntry( refpix, refval, increment, freqId ) ;
3440            //refval = refval - ( refpix - nminchan ) * increment ;
3441            refval = abcissa[nminchan] ;
3442            refpix = 0 ;
3443            newin[itable]->frequencies().setEntry( refpix, refval, increment, freqId ) ;
3444          }
3445        }
3446        else {
3447          throw(AipsError("Failed to pick up common part of frequency range.")) ;
3448        }
3449      }
3450//       for ( uInt i = 0 ; i < freqIdUpdate.size() ; i++ ) {
3451//      uInt freqId = freqIdUpdate[i] ;
3452//      Double refpix ;
3453//      Double refval ;
3454//      Double increment ;
3455       
3456//      // update row
3457//      newin[itable]->frequencies().getEntry( refpix, refval, increment, freqId ) ;
3458//      refval = refval - ( refpix - nminchan ) * increment ;
3459//      refpix = 0 ;
3460//      newin[itable]->frequencies().setEntry( refpix, refval, increment, freqId ) ;
3461//       }   
3462    }
3463
3464   
3465    // reset spectra and flagtra: align spectral resolution
3466    //os << "Align spectral resolution" << LogIO::POST ;
3467    // gmaxdnu: the coarsest frequency resolution in the frequency group
3468    // gmemid: member index that have a resolution equal to gmaxdnu
3469    // gmaxdnu[numfreqgrp]
3470    // gmaxdnu: [dnu0, dnu1, ...]
3471    // gmemid[numfreqgrp]
3472    // gmemid: [id0, id1, ...]
3473    vector<double> gmaxdnu( freqgrp.size(), 0.0 ) ;
3474    vector<uInt> gmemid( freqgrp.size(), 0 ) ;
3475    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3476      double maxdnu = 0.0 ;       // maximum (coarsest) frequency resolution
3477      int minchan = INT_MAX ;     // minimum channel number
3478      Double refpixref = -1 ;     // reference of 'reference pixel'
3479      Double refvalref = -1 ;     // reference of 'reference frequency'
3480      Double refinc = -1 ;        // reference frequency resolution
3481      uInt refreqid ;
3482      uInt reftable = INT_MAX;
3483      // process only if group member > 1
3484      if ( ifgrp[igrp].size() > 2 ) {
3485        // find minchan and maxdnu in each group
3486        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3487          uInt tableid = ifgrp[igrp][2*imem] ;
3488          uInt rowid = ifgrp[igrp][2*imem+1] ;
3489          vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3490          if ( iter != freqIdVec[tableid].end() ) {
3491            uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3492            vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3493            int nchan = abcissa.size() ;
3494            double dnu = abcissa[1] - abcissa[0] ;
3495            //os << "GROUP " << igrp << " (" << tableid << "," << rowid << "): nchan = " << nchan << " (minchan = " << minchan << ")" << LogIO::POST ;
3496            if ( nchan < minchan ) {
3497              minchan = nchan ;
3498              maxdnu = abs(dnu) ;
3499              newin[tableid]->frequencies().getEntry( refpixref, refvalref, refinc, rowid ) ;
3500              refreqid = rowid ;
3501              reftable = tableid ;
3502              // Spectra are reversed when dnu < 0
3503              if (dnu < 0)
3504                refpixref = minchan - 1 -refpixref ;
3505            }
3506          }
3507        }
3508        // regrid spectra in each group
3509        os << "GROUP " << igrp << endl ;
3510        os << "   Channel number is adjusted to " << minchan << endl ;
3511        os << "   Corresponding frequency resolution is " << maxdnu << "Hz" << LogIO::POST ;
3512        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3513          uInt tableid = ifgrp[igrp][2*imem] ;
3514          uInt rowid = ifgrp[igrp][2*imem+1] ;
3515          freqIDCol.attach( newin[tableid]->table(), "FREQ_ID" ) ;
3516          //os << "tableid = " << tableid << " rowid = " << rowid << ": " << LogIO::POST ;
3517          //os << "   regridChannel applied to " ;
3518          //if ( tableid != reftable )
3519          refreqid = newin[tableid]->frequencies().addEntry( refpixref, refvalref, maxdnu ) ;
3520          for ( uInt irow = 0 ; irow < newin[tableid]->table().nrow() ; irow++ ) {
3521            uInt tfreqid = freqIdVec[tableid][irow] ;
3522            if ( tfreqid == rowid ) {     
3523              //os << irow << " " ;
3524              newin[tableid]->regridChannel( minchan, maxdnu, irow ) ;
3525              freqIDCol.put( irow, refreqid ) ;
3526              freqIdVec[tableid][irow] = refreqid ;
3527            }
3528          }
3529          //os << LogIO::POST ;
3530        }
3531      }
3532      else {
3533        uInt tableid = ifgrp[igrp][0] ;
3534        uInt rowid = ifgrp[igrp][1] ;
3535        vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3536        if ( iter != freqIdVec[tableid].end() ) {
3537          uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3538          vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3539          minchan = abcissa.size() ;
3540          maxdnu = abs( abcissa[1] - abcissa[0]) ;
3541        }
3542      }
3543      for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3544        if ( count( freqgrp[i].begin(), freqgrp[i].end(), igrp ) > 0 ) {
3545          if ( maxdnu > gmaxdnu[i] ) {
3546            gmaxdnu[i] = maxdnu ;
3547            gmemid[i] = igrp ;
3548          }
3549          break ;
3550        }
3551      }
3552    }
3553
3554    // set back coordinfo
3555    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3556      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3557      coordinfo[0] = oldinfo[itable] ;
3558      newin[itable]->setCoordInfo( coordinfo ) ;
3559    }     
3560
3561    // accumulate all rows into the first table
3562    // NOTE: assumed in.size() = 1
3563    vector< CountedPtr<Scantable> > tmp( 1 ) ;
3564    if ( newin.size() == 1 )
3565      tmp[0] = newin[0] ;
3566    else
3567      tmp[0] = merge( newin ) ;
3568
3569    //return tmp[0] ;
3570
3571    // average
3572    CountedPtr<Scantable> tmpout = average( tmp, mask, weight, avmode ) ;
3573
3574    //return tmpout ;
3575
3576    // combine frequency group
3577    os << "Combine spectra based on frequency grouping" << LogIO::POST ;
3578    os << "IFNO is renumbered as frequency group ID (see above)" << LogIO::POST ;
3579    vector<string> coordinfo = tmpout->getCoordInfo() ;
3580    oldinfo[0] = coordinfo[0] ;
3581    coordinfo[0] = "Hz" ;
3582    tmpout->setCoordInfo( coordinfo ) ;
3583    // create proformas of output table
3584    stringstream taqlstream ;
3585    taqlstream << "SELECT FROM $1 WHERE IFNO IN [" ;
3586    for ( uInt i = 0 ; i < gmemid.size() ; i++ ) {
3587      taqlstream << gmemid[i] ;
3588      if ( i < gmemid.size() - 1 )
3589        taqlstream << "," ;
3590      else
3591        taqlstream << "]" ;
3592    }
3593    string taql = taqlstream.str() ;
3594    //os << "taql = " << taql << LogIO::POST ;
3595    STSelector selector = STSelector() ;
3596    selector.setTaQL( taql ) ;
3597    oldInsitu = insitu_ ;
3598    setInsitu( false ) ;
3599    out = getScantable( tmpout, false ) ;
3600    setInsitu( oldInsitu ) ;
3601    out->setSelection( selector ) ;
3602    // regrid rows
3603    ifnoCol.attach( tmpout->table(), "IFNO" ) ;
3604    for ( uInt irow = 0 ; irow < tmpout->table().nrow() ; irow++ ) {
3605      uInt ifno = ifnoCol( irow ) ;
3606      for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3607        if ( count( freqgrp[igrp].begin(), freqgrp[igrp].end(), ifno ) > 0 ) {
3608          vector<double> abcissa = tmpout->getAbcissa( irow ) ;
3609          double bw = ( abcissa[1] - abcissa[0] ) * abcissa.size() ;
3610          int nchan = (int) abs( bw / gmaxdnu[igrp] ) ;
3611          // All spectra will have positive frequency increments
3612          tmpout->regridChannel( nchan, gmaxdnu[igrp], irow ) ;
3613          break ;
3614        }
3615      }
3616    }
3617    // combine spectra
3618    ArrayColumn<Float> specColOut( out->table(), "SPECTRA" ) ;
3619    ArrayColumn<uChar> flagColOut( out->table(), "FLAGTRA" ) ;
3620    ArrayColumn<Float> tsysColOut( out->table(), "TSYS" ) ;
3621    ScalarColumn<uInt> ifnoColOut( out->table(), "IFNO" ) ;
3622    ScalarColumn<uInt> polnoColOut( out->table(), "POLNO" ) ;
3623    ScalarColumn<uInt> freqidColOut( out->table(), "FREQ_ID" ) ;
3624//     MDirection::ScalarColumn dirColOut ;
3625//     dirColOut.attach( out->table(), "DIRECTION" ) ;
3626    Table &tab = tmpout->table() ;
3627//     Block<String> cols(1);
3628//     cols[0] = String("POLNO") ;
3629    Block<String> cols(3);
3630    cols[0] = String("POLNO") ;
3631    cols[1] = String("SCANNO") ;
3632    cols[2] = String("BEAMNO") ;
3633    TableIterator iter( tab, cols ) ;
3634    vector< vector<uInt> > sizes( freqgrp.size() ) ;
3635    vector<uInt> totalsizes( freqgrp.size(), 0 ) ;
3636    ArrayColumn<Float> specCols ;
3637    ArrayColumn<uChar> flagCols ;
3638    ArrayColumn<Float> tsysCols ;
3639    ScalarColumn<uInt> polnos ;
3640    vector< Vector<Float> > specout( freqgrp.size() ) ;
3641    vector< Vector<uChar> > flagout( freqgrp.size() ) ;
3642    vector< Vector<Float> > tsysout( freqgrp.size() ) ;
3643    while( !iter.pastEnd() ) {
3644      specCols.attach( iter.table(), "SPECTRA" ) ;
3645      flagCols.attach( iter.table(), "FLAGTRA" ) ;
3646      tsysCols.attach( iter.table(), "TSYS" ) ;
3647      ifnoCol.attach( iter.table(), "IFNO" ) ;
3648      polnos.attach( iter.table(), "POLNO" ) ;
3649//       MDirection::ScalarColumn dircol ;
3650//       dircol.attach( iter.table(), "DIRECTION" ) ;
3651      uInt polno = polnos( 0 ) ;
3652      //os << "POLNO iteration: " << polno << LogIO::POST ;
3653//       for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3654//      sizes[igrp].resize( freqgrp[igrp].size() ) ;
3655//      for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3656//        for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3657//          uInt ifno = ifnoCol( irow ) ;
3658//          if ( ifno == freqgrp[igrp][imem] ) {
3659//            Vector<Float> spec = specCols( irow ) ;
3660//            Vector<uChar> flag = flagCols( irow ) ;
3661//            vector<Float> svec ;
3662//            spec.tovector( svec ) ;
3663//            vector<uChar> fvec ;
3664//            flag.tovector( fvec ) ;
3665//            //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3666//            specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3667//            flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3668//            //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3669//            sizes[igrp][imem] = spec.nelements() ;
3670//          }
3671//        }
3672//      }
3673//      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3674//        uInt ifout = ifnoColOut( irow ) ;
3675//        uInt polout = polnoColOut( irow ) ;
3676//        if ( ifout == gmemid[igrp] && polout == polno ) {
3677//          // set SPECTRA and FRAGTRA
3678//          Vector<Float> newspec( specout[igrp] ) ;
3679//          Vector<uChar> newflag( flagout[igrp] ) ;
3680//          specColOut.put( irow, newspec ) ;
3681//          flagColOut.put( irow, newflag ) ;
3682//          // IFNO renumbering
3683//          ifnoColOut.put( irow, igrp ) ;
3684//        }
3685//      }
3686//       }
3687      // get a list of number of channels for each frequency group member
3688      if ( totalsizes[0] == 0 ) {
3689        for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3690          sizes[igrp].resize( freqgrp[igrp].size() ) ;
3691          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3692            for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3693              uInt ifno = ifnoCol( irow ) ;
3694              if ( ifno == freqgrp[igrp][imem] ) {
3695                Vector<Float> spec = specCols( irow ) ;
3696                sizes[igrp][imem] = spec.nelements() ;
3697                totalsizes[igrp] += sizes[igrp][imem] ;
3698                break ;
3699              }
3700            }
3701          }
3702          specout[igrp].resize( totalsizes[igrp] ) ;
3703          flagout[igrp].resize( totalsizes[igrp] ) ;
3704          tsysout[igrp].resize( totalsizes[igrp] ) ;
3705        }
3706      }
3707
3708      // combine spectra
3709      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3710        uInt polout = polnoColOut( irow ) ;
3711        if ( polout == polno ) {
3712          uInt ifout = ifnoColOut( irow ) ;
3713//           Vector<Double> direction = dirColOut(irow).getAngle(Unit(String("rad"))).getValue() ;
3714          uInt igrp ;
3715          for ( uInt jgrp = 0 ; jgrp < freqgrp.size() ; jgrp++ ) {
3716            if ( ifout == gmemid[jgrp] ) {
3717              igrp = jgrp ;
3718              break ;
3719            }
3720          }
3721          IPosition startpos( 1, 0 ) ;
3722          IPosition endpos( 1, 0 ) ;
3723          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3724            for ( uInt jrow = 0 ; jrow < iter.table().nrow() ; jrow++ ) {
3725              uInt ifno = ifnoCol( jrow ) ;
3726              // 2012/02/17 TN
3727              // Since STGrid is implemented, average doesn't consider direction
3728              // when accumulating
3729//               Vector<Double> tdir = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
3730//               //if ( ifno == freqgrp[igrp][imem] && allTrue( tdir == direction  ) ) {
3731//               Double dx = tdir[0] - direction[0] ;
3732//               Double dy = tdir[1] - direction[1] ;
3733//               Double dd = sqrt( dx * dx + dy * dy ) ;
3734              //if ( ifno == freqgrp[igrp][imem] && allNearAbs( tdir, direction, tol ) ) {
3735//               if ( ifno == freqgrp[igrp][imem] && dd <= tol ) {
3736              if ( ifno == freqgrp[igrp][imem] ) {
3737                endpos[0] = startpos[0] + sizes[igrp][imem] - 1 ;
3738                Vector<Float> spec = specCols( jrow ) ;
3739                Vector<uChar> flag = flagCols( jrow ) ;
3740                Vector<Float> tsys = tsysCols( jrow ) ;
3741                //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3742                specout[igrp]( startpos, endpos ) = spec ;
3743                flagout[igrp]( startpos, endpos ) = flag ;
3744                if ( spec.size() == tsys.size() ) {
3745                  tsysout[igrp]( startpos, endpos ) = tsys ;
3746                }
3747                else {
3748                  tsysout[igrp]( startpos, endpos ) = tsys[0] ;
3749                }
3750                //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3751                startpos[0] += sizes[igrp][imem] ;
3752              }
3753            }
3754          }
3755          // set SPECTRA and FRAGTRA
3756          specColOut.put( irow, specout[igrp] ) ;
3757          flagColOut.put( irow, flagout[igrp] ) ;
3758          tsysColOut.put( irow, tsysout[igrp] ) ;
3759          // IFNO renumbering (renumbered as frequency group ID)
3760          ifnoColOut.put( irow, igrp ) ;
3761        }
3762      }
3763      iter++ ;
3764    }
3765    // update FREQUENCIES subtable
3766    vector<bool> updated( freqgrp.size(), false ) ;
3767    for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3768      uInt index = 0 ;
3769      uInt pixShift = 0 ;
3770
3771      while ( freqgrp[igrp][index] != gmemid[igrp] ) {
3772        pixShift += sizes[igrp][index++] ;
3773      }
3774      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3775        //if ( ifnoColOut( irow ) == gmemid[igrp] && !updated[igrp] ) {
3776        if ( ifnoColOut( irow ) == igrp && !updated[igrp] ) {
3777          uInt freqidOut = freqidColOut( irow ) ;
3778          //os << "freqgrp " << igrp << " freqidOut = " << freqidOut << LogIO::POST ;
3779          double refpix ;
3780          double refval ;
3781          double increm ;
3782          out->frequencies().getEntry( refpix, refval, increm, freqidOut ) ;
3783          if (increm < 0)
3784            refpix = sizes[igrp][index] - 1 - refpix ; // reversed
3785          refpix += pixShift ;
3786          out->frequencies().setEntry( refpix, refval, gmaxdnu[igrp], freqidOut ) ;
3787          updated[igrp] = true ;
3788        }
3789      }
3790    }
3791
3792    //out = tmpout ;
3793
3794    coordinfo = tmpout->getCoordInfo() ;
3795    coordinfo[0] = oldinfo[0] ;
3796    tmpout->setCoordInfo( coordinfo ) ;
3797  }
3798  else {
3799    // simple average
3800    out =  average( in, mask, weight, avmode ) ;
3801  }
3802 
3803  return out;
3804}
3805
3806CountedPtr<Scantable> STMath::cwcal( const CountedPtr<Scantable>& s,
3807                                     const String calmode,
3808                                     const String antname )
3809{
3810  // frequency switch
3811  if ( calmode == "fs" ) {
3812    return cwcalfs( s, antname ) ;
3813  }
3814  else {
3815    vector<bool> masks = s->getMask( 0 ) ;
3816    vector<int> types ;
3817
3818    // sky scan
3819    STSelector sel = STSelector() ;
3820    types.push_back( SrcType::SKY ) ;
3821    sel.setTypes( types ) ;
3822    s->setSelection( sel ) ;
3823    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3824    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
3825    s->unsetSelection() ;
3826    sel.reset() ;
3827    types.clear() ;
3828
3829    // hot scan
3830    types.push_back( SrcType::HOT ) ;
3831    sel.setTypes( types ) ;
3832    s->setSelection( sel ) ;
3833    tmp.clear() ;
3834    tmp.push_back( getScantable( s, false ) ) ;
3835    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
3836    s->unsetSelection() ;
3837    sel.reset() ;
3838    types.clear() ;
3839   
3840    // cold scan
3841    CountedPtr<Scantable> acold ;
3842//     types.push_back( SrcType::COLD ) ;
3843//     sel.setTypes( types ) ;
3844//     s->setSelection( sel ) ;
3845//     tmp.clear() ;
3846//     tmp.push_back( getScantable( s, false ) ) ;
3847//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCNAN" ) ;
3848//     s->unsetSelection() ;
3849//     sel.reset() ;
3850//     types.clear() ;
3851
3852    // off scan
3853    types.push_back( SrcType::PSOFF ) ;
3854    sel.setTypes( types ) ;
3855    s->setSelection( sel ) ;
3856    tmp.clear() ;
3857    tmp.push_back( getScantable( s, false ) ) ;
3858    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3859    s->unsetSelection() ;
3860    sel.reset() ;
3861    types.clear() ;
3862   
3863    // on scan
3864    bool insitu = insitu_ ;
3865    insitu_ = false ;
3866    CountedPtr<Scantable> out = getScantable( s, true ) ;
3867    insitu_ = insitu ;
3868    types.push_back( SrcType::PSON ) ;
3869    sel.setTypes( types ) ;
3870    s->setSelection( sel ) ;
3871    TableCopy::copyRows( out->table(), s->table() ) ;
3872    s->unsetSelection() ;
3873    sel.reset() ;
3874    types.clear() ;
3875   
3876    // process each on scan
3877    ArrayColumn<Float> tsysCol ;
3878    tsysCol.attach( out->table(), "TSYS" ) ;
3879    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3880      vector<float> sp = getCalibratedSpectra( out, aoff, asky, ahot, acold, i, antname ) ;
3881      out->setSpectrum( sp, i ) ;
3882      string reftime = out->getTime( i ) ;
3883      vector<int> ii( 1, out->getIF( i ) ) ;
3884      vector<int> ib( 1, out->getBeam( i ) ) ;
3885      vector<int> ip( 1, out->getPol( i ) ) ;
3886      sel.setIFs( ii ) ;
3887      sel.setBeams( ib ) ;
3888      sel.setPolarizations( ip ) ;
3889      asky->setSelection( sel ) ;   
3890      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
3891      const Vector<Float> Vtsys( sptsys ) ;
3892      tsysCol.put( i, Vtsys ) ;
3893      asky->unsetSelection() ;
3894      sel.reset() ;
3895    }
3896
3897    // flux unit
3898    out->setFluxUnit( "K" ) ;
3899
3900    return out ;
3901  }
3902}
3903 
3904CountedPtr<Scantable> STMath::almacal( const CountedPtr<Scantable>& s,
3905                                       const String calmode )
3906{
3907  // frequency switch
3908  if ( calmode == "fs" ) {
3909    return almacalfs( s ) ;
3910  }
3911  else {
3912    vector<bool> masks = s->getMask( 0 ) ;
3913   
3914    // off scan
3915    STSelector sel = STSelector() ;
3916    vector<int> types ;
3917    types.push_back( SrcType::PSOFF ) ;
3918    sel.setTypes( types ) ;
3919    s->setSelection( sel ) ;
3920    // TODO 2010/01/08 TN
3921    // Grouping by time should be needed before averaging.
3922    // Each group must have own unique SCANNO (should be renumbered).
3923    // See PIPELINE/SDCalibration.py
3924    CountedPtr<Scantable> soff = getScantable( s, false ) ;
3925    Table ttab = soff->table() ;
3926    ROScalarColumn<Double> timeCol( ttab, "TIME" ) ;
3927    uInt nrow = timeCol.nrow() ;
3928    Vector<Double> timeSep( nrow - 1 ) ;
3929    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3930      timeSep[i] = timeCol(i+1) - timeCol(i) ;
3931    }
3932    ScalarColumn<Double> intervalCol( ttab, "INTERVAL" ) ;
3933    Vector<Double> interval = intervalCol.getColumn() ;
3934    interval /= 86400.0 ;
3935    ScalarColumn<uInt> scanCol( ttab, "SCANNO" ) ;
3936    vector<uInt> glist ;
3937    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3938      double gap = 2.0 * timeSep[i] / ( interval[i] + interval[i+1] ) ;
3939      //cout << "gap[" << i << "]=" << setw(5) << gap << endl ;
3940      if ( gap > 1.1 ) {
3941        glist.push_back( i ) ;
3942      }
3943    }
3944    Vector<uInt> gaplist( glist ) ;
3945    //cout << "gaplist = " << gaplist << endl ;
3946    uInt newid = 0 ;
3947    for ( uInt i = 0 ; i < nrow ; i++ ) {
3948      scanCol.put( i, newid ) ;
3949      if ( i == gaplist[newid] ) {
3950        newid++ ;
3951      }
3952    }
3953    //cout << "new scancol = " << scanCol.getColumn() << endl ;
3954    vector< CountedPtr<Scantable> > tmp( 1, soff ) ;
3955    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3956    //cout << "aoff.nrow = " << aoff->nrow() << endl ;
3957    s->unsetSelection() ;
3958    sel.reset() ;
3959    types.clear() ;
3960   
3961    // on scan
3962    bool insitu = insitu_ ;
3963    insitu_ = false ;
3964    CountedPtr<Scantable> out = getScantable( s, true ) ;
3965    insitu_ = insitu ;
3966    types.push_back( SrcType::PSON ) ;
3967    sel.setTypes( types ) ;
3968    s->setSelection( sel ) ;
3969    TableCopy::copyRows( out->table(), s->table() ) ;
3970    s->unsetSelection() ;
3971    sel.reset() ;
3972    types.clear() ;
3973   
3974    // process each on scan
3975    ArrayColumn<Float> tsysCol ;
3976    tsysCol.attach( out->table(), "TSYS" ) ;
3977    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3978      vector<float> sp = getCalibratedSpectra( out, aoff, i ) ;
3979      out->setSpectrum( sp, i ) ;
3980    }
3981
3982    // flux unit
3983    out->setFluxUnit( "K" ) ;
3984
3985    return out ;
3986  }
3987}
3988
3989CountedPtr<Scantable> STMath::cwcalfs( const CountedPtr<Scantable>& s,
3990                                       const String antname )
3991{
3992  vector<int> types ;
3993
3994  // APEX calibration mode
3995  int apexcalmode = 1 ;
3996 
3997  if ( antname.find( "APEX" ) != string::npos ) {
3998    // check if off scan exists or not
3999    STSelector sel = STSelector() ;
4000    //sel.setName( offstr1 ) ;
4001    types.push_back( SrcType::FLOOFF ) ;
4002    sel.setTypes( types ) ;
4003    try {
4004      s->setSelection( sel ) ;
4005    }
4006    catch ( AipsError &e ) {
4007      apexcalmode = 0 ;
4008    }
4009    sel.reset() ;
4010  }
4011  s->unsetSelection() ;
4012  types.clear() ;
4013
4014  vector<bool> masks = s->getMask( 0 ) ;
4015  CountedPtr<Scantable> ssig, sref ;
4016  CountedPtr<Scantable> out ;
4017
4018  if ( antname.find( "APEX" ) != string::npos ) {
4019    // APEX calibration
4020    // sky scan
4021    STSelector sel = STSelector() ;
4022    types.push_back( SrcType::FLOSKY ) ;
4023    sel.setTypes( types ) ;
4024    s->setSelection( sel ) ;
4025    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
4026    CountedPtr<Scantable> askylo = average( tmp, masks, "TINT", "SCAN" ) ;
4027    s->unsetSelection() ;
4028    sel.reset() ;
4029    types.clear() ;
4030    types.push_back( SrcType::FHISKY ) ;
4031    sel.setTypes( types ) ;
4032    s->setSelection( sel ) ;
4033    tmp.clear() ;
4034    tmp.push_back( getScantable( s, false ) ) ;
4035    CountedPtr<Scantable> askyhi = average( tmp, masks, "TINT", "SCAN" ) ;
4036    s->unsetSelection() ;
4037    sel.reset() ;
4038    types.clear() ;
4039   
4040    // hot scan
4041    types.push_back( SrcType::FLOHOT ) ;
4042    sel.setTypes( types ) ;
4043    s->setSelection( sel ) ;
4044    tmp.clear() ;
4045    tmp.push_back( getScantable( s, false ) ) ;
4046    CountedPtr<Scantable> ahotlo = average( tmp, masks, "TINT", "SCAN" ) ;
4047    s->unsetSelection() ;
4048    sel.reset() ;
4049    types.clear() ;
4050    types.push_back( SrcType::FHIHOT ) ;
4051    sel.setTypes( types ) ;
4052    s->setSelection( sel ) ;
4053    tmp.clear() ;
4054    tmp.push_back( getScantable( s, false ) ) ;
4055    CountedPtr<Scantable> ahothi = average( tmp, masks, "TINT", "SCAN" ) ;
4056    s->unsetSelection() ;
4057    sel.reset() ;
4058    types.clear() ;
4059   
4060    // cold scan
4061    CountedPtr<Scantable> acoldlo, acoldhi ;
4062//     types.push_back( SrcType::FLOCOLD ) ;
4063//     sel.setTypes( types ) ;
4064//     s->setSelection( sel ) ;
4065//     tmp.clear() ;
4066//     tmp.push_back( getScantable( s, false ) ) ;
4067//     CountedPtr<Scantable> acoldlo = average( tmp, masks, "TINT", "SCAN" ) ;
4068//     s->unsetSelection() ;
4069//     sel.reset() ;
4070//     types.clear() ;
4071//     types.push_back( SrcType::FHICOLD ) ;
4072//     sel.setTypes( types ) ;
4073//     s->setSelection( sel ) ;
4074//     tmp.clear() ;
4075//     tmp.push_back( getScantable( s, false ) ) ;
4076//     CountedPtr<Scantable> acoldhi = average( tmp, masks, "TINT", "SCAN" ) ;
4077//     s->unsetSelection() ;
4078//     sel.reset() ;
4079//     types.clear() ;
4080
4081    // ref scan
4082    bool insitu = insitu_ ;
4083    insitu_ = false ;
4084    sref = getScantable( s, true ) ;
4085    insitu_ = insitu ;
4086    types.push_back( SrcType::FSLO ) ;
4087    sel.setTypes( types ) ;
4088    s->setSelection( sel ) ;
4089    TableCopy::copyRows( sref->table(), s->table() ) ;
4090    s->unsetSelection() ;
4091    sel.reset() ;
4092    types.clear() ;
4093   
4094    // sig scan
4095    insitu_ = false ;
4096    ssig = getScantable( s, true ) ;
4097    insitu_ = insitu ;
4098    types.push_back( SrcType::FSHI ) ;
4099    sel.setTypes( types ) ;
4100    s->setSelection( sel ) ;
4101    TableCopy::copyRows( ssig->table(), s->table() ) ;
4102    s->unsetSelection() ;
4103    sel.reset() ; 
4104    types.clear() ;
4105         
4106    if ( apexcalmode == 0 ) {
4107      // APEX fs data without off scan
4108      // process each sig and ref scan
4109      ArrayColumn<Float> tsysCollo ;
4110      tsysCollo.attach( ssig->table(), "TSYS" ) ;
4111      ArrayColumn<Float> tsysColhi ;
4112      tsysColhi.attach( sref->table(), "TSYS" ) ;
4113      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4114        vector< CountedPtr<Scantable> > sky( 2 ) ;
4115        sky[0] = askylo ;
4116        sky[1] = askyhi ;
4117        vector< CountedPtr<Scantable> > hot( 2 ) ;
4118        hot[0] = ahotlo ;
4119        hot[1] = ahothi ;
4120        vector< CountedPtr<Scantable> > cold( 2 ) ;
4121        //cold[0] = acoldlo ;
4122        //cold[1] = acoldhi ;
4123        vector<float> sp = getFSCalibratedSpectra( ssig, sref, sky, hot, cold, i ) ;
4124        ssig->setSpectrum( sp, i ) ;
4125        string reftime = ssig->getTime( i ) ;
4126        vector<int> ii( 1, ssig->getIF( i ) ) ;
4127        vector<int> ib( 1, ssig->getBeam( i ) ) ;
4128        vector<int> ip( 1, ssig->getPol( i ) ) ;
4129        sel.setIFs( ii ) ;
4130        sel.setBeams( ib ) ;
4131        sel.setPolarizations( ip ) ;
4132        askylo->setSelection( sel ) ;
4133        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4134        const Vector<Float> Vtsyslo( sptsys ) ;
4135        tsysCollo.put( i, Vtsyslo ) ;
4136        askylo->unsetSelection() ;
4137        sel.reset() ;
4138        sky[0] = askyhi ;
4139        sky[1] = askylo ;
4140        hot[0] = ahothi ;
4141        hot[1] = ahotlo ;
4142        cold[0] = acoldhi ;
4143        cold[1] = acoldlo ;
4144        sp = getFSCalibratedSpectra( sref, ssig, sky, hot, cold, i ) ;
4145        sref->setSpectrum( sp, i ) ;
4146        reftime = sref->getTime( i ) ;
4147        ii[0] = sref->getIF( i )  ;
4148        ib[0] = sref->getBeam( i ) ;
4149        ip[0] = sref->getPol( i ) ;
4150        sel.setIFs( ii ) ;
4151        sel.setBeams( ib ) ;
4152        sel.setPolarizations( ip ) ;
4153        askyhi->setSelection( sel ) ;   
4154        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4155        const Vector<Float> Vtsyshi( sptsys ) ;
4156        tsysColhi.put( i, Vtsyshi ) ;
4157        askyhi->unsetSelection() ;
4158        sel.reset() ;
4159      }
4160    }
4161    else if ( apexcalmode == 1 ) {
4162      // APEX fs data with off scan
4163      // off scan
4164      types.push_back( SrcType::FLOOFF ) ;
4165      sel.setTypes( types ) ;
4166      s->setSelection( sel ) ;
4167      tmp.clear() ;
4168      tmp.push_back( getScantable( s, false ) ) ;
4169      CountedPtr<Scantable> aofflo = average( tmp, masks, "TINT", "SCAN" ) ;
4170      s->unsetSelection() ;
4171      sel.reset() ;
4172      types.clear() ;
4173      types.push_back( SrcType::FHIOFF ) ;
4174      sel.setTypes( types ) ;
4175      s->setSelection( sel ) ;
4176      tmp.clear() ;
4177      tmp.push_back( getScantable( s, false ) ) ;
4178      CountedPtr<Scantable> aoffhi = average( tmp, masks, "TINT", "SCAN" ) ;
4179      s->unsetSelection() ;
4180      sel.reset() ;
4181      types.clear() ;
4182     
4183      // process each sig and ref scan
4184      ArrayColumn<Float> tsysCollo ;
4185      tsysCollo.attach( ssig->table(), "TSYS" ) ;
4186      ArrayColumn<Float> tsysColhi ;
4187      tsysColhi.attach( sref->table(), "TSYS" ) ;
4188      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4189        vector<float> sp = getCalibratedSpectra( ssig, aofflo, askylo, ahotlo, acoldlo, i, antname ) ;
4190        ssig->setSpectrum( sp, i ) ;
4191        sp = getCalibratedSpectra( sref, aoffhi, askyhi, ahothi, acoldhi, i, antname ) ;
4192        string reftime = ssig->getTime( i ) ;
4193        vector<int> ii( 1, ssig->getIF( i ) ) ;
4194        vector<int> ib( 1, ssig->getBeam( i ) ) ;
4195        vector<int> ip( 1, ssig->getPol( i ) ) ;
4196        sel.setIFs( ii ) ;
4197        sel.setBeams( ib ) ;
4198        sel.setPolarizations( ip ) ;
4199        askylo->setSelection( sel ) ;
4200        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4201        const Vector<Float> Vtsyslo( sptsys ) ;
4202        tsysCollo.put( i, Vtsyslo ) ;
4203        askylo->unsetSelection() ;
4204        sel.reset() ;
4205        sref->setSpectrum( sp, i ) ;
4206        reftime = sref->getTime( i ) ;
4207        ii[0] = sref->getIF( i )  ;
4208        ib[0] = sref->getBeam( i ) ;
4209        ip[0] = sref->getPol( i ) ;
4210        sel.setIFs( ii ) ;
4211        sel.setBeams( ib ) ;
4212        sel.setPolarizations( ip ) ;
4213        askyhi->setSelection( sel ) ;   
4214        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4215        const Vector<Float> Vtsyshi( sptsys ) ;
4216        tsysColhi.put( i, Vtsyshi ) ;
4217        askyhi->unsetSelection() ;
4218        sel.reset() ;
4219      }
4220    }
4221  }
4222  else {
4223    // non-APEX fs data
4224    // sky scan
4225    STSelector sel = STSelector() ;
4226    types.push_back( SrcType::SKY ) ;
4227    sel.setTypes( types ) ;
4228    s->setSelection( sel ) ;
4229    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
4230    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
4231    s->unsetSelection() ;
4232    sel.reset() ;
4233    types.clear() ;
4234   
4235    // hot scan
4236    types.push_back( SrcType::HOT ) ;
4237    sel.setTypes( types ) ;
4238    s->setSelection( sel ) ;
4239    tmp.clear() ;
4240    tmp.push_back( getScantable( s, false ) ) ;
4241    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
4242    s->unsetSelection() ;
4243    sel.reset() ;
4244    types.clear() ;
4245
4246    // cold scan
4247    CountedPtr<Scantable> acold ;
4248//     types.push_back( SrcType::COLD ) ;
4249//     sel.setTypes( types ) ;
4250//     s->setSelection( sel ) ;
4251//     tmp.clear() ;
4252//     tmp.push_back( getScantable( s, false ) ) ;
4253//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCAN" ) ;
4254//     s->unsetSelection() ;
4255//     sel.reset() ;
4256//     types.clear() ;
4257   
4258    // ref scan
4259    bool insitu = insitu_ ;
4260    insitu_ = false ;
4261    sref = getScantable( s, true ) ;
4262    insitu_ = insitu ;
4263    types.push_back( SrcType::FSOFF ) ;
4264    sel.setTypes( types ) ;
4265    s->setSelection( sel ) ;
4266    TableCopy::copyRows( sref->table(), s->table() ) ;
4267    s->unsetSelection() ;
4268    sel.reset() ;
4269    types.clear() ;
4270   
4271    // sig scan
4272    insitu_ = false ;
4273    ssig = getScantable( s, true ) ;
4274    insitu_ = insitu ;
4275    types.push_back( SrcType::FSON ) ;
4276    sel.setTypes( types ) ;
4277    s->setSelection( sel ) ;
4278    TableCopy::copyRows( ssig->table(), s->table() ) ;
4279    s->unsetSelection() ;
4280    sel.reset() ;
4281    types.clear() ;
4282
4283    // process each sig and ref scan
4284    ArrayColumn<Float> tsysColsig ;
4285    tsysColsig.attach( ssig->table(), "TSYS" ) ;
4286    ArrayColumn<Float> tsysColref ;
4287    tsysColref.attach( ssig->table(), "TSYS" ) ;
4288    for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4289      vector<float> sp = getFSCalibratedSpectra( ssig, sref, asky, ahot, acold, i ) ;
4290      ssig->setSpectrum( sp, i ) ;
4291      string reftime = ssig->getTime( i ) ;
4292      vector<int> ii( 1, ssig->getIF( i ) ) ;
4293      vector<int> ib( 1, ssig->getBeam( i ) ) ;
4294      vector<int> ip( 1, ssig->getPol( i ) ) ;
4295      sel.setIFs( ii ) ;
4296      sel.setBeams( ib ) ;
4297      sel.setPolarizations( ip ) ;
4298      asky->setSelection( sel ) ;
4299      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
4300      const Vector<Float> Vtsys( sptsys ) ;
4301      tsysColsig.put( i, Vtsys ) ;
4302      asky->unsetSelection() ;
4303      sel.reset() ;
4304      sp = getFSCalibratedSpectra( sref, ssig, asky, ahot, acold, i ) ;
4305      sref->setSpectrum( sp, i ) ;
4306      tsysColref.put( i, Vtsys ) ;
4307    }
4308  }
4309
4310  // do folding if necessary
4311  Table sigtab = ssig->table() ;
4312  Table reftab = sref->table() ;
4313  ScalarColumn<uInt> sigifnoCol ;
4314  ScalarColumn<uInt> refifnoCol ;
4315  ScalarColumn<uInt> sigfidCol ;
4316  ScalarColumn<uInt> reffidCol ;
4317  Int nchan = (Int)ssig->nchan() ;
4318  sigifnoCol.attach( sigtab, "IFNO" ) ;
4319  refifnoCol.attach( reftab, "IFNO" ) ;
4320  sigfidCol.attach( sigtab, "FREQ_ID" ) ;
4321  reffidCol.attach( reftab, "FREQ_ID" ) ;
4322  Vector<uInt> sfids( sigfidCol.getColumn() ) ;
4323  Vector<uInt> rfids( reffidCol.getColumn() ) ;
4324  vector<uInt> sfids_unique ;
4325  vector<uInt> rfids_unique ;
4326  vector<uInt> sifno_unique ;
4327  vector<uInt> rifno_unique ;
4328  for ( uInt i = 0 ; i < sfids.nelements() ; i++ ) {
4329    if ( count( sfids_unique.begin(), sfids_unique.end(), sfids[i] ) == 0 ) {
4330      sfids_unique.push_back( sfids[i] ) ;
4331      sifno_unique.push_back( ssig->getIF( i ) ) ;
4332    }
4333    if ( count( rfids_unique.begin(), rfids_unique.end(),  rfids[i] ) == 0 ) {
4334      rfids_unique.push_back( rfids[i] ) ;
4335      rifno_unique.push_back( sref->getIF( i ) ) ;
4336    }
4337  }
4338  double refpix_sig, refval_sig, increment_sig ;
4339  double refpix_ref, refval_ref, increment_ref ;
4340  vector< CountedPtr<Scantable> > tmp( sfids_unique.size() ) ;
4341  for ( uInt i = 0 ; i < sfids_unique.size() ; i++ ) {
4342    ssig->frequencies().getEntry( refpix_sig, refval_sig, increment_sig, sfids_unique[i] ) ;
4343    sref->frequencies().getEntry( refpix_ref, refval_ref, increment_ref, rfids_unique[i] ) ;
4344    if ( refpix_sig == refpix_ref ) {
4345      double foffset = refval_ref - refval_sig ;
4346      int choffset = static_cast<int>(foffset/increment_sig) ;
4347      double doffset = foffset / increment_sig ;
4348      if ( abs(choffset) >= nchan ) {
4349        LogIO os( LogOrigin( "STMath", "cwcalfs", WHERE ) ) ;
4350        os << "FREQ_ID=[" << sfids_unique[i] << "," << rfids_unique[i] << "]: out-band frequency switching, no folding" << LogIO::POST ;
4351        os << "Just return signal data" << LogIO::POST ;
4352        //std::vector< CountedPtr<Scantable> > tabs ;
4353        //tabs.push_back( ssig ) ;
4354        //tabs.push_back( sref ) ;
4355        //out = merge( tabs ) ;
4356        tmp[i] = ssig ;
4357      }
4358      else {
4359        STSelector sel = STSelector() ;
4360        vector<int> v( 1, sifno_unique[i] ) ;
4361        sel.setIFs( v ) ;
4362        ssig->setSelection( sel ) ;
4363        sel.reset() ;
4364        v[0] = rifno_unique[i] ;
4365        sel.setIFs( v ) ;
4366        sref->setSelection( sel ) ;
4367        sel.reset() ;
4368        if ( antname.find( "APEX" ) != string::npos ) {
4369          tmp[i] = dofold( ssig, sref, 0.5*doffset, -0.5*doffset ) ;
4370          //tmp[i] = dofold( ssig, sref, doffset ) ;
4371        }
4372        else {
4373          tmp[i] = dofold( ssig, sref, doffset ) ;
4374        }
4375        ssig->unsetSelection() ;
4376        sref->unsetSelection() ;
4377      }
4378    }
4379  }
4380
4381  if ( tmp.size() > 1 ) {
4382    out = merge( tmp ) ;
4383  }
4384  else {
4385    out = tmp[0] ;
4386  }
4387
4388  // flux unit
4389  out->setFluxUnit( "K" ) ;
4390
4391  return out ;
4392}
4393
4394CountedPtr<Scantable> STMath::almacalfs( const CountedPtr<Scantable>& s )
4395{
4396  (void) s; //currently unused
4397  CountedPtr<Scantable> out ;
4398
4399  return out ;
4400}
4401
4402vector<float> STMath::getSpectrumFromTime( string reftime,
4403                                           CountedPtr<Scantable>& s,
4404                                           string mode )
4405{
4406  LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
4407  vector<float> sp ;
4408
4409  if ( s->nrow() == 0 ) {
4410    os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4411    return sp ;
4412  }
4413  else if ( s->nrow() == 1 ) {
4414    //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4415    return s->getSpectrum( 0 ) ;
4416  }
4417  else {
4418    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4419    if ( mode == "before" ) {
4420      int id = -1 ;
4421      if ( idx[0] != -1 ) {
4422        id = idx[0] ;
4423      }
4424      else if ( idx[1] != -1 ) {
4425        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4426        id = idx[1] ;
4427      }
4428      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4429      sp = s->getSpectrum( id ) ;
4430    }
4431    else if ( mode == "after" ) {
4432      int id = -1 ;
4433      if ( idx[1] != -1 ) {
4434        id = idx[1] ;
4435      }
4436      else if ( idx[0] != -1 ) {
4437        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4438        id = idx[1] ;
4439      }
4440      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4441      sp = s->getSpectrum( id ) ;
4442    }
4443    else if ( mode == "nearest" ) {
4444      int id = -1 ;
4445      if ( idx[0] == -1 ) {
4446        id = idx[1] ;
4447      }
4448      else if ( idx[1] == -1 ) {
4449        id = idx[0] ;
4450      }
4451      else if ( idx[0] == idx[1] ) {
4452        id = idx[0] ;
4453      }
4454      else {
4455        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4456        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4457        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4458        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4459        double tref = getMJD( reftime ) ;
4460        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4461          id = idx[1] ;
4462        }
4463        else {
4464          id = idx[0] ;
4465        }
4466      }
4467      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4468      sp = s->getSpectrum( id ) ;     
4469    }
4470    else if ( mode == "linear" ) {
4471      if ( idx[0] == -1 ) {
4472        // use after
4473        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4474        int id = idx[1] ;
4475        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4476        sp = s->getSpectrum( id ) ;
4477      }
4478      else if ( idx[1] == -1 ) {
4479        // use before
4480        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4481        int id = idx[0] ;
4482        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4483        sp = s->getSpectrum( id ) ;
4484      }
4485      else if ( idx[0] == idx[1] ) {
4486        // use before
4487        //os << "No need to interporate." << LogIO::POST ;
4488        int id = idx[0] ;
4489        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4490        sp = s->getSpectrum( id ) ;
4491      }
4492      else {
4493        // do interpolation
4494        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4495        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4496        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4497        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4498        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4499        double tref = getMJD( reftime ) ;
4500        vector<float> sp0 = s->getSpectrum( idx[0] ) ;
4501        vector<float> sp1 = s->getSpectrum( idx[1] ) ;
4502        for ( unsigned int i = 0 ; i < sp0.size() ; i++ ) {
4503          float v = ( sp1[i] - sp0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + sp0[i] ;
4504          sp.push_back( v ) ;
4505        }
4506      }
4507    }
4508    else {
4509      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4510    }
4511    return sp ;
4512  }
4513}
4514
4515double STMath::getMJD( string strtime )
4516{
4517  if ( strtime.find("/") == string::npos ) {
4518    // MJD time string
4519    return atof( strtime.c_str() ) ;
4520  }
4521  else {
4522    // string in YYYY/MM/DD/HH:MM:SS format
4523    uInt year = atoi( strtime.substr( 0, 4 ).c_str() ) ;
4524    uInt month = atoi( strtime.substr( 5, 2 ).c_str() ) ;
4525    uInt day = atoi( strtime.substr( 8, 2 ).c_str() ) ;
4526    uInt hour = atoi( strtime.substr( 11, 2 ).c_str() ) ;
4527    uInt minute = atoi( strtime.substr( 14, 2 ).c_str() ) ;
4528    uInt sec = atoi( strtime.substr( 17, 2 ).c_str() ) ;
4529    Time t( year, month, day, hour, minute, sec ) ;
4530    return t.modifiedJulianDay() ;
4531  }
4532}
4533
4534vector<int> STMath::getRowIdFromTime( string reftime, CountedPtr<Scantable> &s )
4535{
4536  double reft = getMJD( reftime ) ;
4537  double dtmin = 1.0e100 ;
4538  double dtmax = -1.0e100 ;
4539  vector<double> dt ;
4540  int just_before = -1 ;
4541  int just_after = -1 ;
4542  for ( int i = 0 ; i < s->nrow() ; i++ ) {
4543    dt.push_back( getMJD( s->getTime( i ) ) - reft ) ;
4544  }
4545  for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
4546    if ( dt[i] > 0.0 ) {
4547      // after reftime
4548      if ( dt[i] < dtmin ) {
4549        just_after = i ;
4550        dtmin = dt[i] ;
4551      }
4552    }
4553    else if ( dt[i] < 0.0 ) {
4554      // before reftime
4555      if ( dt[i] > dtmax ) {
4556        just_before = i ;
4557        dtmax = dt[i] ;
4558      }
4559    }
4560    else {
4561      // just a reftime
4562      just_before = i ;
4563      just_after = i ;
4564      dtmax = 0 ;
4565      dtmin = 0 ;
4566      break ;
4567    }
4568  }
4569
4570  vector<int> v ;
4571  v.push_back( just_before ) ;
4572  v.push_back( just_after ) ;
4573
4574  return v ;
4575}
4576
4577vector<float> STMath::getTcalFromTime( string reftime,
4578                                       CountedPtr<Scantable>& s,
4579                                       string mode )
4580{
4581  LogIO os( LogOrigin( "STMath", "getTcalFromTime", WHERE ) ) ;
4582  vector<float> tcal ;
4583  STTcal tcalTable = s->tcal() ;
4584  String time ;
4585  Vector<Float> tcalval ;
4586  if ( s->nrow() == 0 ) {
4587    os << LogIO::SEVERE << "No row in the input scantable. Return empty tcal." << LogIO::POST ;
4588    return tcal ;
4589  }
4590  else if ( s->nrow() == 1 ) {
4591    uInt tcalid = s->getTcalId( 0 ) ;
4592    //os << "use row " << 0 << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4593    tcalTable.getEntry( time, tcalval, tcalid ) ;
4594    tcalval.tovector( tcal ) ;
4595    return tcal ;
4596  }
4597  else {
4598    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4599    if ( mode == "before" ) {
4600      int id = -1 ;
4601      if ( idx[0] != -1 ) {
4602        id = idx[0] ;
4603      }
4604      else if ( idx[1] != -1 ) {
4605        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4606        id = idx[1] ;
4607      }
4608      uInt tcalid = s->getTcalId( id ) ;
4609      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4610      tcalTable.getEntry( time, tcalval, tcalid ) ;
4611      tcalval.tovector( tcal ) ;
4612    }
4613    else if ( mode == "after" ) {
4614      int id = -1 ;
4615      if ( idx[1] != -1 ) {
4616        id = idx[1] ;
4617      }
4618      else if ( idx[0] != -1 ) {
4619        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4620        id = idx[1] ;
4621      }
4622      uInt tcalid = s->getTcalId( id ) ;
4623      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4624      tcalTable.getEntry( time, tcalval, tcalid ) ;
4625      tcalval.tovector( tcal ) ;
4626    }
4627    else if ( mode == "nearest" ) {
4628      int id = -1 ;
4629      if ( idx[0] == -1 ) {
4630        id = idx[1] ;
4631      }
4632      else if ( idx[1] == -1 ) {
4633        id = idx[0] ;
4634      }
4635      else if ( idx[0] == idx[1] ) {
4636        id = idx[0] ;
4637      }
4638      else {
4639        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4640        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4641        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4642        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4643        double tref = getMJD( reftime ) ;
4644        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4645          id = idx[1] ;
4646        }
4647        else {
4648          id = idx[0] ;
4649        }
4650      }
4651      uInt tcalid = s->getTcalId( id ) ;
4652      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4653      tcalTable.getEntry( time, tcalval, tcalid ) ;
4654      tcalval.tovector( tcal ) ;
4655    }
4656    else if ( mode == "linear" ) {
4657      if ( idx[0] == -1 ) {
4658        // use after
4659        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4660        int id = idx[1] ;
4661        uInt tcalid = s->getTcalId( id ) ;
4662        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4663        tcalTable.getEntry( time, tcalval, tcalid ) ;
4664        tcalval.tovector( tcal ) ;
4665      }
4666      else if ( idx[1] == -1 ) {
4667        // use before
4668        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4669        int id = idx[0] ;
4670        uInt tcalid = s->getTcalId( id ) ;
4671        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4672        tcalTable.getEntry( time, tcalval, tcalid ) ;
4673        tcalval.tovector( tcal ) ;
4674      }
4675      else if ( idx[0] == idx[1] ) {
4676        // use before
4677        //os << "No need to interporate." << LogIO::POST ;
4678        int id = idx[0] ;
4679        uInt tcalid = s->getTcalId( id ) ;
4680        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4681        tcalTable.getEntry( time, tcalval, tcalid ) ;
4682        tcalval.tovector( tcal ) ;
4683      }
4684      else {
4685        // do interpolation
4686        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4687        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4688        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4689        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4690        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4691        double tref = getMJD( reftime ) ;
4692        vector<float> tcal0 ;
4693        vector<float> tcal1 ;
4694        uInt tcalid0 = s->getTcalId( idx[0] ) ;
4695        uInt tcalid1 = s->getTcalId( idx[1] ) ;
4696        tcalTable.getEntry( time, tcalval, tcalid0 ) ;
4697        tcalval.tovector( tcal0 ) ;
4698        tcalTable.getEntry( time, tcalval, tcalid1 ) ;
4699        tcalval.tovector( tcal1 ) ;       
4700        for ( unsigned int i = 0 ; i < tcal0.size() ; i++ ) {
4701          float v = ( tcal1[i] - tcal0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tcal0[i] ;
4702          tcal.push_back( v ) ;
4703        }
4704      }
4705    }
4706    else {
4707      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4708    }
4709    return tcal ;
4710  }
4711}
4712
4713vector<float> STMath::getTsysFromTime( string reftime,
4714                                       CountedPtr<Scantable>& s,
4715                                       string mode )
4716{
4717  LogIO os( LogOrigin( "STMath", "getTsysFromTime", WHERE ) ) ;
4718  ArrayColumn<Float> tsysCol ;
4719  tsysCol.attach( s->table(), "TSYS" ) ;
4720  vector<float> tsys ;
4721  String time ;
4722  Vector<Float> tsysval ;
4723  if ( s->nrow() == 0 ) {
4724    os << LogIO::SEVERE << "No row in the input scantable. Return empty tsys." << LogIO::POST ;
4725    return tsys ;
4726  }
4727  else if ( s->nrow() == 1 ) {
4728    //os << "use row " << 0 << LogIO::POST ;
4729    tsysval = tsysCol( 0 ) ;
4730    tsysval.tovector( tsys ) ;
4731    return tsys ;
4732  }
4733  else {
4734    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4735    if ( mode == "before" ) {
4736      int id = -1 ;
4737      if ( idx[0] != -1 ) {
4738        id = idx[0] ;
4739      }
4740      else if ( idx[1] != -1 ) {
4741        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4742        id = idx[1] ;
4743      }
4744      //os << "use row " << id << LogIO::POST ;
4745      tsysval = tsysCol( id ) ;
4746      tsysval.tovector( tsys ) ;
4747    }
4748    else if ( mode == "after" ) {
4749      int id = -1 ;
4750      if ( idx[1] != -1 ) {
4751        id = idx[1] ;
4752      }
4753      else if ( idx[0] != -1 ) {
4754        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4755        id = idx[1] ;
4756      }
4757      //os << "use row " << id << LogIO::POST ;
4758      tsysval = tsysCol( id ) ;
4759      tsysval.tovector( tsys ) ;
4760    }
4761    else if ( mode == "nearest" ) {
4762      int id = -1 ;
4763      if ( idx[0] == -1 ) {
4764        id = idx[1] ;
4765      }
4766      else if ( idx[1] == -1 ) {
4767        id = idx[0] ;
4768      }
4769      else if ( idx[0] == idx[1] ) {
4770        id = idx[0] ;
4771      }
4772      else {
4773        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4774        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4775        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4776        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4777        double tref = getMJD( reftime ) ;
4778        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4779          id = idx[1] ;
4780        }
4781        else {
4782          id = idx[0] ;
4783        }
4784      }
4785      //os << "use row " << id << LogIO::POST ;
4786      tsysval = tsysCol( id ) ;
4787      tsysval.tovector( tsys ) ;
4788    }
4789    else if ( mode == "linear" ) {
4790      if ( idx[0] == -1 ) {
4791        // use after
4792        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4793        int id = idx[1] ;
4794        //os << "use row " << id << LogIO::POST ;
4795        tsysval = tsysCol( id ) ;
4796        tsysval.tovector( tsys ) ;
4797      }
4798      else if ( idx[1] == -1 ) {
4799        // use before
4800        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4801        int id = idx[0] ;
4802        //os << "use row " << id << LogIO::POST ;
4803        tsysval = tsysCol( id ) ;
4804        tsysval.tovector( tsys ) ;
4805      }
4806      else if ( idx[0] == idx[1] ) {
4807        // use before
4808        //os << "No need to interporate." << LogIO::POST ;
4809        int id = idx[0] ;
4810        //os << "use row " << id << LogIO::POST ;
4811        tsysval = tsysCol( id ) ;
4812        tsysval.tovector( tsys ) ;
4813      }
4814      else {
4815        // do interpolation
4816        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4817        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4818        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4819        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4820        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4821        double tref = getMJD( reftime ) ;
4822        vector<float> tsys0 ;
4823        vector<float> tsys1 ;
4824        tsysval = tsysCol( idx[0] ) ;
4825        tsysval.tovector( tsys0 ) ;
4826        tsysval = tsysCol( idx[1] ) ;
4827        tsysval.tovector( tsys1 ) ;       
4828        for ( unsigned int i = 0 ; i < tsys0.size() ; i++ ) {
4829          float v = ( tsys1[i] - tsys0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tsys0[i] ;
4830          tsys.push_back( v ) ;
4831        }
4832      }
4833    }
4834    else {
4835      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4836    }
4837    return tsys ;
4838  }
4839}
4840
4841vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
4842                                            CountedPtr<Scantable>& off,
4843                                            CountedPtr<Scantable>& sky,
4844                                            CountedPtr<Scantable>& hot,
4845                                            CountedPtr<Scantable>& cold,
4846                                            int index,
4847                                            string antname )
4848{
4849  (void) cold; //currently unused
4850  string reftime = on->getTime( index ) ;
4851  vector<int> ii( 1, on->getIF( index ) ) ;
4852  vector<int> ib( 1, on->getBeam( index ) ) ;
4853  vector<int> ip( 1, on->getPol( index ) ) ;
4854  vector<int> ic( 1, on->getScan( index ) ) ;
4855  STSelector sel = STSelector() ;
4856  sel.setIFs( ii ) ;
4857  sel.setBeams( ib ) ;
4858  sel.setPolarizations( ip ) ;
4859  sky->setSelection( sel ) ;
4860  hot->setSelection( sel ) ;
4861  //cold->setSelection( sel ) ;
4862  off->setSelection( sel ) ;
4863  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
4864  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
4865  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
4866  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
4867  vector<float> spec = on->getSpectrum( index ) ;
4868  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4869  vector<float> sp( tcal.size() ) ;
4870  if ( antname.find( "APEX" ) != string::npos ) {
4871    // using gain array
4872    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4873      float v = ( ( spec[j] - spoff[j] ) / spoff[j] )
4874        * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
4875      sp[j] = v ;
4876    }
4877  }
4878  else {
4879    // Chopper-Wheel calibration (Ulich & Haas 1976)
4880    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4881      float v = ( spec[j] - spoff[j] ) / ( sphot[j] - spsky[j] ) * tcal[j] ;
4882      sp[j] = v ;
4883    }
4884  }
4885  sel.reset() ;
4886  sky->unsetSelection() ;
4887  hot->unsetSelection() ;
4888  //cold->unsetSelection() ;
4889  off->unsetSelection() ;
4890
4891  return sp ;
4892}
4893
4894vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
4895                                            CountedPtr<Scantable>& off,
4896                                            int index )
4897{
4898  string reftime = on->getTime( index ) ;
4899  vector<int> ii( 1, on->getIF( index ) ) ;
4900  vector<int> ib( 1, on->getBeam( index ) ) ;
4901  vector<int> ip( 1, on->getPol( index ) ) ;
4902  vector<int> ic( 1, on->getScan( index ) ) ;
4903  STSelector sel = STSelector() ;
4904  sel.setIFs( ii ) ;
4905  sel.setBeams( ib ) ;
4906  sel.setPolarizations( ip ) ;
4907  off->setSelection( sel ) ;
4908  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
4909  vector<float> spec = on->getSpectrum( index ) ;
4910  //vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4911  //vector<float> tsys = on->getTsysVec( index ) ;
4912  ArrayColumn<Float> tsysCol( on->table(), "TSYS" ) ;
4913  Vector<Float> tsys = tsysCol( index ) ;
4914  vector<float> sp( spec.size() ) ;
4915  // ALMA Calibration
4916  //
4917  // Ta* = Tsys * ( ON - OFF ) / OFF
4918  //
4919  // 2010/01/07 Takeshi Nakazato
4920  unsigned int tsyssize = tsys.nelements() ;
4921  unsigned int spsize = sp.size() ;
4922  for ( unsigned int j = 0 ; j < sp.size() ; j++ ) {
4923    float tscale = 0.0 ;
4924    if ( tsyssize == spsize )
4925      tscale = tsys[j] ;
4926    else
4927      tscale = tsys[0] ;
4928    float v = tscale * ( spec[j] - spoff[j] ) / spoff[j] ;
4929    sp[j] = v ;
4930  }
4931  sel.reset() ;
4932  off->unsetSelection() ;
4933
4934  return sp ;
4935}
4936
4937vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
4938                                              CountedPtr<Scantable>& ref,
4939                                              CountedPtr<Scantable>& sky,
4940                                              CountedPtr<Scantable>& hot,
4941                                              CountedPtr<Scantable>& cold,
4942                                              int index )
4943{
4944  (void) cold; //currently unused
4945  string reftime = sig->getTime( index ) ;
4946  vector<int> ii( 1, sig->getIF( index ) ) ;
4947  vector<int> ib( 1, sig->getBeam( index ) ) ;
4948  vector<int> ip( 1, sig->getPol( index ) ) ;
4949  vector<int> ic( 1, sig->getScan( index ) ) ;
4950  STSelector sel = STSelector() ;
4951  sel.setIFs( ii ) ;
4952  sel.setBeams( ib ) ;
4953  sel.setPolarizations( ip ) ;
4954  sky->setSelection( sel ) ;
4955  hot->setSelection( sel ) ;
4956  //cold->setSelection( sel ) ;
4957  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
4958  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
4959  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
4960  vector<float> spref = ref->getSpectrum( index ) ;
4961  vector<float> spsig = sig->getSpectrum( index ) ;
4962  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4963  vector<float> sp( tcal.size() ) ;
4964  for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4965    float v = tcal[j] * spsky[j] / ( sphot[j] - spsky[j] ) * ( spsig[j] - spref[j] ) / spref[j] ;
4966    sp[j] = v ;
4967  }
4968  sel.reset() ;
4969  sky->unsetSelection() ;
4970  hot->unsetSelection() ;
4971  //cold->unsetSelection() ;
4972
4973  return sp ;
4974}
4975
4976vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
4977                                              CountedPtr<Scantable>& ref,
4978                                              vector< CountedPtr<Scantable> >& sky,
4979                                              vector< CountedPtr<Scantable> >& hot,
4980                                              vector< CountedPtr<Scantable> >& cold,
4981                                              int index )
4982{
4983  (void) cold; //currently unused
4984  string reftime = sig->getTime( index ) ;
4985  vector<int> ii( 1, sig->getIF( index ) ) ;
4986  vector<int> ib( 1, sig->getBeam( index ) ) ;
4987  vector<int> ip( 1, sig->getPol( index ) ) ;
4988  vector<int> ic( 1, sig->getScan( index ) ) ;
4989  STSelector sel = STSelector() ;
4990  sel.setIFs( ii ) ;
4991  sel.setBeams( ib ) ;
4992  sel.setPolarizations( ip ) ;
4993  sky[0]->setSelection( sel ) ;
4994  hot[0]->setSelection( sel ) ;
4995  //cold[0]->setSelection( sel ) ;
4996  vector<float> spskys = getSpectrumFromTime( reftime, sky[0], "linear" ) ;
4997  vector<float> sphots = getSpectrumFromTime( reftime, hot[0], "linear" ) ;
4998  //vector<float> spcolds = getSpectrumFromTime( reftime, cold[0], "linear" ) ;
4999  vector<float> tcals = getTcalFromTime( reftime, sky[0], "linear" ) ;
5000  sel.reset() ;
5001  ii[0] = ref->getIF( index ) ;
5002  sel.setIFs( ii ) ;
5003  sel.setBeams( ib ) ;
5004  sel.setPolarizations( ip ) ;
5005  sky[1]->setSelection( sel ) ;
5006  hot[1]->setSelection( sel ) ;
5007  //cold[1]->setSelection( sel ) ;
5008  vector<float> spskyr = getSpectrumFromTime( reftime, sky[1], "linear" ) ;
5009  vector<float> sphotr = getSpectrumFromTime( reftime, hot[1], "linear" ) ;
5010  //vector<float> spcoldr = getSpectrumFromTime( reftime, cold[1], "linear" ) ;
5011  vector<float> tcalr = getTcalFromTime( reftime, sky[1], "linear" ) ; 
5012  vector<float> spref = ref->getSpectrum( index ) ;
5013  vector<float> spsig = sig->getSpectrum( index ) ;
5014  vector<float> sp( tcals.size() ) ;
5015  for ( unsigned int j = 0 ; j < tcals.size() ; j++ ) {
5016    float v = tcals[j] * spsig[j] / ( sphots[j] - spskys[j] ) - tcalr[j] * spref[j] / ( sphotr[j] - spskyr[j] ) ;
5017    sp[j] = v ;
5018  }
5019  sel.reset() ;
5020  sky[0]->unsetSelection() ;
5021  hot[0]->unsetSelection() ;
5022  //cold[0]->unsetSelection() ;
5023  sky[1]->unsetSelection() ;
5024  hot[1]->unsetSelection() ;
5025  //cold[1]->unsetSelection() ;
5026
5027  return sp ;
5028}
Note: See TracBrowser for help on using the repository browser.