source: trunk/src/STMath.cpp @ 2345

Last change on this file since 2345 was 2345, checked in by WataruKawasaki, 13 years ago

New Development: No

JIRA Issue: No

Ready for Test: Yes

Interface Changes: No

What Interface Changed:

Test Programs:

Put in Release Notes: No

Module(s): SD

Description: bugfix.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 168.1 KB
Line 
1//
2// C++ Implementation: STMath
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2006
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12
13#include <sstream>
14
15#include <casa/iomanip.h>
16#include <casa/Arrays/MaskArrLogi.h>
17#include <casa/Arrays/MaskArrMath.h>
18#include <casa/Arrays/ArrayLogical.h>
19#include <casa/Arrays/ArrayMath.h>
20#include <casa/Arrays/Slice.h>
21#include <casa/Arrays/Slicer.h>
22#include <casa/BasicSL/String.h>
23#include <casa/Containers/Block.h>
24#include <casa/Containers/RecordField.h>
25#include <casa/Exceptions/Error.h>
26#include <casa/Logging/LogIO.h>
27
28#include <coordinates/Coordinates/CoordinateSystem.h>
29#include <coordinates/Coordinates/CoordinateUtil.h>
30#include <coordinates/Coordinates/FrequencyAligner.h>
31#include <coordinates/Coordinates/SpectralCoordinate.h>
32
33#include <lattices/Lattices/LatticeUtilities.h>
34
35#include <scimath/Functionals/Polynomial.h>
36#include <scimath/Mathematics/Convolver.h>
37#include <scimath/Mathematics/VectorKernel.h>
38
39#include <tables/Tables/ExprNode.h>
40#include <tables/Tables/ReadAsciiTable.h>
41#include <tables/Tables/TableCopy.h>
42#include <tables/Tables/TableIter.h>
43#include <tables/Tables/TableParse.h>
44#include <tables/Tables/TableRecord.h>
45#include <tables/Tables/TableRow.h>
46#include <tables/Tables/TableVector.h>
47#include <tables/Tables/TabVecMath.h>
48
49#include <atnf/PKSIO/SrcType.h>
50
51#include "RowAccumulator.h"
52#include "STAttr.h"
53#include "STMath.h"
54#include "STSelector.h"
55
56using namespace casa;
57using namespace asap;
58
59// tolerance for direction comparison (rad)
60#define TOL_OTF    1.0e-15
61#define TOL_POINT  2.9088821e-4  // 1 arcmin
62
63STMath::STMath(bool insitu) :
64  insitu_(insitu)
65{
66}
67
68
69STMath::~STMath()
70{
71}
72
73CountedPtr<Scantable>
74STMath::average( const std::vector<CountedPtr<Scantable> >& in,
75                 const std::vector<bool>& mask,
76                 const std::string& weight,
77                 const std::string& avmode)
78{
79  LogIO os( LogOrigin( "STMath", "average()", WHERE ) ) ;
80  if ( avmode == "SCAN" && in.size() != 1 )
81    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
82                    "Use merge first."));
83  WeightType wtype = stringToWeight(weight);
84
85  // check if OTF observation
86  String obstype = in[0]->getHeader().obstype ;
87  Double tol = 0.0 ;
88  if ( (obstype.find( "OTF" ) != String::npos) || (obstype.find( "OBSERVE_TARGET" ) != String::npos) ) {
89    tol = TOL_OTF ;
90  }
91  else {
92    tol = TOL_POINT ;
93  }
94
95  // output
96  // clone as this is non insitu
97  bool insitu = insitu_;
98  setInsitu(false);
99  CountedPtr< Scantable > out = getScantable(in[0], true);
100  setInsitu(insitu);
101  std::vector<CountedPtr<Scantable> >::const_iterator stit = in.begin();
102  ++stit;
103  while ( stit != in.end() ) {
104    out->appendToHistoryTable((*stit)->history());
105    ++stit;
106  }
107
108  Table& tout = out->table();
109
110  /// @todo check if all scantables are conformant
111
112  ArrayColumn<Float> specColOut(tout,"SPECTRA");
113  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
114  ArrayColumn<Float> tsysColOut(tout,"TSYS");
115  ScalarColumn<Double> mjdColOut(tout,"TIME");
116  ScalarColumn<Double> intColOut(tout,"INTERVAL");
117  ScalarColumn<uInt> cycColOut(tout,"CYCLENO");
118  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
119
120  // set up the output table rows. These are based on the structure of the
121  // FIRST scantable in the vector
122  const Table& baset = in[0]->table();
123
124  Block<String> cols(3);
125  cols[0] = String("BEAMNO");
126  cols[1] = String("IFNO");
127  cols[2] = String("POLNO");
128  if ( avmode == "SOURCE" ) {
129    cols.resize(4);
130    cols[3] = String("SRCNAME");
131  }
132  if ( avmode == "SCAN"  && in.size() == 1) {
133    //cols.resize(4);
134    //cols[3] = String("SCANNO");
135    cols.resize(5);
136    cols[3] = String("SRCNAME");
137    cols[4] = String("SCANNO");
138  }
139  uInt outrowCount = 0;
140  TableIterator iter(baset, cols);
141//   int count = 0 ;
142  while (!iter.pastEnd()) {
143    Table subt = iter.table();
144//     // copy the first row of this selection into the new table
145//     tout.addRow();
146//     TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
147//     // re-index to 0
148//     if ( avmode != "SCAN" && avmode != "SOURCE" ) {
149//       scanColOut.put(outrowCount, uInt(0));
150//     }
151//     ++outrowCount;
152    MDirection::ScalarColumn dircol ;
153    dircol.attach( subt, "DIRECTION" ) ;
154    Int length = subt.nrow() ;
155    vector< Vector<Double> > dirs ;
156    vector<int> indexes ;
157    for ( Int i = 0 ; i < length ; i++ ) {
158      Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
159      //os << << count++ << ": " ;
160      //os << "[" << t[0] << "," << t[1] << "]" << LogIO::POST ;
161      bool adddir = true ;
162      for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
163        //if ( allTrue( t == dirs[j] ) ) {
164        Double dx = t[0] - dirs[j][0] ;
165        Double dy = t[1] - dirs[j][1] ;
166        Double dd = sqrt( dx * dx + dy * dy ) ;
167        //if ( allNearAbs( t, dirs[j], tol ) ) {
168        if ( dd <= tol ) {
169          adddir = false ;
170          break ;
171        }
172      }
173      if ( adddir ) {
174        dirs.push_back( t ) ;
175        indexes.push_back( i ) ;
176      }
177    }
178    uInt rowNum = dirs.size() ;
179    tout.addRow( rowNum ) ;
180    for ( uInt i = 0 ; i < rowNum ; i++ ) {
181      TableCopy::copyRows( tout, subt, outrowCount+i, indexes[i], 1 ) ;
182      // re-index to 0
183      if ( avmode != "SCAN" && avmode != "SOURCE" ) {
184        scanColOut.put(outrowCount+i, uInt(0));
185      }       
186    }
187    outrowCount += rowNum ;
188    ++iter;
189  }
190  RowAccumulator acc(wtype);
191  Vector<Bool> cmask(mask);
192  acc.setUserMask(cmask);
193  ROTableRow row(tout);
194  ROArrayColumn<Float> specCol, tsysCol;
195  ROArrayColumn<uChar> flagCol;
196  ROScalarColumn<Double> mjdCol, intCol;
197  ROScalarColumn<Int> scanIDCol;
198
199  Vector<uInt> rowstodelete;
200
201  for (uInt i=0; i < tout.nrow(); ++i) {
202    for ( int j=0; j < int(in.size()); ++j ) {
203      const Table& tin = in[j]->table();
204      const TableRecord& rec = row.get(i);
205      ROScalarColumn<Double> tmp(tin, "TIME");
206      Double td;tmp.get(0,td);
207      Table basesubt = tin( tin.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
208                         && tin.col("IFNO") == Int(rec.asuInt("IFNO"))
209                         && tin.col("POLNO") == Int(rec.asuInt("POLNO")) );
210      Table subt;
211      if ( avmode == "SOURCE") {
212        subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME"));
213      } else if (avmode == "SCAN") {
214        subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME")
215                      && basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO")) );
216      } else {
217        subt = basesubt;
218      }
219
220      vector<uInt> removeRows ;
221      uInt nrsubt = subt.nrow() ;
222      for ( uInt irow = 0 ; irow < nrsubt ; irow++ ) {
223        //if ( !allTrue((subt.col("DIRECTION").getArrayDouble(TableExprId(irow)))==rec.asArrayDouble("DIRECTION")) ) {
224        Vector<Double> x0 = (subt.col("DIRECTION").getArrayDouble(TableExprId(irow))) ;
225        Vector<Double> x1 = rec.asArrayDouble("DIRECTION") ;
226        double dx = x0[0] - x1[0];
227        double dy = x0[1] - x1[1];
228        Double dd = sqrt( dx * dx + dy * dy ) ;
229        //if ( !allNearAbs((subt.col("DIRECTION").getArrayDouble(TableExprId(irow))), rec.asArrayDouble("DIRECTION"), tol ) ) {
230        if ( dd > tol ) {
231          removeRows.push_back( irow ) ;
232        }
233      }
234      if ( removeRows.size() != 0 ) {
235        subt.removeRow( removeRows ) ;
236      }
237     
238      if ( nrsubt == removeRows.size() )
239        throw(AipsError("Averaging data is empty.")) ;
240
241      specCol.attach(subt,"SPECTRA");
242      flagCol.attach(subt,"FLAGTRA");
243      tsysCol.attach(subt,"TSYS");
244      intCol.attach(subt,"INTERVAL");
245      mjdCol.attach(subt,"TIME");
246      Vector<Float> spec,tsys;
247      Vector<uChar> flag;
248      Double inter,time;
249      for (uInt k = 0; k < subt.nrow(); ++k ) {
250        flagCol.get(k, flag);
251        Vector<Bool> bflag(flag.shape());
252        convertArray(bflag, flag);
253        /*
254        if ( allEQ(bflag, True) ) {
255        continue;//don't accumulate
256        }
257        */
258        specCol.get(k, spec);
259        tsysCol.get(k, tsys);
260        intCol.get(k, inter);
261        mjdCol.get(k, time);
262        // spectrum has to be added last to enable weighting by the other values
263        acc.add(spec, !bflag, tsys, inter, time);
264      }
265
266      // If there exists a channel at which all the input spectra are masked,
267      // spec has 'nan' values for that channel and it may affect the following
268      // processes. To avoid this, replacing 'nan' values in spec with
269      // weighted-mean of all spectra in the following line.
270      // (done for CAS-2776, 2011/04/07 by Wataru Kawasaki)
271      acc.replaceNaN();
272    }
273    const Vector<Bool>& msk = acc.getMask();
274    if ( allEQ(msk, False) ) {
275      uint n = rowstodelete.nelements();
276      rowstodelete.resize(n+1, True);
277      rowstodelete[n] = i;
278      continue;
279    }
280    //write out
281    if (acc.state()) {
282      Vector<uChar> flg(msk.shape());
283      convertArray(flg, !msk);
284      for (uInt k = 0; k < flg.nelements(); ++k) {
285        uChar userFlag = 1 << 7;
286        if (msk[k]==True) userFlag = 0 << 7;
287        flg(k) = userFlag;
288      }
289
290      flagColOut.put(i, flg);
291      specColOut.put(i, acc.getSpectrum());
292      tsysColOut.put(i, acc.getTsys());
293      intColOut.put(i, acc.getInterval());
294      mjdColOut.put(i, acc.getTime());
295      // we should only have one cycle now -> reset it to be 0
296      // frequency switched data has different CYCLENO for different IFNO
297      // which requires resetting this value
298      cycColOut.put(i, uInt(0));
299    } else {
300      ostringstream oss;
301      oss << "For output row="<<i<<", all input rows of data are flagged. no averaging" << endl;
302      pushLog(String(oss));
303    }
304    acc.reset();
305  }
306
307  if (rowstodelete.nelements() > 0) {
308    os << rowstodelete << LogIO::POST ;
309    tout.removeRow(rowstodelete);
310    if (tout.nrow() == 0) {
311      throw(AipsError("Can't average fully flagged data."));
312    }
313  }
314  return out;
315}
316
317CountedPtr< Scantable >
318STMath::averageChannel( const CountedPtr < Scantable > & in,
319                          const std::string & mode,
320                          const std::string& avmode )
321{
322  (void) mode; // currently unused
323  // check if OTF observation
324  String obstype = in->getHeader().obstype ;
325  Double tol = 0.0 ;
326  if ( obstype.find( "OTF" ) != String::npos ) {
327    tol = TOL_OTF ;
328  }
329  else {
330    tol = TOL_POINT ;
331  }
332
333  // clone as this is non insitu
334  bool insitu = insitu_;
335  setInsitu(false);
336  CountedPtr< Scantable > out = getScantable(in, true);
337  setInsitu(insitu);
338  Table& tout = out->table();
339  ArrayColumn<Float> specColOut(tout,"SPECTRA");
340  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
341  ArrayColumn<Float> tsysColOut(tout,"TSYS");
342  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
343  ScalarColumn<Double> intColOut(tout, "INTERVAL");
344  Table tmp = in->table().sort("BEAMNO");
345  Block<String> cols(3);
346  cols[0] = String("BEAMNO");
347  cols[1] = String("IFNO");
348  cols[2] = String("POLNO");
349  if ( avmode == "SCAN") {
350    cols.resize(4);
351    cols[3] = String("SCANNO");
352  }
353  uInt outrowCount = 0;
354  uChar userflag = 1 << 7;
355  TableIterator iter(tmp, cols);
356  while (!iter.pastEnd()) {
357    Table subt = iter.table();
358    ROArrayColumn<Float> specCol, tsysCol;
359    ROArrayColumn<uChar> flagCol;
360    ROScalarColumn<Double> intCol(subt, "INTERVAL");
361    specCol.attach(subt,"SPECTRA");
362    flagCol.attach(subt,"FLAGTRA");
363    tsysCol.attach(subt,"TSYS");
364//     tout.addRow();
365//     TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
366//     if ( avmode != "SCAN") {
367//       scanColOut.put(outrowCount, uInt(0));
368//     }
369//     Vector<Float> tmp;
370//     specCol.get(0, tmp);
371//     uInt nchan = tmp.nelements();
372//     // have to do channel by channel here as MaskedArrMath
373//     // doesn't have partialMedians
374//     Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
375//     Vector<Float> outspec(nchan);
376//     Vector<uChar> outflag(nchan,0);
377//     Vector<Float> outtsys(1);/// @fixme when tsys is channel based
378//     for (uInt i=0; i<nchan; ++i) {
379//       Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
380//       MaskedArray<Float> ma = maskedArray(specs,flags);
381//       outspec[i] = median(ma);
382//       if ( allEQ(ma.getMask(), False) )
383//         outflag[i] = userflag;// flag data
384//     }
385//     outtsys[0] = median(tsysCol.getColumn());
386//     specColOut.put(outrowCount, outspec);
387//     flagColOut.put(outrowCount, outflag);
388//     tsysColOut.put(outrowCount, outtsys);
389//     Double intsum = sum(intCol.getColumn());
390//     intColOut.put(outrowCount, intsum);
391//     ++outrowCount;
392//     ++iter;
393    MDirection::ScalarColumn dircol ;
394    dircol.attach( subt, "DIRECTION" ) ;
395    Int length = subt.nrow() ;
396    vector< Vector<Double> > dirs ;
397    vector<int> indexes ;
398    // Handle MX mode averaging
399    if (in->nbeam() > 1 ) {     
400      length = 1;
401    }
402    for ( Int i = 0 ; i < length ; i++ ) {
403      Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
404      bool adddir = true ;
405      for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
406        //if ( allTrue( t == dirs[j] ) ) {
407        Double dx = t[0] - dirs[j][0] ;
408        Double dy = t[1] - dirs[j][1] ;
409        Double dd = sqrt( dx * dx + dy * dy ) ;
410        //if ( allNearAbs( t, dirs[j], tol ) ) {
411        if ( dd <= tol ) {
412          adddir = false ;
413          break ;
414        }
415      }
416      if ( adddir ) {
417        dirs.push_back( t ) ;
418        indexes.push_back( i ) ;
419      }
420    }
421    uInt rowNum = dirs.size() ;
422    tout.addRow( rowNum );
423    for ( uInt i = 0 ; i < rowNum ; i++ ) {
424      TableCopy::copyRows(tout, subt, outrowCount+i, indexes[i], 1) ;
425      // Handle MX mode averaging
426      if ( avmode != "SCAN") {
427        scanColOut.put(outrowCount+i, uInt(0));
428      }
429    }
430    MDirection::ScalarColumn dircolOut ;
431    dircolOut.attach( tout, "DIRECTION" ) ;
432    for ( uInt irow = 0 ; irow < rowNum ; irow++ ) {
433      Vector<Double> t = \
434        dircolOut(outrowCount+irow).getAngle(Unit(String("rad"))).getValue() ;
435      Vector<Float> tmp;
436      specCol.get(0, tmp);
437      uInt nchan = tmp.nelements();
438      // have to do channel by channel here as MaskedArrMath
439      // doesn't have partialMedians
440      Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
441      // mask spectra for different DIRECTION
442      for ( uInt jrow = 0 ; jrow < subt.nrow() ; jrow++ ) {
443        Vector<Double> direction = \
444          dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
445        //if ( t[0] != direction[0] || t[1] != direction[1] ) {
446        Double dx = t[0] - direction[0];
447        Double dy = t[1] - direction[1];
448        Double dd = sqrt(dx*dx + dy*dy);
449        //if ( !allNearAbs( t, direction, tol ) ) {
450        if ( dd > tol &&  in->nbeam() < 2 ) {
451          flags[jrow] = userflag ;
452        }
453      }
454      Vector<Float> outspec(nchan);
455      Vector<uChar> outflag(nchan,0);
456      Vector<Float> outtsys(1);/// @fixme when tsys is channel based
457      for (uInt i=0; i<nchan; ++i) {
458        Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
459        MaskedArray<Float> ma = maskedArray(specs,flags);
460        outspec[i] = median(ma);
461        if ( allEQ(ma.getMask(), False) )
462          outflag[i] = userflag;// flag data
463      }
464      outtsys[0] = median(tsysCol.getColumn());
465      specColOut.put(outrowCount+irow, outspec);
466      flagColOut.put(outrowCount+irow, outflag);
467      tsysColOut.put(outrowCount+irow, outtsys);
468      Vector<Double> integ = intCol.getColumn() ;
469      MaskedArray<Double> mi = maskedArray( integ, flags ) ;
470      Double intsum = sum(mi);
471      intColOut.put(outrowCount+irow, intsum);
472    }
473    outrowCount += rowNum ;
474    ++iter;
475  }
476  return out;
477}
478
479CountedPtr< Scantable > STMath::getScantable(const CountedPtr< Scantable >& in,
480                                             bool droprows)
481{
482  if (insitu_) {
483    return in;
484  }
485  else {
486    // clone
487    return CountedPtr<Scantable>(new Scantable(*in, Bool(droprows)));
488  }
489}
490
491CountedPtr< Scantable > STMath::unaryOperate( const CountedPtr< Scantable >& in,
492                                              float val,
493                                              const std::string& mode,
494                                              bool tsys )
495{
496  CountedPtr< Scantable > out = getScantable(in, false);
497  Table& tab = out->table();
498  ArrayColumn<Float> specCol(tab,"SPECTRA");
499  ArrayColumn<Float> tsysCol(tab,"TSYS");
500  if (mode=="DIV") val = 1.0/val ;
501  else if (mode=="SUB") val *= -1.0 ;
502  for (uInt i=0; i<tab.nrow(); ++i) {
503    Vector<Float> spec;
504    Vector<Float> ts;
505    specCol.get(i, spec);
506    tsysCol.get(i, ts);
507    if (mode == "MUL" || mode == "DIV") {
508      //if (mode == "DIV") val = 1.0/val;
509      spec *= val;
510      specCol.put(i, spec);
511      if ( tsys ) {
512        ts *= val;
513        tsysCol.put(i, ts);
514      }
515    } else if ( mode == "ADD"  || mode == "SUB") {
516      //if (mode == "SUB") val *= -1.0;
517      spec += val;
518      specCol.put(i, spec);
519      if ( tsys ) {
520        ts += val;
521        tsysCol.put(i, ts);
522      }
523    }
524  }
525  return out;
526}
527
528CountedPtr< Scantable > STMath::arrayOperate( const CountedPtr< Scantable >& in,
529                                              const std::vector<float> val,
530                                              const std::string& mode,
531                                              const std::string& opmode,
532                                              bool tsys )
533{
534  CountedPtr< Scantable > out ;
535  if ( opmode == "channel" ) {
536    out = arrayOperateChannel( in, val, mode, tsys ) ;
537  }
538  else if ( opmode == "row" ) {
539    out = arrayOperateRow( in, val, mode, tsys ) ;
540  }
541  else {
542    throw( AipsError( "Unknown array operation mode." ) ) ;
543  }
544  return out ;
545}
546
547CountedPtr< Scantable > STMath::arrayOperateChannel( const CountedPtr< Scantable >& in,
548                                                     const std::vector<float> val,
549                                                     const std::string& mode,
550                                                     bool tsys )
551{
552  if ( val.size() == 1 ){
553    return unaryOperate( in, val[0], mode, tsys ) ;
554  }
555
556  // conformity of SPECTRA and TSYS
557  if ( tsys ) {
558    TableIterator titer(in->table(), "IFNO");
559    while ( !titer.pastEnd() ) {
560      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
561      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
562      Array<Float> spec = specCol.getColumn() ;
563      Array<Float> ts = tsysCol.getColumn() ;
564      if ( !spec.conform( ts ) ) {
565        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
566      }
567      titer.next() ;
568    }
569  }
570
571  // check if all spectra in the scantable have the same number of channel
572  vector<uInt> nchans;
573  vector<uInt> ifnos = in->getIFNos() ;
574  for ( uInt i = 0 ; i < ifnos.size() ; i++ ) {
575    nchans.push_back( in->nchan( ifnos[i] ) ) ;
576  }
577  Vector<uInt> mchans( nchans ) ;
578  if ( anyNE( mchans, mchans[0] ) ) {
579    throw( AipsError("All spectra in the input scantable must have the same number of channel for vector operation." ) ) ;
580  }
581
582  // check if vector size is equal to nchan
583  Vector<Float> fact( val ) ;
584  if ( fact.nelements() != mchans[0] ) {
585    throw( AipsError("Vector size must be 1 or be same as number of channel.") ) ;
586  }
587
588  // check divided by zero
589  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
590    throw( AipsError("Divided by zero is not recommended." ) ) ;
591  }
592
593  CountedPtr< Scantable > out = getScantable(in, false);
594  Table& tab = out->table();
595  ArrayColumn<Float> specCol(tab,"SPECTRA");
596  ArrayColumn<Float> tsysCol(tab,"TSYS");
597  if (mode == "DIV") fact = (float)1.0 / fact;
598  else if (mode == "SUB") fact *= (float)-1.0 ;
599  for (uInt i=0; i<tab.nrow(); ++i) {
600    Vector<Float> spec;
601    Vector<Float> ts;
602    specCol.get(i, spec);
603    tsysCol.get(i, ts);
604    if (mode == "MUL" || mode == "DIV") {
605      //if (mode == "DIV") fact = (float)1.0 / fact;
606      spec *= fact;
607      specCol.put(i, spec);
608      if ( tsys ) {
609        ts *= fact;
610        tsysCol.put(i, ts);
611      }
612    } else if ( mode == "ADD"  || mode == "SUB") {
613      //if (mode == "SUB") fact *= (float)-1.0 ;
614      spec += fact;
615      specCol.put(i, spec);
616      if ( tsys ) {
617        ts += fact;
618        tsysCol.put(i, ts);
619      }
620    }
621  }
622  return out;
623}
624
625CountedPtr< Scantable > STMath::arrayOperateRow( const CountedPtr< Scantable >& in,
626                                                 const std::vector<float> val,
627                                                 const std::string& mode,
628                                                 bool tsys )
629{
630  if ( val.size() == 1 ) {
631    return unaryOperate( in, val[0], mode, tsys ) ;
632  }
633
634  // conformity of SPECTRA and TSYS
635  if ( tsys ) {
636    TableIterator titer(in->table(), "IFNO");
637    while ( !titer.pastEnd() ) {
638      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
639      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
640      Array<Float> spec = specCol.getColumn() ;
641      Array<Float> ts = tsysCol.getColumn() ;
642      if ( !spec.conform( ts ) ) {
643        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
644      }
645      titer.next() ;
646    }
647  }
648
649  // check if vector size is equal to nrow
650  Vector<Float> fact( val ) ;
651  if (fact.nelements() != uInt(in->nrow())) {
652    throw( AipsError("Vector size must be 1 or be same as number of row.") ) ;
653  }
654
655  // check divided by zero
656  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
657    throw( AipsError("Divided by zero is not recommended." ) ) ;
658  }
659
660  CountedPtr< Scantable > out = getScantable(in, false);
661  Table& tab = out->table();
662  ArrayColumn<Float> specCol(tab,"SPECTRA");
663  ArrayColumn<Float> tsysCol(tab,"TSYS");
664  if (mode == "DIV") fact = (float)1.0 / fact;
665  if (mode == "SUB") fact *= (float)-1.0 ;
666  for (uInt i=0; i<tab.nrow(); ++i) {
667    Vector<Float> spec;
668    Vector<Float> ts;
669    specCol.get(i, spec);
670    tsysCol.get(i, ts);
671    if (mode == "MUL" || mode == "DIV") {
672      spec *= fact[i];
673      specCol.put(i, spec);
674      if ( tsys ) {
675        ts *= fact[i];
676        tsysCol.put(i, ts);
677      }
678    } else if ( mode == "ADD"  || mode == "SUB") {
679      spec += fact[i];
680      specCol.put(i, spec);
681      if ( tsys ) {
682        ts += fact[i];
683        tsysCol.put(i, ts);
684      }
685    }
686  }
687  return out;
688}
689
690CountedPtr< Scantable > STMath::array2dOperate( const CountedPtr< Scantable >& in,
691                                                const std::vector< std::vector<float> > val,
692                                                const std::string& mode,
693                                                bool tsys )
694{
695  // conformity of SPECTRA and TSYS
696  if ( tsys ) {
697    TableIterator titer(in->table(), "IFNO");
698    while ( !titer.pastEnd() ) {
699      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
700      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
701      Array<Float> spec = specCol.getColumn() ;
702      Array<Float> ts = tsysCol.getColumn() ;
703      if ( !spec.conform( ts ) ) {
704        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
705      }
706      titer.next() ;
707    }
708  }
709
710  // some checks
711  vector<uInt> nchans;
712  for (Int i = 0 ; i < in->nrow() ; i++) {
713    nchans.push_back((in->getSpectrum(i)).size());
714  }
715  //Vector<uInt> mchans( nchans ) ;
716  vector< Vector<Float> > facts ;
717  for ( uInt i = 0 ; i < nchans.size() ; i++ ) {
718    Vector<Float> tmp( val[i] ) ;
719    // check divided by zero
720    if ( ( mode == "DIV" ) && anyEQ( tmp, (float)0.0 ) ) {
721      throw( AipsError("Divided by zero is not recommended." ) ) ;
722    }
723    // conformity check
724    if ( tmp.nelements() != nchans[i] ) {
725      stringstream ss ;
726      ss << "Row " << i << ": Vector size must be same as number of channel." ;
727      throw( AipsError( ss.str() ) ) ;
728    }
729    facts.push_back( tmp ) ;
730  }
731
732
733  CountedPtr< Scantable > out = getScantable(in, false);
734  Table& tab = out->table();
735  ArrayColumn<Float> specCol(tab,"SPECTRA");
736  ArrayColumn<Float> tsysCol(tab,"TSYS");
737  for (uInt i=0; i<tab.nrow(); ++i) {
738    Vector<Float> fact = facts[i] ;
739    Vector<Float> spec;
740    Vector<Float> ts;
741    specCol.get(i, spec);
742    tsysCol.get(i, ts);
743    if (mode == "MUL" || mode == "DIV") {
744      if (mode == "DIV") fact = (float)1.0 / fact;
745      spec *= fact;
746      specCol.put(i, spec);
747      if ( tsys ) {
748        ts *= fact;
749        tsysCol.put(i, ts);
750      }
751    } else if ( mode == "ADD"  || mode == "SUB") {
752      if (mode == "SUB") fact *= (float)-1.0 ;
753      spec += fact;
754      specCol.put(i, spec);
755      if ( tsys ) {
756        ts += fact;
757        tsysCol.put(i, ts);
758      }
759    }
760  }
761  return out;
762}
763
764CountedPtr<Scantable> STMath::binaryOperate(const CountedPtr<Scantable>& left,
765                                            const CountedPtr<Scantable>& right,
766                                            const std::string& mode)
767{
768  bool insitu = insitu_;
769  if ( ! left->conformant(*right) ) {
770    throw(AipsError("'left' and 'right' scantables are not conformant."));
771  }
772  setInsitu(false);
773  CountedPtr< Scantable > out = getScantable(left, false);
774  setInsitu(insitu);
775  Table& tout = out->table();
776  Block<String> coln(5);
777  coln[0] = "SCANNO";  coln[1] = "CYCLENO";  coln[2] = "BEAMNO";
778  coln[3] = "IFNO";  coln[4] = "POLNO";
779  Table tmpl = tout.sort(coln);
780  Table tmpr = right->table().sort(coln);
781  ArrayColumn<Float> lspecCol(tmpl,"SPECTRA");
782  ROArrayColumn<Float> rspecCol(tmpr,"SPECTRA");
783  ArrayColumn<uChar> lflagCol(tmpl,"FLAGTRA");
784  ROArrayColumn<uChar> rflagCol(tmpr,"FLAGTRA");
785
786  for (uInt i=0; i<tout.nrow(); ++i) {
787    Vector<Float> lspecvec, rspecvec;
788    Vector<uChar> lflagvec, rflagvec;
789    lspecvec = lspecCol(i);    rspecvec = rspecCol(i);
790    lflagvec = lflagCol(i);    rflagvec = rflagCol(i);
791    MaskedArray<Float> mleft = maskedArray(lspecvec, lflagvec);
792    MaskedArray<Float> mright = maskedArray(rspecvec, rflagvec);
793    if (mode == "ADD") {
794      mleft += mright;
795    } else if ( mode == "SUB") {
796      mleft -= mright;
797    } else if ( mode == "MUL") {
798      mleft *= mright;
799    } else if ( mode == "DIV") {
800      mleft /= mright;
801    } else {
802      throw(AipsError("Illegal binary operator"));
803    }
804    lspecCol.put(i, mleft.getArray());
805  }
806  return out;
807}
808
809
810
811MaskedArray<Float> STMath::maskedArray( const Vector<Float>& s,
812                                        const Vector<uChar>& f)
813{
814  Vector<Bool> mask;
815  mask.resize(f.shape());
816  convertArray(mask, f);
817  return MaskedArray<Float>(s,!mask);
818}
819
820MaskedArray<Double> STMath::maskedArray( const Vector<Double>& s,
821                                         const Vector<uChar>& f)
822{
823  Vector<Bool> mask;
824  mask.resize(f.shape());
825  convertArray(mask, f);
826  return MaskedArray<Double>(s,!mask);
827}
828
829Vector<uChar> STMath::flagsFromMA(const MaskedArray<Float>& ma)
830{
831  const Vector<Bool>& m = ma.getMask();
832  Vector<uChar> flags(m.shape());
833  convertArray(flags, !m);
834  return flags;
835}
836
837CountedPtr< Scantable > STMath::autoQuotient( const CountedPtr< Scantable >& in,
838                                              const std::string & mode,
839                                              bool preserve )
840{
841  /// @todo make other modes available
842  /// modes should be "nearest", "pair"
843  // make this operation non insitu
844  (void) mode; //currently unused
845  const Table& tin = in->table();
846  Table ons = tin(tin.col("SRCTYPE") == Int(SrcType::PSON));
847  Table offs = tin(tin.col("SRCTYPE") == Int(SrcType::PSOFF));
848  if ( offs.nrow() == 0 )
849    throw(AipsError("No 'off' scans present."));
850  // put all "on" scans into output table
851
852  bool insitu = insitu_;
853  setInsitu(false);
854  CountedPtr< Scantable > out = getScantable(in, true);
855  setInsitu(insitu);
856  Table& tout = out->table();
857
858  TableCopy::copyRows(tout, ons);
859  TableRow row(tout);
860  ROScalarColumn<Double> offtimeCol(offs, "TIME");
861  ArrayColumn<Float> outspecCol(tout, "SPECTRA");
862  ROArrayColumn<Float> outtsysCol(tout, "TSYS");
863  ArrayColumn<uChar> outflagCol(tout, "FLAGTRA");
864  for (uInt i=0; i < tout.nrow(); ++i) {
865    const TableRecord& rec = row.get(i);
866    Double ontime = rec.asDouble("TIME");
867    Table presel = offs(offs.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
868                        && offs.col("IFNO") == Int(rec.asuInt("IFNO"))
869                        && offs.col("POLNO") == Int(rec.asuInt("POLNO")) );
870    ROScalarColumn<Double> offtimeCol(presel, "TIME");
871
872    Double mindeltat = min(abs(offtimeCol.getColumn() - ontime));
873    // Timestamp may vary within a cycle ???!!!
874    // increase this by 0.01 sec in case of rounding errors...
875    // There might be a better way to do this.
876    // fix to this fix. TIME is MJD, so 1.0d not 1.0s
877    mindeltat += 0.01/24./60./60.;
878    Table sel = presel( abs(presel.col("TIME")-ontime) <= mindeltat);
879
880    if ( sel.nrow() < 1 )  {
881      throw(AipsError("No closest in time found... This could be a rounding "
882                      "issue. Try quotient instead."));
883    }
884    TableRow offrow(sel);
885    const TableRecord& offrec = offrow.get(0);//should only be one row
886    RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
887    RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
888    RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
889    /// @fixme this assumes tsys is a scalar not vector
890    Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
891    Vector<Float> specon, tsyson;
892    outtsysCol.get(i, tsyson);
893    outspecCol.get(i, specon);
894    Vector<uChar> flagon;
895    outflagCol.get(i, flagon);
896    MaskedArray<Float> mon = maskedArray(specon, flagon);
897    MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
898    MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
899    if (preserve) {
900      quot -= tsysoffscalar;
901    } else {
902      quot -= tsyson[0];
903    }
904    outspecCol.put(i, quot.getArray());
905    outflagCol.put(i, flagsFromMA(quot));
906  }
907  // renumber scanno
908  TableIterator it(tout, "SCANNO");
909  uInt i = 0;
910  while ( !it.pastEnd() ) {
911    Table t = it.table();
912    TableVector<uInt> vec(t, "SCANNO");
913    vec = i;
914    ++i;
915    ++it;
916  }
917  return out;
918}
919
920
921CountedPtr< Scantable > STMath::quotient( const CountedPtr< Scantable > & on,
922                                          const CountedPtr< Scantable > & off,
923                                          bool preserve )
924{
925  bool insitu = insitu_;
926  if ( ! on->conformant(*off) ) {
927    throw(AipsError("'on' and 'off' scantables are not conformant."));
928  }
929  setInsitu(false);
930  CountedPtr< Scantable > out = getScantable(on, false);
931  setInsitu(insitu);
932  Table& tout = out->table();
933  const Table& toff = off->table();
934  TableIterator sit(tout, "SCANNO");
935  TableIterator s2it(toff, "SCANNO");
936  while ( !sit.pastEnd() ) {
937    Table ton = sit.table();
938    TableRow row(ton);
939    Table t = s2it.table();
940    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
941    ROArrayColumn<Float> outtsysCol(ton, "TSYS");
942    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
943    for (uInt i=0; i < ton.nrow(); ++i) {
944      const TableRecord& rec = row.get(i);
945      Table offsel = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
946                          && t.col("IFNO") == Int(rec.asuInt("IFNO"))
947                          && t.col("POLNO") == Int(rec.asuInt("POLNO")) );
948      if ( offsel.nrow() == 0 )
949        throw AipsError("STMath::quotient: no matching off");
950      TableRow offrow(offsel);
951      const TableRecord& offrec = offrow.get(0);//should be ncycles - take first
952      RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
953      RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
954      RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
955      Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
956      Vector<Float> specon, tsyson;
957      outtsysCol.get(i, tsyson);
958      outspecCol.get(i, specon);
959      Vector<uChar> flagon;
960      outflagCol.get(i, flagon);
961      MaskedArray<Float> mon = maskedArray(specon, flagon);
962      MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
963      MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
964      if (preserve) {
965        quot -= tsysoffscalar;
966      } else {
967        quot -= tsyson[0];
968      }
969      outspecCol.put(i, quot.getArray());
970      outflagCol.put(i, flagsFromMA(quot));
971    }
972    ++sit;
973    ++s2it;
974    // take the first off for each on scan which doesn't have a
975    // matching off scan
976    // non <= noff:  matching pairs, non > noff matching pairs then first off
977    if ( s2it.pastEnd() ) s2it.reset();
978  }
979  return out;
980}
981
982// dototalpower (migration of GBTIDL procedure dototalpower.pro)
983// calibrate the CAL on-off pair. It calculate Tsys and average CAL on-off subintegrations
984// do it for each cycles in a specific scan.
985CountedPtr< Scantable > STMath::dototalpower( const CountedPtr< Scantable >& calon,
986                                              const CountedPtr< Scantable >& caloff, Float tcal )
987{
988  if ( ! calon->conformant(*caloff) ) {
989    throw(AipsError("'CAL on' and 'CAL off' scantables are not conformant."));
990  }
991  setInsitu(false);
992  CountedPtr< Scantable > out = getScantable(caloff, false);
993  Table& tout = out->table();
994  const Table& tcon = calon->table();
995  Vector<Float> tcalout;
996
997  std::map<uInt,uInt> tcalIdToRecNoMap;
998  const Table& calOffTcalTable = caloff->tcal().table();
999  {
1000    ROScalarColumn<uInt> calOffTcalTable_IDcol(calOffTcalTable, "ID");
1001    const Vector<uInt> tcalIds(calOffTcalTable_IDcol.getColumn());
1002    size_t tcalIdsEnd = tcalIds.nelements();
1003    for (uInt i = 0; i < tcalIdsEnd; i++) {
1004      tcalIdToRecNoMap[tcalIds[i]] = i;
1005    }
1006  }
1007  ROArrayColumn<Float> calOffTcalTable_TCALcol(calOffTcalTable, "TCAL");
1008
1009  if ( tout.nrow() != tcon.nrow() ) {
1010    throw(AipsError("Mismatch in number of rows to form cal on - off pair."));
1011  }
1012  // iteration by scanno or cycle no.
1013  TableIterator sit(tout, "SCANNO");
1014  TableIterator s2it(tcon, "SCANNO");
1015  while ( !sit.pastEnd() ) {
1016    Table toff = sit.table();
1017    TableRow row(toff);
1018    Table t = s2it.table();
1019    ScalarColumn<Double> outintCol(toff, "INTERVAL");
1020    ArrayColumn<Float> outspecCol(toff, "SPECTRA");
1021    ArrayColumn<Float> outtsysCol(toff, "TSYS");
1022    ArrayColumn<uChar> outflagCol(toff, "FLAGTRA");
1023    ROScalarColumn<uInt> outtcalIdCol(toff, "TCAL_ID");
1024    ROScalarColumn<uInt> outpolCol(toff, "POLNO");
1025    ROScalarColumn<Double> onintCol(t, "INTERVAL");
1026    ROArrayColumn<Float> onspecCol(t, "SPECTRA");
1027    ROArrayColumn<Float> ontsysCol(t, "TSYS");
1028    ROArrayColumn<uChar> onflagCol(t, "FLAGTRA");
1029    //ROScalarColumn<uInt> ontcalIdCol(t, "TCAL_ID");
1030
1031    for (uInt i=0; i < toff.nrow(); ++i) {
1032      //skip these checks -> assumes the data order are the same between the cal on off pairs
1033      //
1034      Vector<Float> specCalon, specCaloff;
1035      // to store scalar (mean) tsys
1036      Vector<Float> tsysout(1);
1037      uInt tcalId, polno;
1038      Double offint, onint;
1039      outpolCol.get(i, polno);
1040      outspecCol.get(i, specCaloff);
1041      onspecCol.get(i, specCalon);
1042      Vector<uChar> flagCaloff, flagCalon;
1043      outflagCol.get(i, flagCaloff);
1044      onflagCol.get(i, flagCalon);
1045      outtcalIdCol.get(i, tcalId);
1046      outintCol.get(i, offint);
1047      onintCol.get(i, onint);
1048      // caluculate mean Tsys
1049      uInt nchan = specCaloff.nelements();
1050      // percentage of edge cut off
1051      uInt pc = 10;
1052      uInt bchan = nchan/pc;
1053      uInt echan = nchan-bchan;
1054
1055      Slicer chansl(IPosition(1,bchan-1), IPosition(1,echan-1), IPosition(1,1),Slicer::endIsLast);
1056      Vector<Float> testsubsp = specCaloff(chansl);
1057      MaskedArray<Float> spoff = maskedArray( specCaloff(chansl),flagCaloff(chansl) );
1058      MaskedArray<Float> spon = maskedArray( specCalon(chansl),flagCalon(chansl) );
1059      MaskedArray<Float> spdiff = spon-spoff;
1060      uInt noff = spoff.nelementsValid();
1061      //uInt non = spon.nelementsValid();
1062      uInt ndiff = spdiff.nelementsValid();
1063      Float meantsys;
1064
1065/**
1066      Double subspec, subdiff;
1067      uInt usednchan;
1068      subspec = 0;
1069      subdiff = 0;
1070      usednchan = 0;
1071      for(uInt k=(bchan-1); k<echan; k++) {
1072        subspec += specCaloff[k];
1073        subdiff += static_cast<Double>(specCalon[k]-specCaloff[k]);
1074        ++usednchan;
1075      }
1076**/
1077      // get tcal if input tcal <= 0
1078      Float tcalUsed;
1079      tcalUsed = tcal;
1080      if ( tcal <= 0.0 ) {
1081        uInt tcalRecNo = tcalIdToRecNoMap[tcalId];
1082        calOffTcalTable_TCALcol.get(tcalRecNo, tcalout);
1083//         if (polno<=3) {
1084//           tcalUsed = tcalout[polno];
1085//         }
1086//         else {
1087//           tcalUsed = tcalout[0];
1088//         }
1089        if ( tcalout.size() == 1 )
1090          tcalUsed = tcalout[0] ;
1091        else if ( tcalout.size() == nchan )
1092          tcalUsed = mean(tcalout) ;
1093        else {
1094          uInt ipol = polno ;
1095          if ( ipol > 3 ) ipol = 0 ;
1096          tcalUsed = tcalout[ipol] ;
1097        }
1098      }
1099
1100      Float meanoff;
1101      Float meandiff;
1102      if (noff && ndiff) {
1103         //Debug
1104         //if(noff!=ndiff) cerr<<"noff and ndiff is not equal"<<endl;
1105         //LogIO os( LogOrigin( "STMath", "dototalpower()", WHERE ) ) ;
1106         //if(noff!=ndiff) os<<"noff and ndiff is not equal"<<LogIO::POST;
1107         meanoff = sum(spoff)/noff;
1108         meandiff = sum(spdiff)/ndiff;
1109         meantsys= (meanoff/meandiff )*tcalUsed + tcalUsed/2;
1110      }
1111      else {
1112         meantsys=1;
1113      }
1114
1115      tsysout[0] = Float(meantsys);
1116      MaskedArray<Float> mcaloff = maskedArray(specCaloff, flagCaloff);
1117      MaskedArray<Float> mcalon = maskedArray(specCalon, flagCalon);
1118      MaskedArray<Float> sig =   Float(0.5) * (mcaloff + mcalon);
1119      //uInt ncaloff = mcaloff.nelementsValid();
1120      //uInt ncalon = mcalon.nelementsValid();
1121
1122      outintCol.put(i, offint+onint);
1123      outspecCol.put(i, sig.getArray());
1124      outflagCol.put(i, flagsFromMA(sig));
1125      outtsysCol.put(i, tsysout);
1126    }
1127    ++sit;
1128    ++s2it;
1129  }
1130  return out;
1131}
1132
1133//dosigref - migrated from GBT IDL's dosigref.pro, do calibration of position switch
1134// observatiions.
1135// input: sig and ref scantables, and an optional boxcar smoothing width(default width=0,
1136//        no smoothing).
1137// output: resultant scantable [= (sig-ref/ref)*tsys]
1138CountedPtr< Scantable > STMath::dosigref( const CountedPtr < Scantable >& sig,
1139                                          const CountedPtr < Scantable >& ref,
1140                                          int smoothref,
1141                                          casa::Float tsysv,
1142                                          casa::Float tau )
1143{
1144if ( ! ref->conformant(*sig) ) {
1145    throw(AipsError("'sig' and 'ref' scantables are not conformant."));
1146  }
1147  setInsitu(false);
1148  CountedPtr< Scantable > out = getScantable(sig, false);
1149  CountedPtr< Scantable > smref;
1150  if ( smoothref > 1 ) {
1151    float fsmoothref = static_cast<float>(smoothref);
1152    std::string inkernel = "boxcar";
1153    smref = smooth(ref, inkernel, fsmoothref );
1154    ostringstream oss;
1155    oss<<"Applied smoothing of "<<fsmoothref<<" on the reference."<<endl;
1156    pushLog(String(oss));
1157  }
1158  else {
1159    smref = ref;
1160  }
1161  Table& tout = out->table();
1162  const Table& tref = smref->table();
1163  if ( tout.nrow() != tref.nrow() ) {
1164    throw(AipsError("Mismatch in number of rows to form on-source and reference pair."));
1165  }
1166  // iteration by scanno? or cycle no.
1167  TableIterator sit(tout, "SCANNO");
1168  TableIterator s2it(tref, "SCANNO");
1169  while ( !sit.pastEnd() ) {
1170    Table ton = sit.table();
1171    Table t = s2it.table();
1172    ScalarColumn<Double> outintCol(ton, "INTERVAL");
1173    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1174    ArrayColumn<Float> outtsysCol(ton, "TSYS");
1175    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1176    ArrayColumn<Float> refspecCol(t, "SPECTRA");
1177    ROScalarColumn<Double> refintCol(t, "INTERVAL");
1178    ROArrayColumn<Float> reftsysCol(t, "TSYS");
1179    ArrayColumn<uChar> refflagCol(t, "FLAGTRA");
1180    ROScalarColumn<Float> refelevCol(t, "ELEVATION");
1181    for (uInt i=0; i < ton.nrow(); ++i) {
1182
1183      Double onint, refint;
1184      Vector<Float> specon, specref;
1185      // to store scalar (mean) tsys
1186      Vector<Float> tsysref;
1187      outintCol.get(i, onint);
1188      refintCol.get(i, refint);
1189      outspecCol.get(i, specon);
1190      refspecCol.get(i, specref);
1191      Vector<uChar> flagref, flagon;
1192      outflagCol.get(i, flagon);
1193      refflagCol.get(i, flagref);
1194      reftsysCol.get(i, tsysref);
1195
1196      Float tsysrefscalar;
1197      if ( tsysv > 0.0 ) {
1198        ostringstream oss;
1199        Float elev;
1200        refelevCol.get(i, elev);
1201        oss << "user specified Tsys = " << tsysv;
1202        // do recalc elevation if EL = 0
1203        if ( elev == 0 ) {
1204          throw(AipsError("EL=0, elevation data is missing."));
1205        } else {
1206          if ( tau <= 0.0 ) {
1207            throw(AipsError("Valid tau is not supplied."));
1208          } else {
1209            tsysrefscalar = tsysv * exp(tau/elev);
1210          }
1211        }
1212        oss << ", corrected (for El) tsys= "<<tsysrefscalar;
1213        pushLog(String(oss));
1214      }
1215      else {
1216        tsysrefscalar = tsysref[0];
1217      }
1218      //get quotient spectrum
1219      MaskedArray<Float> mref = maskedArray(specref, flagref);
1220      MaskedArray<Float> mon = maskedArray(specon, flagon);
1221      MaskedArray<Float> specres =   tsysrefscalar*((mon - mref)/mref);
1222      Double resint = onint*refint*smoothref/(onint+refint*smoothref);
1223
1224      //Debug
1225      //cerr<<"Tsys used="<<tsysrefscalar<<endl;
1226      //LogIO os( LogOrigin( "STMath", "dosigref", WHERE ) ) ;
1227      //os<<"Tsys used="<<tsysrefscalar<<LogIO::POST;
1228      // fill the result, replay signal tsys by reference tsys
1229      outintCol.put(i, resint);
1230      outspecCol.put(i, specres.getArray());
1231      outflagCol.put(i, flagsFromMA(specres));
1232      outtsysCol.put(i, tsysref);
1233    }
1234    ++sit;
1235    ++s2it;
1236  }
1237  return out;
1238}
1239
1240CountedPtr< Scantable > STMath::donod(const casa::CountedPtr<Scantable>& s,
1241                                     const std::vector<int>& scans,
1242                                     int smoothref,
1243                                     casa::Float tsysv,
1244                                     casa::Float tau,
1245                                     casa::Float tcal )
1246
1247{
1248  setInsitu(false);
1249  STSelector sel;
1250  std::vector<int> scan1, scan2, beams, types;
1251  std::vector< vector<int> > scanpair;
1252  //std::vector<string> calstate;
1253  std::vector<int> calstate;
1254  String msg;
1255
1256  CountedPtr< Scantable > s1b1on, s1b1off, s1b2on, s1b2off;
1257  CountedPtr< Scantable > s2b1on, s2b1off, s2b2on, s2b2off;
1258
1259  std::vector< CountedPtr< Scantable > > sctables;
1260  sctables.push_back(s1b1on);
1261  sctables.push_back(s1b1off);
1262  sctables.push_back(s1b2on);
1263  sctables.push_back(s1b2off);
1264  sctables.push_back(s2b1on);
1265  sctables.push_back(s2b1off);
1266  sctables.push_back(s2b2on);
1267  sctables.push_back(s2b2off);
1268
1269  //check scanlist
1270  int n=s->checkScanInfo(scans);
1271  if (n==1) {
1272     throw(AipsError("Incorrect scan pairs. "));
1273  }
1274
1275  // Assume scans contain only a pair of consecutive scan numbers.
1276  // It is assumed that first beam, b1,  is on target.
1277  // There is no check if the first beam is on or not.
1278  if ( scans.size()==1 ) {
1279    scan1.push_back(scans[0]);
1280    scan2.push_back(scans[0]+1);
1281  } else if ( scans.size()==2 ) {
1282   scan1.push_back(scans[0]);
1283   scan2.push_back(scans[1]);
1284  } else {
1285    if ( scans.size()%2 == 0 ) {
1286      for (uInt i=0; i<scans.size(); i++) {
1287        if (i%2 == 0) {
1288          scan1.push_back(scans[i]);
1289        }
1290        else {
1291          scan2.push_back(scans[i]);
1292        }
1293      }
1294    } else {
1295      throw(AipsError("Odd numbers of scans, cannot form pairs."));
1296    }
1297  }
1298  scanpair.push_back(scan1);
1299  scanpair.push_back(scan2);
1300  //calstate.push_back("*calon");
1301  //calstate.push_back("*[^calon]");
1302  calstate.push_back(SrcType::NODCAL);
1303  calstate.push_back(SrcType::NOD);
1304  CountedPtr< Scantable > ws = getScantable(s, false);
1305  uInt l=0;
1306  while ( l < sctables.size() ) {
1307    for (uInt i=0; i < 2; i++) {
1308      for (uInt j=0; j < 2; j++) {
1309        for (uInt k=0; k < 2; k++) {
1310          sel.reset();
1311          sel.setScans(scanpair[i]);
1312          //sel.setName(calstate[k]);
1313          types.clear();
1314          types.push_back(calstate[k]);
1315          sel.setTypes(types);
1316          beams.clear();
1317          beams.push_back(j);
1318          sel.setBeams(beams);
1319          ws->setSelection(sel);
1320          sctables[l]= getScantable(ws, false);
1321          l++;
1322        }
1323      }
1324    }
1325  }
1326
1327  // replace here by splitData or getData functionality
1328  CountedPtr< Scantable > sig1;
1329  CountedPtr< Scantable > ref1;
1330  CountedPtr< Scantable > sig2;
1331  CountedPtr< Scantable > ref2;
1332  CountedPtr< Scantable > calb1;
1333  CountedPtr< Scantable > calb2;
1334
1335  msg=String("Processing dototalpower for subset of the data");
1336  ostringstream oss1;
1337  oss1 << msg  << endl;
1338  pushLog(String(oss1));
1339  // Debug for IRC CS data
1340  //float tcal1=7.0;
1341  //float tcal2=4.0;
1342  sig1 = dototalpower(sctables[0], sctables[1], tcal=tcal);
1343  ref1 = dototalpower(sctables[2], sctables[3], tcal=tcal);
1344  ref2 = dototalpower(sctables[4], sctables[5], tcal=tcal);
1345  sig2 = dototalpower(sctables[6], sctables[7], tcal=tcal);
1346
1347  // correction of user-specified tsys for elevation here
1348
1349  // dosigref calibration
1350  msg=String("Processing dosigref for subset of the data");
1351  ostringstream oss2;
1352  oss2 << msg  << endl;
1353  pushLog(String(oss2));
1354  calb1=dosigref(sig1,ref2,smoothref,tsysv,tau);
1355  calb2=dosigref(sig2,ref1,smoothref,tsysv,tau);
1356
1357  // iteration by scanno or cycle no.
1358  Table& tcalb1 = calb1->table();
1359  Table& tcalb2 = calb2->table();
1360  TableIterator sit(tcalb1, "SCANNO");
1361  TableIterator s2it(tcalb2, "SCANNO");
1362  while ( !sit.pastEnd() ) {
1363    Table t1 = sit.table();
1364    Table t2= s2it.table();
1365    ArrayColumn<Float> outspecCol(t1, "SPECTRA");
1366    ArrayColumn<Float> outtsysCol(t1, "TSYS");
1367    ArrayColumn<uChar> outflagCol(t1, "FLAGTRA");
1368    ScalarColumn<Double> outintCol(t1, "INTERVAL");
1369    ArrayColumn<Float> t2specCol(t2, "SPECTRA");
1370    ROArrayColumn<Float> t2tsysCol(t2, "TSYS");
1371    ArrayColumn<uChar> t2flagCol(t2, "FLAGTRA");
1372    ROScalarColumn<Double> t2intCol(t2, "INTERVAL");
1373    for (uInt i=0; i < t1.nrow(); ++i) {
1374      Vector<Float> spec1, spec2;
1375      // to store scalar (mean) tsys
1376      Vector<Float> tsys1, tsys2;
1377      Vector<uChar> flag1, flag2;
1378      Double tint1, tint2;
1379      outspecCol.get(i, spec1);
1380      t2specCol.get(i, spec2);
1381      outflagCol.get(i, flag1);
1382      t2flagCol.get(i, flag2);
1383      outtsysCol.get(i, tsys1);
1384      t2tsysCol.get(i, tsys2);
1385      outintCol.get(i, tint1);
1386      t2intCol.get(i, tint2);
1387      // average
1388      // assume scalar tsys for weights
1389      Float wt1, wt2, tsyssq1, tsyssq2;
1390      tsyssq1 = tsys1[0]*tsys1[0];
1391      tsyssq2 = tsys2[0]*tsys2[0];
1392      wt1 = Float(tint1)/tsyssq1;
1393      wt2 = Float(tint2)/tsyssq2;
1394      Float invsumwt=1/(wt1+wt2);
1395      MaskedArray<Float> mspec1 = maskedArray(spec1, flag1);
1396      MaskedArray<Float> mspec2 = maskedArray(spec2, flag2);
1397      MaskedArray<Float> avspec =  invsumwt * (wt1*mspec1 + wt2*mspec2);
1398      //Array<Float> avtsys =  Float(0.5) * (tsys1 + tsys2);
1399      // cerr<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<endl;
1400      // LogIO os( LogOrigin( "STMath", "donod", WHERE ) ) ;
1401      // os<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<LogIO::POST;
1402      tsys1[0] = sqrt(tsyssq1 + tsyssq2);
1403      Array<Float> avtsys =  tsys1;
1404
1405      outspecCol.put(i, avspec.getArray());
1406      outflagCol.put(i, flagsFromMA(avspec));
1407      outtsysCol.put(i, avtsys);
1408    }
1409    ++sit;
1410    ++s2it;
1411  }
1412  return calb1;
1413}
1414
1415//GBTIDL version of frequency switched data calibration
1416CountedPtr< Scantable > STMath::dofs( const CountedPtr< Scantable >& s,
1417                                      const std::vector<int>& scans,
1418                                      int smoothref,
1419                                      casa::Float tsysv,
1420                                      casa::Float tau,
1421                                      casa::Float tcal )
1422{
1423
1424
1425  (void) scans; //currently unused
1426  STSelector sel;
1427  CountedPtr< Scantable > ws = getScantable(s, false);
1428  CountedPtr< Scantable > sig, sigwcal, ref, refwcal;
1429  CountedPtr< Scantable > calsig, calref, out, out1, out2;
1430  Bool nofold=False;
1431  vector<int> types ;
1432
1433  //split the data
1434  //sel.setName("*_fs");
1435  types.push_back( SrcType::FSON ) ;
1436  sel.setTypes( types ) ;
1437  ws->setSelection(sel);
1438  sig = getScantable(ws,false);
1439  sel.reset();
1440  types.clear() ;
1441  //sel.setName("*_fs_calon");
1442  types.push_back( SrcType::FONCAL ) ;
1443  sel.setTypes( types ) ;
1444  ws->setSelection(sel);
1445  sigwcal = getScantable(ws,false);
1446  sel.reset();
1447  types.clear() ;
1448  //sel.setName("*_fsr");
1449  types.push_back( SrcType::FSOFF ) ;
1450  sel.setTypes( types ) ;
1451  ws->setSelection(sel);
1452  ref = getScantable(ws,false);
1453  sel.reset();
1454  types.clear() ;
1455  //sel.setName("*_fsr_calon");
1456  types.push_back( SrcType::FOFFCAL ) ;
1457  sel.setTypes( types ) ;
1458  ws->setSelection(sel);
1459  refwcal = getScantable(ws,false);
1460  sel.reset() ;
1461  types.clear() ;
1462
1463  calsig = dototalpower(sigwcal, sig, tcal=tcal);
1464  calref = dototalpower(refwcal, ref, tcal=tcal);
1465
1466  out1=dosigref(calsig,calref,smoothref,tsysv,tau);
1467  out2=dosigref(calref,calsig,smoothref,tsysv,tau);
1468
1469  Table& tabout1=out1->table();
1470  Table& tabout2=out2->table();
1471  ROScalarColumn<uInt> freqidCol1(tabout1, "FREQ_ID");
1472  ScalarColumn<uInt> freqidCol2(tabout2, "FREQ_ID");
1473  ROArrayColumn<Float> specCol(tabout2, "SPECTRA");
1474  Vector<Float> spec; specCol.get(0, spec);
1475  uInt nchan = spec.nelements();
1476  uInt freqid1; freqidCol1.get(0,freqid1);
1477  uInt freqid2; freqidCol2.get(0,freqid2);
1478  Double rp1, rp2, rv1, rv2, inc1, inc2;
1479  out1->frequencies().getEntry(rp1, rv1, inc1, freqid1);
1480  out2->frequencies().getEntry(rp2, rv2, inc2, freqid2);
1481  //cerr << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << endl ;
1482  //LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1483  //os << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << LogIO::POST ;
1484  if (rp1==rp2) {
1485    Double foffset = rv1 - rv2;
1486    uInt choffset = static_cast<uInt>(foffset/abs(inc2));
1487    if (choffset >= nchan) {
1488      //cerr<<"out-band frequency switching, no folding"<<endl;
1489      LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1490      os<<"out-band frequency switching, no folding"<<LogIO::POST;
1491      nofold = True;
1492    }
1493  }
1494
1495  if (nofold) {
1496    std::vector< CountedPtr< Scantable > > tabs;
1497    tabs.push_back(out1);
1498    tabs.push_back(out2);
1499    out = merge(tabs);
1500  }
1501  else {
1502    //out = out1;
1503    Double choffset = ( rv1 - rv2 ) / inc2 ;
1504    out = dofold( out1, out2, choffset ) ;
1505  }
1506   
1507  return out;
1508}
1509
1510CountedPtr<Scantable> STMath::dofold( const CountedPtr<Scantable> &sig,
1511                                      const CountedPtr<Scantable> &ref,
1512                                      Double choffset,
1513                                      Double choffset2 )
1514{
1515  LogIO os( LogOrigin( "STMath", "dofold", WHERE ) ) ;
1516  os << "choffset=" << choffset << " choffset2=" << choffset2 << LogIO::POST ;
1517
1518  // output scantable
1519  CountedPtr<Scantable> out = getScantable( sig, false ) ;
1520
1521  // separate choffset to integer part and decimal part
1522  Int ioffset = (Int)choffset ;
1523  Double doffset = choffset - ioffset ;
1524  Int ioffset2 = (Int)choffset2 ;
1525  Double doffset2 = choffset2 - ioffset2 ;
1526  os << "ioffset=" << ioffset << " doffset=" << doffset << LogIO::POST ;
1527  os << "ioffset2=" << ioffset2 << " doffset2=" << doffset2 << LogIO::POST ; 
1528
1529  // get column
1530  ROArrayColumn<Float> specCol1( sig->table(), "SPECTRA" ) ;
1531  ROArrayColumn<Float> specCol2( ref->table(), "SPECTRA" ) ;
1532  ROArrayColumn<Float> tsysCol1( sig->table(), "TSYS" ) ;
1533  ROArrayColumn<Float> tsysCol2( ref->table(), "TSYS" ) ;
1534  ROArrayColumn<uChar> flagCol1( sig->table(), "FLAGTRA" ) ;
1535  ROArrayColumn<uChar> flagCol2( ref->table(), "FLAGTRA" ) ;
1536  ROScalarColumn<Double> mjdCol1( sig->table(), "TIME" ) ;
1537  ROScalarColumn<Double> mjdCol2( ref->table(), "TIME" ) ;
1538  ROScalarColumn<Double> intervalCol1( sig->table(), "INTERVAL" ) ;
1539  ROScalarColumn<Double> intervalCol2( ref->table(), "INTERVAL" ) ;
1540
1541  // check
1542  if ( ioffset == 0 ) {
1543    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1544    os << "channel offset is zero, no folding" << LogIO::POST ;
1545    return out ;
1546  }
1547  int nchan = ref->nchan() ;
1548  if ( abs(ioffset) >= nchan ) {
1549    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1550    os << "out-band frequency switching, no folding" << LogIO::POST ;
1551    return out ;
1552  }
1553
1554  // attach column for output scantable
1555  ArrayColumn<Float> specColOut( out->table(), "SPECTRA" ) ;
1556  ArrayColumn<uChar> flagColOut( out->table(), "FLAGTRA" ) ;
1557  ArrayColumn<Float> tsysColOut( out->table(), "TSYS" ) ;
1558  ScalarColumn<Double> mjdColOut( out->table(), "TIME" ) ;
1559  ScalarColumn<Double> intervalColOut( out->table(), "INTERVAL" ) ;
1560  ScalarColumn<uInt> fidColOut( out->table(), "FREQ_ID" ) ;
1561
1562  // for each row
1563  // assume that the data order are same between sig and ref
1564  RowAccumulator acc( asap::W_TINTSYS ) ;
1565  for ( int i = 0 ; i < sig->nrow() ; i++ ) {
1566    // get values
1567    Vector<Float> spsig ;
1568    specCol1.get( i, spsig ) ;
1569    Vector<Float> spref ;
1570    specCol2.get( i, spref ) ;
1571    Vector<Float> tsyssig ;
1572    tsysCol1.get( i, tsyssig ) ;
1573    Vector<Float> tsysref ;
1574    tsysCol2.get( i, tsysref ) ;
1575    Vector<uChar> flagsig ;
1576    flagCol1.get( i, flagsig ) ;
1577    Vector<uChar> flagref ;
1578    flagCol2.get( i, flagref ) ;
1579    Double timesig ;
1580    mjdCol1.get( i, timesig ) ;
1581    Double timeref ;
1582    mjdCol2.get( i, timeref ) ;
1583    Double intsig ;
1584    intervalCol1.get( i, intsig ) ;
1585    Double intref ;
1586    intervalCol2.get( i, intref ) ;
1587
1588    // shift reference spectra
1589    int refchan = spref.nelements() ;
1590    Vector<Float> sspref( spref.nelements() ) ;
1591    Vector<Float> stsysref( tsysref.nelements() ) ;
1592    Vector<uChar> sflagref( flagref.nelements() ) ;
1593    if ( ioffset > 0 ) {
1594      // SPECTRA and FLAGTRA
1595      for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1596        sspref[j] = spref[j+ioffset] ;
1597        sflagref[j] = flagref[j+ioffset] ;
1598      }
1599      for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1600        sspref[j] = spref[j-refchan+ioffset] ;
1601        sflagref[j] = flagref[j-refchan+ioffset] ;
1602      }
1603      spref = sspref.copy() ;
1604      flagref = sflagref.copy() ;
1605      for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1606        sspref[j] = doffset * spref[j+1] + ( 1.0 - doffset ) * spref[j] ;
1607        sflagref[j] = flagref[j+1] + flagref[j] ;
1608      }
1609      sspref[refchan-1] = doffset * spref[0] + ( 1.0 - doffset ) * spref[refchan-1] ;
1610      sflagref[refchan-1] = flagref[0] + flagref[refchan-1] ;
1611
1612      // TSYS
1613      if ( spref.nelements() == tsysref.nelements() ) {
1614        for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1615          stsysref[j] = tsysref[j+ioffset] ;
1616        }
1617        for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1618          stsysref[j] = tsysref[j-refchan+ioffset] ;
1619        }
1620        tsysref = stsysref.copy() ;
1621        for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1622          stsysref[j] = doffset * tsysref[j+1] + ( 1.0 - doffset ) * tsysref[j] ;
1623        }
1624        stsysref[refchan-1] = doffset * tsysref[0] + ( 1.0 - doffset ) * tsysref[refchan-1] ;
1625      }
1626    }
1627    else {
1628      // SPECTRA and FLAGTRA
1629      for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1630        sspref[j] = spref[refchan+ioffset+j] ;
1631        sflagref[j] = flagref[refchan+ioffset+j] ;
1632      }
1633      for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1634        sspref[j] = spref[j+ioffset] ;
1635        sflagref[j] = flagref[j+ioffset] ;
1636      }
1637      spref = sspref.copy() ;
1638      flagref = sflagref.copy() ;
1639      sspref[0] = doffset * spref[refchan-1] + ( 1.0 - doffset ) * spref[0] ;
1640      sflagref[0] = flagref[0] + flagref[refchan-1] ;
1641      for ( int j = 1 ; j < refchan ; j++ ) {
1642        sspref[j] = doffset * spref[j-1] + ( 1.0 - doffset ) * spref[j] ;
1643        sflagref[j] = flagref[j-1] + flagref[j] ;
1644      }
1645      // TSYS
1646      if ( spref.nelements() == tsysref.nelements() ) {
1647        for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1648          stsysref[j] = tsysref[refchan+ioffset+j] ;
1649        }
1650        for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1651          stsysref[j] = tsysref[j+ioffset] ;
1652        }
1653        tsysref = stsysref.copy() ;
1654        stsysref[0] = doffset * tsysref[refchan-1] + ( 1.0 - doffset ) * tsysref[0] ;
1655        for ( int j = 1 ; j < refchan ; j++ ) {
1656          stsysref[j] = doffset * tsysref[j-1] + ( 1.0 - doffset ) * tsysref[j] ;
1657        }
1658      }
1659    }
1660
1661    // shift signal spectra if necessary (only for APEX?)
1662    if ( choffset2 != 0.0 ) {
1663      int sigchan = spsig.nelements() ;
1664      Vector<Float> sspsig( spsig.nelements() ) ;
1665      Vector<Float> stsyssig( tsyssig.nelements() ) ;
1666      Vector<uChar> sflagsig( flagsig.nelements() ) ;
1667      if ( ioffset2 > 0 ) {
1668        // SPECTRA and FLAGTRA
1669        for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1670          sspsig[j] = spsig[j+ioffset2] ;
1671          sflagsig[j] = flagsig[j+ioffset2] ;
1672        }
1673        for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1674          sspsig[j] = spsig[j-sigchan+ioffset2] ;
1675          sflagsig[j] = flagsig[j-sigchan+ioffset2] ;
1676        }
1677        spsig = sspsig.copy() ;
1678        flagsig = sflagsig.copy() ;
1679        for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1680          sspsig[j] = doffset2 * spsig[j+1] + ( 1.0 - doffset2 ) * spsig[j] ;
1681          sflagsig[j] = flagsig[j+1] || flagsig[j] ;
1682        }
1683        sspsig[sigchan-1] = doffset2 * spsig[0] + ( 1.0 - doffset2 ) * spsig[sigchan-1] ;
1684        sflagsig[sigchan-1] = flagsig[0] || flagsig[sigchan-1] ;
1685        // TSTS
1686        if ( spsig.nelements() == tsyssig.nelements() ) {
1687          for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1688            stsyssig[j] = tsyssig[j+ioffset2] ;
1689          }
1690          for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1691            stsyssig[j] = tsyssig[j-sigchan+ioffset2] ;
1692          }
1693          tsyssig = stsyssig.copy() ;
1694          for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1695            stsyssig[j] = doffset2 * tsyssig[j+1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1696          }
1697          stsyssig[sigchan-1] = doffset2 * tsyssig[0] + ( 1.0 - doffset2 ) * tsyssig[sigchan-1] ;
1698        }
1699      }
1700      else {
1701        // SPECTRA and FLAGTRA
1702        for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1703          sspsig[j] = spsig[sigchan+ioffset2+j] ;
1704          sflagsig[j] = flagsig[sigchan+ioffset2+j] ;
1705        }
1706        for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1707          sspsig[j] = spsig[j+ioffset2] ;
1708          sflagsig[j] = flagsig[j+ioffset2] ;
1709        }
1710        spsig = sspsig.copy() ;
1711        flagsig = sflagsig.copy() ;
1712        sspsig[0] = doffset2 * spsig[sigchan-1] + ( 1.0 - doffset2 ) * spsig[0] ;
1713        sflagsig[0] = flagsig[0] + flagsig[sigchan-1] ;
1714        for ( int j = 1 ; j < sigchan ; j++ ) {
1715          sspsig[j] = doffset2 * spsig[j-1] + ( 1.0 - doffset2 ) * spsig[j] ;
1716          sflagsig[j] = flagsig[j-1] + flagsig[j] ;
1717        }
1718        // TSYS
1719        if ( spsig.nelements() == tsyssig.nelements() ) {
1720          for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1721            stsyssig[j] = tsyssig[sigchan+ioffset2+j] ;
1722          }
1723          for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1724            stsyssig[j] = tsyssig[j+ioffset2] ;
1725          }
1726          tsyssig = stsyssig.copy() ;
1727          stsyssig[0] = doffset2 * tsyssig[sigchan-1] + ( 1.0 - doffset2 ) * tsyssig[0] ;
1728          for ( int j = 1 ; j < sigchan ; j++ ) {
1729            stsyssig[j] = doffset2 * tsyssig[j-1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1730          }
1731        }
1732      }
1733    }
1734
1735    // folding
1736    acc.add( spsig, !flagsig, tsyssig, intsig, timesig ) ;
1737    acc.add( sspref, !sflagref, stsysref, intref, timeref ) ;
1738   
1739    // put result
1740    specColOut.put( i, acc.getSpectrum() ) ;
1741    const Vector<Bool> &msk = acc.getMask() ;
1742    Vector<uChar> flg( msk.shape() ) ;
1743    convertArray( flg, !msk ) ;
1744    flagColOut.put( i, flg ) ;
1745    tsysColOut.put( i, acc.getTsys() ) ;
1746    intervalColOut.put( i, acc.getInterval() ) ;
1747    mjdColOut.put( i, acc.getTime() ) ;
1748    // change FREQ_ID to unshifted IF setting (only for APEX?)
1749    if ( choffset2 != 0.0 ) {
1750      uInt freqid = fidColOut( 0 ) ; // assume single-IF data
1751      double refpix, refval, increment ;
1752      out->frequencies().getEntry( refpix, refval, increment, freqid ) ;
1753      refval -= choffset * increment ;
1754      uInt newfreqid = out->frequencies().addEntry( refpix, refval, increment ) ;
1755      Vector<uInt> freqids = fidColOut.getColumn() ;
1756      for ( uInt j = 0 ; j < freqids.nelements() ; j++ ) {
1757        if ( freqids[j] == freqid )
1758          freqids[j] = newfreqid ;
1759      }
1760      fidColOut.putColumn( freqids ) ;
1761    }
1762
1763    acc.reset() ;
1764  }
1765
1766  return out ;
1767}
1768
1769
1770CountedPtr< Scantable > STMath::freqSwitch( const CountedPtr< Scantable >& in )
1771{
1772  // make copy or reference
1773  CountedPtr< Scantable > out = getScantable(in, false);
1774  Table& tout = out->table();
1775  Block<String> cols(4);
1776  cols[0] = String("SCANNO");
1777  cols[1] = String("CYCLENO");
1778  cols[2] = String("BEAMNO");
1779  cols[3] = String("POLNO");
1780  TableIterator iter(tout, cols);
1781  while (!iter.pastEnd()) {
1782    Table subt = iter.table();
1783    // this should leave us with two rows for the two IFs....if not ignore
1784    if (subt.nrow() != 2 ) {
1785      continue;
1786    }
1787    ArrayColumn<Float> specCol(subt, "SPECTRA");
1788    ArrayColumn<Float> tsysCol(subt, "TSYS");
1789    ArrayColumn<uChar> flagCol(subt, "FLAGTRA");
1790    Vector<Float> onspec,offspec, ontsys, offtsys;
1791    Vector<uChar> onflag, offflag;
1792    tsysCol.get(0, ontsys);   tsysCol.get(1, offtsys);
1793    specCol.get(0, onspec);   specCol.get(1, offspec);
1794    flagCol.get(0, onflag);   flagCol.get(1, offflag);
1795    MaskedArray<Float> on  = maskedArray(onspec, onflag);
1796    MaskedArray<Float> off = maskedArray(offspec, offflag);
1797    MaskedArray<Float> oncopy = on.copy();
1798
1799    on /= off; on -= 1.0f;
1800    on *= ontsys[0];
1801    off /= oncopy; off -= 1.0f;
1802    off *= offtsys[0];
1803    specCol.put(0, on.getArray());
1804    const Vector<Bool>& m0 = on.getMask();
1805    Vector<uChar> flags0(m0.shape());
1806    convertArray(flags0, !m0);
1807    flagCol.put(0, flags0);
1808
1809    specCol.put(1, off.getArray());
1810    const Vector<Bool>& m1 = off.getMask();
1811    Vector<uChar> flags1(m1.shape());
1812    convertArray(flags1, !m1);
1813    flagCol.put(1, flags1);
1814    ++iter;
1815  }
1816
1817  return out;
1818}
1819
1820std::vector< float > STMath::statistic( const CountedPtr< Scantable > & in,
1821                                        const std::vector< bool > & mask,
1822                                        const std::string& which )
1823{
1824
1825  Vector<Bool> m(mask);
1826  const Table& tab = in->table();
1827  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1828  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1829  std::vector<float> out;
1830  for (uInt i=0; i < tab.nrow(); ++i ) {
1831    Vector<Float> spec; specCol.get(i, spec);
1832    Vector<uChar> flag; flagCol.get(i, flag);
1833    MaskedArray<Float> ma  = maskedArray(spec, flag);
1834    float outstat = 0.0;
1835    if ( spec.nelements() == m.nelements() ) {
1836      outstat = mathutil::statistics(which, ma(m));
1837    } else {
1838      outstat = mathutil::statistics(which, ma);
1839    }
1840    out.push_back(outstat);
1841  }
1842  return out;
1843}
1844
1845std::vector< float > STMath::statisticRow( const CountedPtr< Scantable > & in,
1846                                        const std::vector< bool > & mask,
1847                                        const std::string& which,
1848                                        int row )
1849{
1850
1851  Vector<Bool> m(mask);
1852  const Table& tab = in->table();
1853  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1854  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1855  std::vector<float> out;
1856
1857  Vector<Float> spec; specCol.get(row, spec);
1858  Vector<uChar> flag; flagCol.get(row, flag);
1859  MaskedArray<Float> ma  = maskedArray(spec, flag);
1860  float outstat = 0.0;
1861  if ( spec.nelements() == m.nelements() ) {
1862    outstat = mathutil::statistics(which, ma(m));
1863  } else {
1864    outstat = mathutil::statistics(which, ma);
1865  }
1866  out.push_back(outstat);
1867
1868  return out;
1869}
1870
1871std::vector< int > STMath::minMaxChan( const CountedPtr< Scantable > & in,
1872                                        const std::vector< bool > & mask,
1873                                        const std::string& which )
1874{
1875
1876  Vector<Bool> m(mask);
1877  const Table& tab = in->table();
1878  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1879  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1880  std::vector<int> out;
1881  for (uInt i=0; i < tab.nrow(); ++i ) {
1882    Vector<Float> spec; specCol.get(i, spec);
1883    Vector<uChar> flag; flagCol.get(i, flag);
1884    MaskedArray<Float> ma  = maskedArray(spec, flag);
1885    if (ma.ndim() != 1) {
1886      throw (ArrayError(
1887          "std::vector<int> STMath::minMaxChan("
1888          "ContedPtr<Scantable> &in, std::vector<bool> &mask, "
1889          " std::string &which)"
1890          " - MaskedArray is not 1D"));
1891    }
1892    IPosition outpos(1,0);
1893    if ( spec.nelements() == m.nelements() ) {
1894      outpos = mathutil::minMaxPos(which, ma(m));
1895    } else {
1896      outpos = mathutil::minMaxPos(which, ma);
1897    }
1898    out.push_back(outpos[0]);
1899  }
1900  return out;
1901}
1902
1903CountedPtr< Scantable > STMath::bin( const CountedPtr< Scantable > & in,
1904                                     int width )
1905{
1906  if ( !in->getSelection().empty() ) throw(AipsError("Can't bin subset of the data."));
1907  CountedPtr< Scantable > out = getScantable(in, false);
1908  Table& tout = out->table();
1909  out->frequencies().rescale(width, "BIN");
1910  ArrayColumn<Float> specCol(tout, "SPECTRA");
1911  ArrayColumn<uChar> flagCol(tout, "FLAGTRA");
1912  for (uInt i=0; i < tout.nrow(); ++i ) {
1913    MaskedArray<Float> main  = maskedArray(specCol(i), flagCol(i));
1914    MaskedArray<Float> maout;
1915    LatticeUtilities::bin(maout, main, 0, Int(width));
1916    /// @todo implement channel based tsys binning
1917    specCol.put(i, maout.getArray());
1918    flagCol.put(i, flagsFromMA(maout));
1919    // take only the first binned spectrum's length for the deprecated
1920    // global header item nChan
1921    if (i==0) tout.rwKeywordSet().define(String("nChan"),
1922                                       Int(maout.getArray().nelements()));
1923  }
1924  return out;
1925}
1926
1927CountedPtr< Scantable > STMath::resample( const CountedPtr< Scantable >& in,
1928                                          const std::string& method,
1929                                          float width )
1930//
1931// Should add the possibility of width being specified in km/s. This means
1932// that for each freqID (SpectralCoordinate) we will need to convert to an
1933// average channel width (say at the reference pixel).  Then we would need
1934// to be careful to make sure each spectrum (of different freqID)
1935// is the same length.
1936//
1937{
1938  //InterpolateArray1D<Double,Float>::InterpolationMethod interp;
1939  Int interpMethod(stringToIMethod(method));
1940
1941  CountedPtr< Scantable > out = getScantable(in, false);
1942  Table& tout = out->table();
1943
1944// Resample SpectralCoordinates (one per freqID)
1945  out->frequencies().rescale(width, "RESAMPLE");
1946  TableIterator iter(tout, "IFNO");
1947  TableRow row(tout);
1948  while ( !iter.pastEnd() ) {
1949    Table tab = iter.table();
1950    ArrayColumn<Float> specCol(tab, "SPECTRA");
1951    //ArrayColumn<Float> tsysCol(tout, "TSYS");
1952    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1953    Vector<Float> spec;
1954    Vector<uChar> flag;
1955    specCol.get(0,spec); // the number of channels should be constant per IF
1956    uInt nChanIn = spec.nelements();
1957    Vector<Float> xIn(nChanIn); indgen(xIn);
1958    Int fac =  Int(nChanIn/width);
1959    Vector<Float> xOut(fac+10); // 10 to be safe - resize later
1960    uInt k = 0;
1961    Float x = 0.0;
1962    while (x < Float(nChanIn) ) {
1963      xOut(k) = x;
1964      k++;
1965      x += width;
1966    }
1967    uInt nChanOut = k;
1968    xOut.resize(nChanOut, True);
1969    // process all rows for this IFNO
1970    Vector<Float> specOut;
1971    Vector<Bool> maskOut;
1972    Vector<uChar> flagOut;
1973    for (uInt i=0; i < tab.nrow(); ++i) {
1974      specCol.get(i, spec);
1975      flagCol.get(i, flag);
1976      Vector<Bool> mask(flag.nelements());
1977      convertArray(mask, flag);
1978
1979      IPosition shapeIn(spec.shape());
1980      //sh.nchan = nChanOut;
1981      InterpolateArray1D<Float,Float>::interpolate(specOut, maskOut, xOut,
1982                                                   xIn, spec, mask,
1983                                                   interpMethod, True, True);
1984      /// @todo do the same for channel based Tsys
1985      flagOut.resize(maskOut.nelements());
1986      convertArray(flagOut, maskOut);
1987      specCol.put(i, specOut);
1988      flagCol.put(i, flagOut);
1989    }
1990    ++iter;
1991  }
1992
1993  return out;
1994}
1995
1996STMath::imethod STMath::stringToIMethod(const std::string& in)
1997{
1998  static STMath::imap lookup;
1999
2000  // initialize the lookup table if necessary
2001  if ( lookup.empty() ) {
2002    lookup["nearest"]   = InterpolateArray1D<Double,Float>::nearestNeighbour;
2003    lookup["linear"] = InterpolateArray1D<Double,Float>::linear;
2004    lookup["cubic"]  = InterpolateArray1D<Double,Float>::cubic;
2005    lookup["spline"]  = InterpolateArray1D<Double,Float>::spline;
2006  }
2007
2008  STMath::imap::const_iterator iter = lookup.find(in);
2009
2010  if ( lookup.end() == iter ) {
2011    std::string message = in;
2012    message += " is not a valid interpolation mode";
2013    throw(AipsError(message));
2014  }
2015  return iter->second;
2016}
2017
2018WeightType STMath::stringToWeight(const std::string& in)
2019{
2020  static std::map<std::string, WeightType> lookup;
2021
2022  // initialize the lookup table if necessary
2023  if ( lookup.empty() ) {
2024    lookup["NONE"]   = asap::W_NONE;
2025    lookup["TINT"] = asap::W_TINT;
2026    lookup["TINTSYS"]  = asap::W_TINTSYS;
2027    lookup["TSYS"]  = asap::W_TSYS;
2028    lookup["VAR"]  = asap::W_VAR;
2029  }
2030
2031  std::map<std::string, WeightType>::const_iterator iter = lookup.find(in);
2032
2033  if ( lookup.end() == iter ) {
2034    std::string message = in;
2035    message += " is not a valid weighting mode";
2036    throw(AipsError(message));
2037  }
2038  return iter->second;
2039}
2040
2041CountedPtr< Scantable > STMath::gainElevation( const CountedPtr< Scantable >& in,
2042                                               const vector< float > & coeff,
2043                                               const std::string & filename,
2044                                               const std::string& method)
2045{
2046  // Get elevation data from Scantable and convert to degrees
2047  CountedPtr< Scantable > out = getScantable(in, false);
2048  Table& tab = out->table();
2049  ROScalarColumn<Float> elev(tab, "ELEVATION");
2050  Vector<Float> x = elev.getColumn();
2051  x *= Float(180 / C::pi);                        // Degrees
2052
2053  Vector<Float> coeffs(coeff);
2054  const uInt nc = coeffs.nelements();
2055  if ( filename.length() > 0 && nc > 0 ) {
2056    throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
2057  }
2058
2059  // Correct
2060  if ( nc > 0 || filename.length() == 0 ) {
2061    // Find instrument
2062    Bool throwit = True;
2063    Instrument inst =
2064      STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2065                                throwit);
2066
2067    // Set polynomial
2068    Polynomial<Float>* ppoly = 0;
2069    Vector<Float> coeff;
2070    String msg;
2071    if ( nc > 0 ) {
2072      ppoly = new Polynomial<Float>(nc-1);
2073      coeff = coeffs;
2074      msg = String("user");
2075    } else {
2076      STAttr sdAttr;
2077      coeff = sdAttr.gainElevationPoly(inst);
2078      ppoly = new Polynomial<Float>(coeff.nelements()-1);
2079      msg = String("built in");
2080    }
2081
2082    if ( coeff.nelements() > 0 ) {
2083      ppoly->setCoefficients(coeff);
2084    } else {
2085      delete ppoly;
2086      throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
2087    }
2088    ostringstream oss;
2089    oss << "Making polynomial correction with " << msg << " coefficients:" << endl;
2090    oss << "   " <<  coeff;
2091    pushLog(String(oss));
2092    const uInt nrow = tab.nrow();
2093    Vector<Float> factor(nrow);
2094    for ( uInt i=0; i < nrow; ++i ) {
2095      factor[i] = 1.0 / (*ppoly)(x[i]);
2096    }
2097    delete ppoly;
2098    scaleByVector(tab, factor, true);
2099
2100  } else {
2101    // Read and correct
2102    pushLog("Making correction from ascii Table");
2103    scaleFromAsciiTable(tab, filename, method, x, true);
2104  }
2105  return out;
2106}
2107
2108void STMath::scaleFromAsciiTable(Table& in, const std::string& filename,
2109                                 const std::string& method,
2110                                 const Vector<Float>& xout, bool dotsys)
2111{
2112
2113// Read gain-elevation ascii file data into a Table.
2114
2115  String formatString;
2116  Table tbl = readAsciiTable(formatString, Table::Memory, filename, "", "", False);
2117  scaleFromTable(in, tbl, method, xout, dotsys);
2118}
2119
2120void STMath::scaleFromTable(Table& in,
2121                            const Table& table,
2122                            const std::string& method,
2123                            const Vector<Float>& xout, bool dotsys)
2124{
2125
2126  ROScalarColumn<Float> geElCol(table, "ELEVATION");
2127  ROScalarColumn<Float> geFacCol(table, "FACTOR");
2128  Vector<Float> xin = geElCol.getColumn();
2129  Vector<Float> yin = geFacCol.getColumn();
2130  Vector<Bool> maskin(xin.nelements(),True);
2131
2132  // Interpolate (and extrapolate) with desired method
2133
2134  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2135
2136   Vector<Float> yout;
2137   Vector<Bool> maskout;
2138   InterpolateArray1D<Float,Float>::interpolate(yout, maskout, xout,
2139                                                xin, yin, maskin, interp,
2140                                                True, True);
2141
2142   scaleByVector(in, Float(1.0)/yout, dotsys);
2143}
2144
2145void STMath::scaleByVector( Table& in,
2146                            const Vector< Float >& factor,
2147                            bool dotsys )
2148{
2149  uInt nrow = in.nrow();
2150  if ( factor.nelements() != nrow ) {
2151    throw(AipsError("factors.nelements() != table.nelements()"));
2152  }
2153  ArrayColumn<Float> specCol(in, "SPECTRA");
2154  ArrayColumn<uChar> flagCol(in, "FLAGTRA");
2155  ArrayColumn<Float> tsysCol(in, "TSYS");
2156  for (uInt i=0; i < nrow; ++i) {
2157    MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2158    ma *= factor[i];
2159    specCol.put(i, ma.getArray());
2160    flagCol.put(i, flagsFromMA(ma));
2161    if ( dotsys ) {
2162      Vector<Float> tsys = tsysCol(i);
2163      tsys *= factor[i];
2164      tsysCol.put(i,tsys);
2165    }
2166  }
2167}
2168
2169CountedPtr< Scantable > STMath::convertFlux( const CountedPtr< Scantable >& in,
2170                                             float d, float etaap,
2171                                             float jyperk )
2172{
2173  CountedPtr< Scantable > out = getScantable(in, false);
2174  Table& tab = in->table();
2175  Unit fluxUnit(tab.keywordSet().asString("FluxUnit"));
2176  Unit K(String("K"));
2177  Unit JY(String("Jy"));
2178
2179  bool tokelvin = true;
2180  Double cfac = 1.0;
2181
2182  if ( fluxUnit == JY ) {
2183    pushLog("Converting to K");
2184    Quantum<Double> t(1.0,fluxUnit);
2185    Quantum<Double> t2 = t.get(JY);
2186    cfac = (t2 / t).getValue();               // value to Jy
2187
2188    tokelvin = true;
2189    out->setFluxUnit("K");
2190  } else if ( fluxUnit == K ) {
2191    pushLog("Converting to Jy");
2192    Quantum<Double> t(1.0,fluxUnit);
2193    Quantum<Double> t2 = t.get(K);
2194    cfac = (t2 / t).getValue();              // value to K
2195
2196    tokelvin = false;
2197    out->setFluxUnit("Jy");
2198  } else {
2199    throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
2200  }
2201  // Make sure input values are converted to either Jy or K first...
2202  Float factor = cfac;
2203
2204  // Select method
2205  if (jyperk > 0.0) {
2206    factor *= jyperk;
2207    if ( tokelvin ) factor = 1.0 / jyperk;
2208    ostringstream oss;
2209    oss << "Jy/K = " << jyperk;
2210    pushLog(String(oss));
2211    Vector<Float> factors(tab.nrow(), factor);
2212    scaleByVector(tab,factors, false);
2213  } else if ( etaap > 0.0) {
2214    if (d < 0) {
2215      Instrument inst =
2216        STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2217                                  True);
2218      STAttr sda;
2219      d = sda.diameter(inst);
2220    }
2221    jyperk = STAttr::findJyPerK(etaap, d);
2222    ostringstream oss;
2223    oss << "Jy/K = " << jyperk;
2224    pushLog(String(oss));
2225    factor *= jyperk;
2226    if ( tokelvin ) {
2227      factor = 1.0 / factor;
2228    }
2229    Vector<Float> factors(tab.nrow(), factor);
2230    scaleByVector(tab, factors, False);
2231  } else {
2232
2233    // OK now we must deal with automatic look up of values.
2234    // We must also deal with the fact that the factors need
2235    // to be computed per IF and may be different and may
2236    // change per integration.
2237
2238    pushLog("Looking up conversion factors");
2239    convertBrightnessUnits(out, tokelvin, cfac);
2240  }
2241
2242  return out;
2243}
2244
2245void STMath::convertBrightnessUnits( CountedPtr<Scantable>& in,
2246                                     bool tokelvin, float cfac )
2247{
2248  Table& table = in->table();
2249  Instrument inst =
2250    STAttr::convertInstrument(table.keywordSet().asString("AntennaName"), True);
2251  TableIterator iter(table, "FREQ_ID");
2252  STFrequencies stfreqs = in->frequencies();
2253  STAttr sdAtt;
2254  while (!iter.pastEnd()) {
2255    Table tab = iter.table();
2256    ArrayColumn<Float> specCol(tab, "SPECTRA");
2257    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2258    ROScalarColumn<uInt> freqidCol(tab, "FREQ_ID");
2259    MEpoch::ROScalarColumn timeCol(tab, "TIME");
2260
2261    uInt freqid; freqidCol.get(0, freqid);
2262    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2263    // STAttr.JyPerK has a Vector interface... change sometime.
2264    Vector<Float> freqs(1,stfreqs.getRefFreq(freqid, tmpspec.nelements()));
2265    for ( uInt i=0; i<tab.nrow(); ++i) {
2266      Float jyperk = (sdAtt.JyPerK(inst, timeCol(i), freqs))[0];
2267      Float factor = cfac * jyperk;
2268      if ( tokelvin ) factor = Float(1.0) / factor;
2269      MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2270      ma *= factor;
2271      specCol.put(i, ma.getArray());
2272      flagCol.put(i, flagsFromMA(ma));
2273    }
2274  ++iter;
2275  }
2276}
2277
2278CountedPtr< Scantable > STMath::opacity( const CountedPtr< Scantable > & in,
2279                                         const std::vector<float>& tau )
2280{
2281  CountedPtr< Scantable > out = getScantable(in, false);
2282
2283  Table outtab = out->table();
2284
2285  const Int ntau = uInt(tau.size());
2286  std::vector<float>::const_iterator tauit = tau.begin();
2287  AlwaysAssert((ntau == 1 || ntau == in->nif() || ntau == in->nif() * in->npol()),
2288               AipsError);
2289  TableIterator iiter(outtab, "IFNO");
2290  while ( !iiter.pastEnd() ) {
2291    Table itab = iiter.table();
2292    TableIterator piter(itab, "POLNO");
2293    while ( !piter.pastEnd() ) {
2294      Table tab = piter.table();
2295      ROScalarColumn<Float> elev(tab, "ELEVATION");
2296      ArrayColumn<Float> specCol(tab, "SPECTRA");
2297      ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2298      ArrayColumn<Float> tsysCol(tab, "TSYS");
2299      for ( uInt i=0; i<tab.nrow(); ++i) {
2300        Float zdist = Float(C::pi_2) - elev(i);
2301        Float factor = exp(*tauit/cos(zdist));
2302        MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2303        ma *= factor;
2304        specCol.put(i, ma.getArray());
2305        flagCol.put(i, flagsFromMA(ma));
2306        Vector<Float> tsys;
2307        tsysCol.get(i, tsys);
2308        tsys *= factor;
2309        tsysCol.put(i, tsys);
2310      }
2311      if (ntau == in->nif()*in->npol() ) {
2312        tauit++;
2313      }
2314      piter++;
2315    }
2316    if (ntau >= in->nif() ) {
2317      tauit++;
2318    }
2319    iiter++;
2320  }
2321  return out;
2322}
2323
2324CountedPtr< Scantable > STMath::smoothOther( const CountedPtr< Scantable >& in,
2325                                             const std::string& kernel,
2326                                             float width, int order)
2327{
2328  CountedPtr< Scantable > out = getScantable(in, false);
2329  Table table = out->table();
2330
2331  TableIterator iter(table, "IFNO");
2332  while (!iter.pastEnd()) {
2333    Table tab = iter.table();
2334    ArrayColumn<Float> specCol(tab, "SPECTRA");
2335    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2336    Vector<Float> spec;
2337    Vector<uChar> flag;
2338    for (uInt i = 0; i < tab.nrow(); ++i) {
2339      specCol.get(i, spec);
2340      flagCol.get(i, flag);
2341      Vector<Bool> mask(flag.nelements());
2342      convertArray(mask, flag);
2343      Vector<Float> specout;
2344      Vector<Bool> maskout;
2345      if (kernel == "hanning") {
2346        mathutil::hanning(specout, maskout, spec, !mask);
2347        convertArray(flag, !maskout);
2348      } else if (kernel == "rmedian") {
2349        mathutil::runningMedian(specout, maskout, spec , mask, width);
2350        convertArray(flag, maskout);
2351      } else if (kernel == "poly") {
2352        mathutil::polyfit(specout, maskout, spec, !mask, width, order);
2353        convertArray(flag, !maskout);
2354      }
2355
2356      for (uInt j = 0; j < flag.nelements(); ++j) {
2357        uChar userFlag = 1 << 7;
2358        if (maskout[j]==True) userFlag = 0 << 7;
2359        flag(j) = userFlag;
2360      }
2361
2362      flagCol.put(i, flag);
2363      specCol.put(i, specout);
2364    }
2365  ++iter;
2366  }
2367  return out;
2368}
2369
2370CountedPtr< Scantable > STMath::smooth( const CountedPtr< Scantable >& in,
2371                                        const std::string& kernel, float width,
2372                                        int order)
2373{
2374  if (kernel == "rmedian"  || kernel == "hanning" || kernel == "poly") {
2375    return smoothOther(in, kernel, width, order);
2376  }
2377  CountedPtr< Scantable > out = getScantable(in, false);
2378  Table& table = out->table();
2379  VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernel);
2380  // same IFNO should have same no of channels
2381  // this saves overhead
2382  TableIterator iter(table, "IFNO");
2383  while (!iter.pastEnd()) {
2384    Table tab = iter.table();
2385    ArrayColumn<Float> specCol(tab, "SPECTRA");
2386    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2387    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2388    uInt nchan = tmpspec.nelements();
2389    Vector<Float> kvec = VectorKernel::make(type, width, nchan, True, False);
2390    Convolver<Float> conv(kvec, IPosition(1,nchan));
2391    Vector<Float> spec;
2392    Vector<uChar> flag;
2393    for ( uInt i=0; i<tab.nrow(); ++i) {
2394      specCol.get(i, spec);
2395      flagCol.get(i, flag);
2396      Vector<Bool> mask(flag.nelements());
2397      convertArray(mask, flag);
2398      Vector<Float> specout;
2399      mathutil::replaceMaskByZero(specout, mask);
2400      conv.linearConv(specout, spec);
2401      specCol.put(i, specout);
2402    }
2403    ++iter;
2404  }
2405  return out;
2406}
2407
2408CountedPtr< Scantable >
2409  STMath::merge( const std::vector< CountedPtr < Scantable > >& in )
2410{
2411  if ( in.size() < 2 ) {
2412    throw(AipsError("Need at least two scantables to perform a merge."));
2413  }
2414  std::vector<CountedPtr < Scantable > >::const_iterator it = in.begin();
2415  bool insitu = insitu_;
2416  setInsitu(false);
2417  CountedPtr< Scantable > out = getScantable(*it, false);
2418  setInsitu(insitu);
2419  Table& tout = out->table();
2420  ScalarColumn<uInt> freqidcol(tout,"FREQ_ID"), molidcol(tout, "MOLECULE_ID");
2421  ScalarColumn<uInt> scannocol(tout,"SCANNO"), focusidcol(tout,"FOCUS_ID");
2422  // Renumber SCANNO to be 0-based
2423  Vector<uInt> scannos = scannocol.getColumn();
2424  uInt offset = min(scannos);
2425  scannos -= offset;
2426  scannocol.putColumn(scannos);
2427  uInt newscanno = max(scannos)+1;
2428  ++it;
2429  while ( it != in.end() ){
2430    if ( ! (*it)->conformant(*out) ) {
2431      // non conformant.
2432      //pushLog(String("Warning: Can't merge scantables as header info differs."));
2433      LogIO os( LogOrigin( "STMath", "merge()", WHERE ) ) ;
2434      os << LogIO::SEVERE << "Can't merge scantables as header informations (any one of AntennaName, Equinox, and FluxUnit) differ." << LogIO::EXCEPTION ;
2435    }
2436    out->appendToHistoryTable((*it)->history());
2437    const Table& tab = (*it)->table();
2438
2439    Block<String> cols(3);
2440    cols[0] = String("FREQ_ID");
2441    cols[1] = String("MOLECULE_ID");
2442    cols[2] = String("FOCUS_ID");
2443
2444    TableIterator scanit(tab, "SCANNO");
2445    while (!scanit.pastEnd()) {
2446      ScalarColumn<uInt> thescannocol(scanit.table(),"SCANNO");
2447      Vector<uInt> thescannos(thescannocol.nrow(),newscanno);
2448      thescannocol.putColumn(thescannos);
2449      TableIterator subit(scanit.table(), cols);
2450      while ( !subit.pastEnd() ) {
2451        uInt nrow = tout.nrow();
2452        Table thetab = subit.table();
2453        ROTableRow row(thetab);
2454        Vector<uInt> thecolvals(thetab.nrow());
2455        ScalarColumn<uInt> thefreqidcol(thetab,"FREQ_ID");
2456        ScalarColumn<uInt> themolidcol(thetab, "MOLECULE_ID");
2457        ScalarColumn<uInt> thefocusidcol(thetab,"FOCUS_ID");
2458        // The selected subset of table should have
2459        // the equal FREQ_ID, MOLECULE_ID, and FOCUS_ID values.
2460        const TableRecord& rec = row.get(0);
2461        // Set the proper FREQ_ID
2462        Double rv,rp,inc;
2463        (*it)->frequencies().getEntry(rp, rv, inc, rec.asuInt("FREQ_ID"));
2464        uInt id;
2465        id = out->frequencies().addEntry(rp, rv, inc);
2466        thecolvals = id;
2467        thefreqidcol.putColumn(thecolvals);
2468        // Set the proper MOLECULE_ID
2469        Vector<String> name,fname;Vector<Double> rf;
2470        (*it)->molecules().getEntry(rf, name, fname, rec.asuInt("MOLECULE_ID"));
2471        id = out->molecules().addEntry(rf, name, fname);
2472        thecolvals = id;
2473        themolidcol.putColumn(thecolvals);
2474        // Set the proper FOCUS_ID
2475        Float fpa,frot,fax,ftan,fhand,fmount,fuser, fxy, fxyp;
2476        (*it)->focus().getEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2477                                fxy, fxyp, rec.asuInt("FOCUS_ID"));
2478        id = out->focus().addEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2479                                   fxy, fxyp);
2480        thecolvals = id;
2481        thefocusidcol.putColumn(thecolvals);
2482
2483        tout.addRow(thetab.nrow());
2484        TableCopy::copyRows(tout, thetab, nrow, 0, thetab.nrow());
2485
2486        ++subit;
2487      }
2488      ++newscanno;
2489      ++scanit;
2490    }
2491    ++it;
2492  }
2493  return out;
2494}
2495
2496CountedPtr< Scantable >
2497  STMath::invertPhase( const CountedPtr < Scantable >& in )
2498{
2499  return applyToPol(in, &STPol::invertPhase, Float(0.0));
2500}
2501
2502CountedPtr< Scantable >
2503  STMath::rotateXYPhase( const CountedPtr < Scantable >& in, float phase )
2504{
2505   return applyToPol(in, &STPol::rotatePhase, Float(phase));
2506}
2507
2508CountedPtr< Scantable >
2509  STMath::rotateLinPolPhase( const CountedPtr < Scantable >& in, float phase )
2510{
2511  return applyToPol(in, &STPol::rotateLinPolPhase, Float(phase));
2512}
2513
2514CountedPtr< Scantable > STMath::applyToPol( const CountedPtr<Scantable>& in,
2515                                             STPol::polOperation fptr,
2516                                             Float phase )
2517{
2518  CountedPtr< Scantable > out = getScantable(in, false);
2519  Table& tout = out->table();
2520  Block<String> cols(4);
2521  cols[0] = String("SCANNO");
2522  cols[1] = String("BEAMNO");
2523  cols[2] = String("IFNO");
2524  cols[3] = String("CYCLENO");
2525  TableIterator iter(tout, cols);
2526  CountedPtr<STPol> stpol = STPol::getPolClass(out->factories_,
2527                                               out->getPolType() );
2528  while (!iter.pastEnd()) {
2529    Table t = iter.table();
2530    ArrayColumn<Float> speccol(t, "SPECTRA");
2531    ScalarColumn<uInt> focidcol(t, "FOCUS_ID");
2532    Matrix<Float> pols(speccol.getColumn());
2533    try {
2534      stpol->setSpectra(pols);
2535      Float fang,fhand;
2536      fang = in->focusTable_.getTotalAngle(focidcol(0));
2537      fhand = in->focusTable_.getFeedHand(focidcol(0));
2538      stpol->setPhaseCorrections(fang, fhand);
2539      // use a member function pointer in STPol.  This only works on
2540      // the STPol pointer itself, not the Counted Pointer so
2541      // derefernce it.
2542      (&(*(stpol))->*fptr)(phase);
2543      speccol.putColumn(stpol->getSpectra());
2544    } catch (AipsError& e) {
2545      //delete stpol;stpol=0;
2546      throw(e);
2547    }
2548    ++iter;
2549  }
2550  //delete stpol;stpol=0;
2551  return out;
2552}
2553
2554CountedPtr< Scantable >
2555  STMath::swapPolarisations( const CountedPtr< Scantable > & in )
2556{
2557  CountedPtr< Scantable > out = getScantable(in, false);
2558  Table& tout = out->table();
2559  Table t0 = tout(tout.col("POLNO") == 0);
2560  Table t1 = tout(tout.col("POLNO") == 1);
2561  if ( t0.nrow() != t1.nrow() )
2562    throw(AipsError("Inconsistent number of polarisations"));
2563  ArrayColumn<Float> speccol0(t0, "SPECTRA");
2564  ArrayColumn<uChar> flagcol0(t0, "FLAGTRA");
2565  ArrayColumn<Float> speccol1(t1, "SPECTRA");
2566  ArrayColumn<uChar> flagcol1(t1, "FLAGTRA");
2567  Matrix<Float> s0 = speccol0.getColumn();
2568  Matrix<uChar> f0 = flagcol0.getColumn();
2569  speccol0.putColumn(speccol1.getColumn());
2570  flagcol0.putColumn(flagcol1.getColumn());
2571  speccol1.putColumn(s0);
2572  flagcol1.putColumn(f0);
2573  return out;
2574}
2575
2576CountedPtr< Scantable >
2577  STMath::averagePolarisations( const CountedPtr< Scantable > & in,
2578                                const std::vector<bool>& mask,
2579                                const std::string& weight )
2580{
2581  if (in->npol() < 2 )
2582    throw(AipsError("averagePolarisations can only be applied to two or more"
2583                    "polarisations"));
2584  bool insitu = insitu_;
2585  setInsitu(false);
2586  CountedPtr< Scantable > pols = getScantable(in, true);
2587  setInsitu(insitu);
2588  Table& tout = pols->table();
2589  std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
2590  Table tab = tableCommand(taql, in->table());
2591  if (tab.nrow() == 0 )
2592    throw(AipsError("Could not find  any rows with POLNO==0 and POLNO==1"));
2593  TableCopy::copyRows(tout, tab);
2594  TableVector<uInt> vec(tout, "POLNO");
2595  vec = 0;
2596  pols->table_.rwKeywordSet().define("nPol", Int(1));
2597  pols->table_.rwKeywordSet().define("POLTYPE", String("stokes"));
2598  //pols->table_.rwKeywordSet().define("POLTYPE", in->getPolType());
2599  std::vector<CountedPtr<Scantable> > vpols;
2600  vpols.push_back(pols);
2601  CountedPtr< Scantable > out = average(vpols, mask, weight, "SCAN");
2602  return out;
2603}
2604
2605CountedPtr< Scantable >
2606  STMath::averageBeams( const CountedPtr< Scantable > & in,
2607                        const std::vector<bool>& mask,
2608                        const std::string& weight )
2609{
2610  bool insitu = insitu_;
2611  setInsitu(false);
2612  CountedPtr< Scantable > beams = getScantable(in, false);
2613  setInsitu(insitu);
2614  Table& tout = beams->table();
2615  // give all rows the same BEAMNO
2616  TableVector<uInt> vec(tout, "BEAMNO");
2617  vec = 0;
2618  beams->table_.rwKeywordSet().define("nBeam", Int(1));
2619  std::vector<CountedPtr<Scantable> > vbeams;
2620  vbeams.push_back(beams);
2621  CountedPtr< Scantable > out = average(vbeams, mask, weight, "SCAN");
2622  return out;
2623}
2624
2625
2626CountedPtr< Scantable >
2627  asap::STMath::frequencyAlign( const CountedPtr< Scantable > & in,
2628                                const std::string & refTime,
2629                                const std::string & method)
2630{
2631  // clone as this is not working insitu
2632  bool insitu = insitu_;
2633  setInsitu(false);
2634  CountedPtr< Scantable > out = getScantable(in, false);
2635  setInsitu(insitu);
2636  Table& tout = out->table();
2637  // Get reference Epoch to time of first row or given String
2638  Unit DAY(String("d"));
2639  MEpoch::Ref epochRef(in->getTimeReference());
2640  MEpoch refEpoch;
2641  if (refTime.length()>0) {
2642    Quantum<Double> qt;
2643    if (MVTime::read(qt,refTime)) {
2644      MVEpoch mv(qt);
2645      refEpoch = MEpoch(mv, epochRef);
2646   } else {
2647      throw(AipsError("Invalid format for Epoch string"));
2648   }
2649  } else {
2650    refEpoch = in->timeCol_(0);
2651  }
2652  MPosition refPos = in->getAntennaPosition();
2653
2654  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2655  /*
2656  // Comment from MV.
2657  // the following code has been commented out because different FREQ_IDs have to be aligned together even
2658  // if the frame doesn't change. So far, lack of this check didn't cause any problems.
2659  // test if user frame is different to base frame
2660  if ( in->frequencies().getFrameString(true)
2661       == in->frequencies().getFrameString(false) ) {
2662    throw(AipsError("Can't convert as no output frame has been set"
2663                    " (use set_freqframe) or it is aligned already."));
2664  }
2665  */
2666  MFrequency::Types system = in->frequencies().getFrame();
2667  MVTime mvt(refEpoch.getValue());
2668  String epochout = mvt.string(MVTime::YMD) + String(" (") + refEpoch.getRefString() + String(")");
2669  ostringstream oss;
2670  oss << "Aligned at reference Epoch " << epochout
2671      << " in frame " << MFrequency::showType(system);
2672  pushLog(String(oss));
2673  // set up the iterator
2674  Block<String> cols(4);
2675  // select by constant direction
2676  cols[0] = String("SRCNAME");
2677  cols[1] = String("BEAMNO");
2678  // select by IF ( no of channels varies over this )
2679  cols[2] = String("IFNO");
2680  // select by restfrequency
2681  cols[3] = String("MOLECULE_ID");
2682  TableIterator iter(tout, cols);
2683  while ( !iter.pastEnd() ) {
2684    Table t = iter.table();
2685    MDirection::ROScalarColumn dirCol(t, "DIRECTION");
2686    TableIterator fiter(t, "FREQ_ID");
2687    // determine nchan from the first row. This should work as
2688    // we are iterating over BEAMNO and IFNO    // we should have constant direction
2689
2690    ROArrayColumn<Float> sCol(t, "SPECTRA");
2691    const MDirection direction = dirCol(0);
2692    const uInt nchan = sCol(0).nelements();
2693
2694    // skip operations if there is nothing to align
2695    if (fiter.pastEnd()) {
2696        continue;
2697    }
2698
2699    Table ftab = fiter.table();
2700    // align all frequency ids with respect to the first encountered id
2701    ScalarColumn<uInt> freqidCol(ftab, "FREQ_ID");
2702    // get the SpectralCoordinate for the freqid, which we are iterating over
2703    SpectralCoordinate sC = in->frequencies().getSpectralCoordinate(freqidCol(0));
2704    FrequencyAligner<Float> fa( sC, nchan, refEpoch,
2705                                direction, refPos, system );
2706    // realign the SpectralCoordinate and put into the output Scantable
2707    Vector<String> units(1);
2708    units = String("Hz");
2709    Bool linear=True;
2710    SpectralCoordinate sc2 = fa.alignedSpectralCoordinate(linear);
2711    sc2.setWorldAxisUnits(units);
2712    const uInt id = out->frequencies().addEntry(sc2.referencePixel()[0],
2713                                                sc2.referenceValue()[0],
2714                                                sc2.increment()[0]);
2715    while ( !fiter.pastEnd() ) {
2716      ftab = fiter.table();
2717      // spectral coordinate for the current FREQ_ID
2718      ScalarColumn<uInt> freqidCol2(ftab, "FREQ_ID");
2719      sC = in->frequencies().getSpectralCoordinate(freqidCol2(0));
2720      // create the "global" abcissa for alignment with same FREQ_ID
2721      Vector<Double> abc(nchan);
2722      for (uInt i=0; i<nchan; i++) {
2723           Double w;
2724           sC.toWorld(w,Double(i));
2725           abc[i] = w;
2726      }
2727      TableVector<uInt> tvec(ftab, "FREQ_ID");
2728      // assign new frequency id to all rows
2729      tvec = id;
2730      // cache abcissa for same time stamps, so iterate over those
2731      TableIterator timeiter(ftab, "TIME");
2732      while ( !timeiter.pastEnd() ) {
2733        Table tab = timeiter.table();
2734        ArrayColumn<Float> specCol(tab, "SPECTRA");
2735        ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2736        MEpoch::ROScalarColumn timeCol(tab, "TIME");
2737        // use align abcissa cache after the first row
2738        // these rows should be just be POLNO
2739        bool first = true;
2740        for (int i=0; i<int(tab.nrow()); ++i) {
2741          // input values
2742          Vector<uChar> flag = flagCol(i);
2743          Vector<Bool> mask(flag.shape());
2744          Vector<Float> specOut, spec;
2745          spec  = specCol(i);
2746          Vector<Bool> maskOut;Vector<uChar> flagOut;
2747          convertArray(mask, flag);
2748          // alignment
2749          Bool ok = fa.align(specOut, maskOut, abc, spec,
2750                             mask, timeCol(i), !first,
2751                             interp, False);
2752          (void) ok; // unused stop compiler nagging     
2753          // back into scantable
2754          flagOut.resize(maskOut.nelements());
2755          convertArray(flagOut, maskOut);
2756          flagCol.put(i, flagOut);
2757          specCol.put(i, specOut);
2758          // start abcissa caching
2759          first = false;
2760        }
2761        // next timestamp
2762        ++timeiter;
2763      }
2764      // next FREQ_ID
2765      ++fiter;
2766    }
2767    // next aligner
2768    ++iter;
2769  }
2770  // set this afterwards to ensure we are doing insitu correctly.
2771  out->frequencies().setFrame(system, true);
2772  return out;
2773}
2774
2775CountedPtr<Scantable>
2776  asap::STMath::convertPolarisation( const CountedPtr<Scantable>& in,
2777                                     const std::string & newtype )
2778{
2779  if (in->npol() != 2 && in->npol() != 4)
2780    throw(AipsError("Can only convert two or four polarisations."));
2781  if ( in->getPolType() == newtype )
2782    throw(AipsError("No need to convert."));
2783  if ( ! in->selector_.empty() )
2784    throw(AipsError("Can only convert whole scantable. Unset the selection."));
2785  bool insitu = insitu_;
2786  setInsitu(false);
2787  CountedPtr< Scantable > out = getScantable(in, true);
2788  setInsitu(insitu);
2789  Table& tout = out->table();
2790  tout.rwKeywordSet().define("POLTYPE", String(newtype));
2791
2792  Block<String> cols(4);
2793  cols[0] = "SCANNO";
2794  cols[1] = "CYCLENO";
2795  cols[2] = "BEAMNO";
2796  cols[3] = "IFNO";
2797  TableIterator it(in->originalTable_, cols);
2798  String basetype = in->getPolType();
2799  STPol* stpol = STPol::getPolClass(in->factories_, basetype);
2800  try {
2801    while ( !it.pastEnd() ) {
2802      Table tab = it.table();
2803      uInt row = tab.rowNumbers()[0];
2804      stpol->setSpectra(in->getPolMatrix(row));
2805      Float fang,fhand;
2806      fang = in->focusTable_.getTotalAngle(in->mfocusidCol_(row));
2807      fhand = in->focusTable_.getFeedHand(in->mfocusidCol_(row));
2808      stpol->setPhaseCorrections(fang, fhand);
2809      Int npolout = 0;
2810      for (uInt i=0; i<tab.nrow(); ++i) {
2811        Vector<Float> outvec = stpol->getSpectrum(i, newtype);
2812        if ( outvec.nelements() > 0 ) {
2813          tout.addRow();
2814          TableCopy::copyRows(tout, tab, tout.nrow()-1, 0, 1);
2815          ArrayColumn<Float> sCol(tout,"SPECTRA");
2816          ScalarColumn<uInt> pCol(tout,"POLNO");
2817          sCol.put(tout.nrow()-1 ,outvec);
2818          pCol.put(tout.nrow()-1 ,uInt(npolout));
2819          npolout++;
2820       }
2821      }
2822      tout.rwKeywordSet().define("nPol", npolout);
2823      ++it;
2824    }
2825  } catch (AipsError& e) {
2826    delete stpol;
2827    throw(e);
2828  }
2829  delete stpol;
2830  return out;
2831}
2832
2833CountedPtr< Scantable >
2834  asap::STMath::mxExtract( const CountedPtr< Scantable > & in,
2835                           const std::string & scantype )
2836{
2837  bool insitu = insitu_;
2838  setInsitu(false);
2839  CountedPtr< Scantable > out = getScantable(in, true);
2840  setInsitu(insitu);
2841  Table& tout = out->table();
2842  std::string taql = "SELECT FROM $1 WHERE BEAMNO != REFBEAMNO";
2843  if (scantype == "on") {
2844    taql = "SELECT FROM $1 WHERE BEAMNO == REFBEAMNO";
2845  }
2846  Table tab = tableCommand(taql, in->table());
2847  TableCopy::copyRows(tout, tab);
2848  if (scantype == "on") {
2849    // re-index SCANNO to 0
2850    TableVector<uInt> vec(tout, "SCANNO");
2851    vec = 0;
2852  }
2853  return out;
2854}
2855
2856std::vector<float>
2857  asap::STMath::fft( const casa::CountedPtr< Scantable > & in,
2858                     const std::vector<int>& whichrow,
2859                     bool getRealImag )
2860{
2861  std::vector<float> res;
2862  Table tab = in->table();
2863  std::vector<bool> mask;
2864
2865  if (whichrow.size() < 1) {          // for all rows (by default)
2866    int nrow = int(tab.nrow());
2867    for (int i = 0; i < nrow; ++i) {
2868      res = in->execFFT(i, mask, getRealImag);
2869    }
2870  } else {                           // for specified rows
2871    for (uInt i = 0; i < whichrow.size(); ++i) {
2872      res = in->execFFT(i, mask, getRealImag);
2873    }
2874  }
2875
2876  return res;
2877}
2878
2879
2880CountedPtr<Scantable>
2881  asap::STMath::lagFlag( const CountedPtr<Scantable>& in,
2882                         double start, double end,
2883                         const std::string& mode )
2884{
2885  CountedPtr<Scantable> out = getScantable(in, false);
2886  Table& tout = out->table();
2887  TableIterator iter(tout, "FREQ_ID");
2888  FFTServer<Float,Complex> ffts;
2889
2890  while ( !iter.pastEnd() ) {
2891    Table tab = iter.table();
2892    Double rp,rv,inc;
2893    ROTableRow row(tab);
2894    const TableRecord& rec = row.get(0);
2895    uInt freqid = rec.asuInt("FREQ_ID");
2896    out->frequencies().getEntry(rp, rv, inc, freqid);
2897    ArrayColumn<Float> specCol(tab, "SPECTRA");
2898    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2899
2900    for (int i=0; i<int(tab.nrow()); ++i) {
2901      Vector<Float> spec = specCol(i);
2902      Vector<uChar> flag = flagCol(i);
2903      std::vector<bool> mask;
2904      for (uInt j = 0; j < flag.nelements(); ++j) {
2905        mask.push_back(!(flag[j]>0));
2906      }
2907      mathutil::doZeroOrderInterpolation(spec, mask);
2908
2909      Vector<Complex> lags;
2910      ffts.fft0(lags, spec);
2911
2912      Int lag0(start+0.5);
2913      Int lag1(end+0.5);
2914      if (mode == "frequency") {
2915        lag0 = Int(spec.nelements()*abs(inc)/(start)+0.5);
2916        lag1 = Int(spec.nelements()*abs(inc)/(end)+0.5);
2917      }
2918      Int lstart =  max(0, lag0);
2919      Int lend   =  min(Int(lags.nelements()-1), lag1);
2920      if (lstart == lend) {
2921        lags[lstart] = Complex(0.0);
2922      } else {
2923        if (lstart > lend) {
2924          Int tmp = lend;
2925          lend = lstart;
2926          lstart = tmp;
2927        }
2928        for (int j=lstart; j <=lend ;++j) {
2929          lags[j] = Complex(0.0);
2930        }
2931      }
2932
2933      ffts.fft0(spec, lags);
2934
2935      specCol.put(i, spec);
2936    }
2937    ++iter;
2938  }
2939  return out;
2940}
2941
2942// Averaging spectra with different channel/resolution
2943CountedPtr<Scantable>
2944STMath::new_average( const std::vector<CountedPtr<Scantable> >& in,
2945                     const bool& compel,
2946                     const std::vector<bool>& mask,
2947                     const std::string& weight,
2948                     const std::string& avmode )
2949  throw ( casa::AipsError )
2950{
2951  LogIO os( LogOrigin( "STMath", "new_average()", WHERE ) ) ;
2952  if ( avmode == "SCAN" && in.size() != 1 )
2953    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
2954                    "Use merge first."));
2955 
2956  // check if OTF observation
2957  String obstype = in[0]->getHeader().obstype ;
2958  Double tol = 0.0 ;
2959  if ( obstype.find( "OTF" ) != String::npos ) {
2960    tol = TOL_OTF ;
2961  }
2962  else {
2963    tol = TOL_POINT ;
2964  }
2965
2966  CountedPtr<Scantable> out ;     // processed result
2967  if ( compel ) {
2968    std::vector< CountedPtr<Scantable> > newin ; // input for average process
2969    uInt insize = in.size() ;    // number of input scantables
2970
2971    // TEST: do normal average in each table before IF grouping
2972    os << "Do preliminary averaging" << LogIO::POST ;
2973    vector< CountedPtr<Scantable> > tmpin( insize ) ;
2974    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2975      vector< CountedPtr<Scantable> > v( 1, in[itable] ) ;
2976      tmpin[itable] = average( v, mask, weight, avmode ) ;
2977    }
2978
2979    // warning
2980    os << "Average spectra with different spectral resolution" << LogIO::POST ;
2981
2982    // temporarily set coordinfo
2983    vector<string> oldinfo( insize ) ;
2984    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2985      vector<string> coordinfo = in[itable]->getCoordInfo() ;
2986      oldinfo[itable] = coordinfo[0] ;
2987      coordinfo[0] = "Hz" ;
2988      tmpin[itable]->setCoordInfo( coordinfo ) ;
2989    }
2990
2991    // columns
2992    ScalarColumn<uInt> freqIDCol ;
2993    ScalarColumn<uInt> ifnoCol ;
2994    ScalarColumn<uInt> scannoCol ;
2995
2996
2997    // check IF frequency coverage
2998    // freqid: list of FREQ_ID, which is used, in each table 
2999    // iffreq: list of minimum and maximum frequency for each FREQ_ID in
3000    //         each table
3001    // freqid[insize][numIF]
3002    // freqid: [[id00, id01, ...],
3003    //          [id10, id11, ...],
3004    //          ...
3005    //          [idn0, idn1, ...]]
3006    // iffreq[insize][numIF*2]
3007    // iffreq: [[min_id00, max_id00, min_id01, max_id01, ...],
3008    //          [min_id10, max_id10, min_id11, max_id11, ...],
3009    //          ...
3010    //          [min_idn0, max_idn0, min_idn1, max_idn1, ...]]
3011    //os << "Check IF settings in each table" << LogIO::POST ;
3012    vector< vector<uInt> > freqid( insize );
3013    vector< vector<double> > iffreq( insize ) ;
3014    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3015      uInt rows = tmpin[itable]->nrow() ;
3016      uInt freqnrows = tmpin[itable]->frequencies().table().nrow() ;
3017      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3018        if ( freqid[itable].size() == freqnrows ) {
3019          break ;
3020        }
3021        else {
3022          freqIDCol.attach( tmpin[itable]->table(), "FREQ_ID" ) ;
3023          ifnoCol.attach( tmpin[itable]->table(), "IFNO" ) ;
3024          uInt id = freqIDCol( irow ) ;
3025          if ( freqid[itable].size() == 0 || count( freqid[itable].begin(), freqid[itable].end(), id ) == 0 ) {
3026            //os << "itable = " << itable << ": IF " << id << " is included in the list" << LogIO::POST ;
3027            vector<double> abcissa = tmpin[itable]->getAbcissa( irow ) ;
3028            freqid[itable].push_back( id ) ;
3029            iffreq[itable].push_back( abcissa[0] - 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
3030            iffreq[itable].push_back( abcissa[abcissa.size()-1] + 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
3031          }
3032        }
3033      }
3034    }
3035
3036    // debug
3037    //os << "IF settings summary:" << endl ;
3038    //for ( uInt i = 0 ; i < freqid.size() ; i++ ) {
3039    //os << "   Table" << i << endl ;
3040    //for ( uInt j = 0 ; j < freqid[i].size() ; j++ ) {
3041    //os << "      id = " << freqid[i][j] << " (min,max) = (" << iffreq[i][2*j] << "," << iffreq[i][2*j+1] << ")" << endl ;
3042    //}
3043    //}
3044    //os << endl ;
3045    //os.post() ;
3046
3047    // IF grouping based on their frequency coverage
3048    // ifgrp: list of table index and FREQ_ID for all members in each IF group
3049    // ifgfreq: list of minimum and maximum frequency in each IF group
3050    // ifgrp[numgrp][nummember*2]
3051    // ifgrp: [[table00, freqrow00, table01, freqrow01, ...],
3052    //         [table10, freqrow10, table11, freqrow11, ...],
3053    //         ...
3054    //         [tablen0, freqrown0, tablen1, freqrown1, ...]]
3055    // ifgfreq[numgrp*2]
3056    // ifgfreq: [min0_grp0, max0_grp0, min1_grp1, max1_grp1, ...]
3057    //os << "IF grouping based on their frequency coverage" << LogIO::POST ;
3058    vector< vector<uInt> > ifgrp ;
3059    vector<double> ifgfreq ;
3060
3061    // parameter for IF grouping
3062    // groupmode = OR    retrieve all region
3063    //             AND   only retrieve overlaped region
3064    //string groupmode = "AND" ;
3065    string groupmode = "OR" ;
3066    uInt sizecr = 0 ;
3067    if ( groupmode == "AND" )
3068      sizecr = 2 ;
3069    else if ( groupmode == "OR" )
3070      sizecr = 0 ;
3071
3072    vector<double> sortedfreq ;
3073    for ( uInt i = 0 ; i < iffreq.size() ; i++ ) {
3074      for ( uInt j = 0 ; j < iffreq[i].size() ; j++ ) {
3075        if ( count( sortedfreq.begin(), sortedfreq.end(), iffreq[i][j] ) == 0 )
3076          sortedfreq.push_back( iffreq[i][j] ) ;
3077      }
3078    }
3079    sort( sortedfreq.begin(), sortedfreq.end() ) ;
3080    for ( vector<double>::iterator i = sortedfreq.begin() ; i != sortedfreq.end()-1 ; i++ ) {
3081      ifgfreq.push_back( *i ) ;
3082      ifgfreq.push_back( *(i+1) ) ;
3083    }
3084    ifgrp.resize( ifgfreq.size()/2 ) ;
3085    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3086      for ( uInt iif = 0 ; iif < freqid[itable].size() ; iif++ ) {
3087        double range0 = iffreq[itable][2*iif] ;
3088        double range1 = iffreq[itable][2*iif+1] ;
3089        for ( uInt j = 0 ; j < ifgrp.size() ; j++ ) {
3090          double fmin = max( range0, ifgfreq[2*j] ) ;
3091          double fmax = min( range1, ifgfreq[2*j+1] ) ;
3092          if ( fmin < fmax ) {
3093            ifgrp[j].push_back( itable ) ;
3094            ifgrp[j].push_back( freqid[itable][iif] ) ;
3095          }
3096        }
3097      }
3098    }
3099    vector< vector<uInt> >::iterator fiter = ifgrp.begin() ;
3100    vector<double>::iterator giter = ifgfreq.begin() ;
3101    while( fiter != ifgrp.end() ) {
3102      if ( fiter->size() <= sizecr ) {
3103        fiter = ifgrp.erase( fiter ) ;
3104        giter = ifgfreq.erase( giter ) ;
3105        giter = ifgfreq.erase( giter ) ;
3106      }
3107      else {
3108        fiter++ ;
3109        advance( giter, 2 ) ;
3110      }
3111    }
3112
3113    // Grouping continuous IF groups (without frequency gap)
3114    // freqgrp: list of IF group indexes in each frequency group
3115    // freqrange: list of minimum and maximum frequency in each frequency group
3116    // freqgrp[numgrp][nummember]
3117    // freqgrp: [[ifgrp00, ifgrp01, ifgrp02, ...],
3118    //           [ifgrp10, ifgrp11, ifgrp12, ...],
3119    //           ...
3120    //           [ifgrpn0, ifgrpn1, ifgrpn2, ...]]
3121    // freqrange[numgrp*2]
3122    // freqrange: [min_grp0, max_grp0, min_grp1, max_grp1, ...]
3123    vector< vector<uInt> > freqgrp ;
3124    double freqrange = 0.0 ;
3125    uInt grpnum = 0 ;
3126    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3127      // Assumed that ifgfreq was sorted
3128      if ( grpnum != 0 && freqrange == ifgfreq[2*i] ) {
3129        freqgrp[grpnum-1].push_back( i ) ;
3130      }
3131      else {
3132        vector<uInt> grp0( 1, i ) ;
3133        freqgrp.push_back( grp0 ) ;
3134        grpnum++ ;
3135      }
3136      freqrange = ifgfreq[2*i+1] ;
3137    }
3138       
3139
3140    // print IF groups
3141    ostringstream oss ;
3142    oss << "IF Group summary: " << endl ;
3143    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3144    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3145      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3146      for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3147        oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3148      }
3149      oss << endl ;
3150    }
3151    oss << endl ;
3152    os << oss.str() << LogIO::POST ;
3153   
3154    // print frequency group
3155    oss.str("") ;
3156    oss << "Frequency Group summary: " << endl ;
3157    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: IF_GROUP_ID" << endl ;
3158    for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3159      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*freqgrp[i][0]] << "," << ifgfreq[2*freqgrp[i][freqgrp[i].size()-1]+1] << "]: " ;
3160      for ( uInt j = 0 ; j < freqgrp[i].size() ; j++ ) {
3161        oss << freqgrp[i][j] << " " ;
3162      }
3163      oss << endl ;
3164    }
3165    oss << endl ;
3166    os << oss.str() << LogIO::POST ;
3167
3168    // membership check
3169    // groups: list of IF group indexes whose frequency range overlaps with
3170    //         that of each table and IF
3171    // groups[numtable][numIF][nummembership]
3172    // groups: [[[grp, grp,...], [grp, grp,...],...],
3173    //          [[grp, grp,...], [grp, grp,...],...],
3174    //          ...
3175    //          [[grp, grp,...], [grp, grp,...],...]]
3176    vector< vector< vector<uInt> > > groups( insize ) ;
3177    for ( uInt i = 0 ; i < insize ; i++ ) {
3178      groups[i].resize( freqid[i].size() ) ;
3179    }
3180    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3181      for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3182        uInt tableid = ifgrp[igrp][2*imem] ;
3183        vector<uInt>::iterator iter = find( freqid[tableid].begin(), freqid[tableid].end(), ifgrp[igrp][2*imem+1] ) ;
3184        if ( iter != freqid[tableid].end() ) {
3185          uInt rowid = distance( freqid[tableid].begin(), iter ) ;
3186          groups[tableid][rowid].push_back( igrp ) ;
3187        }
3188      }
3189    }
3190
3191    // print membership
3192    //oss.str("") ;
3193    //for ( uInt i = 0 ; i < insize ; i++ ) {
3194    //oss << "Table " << i << endl ;
3195    //for ( uInt j = 0 ; j < groups[i].size() ; j++ ) {
3196    //oss << "   FREQ_ID " <<  setw( 2 ) << freqid[i][j] << ": " ;
3197    //for ( uInt k = 0 ; k < groups[i][j].size() ; k++ ) {
3198    //oss << setw( 2 ) << groups[i][j][k] << " " ;
3199    //}
3200    //oss << endl ;
3201    //}
3202    //}
3203    //os << oss.str() << LogIO::POST ;
3204
3205    // set back coordinfo
3206    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3207      vector<string> coordinfo = tmpin[itable]->getCoordInfo() ;
3208      coordinfo[0] = oldinfo[itable] ;
3209      tmpin[itable]->setCoordInfo( coordinfo ) ;
3210    }
3211
3212    // Create additional table if needed
3213    bool oldInsitu = insitu_ ;
3214    setInsitu( false ) ;
3215    vector< vector<uInt> > addrow( insize ) ;
3216    vector<uInt> addtable( insize, 0 ) ;
3217    vector<uInt> newtableids( insize ) ;
3218    vector<uInt> newifids( insize, 0 ) ;
3219    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3220      //os << "Table " << itable << ": " ;
3221      for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3222        addrow[itable].push_back( groups[itable][ifrow].size()-1 ) ;
3223        //os << addrow[itable][ifrow] << " " ;
3224      }
3225      addtable[itable] = *max_element( addrow[itable].begin(), addrow[itable].end() ) ;
3226      //os << "(" << addtable[itable] << ")" << LogIO::POST ;
3227    }
3228    newin.resize( insize ) ;
3229    copy( tmpin.begin(), tmpin.end(), newin.begin() ) ;
3230    for ( uInt i = 0 ; i < insize ; i++ ) {
3231      newtableids[i] = i ;
3232    }
3233    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3234      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3235        CountedPtr<Scantable> add = getScantable( newin[itable], false ) ;
3236        vector<int> freqidlist ;
3237        for ( uInt i = 0 ; i < groups[itable].size() ; i++ ) {
3238          if ( groups[itable][i].size() > iadd + 1 ) {
3239            freqidlist.push_back( freqid[itable][i] ) ;
3240          }
3241        }
3242        stringstream taqlstream ;
3243        taqlstream << "SELECT FROM $1 WHERE FREQ_ID IN [" ;
3244        for ( uInt i = 0 ; i < freqidlist.size() ; i++ ) {
3245          taqlstream << freqidlist[i] ;
3246          if ( i < freqidlist.size() - 1 )
3247            taqlstream << "," ;
3248          else
3249            taqlstream << "]" ;
3250        }
3251        string taql = taqlstream.str() ;
3252        //os << "taql = " << taql << LogIO::POST ;
3253        STSelector selector = STSelector() ;
3254        selector.setTaQL( taql ) ;
3255        add->setSelection( selector ) ;
3256        newin.push_back( add ) ;
3257        newtableids.push_back( itable ) ;
3258        newifids.push_back( iadd + 1 ) ;
3259      }
3260    }
3261
3262    // udpate ifgrp
3263    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3264      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3265        for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3266          if ( groups[itable][ifrow].size() > iadd + 1 ) {
3267            uInt igrp = groups[itable][ifrow][iadd+1] ;
3268            for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3269              if ( ifgrp[igrp][2*imem] == newtableids[iadd+insize] && ifgrp[igrp][2*imem+1] == freqid[newtableids[iadd+insize]][ifrow] ) {
3270                ifgrp[igrp][2*imem] = insize + iadd ;
3271              }
3272            }
3273          }
3274        }
3275      }
3276    }
3277
3278    // print IF groups again for debug
3279    //oss.str( "" ) ;
3280    //oss << "IF Group summary: " << endl ;
3281    //oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3282    //for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3283    //oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3284    //for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3285    //oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3286    //}
3287    //oss << endl ;
3288    //}
3289    //oss << endl ;
3290    //os << oss.str() << LogIO::POST ;
3291
3292    // reset SCANNO and IFNO/FREQ_ID: IF is reset by the result of sortation
3293    os << "All scan number is set to 0" << LogIO::POST ;
3294    //os << "All IF number is set to IF group index" << LogIO::POST ;
3295    insize = newin.size() ;
3296    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3297      uInt rows = newin[itable]->nrow() ;
3298      Table &tmpt = newin[itable]->table() ;
3299      freqIDCol.attach( tmpt, "FREQ_ID" ) ;
3300      scannoCol.attach( tmpt, "SCANNO" ) ;
3301      ifnoCol.attach( tmpt, "IFNO" ) ;
3302      for ( uInt irow=0 ; irow < rows ; irow++ ) {
3303        scannoCol.put( irow, 0 ) ;
3304        uInt freqID = freqIDCol( irow ) ;
3305        vector<uInt>::iterator iter = find( freqid[newtableids[itable]].begin(), freqid[newtableids[itable]].end(), freqID ) ;
3306        if ( iter != freqid[newtableids[itable]].end() ) {
3307          uInt index = distance( freqid[newtableids[itable]].begin(), iter ) ;
3308          ifnoCol.put( irow, groups[newtableids[itable]][index][newifids[itable]] ) ;
3309        }
3310        else {
3311          throw(AipsError("IF grouping was wrong in additional tables.")) ;
3312        }
3313      }
3314    }
3315    oldinfo.resize( insize ) ;
3316    setInsitu( oldInsitu ) ;
3317
3318    // temporarily set coordinfo
3319    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3320      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3321      oldinfo[itable] = coordinfo[0] ;
3322      coordinfo[0] = "Hz" ;
3323      newin[itable]->setCoordInfo( coordinfo ) ;
3324    }
3325
3326    // save column values in the vector
3327    vector< vector<uInt> > freqTableIdVec( insize ) ;
3328    vector< vector<uInt> > freqIdVec( insize ) ;
3329    vector< vector<uInt> > ifNoVec( insize ) ;
3330    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3331      ScalarColumn<uInt> freqIDs ;
3332      freqIDs.attach( newin[itable]->frequencies().table(), "ID" ) ;
3333      ifnoCol.attach( newin[itable]->table(), "IFNO" ) ;
3334      freqIDCol.attach( newin[itable]->table(), "FREQ_ID" ) ;
3335      for ( uInt irow = 0 ; irow < newin[itable]->frequencies().table().nrow() ; irow++ ) {
3336        freqTableIdVec[itable].push_back( freqIDs( irow ) ) ;
3337      }
3338      for ( uInt irow = 0 ; irow < newin[itable]->table().nrow() ; irow++ ) {
3339        freqIdVec[itable].push_back( freqIDCol( irow ) ) ;
3340        ifNoVec[itable].push_back( ifnoCol( irow ) ) ;
3341      }
3342    }
3343
3344    // reset spectra and flagtra: pick up common part of frequency coverage
3345    //os << "Pick common frequency range and align resolution" << LogIO::POST ;
3346    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3347      uInt rows = newin[itable]->nrow() ;
3348      int nminchan = -1 ;
3349      int nmaxchan = -1 ;
3350      vector<uInt> freqIdUpdate ;
3351      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3352        uInt ifno = ifNoVec[itable][irow] ;  // IFNO is reset by group index
3353        double minfreq = ifgfreq[2*ifno] ;
3354        double maxfreq = ifgfreq[2*ifno+1] ;
3355        //os << "frequency range: [" << minfreq << "," << maxfreq << "]" << LogIO::POST ;
3356        vector<double> abcissa = newin[itable]->getAbcissa( irow ) ;
3357        int nchan = abcissa.size() ;
3358        double resol = abcissa[1] - abcissa[0] ;
3359        //os << "abcissa range  : [" << abcissa[0] << "," << abcissa[nchan-1] << "]" << LogIO::POST ;
3360        if ( minfreq <= abcissa[0] )
3361          nminchan = 0 ;
3362        else {
3363          //double cfreq = ( minfreq - abcissa[0] ) / resol ;
3364          double cfreq = ( minfreq - abcissa[0] + 0.5 * resol ) / resol ;
3365          nminchan = int(cfreq) + ( ( cfreq - int(cfreq) <= 0.5 ) ? 0 : 1 ) ;
3366        }
3367        if ( maxfreq >= abcissa[abcissa.size()-1] )
3368          nmaxchan = abcissa.size() - 1 ;
3369        else {
3370          //double cfreq = ( abcissa[abcissa.size()-1] - maxfreq ) / resol ;
3371          double cfreq = ( abcissa[abcissa.size()-1] - maxfreq + 0.5 * resol ) / resol ;
3372          nmaxchan = abcissa.size() - 1 - int(cfreq) - ( ( cfreq - int(cfreq) >= 0.5 ) ? 1 : 0 ) ;
3373        }
3374        //os << "channel range (" << irow << "): [" << nminchan << "," << nmaxchan << "]" << LogIO::POST ;
3375        if ( nmaxchan > nminchan ) {
3376          newin[itable]->reshapeSpectrum( nminchan, nmaxchan, irow ) ;
3377          int newchan = nmaxchan - nminchan + 1 ;
3378          if ( count( freqIdUpdate.begin(), freqIdUpdate.end(), freqIdVec[itable][irow] ) == 0 && newchan < nchan )
3379            freqIdUpdate.push_back( freqIdVec[itable][irow] ) ;
3380        }
3381        else {
3382          throw(AipsError("Failed to pick up common part of frequency range.")) ;
3383        }
3384      }
3385      for ( uInt i = 0 ; i < freqIdUpdate.size() ; i++ ) {
3386        uInt freqId = freqIdUpdate[i] ;
3387        Double refpix ;
3388        Double refval ;
3389        Double increment ;
3390       
3391        // update row
3392        newin[itable]->frequencies().getEntry( refpix, refval, increment, freqId ) ;
3393        refval = refval - ( refpix - nminchan ) * increment ;
3394        refpix = 0 ;
3395        newin[itable]->frequencies().setEntry( refpix, refval, increment, freqId ) ;
3396      }   
3397    }
3398
3399   
3400    // reset spectra and flagtra: align spectral resolution
3401    //os << "Align spectral resolution" << LogIO::POST ;
3402    // gmaxdnu: the coarsest frequency resolution in the frequency group
3403    // gmemid: member index that have a resolution equal to gmaxdnu
3404    // gmaxdnu[numfreqgrp]
3405    // gmaxdnu: [dnu0, dnu1, ...]
3406    // gmemid[numfreqgrp]
3407    // gmemid: [id0, id1, ...]
3408    vector<double> gmaxdnu( freqgrp.size(), 0.0 ) ;
3409    vector<uInt> gmemid( freqgrp.size(), 0 ) ;
3410    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3411      double maxdnu = 0.0 ;       // maximum (coarsest) frequency resolution
3412      int minchan = INT_MAX ;     // minimum channel number
3413      Double refpixref = -1 ;     // reference of 'reference pixel'
3414      Double refvalref = -1 ;     // reference of 'reference frequency'
3415      Double refinc = -1 ;        // reference frequency resolution
3416      uInt refreqid ;
3417      uInt reftable = INT_MAX;
3418      // process only if group member > 1
3419      if ( ifgrp[igrp].size() > 2 ) {
3420        // find minchan and maxdnu in each group
3421        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3422          uInt tableid = ifgrp[igrp][2*imem] ;
3423          uInt rowid = ifgrp[igrp][2*imem+1] ;
3424          vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3425          if ( iter != freqIdVec[tableid].end() ) {
3426            uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3427            vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3428            int nchan = abcissa.size() ;
3429            double dnu = abcissa[1] - abcissa[0] ;
3430            //os << "GROUP " << igrp << " (" << tableid << "," << rowid << "): nchan = " << nchan << " (minchan = " << minchan << ")" << LogIO::POST ;
3431            if ( nchan < minchan ) {
3432              minchan = nchan ;
3433              maxdnu = dnu ;
3434              newin[tableid]->frequencies().getEntry( refpixref, refvalref, refinc, rowid ) ;
3435              refreqid = rowid ;
3436              reftable = tableid ;
3437            }
3438          }
3439        }
3440        // regrid spectra in each group
3441        os << "GROUP " << igrp << endl ;
3442        os << "   Channel number is adjusted to " << minchan << endl ;
3443        os << "   Corresponding frequency resolution is " << maxdnu << "Hz" << LogIO::POST ;
3444        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3445          uInt tableid = ifgrp[igrp][2*imem] ;
3446          uInt rowid = ifgrp[igrp][2*imem+1] ;
3447          freqIDCol.attach( newin[tableid]->table(), "FREQ_ID" ) ;
3448          //os << "tableid = " << tableid << " rowid = " << rowid << ": " << LogIO::POST ;
3449          //os << "   regridChannel applied to " ;
3450          //if ( tableid != reftable )
3451          refreqid = newin[tableid]->frequencies().addEntry( refpixref, refvalref, refinc ) ;
3452          for ( uInt irow = 0 ; irow < newin[tableid]->table().nrow() ; irow++ ) {
3453            uInt tfreqid = freqIdVec[tableid][irow] ;
3454            if ( tfreqid == rowid ) {     
3455              //os << irow << " " ;
3456              newin[tableid]->regridChannel( minchan, maxdnu, irow ) ;
3457              freqIDCol.put( irow, refreqid ) ;
3458              freqIdVec[tableid][irow] = refreqid ;
3459            }
3460          }
3461          //os << LogIO::POST ;
3462        }
3463      }
3464      else {
3465        uInt tableid = ifgrp[igrp][0] ;
3466        uInt rowid = ifgrp[igrp][1] ;
3467        vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3468        if ( iter != freqIdVec[tableid].end() ) {
3469          uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3470          vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3471          minchan = abcissa.size() ;
3472          maxdnu = abcissa[1] - abcissa[0] ;
3473        }
3474      }
3475      for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3476        if ( count( freqgrp[i].begin(), freqgrp[i].end(), igrp ) > 0 ) {
3477          if ( maxdnu > gmaxdnu[i] ) {
3478            gmaxdnu[i] = maxdnu ;
3479            gmemid[i] = igrp ;
3480          }
3481          break ;
3482        }
3483      }
3484    }
3485
3486    // set back coordinfo
3487    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3488      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3489      coordinfo[0] = oldinfo[itable] ;
3490      newin[itable]->setCoordInfo( coordinfo ) ;
3491    }     
3492
3493    // accumulate all rows into the first table
3494    // NOTE: assumed in.size() = 1
3495    vector< CountedPtr<Scantable> > tmp( 1 ) ;
3496    if ( newin.size() == 1 )
3497      tmp[0] = newin[0] ;
3498    else
3499      tmp[0] = merge( newin ) ;
3500
3501    //return tmp[0] ;
3502
3503    // average
3504    CountedPtr<Scantable> tmpout = average( tmp, mask, weight, avmode ) ;
3505
3506    //return tmpout ;
3507
3508    // combine frequency group
3509    os << "Combine spectra based on frequency grouping" << LogIO::POST ;
3510    os << "IFNO is renumbered as frequency group ID (see above)" << LogIO::POST ;
3511    vector<string> coordinfo = tmpout->getCoordInfo() ;
3512    oldinfo[0] = coordinfo[0] ;
3513    coordinfo[0] = "Hz" ;
3514    tmpout->setCoordInfo( coordinfo ) ;
3515    // create proformas of output table
3516    stringstream taqlstream ;
3517    taqlstream << "SELECT FROM $1 WHERE IFNO IN [" ;
3518    for ( uInt i = 0 ; i < gmemid.size() ; i++ ) {
3519      taqlstream << gmemid[i] ;
3520      if ( i < gmemid.size() - 1 )
3521        taqlstream << "," ;
3522      else
3523        taqlstream << "]" ;
3524    }
3525    string taql = taqlstream.str() ;
3526    //os << "taql = " << taql << LogIO::POST ;
3527    STSelector selector = STSelector() ;
3528    selector.setTaQL( taql ) ;
3529    oldInsitu = insitu_ ;
3530    setInsitu( false ) ;
3531    out = getScantable( tmpout, false ) ;
3532    setInsitu( oldInsitu ) ;
3533    out->setSelection( selector ) ;
3534    // regrid rows
3535    ifnoCol.attach( tmpout->table(), "IFNO" ) ;
3536    for ( uInt irow = 0 ; irow < tmpout->table().nrow() ; irow++ ) {
3537      uInt ifno = ifnoCol( irow ) ;
3538      for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3539        if ( count( freqgrp[igrp].begin(), freqgrp[igrp].end(), ifno ) > 0 ) {
3540          vector<double> abcissa = tmpout->getAbcissa( irow ) ;
3541          double bw = ( abcissa[1] - abcissa[0] ) * abcissa.size() ;
3542          int nchan = (int)( bw / gmaxdnu[igrp] ) ;
3543          tmpout->regridChannel( nchan, gmaxdnu[igrp], irow ) ;
3544          break ;
3545        }
3546      }
3547    }
3548    // combine spectra
3549    ArrayColumn<Float> specColOut ;
3550    specColOut.attach( out->table(), "SPECTRA" ) ;
3551    ArrayColumn<uChar> flagColOut ;
3552    flagColOut.attach( out->table(), "FLAGTRA" ) ;
3553    ScalarColumn<uInt> ifnoColOut ;
3554    ifnoColOut.attach( out->table(), "IFNO" ) ;
3555    ScalarColumn<uInt> polnoColOut ;
3556    polnoColOut.attach( out->table(), "POLNO" ) ;
3557    ScalarColumn<uInt> freqidColOut ;
3558    freqidColOut.attach( out->table(), "FREQ_ID" ) ;
3559    MDirection::ScalarColumn dirColOut ;
3560    dirColOut.attach( out->table(), "DIRECTION" ) ;
3561    Table &tab = tmpout->table() ;
3562    Block<String> cols(1);
3563    cols[0] = String("POLNO") ;
3564    TableIterator iter( tab, cols ) ;
3565    bool done = false ;
3566    vector< vector<uInt> > sizes( freqgrp.size() ) ;
3567    while( !iter.pastEnd() ) {
3568      vector< vector<Float> > specout( freqgrp.size() ) ;
3569      vector< vector<uChar> > flagout( freqgrp.size() ) ;
3570      ArrayColumn<Float> specCols ;
3571      specCols.attach( iter.table(), "SPECTRA" ) ;
3572      ArrayColumn<uChar> flagCols ;
3573      flagCols.attach( iter.table(), "FLAGTRA" ) ;
3574      ifnoCol.attach( iter.table(), "IFNO" ) ;
3575      ScalarColumn<uInt> polnos ;
3576      polnos.attach( iter.table(), "POLNO" ) ;
3577      MDirection::ScalarColumn dircol ;
3578      dircol.attach( iter.table(), "DIRECTION" ) ;
3579      uInt polno = polnos( 0 ) ;
3580      //os << "POLNO iteration: " << polno << LogIO::POST ;
3581//       for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3582//      sizes[igrp].resize( freqgrp[igrp].size() ) ;
3583//      for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3584//        for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3585//          uInt ifno = ifnoCol( irow ) ;
3586//          if ( ifno == freqgrp[igrp][imem] ) {
3587//            Vector<Float> spec = specCols( irow ) ;
3588//            Vector<uChar> flag = flagCols( irow ) ;
3589//            vector<Float> svec ;
3590//            spec.tovector( svec ) ;
3591//            vector<uChar> fvec ;
3592//            flag.tovector( fvec ) ;
3593//            //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3594//            specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3595//            flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3596//            //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3597//            sizes[igrp][imem] = spec.nelements() ;
3598//          }
3599//        }
3600//      }
3601//      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3602//        uInt ifout = ifnoColOut( irow ) ;
3603//        uInt polout = polnoColOut( irow ) ;
3604//        if ( ifout == gmemid[igrp] && polout == polno ) {
3605//          // set SPECTRA and FRAGTRA
3606//          Vector<Float> newspec( specout[igrp] ) ;
3607//          Vector<uChar> newflag( flagout[igrp] ) ;
3608//          specColOut.put( irow, newspec ) ;
3609//          flagColOut.put( irow, newflag ) ;
3610//          // IFNO renumbering
3611//          ifnoColOut.put( irow, igrp ) ;
3612//        }
3613//      }
3614//       }
3615      // get a list of number of channels for each frequency group member
3616      if ( !done ) {
3617        for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3618          sizes[igrp].resize( freqgrp[igrp].size() ) ;
3619          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3620            for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3621              uInt ifno = ifnoCol( irow ) ;
3622              if ( ifno == freqgrp[igrp][imem] ) {
3623                Vector<Float> spec = specCols( irow ) ;
3624                sizes[igrp][imem] = spec.nelements() ;
3625                break ;
3626              }               
3627            }
3628          }
3629        }
3630        done = true ;
3631      }
3632      // combine spectra
3633      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3634        uInt polout = polnoColOut( irow ) ;
3635        if ( polout == polno ) {
3636          uInt ifout = ifnoColOut( irow ) ;
3637          Vector<Double> direction = dirColOut(irow).getAngle(Unit(String("rad"))).getValue() ;
3638          uInt igrp ;
3639          for ( uInt jgrp = 0 ; jgrp < freqgrp.size() ; jgrp++ ) {
3640            if ( ifout == gmemid[jgrp] ) {
3641              igrp = jgrp ;
3642              break ;
3643            }
3644          }
3645          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3646            for ( uInt jrow = 0 ; jrow < iter.table().nrow() ; jrow++ ) {
3647              uInt ifno = ifnoCol( jrow ) ;
3648              Vector<Double> tdir = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
3649              //if ( ifno == freqgrp[igrp][imem] && allTrue( tdir == direction  ) ) {
3650              Double dx = tdir[0] - direction[0] ;
3651              Double dy = tdir[1] - direction[1] ;
3652              Double dd = sqrt( dx * dx + dy * dy ) ;
3653              //if ( ifno == freqgrp[igrp][imem] && allNearAbs( tdir, direction, tol ) ) {
3654              if ( ifno == freqgrp[igrp][imem] && dd <= tol ) {
3655                Vector<Float> spec = specCols( jrow ) ;
3656                Vector<uChar> flag = flagCols( jrow ) ;
3657                vector<Float> svec ;
3658                spec.tovector( svec ) ;
3659                vector<uChar> fvec ;
3660                flag.tovector( fvec ) ;
3661                //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3662                specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3663                flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3664                //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3665              }
3666            }
3667          }
3668          // set SPECTRA and FRAGTRA
3669          Vector<Float> newspec( specout[igrp] ) ;
3670          Vector<uChar> newflag( flagout[igrp] ) ;
3671          specColOut.put( irow, newspec ) ;
3672          flagColOut.put( irow, newflag ) ;
3673          // IFNO renumbering
3674          ifnoColOut.put( irow, igrp ) ;
3675        }
3676      }
3677      iter++ ;
3678    }
3679    // update FREQUENCIES subtable
3680    vector<bool> updated( freqgrp.size(), false ) ;
3681    for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3682      uInt index = 0 ;
3683      uInt pixShift = 0 ;
3684      while ( freqgrp[igrp][index] != gmemid[igrp] ) {
3685        pixShift += sizes[igrp][index++] ;
3686      }
3687      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3688        if ( ifnoColOut( irow ) == gmemid[igrp] && !updated[igrp] ) {
3689          uInt freqidOut = freqidColOut( irow ) ;
3690          //os << "freqgrp " << igrp << " freqidOut = " << freqidOut << LogIO::POST ;
3691          double refpix ;
3692          double refval ;
3693          double increm ;
3694          out->frequencies().getEntry( refpix, refval, increm, freqidOut ) ;
3695          refpix += pixShift ;
3696          out->frequencies().setEntry( refpix, refval, increm, freqidOut ) ;
3697          updated[igrp] = true ;
3698        }
3699      }
3700    }
3701
3702    //out = tmpout ;
3703
3704    coordinfo = tmpout->getCoordInfo() ;
3705    coordinfo[0] = oldinfo[0] ;
3706    tmpout->setCoordInfo( coordinfo ) ;
3707  }
3708  else {
3709    // simple average
3710    out =  average( in, mask, weight, avmode ) ;
3711  }
3712 
3713  return out;
3714}
3715
3716CountedPtr<Scantable> STMath::cwcal( const CountedPtr<Scantable>& s,
3717                                     const String calmode,
3718                                     const String antname )
3719{
3720  // frequency switch
3721  if ( calmode == "fs" ) {
3722    return cwcalfs( s, antname ) ;
3723  }
3724  else {
3725    vector<bool> masks = s->getMask( 0 ) ;
3726    vector<int> types ;
3727
3728    // sky scan
3729    STSelector sel = STSelector() ;
3730    types.push_back( SrcType::SKY ) ;
3731    sel.setTypes( types ) ;
3732    s->setSelection( sel ) ;
3733    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3734    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
3735    s->unsetSelection() ;
3736    sel.reset() ;
3737    types.clear() ;
3738
3739    // hot scan
3740    types.push_back( SrcType::HOT ) ;
3741    sel.setTypes( types ) ;
3742    s->setSelection( sel ) ;
3743    tmp.clear() ;
3744    tmp.push_back( getScantable( s, false ) ) ;
3745    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
3746    s->unsetSelection() ;
3747    sel.reset() ;
3748    types.clear() ;
3749   
3750    // cold scan
3751    CountedPtr<Scantable> acold ;
3752//     types.push_back( SrcType::COLD ) ;
3753//     sel.setTypes( types ) ;
3754//     s->setSelection( sel ) ;
3755//     tmp.clear() ;
3756//     tmp.push_back( getScantable( s, false ) ) ;
3757//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCNAN" ) ;
3758//     s->unsetSelection() ;
3759//     sel.reset() ;
3760//     types.clear() ;
3761
3762    // off scan
3763    types.push_back( SrcType::PSOFF ) ;
3764    sel.setTypes( types ) ;
3765    s->setSelection( sel ) ;
3766    tmp.clear() ;
3767    tmp.push_back( getScantable( s, false ) ) ;
3768    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3769    s->unsetSelection() ;
3770    sel.reset() ;
3771    types.clear() ;
3772   
3773    // on scan
3774    bool insitu = insitu_ ;
3775    insitu_ = false ;
3776    CountedPtr<Scantable> out = getScantable( s, true ) ;
3777    insitu_ = insitu ;
3778    types.push_back( SrcType::PSON ) ;
3779    sel.setTypes( types ) ;
3780    s->setSelection( sel ) ;
3781    TableCopy::copyRows( out->table(), s->table() ) ;
3782    s->unsetSelection() ;
3783    sel.reset() ;
3784    types.clear() ;
3785   
3786    // process each on scan
3787    ArrayColumn<Float> tsysCol ;
3788    tsysCol.attach( out->table(), "TSYS" ) ;
3789    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3790      vector<float> sp = getCalibratedSpectra( out, aoff, asky, ahot, acold, i, antname ) ;
3791      out->setSpectrum( sp, i ) ;
3792      string reftime = out->getTime( i ) ;
3793      vector<int> ii( 1, out->getIF( i ) ) ;
3794      vector<int> ib( 1, out->getBeam( i ) ) ;
3795      vector<int> ip( 1, out->getPol( i ) ) ;
3796      sel.setIFs( ii ) ;
3797      sel.setBeams( ib ) ;
3798      sel.setPolarizations( ip ) ;
3799      asky->setSelection( sel ) ;   
3800      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
3801      const Vector<Float> Vtsys( sptsys ) ;
3802      tsysCol.put( i, Vtsys ) ;
3803      asky->unsetSelection() ;
3804      sel.reset() ;
3805    }
3806
3807    // flux unit
3808    out->setFluxUnit( "K" ) ;
3809
3810    return out ;
3811  }
3812}
3813 
3814CountedPtr<Scantable> STMath::almacal( const CountedPtr<Scantable>& s,
3815                                       const String calmode )
3816{
3817  // frequency switch
3818  if ( calmode == "fs" ) {
3819    return almacalfs( s ) ;
3820  }
3821  else {
3822    vector<bool> masks = s->getMask( 0 ) ;
3823   
3824    // off scan
3825    STSelector sel = STSelector() ;
3826    vector<int> types ;
3827    types.push_back( SrcType::PSOFF ) ;
3828    sel.setTypes( types ) ;
3829    s->setSelection( sel ) ;
3830    // TODO 2010/01/08 TN
3831    // Grouping by time should be needed before averaging.
3832    // Each group must have own unique SCANNO (should be renumbered).
3833    // See PIPELINE/SDCalibration.py
3834    CountedPtr<Scantable> soff = getScantable( s, false ) ;
3835    Table ttab = soff->table() ;
3836    ROScalarColumn<Double> timeCol( ttab, "TIME" ) ;
3837    uInt nrow = timeCol.nrow() ;
3838    Vector<Double> timeSep( nrow - 1 ) ;
3839    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3840      timeSep[i] = timeCol(i+1) - timeCol(i) ;
3841    }
3842    ScalarColumn<Double> intervalCol( ttab, "INTERVAL" ) ;
3843    Vector<Double> interval = intervalCol.getColumn() ;
3844    interval /= 86400.0 ;
3845    ScalarColumn<uInt> scanCol( ttab, "SCANNO" ) ;
3846    vector<uInt> glist ;
3847    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3848      double gap = 2.0 * timeSep[i] / ( interval[i] + interval[i+1] ) ;
3849      //cout << "gap[" << i << "]=" << setw(5) << gap << endl ;
3850      if ( gap > 1.1 ) {
3851        glist.push_back( i ) ;
3852      }
3853    }
3854    Vector<uInt> gaplist( glist ) ;
3855    //cout << "gaplist = " << gaplist << endl ;
3856    uInt newid = 0 ;
3857    for ( uInt i = 0 ; i < nrow ; i++ ) {
3858      scanCol.put( i, newid ) ;
3859      if ( i == gaplist[newid] ) {
3860        newid++ ;
3861      }
3862    }
3863    //cout << "new scancol = " << scanCol.getColumn() << endl ;
3864    vector< CountedPtr<Scantable> > tmp( 1, soff ) ;
3865    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3866    //cout << "aoff.nrow = " << aoff->nrow() << endl ;
3867    s->unsetSelection() ;
3868    sel.reset() ;
3869    types.clear() ;
3870   
3871    // on scan
3872    bool insitu = insitu_ ;
3873    insitu_ = false ;
3874    CountedPtr<Scantable> out = getScantable( s, true ) ;
3875    insitu_ = insitu ;
3876    types.push_back( SrcType::PSON ) ;
3877    sel.setTypes( types ) ;
3878    s->setSelection( sel ) ;
3879    TableCopy::copyRows( out->table(), s->table() ) ;
3880    s->unsetSelection() ;
3881    sel.reset() ;
3882    types.clear() ;
3883   
3884    // process each on scan
3885    ArrayColumn<Float> tsysCol ;
3886    tsysCol.attach( out->table(), "TSYS" ) ;
3887    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3888      vector<float> sp = getCalibratedSpectra( out, aoff, i ) ;
3889      out->setSpectrum( sp, i ) ;
3890    }
3891
3892    // flux unit
3893    out->setFluxUnit( "K" ) ;
3894
3895    return out ;
3896  }
3897}
3898
3899CountedPtr<Scantable> STMath::cwcalfs( const CountedPtr<Scantable>& s,
3900                                       const String antname )
3901{
3902  vector<int> types ;
3903
3904  // APEX calibration mode
3905  int apexcalmode = 1 ;
3906 
3907  if ( antname.find( "APEX" ) != string::npos ) {
3908    // check if off scan exists or not
3909    STSelector sel = STSelector() ;
3910    //sel.setName( offstr1 ) ;
3911    types.push_back( SrcType::FLOOFF ) ;
3912    sel.setTypes( types ) ;
3913    try {
3914      s->setSelection( sel ) ;
3915    }
3916    catch ( AipsError &e ) {
3917      apexcalmode = 0 ;
3918    }
3919    sel.reset() ;
3920  }
3921  s->unsetSelection() ;
3922  types.clear() ;
3923
3924  vector<bool> masks = s->getMask( 0 ) ;
3925  CountedPtr<Scantable> ssig, sref ;
3926  CountedPtr<Scantable> out ;
3927
3928  if ( antname.find( "APEX" ) != string::npos ) {
3929    // APEX calibration
3930    // sky scan
3931    STSelector sel = STSelector() ;
3932    types.push_back( SrcType::FLOSKY ) ;
3933    sel.setTypes( types ) ;
3934    s->setSelection( sel ) ;
3935    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3936    CountedPtr<Scantable> askylo = average( tmp, masks, "TINT", "SCAN" ) ;
3937    s->unsetSelection() ;
3938    sel.reset() ;
3939    types.clear() ;
3940    types.push_back( SrcType::FHISKY ) ;
3941    sel.setTypes( types ) ;
3942    s->setSelection( sel ) ;
3943    tmp.clear() ;
3944    tmp.push_back( getScantable( s, false ) ) ;
3945    CountedPtr<Scantable> askyhi = average( tmp, masks, "TINT", "SCAN" ) ;
3946    s->unsetSelection() ;
3947    sel.reset() ;
3948    types.clear() ;
3949   
3950    // hot scan
3951    types.push_back( SrcType::FLOHOT ) ;
3952    sel.setTypes( types ) ;
3953    s->setSelection( sel ) ;
3954    tmp.clear() ;
3955    tmp.push_back( getScantable( s, false ) ) ;
3956    CountedPtr<Scantable> ahotlo = average( tmp, masks, "TINT", "SCAN" ) ;
3957    s->unsetSelection() ;
3958    sel.reset() ;
3959    types.clear() ;
3960    types.push_back( SrcType::FHIHOT ) ;
3961    sel.setTypes( types ) ;
3962    s->setSelection( sel ) ;
3963    tmp.clear() ;
3964    tmp.push_back( getScantable( s, false ) ) ;
3965    CountedPtr<Scantable> ahothi = average( tmp, masks, "TINT", "SCAN" ) ;
3966    s->unsetSelection() ;
3967    sel.reset() ;
3968    types.clear() ;
3969   
3970    // cold scan
3971    CountedPtr<Scantable> acoldlo, acoldhi ;
3972//     types.push_back( SrcType::FLOCOLD ) ;
3973//     sel.setTypes( types ) ;
3974//     s->setSelection( sel ) ;
3975//     tmp.clear() ;
3976//     tmp.push_back( getScantable( s, false ) ) ;
3977//     CountedPtr<Scantable> acoldlo = average( tmp, masks, "TINT", "SCAN" ) ;
3978//     s->unsetSelection() ;
3979//     sel.reset() ;
3980//     types.clear() ;
3981//     types.push_back( SrcType::FHICOLD ) ;
3982//     sel.setTypes( types ) ;
3983//     s->setSelection( sel ) ;
3984//     tmp.clear() ;
3985//     tmp.push_back( getScantable( s, false ) ) ;
3986//     CountedPtr<Scantable> acoldhi = average( tmp, masks, "TINT", "SCAN" ) ;
3987//     s->unsetSelection() ;
3988//     sel.reset() ;
3989//     types.clear() ;
3990
3991    // ref scan
3992    bool insitu = insitu_ ;
3993    insitu_ = false ;
3994    sref = getScantable( s, true ) ;
3995    insitu_ = insitu ;
3996    types.push_back( SrcType::FSLO ) ;
3997    sel.setTypes( types ) ;
3998    s->setSelection( sel ) ;
3999    TableCopy::copyRows( sref->table(), s->table() ) ;
4000    s->unsetSelection() ;
4001    sel.reset() ;
4002    types.clear() ;
4003   
4004    // sig scan
4005    insitu_ = false ;
4006    ssig = getScantable( s, true ) ;
4007    insitu_ = insitu ;
4008    types.push_back( SrcType::FSHI ) ;
4009    sel.setTypes( types ) ;
4010    s->setSelection( sel ) ;
4011    TableCopy::copyRows( ssig->table(), s->table() ) ;
4012    s->unsetSelection() ;
4013    sel.reset() ; 
4014    types.clear() ;
4015         
4016    if ( apexcalmode == 0 ) {
4017      // APEX fs data without off scan
4018      // process each sig and ref scan
4019      ArrayColumn<Float> tsysCollo ;
4020      tsysCollo.attach( ssig->table(), "TSYS" ) ;
4021      ArrayColumn<Float> tsysColhi ;
4022      tsysColhi.attach( sref->table(), "TSYS" ) ;
4023      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4024        vector< CountedPtr<Scantable> > sky( 2 ) ;
4025        sky[0] = askylo ;
4026        sky[1] = askyhi ;
4027        vector< CountedPtr<Scantable> > hot( 2 ) ;
4028        hot[0] = ahotlo ;
4029        hot[1] = ahothi ;
4030        vector< CountedPtr<Scantable> > cold( 2 ) ;
4031        //cold[0] = acoldlo ;
4032        //cold[1] = acoldhi ;
4033        vector<float> sp = getFSCalibratedSpectra( ssig, sref, sky, hot, cold, i ) ;
4034        ssig->setSpectrum( sp, i ) ;
4035        string reftime = ssig->getTime( i ) ;
4036        vector<int> ii( 1, ssig->getIF( i ) ) ;
4037        vector<int> ib( 1, ssig->getBeam( i ) ) ;
4038        vector<int> ip( 1, ssig->getPol( i ) ) ;
4039        sel.setIFs( ii ) ;
4040        sel.setBeams( ib ) ;
4041        sel.setPolarizations( ip ) ;
4042        askylo->setSelection( sel ) ;
4043        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4044        const Vector<Float> Vtsyslo( sptsys ) ;
4045        tsysCollo.put( i, Vtsyslo ) ;
4046        askylo->unsetSelection() ;
4047        sel.reset() ;
4048        sky[0] = askyhi ;
4049        sky[1] = askylo ;
4050        hot[0] = ahothi ;
4051        hot[1] = ahotlo ;
4052        cold[0] = acoldhi ;
4053        cold[1] = acoldlo ;
4054        sp = getFSCalibratedSpectra( sref, ssig, sky, hot, cold, i ) ;
4055        sref->setSpectrum( sp, i ) ;
4056        reftime = sref->getTime( i ) ;
4057        ii[0] = sref->getIF( i )  ;
4058        ib[0] = sref->getBeam( i ) ;
4059        ip[0] = sref->getPol( i ) ;
4060        sel.setIFs( ii ) ;
4061        sel.setBeams( ib ) ;
4062        sel.setPolarizations( ip ) ;
4063        askyhi->setSelection( sel ) ;   
4064        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4065        const Vector<Float> Vtsyshi( sptsys ) ;
4066        tsysColhi.put( i, Vtsyshi ) ;
4067        askyhi->unsetSelection() ;
4068        sel.reset() ;
4069      }
4070    }
4071    else if ( apexcalmode == 1 ) {
4072      // APEX fs data with off scan
4073      // off scan
4074      types.push_back( SrcType::FLOOFF ) ;
4075      sel.setTypes( types ) ;
4076      s->setSelection( sel ) ;
4077      tmp.clear() ;
4078      tmp.push_back( getScantable( s, false ) ) ;
4079      CountedPtr<Scantable> aofflo = average( tmp, masks, "TINT", "SCAN" ) ;
4080      s->unsetSelection() ;
4081      sel.reset() ;
4082      types.clear() ;
4083      types.push_back( SrcType::FHIOFF ) ;
4084      sel.setTypes( types ) ;
4085      s->setSelection( sel ) ;
4086      tmp.clear() ;
4087      tmp.push_back( getScantable( s, false ) ) ;
4088      CountedPtr<Scantable> aoffhi = average( tmp, masks, "TINT", "SCAN" ) ;
4089      s->unsetSelection() ;
4090      sel.reset() ;
4091      types.clear() ;
4092     
4093      // process each sig and ref scan
4094      ArrayColumn<Float> tsysCollo ;
4095      tsysCollo.attach( ssig->table(), "TSYS" ) ;
4096      ArrayColumn<Float> tsysColhi ;
4097      tsysColhi.attach( sref->table(), "TSYS" ) ;
4098      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4099        vector<float> sp = getCalibratedSpectra( ssig, aofflo, askylo, ahotlo, acoldlo, i, antname ) ;
4100        ssig->setSpectrum( sp, i ) ;
4101        sp = getCalibratedSpectra( sref, aoffhi, askyhi, ahothi, acoldhi, i, antname ) ;
4102        string reftime = ssig->getTime( i ) ;
4103        vector<int> ii( 1, ssig->getIF( i ) ) ;
4104        vector<int> ib( 1, ssig->getBeam( i ) ) ;
4105        vector<int> ip( 1, ssig->getPol( i ) ) ;
4106        sel.setIFs( ii ) ;
4107        sel.setBeams( ib ) ;
4108        sel.setPolarizations( ip ) ;
4109        askylo->setSelection( sel ) ;
4110        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4111        const Vector<Float> Vtsyslo( sptsys ) ;
4112        tsysCollo.put( i, Vtsyslo ) ;
4113        askylo->unsetSelection() ;
4114        sel.reset() ;
4115        sref->setSpectrum( sp, i ) ;
4116        reftime = sref->getTime( i ) ;
4117        ii[0] = sref->getIF( i )  ;
4118        ib[0] = sref->getBeam( i ) ;
4119        ip[0] = sref->getPol( i ) ;
4120        sel.setIFs( ii ) ;
4121        sel.setBeams( ib ) ;
4122        sel.setPolarizations( ip ) ;
4123        askyhi->setSelection( sel ) ;   
4124        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4125        const Vector<Float> Vtsyshi( sptsys ) ;
4126        tsysColhi.put( i, Vtsyshi ) ;
4127        askyhi->unsetSelection() ;
4128        sel.reset() ;
4129      }
4130    }
4131  }
4132  else {
4133    // non-APEX fs data
4134    // sky scan
4135    STSelector sel = STSelector() ;
4136    types.push_back( SrcType::SKY ) ;
4137    sel.setTypes( types ) ;
4138    s->setSelection( sel ) ;
4139    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
4140    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
4141    s->unsetSelection() ;
4142    sel.reset() ;
4143    types.clear() ;
4144   
4145    // hot scan
4146    types.push_back( SrcType::HOT ) ;
4147    sel.setTypes( types ) ;
4148    s->setSelection( sel ) ;
4149    tmp.clear() ;
4150    tmp.push_back( getScantable( s, false ) ) ;
4151    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
4152    s->unsetSelection() ;
4153    sel.reset() ;
4154    types.clear() ;
4155
4156    // cold scan
4157    CountedPtr<Scantable> acold ;
4158//     types.push_back( SrcType::COLD ) ;
4159//     sel.setTypes( types ) ;
4160//     s->setSelection( sel ) ;
4161//     tmp.clear() ;
4162//     tmp.push_back( getScantable( s, false ) ) ;
4163//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCAN" ) ;
4164//     s->unsetSelection() ;
4165//     sel.reset() ;
4166//     types.clear() ;
4167   
4168    // ref scan
4169    bool insitu = insitu_ ;
4170    insitu_ = false ;
4171    sref = getScantable( s, true ) ;
4172    insitu_ = insitu ;
4173    types.push_back( SrcType::FSOFF ) ;
4174    sel.setTypes( types ) ;
4175    s->setSelection( sel ) ;
4176    TableCopy::copyRows( sref->table(), s->table() ) ;
4177    s->unsetSelection() ;
4178    sel.reset() ;
4179    types.clear() ;
4180   
4181    // sig scan
4182    insitu_ = false ;
4183    ssig = getScantable( s, true ) ;
4184    insitu_ = insitu ;
4185    types.push_back( SrcType::FSON ) ;
4186    sel.setTypes( types ) ;
4187    s->setSelection( sel ) ;
4188    TableCopy::copyRows( ssig->table(), s->table() ) ;
4189    s->unsetSelection() ;
4190    sel.reset() ;
4191    types.clear() ;
4192
4193    // process each sig and ref scan
4194    ArrayColumn<Float> tsysColsig ;
4195    tsysColsig.attach( ssig->table(), "TSYS" ) ;
4196    ArrayColumn<Float> tsysColref ;
4197    tsysColref.attach( ssig->table(), "TSYS" ) ;
4198    for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4199      vector<float> sp = getFSCalibratedSpectra( ssig, sref, asky, ahot, acold, i ) ;
4200      ssig->setSpectrum( sp, i ) ;
4201      string reftime = ssig->getTime( i ) ;
4202      vector<int> ii( 1, ssig->getIF( i ) ) ;
4203      vector<int> ib( 1, ssig->getBeam( i ) ) ;
4204      vector<int> ip( 1, ssig->getPol( i ) ) ;
4205      sel.setIFs( ii ) ;
4206      sel.setBeams( ib ) ;
4207      sel.setPolarizations( ip ) ;
4208      asky->setSelection( sel ) ;
4209      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
4210      const Vector<Float> Vtsys( sptsys ) ;
4211      tsysColsig.put( i, Vtsys ) ;
4212      asky->unsetSelection() ;
4213      sel.reset() ;
4214      sp = getFSCalibratedSpectra( sref, ssig, asky, ahot, acold, i ) ;
4215      sref->setSpectrum( sp, i ) ;
4216      tsysColref.put( i, Vtsys ) ;
4217    }
4218  }
4219
4220  // do folding if necessary
4221  Table sigtab = ssig->table() ;
4222  Table reftab = sref->table() ;
4223  ScalarColumn<uInt> sigifnoCol ;
4224  ScalarColumn<uInt> refifnoCol ;
4225  ScalarColumn<uInt> sigfidCol ;
4226  ScalarColumn<uInt> reffidCol ;
4227  Int nchan = (Int)ssig->nchan() ;
4228  sigifnoCol.attach( sigtab, "IFNO" ) ;
4229  refifnoCol.attach( reftab, "IFNO" ) ;
4230  sigfidCol.attach( sigtab, "FREQ_ID" ) ;
4231  reffidCol.attach( reftab, "FREQ_ID" ) ;
4232  Vector<uInt> sfids( sigfidCol.getColumn() ) ;
4233  Vector<uInt> rfids( reffidCol.getColumn() ) ;
4234  vector<uInt> sfids_unique ;
4235  vector<uInt> rfids_unique ;
4236  vector<uInt> sifno_unique ;
4237  vector<uInt> rifno_unique ;
4238  for ( uInt i = 0 ; i < sfids.nelements() ; i++ ) {
4239    if ( count( sfids_unique.begin(), sfids_unique.end(), sfids[i] ) == 0 ) {
4240      sfids_unique.push_back( sfids[i] ) ;
4241      sifno_unique.push_back( ssig->getIF( i ) ) ;
4242    }
4243    if ( count( rfids_unique.begin(), rfids_unique.end(),  rfids[i] ) == 0 ) {
4244      rfids_unique.push_back( rfids[i] ) ;
4245      rifno_unique.push_back( sref->getIF( i ) ) ;
4246    }
4247  }
4248  double refpix_sig, refval_sig, increment_sig ;
4249  double refpix_ref, refval_ref, increment_ref ;
4250  vector< CountedPtr<Scantable> > tmp( sfids_unique.size() ) ;
4251  for ( uInt i = 0 ; i < sfids_unique.size() ; i++ ) {
4252    ssig->frequencies().getEntry( refpix_sig, refval_sig, increment_sig, sfids_unique[i] ) ;
4253    sref->frequencies().getEntry( refpix_ref, refval_ref, increment_ref, rfids_unique[i] ) ;
4254    if ( refpix_sig == refpix_ref ) {
4255      double foffset = refval_ref - refval_sig ;
4256      int choffset = static_cast<int>(foffset/increment_sig) ;
4257      double doffset = foffset / increment_sig ;
4258      if ( abs(choffset) >= nchan ) {
4259        LogIO os( LogOrigin( "STMath", "cwcalfs", WHERE ) ) ;
4260        os << "FREQ_ID=[" << sfids_unique[i] << "," << rfids_unique[i] << "]: out-band frequency switching, no folding" << LogIO::POST ;
4261        os << "Just return signal data" << LogIO::POST ;
4262        //std::vector< CountedPtr<Scantable> > tabs ;
4263        //tabs.push_back( ssig ) ;
4264        //tabs.push_back( sref ) ;
4265        //out = merge( tabs ) ;
4266        tmp[i] = ssig ;
4267      }
4268      else {
4269        STSelector sel = STSelector() ;
4270        vector<int> v( 1, sifno_unique[i] ) ;
4271        sel.setIFs( v ) ;
4272        ssig->setSelection( sel ) ;
4273        sel.reset() ;
4274        v[0] = rifno_unique[i] ;
4275        sel.setIFs( v ) ;
4276        sref->setSelection( sel ) ;
4277        sel.reset() ;
4278        if ( antname.find( "APEX" ) != string::npos ) {
4279          tmp[i] = dofold( ssig, sref, 0.5*doffset, -0.5*doffset ) ;
4280          //tmp[i] = dofold( ssig, sref, doffset ) ;
4281        }
4282        else {
4283          tmp[i] = dofold( ssig, sref, doffset ) ;
4284        }
4285        ssig->unsetSelection() ;
4286        sref->unsetSelection() ;
4287      }
4288    }
4289  }
4290
4291  if ( tmp.size() > 1 ) {
4292    out = merge( tmp ) ;
4293  }
4294  else {
4295    out = tmp[0] ;
4296  }
4297
4298  // flux unit
4299  out->setFluxUnit( "K" ) ;
4300
4301  return out ;
4302}
4303
4304CountedPtr<Scantable> STMath::almacalfs( const CountedPtr<Scantable>& s )
4305{
4306  (void) s; //currently unused
4307  CountedPtr<Scantable> out ;
4308
4309  return out ;
4310}
4311
4312vector<float> STMath::getSpectrumFromTime( string reftime,
4313                                           CountedPtr<Scantable>& s,
4314                                           string mode )
4315{
4316  LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
4317  vector<float> sp ;
4318
4319  if ( s->nrow() == 0 ) {
4320    os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4321    return sp ;
4322  }
4323  else if ( s->nrow() == 1 ) {
4324    //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4325    return s->getSpectrum( 0 ) ;
4326  }
4327  else {
4328    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4329    if ( mode == "before" ) {
4330      int id = -1 ;
4331      if ( idx[0] != -1 ) {
4332        id = idx[0] ;
4333      }
4334      else if ( idx[1] != -1 ) {
4335        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4336        id = idx[1] ;
4337      }
4338      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4339      sp = s->getSpectrum( id ) ;
4340    }
4341    else if ( mode == "after" ) {
4342      int id = -1 ;
4343      if ( idx[1] != -1 ) {
4344        id = idx[1] ;
4345      }
4346      else if ( idx[0] != -1 ) {
4347        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4348        id = idx[1] ;
4349      }
4350      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4351      sp = s->getSpectrum( id ) ;
4352    }
4353    else if ( mode == "nearest" ) {
4354      int id = -1 ;
4355      if ( idx[0] == -1 ) {
4356        id = idx[1] ;
4357      }
4358      else if ( idx[1] == -1 ) {
4359        id = idx[0] ;
4360      }
4361      else if ( idx[0] == idx[1] ) {
4362        id = idx[0] ;
4363      }
4364      else {
4365        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4366        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4367        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4368        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4369        double tref = getMJD( reftime ) ;
4370        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4371          id = idx[1] ;
4372        }
4373        else {
4374          id = idx[0] ;
4375        }
4376      }
4377      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4378      sp = s->getSpectrum( id ) ;     
4379    }
4380    else if ( mode == "linear" ) {
4381      if ( idx[0] == -1 ) {
4382        // use after
4383        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4384        int id = idx[1] ;
4385        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4386        sp = s->getSpectrum( id ) ;
4387      }
4388      else if ( idx[1] == -1 ) {
4389        // use before
4390        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4391        int id = idx[0] ;
4392        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4393        sp = s->getSpectrum( id ) ;
4394      }
4395      else if ( idx[0] == idx[1] ) {
4396        // use before
4397        //os << "No need to interporate." << LogIO::POST ;
4398        int id = idx[0] ;
4399        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4400        sp = s->getSpectrum( id ) ;
4401      }
4402      else {
4403        // do interpolation
4404        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4405        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4406        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4407        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4408        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4409        double tref = getMJD( reftime ) ;
4410        vector<float> sp0 = s->getSpectrum( idx[0] ) ;
4411        vector<float> sp1 = s->getSpectrum( idx[1] ) ;
4412        for ( unsigned int i = 0 ; i < sp0.size() ; i++ ) {
4413          float v = ( sp1[i] - sp0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + sp0[i] ;
4414          sp.push_back( v ) ;
4415        }
4416      }
4417    }
4418    else {
4419      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4420    }
4421    return sp ;
4422  }
4423}
4424
4425double STMath::getMJD( string strtime )
4426{
4427  if ( strtime.find("/") == string::npos ) {
4428    // MJD time string
4429    return atof( strtime.c_str() ) ;
4430  }
4431  else {
4432    // string in YYYY/MM/DD/HH:MM:SS format
4433    uInt year = atoi( strtime.substr( 0, 4 ).c_str() ) ;
4434    uInt month = atoi( strtime.substr( 5, 2 ).c_str() ) ;
4435    uInt day = atoi( strtime.substr( 8, 2 ).c_str() ) ;
4436    uInt hour = atoi( strtime.substr( 11, 2 ).c_str() ) ;
4437    uInt minute = atoi( strtime.substr( 14, 2 ).c_str() ) ;
4438    uInt sec = atoi( strtime.substr( 17, 2 ).c_str() ) ;
4439    Time t( year, month, day, hour, minute, sec ) ;
4440    return t.modifiedJulianDay() ;
4441  }
4442}
4443
4444vector<int> STMath::getRowIdFromTime( string reftime, CountedPtr<Scantable> &s )
4445{
4446  double reft = getMJD( reftime ) ;
4447  double dtmin = 1.0e100 ;
4448  double dtmax = -1.0e100 ;
4449  vector<double> dt ;
4450  int just_before = -1 ;
4451  int just_after = -1 ;
4452  for ( int i = 0 ; i < s->nrow() ; i++ ) {
4453    dt.push_back( getMJD( s->getTime( i ) ) - reft ) ;
4454  }
4455  for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
4456    if ( dt[i] > 0.0 ) {
4457      // after reftime
4458      if ( dt[i] < dtmin ) {
4459        just_after = i ;
4460        dtmin = dt[i] ;
4461      }
4462    }
4463    else if ( dt[i] < 0.0 ) {
4464      // before reftime
4465      if ( dt[i] > dtmax ) {
4466        just_before = i ;
4467        dtmax = dt[i] ;
4468      }
4469    }
4470    else {
4471      // just a reftime
4472      just_before = i ;
4473      just_after = i ;
4474      dtmax = 0 ;
4475      dtmin = 0 ;
4476      break ;
4477    }
4478  }
4479
4480  vector<int> v ;
4481  v.push_back( just_before ) ;
4482  v.push_back( just_after ) ;
4483
4484  return v ;
4485}
4486
4487vector<float> STMath::getTcalFromTime( string reftime,
4488                                       CountedPtr<Scantable>& s,
4489                                       string mode )
4490{
4491  LogIO os( LogOrigin( "STMath", "getTcalFromTime", WHERE ) ) ;
4492  vector<float> tcal ;
4493  STTcal tcalTable = s->tcal() ;
4494  String time ;
4495  Vector<Float> tcalval ;
4496  if ( s->nrow() == 0 ) {
4497    os << LogIO::SEVERE << "No row in the input scantable. Return empty tcal." << LogIO::POST ;
4498    return tcal ;
4499  }
4500  else if ( s->nrow() == 1 ) {
4501    uInt tcalid = s->getTcalId( 0 ) ;
4502    //os << "use row " << 0 << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4503    tcalTable.getEntry( time, tcalval, tcalid ) ;
4504    tcalval.tovector( tcal ) ;
4505    return tcal ;
4506  }
4507  else {
4508    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4509    if ( mode == "before" ) {
4510      int id = -1 ;
4511      if ( idx[0] != -1 ) {
4512        id = idx[0] ;
4513      }
4514      else if ( idx[1] != -1 ) {
4515        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4516        id = idx[1] ;
4517      }
4518      uInt tcalid = s->getTcalId( id ) ;
4519      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4520      tcalTable.getEntry( time, tcalval, tcalid ) ;
4521      tcalval.tovector( tcal ) ;
4522    }
4523    else if ( mode == "after" ) {
4524      int id = -1 ;
4525      if ( idx[1] != -1 ) {
4526        id = idx[1] ;
4527      }
4528      else if ( idx[0] != -1 ) {
4529        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4530        id = idx[1] ;
4531      }
4532      uInt tcalid = s->getTcalId( id ) ;
4533      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4534      tcalTable.getEntry( time, tcalval, tcalid ) ;
4535      tcalval.tovector( tcal ) ;
4536    }
4537    else if ( mode == "nearest" ) {
4538      int id = -1 ;
4539      if ( idx[0] == -1 ) {
4540        id = idx[1] ;
4541      }
4542      else if ( idx[1] == -1 ) {
4543        id = idx[0] ;
4544      }
4545      else if ( idx[0] == idx[1] ) {
4546        id = idx[0] ;
4547      }
4548      else {
4549        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4550        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4551        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4552        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4553        double tref = getMJD( reftime ) ;
4554        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4555          id = idx[1] ;
4556        }
4557        else {
4558          id = idx[0] ;
4559        }
4560      }
4561      uInt tcalid = s->getTcalId( id ) ;
4562      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4563      tcalTable.getEntry( time, tcalval, tcalid ) ;
4564      tcalval.tovector( tcal ) ;
4565    }
4566    else if ( mode == "linear" ) {
4567      if ( idx[0] == -1 ) {
4568        // use after
4569        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4570        int id = idx[1] ;
4571        uInt tcalid = s->getTcalId( id ) ;
4572        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4573        tcalTable.getEntry( time, tcalval, tcalid ) ;
4574        tcalval.tovector( tcal ) ;
4575      }
4576      else if ( idx[1] == -1 ) {
4577        // use before
4578        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4579        int id = idx[0] ;
4580        uInt tcalid = s->getTcalId( id ) ;
4581        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4582        tcalTable.getEntry( time, tcalval, tcalid ) ;
4583        tcalval.tovector( tcal ) ;
4584      }
4585      else if ( idx[0] == idx[1] ) {
4586        // use before
4587        //os << "No need to interporate." << LogIO::POST ;
4588        int id = idx[0] ;
4589        uInt tcalid = s->getTcalId( id ) ;
4590        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4591        tcalTable.getEntry( time, tcalval, tcalid ) ;
4592        tcalval.tovector( tcal ) ;
4593      }
4594      else {
4595        // do interpolation
4596        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4597        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4598        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4599        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4600        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4601        double tref = getMJD( reftime ) ;
4602        vector<float> tcal0 ;
4603        vector<float> tcal1 ;
4604        uInt tcalid0 = s->getTcalId( idx[0] ) ;
4605        uInt tcalid1 = s->getTcalId( idx[1] ) ;
4606        tcalTable.getEntry( time, tcalval, tcalid0 ) ;
4607        tcalval.tovector( tcal0 ) ;
4608        tcalTable.getEntry( time, tcalval, tcalid1 ) ;
4609        tcalval.tovector( tcal1 ) ;       
4610        for ( unsigned int i = 0 ; i < tcal0.size() ; i++ ) {
4611          float v = ( tcal1[i] - tcal0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tcal0[i] ;
4612          tcal.push_back( v ) ;
4613        }
4614      }
4615    }
4616    else {
4617      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4618    }
4619    return tcal ;
4620  }
4621}
4622
4623vector<float> STMath::getTsysFromTime( string reftime,
4624                                       CountedPtr<Scantable>& s,
4625                                       string mode )
4626{
4627  LogIO os( LogOrigin( "STMath", "getTsysFromTime", WHERE ) ) ;
4628  ArrayColumn<Float> tsysCol ;
4629  tsysCol.attach( s->table(), "TSYS" ) ;
4630  vector<float> tsys ;
4631  String time ;
4632  Vector<Float> tsysval ;
4633  if ( s->nrow() == 0 ) {
4634    os << LogIO::SEVERE << "No row in the input scantable. Return empty tsys." << LogIO::POST ;
4635    return tsys ;
4636  }
4637  else if ( s->nrow() == 1 ) {
4638    //os << "use row " << 0 << LogIO::POST ;
4639    tsysval = tsysCol( 0 ) ;
4640    tsysval.tovector( tsys ) ;
4641    return tsys ;
4642  }
4643  else {
4644    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4645    if ( mode == "before" ) {
4646      int id = -1 ;
4647      if ( idx[0] != -1 ) {
4648        id = idx[0] ;
4649      }
4650      else if ( idx[1] != -1 ) {
4651        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4652        id = idx[1] ;
4653      }
4654      //os << "use row " << id << LogIO::POST ;
4655      tsysval = tsysCol( id ) ;
4656      tsysval.tovector( tsys ) ;
4657    }
4658    else if ( mode == "after" ) {
4659      int id = -1 ;
4660      if ( idx[1] != -1 ) {
4661        id = idx[1] ;
4662      }
4663      else if ( idx[0] != -1 ) {
4664        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4665        id = idx[1] ;
4666      }
4667      //os << "use row " << id << LogIO::POST ;
4668      tsysval = tsysCol( id ) ;
4669      tsysval.tovector( tsys ) ;
4670    }
4671    else if ( mode == "nearest" ) {
4672      int id = -1 ;
4673      if ( idx[0] == -1 ) {
4674        id = idx[1] ;
4675      }
4676      else if ( idx[1] == -1 ) {
4677        id = idx[0] ;
4678      }
4679      else if ( idx[0] == idx[1] ) {
4680        id = idx[0] ;
4681      }
4682      else {
4683        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4684        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4685        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4686        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4687        double tref = getMJD( reftime ) ;
4688        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4689          id = idx[1] ;
4690        }
4691        else {
4692          id = idx[0] ;
4693        }
4694      }
4695      //os << "use row " << id << LogIO::POST ;
4696      tsysval = tsysCol( id ) ;
4697      tsysval.tovector( tsys ) ;
4698    }
4699    else if ( mode == "linear" ) {
4700      if ( idx[0] == -1 ) {
4701        // use after
4702        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4703        int id = idx[1] ;
4704        //os << "use row " << id << LogIO::POST ;
4705        tsysval = tsysCol( id ) ;
4706        tsysval.tovector( tsys ) ;
4707      }
4708      else if ( idx[1] == -1 ) {
4709        // use before
4710        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4711        int id = idx[0] ;
4712        //os << "use row " << id << LogIO::POST ;
4713        tsysval = tsysCol( id ) ;
4714        tsysval.tovector( tsys ) ;
4715      }
4716      else if ( idx[0] == idx[1] ) {
4717        // use before
4718        //os << "No need to interporate." << LogIO::POST ;
4719        int id = idx[0] ;
4720        //os << "use row " << id << LogIO::POST ;
4721        tsysval = tsysCol( id ) ;
4722        tsysval.tovector( tsys ) ;
4723      }
4724      else {
4725        // do interpolation
4726        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4727        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4728        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4729        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4730        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4731        double tref = getMJD( reftime ) ;
4732        vector<float> tsys0 ;
4733        vector<float> tsys1 ;
4734        tsysval = tsysCol( idx[0] ) ;
4735        tsysval.tovector( tsys0 ) ;
4736        tsysval = tsysCol( idx[1] ) ;
4737        tsysval.tovector( tsys1 ) ;       
4738        for ( unsigned int i = 0 ; i < tsys0.size() ; i++ ) {
4739          float v = ( tsys1[i] - tsys0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tsys0[i] ;
4740          tsys.push_back( v ) ;
4741        }
4742      }
4743    }
4744    else {
4745      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4746    }
4747    return tsys ;
4748  }
4749}
4750
4751vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
4752                                            CountedPtr<Scantable>& off,
4753                                            CountedPtr<Scantable>& sky,
4754                                            CountedPtr<Scantable>& hot,
4755                                            CountedPtr<Scantable>& cold,
4756                                            int index,
4757                                            string antname )
4758{
4759  (void) cold; //currently unused
4760  string reftime = on->getTime( index ) ;
4761  vector<int> ii( 1, on->getIF( index ) ) ;
4762  vector<int> ib( 1, on->getBeam( index ) ) ;
4763  vector<int> ip( 1, on->getPol( index ) ) ;
4764  vector<int> ic( 1, on->getScan( index ) ) ;
4765  STSelector sel = STSelector() ;
4766  sel.setIFs( ii ) ;
4767  sel.setBeams( ib ) ;
4768  sel.setPolarizations( ip ) ;
4769  sky->setSelection( sel ) ;
4770  hot->setSelection( sel ) ;
4771  //cold->setSelection( sel ) ;
4772  off->setSelection( sel ) ;
4773  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
4774  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
4775  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
4776  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
4777  vector<float> spec = on->getSpectrum( index ) ;
4778  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4779  vector<float> sp( tcal.size() ) ;
4780  if ( antname.find( "APEX" ) != string::npos ) {
4781    // using gain array
4782    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4783      float v = ( ( spec[j] - spoff[j] ) / spoff[j] )
4784        * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
4785      sp[j] = v ;
4786    }
4787  }
4788  else {
4789    // Chopper-Wheel calibration (Ulich & Haas 1976)
4790    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4791      float v = ( spec[j] - spoff[j] ) / ( sphot[j] - spsky[j] ) * tcal[j] ;
4792      sp[j] = v ;
4793    }
4794  }
4795  sel.reset() ;
4796  sky->unsetSelection() ;
4797  hot->unsetSelection() ;
4798  //cold->unsetSelection() ;
4799  off->unsetSelection() ;
4800
4801  return sp ;
4802}
4803
4804vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
4805                                            CountedPtr<Scantable>& off,
4806                                            int index )
4807{
4808  string reftime = on->getTime( index ) ;
4809  vector<int> ii( 1, on->getIF( index ) ) ;
4810  vector<int> ib( 1, on->getBeam( index ) ) ;
4811  vector<int> ip( 1, on->getPol( index ) ) ;
4812  vector<int> ic( 1, on->getScan( index ) ) ;
4813  STSelector sel = STSelector() ;
4814  sel.setIFs( ii ) ;
4815  sel.setBeams( ib ) ;
4816  sel.setPolarizations( ip ) ;
4817  off->setSelection( sel ) ;
4818  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
4819  vector<float> spec = on->getSpectrum( index ) ;
4820  //vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4821  //vector<float> tsys = on->getTsysVec( index ) ;
4822  ArrayColumn<Float> tsysCol( on->table(), "TSYS" ) ;
4823  Vector<Float> tsys = tsysCol( index ) ;
4824  vector<float> sp( spec.size() ) ;
4825  // ALMA Calibration
4826  //
4827  // Ta* = Tsys * ( ON - OFF ) / OFF
4828  //
4829  // 2010/01/07 Takeshi Nakazato
4830  unsigned int tsyssize = tsys.nelements() ;
4831  unsigned int spsize = sp.size() ;
4832  for ( unsigned int j = 0 ; j < sp.size() ; j++ ) {
4833    float tscale = 0.0 ;
4834    if ( tsyssize == spsize )
4835      tscale = tsys[j] ;
4836    else
4837      tscale = tsys[0] ;
4838    float v = tscale * ( spec[j] - spoff[j] ) / spoff[j] ;
4839    sp[j] = v ;
4840  }
4841  sel.reset() ;
4842  off->unsetSelection() ;
4843
4844  return sp ;
4845}
4846
4847vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
4848                                              CountedPtr<Scantable>& ref,
4849                                              CountedPtr<Scantable>& sky,
4850                                              CountedPtr<Scantable>& hot,
4851                                              CountedPtr<Scantable>& cold,
4852                                              int index )
4853{
4854  (void) cold; //currently unused
4855  string reftime = sig->getTime( index ) ;
4856  vector<int> ii( 1, sig->getIF( index ) ) ;
4857  vector<int> ib( 1, sig->getBeam( index ) ) ;
4858  vector<int> ip( 1, sig->getPol( index ) ) ;
4859  vector<int> ic( 1, sig->getScan( index ) ) ;
4860  STSelector sel = STSelector() ;
4861  sel.setIFs( ii ) ;
4862  sel.setBeams( ib ) ;
4863  sel.setPolarizations( ip ) ;
4864  sky->setSelection( sel ) ;
4865  hot->setSelection( sel ) ;
4866  //cold->setSelection( sel ) ;
4867  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
4868  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
4869  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
4870  vector<float> spref = ref->getSpectrum( index ) ;
4871  vector<float> spsig = sig->getSpectrum( index ) ;
4872  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4873  vector<float> sp( tcal.size() ) ;
4874  for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4875    float v = tcal[j] * spsky[j] / ( sphot[j] - spsky[j] ) * ( spsig[j] - spref[j] ) / spref[j] ;
4876    sp[j] = v ;
4877  }
4878  sel.reset() ;
4879  sky->unsetSelection() ;
4880  hot->unsetSelection() ;
4881  //cold->unsetSelection() ;
4882
4883  return sp ;
4884}
4885
4886vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
4887                                              CountedPtr<Scantable>& ref,
4888                                              vector< CountedPtr<Scantable> >& sky,
4889                                              vector< CountedPtr<Scantable> >& hot,
4890                                              vector< CountedPtr<Scantable> >& cold,
4891                                              int index )
4892{
4893  (void) cold; //currently unused
4894  string reftime = sig->getTime( index ) ;
4895  vector<int> ii( 1, sig->getIF( index ) ) ;
4896  vector<int> ib( 1, sig->getBeam( index ) ) ;
4897  vector<int> ip( 1, sig->getPol( index ) ) ;
4898  vector<int> ic( 1, sig->getScan( index ) ) ;
4899  STSelector sel = STSelector() ;
4900  sel.setIFs( ii ) ;
4901  sel.setBeams( ib ) ;
4902  sel.setPolarizations( ip ) ;
4903  sky[0]->setSelection( sel ) ;
4904  hot[0]->setSelection( sel ) ;
4905  //cold[0]->setSelection( sel ) ;
4906  vector<float> spskys = getSpectrumFromTime( reftime, sky[0], "linear" ) ;
4907  vector<float> sphots = getSpectrumFromTime( reftime, hot[0], "linear" ) ;
4908  //vector<float> spcolds = getSpectrumFromTime( reftime, cold[0], "linear" ) ;
4909  vector<float> tcals = getTcalFromTime( reftime, sky[0], "linear" ) ;
4910  sel.reset() ;
4911  ii[0] = ref->getIF( index ) ;
4912  sel.setIFs( ii ) ;
4913  sel.setBeams( ib ) ;
4914  sel.setPolarizations( ip ) ;
4915  sky[1]->setSelection( sel ) ;
4916  hot[1]->setSelection( sel ) ;
4917  //cold[1]->setSelection( sel ) ;
4918  vector<float> spskyr = getSpectrumFromTime( reftime, sky[1], "linear" ) ;
4919  vector<float> sphotr = getSpectrumFromTime( reftime, hot[1], "linear" ) ;
4920  //vector<float> spcoldr = getSpectrumFromTime( reftime, cold[1], "linear" ) ;
4921  vector<float> tcalr = getTcalFromTime( reftime, sky[1], "linear" ) ; 
4922  vector<float> spref = ref->getSpectrum( index ) ;
4923  vector<float> spsig = sig->getSpectrum( index ) ;
4924  vector<float> sp( tcals.size() ) ;
4925  for ( unsigned int j = 0 ; j < tcals.size() ; j++ ) {
4926    float v = tcals[j] * spsig[j] / ( sphots[j] - spskys[j] ) - tcalr[j] * spref[j] / ( sphotr[j] - spskyr[j] ) ;
4927    sp[j] = v ;
4928  }
4929  sel.reset() ;
4930  sky[0]->unsetSelection() ;
4931  hot[0]->unsetSelection() ;
4932  //cold[0]->unsetSelection() ;
4933  sky[1]->unsetSelection() ;
4934  hot[1]->unsetSelection() ;
4935  //cold[1]->unsetSelection() ;
4936
4937  return sp ;
4938}
Note: See TracBrowser for help on using the repository browser.