source: trunk/src/STMath.cpp @ 2289

Last change on this file since 2289 was 2289, checked in by ShinnosukeKawakami, 13 years ago

merged parallel branch to trunk

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 168.0 KB
Line 
1//
2// C++ Implementation: STMath
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2006
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12
13#include <sstream>
14
15#include <casa/iomanip.h>
16#include <casa/Arrays/MaskArrLogi.h>
17#include <casa/Arrays/MaskArrMath.h>
18#include <casa/Arrays/ArrayLogical.h>
19#include <casa/Arrays/ArrayMath.h>
20#include <casa/Arrays/Slice.h>
21#include <casa/Arrays/Slicer.h>
22#include <casa/BasicSL/String.h>
23#include <casa/Containers/Block.h>
24#include <casa/Containers/RecordField.h>
25#include <casa/Exceptions/Error.h>
26#include <casa/Logging/LogIO.h>
27
28#include <coordinates/Coordinates/CoordinateSystem.h>
29#include <coordinates/Coordinates/CoordinateUtil.h>
30#include <coordinates/Coordinates/FrequencyAligner.h>
31#include <coordinates/Coordinates/SpectralCoordinate.h>
32
33#include <lattices/Lattices/LatticeUtilities.h>
34
35#include <scimath/Functionals/Polynomial.h>
36#include <scimath/Mathematics/Convolver.h>
37#include <scimath/Mathematics/VectorKernel.h>
38
39#include <tables/Tables/ExprNode.h>
40#include <tables/Tables/ReadAsciiTable.h>
41#include <tables/Tables/TableCopy.h>
42#include <tables/Tables/TableIter.h>
43#include <tables/Tables/TableParse.h>
44#include <tables/Tables/TableRecord.h>
45#include <tables/Tables/TableRow.h>
46#include <tables/Tables/TableVector.h>
47#include <tables/Tables/TabVecMath.h>
48
49#include <atnf/PKSIO/SrcType.h>
50
51#include "RowAccumulator.h"
52#include "STAttr.h"
53#include "STMath.h"
54#include "STSelector.h"
55
56using namespace casa;
57using namespace asap;
58
59// tolerance for direction comparison (rad)
60#define TOL_OTF    1.0e-15
61#define TOL_POINT  2.9088821e-4  // 1 arcmin
62
63STMath::STMath(bool insitu) :
64  insitu_(insitu)
65{
66}
67
68
69STMath::~STMath()
70{
71}
72
73CountedPtr<Scantable>
74STMath::average( const std::vector<CountedPtr<Scantable> >& in,
75                 const std::vector<bool>& mask,
76                 const std::string& weight,
77                 const std::string& avmode)
78{
79  LogIO os( LogOrigin( "STMath", "average()", WHERE ) ) ;
80  if ( avmode == "SCAN" && in.size() != 1 )
81    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
82                    "Use merge first."));
83  WeightType wtype = stringToWeight(weight);
84
85  // check if OTF observation
86  String obstype = in[0]->getHeader().obstype ;
87  Double tol = 0.0 ;
88  if ( (obstype.find( "OTF" ) != String::npos) || (obstype.find( "OBSERVE_TARGET" ) != String::npos) ) {
89    tol = TOL_OTF ;
90  }
91  else {
92    tol = TOL_POINT ;
93  }
94
95  // output
96  // clone as this is non insitu
97  bool insitu = insitu_;
98  setInsitu(false);
99  CountedPtr< Scantable > out = getScantable(in[0], true);
100  setInsitu(insitu);
101  std::vector<CountedPtr<Scantable> >::const_iterator stit = in.begin();
102  ++stit;
103  while ( stit != in.end() ) {
104    out->appendToHistoryTable((*stit)->history());
105    ++stit;
106  }
107
108  Table& tout = out->table();
109
110  /// @todo check if all scantables are conformant
111
112  ArrayColumn<Float> specColOut(tout,"SPECTRA");
113  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
114  ArrayColumn<Float> tsysColOut(tout,"TSYS");
115  ScalarColumn<Double> mjdColOut(tout,"TIME");
116  ScalarColumn<Double> intColOut(tout,"INTERVAL");
117  ScalarColumn<uInt> cycColOut(tout,"CYCLENO");
118  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
119
120  // set up the output table rows. These are based on the structure of the
121  // FIRST scantable in the vector
122  const Table& baset = in[0]->table();
123
124  Block<String> cols(3);
125  cols[0] = String("BEAMNO");
126  cols[1] = String("IFNO");
127  cols[2] = String("POLNO");
128  if ( avmode == "SOURCE" ) {
129    cols.resize(4);
130    cols[3] = String("SRCNAME");
131  }
132  if ( avmode == "SCAN"  && in.size() == 1) {
133    //cols.resize(4);
134    //cols[3] = String("SCANNO");
135    cols.resize(5);
136    cols[3] = String("SRCNAME");
137    cols[4] = String("SCANNO");
138  }
139  uInt outrowCount = 0;
140  TableIterator iter(baset, cols);
141//   int count = 0 ;
142  while (!iter.pastEnd()) {
143    Table subt = iter.table();
144//     // copy the first row of this selection into the new table
145//     tout.addRow();
146//     TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
147//     // re-index to 0
148//     if ( avmode != "SCAN" && avmode != "SOURCE" ) {
149//       scanColOut.put(outrowCount, uInt(0));
150//     }
151//     ++outrowCount;
152    MDirection::ScalarColumn dircol ;
153    dircol.attach( subt, "DIRECTION" ) ;
154    Int length = subt.nrow() ;
155    vector< Vector<Double> > dirs ;
156    vector<int> indexes ;
157    for ( Int i = 0 ; i < length ; i++ ) {
158      Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
159      //os << << count++ << ": " ;
160      //os << "[" << t[0] << "," << t[1] << "]" << LogIO::POST ;
161      bool adddir = true ;
162      for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
163        //if ( allTrue( t == dirs[j] ) ) {
164        Double dx = t[0] - dirs[j][0] ;
165        Double dy = t[1] - dirs[j][1] ;
166        Double dd = sqrt( dx * dx + dy * dy ) ;
167        //if ( allNearAbs( t, dirs[j], tol ) ) {
168        if ( dd <= tol ) {
169          adddir = false ;
170          break ;
171        }
172      }
173      if ( adddir ) {
174        dirs.push_back( t ) ;
175        indexes.push_back( i ) ;
176      }
177    }
178    uInt rowNum = dirs.size() ;
179    tout.addRow( rowNum ) ;
180    for ( uInt i = 0 ; i < rowNum ; i++ ) {
181      TableCopy::copyRows( tout, subt, outrowCount+i, indexes[i], 1 ) ;
182      // re-index to 0
183      if ( avmode != "SCAN" && avmode != "SOURCE" ) {
184        scanColOut.put(outrowCount+i, uInt(0));
185      }       
186    }
187    outrowCount += rowNum ;
188    ++iter;
189  }
190  RowAccumulator acc(wtype);
191  Vector<Bool> cmask(mask);
192  acc.setUserMask(cmask);
193  ROTableRow row(tout);
194  ROArrayColumn<Float> specCol, tsysCol;
195  ROArrayColumn<uChar> flagCol;
196  ROScalarColumn<Double> mjdCol, intCol;
197  ROScalarColumn<Int> scanIDCol;
198
199  Vector<uInt> rowstodelete;
200
201  for (uInt i=0; i < tout.nrow(); ++i) {
202    for ( int j=0; j < int(in.size()); ++j ) {
203      const Table& tin = in[j]->table();
204      const TableRecord& rec = row.get(i);
205      ROScalarColumn<Double> tmp(tin, "TIME");
206      Double td;tmp.get(0,td);
207      Table basesubt = tin( tin.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
208                         && tin.col("IFNO") == Int(rec.asuInt("IFNO"))
209                         && tin.col("POLNO") == Int(rec.asuInt("POLNO")) );
210      Table subt;
211      if ( avmode == "SOURCE") {
212        subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME"));
213      } else if (avmode == "SCAN") {
214        subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME")
215                      && basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO")) );
216      } else {
217        subt = basesubt;
218      }
219
220      vector<uInt> removeRows ;
221      uInt nrsubt = subt.nrow() ;
222      for ( uInt irow = 0 ; irow < nrsubt ; irow++ ) {
223        //if ( !allTrue((subt.col("DIRECTION").getArrayDouble(TableExprId(irow)))==rec.asArrayDouble("DIRECTION")) ) {
224        Vector<Double> x0 = (subt.col("DIRECTION").getArrayDouble(TableExprId(irow))) ;
225        Vector<Double> x1 = rec.asArrayDouble("DIRECTION") ;
226        double dx = x0[0] - x1[0] ;
227        double dy = x0[0] - x1[0] ;
228        Double dd = sqrt( dx * dx + dy * dy ) ;
229        //if ( !allNearAbs((subt.col("DIRECTION").getArrayDouble(TableExprId(irow))), rec.asArrayDouble("DIRECTION"), tol ) ) {
230        if ( dd > tol ) {
231          removeRows.push_back( irow ) ;
232        }
233      }
234      if ( removeRows.size() != 0 ) {
235        subt.removeRow( removeRows ) ;
236      }
237     
238      if ( nrsubt == removeRows.size() )
239        throw(AipsError("Averaging data is empty.")) ;
240
241      specCol.attach(subt,"SPECTRA");
242      flagCol.attach(subt,"FLAGTRA");
243      tsysCol.attach(subt,"TSYS");
244      intCol.attach(subt,"INTERVAL");
245      mjdCol.attach(subt,"TIME");
246      Vector<Float> spec,tsys;
247      Vector<uChar> flag;
248      Double inter,time;
249      for (uInt k = 0; k < subt.nrow(); ++k ) {
250        flagCol.get(k, flag);
251        Vector<Bool> bflag(flag.shape());
252        convertArray(bflag, flag);
253        /*
254        if ( allEQ(bflag, True) ) {
255        continue;//don't accumulate
256        }
257        */
258        specCol.get(k, spec);
259        tsysCol.get(k, tsys);
260        intCol.get(k, inter);
261        mjdCol.get(k, time);
262        // spectrum has to be added last to enable weighting by the other values
263        acc.add(spec, !bflag, tsys, inter, time);
264      }
265
266      // If there exists a channel at which all the input spectra are masked,
267      // spec has 'nan' values for that channel and it may affect the following
268      // processes. To avoid this, replacing 'nan' values in spec with
269      // weighted-mean of all spectra in the following line.
270      // (done for CAS-2776, 2011/04/07 by Wataru Kawasaki)
271      acc.replaceNaN();
272    }
273    const Vector<Bool>& msk = acc.getMask();
274    if ( allEQ(msk, False) ) {
275      uint n = rowstodelete.nelements();
276      rowstodelete.resize(n+1, True);
277      rowstodelete[n] = i;
278      continue;
279    }
280    //write out
281    if (acc.state()) {
282      Vector<uChar> flg(msk.shape());
283      convertArray(flg, !msk);
284      for (uInt k = 0; k < flg.nelements(); ++k) {
285        uChar userFlag = 1 << 7;
286        if (msk[k]==True) userFlag = 0 << 7;
287        flg(k) = userFlag;
288      }
289
290      flagColOut.put(i, flg);
291      specColOut.put(i, acc.getSpectrum());
292      tsysColOut.put(i, acc.getTsys());
293      intColOut.put(i, acc.getInterval());
294      mjdColOut.put(i, acc.getTime());
295      // we should only have one cycle now -> reset it to be 0
296      // frequency switched data has different CYCLENO for different IFNO
297      // which requires resetting this value
298      cycColOut.put(i, uInt(0));
299    } else {
300      ostringstream oss;
301      oss << "For output row="<<i<<", all input rows of data are flagged. no averaging" << endl;
302      pushLog(String(oss));
303    }
304    acc.reset();
305  }
306
307  if (rowstodelete.nelements() > 0) {
308    os << rowstodelete << LogIO::POST ;
309    tout.removeRow(rowstodelete);
310    if (tout.nrow() == 0) {
311      throw(AipsError("Can't average fully flagged data."));
312    }
313  }
314  return out;
315}
316
317CountedPtr< Scantable >
318STMath::averageChannel( const CountedPtr < Scantable > & in,
319                          const std::string & mode,
320                          const std::string& avmode )
321{
322  (void) mode; // currently unused
323  // check if OTF observation
324  String obstype = in->getHeader().obstype ;
325  Double tol = 0.0 ;
326  if ( obstype.find( "OTF" ) != String::npos ) {
327    tol = TOL_OTF ;
328  }
329  else {
330    tol = TOL_POINT ;
331  }
332
333  // clone as this is non insitu
334  bool insitu = insitu_;
335  setInsitu(false);
336  CountedPtr< Scantable > out = getScantable(in, true);
337  setInsitu(insitu);
338  Table& tout = out->table();
339  ArrayColumn<Float> specColOut(tout,"SPECTRA");
340  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
341  ArrayColumn<Float> tsysColOut(tout,"TSYS");
342  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
343  ScalarColumn<Double> intColOut(tout, "INTERVAL");
344  Table tmp = in->table().sort("BEAMNO");
345  Block<String> cols(3);
346  cols[0] = String("BEAMNO");
347  cols[1] = String("IFNO");
348  cols[2] = String("POLNO");
349  if ( avmode == "SCAN") {
350    cols.resize(4);
351    cols[3] = String("SCANNO");
352  }
353  uInt outrowCount = 0;
354  uChar userflag = 1 << 7;
355  TableIterator iter(tmp, cols);
356  while (!iter.pastEnd()) {
357    Table subt = iter.table();
358    ROArrayColumn<Float> specCol, tsysCol;
359    ROArrayColumn<uChar> flagCol;
360    ROScalarColumn<Double> intCol(subt, "INTERVAL");
361    specCol.attach(subt,"SPECTRA");
362    flagCol.attach(subt,"FLAGTRA");
363    tsysCol.attach(subt,"TSYS");
364//     tout.addRow();
365//     TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
366//     if ( avmode != "SCAN") {
367//       scanColOut.put(outrowCount, uInt(0));
368//     }
369//     Vector<Float> tmp;
370//     specCol.get(0, tmp);
371//     uInt nchan = tmp.nelements();
372//     // have to do channel by channel here as MaskedArrMath
373//     // doesn't have partialMedians
374//     Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
375//     Vector<Float> outspec(nchan);
376//     Vector<uChar> outflag(nchan,0);
377//     Vector<Float> outtsys(1);/// @fixme when tsys is channel based
378//     for (uInt i=0; i<nchan; ++i) {
379//       Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
380//       MaskedArray<Float> ma = maskedArray(specs,flags);
381//       outspec[i] = median(ma);
382//       if ( allEQ(ma.getMask(), False) )
383//         outflag[i] = userflag;// flag data
384//     }
385//     outtsys[0] = median(tsysCol.getColumn());
386//     specColOut.put(outrowCount, outspec);
387//     flagColOut.put(outrowCount, outflag);
388//     tsysColOut.put(outrowCount, outtsys);
389//     Double intsum = sum(intCol.getColumn());
390//     intColOut.put(outrowCount, intsum);
391//     ++outrowCount;
392//     ++iter;
393    MDirection::ScalarColumn dircol ;
394    dircol.attach( subt, "DIRECTION" ) ;
395    Int length = subt.nrow() ;
396    vector< Vector<Double> > dirs ;
397    vector<int> indexes ;
398    for ( Int i = 0 ; i < length ; i++ ) {
399      Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
400      bool adddir = true ;
401      for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
402        //if ( allTrue( t == dirs[j] ) ) {
403        Double dx = t[0] - dirs[j][0] ;
404        Double dy = t[1] - dirs[j][1] ;
405        Double dd = sqrt( dx * dx + dy * dy ) ;
406        //if ( allNearAbs( t, dirs[j], tol ) ) {
407        if ( dd <= tol ) {
408          adddir = false ;
409          break ;
410        }
411      }
412      if ( adddir ) {
413        dirs.push_back( t ) ;
414        indexes.push_back( i ) ;
415      }
416    }
417    uInt rowNum = dirs.size() ;
418    tout.addRow( rowNum );
419    for ( uInt i = 0 ; i < rowNum ; i++ ) {
420      TableCopy::copyRows(tout, subt, outrowCount+i, indexes[i], 1) ;
421      if ( avmode != "SCAN") {
422        //scanColOut.put(outrowCount+i, uInt(0));
423      }
424    }
425    MDirection::ScalarColumn dircolOut ;
426    dircolOut.attach( tout, "DIRECTION" ) ;
427    for ( uInt irow = 0 ; irow < rowNum ; irow++ ) {
428      Vector<Double> t = dircolOut(outrowCount+irow).getAngle(Unit(String("rad"))).getValue() ;
429      Vector<Float> tmp;
430      specCol.get(0, tmp);
431      uInt nchan = tmp.nelements();
432      // have to do channel by channel here as MaskedArrMath
433      // doesn't have partialMedians
434      Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
435      // mask spectra for different DIRECTION
436      for ( uInt jrow = 0 ; jrow < subt.nrow() ; jrow++ ) {
437        Vector<Double> direction = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
438        //if ( t[0] != direction[0] || t[1] != direction[1] ) {
439        Double dx = t[0] - direction[0] ;
440        Double dy = t[1] - direction[1] ;
441        Double dd = sqrt( dx * dx + dy * dy ) ;
442        //if ( !allNearAbs( t, direction, tol ) ) {
443        if ( dd > tol ) {
444          flags[jrow] = userflag ;
445        }
446      }
447      Vector<Float> outspec(nchan);
448      Vector<uChar> outflag(nchan,0);
449      Vector<Float> outtsys(1);/// @fixme when tsys is channel based
450      for (uInt i=0; i<nchan; ++i) {
451        Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
452        MaskedArray<Float> ma = maskedArray(specs,flags);
453        outspec[i] = median(ma);
454        if ( allEQ(ma.getMask(), False) )
455          outflag[i] = userflag;// flag data
456      }
457      outtsys[0] = median(tsysCol.getColumn());
458      specColOut.put(outrowCount+irow, outspec);
459      flagColOut.put(outrowCount+irow, outflag);
460      tsysColOut.put(outrowCount+irow, outtsys);
461      Vector<Double> integ = intCol.getColumn() ;
462      MaskedArray<Double> mi = maskedArray( integ, flags ) ;
463      Double intsum = sum(mi);
464      intColOut.put(outrowCount+irow, intsum);
465    }
466    outrowCount += rowNum ;
467    ++iter;
468  }
469  return out;
470}
471
472CountedPtr< Scantable > STMath::getScantable(const CountedPtr< Scantable >& in,
473                                             bool droprows)
474{
475  if (insitu_) {
476    return in;
477  }
478  else {
479    // clone
480    return CountedPtr<Scantable>(new Scantable(*in, Bool(droprows)));
481  }
482}
483
484CountedPtr< Scantable > STMath::unaryOperate( const CountedPtr< Scantable >& in,
485                                              float val,
486                                              const std::string& mode,
487                                              bool tsys )
488{
489  CountedPtr< Scantable > out = getScantable(in, false);
490  Table& tab = out->table();
491  ArrayColumn<Float> specCol(tab,"SPECTRA");
492  ArrayColumn<Float> tsysCol(tab,"TSYS");
493  if (mode=="DIV") val = 1.0/val ;
494  else if (mode=="SUB") val *= -1.0 ;
495  for (uInt i=0; i<tab.nrow(); ++i) {
496    Vector<Float> spec;
497    Vector<Float> ts;
498    specCol.get(i, spec);
499    tsysCol.get(i, ts);
500    if (mode == "MUL" || mode == "DIV") {
501      //if (mode == "DIV") val = 1.0/val;
502      spec *= val;
503      specCol.put(i, spec);
504      if ( tsys ) {
505        ts *= val;
506        tsysCol.put(i, ts);
507      }
508    } else if ( mode == "ADD"  || mode == "SUB") {
509      //if (mode == "SUB") val *= -1.0;
510      spec += val;
511      specCol.put(i, spec);
512      if ( tsys ) {
513        ts += val;
514        tsysCol.put(i, ts);
515      }
516    }
517  }
518  return out;
519}
520
521CountedPtr< Scantable > STMath::arrayOperate( const CountedPtr< Scantable >& in,
522                                              const std::vector<float> val,
523                                              const std::string& mode,
524                                              const std::string& opmode,
525                                              bool tsys )
526{
527  CountedPtr< Scantable > out ;
528  if ( opmode == "channel" ) {
529    out = arrayOperateChannel( in, val, mode, tsys ) ;
530  }
531  else if ( opmode == "row" ) {
532    out = arrayOperateRow( in, val, mode, tsys ) ;
533  }
534  else {
535    throw( AipsError( "Unknown array operation mode." ) ) ;
536  }
537  return out ;
538}
539
540CountedPtr< Scantable > STMath::arrayOperateChannel( const CountedPtr< Scantable >& in,
541                                                     const std::vector<float> val,
542                                                     const std::string& mode,
543                                                     bool tsys )
544{
545  if ( val.size() == 1 ){
546    return unaryOperate( in, val[0], mode, tsys ) ;
547  }
548
549  // conformity of SPECTRA and TSYS
550  if ( tsys ) {
551    TableIterator titer(in->table(), "IFNO");
552    while ( !titer.pastEnd() ) {
553      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
554      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
555      Array<Float> spec = specCol.getColumn() ;
556      Array<Float> ts = tsysCol.getColumn() ;
557      if ( !spec.conform( ts ) ) {
558        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
559      }
560      titer.next() ;
561    }
562  }
563
564  // check if all spectra in the scantable have the same number of channel
565  vector<uInt> nchans;
566  vector<uInt> ifnos = in->getIFNos() ;
567  for ( uInt i = 0 ; i < ifnos.size() ; i++ ) {
568    nchans.push_back( in->nchan( ifnos[i] ) ) ;
569  }
570  Vector<uInt> mchans( nchans ) ;
571  if ( anyNE( mchans, mchans[0] ) ) {
572    throw( AipsError("All spectra in the input scantable must have the same number of channel for vector operation." ) ) ;
573  }
574
575  // check if vector size is equal to nchan
576  Vector<Float> fact( val ) ;
577  if ( fact.nelements() != mchans[0] ) {
578    throw( AipsError("Vector size must be 1 or be same as number of channel.") ) ;
579  }
580
581  // check divided by zero
582  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
583    throw( AipsError("Divided by zero is not recommended." ) ) ;
584  }
585
586  CountedPtr< Scantable > out = getScantable(in, false);
587  Table& tab = out->table();
588  ArrayColumn<Float> specCol(tab,"SPECTRA");
589  ArrayColumn<Float> tsysCol(tab,"TSYS");
590  if (mode == "DIV") fact = (float)1.0 / fact;
591  else if (mode == "SUB") fact *= (float)-1.0 ;
592  for (uInt i=0; i<tab.nrow(); ++i) {
593    Vector<Float> spec;
594    Vector<Float> ts;
595    specCol.get(i, spec);
596    tsysCol.get(i, ts);
597    if (mode == "MUL" || mode == "DIV") {
598      //if (mode == "DIV") fact = (float)1.0 / fact;
599      spec *= fact;
600      specCol.put(i, spec);
601      if ( tsys ) {
602        ts *= fact;
603        tsysCol.put(i, ts);
604      }
605    } else if ( mode == "ADD"  || mode == "SUB") {
606      //if (mode == "SUB") fact *= (float)-1.0 ;
607      spec += fact;
608      specCol.put(i, spec);
609      if ( tsys ) {
610        ts += fact;
611        tsysCol.put(i, ts);
612      }
613    }
614  }
615  return out;
616}
617
618CountedPtr< Scantable > STMath::arrayOperateRow( const CountedPtr< Scantable >& in,
619                                                 const std::vector<float> val,
620                                                 const std::string& mode,
621                                                 bool tsys )
622{
623  if ( val.size() == 1 ) {
624    return unaryOperate( in, val[0], mode, tsys ) ;
625  }
626
627  // conformity of SPECTRA and TSYS
628  if ( tsys ) {
629    TableIterator titer(in->table(), "IFNO");
630    while ( !titer.pastEnd() ) {
631      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
632      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
633      Array<Float> spec = specCol.getColumn() ;
634      Array<Float> ts = tsysCol.getColumn() ;
635      if ( !spec.conform( ts ) ) {
636        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
637      }
638      titer.next() ;
639    }
640  }
641
642  // check if vector size is equal to nrow
643  Vector<Float> fact( val ) ;
644  if (fact.nelements() != uInt(in->nrow())) {
645    throw( AipsError("Vector size must be 1 or be same as number of row.") ) ;
646  }
647
648  // check divided by zero
649  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
650    throw( AipsError("Divided by zero is not recommended." ) ) ;
651  }
652
653  CountedPtr< Scantable > out = getScantable(in, false);
654  Table& tab = out->table();
655  ArrayColumn<Float> specCol(tab,"SPECTRA");
656  ArrayColumn<Float> tsysCol(tab,"TSYS");
657  if (mode == "DIV") fact = (float)1.0 / fact;
658  if (mode == "SUB") fact *= (float)-1.0 ;
659  for (uInt i=0; i<tab.nrow(); ++i) {
660    Vector<Float> spec;
661    Vector<Float> ts;
662    specCol.get(i, spec);
663    tsysCol.get(i, ts);
664    if (mode == "MUL" || mode == "DIV") {
665      spec *= fact[i];
666      specCol.put(i, spec);
667      if ( tsys ) {
668        ts *= fact[i];
669        tsysCol.put(i, ts);
670      }
671    } else if ( mode == "ADD"  || mode == "SUB") {
672      spec += fact[i];
673      specCol.put(i, spec);
674      if ( tsys ) {
675        ts += fact[i];
676        tsysCol.put(i, ts);
677      }
678    }
679  }
680  return out;
681}
682
683CountedPtr< Scantable > STMath::array2dOperate( const CountedPtr< Scantable >& in,
684                                                const std::vector< std::vector<float> > val,
685                                                const std::string& mode,
686                                                bool tsys )
687{
688  // conformity of SPECTRA and TSYS
689  if ( tsys ) {
690    TableIterator titer(in->table(), "IFNO");
691    while ( !titer.pastEnd() ) {
692      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
693      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
694      Array<Float> spec = specCol.getColumn() ;
695      Array<Float> ts = tsysCol.getColumn() ;
696      if ( !spec.conform( ts ) ) {
697        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
698      }
699      titer.next() ;
700    }
701  }
702
703  // some checks
704  vector<uInt> nchans;
705  for (Int i = 0 ; i < in->nrow() ; i++) {
706    nchans.push_back((in->getSpectrum(i)).size());
707  }
708  //Vector<uInt> mchans( nchans ) ;
709  vector< Vector<Float> > facts ;
710  for ( uInt i = 0 ; i < nchans.size() ; i++ ) {
711    Vector<Float> tmp( val[i] ) ;
712    // check divided by zero
713    if ( ( mode == "DIV" ) && anyEQ( tmp, (float)0.0 ) ) {
714      throw( AipsError("Divided by zero is not recommended." ) ) ;
715    }
716    // conformity check
717    if ( tmp.nelements() != nchans[i] ) {
718      stringstream ss ;
719      ss << "Row " << i << ": Vector size must be same as number of channel." ;
720      throw( AipsError( ss.str() ) ) ;
721    }
722    facts.push_back( tmp ) ;
723  }
724
725
726  CountedPtr< Scantable > out = getScantable(in, false);
727  Table& tab = out->table();
728  ArrayColumn<Float> specCol(tab,"SPECTRA");
729  ArrayColumn<Float> tsysCol(tab,"TSYS");
730  for (uInt i=0; i<tab.nrow(); ++i) {
731    Vector<Float> fact = facts[i] ;
732    Vector<Float> spec;
733    Vector<Float> ts;
734    specCol.get(i, spec);
735    tsysCol.get(i, ts);
736    if (mode == "MUL" || mode == "DIV") {
737      if (mode == "DIV") fact = (float)1.0 / fact;
738      spec *= fact;
739      specCol.put(i, spec);
740      if ( tsys ) {
741        ts *= fact;
742        tsysCol.put(i, ts);
743      }
744    } else if ( mode == "ADD"  || mode == "SUB") {
745      if (mode == "SUB") fact *= (float)-1.0 ;
746      spec += fact;
747      specCol.put(i, spec);
748      if ( tsys ) {
749        ts += fact;
750        tsysCol.put(i, ts);
751      }
752    }
753  }
754  return out;
755}
756
757CountedPtr<Scantable> STMath::binaryOperate(const CountedPtr<Scantable>& left,
758                                            const CountedPtr<Scantable>& right,
759                                            const std::string& mode)
760{
761  bool insitu = insitu_;
762  if ( ! left->conformant(*right) ) {
763    throw(AipsError("'left' and 'right' scantables are not conformant."));
764  }
765  setInsitu(false);
766  CountedPtr< Scantable > out = getScantable(left, false);
767  setInsitu(insitu);
768  Table& tout = out->table();
769  Block<String> coln(5);
770  coln[0] = "SCANNO";  coln[1] = "CYCLENO";  coln[2] = "BEAMNO";
771  coln[3] = "IFNO";  coln[4] = "POLNO";
772  Table tmpl = tout.sort(coln);
773  Table tmpr = right->table().sort(coln);
774  ArrayColumn<Float> lspecCol(tmpl,"SPECTRA");
775  ROArrayColumn<Float> rspecCol(tmpr,"SPECTRA");
776  ArrayColumn<uChar> lflagCol(tmpl,"FLAGTRA");
777  ROArrayColumn<uChar> rflagCol(tmpr,"FLAGTRA");
778
779  for (uInt i=0; i<tout.nrow(); ++i) {
780    Vector<Float> lspecvec, rspecvec;
781    Vector<uChar> lflagvec, rflagvec;
782    lspecvec = lspecCol(i);    rspecvec = rspecCol(i);
783    lflagvec = lflagCol(i);    rflagvec = rflagCol(i);
784    MaskedArray<Float> mleft = maskedArray(lspecvec, lflagvec);
785    MaskedArray<Float> mright = maskedArray(rspecvec, rflagvec);
786    if (mode == "ADD") {
787      mleft += mright;
788    } else if ( mode == "SUB") {
789      mleft -= mright;
790    } else if ( mode == "MUL") {
791      mleft *= mright;
792    } else if ( mode == "DIV") {
793      mleft /= mright;
794    } else {
795      throw(AipsError("Illegal binary operator"));
796    }
797    lspecCol.put(i, mleft.getArray());
798  }
799  return out;
800}
801
802
803
804MaskedArray<Float> STMath::maskedArray( const Vector<Float>& s,
805                                        const Vector<uChar>& f)
806{
807  Vector<Bool> mask;
808  mask.resize(f.shape());
809  convertArray(mask, f);
810  return MaskedArray<Float>(s,!mask);
811}
812
813MaskedArray<Double> STMath::maskedArray( const Vector<Double>& s,
814                                         const Vector<uChar>& f)
815{
816  Vector<Bool> mask;
817  mask.resize(f.shape());
818  convertArray(mask, f);
819  return MaskedArray<Double>(s,!mask);
820}
821
822Vector<uChar> STMath::flagsFromMA(const MaskedArray<Float>& ma)
823{
824  const Vector<Bool>& m = ma.getMask();
825  Vector<uChar> flags(m.shape());
826  convertArray(flags, !m);
827  return flags;
828}
829
830CountedPtr< Scantable > STMath::autoQuotient( const CountedPtr< Scantable >& in,
831                                              const std::string & mode,
832                                              bool preserve )
833{
834  /// @todo make other modes available
835  /// modes should be "nearest", "pair"
836  // make this operation non insitu
837  (void) mode; //currently unused
838  const Table& tin = in->table();
839  Table ons = tin(tin.col("SRCTYPE") == Int(SrcType::PSON));
840  Table offs = tin(tin.col("SRCTYPE") == Int(SrcType::PSOFF));
841  if ( offs.nrow() == 0 )
842    throw(AipsError("No 'off' scans present."));
843  // put all "on" scans into output table
844
845  bool insitu = insitu_;
846  setInsitu(false);
847  CountedPtr< Scantable > out = getScantable(in, true);
848  setInsitu(insitu);
849  Table& tout = out->table();
850
851  TableCopy::copyRows(tout, ons);
852  TableRow row(tout);
853  ROScalarColumn<Double> offtimeCol(offs, "TIME");
854  ArrayColumn<Float> outspecCol(tout, "SPECTRA");
855  ROArrayColumn<Float> outtsysCol(tout, "TSYS");
856  ArrayColumn<uChar> outflagCol(tout, "FLAGTRA");
857  for (uInt i=0; i < tout.nrow(); ++i) {
858    const TableRecord& rec = row.get(i);
859    Double ontime = rec.asDouble("TIME");
860    Table presel = offs(offs.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
861                        && offs.col("IFNO") == Int(rec.asuInt("IFNO"))
862                        && offs.col("POLNO") == Int(rec.asuInt("POLNO")) );
863    ROScalarColumn<Double> offtimeCol(presel, "TIME");
864
865    Double mindeltat = min(abs(offtimeCol.getColumn() - ontime));
866    // Timestamp may vary within a cycle ???!!!
867    // increase this by 0.01 sec in case of rounding errors...
868    // There might be a better way to do this.
869    // fix to this fix. TIME is MJD, so 1.0d not 1.0s
870    mindeltat += 0.01/24./60./60.;
871    Table sel = presel( abs(presel.col("TIME")-ontime) <= mindeltat);
872
873    if ( sel.nrow() < 1 )  {
874      throw(AipsError("No closest in time found... This could be a rounding "
875                      "issue. Try quotient instead."));
876    }
877    TableRow offrow(sel);
878    const TableRecord& offrec = offrow.get(0);//should only be one row
879    RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
880    RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
881    RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
882    /// @fixme this assumes tsys is a scalar not vector
883    Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
884    Vector<Float> specon, tsyson;
885    outtsysCol.get(i, tsyson);
886    outspecCol.get(i, specon);
887    Vector<uChar> flagon;
888    outflagCol.get(i, flagon);
889    MaskedArray<Float> mon = maskedArray(specon, flagon);
890    MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
891    MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
892    if (preserve) {
893      quot -= tsysoffscalar;
894    } else {
895      quot -= tsyson[0];
896    }
897    outspecCol.put(i, quot.getArray());
898    outflagCol.put(i, flagsFromMA(quot));
899  }
900  // renumber scanno
901  TableIterator it(tout, "SCANNO");
902  uInt i = 0;
903  while ( !it.pastEnd() ) {
904    Table t = it.table();
905    TableVector<uInt> vec(t, "SCANNO");
906    vec = i;
907    ++i;
908    ++it;
909  }
910  return out;
911}
912
913
914CountedPtr< Scantable > STMath::quotient( const CountedPtr< Scantable > & on,
915                                          const CountedPtr< Scantable > & off,
916                                          bool preserve )
917{
918  bool insitu = insitu_;
919  if ( ! on->conformant(*off) ) {
920    throw(AipsError("'on' and 'off' scantables are not conformant."));
921  }
922  setInsitu(false);
923  CountedPtr< Scantable > out = getScantable(on, false);
924  setInsitu(insitu);
925  Table& tout = out->table();
926  const Table& toff = off->table();
927  TableIterator sit(tout, "SCANNO");
928  TableIterator s2it(toff, "SCANNO");
929  while ( !sit.pastEnd() ) {
930    Table ton = sit.table();
931    TableRow row(ton);
932    Table t = s2it.table();
933    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
934    ROArrayColumn<Float> outtsysCol(ton, "TSYS");
935    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
936    for (uInt i=0; i < ton.nrow(); ++i) {
937      const TableRecord& rec = row.get(i);
938      Table offsel = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
939                          && t.col("IFNO") == Int(rec.asuInt("IFNO"))
940                          && t.col("POLNO") == Int(rec.asuInt("POLNO")) );
941      if ( offsel.nrow() == 0 )
942        throw AipsError("STMath::quotient: no matching off");
943      TableRow offrow(offsel);
944      const TableRecord& offrec = offrow.get(0);//should be ncycles - take first
945      RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
946      RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
947      RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
948      Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
949      Vector<Float> specon, tsyson;
950      outtsysCol.get(i, tsyson);
951      outspecCol.get(i, specon);
952      Vector<uChar> flagon;
953      outflagCol.get(i, flagon);
954      MaskedArray<Float> mon = maskedArray(specon, flagon);
955      MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
956      MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
957      if (preserve) {
958        quot -= tsysoffscalar;
959      } else {
960        quot -= tsyson[0];
961      }
962      outspecCol.put(i, quot.getArray());
963      outflagCol.put(i, flagsFromMA(quot));
964    }
965    ++sit;
966    ++s2it;
967    // take the first off for each on scan which doesn't have a
968    // matching off scan
969    // non <= noff:  matching pairs, non > noff matching pairs then first off
970    if ( s2it.pastEnd() ) s2it.reset();
971  }
972  return out;
973}
974
975// dototalpower (migration of GBTIDL procedure dototalpower.pro)
976// calibrate the CAL on-off pair. It calculate Tsys and average CAL on-off subintegrations
977// do it for each cycles in a specific scan.
978CountedPtr< Scantable > STMath::dototalpower( const CountedPtr< Scantable >& calon,
979                                              const CountedPtr< Scantable >& caloff, Float tcal )
980{
981  if ( ! calon->conformant(*caloff) ) {
982    throw(AipsError("'CAL on' and 'CAL off' scantables are not conformant."));
983  }
984  setInsitu(false);
985  CountedPtr< Scantable > out = getScantable(caloff, false);
986  Table& tout = out->table();
987  const Table& tcon = calon->table();
988  Vector<Float> tcalout;
989
990  std::map<uInt,uInt> tcalIdToRecNoMap;
991  const Table& calOffTcalTable = caloff->tcal().table();
992  {
993    ROScalarColumn<uInt> calOffTcalTable_IDcol(calOffTcalTable, "ID");
994    const Vector<uInt> tcalIds(calOffTcalTable_IDcol.getColumn());
995    size_t tcalIdsEnd = tcalIds.nelements();
996    for (uInt i = 0; i < tcalIdsEnd; i++) {
997      tcalIdToRecNoMap[tcalIds[i]] = i;
998    }
999  }
1000  ROArrayColumn<Float> calOffTcalTable_TCALcol(calOffTcalTable, "TCAL");
1001
1002  if ( tout.nrow() != tcon.nrow() ) {
1003    throw(AipsError("Mismatch in number of rows to form cal on - off pair."));
1004  }
1005  // iteration by scanno or cycle no.
1006  TableIterator sit(tout, "SCANNO");
1007  TableIterator s2it(tcon, "SCANNO");
1008  while ( !sit.pastEnd() ) {
1009    Table toff = sit.table();
1010    TableRow row(toff);
1011    Table t = s2it.table();
1012    ScalarColumn<Double> outintCol(toff, "INTERVAL");
1013    ArrayColumn<Float> outspecCol(toff, "SPECTRA");
1014    ArrayColumn<Float> outtsysCol(toff, "TSYS");
1015    ArrayColumn<uChar> outflagCol(toff, "FLAGTRA");
1016    ROScalarColumn<uInt> outtcalIdCol(toff, "TCAL_ID");
1017    ROScalarColumn<uInt> outpolCol(toff, "POLNO");
1018    ROScalarColumn<Double> onintCol(t, "INTERVAL");
1019    ROArrayColumn<Float> onspecCol(t, "SPECTRA");
1020    ROArrayColumn<Float> ontsysCol(t, "TSYS");
1021    ROArrayColumn<uChar> onflagCol(t, "FLAGTRA");
1022    //ROScalarColumn<uInt> ontcalIdCol(t, "TCAL_ID");
1023
1024    for (uInt i=0; i < toff.nrow(); ++i) {
1025      //skip these checks -> assumes the data order are the same between the cal on off pairs
1026      //
1027      Vector<Float> specCalon, specCaloff;
1028      // to store scalar (mean) tsys
1029      Vector<Float> tsysout(1);
1030      uInt tcalId, polno;
1031      Double offint, onint;
1032      outpolCol.get(i, polno);
1033      outspecCol.get(i, specCaloff);
1034      onspecCol.get(i, specCalon);
1035      Vector<uChar> flagCaloff, flagCalon;
1036      outflagCol.get(i, flagCaloff);
1037      onflagCol.get(i, flagCalon);
1038      outtcalIdCol.get(i, tcalId);
1039      outintCol.get(i, offint);
1040      onintCol.get(i, onint);
1041      // caluculate mean Tsys
1042      uInt nchan = specCaloff.nelements();
1043      // percentage of edge cut off
1044      uInt pc = 10;
1045      uInt bchan = nchan/pc;
1046      uInt echan = nchan-bchan;
1047
1048      Slicer chansl(IPosition(1,bchan-1), IPosition(1,echan-1), IPosition(1,1),Slicer::endIsLast);
1049      Vector<Float> testsubsp = specCaloff(chansl);
1050      MaskedArray<Float> spoff = maskedArray( specCaloff(chansl),flagCaloff(chansl) );
1051      MaskedArray<Float> spon = maskedArray( specCalon(chansl),flagCalon(chansl) );
1052      MaskedArray<Float> spdiff = spon-spoff;
1053      uInt noff = spoff.nelementsValid();
1054      //uInt non = spon.nelementsValid();
1055      uInt ndiff = spdiff.nelementsValid();
1056      Float meantsys;
1057
1058/**
1059      Double subspec, subdiff;
1060      uInt usednchan;
1061      subspec = 0;
1062      subdiff = 0;
1063      usednchan = 0;
1064      for(uInt k=(bchan-1); k<echan; k++) {
1065        subspec += specCaloff[k];
1066        subdiff += static_cast<Double>(specCalon[k]-specCaloff[k]);
1067        ++usednchan;
1068      }
1069**/
1070      // get tcal if input tcal <= 0
1071      Float tcalUsed;
1072      tcalUsed = tcal;
1073      if ( tcal <= 0.0 ) {
1074        uInt tcalRecNo = tcalIdToRecNoMap[tcalId];
1075        calOffTcalTable_TCALcol.get(tcalRecNo, tcalout);
1076//         if (polno<=3) {
1077//           tcalUsed = tcalout[polno];
1078//         }
1079//         else {
1080//           tcalUsed = tcalout[0];
1081//         }
1082        if ( tcalout.size() == 1 )
1083          tcalUsed = tcalout[0] ;
1084        else if ( tcalout.size() == nchan )
1085          tcalUsed = mean(tcalout) ;
1086        else {
1087          uInt ipol = polno ;
1088          if ( ipol > 3 ) ipol = 0 ;
1089          tcalUsed = tcalout[ipol] ;
1090        }
1091      }
1092
1093      Float meanoff;
1094      Float meandiff;
1095      if (noff && ndiff) {
1096         //Debug
1097         //if(noff!=ndiff) cerr<<"noff and ndiff is not equal"<<endl;
1098         //LogIO os( LogOrigin( "STMath", "dototalpower()", WHERE ) ) ;
1099         //if(noff!=ndiff) os<<"noff and ndiff is not equal"<<LogIO::POST;
1100         meanoff = sum(spoff)/noff;
1101         meandiff = sum(spdiff)/ndiff;
1102         meantsys= (meanoff/meandiff )*tcalUsed + tcalUsed/2;
1103      }
1104      else {
1105         meantsys=1;
1106      }
1107
1108      tsysout[0] = Float(meantsys);
1109      MaskedArray<Float> mcaloff = maskedArray(specCaloff, flagCaloff);
1110      MaskedArray<Float> mcalon = maskedArray(specCalon, flagCalon);
1111      MaskedArray<Float> sig =   Float(0.5) * (mcaloff + mcalon);
1112      //uInt ncaloff = mcaloff.nelementsValid();
1113      //uInt ncalon = mcalon.nelementsValid();
1114
1115      outintCol.put(i, offint+onint);
1116      outspecCol.put(i, sig.getArray());
1117      outflagCol.put(i, flagsFromMA(sig));
1118      outtsysCol.put(i, tsysout);
1119    }
1120    ++sit;
1121    ++s2it;
1122  }
1123  return out;
1124}
1125
1126//dosigref - migrated from GBT IDL's dosigref.pro, do calibration of position switch
1127// observatiions.
1128// input: sig and ref scantables, and an optional boxcar smoothing width(default width=0,
1129//        no smoothing).
1130// output: resultant scantable [= (sig-ref/ref)*tsys]
1131CountedPtr< Scantable > STMath::dosigref( const CountedPtr < Scantable >& sig,
1132                                          const CountedPtr < Scantable >& ref,
1133                                          int smoothref,
1134                                          casa::Float tsysv,
1135                                          casa::Float tau )
1136{
1137if ( ! ref->conformant(*sig) ) {
1138    throw(AipsError("'sig' and 'ref' scantables are not conformant."));
1139  }
1140  setInsitu(false);
1141  CountedPtr< Scantable > out = getScantable(sig, false);
1142  CountedPtr< Scantable > smref;
1143  if ( smoothref > 1 ) {
1144    float fsmoothref = static_cast<float>(smoothref);
1145    std::string inkernel = "boxcar";
1146    smref = smooth(ref, inkernel, fsmoothref );
1147    ostringstream oss;
1148    oss<<"Applied smoothing of "<<fsmoothref<<" on the reference."<<endl;
1149    pushLog(String(oss));
1150  }
1151  else {
1152    smref = ref;
1153  }
1154  Table& tout = out->table();
1155  const Table& tref = smref->table();
1156  if ( tout.nrow() != tref.nrow() ) {
1157    throw(AipsError("Mismatch in number of rows to form on-source and reference pair."));
1158  }
1159  // iteration by scanno? or cycle no.
1160  TableIterator sit(tout, "SCANNO");
1161  TableIterator s2it(tref, "SCANNO");
1162  while ( !sit.pastEnd() ) {
1163    Table ton = sit.table();
1164    Table t = s2it.table();
1165    ScalarColumn<Double> outintCol(ton, "INTERVAL");
1166    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1167    ArrayColumn<Float> outtsysCol(ton, "TSYS");
1168    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1169    ArrayColumn<Float> refspecCol(t, "SPECTRA");
1170    ROScalarColumn<Double> refintCol(t, "INTERVAL");
1171    ROArrayColumn<Float> reftsysCol(t, "TSYS");
1172    ArrayColumn<uChar> refflagCol(t, "FLAGTRA");
1173    ROScalarColumn<Float> refelevCol(t, "ELEVATION");
1174    for (uInt i=0; i < ton.nrow(); ++i) {
1175
1176      Double onint, refint;
1177      Vector<Float> specon, specref;
1178      // to store scalar (mean) tsys
1179      Vector<Float> tsysref;
1180      outintCol.get(i, onint);
1181      refintCol.get(i, refint);
1182      outspecCol.get(i, specon);
1183      refspecCol.get(i, specref);
1184      Vector<uChar> flagref, flagon;
1185      outflagCol.get(i, flagon);
1186      refflagCol.get(i, flagref);
1187      reftsysCol.get(i, tsysref);
1188
1189      Float tsysrefscalar;
1190      if ( tsysv > 0.0 ) {
1191        ostringstream oss;
1192        Float elev;
1193        refelevCol.get(i, elev);
1194        oss << "user specified Tsys = " << tsysv;
1195        // do recalc elevation if EL = 0
1196        if ( elev == 0 ) {
1197          throw(AipsError("EL=0, elevation data is missing."));
1198        } else {
1199          if ( tau <= 0.0 ) {
1200            throw(AipsError("Valid tau is not supplied."));
1201          } else {
1202            tsysrefscalar = tsysv * exp(tau/elev);
1203          }
1204        }
1205        oss << ", corrected (for El) tsys= "<<tsysrefscalar;
1206        pushLog(String(oss));
1207      }
1208      else {
1209        tsysrefscalar = tsysref[0];
1210      }
1211      //get quotient spectrum
1212      MaskedArray<Float> mref = maskedArray(specref, flagref);
1213      MaskedArray<Float> mon = maskedArray(specon, flagon);
1214      MaskedArray<Float> specres =   tsysrefscalar*((mon - mref)/mref);
1215      Double resint = onint*refint*smoothref/(onint+refint*smoothref);
1216
1217      //Debug
1218      //cerr<<"Tsys used="<<tsysrefscalar<<endl;
1219      //LogIO os( LogOrigin( "STMath", "dosigref", WHERE ) ) ;
1220      //os<<"Tsys used="<<tsysrefscalar<<LogIO::POST;
1221      // fill the result, replay signal tsys by reference tsys
1222      outintCol.put(i, resint);
1223      outspecCol.put(i, specres.getArray());
1224      outflagCol.put(i, flagsFromMA(specres));
1225      outtsysCol.put(i, tsysref);
1226    }
1227    ++sit;
1228    ++s2it;
1229  }
1230  return out;
1231}
1232
1233CountedPtr< Scantable > STMath::donod(const casa::CountedPtr<Scantable>& s,
1234                                     const std::vector<int>& scans,
1235                                     int smoothref,
1236                                     casa::Float tsysv,
1237                                     casa::Float tau,
1238                                     casa::Float tcal )
1239
1240{
1241  setInsitu(false);
1242  STSelector sel;
1243  std::vector<int> scan1, scan2, beams, types;
1244  std::vector< vector<int> > scanpair;
1245  //std::vector<string> calstate;
1246  std::vector<int> calstate;
1247  String msg;
1248
1249  CountedPtr< Scantable > s1b1on, s1b1off, s1b2on, s1b2off;
1250  CountedPtr< Scantable > s2b1on, s2b1off, s2b2on, s2b2off;
1251
1252  std::vector< CountedPtr< Scantable > > sctables;
1253  sctables.push_back(s1b1on);
1254  sctables.push_back(s1b1off);
1255  sctables.push_back(s1b2on);
1256  sctables.push_back(s1b2off);
1257  sctables.push_back(s2b1on);
1258  sctables.push_back(s2b1off);
1259  sctables.push_back(s2b2on);
1260  sctables.push_back(s2b2off);
1261
1262  //check scanlist
1263  int n=s->checkScanInfo(scans);
1264  if (n==1) {
1265     throw(AipsError("Incorrect scan pairs. "));
1266  }
1267
1268  // Assume scans contain only a pair of consecutive scan numbers.
1269  // It is assumed that first beam, b1,  is on target.
1270  // There is no check if the first beam is on or not.
1271  if ( scans.size()==1 ) {
1272    scan1.push_back(scans[0]);
1273    scan2.push_back(scans[0]+1);
1274  } else if ( scans.size()==2 ) {
1275   scan1.push_back(scans[0]);
1276   scan2.push_back(scans[1]);
1277  } else {
1278    if ( scans.size()%2 == 0 ) {
1279      for (uInt i=0; i<scans.size(); i++) {
1280        if (i%2 == 0) {
1281          scan1.push_back(scans[i]);
1282        }
1283        else {
1284          scan2.push_back(scans[i]);
1285        }
1286      }
1287    } else {
1288      throw(AipsError("Odd numbers of scans, cannot form pairs."));
1289    }
1290  }
1291  scanpair.push_back(scan1);
1292  scanpair.push_back(scan2);
1293  //calstate.push_back("*calon");
1294  //calstate.push_back("*[^calon]");
1295  calstate.push_back(SrcType::NODCAL);
1296  calstate.push_back(SrcType::NOD);
1297  CountedPtr< Scantable > ws = getScantable(s, false);
1298  uInt l=0;
1299  while ( l < sctables.size() ) {
1300    for (uInt i=0; i < 2; i++) {
1301      for (uInt j=0; j < 2; j++) {
1302        for (uInt k=0; k < 2; k++) {
1303          sel.reset();
1304          sel.setScans(scanpair[i]);
1305          //sel.setName(calstate[k]);
1306          types.clear();
1307          types.push_back(calstate[k]);
1308          sel.setTypes(types);
1309          beams.clear();
1310          beams.push_back(j);
1311          sel.setBeams(beams);
1312          ws->setSelection(sel);
1313          sctables[l]= getScantable(ws, false);
1314          l++;
1315        }
1316      }
1317    }
1318  }
1319
1320  // replace here by splitData or getData functionality
1321  CountedPtr< Scantable > sig1;
1322  CountedPtr< Scantable > ref1;
1323  CountedPtr< Scantable > sig2;
1324  CountedPtr< Scantable > ref2;
1325  CountedPtr< Scantable > calb1;
1326  CountedPtr< Scantable > calb2;
1327
1328  msg=String("Processing dototalpower for subset of the data");
1329  ostringstream oss1;
1330  oss1 << msg  << endl;
1331  pushLog(String(oss1));
1332  // Debug for IRC CS data
1333  //float tcal1=7.0;
1334  //float tcal2=4.0;
1335  sig1 = dototalpower(sctables[0], sctables[1], tcal=tcal);
1336  ref1 = dototalpower(sctables[2], sctables[3], tcal=tcal);
1337  ref2 = dototalpower(sctables[4], sctables[5], tcal=tcal);
1338  sig2 = dototalpower(sctables[6], sctables[7], tcal=tcal);
1339
1340  // correction of user-specified tsys for elevation here
1341
1342  // dosigref calibration
1343  msg=String("Processing dosigref for subset of the data");
1344  ostringstream oss2;
1345  oss2 << msg  << endl;
1346  pushLog(String(oss2));
1347  calb1=dosigref(sig1,ref2,smoothref,tsysv,tau);
1348  calb2=dosigref(sig2,ref1,smoothref,tsysv,tau);
1349
1350  // iteration by scanno or cycle no.
1351  Table& tcalb1 = calb1->table();
1352  Table& tcalb2 = calb2->table();
1353  TableIterator sit(tcalb1, "SCANNO");
1354  TableIterator s2it(tcalb2, "SCANNO");
1355  while ( !sit.pastEnd() ) {
1356    Table t1 = sit.table();
1357    Table t2= s2it.table();
1358    ArrayColumn<Float> outspecCol(t1, "SPECTRA");
1359    ArrayColumn<Float> outtsysCol(t1, "TSYS");
1360    ArrayColumn<uChar> outflagCol(t1, "FLAGTRA");
1361    ScalarColumn<Double> outintCol(t1, "INTERVAL");
1362    ArrayColumn<Float> t2specCol(t2, "SPECTRA");
1363    ROArrayColumn<Float> t2tsysCol(t2, "TSYS");
1364    ArrayColumn<uChar> t2flagCol(t2, "FLAGTRA");
1365    ROScalarColumn<Double> t2intCol(t2, "INTERVAL");
1366    for (uInt i=0; i < t1.nrow(); ++i) {
1367      Vector<Float> spec1, spec2;
1368      // to store scalar (mean) tsys
1369      Vector<Float> tsys1, tsys2;
1370      Vector<uChar> flag1, flag2;
1371      Double tint1, tint2;
1372      outspecCol.get(i, spec1);
1373      t2specCol.get(i, spec2);
1374      outflagCol.get(i, flag1);
1375      t2flagCol.get(i, flag2);
1376      outtsysCol.get(i, tsys1);
1377      t2tsysCol.get(i, tsys2);
1378      outintCol.get(i, tint1);
1379      t2intCol.get(i, tint2);
1380      // average
1381      // assume scalar tsys for weights
1382      Float wt1, wt2, tsyssq1, tsyssq2;
1383      tsyssq1 = tsys1[0]*tsys1[0];
1384      tsyssq2 = tsys2[0]*tsys2[0];
1385      wt1 = Float(tint1)/tsyssq1;
1386      wt2 = Float(tint2)/tsyssq2;
1387      Float invsumwt=1/(wt1+wt2);
1388      MaskedArray<Float> mspec1 = maskedArray(spec1, flag1);
1389      MaskedArray<Float> mspec2 = maskedArray(spec2, flag2);
1390      MaskedArray<Float> avspec =  invsumwt * (wt1*mspec1 + wt2*mspec2);
1391      //Array<Float> avtsys =  Float(0.5) * (tsys1 + tsys2);
1392      // cerr<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<endl;
1393      // LogIO os( LogOrigin( "STMath", "donod", WHERE ) ) ;
1394      // os<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<LogIO::POST;
1395      tsys1[0] = sqrt(tsyssq1 + tsyssq2);
1396      Array<Float> avtsys =  tsys1;
1397
1398      outspecCol.put(i, avspec.getArray());
1399      outflagCol.put(i, flagsFromMA(avspec));
1400      outtsysCol.put(i, avtsys);
1401    }
1402    ++sit;
1403    ++s2it;
1404  }
1405  return calb1;
1406}
1407
1408//GBTIDL version of frequency switched data calibration
1409CountedPtr< Scantable > STMath::dofs( const CountedPtr< Scantable >& s,
1410                                      const std::vector<int>& scans,
1411                                      int smoothref,
1412                                      casa::Float tsysv,
1413                                      casa::Float tau,
1414                                      casa::Float tcal )
1415{
1416
1417
1418  (void) scans; //currently unused
1419  STSelector sel;
1420  CountedPtr< Scantable > ws = getScantable(s, false);
1421  CountedPtr< Scantable > sig, sigwcal, ref, refwcal;
1422  CountedPtr< Scantable > calsig, calref, out, out1, out2;
1423  Bool nofold=False;
1424  vector<int> types ;
1425
1426  //split the data
1427  //sel.setName("*_fs");
1428  types.push_back( SrcType::FSON ) ;
1429  sel.setTypes( types ) ;
1430  ws->setSelection(sel);
1431  sig = getScantable(ws,false);
1432  sel.reset();
1433  types.clear() ;
1434  //sel.setName("*_fs_calon");
1435  types.push_back( SrcType::FONCAL ) ;
1436  sel.setTypes( types ) ;
1437  ws->setSelection(sel);
1438  sigwcal = getScantable(ws,false);
1439  sel.reset();
1440  types.clear() ;
1441  //sel.setName("*_fsr");
1442  types.push_back( SrcType::FSOFF ) ;
1443  sel.setTypes( types ) ;
1444  ws->setSelection(sel);
1445  ref = getScantable(ws,false);
1446  sel.reset();
1447  types.clear() ;
1448  //sel.setName("*_fsr_calon");
1449  types.push_back( SrcType::FOFFCAL ) ;
1450  sel.setTypes( types ) ;
1451  ws->setSelection(sel);
1452  refwcal = getScantable(ws,false);
1453  sel.reset() ;
1454  types.clear() ;
1455
1456  calsig = dototalpower(sigwcal, sig, tcal=tcal);
1457  calref = dototalpower(refwcal, ref, tcal=tcal);
1458
1459  out1=dosigref(calsig,calref,smoothref,tsysv,tau);
1460  out2=dosigref(calref,calsig,smoothref,tsysv,tau);
1461
1462  Table& tabout1=out1->table();
1463  Table& tabout2=out2->table();
1464  ROScalarColumn<uInt> freqidCol1(tabout1, "FREQ_ID");
1465  ScalarColumn<uInt> freqidCol2(tabout2, "FREQ_ID");
1466  ROArrayColumn<Float> specCol(tabout2, "SPECTRA");
1467  Vector<Float> spec; specCol.get(0, spec);
1468  uInt nchan = spec.nelements();
1469  uInt freqid1; freqidCol1.get(0,freqid1);
1470  uInt freqid2; freqidCol2.get(0,freqid2);
1471  Double rp1, rp2, rv1, rv2, inc1, inc2;
1472  out1->frequencies().getEntry(rp1, rv1, inc1, freqid1);
1473  out2->frequencies().getEntry(rp2, rv2, inc2, freqid2);
1474  //cerr << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << endl ;
1475  //LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1476  //os << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << LogIO::POST ;
1477  if (rp1==rp2) {
1478    Double foffset = rv1 - rv2;
1479    uInt choffset = static_cast<uInt>(foffset/abs(inc2));
1480    if (choffset >= nchan) {
1481      //cerr<<"out-band frequency switching, no folding"<<endl;
1482      LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1483      os<<"out-band frequency switching, no folding"<<LogIO::POST;
1484      nofold = True;
1485    }
1486  }
1487
1488  if (nofold) {
1489    std::vector< CountedPtr< Scantable > > tabs;
1490    tabs.push_back(out1);
1491    tabs.push_back(out2);
1492    out = merge(tabs);
1493  }
1494  else {
1495    //out = out1;
1496    Double choffset = ( rv1 - rv2 ) / inc2 ;
1497    out = dofold( out1, out2, choffset ) ;
1498  }
1499   
1500  return out;
1501}
1502
1503CountedPtr<Scantable> STMath::dofold( const CountedPtr<Scantable> &sig,
1504                                      const CountedPtr<Scantable> &ref,
1505                                      Double choffset,
1506                                      Double choffset2 )
1507{
1508  LogIO os( LogOrigin( "STMath", "dofold", WHERE ) ) ;
1509  os << "choffset=" << choffset << " choffset2=" << choffset2 << LogIO::POST ;
1510
1511  // output scantable
1512  CountedPtr<Scantable> out = getScantable( sig, false ) ;
1513
1514  // separate choffset to integer part and decimal part
1515  Int ioffset = (Int)choffset ;
1516  Double doffset = choffset - ioffset ;
1517  Int ioffset2 = (Int)choffset2 ;
1518  Double doffset2 = choffset2 - ioffset2 ;
1519  os << "ioffset=" << ioffset << " doffset=" << doffset << LogIO::POST ;
1520  os << "ioffset2=" << ioffset2 << " doffset2=" << doffset2 << LogIO::POST ; 
1521
1522  // get column
1523  ROArrayColumn<Float> specCol1( sig->table(), "SPECTRA" ) ;
1524  ROArrayColumn<Float> specCol2( ref->table(), "SPECTRA" ) ;
1525  ROArrayColumn<Float> tsysCol1( sig->table(), "TSYS" ) ;
1526  ROArrayColumn<Float> tsysCol2( ref->table(), "TSYS" ) ;
1527  ROArrayColumn<uChar> flagCol1( sig->table(), "FLAGTRA" ) ;
1528  ROArrayColumn<uChar> flagCol2( ref->table(), "FLAGTRA" ) ;
1529  ROScalarColumn<Double> mjdCol1( sig->table(), "TIME" ) ;
1530  ROScalarColumn<Double> mjdCol2( ref->table(), "TIME" ) ;
1531  ROScalarColumn<Double> intervalCol1( sig->table(), "INTERVAL" ) ;
1532  ROScalarColumn<Double> intervalCol2( ref->table(), "INTERVAL" ) ;
1533
1534  // check
1535  if ( ioffset == 0 ) {
1536    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1537    os << "channel offset is zero, no folding" << LogIO::POST ;
1538    return out ;
1539  }
1540  int nchan = ref->nchan() ;
1541  if ( abs(ioffset) >= nchan ) {
1542    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1543    os << "out-band frequency switching, no folding" << LogIO::POST ;
1544    return out ;
1545  }
1546
1547  // attach column for output scantable
1548  ArrayColumn<Float> specColOut( out->table(), "SPECTRA" ) ;
1549  ArrayColumn<uChar> flagColOut( out->table(), "FLAGTRA" ) ;
1550  ArrayColumn<Float> tsysColOut( out->table(), "TSYS" ) ;
1551  ScalarColumn<Double> mjdColOut( out->table(), "TIME" ) ;
1552  ScalarColumn<Double> intervalColOut( out->table(), "INTERVAL" ) ;
1553  ScalarColumn<uInt> fidColOut( out->table(), "FREQ_ID" ) ;
1554
1555  // for each row
1556  // assume that the data order are same between sig and ref
1557  RowAccumulator acc( asap::W_TINTSYS ) ;
1558  for ( int i = 0 ; i < sig->nrow() ; i++ ) {
1559    // get values
1560    Vector<Float> spsig ;
1561    specCol1.get( i, spsig ) ;
1562    Vector<Float> spref ;
1563    specCol2.get( i, spref ) ;
1564    Vector<Float> tsyssig ;
1565    tsysCol1.get( i, tsyssig ) ;
1566    Vector<Float> tsysref ;
1567    tsysCol2.get( i, tsysref ) ;
1568    Vector<uChar> flagsig ;
1569    flagCol1.get( i, flagsig ) ;
1570    Vector<uChar> flagref ;
1571    flagCol2.get( i, flagref ) ;
1572    Double timesig ;
1573    mjdCol1.get( i, timesig ) ;
1574    Double timeref ;
1575    mjdCol2.get( i, timeref ) ;
1576    Double intsig ;
1577    intervalCol1.get( i, intsig ) ;
1578    Double intref ;
1579    intervalCol2.get( i, intref ) ;
1580
1581    // shift reference spectra
1582    int refchan = spref.nelements() ;
1583    Vector<Float> sspref( spref.nelements() ) ;
1584    Vector<Float> stsysref( tsysref.nelements() ) ;
1585    Vector<uChar> sflagref( flagref.nelements() ) ;
1586    if ( ioffset > 0 ) {
1587      // SPECTRA and FLAGTRA
1588      for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1589        sspref[j] = spref[j+ioffset] ;
1590        sflagref[j] = flagref[j+ioffset] ;
1591      }
1592      for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1593        sspref[j] = spref[j-refchan+ioffset] ;
1594        sflagref[j] = flagref[j-refchan+ioffset] ;
1595      }
1596      spref = sspref.copy() ;
1597      flagref = sflagref.copy() ;
1598      for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1599        sspref[j] = doffset * spref[j+1] + ( 1.0 - doffset ) * spref[j] ;
1600        sflagref[j] = flagref[j+1] + flagref[j] ;
1601      }
1602      sspref[refchan-1] = doffset * spref[0] + ( 1.0 - doffset ) * spref[refchan-1] ;
1603      sflagref[refchan-1] = flagref[0] + flagref[refchan-1] ;
1604
1605      // TSYS
1606      if ( spref.nelements() == tsysref.nelements() ) {
1607        for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1608          stsysref[j] = tsysref[j+ioffset] ;
1609        }
1610        for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1611          stsysref[j] = tsysref[j-refchan+ioffset] ;
1612        }
1613        tsysref = stsysref.copy() ;
1614        for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1615          stsysref[j] = doffset * tsysref[j+1] + ( 1.0 - doffset ) * tsysref[j] ;
1616        }
1617        stsysref[refchan-1] = doffset * tsysref[0] + ( 1.0 - doffset ) * tsysref[refchan-1] ;
1618      }
1619    }
1620    else {
1621      // SPECTRA and FLAGTRA
1622      for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1623        sspref[j] = spref[refchan+ioffset+j] ;
1624        sflagref[j] = flagref[refchan+ioffset+j] ;
1625      }
1626      for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1627        sspref[j] = spref[j+ioffset] ;
1628        sflagref[j] = flagref[j+ioffset] ;
1629      }
1630      spref = sspref.copy() ;
1631      flagref = sflagref.copy() ;
1632      sspref[0] = doffset * spref[refchan-1] + ( 1.0 - doffset ) * spref[0] ;
1633      sflagref[0] = flagref[0] + flagref[refchan-1] ;
1634      for ( int j = 1 ; j < refchan ; j++ ) {
1635        sspref[j] = doffset * spref[j-1] + ( 1.0 - doffset ) * spref[j] ;
1636        sflagref[j] = flagref[j-1] + flagref[j] ;
1637      }
1638      // TSYS
1639      if ( spref.nelements() == tsysref.nelements() ) {
1640        for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1641          stsysref[j] = tsysref[refchan+ioffset+j] ;
1642        }
1643        for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1644          stsysref[j] = tsysref[j+ioffset] ;
1645        }
1646        tsysref = stsysref.copy() ;
1647        stsysref[0] = doffset * tsysref[refchan-1] + ( 1.0 - doffset ) * tsysref[0] ;
1648        for ( int j = 1 ; j < refchan ; j++ ) {
1649          stsysref[j] = doffset * tsysref[j-1] + ( 1.0 - doffset ) * tsysref[j] ;
1650        }
1651      }
1652    }
1653
1654    // shift signal spectra if necessary (only for APEX?)
1655    if ( choffset2 != 0.0 ) {
1656      int sigchan = spsig.nelements() ;
1657      Vector<Float> sspsig( spsig.nelements() ) ;
1658      Vector<Float> stsyssig( tsyssig.nelements() ) ;
1659      Vector<uChar> sflagsig( flagsig.nelements() ) ;
1660      if ( ioffset2 > 0 ) {
1661        // SPECTRA and FLAGTRA
1662        for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1663          sspsig[j] = spsig[j+ioffset2] ;
1664          sflagsig[j] = flagsig[j+ioffset2] ;
1665        }
1666        for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1667          sspsig[j] = spsig[j-sigchan+ioffset2] ;
1668          sflagsig[j] = flagsig[j-sigchan+ioffset2] ;
1669        }
1670        spsig = sspsig.copy() ;
1671        flagsig = sflagsig.copy() ;
1672        for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1673          sspsig[j] = doffset2 * spsig[j+1] + ( 1.0 - doffset2 ) * spsig[j] ;
1674          sflagsig[j] = flagsig[j+1] || flagsig[j] ;
1675        }
1676        sspsig[sigchan-1] = doffset2 * spsig[0] + ( 1.0 - doffset2 ) * spsig[sigchan-1] ;
1677        sflagsig[sigchan-1] = flagsig[0] || flagsig[sigchan-1] ;
1678        // TSTS
1679        if ( spsig.nelements() == tsyssig.nelements() ) {
1680          for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1681            stsyssig[j] = tsyssig[j+ioffset2] ;
1682          }
1683          for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1684            stsyssig[j] = tsyssig[j-sigchan+ioffset2] ;
1685          }
1686          tsyssig = stsyssig.copy() ;
1687          for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1688            stsyssig[j] = doffset2 * tsyssig[j+1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1689          }
1690          stsyssig[sigchan-1] = doffset2 * tsyssig[0] + ( 1.0 - doffset2 ) * tsyssig[sigchan-1] ;
1691        }
1692      }
1693      else {
1694        // SPECTRA and FLAGTRA
1695        for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1696          sspsig[j] = spsig[sigchan+ioffset2+j] ;
1697          sflagsig[j] = flagsig[sigchan+ioffset2+j] ;
1698        }
1699        for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1700          sspsig[j] = spsig[j+ioffset2] ;
1701          sflagsig[j] = flagsig[j+ioffset2] ;
1702        }
1703        spsig = sspsig.copy() ;
1704        flagsig = sflagsig.copy() ;
1705        sspsig[0] = doffset2 * spsig[sigchan-1] + ( 1.0 - doffset2 ) * spsig[0] ;
1706        sflagsig[0] = flagsig[0] + flagsig[sigchan-1] ;
1707        for ( int j = 1 ; j < sigchan ; j++ ) {
1708          sspsig[j] = doffset2 * spsig[j-1] + ( 1.0 - doffset2 ) * spsig[j] ;
1709          sflagsig[j] = flagsig[j-1] + flagsig[j] ;
1710        }
1711        // TSYS
1712        if ( spsig.nelements() == tsyssig.nelements() ) {
1713          for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1714            stsyssig[j] = tsyssig[sigchan+ioffset2+j] ;
1715          }
1716          for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1717            stsyssig[j] = tsyssig[j+ioffset2] ;
1718          }
1719          tsyssig = stsyssig.copy() ;
1720          stsyssig[0] = doffset2 * tsyssig[sigchan-1] + ( 1.0 - doffset2 ) * tsyssig[0] ;
1721          for ( int j = 1 ; j < sigchan ; j++ ) {
1722            stsyssig[j] = doffset2 * tsyssig[j-1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1723          }
1724        }
1725      }
1726    }
1727
1728    // folding
1729    acc.add( spsig, !flagsig, tsyssig, intsig, timesig ) ;
1730    acc.add( sspref, !sflagref, stsysref, intref, timeref ) ;
1731   
1732    // put result
1733    specColOut.put( i, acc.getSpectrum() ) ;
1734    const Vector<Bool> &msk = acc.getMask() ;
1735    Vector<uChar> flg( msk.shape() ) ;
1736    convertArray( flg, !msk ) ;
1737    flagColOut.put( i, flg ) ;
1738    tsysColOut.put( i, acc.getTsys() ) ;
1739    intervalColOut.put( i, acc.getInterval() ) ;
1740    mjdColOut.put( i, acc.getTime() ) ;
1741    // change FREQ_ID to unshifted IF setting (only for APEX?)
1742    if ( choffset2 != 0.0 ) {
1743      uInt freqid = fidColOut( 0 ) ; // assume single-IF data
1744      double refpix, refval, increment ;
1745      out->frequencies().getEntry( refpix, refval, increment, freqid ) ;
1746      refval -= choffset * increment ;
1747      uInt newfreqid = out->frequencies().addEntry( refpix, refval, increment ) ;
1748      Vector<uInt> freqids = fidColOut.getColumn() ;
1749      for ( uInt j = 0 ; j < freqids.nelements() ; j++ ) {
1750        if ( freqids[j] == freqid )
1751          freqids[j] = newfreqid ;
1752      }
1753      fidColOut.putColumn( freqids ) ;
1754    }
1755
1756    acc.reset() ;
1757  }
1758
1759  return out ;
1760}
1761
1762
1763CountedPtr< Scantable > STMath::freqSwitch( const CountedPtr< Scantable >& in )
1764{
1765  // make copy or reference
1766  CountedPtr< Scantable > out = getScantable(in, false);
1767  Table& tout = out->table();
1768  Block<String> cols(4);
1769  cols[0] = String("SCANNO");
1770  cols[1] = String("CYCLENO");
1771  cols[2] = String("BEAMNO");
1772  cols[3] = String("POLNO");
1773  TableIterator iter(tout, cols);
1774  while (!iter.pastEnd()) {
1775    Table subt = iter.table();
1776    // this should leave us with two rows for the two IFs....if not ignore
1777    if (subt.nrow() != 2 ) {
1778      continue;
1779    }
1780    ArrayColumn<Float> specCol(subt, "SPECTRA");
1781    ArrayColumn<Float> tsysCol(subt, "TSYS");
1782    ArrayColumn<uChar> flagCol(subt, "FLAGTRA");
1783    Vector<Float> onspec,offspec, ontsys, offtsys;
1784    Vector<uChar> onflag, offflag;
1785    tsysCol.get(0, ontsys);   tsysCol.get(1, offtsys);
1786    specCol.get(0, onspec);   specCol.get(1, offspec);
1787    flagCol.get(0, onflag);   flagCol.get(1, offflag);
1788    MaskedArray<Float> on  = maskedArray(onspec, onflag);
1789    MaskedArray<Float> off = maskedArray(offspec, offflag);
1790    MaskedArray<Float> oncopy = on.copy();
1791
1792    on /= off; on -= 1.0f;
1793    on *= ontsys[0];
1794    off /= oncopy; off -= 1.0f;
1795    off *= offtsys[0];
1796    specCol.put(0, on.getArray());
1797    const Vector<Bool>& m0 = on.getMask();
1798    Vector<uChar> flags0(m0.shape());
1799    convertArray(flags0, !m0);
1800    flagCol.put(0, flags0);
1801
1802    specCol.put(1, off.getArray());
1803    const Vector<Bool>& m1 = off.getMask();
1804    Vector<uChar> flags1(m1.shape());
1805    convertArray(flags1, !m1);
1806    flagCol.put(1, flags1);
1807    ++iter;
1808  }
1809
1810  return out;
1811}
1812
1813std::vector< float > STMath::statistic( const CountedPtr< Scantable > & in,
1814                                        const std::vector< bool > & mask,
1815                                        const std::string& which )
1816{
1817
1818  Vector<Bool> m(mask);
1819  const Table& tab = in->table();
1820  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1821  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1822  std::vector<float> out;
1823  for (uInt i=0; i < tab.nrow(); ++i ) {
1824    Vector<Float> spec; specCol.get(i, spec);
1825    Vector<uChar> flag; flagCol.get(i, flag);
1826    MaskedArray<Float> ma  = maskedArray(spec, flag);
1827    float outstat = 0.0;
1828    if ( spec.nelements() == m.nelements() ) {
1829      outstat = mathutil::statistics(which, ma(m));
1830    } else {
1831      outstat = mathutil::statistics(which, ma);
1832    }
1833    out.push_back(outstat);
1834  }
1835  return out;
1836}
1837
1838std::vector< float > STMath::statisticRow( const CountedPtr< Scantable > & in,
1839                                        const std::vector< bool > & mask,
1840                                        const std::string& which,
1841                                        int row )
1842{
1843
1844  Vector<Bool> m(mask);
1845  const Table& tab = in->table();
1846  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1847  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1848  std::vector<float> out;
1849
1850  Vector<Float> spec; specCol.get(row, spec);
1851  Vector<uChar> flag; flagCol.get(row, flag);
1852  MaskedArray<Float> ma  = maskedArray(spec, flag);
1853  float outstat = 0.0;
1854  if ( spec.nelements() == m.nelements() ) {
1855    outstat = mathutil::statistics(which, ma(m));
1856  } else {
1857    outstat = mathutil::statistics(which, ma);
1858  }
1859  out.push_back(outstat);
1860
1861  return out;
1862}
1863
1864std::vector< int > STMath::minMaxChan( const CountedPtr< Scantable > & in,
1865                                        const std::vector< bool > & mask,
1866                                        const std::string& which )
1867{
1868
1869  Vector<Bool> m(mask);
1870  const Table& tab = in->table();
1871  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1872  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1873  std::vector<int> out;
1874  for (uInt i=0; i < tab.nrow(); ++i ) {
1875    Vector<Float> spec; specCol.get(i, spec);
1876    Vector<uChar> flag; flagCol.get(i, flag);
1877    MaskedArray<Float> ma  = maskedArray(spec, flag);
1878    if (ma.ndim() != 1) {
1879      throw (ArrayError(
1880          "std::vector<int> STMath::minMaxChan("
1881          "ContedPtr<Scantable> &in, std::vector<bool> &mask, "
1882          " std::string &which)"
1883          " - MaskedArray is not 1D"));
1884    }
1885    IPosition outpos(1,0);
1886    if ( spec.nelements() == m.nelements() ) {
1887      outpos = mathutil::minMaxPos(which, ma(m));
1888    } else {
1889      outpos = mathutil::minMaxPos(which, ma);
1890    }
1891    out.push_back(outpos[0]);
1892  }
1893  return out;
1894}
1895
1896CountedPtr< Scantable > STMath::bin( const CountedPtr< Scantable > & in,
1897                                     int width )
1898{
1899  if ( !in->getSelection().empty() ) throw(AipsError("Can't bin subset of the data."));
1900  CountedPtr< Scantable > out = getScantable(in, false);
1901  Table& tout = out->table();
1902  out->frequencies().rescale(width, "BIN");
1903  ArrayColumn<Float> specCol(tout, "SPECTRA");
1904  ArrayColumn<uChar> flagCol(tout, "FLAGTRA");
1905  for (uInt i=0; i < tout.nrow(); ++i ) {
1906    MaskedArray<Float> main  = maskedArray(specCol(i), flagCol(i));
1907    MaskedArray<Float> maout;
1908    LatticeUtilities::bin(maout, main, 0, Int(width));
1909    /// @todo implement channel based tsys binning
1910    specCol.put(i, maout.getArray());
1911    flagCol.put(i, flagsFromMA(maout));
1912    // take only the first binned spectrum's length for the deprecated
1913    // global header item nChan
1914    if (i==0) tout.rwKeywordSet().define(String("nChan"),
1915                                       Int(maout.getArray().nelements()));
1916  }
1917  return out;
1918}
1919
1920CountedPtr< Scantable > STMath::resample( const CountedPtr< Scantable >& in,
1921                                          const std::string& method,
1922                                          float width )
1923//
1924// Should add the possibility of width being specified in km/s. This means
1925// that for each freqID (SpectralCoordinate) we will need to convert to an
1926// average channel width (say at the reference pixel).  Then we would need
1927// to be careful to make sure each spectrum (of different freqID)
1928// is the same length.
1929//
1930{
1931  //InterpolateArray1D<Double,Float>::InterpolationMethod interp;
1932  Int interpMethod(stringToIMethod(method));
1933
1934  CountedPtr< Scantable > out = getScantable(in, false);
1935  Table& tout = out->table();
1936
1937// Resample SpectralCoordinates (one per freqID)
1938  out->frequencies().rescale(width, "RESAMPLE");
1939  TableIterator iter(tout, "IFNO");
1940  TableRow row(tout);
1941  while ( !iter.pastEnd() ) {
1942    Table tab = iter.table();
1943    ArrayColumn<Float> specCol(tab, "SPECTRA");
1944    //ArrayColumn<Float> tsysCol(tout, "TSYS");
1945    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1946    Vector<Float> spec;
1947    Vector<uChar> flag;
1948    specCol.get(0,spec); // the number of channels should be constant per IF
1949    uInt nChanIn = spec.nelements();
1950    Vector<Float> xIn(nChanIn); indgen(xIn);
1951    Int fac =  Int(nChanIn/width);
1952    Vector<Float> xOut(fac+10); // 10 to be safe - resize later
1953    uInt k = 0;
1954    Float x = 0.0;
1955    while (x < Float(nChanIn) ) {
1956      xOut(k) = x;
1957      k++;
1958      x += width;
1959    }
1960    uInt nChanOut = k;
1961    xOut.resize(nChanOut, True);
1962    // process all rows for this IFNO
1963    Vector<Float> specOut;
1964    Vector<Bool> maskOut;
1965    Vector<uChar> flagOut;
1966    for (uInt i=0; i < tab.nrow(); ++i) {
1967      specCol.get(i, spec);
1968      flagCol.get(i, flag);
1969      Vector<Bool> mask(flag.nelements());
1970      convertArray(mask, flag);
1971
1972      IPosition shapeIn(spec.shape());
1973      //sh.nchan = nChanOut;
1974      InterpolateArray1D<Float,Float>::interpolate(specOut, maskOut, xOut,
1975                                                   xIn, spec, mask,
1976                                                   interpMethod, True, True);
1977      /// @todo do the same for channel based Tsys
1978      flagOut.resize(maskOut.nelements());
1979      convertArray(flagOut, maskOut);
1980      specCol.put(i, specOut);
1981      flagCol.put(i, flagOut);
1982    }
1983    ++iter;
1984  }
1985
1986  return out;
1987}
1988
1989STMath::imethod STMath::stringToIMethod(const std::string& in)
1990{
1991  static STMath::imap lookup;
1992
1993  // initialize the lookup table if necessary
1994  if ( lookup.empty() ) {
1995    lookup["nearest"]   = InterpolateArray1D<Double,Float>::nearestNeighbour;
1996    lookup["linear"] = InterpolateArray1D<Double,Float>::linear;
1997    lookup["cubic"]  = InterpolateArray1D<Double,Float>::cubic;
1998    lookup["spline"]  = InterpolateArray1D<Double,Float>::spline;
1999  }
2000
2001  STMath::imap::const_iterator iter = lookup.find(in);
2002
2003  if ( lookup.end() == iter ) {
2004    std::string message = in;
2005    message += " is not a valid interpolation mode";
2006    throw(AipsError(message));
2007  }
2008  return iter->second;
2009}
2010
2011WeightType STMath::stringToWeight(const std::string& in)
2012{
2013  static std::map<std::string, WeightType> lookup;
2014
2015  // initialize the lookup table if necessary
2016  if ( lookup.empty() ) {
2017    lookup["NONE"]   = asap::W_NONE;
2018    lookup["TINT"] = asap::W_TINT;
2019    lookup["TINTSYS"]  = asap::W_TINTSYS;
2020    lookup["TSYS"]  = asap::W_TSYS;
2021    lookup["VAR"]  = asap::W_VAR;
2022  }
2023
2024  std::map<std::string, WeightType>::const_iterator iter = lookup.find(in);
2025
2026  if ( lookup.end() == iter ) {
2027    std::string message = in;
2028    message += " is not a valid weighting mode";
2029    throw(AipsError(message));
2030  }
2031  return iter->second;
2032}
2033
2034CountedPtr< Scantable > STMath::gainElevation( const CountedPtr< Scantable >& in,
2035                                               const vector< float > & coeff,
2036                                               const std::string & filename,
2037                                               const std::string& method)
2038{
2039  // Get elevation data from Scantable and convert to degrees
2040  CountedPtr< Scantable > out = getScantable(in, false);
2041  Table& tab = out->table();
2042  ROScalarColumn<Float> elev(tab, "ELEVATION");
2043  Vector<Float> x = elev.getColumn();
2044  x *= Float(180 / C::pi);                        // Degrees
2045
2046  Vector<Float> coeffs(coeff);
2047  const uInt nc = coeffs.nelements();
2048  if ( filename.length() > 0 && nc > 0 ) {
2049    throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
2050  }
2051
2052  // Correct
2053  if ( nc > 0 || filename.length() == 0 ) {
2054    // Find instrument
2055    Bool throwit = True;
2056    Instrument inst =
2057      STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2058                                throwit);
2059
2060    // Set polynomial
2061    Polynomial<Float>* ppoly = 0;
2062    Vector<Float> coeff;
2063    String msg;
2064    if ( nc > 0 ) {
2065      ppoly = new Polynomial<Float>(nc-1);
2066      coeff = coeffs;
2067      msg = String("user");
2068    } else {
2069      STAttr sdAttr;
2070      coeff = sdAttr.gainElevationPoly(inst);
2071      ppoly = new Polynomial<Float>(coeff.nelements()-1);
2072      msg = String("built in");
2073    }
2074
2075    if ( coeff.nelements() > 0 ) {
2076      ppoly->setCoefficients(coeff);
2077    } else {
2078      delete ppoly;
2079      throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
2080    }
2081    ostringstream oss;
2082    oss << "Making polynomial correction with " << msg << " coefficients:" << endl;
2083    oss << "   " <<  coeff;
2084    pushLog(String(oss));
2085    const uInt nrow = tab.nrow();
2086    Vector<Float> factor(nrow);
2087    for ( uInt i=0; i < nrow; ++i ) {
2088      factor[i] = 1.0 / (*ppoly)(x[i]);
2089    }
2090    delete ppoly;
2091    scaleByVector(tab, factor, true);
2092
2093  } else {
2094    // Read and correct
2095    pushLog("Making correction from ascii Table");
2096    scaleFromAsciiTable(tab, filename, method, x, true);
2097  }
2098  return out;
2099}
2100
2101void STMath::scaleFromAsciiTable(Table& in, const std::string& filename,
2102                                 const std::string& method,
2103                                 const Vector<Float>& xout, bool dotsys)
2104{
2105
2106// Read gain-elevation ascii file data into a Table.
2107
2108  String formatString;
2109  Table tbl = readAsciiTable(formatString, Table::Memory, filename, "", "", False);
2110  scaleFromTable(in, tbl, method, xout, dotsys);
2111}
2112
2113void STMath::scaleFromTable(Table& in,
2114                            const Table& table,
2115                            const std::string& method,
2116                            const Vector<Float>& xout, bool dotsys)
2117{
2118
2119  ROScalarColumn<Float> geElCol(table, "ELEVATION");
2120  ROScalarColumn<Float> geFacCol(table, "FACTOR");
2121  Vector<Float> xin = geElCol.getColumn();
2122  Vector<Float> yin = geFacCol.getColumn();
2123  Vector<Bool> maskin(xin.nelements(),True);
2124
2125  // Interpolate (and extrapolate) with desired method
2126
2127  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2128
2129   Vector<Float> yout;
2130   Vector<Bool> maskout;
2131   InterpolateArray1D<Float,Float>::interpolate(yout, maskout, xout,
2132                                                xin, yin, maskin, interp,
2133                                                True, True);
2134
2135   scaleByVector(in, Float(1.0)/yout, dotsys);
2136}
2137
2138void STMath::scaleByVector( Table& in,
2139                            const Vector< Float >& factor,
2140                            bool dotsys )
2141{
2142  uInt nrow = in.nrow();
2143  if ( factor.nelements() != nrow ) {
2144    throw(AipsError("factors.nelements() != table.nelements()"));
2145  }
2146  ArrayColumn<Float> specCol(in, "SPECTRA");
2147  ArrayColumn<uChar> flagCol(in, "FLAGTRA");
2148  ArrayColumn<Float> tsysCol(in, "TSYS");
2149  for (uInt i=0; i < nrow; ++i) {
2150    MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2151    ma *= factor[i];
2152    specCol.put(i, ma.getArray());
2153    flagCol.put(i, flagsFromMA(ma));
2154    if ( dotsys ) {
2155      Vector<Float> tsys = tsysCol(i);
2156      tsys *= factor[i];
2157      tsysCol.put(i,tsys);
2158    }
2159  }
2160}
2161
2162CountedPtr< Scantable > STMath::convertFlux( const CountedPtr< Scantable >& in,
2163                                             float d, float etaap,
2164                                             float jyperk )
2165{
2166  CountedPtr< Scantable > out = getScantable(in, false);
2167  Table& tab = in->table();
2168  Unit fluxUnit(tab.keywordSet().asString("FluxUnit"));
2169  Unit K(String("K"));
2170  Unit JY(String("Jy"));
2171
2172  bool tokelvin = true;
2173  Double cfac = 1.0;
2174
2175  if ( fluxUnit == JY ) {
2176    pushLog("Converting to K");
2177    Quantum<Double> t(1.0,fluxUnit);
2178    Quantum<Double> t2 = t.get(JY);
2179    cfac = (t2 / t).getValue();               // value to Jy
2180
2181    tokelvin = true;
2182    out->setFluxUnit("K");
2183  } else if ( fluxUnit == K ) {
2184    pushLog("Converting to Jy");
2185    Quantum<Double> t(1.0,fluxUnit);
2186    Quantum<Double> t2 = t.get(K);
2187    cfac = (t2 / t).getValue();              // value to K
2188
2189    tokelvin = false;
2190    out->setFluxUnit("Jy");
2191  } else {
2192    throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
2193  }
2194  // Make sure input values are converted to either Jy or K first...
2195  Float factor = cfac;
2196
2197  // Select method
2198  if (jyperk > 0.0) {
2199    factor *= jyperk;
2200    if ( tokelvin ) factor = 1.0 / jyperk;
2201    ostringstream oss;
2202    oss << "Jy/K = " << jyperk;
2203    pushLog(String(oss));
2204    Vector<Float> factors(tab.nrow(), factor);
2205    scaleByVector(tab,factors, false);
2206  } else if ( etaap > 0.0) {
2207    if (d < 0) {
2208      Instrument inst =
2209        STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2210                                  True);
2211      STAttr sda;
2212      d = sda.diameter(inst);
2213    }
2214    jyperk = STAttr::findJyPerK(etaap, d);
2215    ostringstream oss;
2216    oss << "Jy/K = " << jyperk;
2217    pushLog(String(oss));
2218    factor *= jyperk;
2219    if ( tokelvin ) {
2220      factor = 1.0 / factor;
2221    }
2222    Vector<Float> factors(tab.nrow(), factor);
2223    scaleByVector(tab, factors, False);
2224  } else {
2225
2226    // OK now we must deal with automatic look up of values.
2227    // We must also deal with the fact that the factors need
2228    // to be computed per IF and may be different and may
2229    // change per integration.
2230
2231    pushLog("Looking up conversion factors");
2232    convertBrightnessUnits(out, tokelvin, cfac);
2233  }
2234
2235  return out;
2236}
2237
2238void STMath::convertBrightnessUnits( CountedPtr<Scantable>& in,
2239                                     bool tokelvin, float cfac )
2240{
2241  Table& table = in->table();
2242  Instrument inst =
2243    STAttr::convertInstrument(table.keywordSet().asString("AntennaName"), True);
2244  TableIterator iter(table, "FREQ_ID");
2245  STFrequencies stfreqs = in->frequencies();
2246  STAttr sdAtt;
2247  while (!iter.pastEnd()) {
2248    Table tab = iter.table();
2249    ArrayColumn<Float> specCol(tab, "SPECTRA");
2250    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2251    ROScalarColumn<uInt> freqidCol(tab, "FREQ_ID");
2252    MEpoch::ROScalarColumn timeCol(tab, "TIME");
2253
2254    uInt freqid; freqidCol.get(0, freqid);
2255    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2256    // STAttr.JyPerK has a Vector interface... change sometime.
2257    Vector<Float> freqs(1,stfreqs.getRefFreq(freqid, tmpspec.nelements()));
2258    for ( uInt i=0; i<tab.nrow(); ++i) {
2259      Float jyperk = (sdAtt.JyPerK(inst, timeCol(i), freqs))[0];
2260      Float factor = cfac * jyperk;
2261      if ( tokelvin ) factor = Float(1.0) / factor;
2262      MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2263      ma *= factor;
2264      specCol.put(i, ma.getArray());
2265      flagCol.put(i, flagsFromMA(ma));
2266    }
2267  ++iter;
2268  }
2269}
2270
2271CountedPtr< Scantable > STMath::opacity( const CountedPtr< Scantable > & in,
2272                                         const std::vector<float>& tau )
2273{
2274  CountedPtr< Scantable > out = getScantable(in, false);
2275
2276  Table outtab = out->table();
2277
2278  const Int ntau = uInt(tau.size());
2279  std::vector<float>::const_iterator tauit = tau.begin();
2280  AlwaysAssert((ntau == 1 || ntau == in->nif() || ntau == in->nif() * in->npol()),
2281               AipsError);
2282  TableIterator iiter(outtab, "IFNO");
2283  while ( !iiter.pastEnd() ) {
2284    Table itab = iiter.table();
2285    TableIterator piter(itab, "POLNO");
2286    while ( !piter.pastEnd() ) {
2287      Table tab = piter.table();
2288      ROScalarColumn<Float> elev(tab, "ELEVATION");
2289      ArrayColumn<Float> specCol(tab, "SPECTRA");
2290      ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2291      ArrayColumn<Float> tsysCol(tab, "TSYS");
2292      for ( uInt i=0; i<tab.nrow(); ++i) {
2293        Float zdist = Float(C::pi_2) - elev(i);
2294        Float factor = exp(*tauit/cos(zdist));
2295        MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2296        ma *= factor;
2297        specCol.put(i, ma.getArray());
2298        flagCol.put(i, flagsFromMA(ma));
2299        Vector<Float> tsys;
2300        tsysCol.get(i, tsys);
2301        tsys *= factor;
2302        tsysCol.put(i, tsys);
2303      }
2304      if (ntau == in->nif()*in->npol() ) {
2305        tauit++;
2306      }
2307      piter++;
2308    }
2309    if (ntau >= in->nif() ) {
2310      tauit++;
2311    }
2312    iiter++;
2313  }
2314  return out;
2315}
2316
2317CountedPtr< Scantable > STMath::smoothOther( const CountedPtr< Scantable >& in,
2318                                             const std::string& kernel,
2319                                             float width, int order)
2320{
2321  CountedPtr< Scantable > out = getScantable(in, false);
2322  Table table = out->table();
2323
2324  TableIterator iter(table, "IFNO");
2325  while (!iter.pastEnd()) {
2326    Table tab = iter.table();
2327    ArrayColumn<Float> specCol(tab, "SPECTRA");
2328    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2329    Vector<Float> spec;
2330    Vector<uChar> flag;
2331    for (uInt i = 0; i < tab.nrow(); ++i) {
2332      specCol.get(i, spec);
2333      flagCol.get(i, flag);
2334      Vector<Bool> mask(flag.nelements());
2335      convertArray(mask, flag);
2336      Vector<Float> specout;
2337      Vector<Bool> maskout;
2338      if (kernel == "hanning") {
2339        mathutil::hanning(specout, maskout, spec, !mask);
2340        convertArray(flag, !maskout);
2341      } else if (kernel == "rmedian") {
2342        mathutil::runningMedian(specout, maskout, spec , mask, width);
2343        convertArray(flag, maskout);
2344      } else if (kernel == "poly") {
2345        mathutil::polyfit(specout, maskout, spec, !mask, width, order);
2346        convertArray(flag, !maskout);
2347      }
2348
2349      for (uInt j = 0; j < flag.nelements(); ++j) {
2350        uChar userFlag = 1 << 7;
2351        if (maskout[j]==True) userFlag = 0 << 7;
2352        flag(j) = userFlag;
2353      }
2354
2355      flagCol.put(i, flag);
2356      specCol.put(i, specout);
2357    }
2358  ++iter;
2359  }
2360  return out;
2361}
2362
2363CountedPtr< Scantable > STMath::smooth( const CountedPtr< Scantable >& in,
2364                                        const std::string& kernel, float width,
2365                                        int order)
2366{
2367  if (kernel == "rmedian"  || kernel == "hanning" || kernel == "poly") {
2368    return smoothOther(in, kernel, width, order);
2369  }
2370  CountedPtr< Scantable > out = getScantable(in, false);
2371  Table& table = out->table();
2372  VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernel);
2373  // same IFNO should have same no of channels
2374  // this saves overhead
2375  TableIterator iter(table, "IFNO");
2376  while (!iter.pastEnd()) {
2377    Table tab = iter.table();
2378    ArrayColumn<Float> specCol(tab, "SPECTRA");
2379    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2380    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2381    uInt nchan = tmpspec.nelements();
2382    Vector<Float> kvec = VectorKernel::make(type, width, nchan, True, False);
2383    Convolver<Float> conv(kvec, IPosition(1,nchan));
2384    Vector<Float> spec;
2385    Vector<uChar> flag;
2386    for ( uInt i=0; i<tab.nrow(); ++i) {
2387      specCol.get(i, spec);
2388      flagCol.get(i, flag);
2389      Vector<Bool> mask(flag.nelements());
2390      convertArray(mask, flag);
2391      Vector<Float> specout;
2392      mathutil::replaceMaskByZero(specout, mask);
2393      conv.linearConv(specout, spec);
2394      specCol.put(i, specout);
2395    }
2396    ++iter;
2397  }
2398  return out;
2399}
2400
2401CountedPtr< Scantable >
2402  STMath::merge( const std::vector< CountedPtr < Scantable > >& in )
2403{
2404  if ( in.size() < 2 ) {
2405    throw(AipsError("Need at least two scantables to perform a merge."));
2406  }
2407  std::vector<CountedPtr < Scantable > >::const_iterator it = in.begin();
2408  bool insitu = insitu_;
2409  setInsitu(false);
2410  CountedPtr< Scantable > out = getScantable(*it, false);
2411  setInsitu(insitu);
2412  Table& tout = out->table();
2413  ScalarColumn<uInt> freqidcol(tout,"FREQ_ID"), molidcol(tout, "MOLECULE_ID");
2414  ScalarColumn<uInt> scannocol(tout,"SCANNO"), focusidcol(tout,"FOCUS_ID");
2415  // Renumber SCANNO to be 0-based
2416  Vector<uInt> scannos = scannocol.getColumn();
2417  uInt offset = min(scannos);
2418  scannos -= offset;
2419  scannocol.putColumn(scannos);
2420  uInt newscanno = max(scannos)+1;
2421  ++it;
2422  while ( it != in.end() ){
2423    if ( ! (*it)->conformant(*out) ) {
2424      // non conformant.
2425      //pushLog(String("Warning: Can't merge scantables as header info differs."));
2426      LogIO os( LogOrigin( "STMath", "merge()", WHERE ) ) ;
2427      os << LogIO::SEVERE << "Can't merge scantables as header informations (any one of AntennaName, Equinox, and FluxUnit) differ." << LogIO::EXCEPTION ;
2428    }
2429    out->appendToHistoryTable((*it)->history());
2430    const Table& tab = (*it)->table();
2431
2432    Block<String> cols(3);
2433    cols[0] = String("FREQ_ID");
2434    cols[1] = String("MOLECULE_ID");
2435    cols[2] = String("FOCUS_ID");
2436
2437    TableIterator scanit(tab, "SCANNO");
2438    while (!scanit.pastEnd()) {
2439      ScalarColumn<uInt> thescannocol(scanit.table(),"SCANNO");
2440      Vector<uInt> thescannos(thescannocol.nrow(),newscanno);
2441      thescannocol.putColumn(thescannos);
2442      TableIterator subit(scanit.table(), cols);
2443      while ( !subit.pastEnd() ) {
2444        uInt nrow = tout.nrow();
2445        Table thetab = subit.table();
2446        ROTableRow row(thetab);
2447        Vector<uInt> thecolvals(thetab.nrow());
2448        ScalarColumn<uInt> thefreqidcol(thetab,"FREQ_ID");
2449        ScalarColumn<uInt> themolidcol(thetab, "MOLECULE_ID");
2450        ScalarColumn<uInt> thefocusidcol(thetab,"FOCUS_ID");
2451        // The selected subset of table should have
2452        // the equal FREQ_ID, MOLECULE_ID, and FOCUS_ID values.
2453        const TableRecord& rec = row.get(0);
2454        // Set the proper FREQ_ID
2455        Double rv,rp,inc;
2456        (*it)->frequencies().getEntry(rp, rv, inc, rec.asuInt("FREQ_ID"));
2457        uInt id;
2458        id = out->frequencies().addEntry(rp, rv, inc);
2459        thecolvals = id;
2460        thefreqidcol.putColumn(thecolvals);
2461        // Set the proper MOLECULE_ID
2462        Vector<String> name,fname;Vector<Double> rf;
2463        (*it)->molecules().getEntry(rf, name, fname, rec.asuInt("MOLECULE_ID"));
2464        id = out->molecules().addEntry(rf, name, fname);
2465        thecolvals = id;
2466        themolidcol.putColumn(thecolvals);
2467        // Set the proper FOCUS_ID
2468        Float fpa,frot,fax,ftan,fhand,fmount,fuser, fxy, fxyp;
2469        (*it)->focus().getEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2470                                fxy, fxyp, rec.asuInt("FOCUS_ID"));
2471        id = out->focus().addEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2472                                   fxy, fxyp);
2473        thecolvals = id;
2474        thefocusidcol.putColumn(thecolvals);
2475
2476        tout.addRow(thetab.nrow());
2477        TableCopy::copyRows(tout, thetab, nrow, 0, thetab.nrow());
2478
2479        ++subit;
2480      }
2481      ++newscanno;
2482      ++scanit;
2483    }
2484    ++it;
2485  }
2486  return out;
2487}
2488
2489CountedPtr< Scantable >
2490  STMath::invertPhase( const CountedPtr < Scantable >& in )
2491{
2492  return applyToPol(in, &STPol::invertPhase, Float(0.0));
2493}
2494
2495CountedPtr< Scantable >
2496  STMath::rotateXYPhase( const CountedPtr < Scantable >& in, float phase )
2497{
2498   return applyToPol(in, &STPol::rotatePhase, Float(phase));
2499}
2500
2501CountedPtr< Scantable >
2502  STMath::rotateLinPolPhase( const CountedPtr < Scantable >& in, float phase )
2503{
2504  return applyToPol(in, &STPol::rotateLinPolPhase, Float(phase));
2505}
2506
2507CountedPtr< Scantable > STMath::applyToPol( const CountedPtr<Scantable>& in,
2508                                             STPol::polOperation fptr,
2509                                             Float phase )
2510{
2511  CountedPtr< Scantable > out = getScantable(in, false);
2512  Table& tout = out->table();
2513  Block<String> cols(4);
2514  cols[0] = String("SCANNO");
2515  cols[1] = String("BEAMNO");
2516  cols[2] = String("IFNO");
2517  cols[3] = String("CYCLENO");
2518  TableIterator iter(tout, cols);
2519  CountedPtr<STPol> stpol = STPol::getPolClass(out->factories_,
2520                                               out->getPolType() );
2521  while (!iter.pastEnd()) {
2522    Table t = iter.table();
2523    ArrayColumn<Float> speccol(t, "SPECTRA");
2524    ScalarColumn<uInt> focidcol(t, "FOCUS_ID");
2525    Matrix<Float> pols(speccol.getColumn());
2526    try {
2527      stpol->setSpectra(pols);
2528      Float fang,fhand;
2529      fang = in->focusTable_.getTotalAngle(focidcol(0));
2530      fhand = in->focusTable_.getFeedHand(focidcol(0));
2531      stpol->setPhaseCorrections(fang, fhand);
2532      // use a member function pointer in STPol.  This only works on
2533      // the STPol pointer itself, not the Counted Pointer so
2534      // derefernce it.
2535      (&(*(stpol))->*fptr)(phase);
2536      speccol.putColumn(stpol->getSpectra());
2537    } catch (AipsError& e) {
2538      //delete stpol;stpol=0;
2539      throw(e);
2540    }
2541    ++iter;
2542  }
2543  //delete stpol;stpol=0;
2544  return out;
2545}
2546
2547CountedPtr< Scantable >
2548  STMath::swapPolarisations( const CountedPtr< Scantable > & in )
2549{
2550  CountedPtr< Scantable > out = getScantable(in, false);
2551  Table& tout = out->table();
2552  Table t0 = tout(tout.col("POLNO") == 0);
2553  Table t1 = tout(tout.col("POLNO") == 1);
2554  if ( t0.nrow() != t1.nrow() )
2555    throw(AipsError("Inconsistent number of polarisations"));
2556  ArrayColumn<Float> speccol0(t0, "SPECTRA");
2557  ArrayColumn<uChar> flagcol0(t0, "FLAGTRA");
2558  ArrayColumn<Float> speccol1(t1, "SPECTRA");
2559  ArrayColumn<uChar> flagcol1(t1, "FLAGTRA");
2560  Matrix<Float> s0 = speccol0.getColumn();
2561  Matrix<uChar> f0 = flagcol0.getColumn();
2562  speccol0.putColumn(speccol1.getColumn());
2563  flagcol0.putColumn(flagcol1.getColumn());
2564  speccol1.putColumn(s0);
2565  flagcol1.putColumn(f0);
2566  return out;
2567}
2568
2569CountedPtr< Scantable >
2570  STMath::averagePolarisations( const CountedPtr< Scantable > & in,
2571                                const std::vector<bool>& mask,
2572                                const std::string& weight )
2573{
2574  if (in->npol() < 2 )
2575    throw(AipsError("averagePolarisations can only be applied to two or more"
2576                    "polarisations"));
2577  bool insitu = insitu_;
2578  setInsitu(false);
2579  CountedPtr< Scantable > pols = getScantable(in, true);
2580  setInsitu(insitu);
2581  Table& tout = pols->table();
2582  std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
2583  Table tab = tableCommand(taql, in->table());
2584  if (tab.nrow() == 0 )
2585    throw(AipsError("Could not find  any rows with POLNO==0 and POLNO==1"));
2586  TableCopy::copyRows(tout, tab);
2587  TableVector<uInt> vec(tout, "POLNO");
2588  vec = 0;
2589  pols->table_.rwKeywordSet().define("nPol", Int(1));
2590  pols->table_.rwKeywordSet().define("POLTYPE", String("stokes"));
2591  //pols->table_.rwKeywordSet().define("POLTYPE", in->getPolType());
2592  std::vector<CountedPtr<Scantable> > vpols;
2593  vpols.push_back(pols);
2594  CountedPtr< Scantable > out = average(vpols, mask, weight, "SCAN");
2595  return out;
2596}
2597
2598CountedPtr< Scantable >
2599  STMath::averageBeams( const CountedPtr< Scantable > & in,
2600                        const std::vector<bool>& mask,
2601                        const std::string& weight )
2602{
2603  bool insitu = insitu_;
2604  setInsitu(false);
2605  CountedPtr< Scantable > beams = getScantable(in, false);
2606  setInsitu(insitu);
2607  Table& tout = beams->table();
2608  // give all rows the same BEAMNO
2609  TableVector<uInt> vec(tout, "BEAMNO");
2610  vec = 0;
2611  beams->table_.rwKeywordSet().define("nBeam", Int(1));
2612  std::vector<CountedPtr<Scantable> > vbeams;
2613  vbeams.push_back(beams);
2614  CountedPtr< Scantable > out = average(vbeams, mask, weight, "SCAN");
2615  return out;
2616}
2617
2618
2619CountedPtr< Scantable >
2620  asap::STMath::frequencyAlign( const CountedPtr< Scantable > & in,
2621                                const std::string & refTime,
2622                                const std::string & method)
2623{
2624  // clone as this is not working insitu
2625  bool insitu = insitu_;
2626  setInsitu(false);
2627  CountedPtr< Scantable > out = getScantable(in, false);
2628  setInsitu(insitu);
2629  Table& tout = out->table();
2630  // Get reference Epoch to time of first row or given String
2631  Unit DAY(String("d"));
2632  MEpoch::Ref epochRef(in->getTimeReference());
2633  MEpoch refEpoch;
2634  if (refTime.length()>0) {
2635    Quantum<Double> qt;
2636    if (MVTime::read(qt,refTime)) {
2637      MVEpoch mv(qt);
2638      refEpoch = MEpoch(mv, epochRef);
2639   } else {
2640      throw(AipsError("Invalid format for Epoch string"));
2641   }
2642  } else {
2643    refEpoch = in->timeCol_(0);
2644  }
2645  MPosition refPos = in->getAntennaPosition();
2646
2647  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2648  /*
2649  // Comment from MV.
2650  // the following code has been commented out because different FREQ_IDs have to be aligned together even
2651  // if the frame doesn't change. So far, lack of this check didn't cause any problems.
2652  // test if user frame is different to base frame
2653  if ( in->frequencies().getFrameString(true)
2654       == in->frequencies().getFrameString(false) ) {
2655    throw(AipsError("Can't convert as no output frame has been set"
2656                    " (use set_freqframe) or it is aligned already."));
2657  }
2658  */
2659  MFrequency::Types system = in->frequencies().getFrame();
2660  MVTime mvt(refEpoch.getValue());
2661  String epochout = mvt.string(MVTime::YMD) + String(" (") + refEpoch.getRefString() + String(")");
2662  ostringstream oss;
2663  oss << "Aligned at reference Epoch " << epochout
2664      << " in frame " << MFrequency::showType(system);
2665  pushLog(String(oss));
2666  // set up the iterator
2667  Block<String> cols(4);
2668  // select by constant direction
2669  cols[0] = String("SRCNAME");
2670  cols[1] = String("BEAMNO");
2671  // select by IF ( no of channels varies over this )
2672  cols[2] = String("IFNO");
2673  // select by restfrequency
2674  cols[3] = String("MOLECULE_ID");
2675  TableIterator iter(tout, cols);
2676  while ( !iter.pastEnd() ) {
2677    Table t = iter.table();
2678    MDirection::ROScalarColumn dirCol(t, "DIRECTION");
2679    TableIterator fiter(t, "FREQ_ID");
2680    // determine nchan from the first row. This should work as
2681    // we are iterating over BEAMNO and IFNO    // we should have constant direction
2682
2683    ROArrayColumn<Float> sCol(t, "SPECTRA");
2684    const MDirection direction = dirCol(0);
2685    const uInt nchan = sCol(0).nelements();
2686
2687    // skip operations if there is nothing to align
2688    if (fiter.pastEnd()) {
2689        continue;
2690    }
2691
2692    Table ftab = fiter.table();
2693    // align all frequency ids with respect to the first encountered id
2694    ScalarColumn<uInt> freqidCol(ftab, "FREQ_ID");
2695    // get the SpectralCoordinate for the freqid, which we are iterating over
2696    SpectralCoordinate sC = in->frequencies().getSpectralCoordinate(freqidCol(0));
2697    FrequencyAligner<Float> fa( sC, nchan, refEpoch,
2698                                direction, refPos, system );
2699    // realign the SpectralCoordinate and put into the output Scantable
2700    Vector<String> units(1);
2701    units = String("Hz");
2702    Bool linear=True;
2703    SpectralCoordinate sc2 = fa.alignedSpectralCoordinate(linear);
2704    sc2.setWorldAxisUnits(units);
2705    const uInt id = out->frequencies().addEntry(sc2.referencePixel()[0],
2706                                                sc2.referenceValue()[0],
2707                                                sc2.increment()[0]);
2708    while ( !fiter.pastEnd() ) {
2709      ftab = fiter.table();
2710      // spectral coordinate for the current FREQ_ID
2711      ScalarColumn<uInt> freqidCol2(ftab, "FREQ_ID");
2712      sC = in->frequencies().getSpectralCoordinate(freqidCol2(0));
2713      // create the "global" abcissa for alignment with same FREQ_ID
2714      Vector<Double> abc(nchan);
2715      for (uInt i=0; i<nchan; i++) {
2716           Double w;
2717           sC.toWorld(w,Double(i));
2718           abc[i] = w;
2719      }
2720      TableVector<uInt> tvec(ftab, "FREQ_ID");
2721      // assign new frequency id to all rows
2722      tvec = id;
2723      // cache abcissa for same time stamps, so iterate over those
2724      TableIterator timeiter(ftab, "TIME");
2725      while ( !timeiter.pastEnd() ) {
2726        Table tab = timeiter.table();
2727        ArrayColumn<Float> specCol(tab, "SPECTRA");
2728        ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2729        MEpoch::ROScalarColumn timeCol(tab, "TIME");
2730        // use align abcissa cache after the first row
2731        // these rows should be just be POLNO
2732        bool first = true;
2733        for (int i=0; i<int(tab.nrow()); ++i) {
2734          // input values
2735          Vector<uChar> flag = flagCol(i);
2736          Vector<Bool> mask(flag.shape());
2737          Vector<Float> specOut, spec;
2738          spec  = specCol(i);
2739          Vector<Bool> maskOut;Vector<uChar> flagOut;
2740          convertArray(mask, flag);
2741          // alignment
2742          Bool ok = fa.align(specOut, maskOut, abc, spec,
2743                             mask, timeCol(i), !first,
2744                             interp, False);
2745          (void) ok; // unused stop compiler nagging     
2746          // back into scantable
2747          flagOut.resize(maskOut.nelements());
2748          convertArray(flagOut, maskOut);
2749          flagCol.put(i, flagOut);
2750          specCol.put(i, specOut);
2751          // start abcissa caching
2752          first = false;
2753        }
2754        // next timestamp
2755        ++timeiter;
2756      }
2757      // next FREQ_ID
2758      ++fiter;
2759    }
2760    // next aligner
2761    ++iter;
2762  }
2763  // set this afterwards to ensure we are doing insitu correctly.
2764  out->frequencies().setFrame(system, true);
2765  return out;
2766}
2767
2768CountedPtr<Scantable>
2769  asap::STMath::convertPolarisation( const CountedPtr<Scantable>& in,
2770                                     const std::string & newtype )
2771{
2772  if (in->npol() != 2 && in->npol() != 4)
2773    throw(AipsError("Can only convert two or four polarisations."));
2774  if ( in->getPolType() == newtype )
2775    throw(AipsError("No need to convert."));
2776  if ( ! in->selector_.empty() )
2777    throw(AipsError("Can only convert whole scantable. Unset the selection."));
2778  bool insitu = insitu_;
2779  setInsitu(false);
2780  CountedPtr< Scantable > out = getScantable(in, true);
2781  setInsitu(insitu);
2782  Table& tout = out->table();
2783  tout.rwKeywordSet().define("POLTYPE", String(newtype));
2784
2785  Block<String> cols(4);
2786  cols[0] = "SCANNO";
2787  cols[1] = "CYCLENO";
2788  cols[2] = "BEAMNO";
2789  cols[3] = "IFNO";
2790  TableIterator it(in->originalTable_, cols);
2791  String basetype = in->getPolType();
2792  STPol* stpol = STPol::getPolClass(in->factories_, basetype);
2793  try {
2794    while ( !it.pastEnd() ) {
2795      Table tab = it.table();
2796      uInt row = tab.rowNumbers()[0];
2797      stpol->setSpectra(in->getPolMatrix(row));
2798      Float fang,fhand;
2799      fang = in->focusTable_.getTotalAngle(in->mfocusidCol_(row));
2800      fhand = in->focusTable_.getFeedHand(in->mfocusidCol_(row));
2801      stpol->setPhaseCorrections(fang, fhand);
2802      Int npolout = 0;
2803      for (uInt i=0; i<tab.nrow(); ++i) {
2804        Vector<Float> outvec = stpol->getSpectrum(i, newtype);
2805        if ( outvec.nelements() > 0 ) {
2806          tout.addRow();
2807          TableCopy::copyRows(tout, tab, tout.nrow()-1, 0, 1);
2808          ArrayColumn<Float> sCol(tout,"SPECTRA");
2809          ScalarColumn<uInt> pCol(tout,"POLNO");
2810          sCol.put(tout.nrow()-1 ,outvec);
2811          pCol.put(tout.nrow()-1 ,uInt(npolout));
2812          npolout++;
2813       }
2814      }
2815      tout.rwKeywordSet().define("nPol", npolout);
2816      ++it;
2817    }
2818  } catch (AipsError& e) {
2819    delete stpol;
2820    throw(e);
2821  }
2822  delete stpol;
2823  return out;
2824}
2825
2826CountedPtr< Scantable >
2827  asap::STMath::mxExtract( const CountedPtr< Scantable > & in,
2828                           const std::string & scantype )
2829{
2830  bool insitu = insitu_;
2831  setInsitu(false);
2832  CountedPtr< Scantable > out = getScantable(in, true);
2833  setInsitu(insitu);
2834  Table& tout = out->table();
2835  std::string taql = "SELECT FROM $1 WHERE BEAMNO != REFBEAMNO";
2836  if (scantype == "on") {
2837    taql = "SELECT FROM $1 WHERE BEAMNO == REFBEAMNO";
2838  }
2839  Table tab = tableCommand(taql, in->table());
2840  TableCopy::copyRows(tout, tab);
2841  if (scantype == "on") {
2842    // re-index SCANNO to 0
2843    TableVector<uInt> vec(tout, "SCANNO");
2844    vec = 0;
2845  }
2846  return out;
2847}
2848
2849std::vector<float>
2850  asap::STMath::fft( const casa::CountedPtr< Scantable > & in,
2851                     const std::vector<int>& whichrow,
2852                     bool getRealImag )
2853{
2854  std::vector<float> res;
2855  Table tab = in->table();
2856  std::vector<bool> mask;
2857
2858  if (whichrow.size() < 1) {          // for all rows (by default)
2859    int nrow = int(tab.nrow());
2860    for (int i = 0; i < nrow; ++i) {
2861      res = in->execFFT(i, mask, getRealImag);
2862    }
2863  } else {                           // for specified rows
2864    for (uInt i = 0; i < whichrow.size(); ++i) {
2865      res = in->execFFT(i, mask, getRealImag);
2866    }
2867  }
2868
2869  return res;
2870}
2871
2872
2873CountedPtr<Scantable>
2874  asap::STMath::lagFlag( const CountedPtr<Scantable>& in,
2875                         double start, double end,
2876                         const std::string& mode )
2877{
2878  CountedPtr<Scantable> out = getScantable(in, false);
2879  Table& tout = out->table();
2880  TableIterator iter(tout, "FREQ_ID");
2881  FFTServer<Float,Complex> ffts;
2882
2883  while ( !iter.pastEnd() ) {
2884    Table tab = iter.table();
2885    Double rp,rv,inc;
2886    ROTableRow row(tab);
2887    const TableRecord& rec = row.get(0);
2888    uInt freqid = rec.asuInt("FREQ_ID");
2889    out->frequencies().getEntry(rp, rv, inc, freqid);
2890    ArrayColumn<Float> specCol(tab, "SPECTRA");
2891    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2892
2893    for (int i=0; i<int(tab.nrow()); ++i) {
2894      Vector<Float> spec = specCol(i);
2895      Vector<uChar> flag = flagCol(i);
2896      std::vector<bool> mask;
2897      for (uInt j = 0; j < flag.nelements(); ++j) {
2898        mask.push_back(!(flag[j]>0));
2899      }
2900      mathutil::doZeroOrderInterpolation(spec, mask);
2901
2902      Vector<Complex> lags;
2903      ffts.fft0(lags, spec);
2904
2905      Int lag0(start+0.5);
2906      Int lag1(end+0.5);
2907      if (mode == "frequency") {
2908        lag0 = Int(spec.nelements()*abs(inc)/(start)+0.5);
2909        lag1 = Int(spec.nelements()*abs(inc)/(end)+0.5);
2910      }
2911      Int lstart =  max(0, lag0);
2912      Int lend   =  min(Int(lags.nelements()-1), lag1);
2913      if (lstart == lend) {
2914        lags[lstart] = Complex(0.0);
2915      } else {
2916        if (lstart > lend) {
2917          Int tmp = lend;
2918          lend = lstart;
2919          lstart = tmp;
2920        }
2921        for (int j=lstart; j <=lend ;++j) {
2922          lags[j] = Complex(0.0);
2923        }
2924      }
2925
2926      ffts.fft0(spec, lags);
2927
2928      specCol.put(i, spec);
2929    }
2930    ++iter;
2931  }
2932  return out;
2933}
2934
2935// Averaging spectra with different channel/resolution
2936CountedPtr<Scantable>
2937STMath::new_average( const std::vector<CountedPtr<Scantable> >& in,
2938                     const bool& compel,
2939                     const std::vector<bool>& mask,
2940                     const std::string& weight,
2941                     const std::string& avmode )
2942  throw ( casa::AipsError )
2943{
2944  LogIO os( LogOrigin( "STMath", "new_average()", WHERE ) ) ;
2945  if ( avmode == "SCAN" && in.size() != 1 )
2946    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
2947                    "Use merge first."));
2948 
2949  // check if OTF observation
2950  String obstype = in[0]->getHeader().obstype ;
2951  Double tol = 0.0 ;
2952  if ( obstype.find( "OTF" ) != String::npos ) {
2953    tol = TOL_OTF ;
2954  }
2955  else {
2956    tol = TOL_POINT ;
2957  }
2958
2959  CountedPtr<Scantable> out ;     // processed result
2960  if ( compel ) {
2961    std::vector< CountedPtr<Scantable> > newin ; // input for average process
2962    uInt insize = in.size() ;    // number of input scantables
2963
2964    // TEST: do normal average in each table before IF grouping
2965    os << "Do preliminary averaging" << LogIO::POST ;
2966    vector< CountedPtr<Scantable> > tmpin( insize ) ;
2967    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2968      vector< CountedPtr<Scantable> > v( 1, in[itable] ) ;
2969      tmpin[itable] = average( v, mask, weight, avmode ) ;
2970    }
2971
2972    // warning
2973    os << "Average spectra with different spectral resolution" << LogIO::POST ;
2974
2975    // temporarily set coordinfo
2976    vector<string> oldinfo( insize ) ;
2977    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2978      vector<string> coordinfo = in[itable]->getCoordInfo() ;
2979      oldinfo[itable] = coordinfo[0] ;
2980      coordinfo[0] = "Hz" ;
2981      tmpin[itable]->setCoordInfo( coordinfo ) ;
2982    }
2983
2984    // columns
2985    ScalarColumn<uInt> freqIDCol ;
2986    ScalarColumn<uInt> ifnoCol ;
2987    ScalarColumn<uInt> scannoCol ;
2988
2989
2990    // check IF frequency coverage
2991    // freqid: list of FREQ_ID, which is used, in each table 
2992    // iffreq: list of minimum and maximum frequency for each FREQ_ID in
2993    //         each table
2994    // freqid[insize][numIF]
2995    // freqid: [[id00, id01, ...],
2996    //          [id10, id11, ...],
2997    //          ...
2998    //          [idn0, idn1, ...]]
2999    // iffreq[insize][numIF*2]
3000    // iffreq: [[min_id00, max_id00, min_id01, max_id01, ...],
3001    //          [min_id10, max_id10, min_id11, max_id11, ...],
3002    //          ...
3003    //          [min_idn0, max_idn0, min_idn1, max_idn1, ...]]
3004    //os << "Check IF settings in each table" << LogIO::POST ;
3005    vector< vector<uInt> > freqid( insize );
3006    vector< vector<double> > iffreq( insize ) ;
3007    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3008      uInt rows = tmpin[itable]->nrow() ;
3009      uInt freqnrows = tmpin[itable]->frequencies().table().nrow() ;
3010      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3011        if ( freqid[itable].size() == freqnrows ) {
3012          break ;
3013        }
3014        else {
3015          freqIDCol.attach( tmpin[itable]->table(), "FREQ_ID" ) ;
3016          ifnoCol.attach( tmpin[itable]->table(), "IFNO" ) ;
3017          uInt id = freqIDCol( irow ) ;
3018          if ( freqid[itable].size() == 0 || count( freqid[itable].begin(), freqid[itable].end(), id ) == 0 ) {
3019            //os << "itable = " << itable << ": IF " << id << " is included in the list" << LogIO::POST ;
3020            vector<double> abcissa = tmpin[itable]->getAbcissa( irow ) ;
3021            freqid[itable].push_back( id ) ;
3022            iffreq[itable].push_back( abcissa[0] - 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
3023            iffreq[itable].push_back( abcissa[abcissa.size()-1] + 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
3024          }
3025        }
3026      }
3027    }
3028
3029    // debug
3030    //os << "IF settings summary:" << endl ;
3031    //for ( uInt i = 0 ; i < freqid.size() ; i++ ) {
3032    //os << "   Table" << i << endl ;
3033    //for ( uInt j = 0 ; j < freqid[i].size() ; j++ ) {
3034    //os << "      id = " << freqid[i][j] << " (min,max) = (" << iffreq[i][2*j] << "," << iffreq[i][2*j+1] << ")" << endl ;
3035    //}
3036    //}
3037    //os << endl ;
3038    //os.post() ;
3039
3040    // IF grouping based on their frequency coverage
3041    // ifgrp: list of table index and FREQ_ID for all members in each IF group
3042    // ifgfreq: list of minimum and maximum frequency in each IF group
3043    // ifgrp[numgrp][nummember*2]
3044    // ifgrp: [[table00, freqrow00, table01, freqrow01, ...],
3045    //         [table10, freqrow10, table11, freqrow11, ...],
3046    //         ...
3047    //         [tablen0, freqrown0, tablen1, freqrown1, ...]]
3048    // ifgfreq[numgrp*2]
3049    // ifgfreq: [min0_grp0, max0_grp0, min1_grp1, max1_grp1, ...]
3050    //os << "IF grouping based on their frequency coverage" << LogIO::POST ;
3051    vector< vector<uInt> > ifgrp ;
3052    vector<double> ifgfreq ;
3053
3054    // parameter for IF grouping
3055    // groupmode = OR    retrieve all region
3056    //             AND   only retrieve overlaped region
3057    //string groupmode = "AND" ;
3058    string groupmode = "OR" ;
3059    uInt sizecr = 0 ;
3060    if ( groupmode == "AND" )
3061      sizecr = 2 ;
3062    else if ( groupmode == "OR" )
3063      sizecr = 0 ;
3064
3065    vector<double> sortedfreq ;
3066    for ( uInt i = 0 ; i < iffreq.size() ; i++ ) {
3067      for ( uInt j = 0 ; j < iffreq[i].size() ; j++ ) {
3068        if ( count( sortedfreq.begin(), sortedfreq.end(), iffreq[i][j] ) == 0 )
3069          sortedfreq.push_back( iffreq[i][j] ) ;
3070      }
3071    }
3072    sort( sortedfreq.begin(), sortedfreq.end() ) ;
3073    for ( vector<double>::iterator i = sortedfreq.begin() ; i != sortedfreq.end()-1 ; i++ ) {
3074      ifgfreq.push_back( *i ) ;
3075      ifgfreq.push_back( *(i+1) ) ;
3076    }
3077    ifgrp.resize( ifgfreq.size()/2 ) ;
3078    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3079      for ( uInt iif = 0 ; iif < freqid[itable].size() ; iif++ ) {
3080        double range0 = iffreq[itable][2*iif] ;
3081        double range1 = iffreq[itable][2*iif+1] ;
3082        for ( uInt j = 0 ; j < ifgrp.size() ; j++ ) {
3083          double fmin = max( range0, ifgfreq[2*j] ) ;
3084          double fmax = min( range1, ifgfreq[2*j+1] ) ;
3085          if ( fmin < fmax ) {
3086            ifgrp[j].push_back( itable ) ;
3087            ifgrp[j].push_back( freqid[itable][iif] ) ;
3088          }
3089        }
3090      }
3091    }
3092    vector< vector<uInt> >::iterator fiter = ifgrp.begin() ;
3093    vector<double>::iterator giter = ifgfreq.begin() ;
3094    while( fiter != ifgrp.end() ) {
3095      if ( fiter->size() <= sizecr ) {
3096        fiter = ifgrp.erase( fiter ) ;
3097        giter = ifgfreq.erase( giter ) ;
3098        giter = ifgfreq.erase( giter ) ;
3099      }
3100      else {
3101        fiter++ ;
3102        advance( giter, 2 ) ;
3103      }
3104    }
3105
3106    // Grouping continuous IF groups (without frequency gap)
3107    // freqgrp: list of IF group indexes in each frequency group
3108    // freqrange: list of minimum and maximum frequency in each frequency group
3109    // freqgrp[numgrp][nummember]
3110    // freqgrp: [[ifgrp00, ifgrp01, ifgrp02, ...],
3111    //           [ifgrp10, ifgrp11, ifgrp12, ...],
3112    //           ...
3113    //           [ifgrpn0, ifgrpn1, ifgrpn2, ...]]
3114    // freqrange[numgrp*2]
3115    // freqrange: [min_grp0, max_grp0, min_grp1, max_grp1, ...]
3116    vector< vector<uInt> > freqgrp ;
3117    double freqrange = 0.0 ;
3118    uInt grpnum = 0 ;
3119    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3120      // Assumed that ifgfreq was sorted
3121      if ( grpnum != 0 && freqrange == ifgfreq[2*i] ) {
3122        freqgrp[grpnum-1].push_back( i ) ;
3123      }
3124      else {
3125        vector<uInt> grp0( 1, i ) ;
3126        freqgrp.push_back( grp0 ) ;
3127        grpnum++ ;
3128      }
3129      freqrange = ifgfreq[2*i+1] ;
3130    }
3131       
3132
3133    // print IF groups
3134    ostringstream oss ;
3135    oss << "IF Group summary: " << endl ;
3136    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3137    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3138      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3139      for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3140        oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3141      }
3142      oss << endl ;
3143    }
3144    oss << endl ;
3145    os << oss.str() << LogIO::POST ;
3146   
3147    // print frequency group
3148    oss.str("") ;
3149    oss << "Frequency Group summary: " << endl ;
3150    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: IF_GROUP_ID" << endl ;
3151    for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3152      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*freqgrp[i][0]] << "," << ifgfreq[2*freqgrp[i][freqgrp[i].size()-1]+1] << "]: " ;
3153      for ( uInt j = 0 ; j < freqgrp[i].size() ; j++ ) {
3154        oss << freqgrp[i][j] << " " ;
3155      }
3156      oss << endl ;
3157    }
3158    oss << endl ;
3159    os << oss.str() << LogIO::POST ;
3160
3161    // membership check
3162    // groups: list of IF group indexes whose frequency range overlaps with
3163    //         that of each table and IF
3164    // groups[numtable][numIF][nummembership]
3165    // groups: [[[grp, grp,...], [grp, grp,...],...],
3166    //          [[grp, grp,...], [grp, grp,...],...],
3167    //          ...
3168    //          [[grp, grp,...], [grp, grp,...],...]]
3169    vector< vector< vector<uInt> > > groups( insize ) ;
3170    for ( uInt i = 0 ; i < insize ; i++ ) {
3171      groups[i].resize( freqid[i].size() ) ;
3172    }
3173    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3174      for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3175        uInt tableid = ifgrp[igrp][2*imem] ;
3176        vector<uInt>::iterator iter = find( freqid[tableid].begin(), freqid[tableid].end(), ifgrp[igrp][2*imem+1] ) ;
3177        if ( iter != freqid[tableid].end() ) {
3178          uInt rowid = distance( freqid[tableid].begin(), iter ) ;
3179          groups[tableid][rowid].push_back( igrp ) ;
3180        }
3181      }
3182    }
3183
3184    // print membership
3185    //oss.str("") ;
3186    //for ( uInt i = 0 ; i < insize ; i++ ) {
3187    //oss << "Table " << i << endl ;
3188    //for ( uInt j = 0 ; j < groups[i].size() ; j++ ) {
3189    //oss << "   FREQ_ID " <<  setw( 2 ) << freqid[i][j] << ": " ;
3190    //for ( uInt k = 0 ; k < groups[i][j].size() ; k++ ) {
3191    //oss << setw( 2 ) << groups[i][j][k] << " " ;
3192    //}
3193    //oss << endl ;
3194    //}
3195    //}
3196    //os << oss.str() << LogIO::POST ;
3197
3198    // set back coordinfo
3199    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3200      vector<string> coordinfo = tmpin[itable]->getCoordInfo() ;
3201      coordinfo[0] = oldinfo[itable] ;
3202      tmpin[itable]->setCoordInfo( coordinfo ) ;
3203    }
3204
3205    // Create additional table if needed
3206    bool oldInsitu = insitu_ ;
3207    setInsitu( false ) ;
3208    vector< vector<uInt> > addrow( insize ) ;
3209    vector<uInt> addtable( insize, 0 ) ;
3210    vector<uInt> newtableids( insize ) ;
3211    vector<uInt> newifids( insize, 0 ) ;
3212    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3213      //os << "Table " << itable << ": " ;
3214      for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3215        addrow[itable].push_back( groups[itable][ifrow].size()-1 ) ;
3216        //os << addrow[itable][ifrow] << " " ;
3217      }
3218      addtable[itable] = *max_element( addrow[itable].begin(), addrow[itable].end() ) ;
3219      //os << "(" << addtable[itable] << ")" << LogIO::POST ;
3220    }
3221    newin.resize( insize ) ;
3222    copy( tmpin.begin(), tmpin.end(), newin.begin() ) ;
3223    for ( uInt i = 0 ; i < insize ; i++ ) {
3224      newtableids[i] = i ;
3225    }
3226    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3227      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3228        CountedPtr<Scantable> add = getScantable( newin[itable], false ) ;
3229        vector<int> freqidlist ;
3230        for ( uInt i = 0 ; i < groups[itable].size() ; i++ ) {
3231          if ( groups[itable][i].size() > iadd + 1 ) {
3232            freqidlist.push_back( freqid[itable][i] ) ;
3233          }
3234        }
3235        stringstream taqlstream ;
3236        taqlstream << "SELECT FROM $1 WHERE FREQ_ID IN [" ;
3237        for ( uInt i = 0 ; i < freqidlist.size() ; i++ ) {
3238          taqlstream << freqidlist[i] ;
3239          if ( i < freqidlist.size() - 1 )
3240            taqlstream << "," ;
3241          else
3242            taqlstream << "]" ;
3243        }
3244        string taql = taqlstream.str() ;
3245        //os << "taql = " << taql << LogIO::POST ;
3246        STSelector selector = STSelector() ;
3247        selector.setTaQL( taql ) ;
3248        add->setSelection( selector ) ;
3249        newin.push_back( add ) ;
3250        newtableids.push_back( itable ) ;
3251        newifids.push_back( iadd + 1 ) ;
3252      }
3253    }
3254
3255    // udpate ifgrp
3256    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3257      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3258        for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3259          if ( groups[itable][ifrow].size() > iadd + 1 ) {
3260            uInt igrp = groups[itable][ifrow][iadd+1] ;
3261            for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3262              if ( ifgrp[igrp][2*imem] == newtableids[iadd+insize] && ifgrp[igrp][2*imem+1] == freqid[newtableids[iadd+insize]][ifrow] ) {
3263                ifgrp[igrp][2*imem] = insize + iadd ;
3264              }
3265            }
3266          }
3267        }
3268      }
3269    }
3270
3271    // print IF groups again for debug
3272    //oss.str( "" ) ;
3273    //oss << "IF Group summary: " << endl ;
3274    //oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3275    //for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3276    //oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3277    //for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3278    //oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3279    //}
3280    //oss << endl ;
3281    //}
3282    //oss << endl ;
3283    //os << oss.str() << LogIO::POST ;
3284
3285    // reset SCANNO and IFNO/FREQ_ID: IF is reset by the result of sortation
3286    os << "All scan number is set to 0" << LogIO::POST ;
3287    //os << "All IF number is set to IF group index" << LogIO::POST ;
3288    insize = newin.size() ;
3289    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3290      uInt rows = newin[itable]->nrow() ;
3291      Table &tmpt = newin[itable]->table() ;
3292      freqIDCol.attach( tmpt, "FREQ_ID" ) ;
3293      scannoCol.attach( tmpt, "SCANNO" ) ;
3294      ifnoCol.attach( tmpt, "IFNO" ) ;
3295      for ( uInt irow=0 ; irow < rows ; irow++ ) {
3296        scannoCol.put( irow, 0 ) ;
3297        uInt freqID = freqIDCol( irow ) ;
3298        vector<uInt>::iterator iter = find( freqid[newtableids[itable]].begin(), freqid[newtableids[itable]].end(), freqID ) ;
3299        if ( iter != freqid[newtableids[itable]].end() ) {
3300          uInt index = distance( freqid[newtableids[itable]].begin(), iter ) ;
3301          ifnoCol.put( irow, groups[newtableids[itable]][index][newifids[itable]] ) ;
3302        }
3303        else {
3304          throw(AipsError("IF grouping was wrong in additional tables.")) ;
3305        }
3306      }
3307    }
3308    oldinfo.resize( insize ) ;
3309    setInsitu( oldInsitu ) ;
3310
3311    // temporarily set coordinfo
3312    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3313      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3314      oldinfo[itable] = coordinfo[0] ;
3315      coordinfo[0] = "Hz" ;
3316      newin[itable]->setCoordInfo( coordinfo ) ;
3317    }
3318
3319    // save column values in the vector
3320    vector< vector<uInt> > freqTableIdVec( insize ) ;
3321    vector< vector<uInt> > freqIdVec( insize ) ;
3322    vector< vector<uInt> > ifNoVec( insize ) ;
3323    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3324      ScalarColumn<uInt> freqIDs ;
3325      freqIDs.attach( newin[itable]->frequencies().table(), "ID" ) ;
3326      ifnoCol.attach( newin[itable]->table(), "IFNO" ) ;
3327      freqIDCol.attach( newin[itable]->table(), "FREQ_ID" ) ;
3328      for ( uInt irow = 0 ; irow < newin[itable]->frequencies().table().nrow() ; irow++ ) {
3329        freqTableIdVec[itable].push_back( freqIDs( irow ) ) ;
3330      }
3331      for ( uInt irow = 0 ; irow < newin[itable]->table().nrow() ; irow++ ) {
3332        freqIdVec[itable].push_back( freqIDCol( irow ) ) ;
3333        ifNoVec[itable].push_back( ifnoCol( irow ) ) ;
3334      }
3335    }
3336
3337    // reset spectra and flagtra: pick up common part of frequency coverage
3338    //os << "Pick common frequency range and align resolution" << LogIO::POST ;
3339    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3340      uInt rows = newin[itable]->nrow() ;
3341      int nminchan = -1 ;
3342      int nmaxchan = -1 ;
3343      vector<uInt> freqIdUpdate ;
3344      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3345        uInt ifno = ifNoVec[itable][irow] ;  // IFNO is reset by group index
3346        double minfreq = ifgfreq[2*ifno] ;
3347        double maxfreq = ifgfreq[2*ifno+1] ;
3348        //os << "frequency range: [" << minfreq << "," << maxfreq << "]" << LogIO::POST ;
3349        vector<double> abcissa = newin[itable]->getAbcissa( irow ) ;
3350        int nchan = abcissa.size() ;
3351        double resol = abcissa[1] - abcissa[0] ;
3352        //os << "abcissa range  : [" << abcissa[0] << "," << abcissa[nchan-1] << "]" << LogIO::POST ;
3353        if ( minfreq <= abcissa[0] )
3354          nminchan = 0 ;
3355        else {
3356          //double cfreq = ( minfreq - abcissa[0] ) / resol ;
3357          double cfreq = ( minfreq - abcissa[0] + 0.5 * resol ) / resol ;
3358          nminchan = int(cfreq) + ( ( cfreq - int(cfreq) <= 0.5 ) ? 0 : 1 ) ;
3359        }
3360        if ( maxfreq >= abcissa[abcissa.size()-1] )
3361          nmaxchan = abcissa.size() - 1 ;
3362        else {
3363          //double cfreq = ( abcissa[abcissa.size()-1] - maxfreq ) / resol ;
3364          double cfreq = ( abcissa[abcissa.size()-1] - maxfreq + 0.5 * resol ) / resol ;
3365          nmaxchan = abcissa.size() - 1 - int(cfreq) - ( ( cfreq - int(cfreq) >= 0.5 ) ? 1 : 0 ) ;
3366        }
3367        //os << "channel range (" << irow << "): [" << nminchan << "," << nmaxchan << "]" << LogIO::POST ;
3368        if ( nmaxchan > nminchan ) {
3369          newin[itable]->reshapeSpectrum( nminchan, nmaxchan, irow ) ;
3370          int newchan = nmaxchan - nminchan + 1 ;
3371          if ( count( freqIdUpdate.begin(), freqIdUpdate.end(), freqIdVec[itable][irow] ) == 0 && newchan < nchan )
3372            freqIdUpdate.push_back( freqIdVec[itable][irow] ) ;
3373        }
3374        else {
3375          throw(AipsError("Failed to pick up common part of frequency range.")) ;
3376        }
3377      }
3378      for ( uInt i = 0 ; i < freqIdUpdate.size() ; i++ ) {
3379        uInt freqId = freqIdUpdate[i] ;
3380        Double refpix ;
3381        Double refval ;
3382        Double increment ;
3383       
3384        // update row
3385        newin[itable]->frequencies().getEntry( refpix, refval, increment, freqId ) ;
3386        refval = refval - ( refpix - nminchan ) * increment ;
3387        refpix = 0 ;
3388        newin[itable]->frequencies().setEntry( refpix, refval, increment, freqId ) ;
3389      }   
3390    }
3391
3392   
3393    // reset spectra and flagtra: align spectral resolution
3394    //os << "Align spectral resolution" << LogIO::POST ;
3395    // gmaxdnu: the coarsest frequency resolution in the frequency group
3396    // gmemid: member index that have a resolution equal to gmaxdnu
3397    // gmaxdnu[numfreqgrp]
3398    // gmaxdnu: [dnu0, dnu1, ...]
3399    // gmemid[numfreqgrp]
3400    // gmemid: [id0, id1, ...]
3401    vector<double> gmaxdnu( freqgrp.size(), 0.0 ) ;
3402    vector<uInt> gmemid( freqgrp.size(), 0 ) ;
3403    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3404      double maxdnu = 0.0 ;       // maximum (coarsest) frequency resolution
3405      int minchan = INT_MAX ;     // minimum channel number
3406      Double refpixref = -1 ;     // reference of 'reference pixel'
3407      Double refvalref = -1 ;     // reference of 'reference frequency'
3408      Double refinc = -1 ;        // reference frequency resolution
3409      uInt refreqid ;
3410      uInt reftable = INT_MAX;
3411      // process only if group member > 1
3412      if ( ifgrp[igrp].size() > 2 ) {
3413        // find minchan and maxdnu in each group
3414        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3415          uInt tableid = ifgrp[igrp][2*imem] ;
3416          uInt rowid = ifgrp[igrp][2*imem+1] ;
3417          vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3418          if ( iter != freqIdVec[tableid].end() ) {
3419            uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3420            vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3421            int nchan = abcissa.size() ;
3422            double dnu = abcissa[1] - abcissa[0] ;
3423            //os << "GROUP " << igrp << " (" << tableid << "," << rowid << "): nchan = " << nchan << " (minchan = " << minchan << ")" << LogIO::POST ;
3424            if ( nchan < minchan ) {
3425              minchan = nchan ;
3426              maxdnu = dnu ;
3427              newin[tableid]->frequencies().getEntry( refpixref, refvalref, refinc, rowid ) ;
3428              refreqid = rowid ;
3429              reftable = tableid ;
3430            }
3431          }
3432        }
3433        // regrid spectra in each group
3434        os << "GROUP " << igrp << endl ;
3435        os << "   Channel number is adjusted to " << minchan << endl ;
3436        os << "   Corresponding frequency resolution is " << maxdnu << "Hz" << LogIO::POST ;
3437        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3438          uInt tableid = ifgrp[igrp][2*imem] ;
3439          uInt rowid = ifgrp[igrp][2*imem+1] ;
3440          freqIDCol.attach( newin[tableid]->table(), "FREQ_ID" ) ;
3441          //os << "tableid = " << tableid << " rowid = " << rowid << ": " << LogIO::POST ;
3442          //os << "   regridChannel applied to " ;
3443          //if ( tableid != reftable )
3444          refreqid = newin[tableid]->frequencies().addEntry( refpixref, refvalref, refinc ) ;
3445          for ( uInt irow = 0 ; irow < newin[tableid]->table().nrow() ; irow++ ) {
3446            uInt tfreqid = freqIdVec[tableid][irow] ;
3447            if ( tfreqid == rowid ) {     
3448              //os << irow << " " ;
3449              newin[tableid]->regridChannel( minchan, maxdnu, irow ) ;
3450              freqIDCol.put( irow, refreqid ) ;
3451              freqIdVec[tableid][irow] = refreqid ;
3452            }
3453          }
3454          //os << LogIO::POST ;
3455        }
3456      }
3457      else {
3458        uInt tableid = ifgrp[igrp][0] ;
3459        uInt rowid = ifgrp[igrp][1] ;
3460        vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3461        if ( iter != freqIdVec[tableid].end() ) {
3462          uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3463          vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3464          minchan = abcissa.size() ;
3465          maxdnu = abcissa[1] - abcissa[0] ;
3466        }
3467      }
3468      for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3469        if ( count( freqgrp[i].begin(), freqgrp[i].end(), igrp ) > 0 ) {
3470          if ( maxdnu > gmaxdnu[i] ) {
3471            gmaxdnu[i] = maxdnu ;
3472            gmemid[i] = igrp ;
3473          }
3474          break ;
3475        }
3476      }
3477    }
3478
3479    // set back coordinfo
3480    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3481      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3482      coordinfo[0] = oldinfo[itable] ;
3483      newin[itable]->setCoordInfo( coordinfo ) ;
3484    }     
3485
3486    // accumulate all rows into the first table
3487    // NOTE: assumed in.size() = 1
3488    vector< CountedPtr<Scantable> > tmp( 1 ) ;
3489    if ( newin.size() == 1 )
3490      tmp[0] = newin[0] ;
3491    else
3492      tmp[0] = merge( newin ) ;
3493
3494    //return tmp[0] ;
3495
3496    // average
3497    CountedPtr<Scantable> tmpout = average( tmp, mask, weight, avmode ) ;
3498
3499    //return tmpout ;
3500
3501    // combine frequency group
3502    os << "Combine spectra based on frequency grouping" << LogIO::POST ;
3503    os << "IFNO is renumbered as frequency group ID (see above)" << LogIO::POST ;
3504    vector<string> coordinfo = tmpout->getCoordInfo() ;
3505    oldinfo[0] = coordinfo[0] ;
3506    coordinfo[0] = "Hz" ;
3507    tmpout->setCoordInfo( coordinfo ) ;
3508    // create proformas of output table
3509    stringstream taqlstream ;
3510    taqlstream << "SELECT FROM $1 WHERE IFNO IN [" ;
3511    for ( uInt i = 0 ; i < gmemid.size() ; i++ ) {
3512      taqlstream << gmemid[i] ;
3513      if ( i < gmemid.size() - 1 )
3514        taqlstream << "," ;
3515      else
3516        taqlstream << "]" ;
3517    }
3518    string taql = taqlstream.str() ;
3519    //os << "taql = " << taql << LogIO::POST ;
3520    STSelector selector = STSelector() ;
3521    selector.setTaQL( taql ) ;
3522    oldInsitu = insitu_ ;
3523    setInsitu( false ) ;
3524    out = getScantable( tmpout, false ) ;
3525    setInsitu( oldInsitu ) ;
3526    out->setSelection( selector ) ;
3527    // regrid rows
3528    ifnoCol.attach( tmpout->table(), "IFNO" ) ;
3529    for ( uInt irow = 0 ; irow < tmpout->table().nrow() ; irow++ ) {
3530      uInt ifno = ifnoCol( irow ) ;
3531      for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3532        if ( count( freqgrp[igrp].begin(), freqgrp[igrp].end(), ifno ) > 0 ) {
3533          vector<double> abcissa = tmpout->getAbcissa( irow ) ;
3534          double bw = ( abcissa[1] - abcissa[0] ) * abcissa.size() ;
3535          int nchan = (int)( bw / gmaxdnu[igrp] ) ;
3536          tmpout->regridChannel( nchan, gmaxdnu[igrp], irow ) ;
3537          break ;
3538        }
3539      }
3540    }
3541    // combine spectra
3542    ArrayColumn<Float> specColOut ;
3543    specColOut.attach( out->table(), "SPECTRA" ) ;
3544    ArrayColumn<uChar> flagColOut ;
3545    flagColOut.attach( out->table(), "FLAGTRA" ) ;
3546    ScalarColumn<uInt> ifnoColOut ;
3547    ifnoColOut.attach( out->table(), "IFNO" ) ;
3548    ScalarColumn<uInt> polnoColOut ;
3549    polnoColOut.attach( out->table(), "POLNO" ) ;
3550    ScalarColumn<uInt> freqidColOut ;
3551    freqidColOut.attach( out->table(), "FREQ_ID" ) ;
3552    MDirection::ScalarColumn dirColOut ;
3553    dirColOut.attach( out->table(), "DIRECTION" ) ;
3554    Table &tab = tmpout->table() ;
3555    Block<String> cols(1);
3556    cols[0] = String("POLNO") ;
3557    TableIterator iter( tab, cols ) ;
3558    bool done = false ;
3559    vector< vector<uInt> > sizes( freqgrp.size() ) ;
3560    while( !iter.pastEnd() ) {
3561      vector< vector<Float> > specout( freqgrp.size() ) ;
3562      vector< vector<uChar> > flagout( freqgrp.size() ) ;
3563      ArrayColumn<Float> specCols ;
3564      specCols.attach( iter.table(), "SPECTRA" ) ;
3565      ArrayColumn<uChar> flagCols ;
3566      flagCols.attach( iter.table(), "FLAGTRA" ) ;
3567      ifnoCol.attach( iter.table(), "IFNO" ) ;
3568      ScalarColumn<uInt> polnos ;
3569      polnos.attach( iter.table(), "POLNO" ) ;
3570      MDirection::ScalarColumn dircol ;
3571      dircol.attach( iter.table(), "DIRECTION" ) ;
3572      uInt polno = polnos( 0 ) ;
3573      //os << "POLNO iteration: " << polno << LogIO::POST ;
3574//       for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3575//      sizes[igrp].resize( freqgrp[igrp].size() ) ;
3576//      for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3577//        for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3578//          uInt ifno = ifnoCol( irow ) ;
3579//          if ( ifno == freqgrp[igrp][imem] ) {
3580//            Vector<Float> spec = specCols( irow ) ;
3581//            Vector<uChar> flag = flagCols( irow ) ;
3582//            vector<Float> svec ;
3583//            spec.tovector( svec ) ;
3584//            vector<uChar> fvec ;
3585//            flag.tovector( fvec ) ;
3586//            //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3587//            specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3588//            flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3589//            //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3590//            sizes[igrp][imem] = spec.nelements() ;
3591//          }
3592//        }
3593//      }
3594//      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3595//        uInt ifout = ifnoColOut( irow ) ;
3596//        uInt polout = polnoColOut( irow ) ;
3597//        if ( ifout == gmemid[igrp] && polout == polno ) {
3598//          // set SPECTRA and FRAGTRA
3599//          Vector<Float> newspec( specout[igrp] ) ;
3600//          Vector<uChar> newflag( flagout[igrp] ) ;
3601//          specColOut.put( irow, newspec ) ;
3602//          flagColOut.put( irow, newflag ) ;
3603//          // IFNO renumbering
3604//          ifnoColOut.put( irow, igrp ) ;
3605//        }
3606//      }
3607//       }
3608      // get a list of number of channels for each frequency group member
3609      if ( !done ) {
3610        for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3611          sizes[igrp].resize( freqgrp[igrp].size() ) ;
3612          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3613            for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3614              uInt ifno = ifnoCol( irow ) ;
3615              if ( ifno == freqgrp[igrp][imem] ) {
3616                Vector<Float> spec = specCols( irow ) ;
3617                sizes[igrp][imem] = spec.nelements() ;
3618                break ;
3619              }               
3620            }
3621          }
3622        }
3623        done = true ;
3624      }
3625      // combine spectra
3626      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3627        uInt polout = polnoColOut( irow ) ;
3628        if ( polout == polno ) {
3629          uInt ifout = ifnoColOut( irow ) ;
3630          Vector<Double> direction = dirColOut(irow).getAngle(Unit(String("rad"))).getValue() ;
3631          uInt igrp ;
3632          for ( uInt jgrp = 0 ; jgrp < freqgrp.size() ; jgrp++ ) {
3633            if ( ifout == gmemid[jgrp] ) {
3634              igrp = jgrp ;
3635              break ;
3636            }
3637          }
3638          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3639            for ( uInt jrow = 0 ; jrow < iter.table().nrow() ; jrow++ ) {
3640              uInt ifno = ifnoCol( jrow ) ;
3641              Vector<Double> tdir = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
3642              //if ( ifno == freqgrp[igrp][imem] && allTrue( tdir == direction  ) ) {
3643              Double dx = tdir[0] - direction[0] ;
3644              Double dy = tdir[1] - direction[1] ;
3645              Double dd = sqrt( dx * dx + dy * dy ) ;
3646              //if ( ifno == freqgrp[igrp][imem] && allNearAbs( tdir, direction, tol ) ) {
3647              if ( ifno == freqgrp[igrp][imem] && dd <= tol ) {
3648                Vector<Float> spec = specCols( jrow ) ;
3649                Vector<uChar> flag = flagCols( jrow ) ;
3650                vector<Float> svec ;
3651                spec.tovector( svec ) ;
3652                vector<uChar> fvec ;
3653                flag.tovector( fvec ) ;
3654                //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3655                specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3656                flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3657                //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3658              }
3659            }
3660          }
3661          // set SPECTRA and FRAGTRA
3662          Vector<Float> newspec( specout[igrp] ) ;
3663          Vector<uChar> newflag( flagout[igrp] ) ;
3664          specColOut.put( irow, newspec ) ;
3665          flagColOut.put( irow, newflag ) ;
3666          // IFNO renumbering
3667          ifnoColOut.put( irow, igrp ) ;
3668        }
3669      }
3670      iter++ ;
3671    }
3672    // update FREQUENCIES subtable
3673    vector<bool> updated( freqgrp.size(), false ) ;
3674    for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3675      uInt index = 0 ;
3676      uInt pixShift = 0 ;
3677      while ( freqgrp[igrp][index] != gmemid[igrp] ) {
3678        pixShift += sizes[igrp][index++] ;
3679      }
3680      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3681        if ( ifnoColOut( irow ) == gmemid[igrp] && !updated[igrp] ) {
3682          uInt freqidOut = freqidColOut( irow ) ;
3683          //os << "freqgrp " << igrp << " freqidOut = " << freqidOut << LogIO::POST ;
3684          double refpix ;
3685          double refval ;
3686          double increm ;
3687          out->frequencies().getEntry( refpix, refval, increm, freqidOut ) ;
3688          refpix += pixShift ;
3689          out->frequencies().setEntry( refpix, refval, increm, freqidOut ) ;
3690          updated[igrp] = true ;
3691        }
3692      }
3693    }
3694
3695    //out = tmpout ;
3696
3697    coordinfo = tmpout->getCoordInfo() ;
3698    coordinfo[0] = oldinfo[0] ;
3699    tmpout->setCoordInfo( coordinfo ) ;
3700  }
3701  else {
3702    // simple average
3703    out =  average( in, mask, weight, avmode ) ;
3704  }
3705 
3706  return out ;
3707}
3708
3709CountedPtr<Scantable> STMath::cwcal( const CountedPtr<Scantable>& s,
3710                                     const String calmode,
3711                                     const String antname )
3712{
3713  // frequency switch
3714  if ( calmode == "fs" ) {
3715    return cwcalfs( s, antname ) ;
3716  }
3717  else {
3718    vector<bool> masks = s->getMask( 0 ) ;
3719    vector<int> types ;
3720
3721    // sky scan
3722    STSelector sel = STSelector() ;
3723    types.push_back( SrcType::SKY ) ;
3724    sel.setTypes( types ) ;
3725    s->setSelection( sel ) ;
3726    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3727    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
3728    s->unsetSelection() ;
3729    sel.reset() ;
3730    types.clear() ;
3731
3732    // hot scan
3733    types.push_back( SrcType::HOT ) ;
3734    sel.setTypes( types ) ;
3735    s->setSelection( sel ) ;
3736    tmp.clear() ;
3737    tmp.push_back( getScantable( s, false ) ) ;
3738    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
3739    s->unsetSelection() ;
3740    sel.reset() ;
3741    types.clear() ;
3742   
3743    // cold scan
3744    CountedPtr<Scantable> acold ;
3745//     types.push_back( SrcType::COLD ) ;
3746//     sel.setTypes( types ) ;
3747//     s->setSelection( sel ) ;
3748//     tmp.clear() ;
3749//     tmp.push_back( getScantable( s, false ) ) ;
3750//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCNAN" ) ;
3751//     s->unsetSelection() ;
3752//     sel.reset() ;
3753//     types.clear() ;
3754
3755    // off scan
3756    types.push_back( SrcType::PSOFF ) ;
3757    sel.setTypes( types ) ;
3758    s->setSelection( sel ) ;
3759    tmp.clear() ;
3760    tmp.push_back( getScantable( s, false ) ) ;
3761    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3762    s->unsetSelection() ;
3763    sel.reset() ;
3764    types.clear() ;
3765   
3766    // on scan
3767    bool insitu = insitu_ ;
3768    insitu_ = false ;
3769    CountedPtr<Scantable> out = getScantable( s, true ) ;
3770    insitu_ = insitu ;
3771    types.push_back( SrcType::PSON ) ;
3772    sel.setTypes( types ) ;
3773    s->setSelection( sel ) ;
3774    TableCopy::copyRows( out->table(), s->table() ) ;
3775    s->unsetSelection() ;
3776    sel.reset() ;
3777    types.clear() ;
3778   
3779    // process each on scan
3780    ArrayColumn<Float> tsysCol ;
3781    tsysCol.attach( out->table(), "TSYS" ) ;
3782    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3783      vector<float> sp = getCalibratedSpectra( out, aoff, asky, ahot, acold, i, antname ) ;
3784      out->setSpectrum( sp, i ) ;
3785      string reftime = out->getTime( i ) ;
3786      vector<int> ii( 1, out->getIF( i ) ) ;
3787      vector<int> ib( 1, out->getBeam( i ) ) ;
3788      vector<int> ip( 1, out->getPol( i ) ) ;
3789      sel.setIFs( ii ) ;
3790      sel.setBeams( ib ) ;
3791      sel.setPolarizations( ip ) ;
3792      asky->setSelection( sel ) ;   
3793      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
3794      const Vector<Float> Vtsys( sptsys ) ;
3795      tsysCol.put( i, Vtsys ) ;
3796      asky->unsetSelection() ;
3797      sel.reset() ;
3798    }
3799
3800    // flux unit
3801    out->setFluxUnit( "K" ) ;
3802
3803    return out ;
3804  }
3805}
3806 
3807CountedPtr<Scantable> STMath::almacal( const CountedPtr<Scantable>& s,
3808                                       const String calmode )
3809{
3810  // frequency switch
3811  if ( calmode == "fs" ) {
3812    return almacalfs( s ) ;
3813  }
3814  else {
3815    vector<bool> masks = s->getMask( 0 ) ;
3816   
3817    // off scan
3818    STSelector sel = STSelector() ;
3819    vector<int> types ;
3820    types.push_back( SrcType::PSOFF ) ;
3821    sel.setTypes( types ) ;
3822    s->setSelection( sel ) ;
3823    // TODO 2010/01/08 TN
3824    // Grouping by time should be needed before averaging.
3825    // Each group must have own unique SCANNO (should be renumbered).
3826    // See PIPELINE/SDCalibration.py
3827    CountedPtr<Scantable> soff = getScantable( s, false ) ;
3828    Table ttab = soff->table() ;
3829    ROScalarColumn<Double> timeCol( ttab, "TIME" ) ;
3830    uInt nrow = timeCol.nrow() ;
3831    Vector<Double> timeSep( nrow - 1 ) ;
3832    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3833      timeSep[i] = timeCol(i+1) - timeCol(i) ;
3834    }
3835    ScalarColumn<Double> intervalCol( ttab, "INTERVAL" ) ;
3836    Vector<Double> interval = intervalCol.getColumn() ;
3837    interval /= 86400.0 ;
3838    ScalarColumn<uInt> scanCol( ttab, "SCANNO" ) ;
3839    vector<uInt> glist ;
3840    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3841      double gap = 2.0 * timeSep[i] / ( interval[i] + interval[i+1] ) ;
3842      //cout << "gap[" << i << "]=" << setw(5) << gap << endl ;
3843      if ( gap > 1.1 ) {
3844        glist.push_back( i ) ;
3845      }
3846    }
3847    Vector<uInt> gaplist( glist ) ;
3848    //cout << "gaplist = " << gaplist << endl ;
3849    uInt newid = 0 ;
3850    for ( uInt i = 0 ; i < nrow ; i++ ) {
3851      scanCol.put( i, newid ) ;
3852      if ( i == gaplist[newid] ) {
3853        newid++ ;
3854      }
3855    }
3856    //cout << "new scancol = " << scanCol.getColumn() << endl ;
3857    vector< CountedPtr<Scantable> > tmp( 1, soff ) ;
3858    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3859    //cout << "aoff.nrow = " << aoff->nrow() << endl ;
3860    s->unsetSelection() ;
3861    sel.reset() ;
3862    types.clear() ;
3863   
3864    // on scan
3865    bool insitu = insitu_ ;
3866    insitu_ = false ;
3867    CountedPtr<Scantable> out = getScantable( s, true ) ;
3868    insitu_ = insitu ;
3869    types.push_back( SrcType::PSON ) ;
3870    sel.setTypes( types ) ;
3871    s->setSelection( sel ) ;
3872    TableCopy::copyRows( out->table(), s->table() ) ;
3873    s->unsetSelection() ;
3874    sel.reset() ;
3875    types.clear() ;
3876   
3877    // process each on scan
3878    ArrayColumn<Float> tsysCol ;
3879    tsysCol.attach( out->table(), "TSYS" ) ;
3880    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3881      vector<float> sp = getCalibratedSpectra( out, aoff, i ) ;
3882      out->setSpectrum( sp, i ) ;
3883    }
3884
3885    // flux unit
3886    out->setFluxUnit( "K" ) ;
3887
3888    return out ;
3889  }
3890}
3891
3892CountedPtr<Scantable> STMath::cwcalfs( const CountedPtr<Scantable>& s,
3893                                       const String antname )
3894{
3895  vector<int> types ;
3896
3897  // APEX calibration mode
3898  int apexcalmode = 1 ;
3899 
3900  if ( antname.find( "APEX" ) != string::npos ) {
3901    // check if off scan exists or not
3902    STSelector sel = STSelector() ;
3903    //sel.setName( offstr1 ) ;
3904    types.push_back( SrcType::FLOOFF ) ;
3905    sel.setTypes( types ) ;
3906    try {
3907      s->setSelection( sel ) ;
3908    }
3909    catch ( AipsError &e ) {
3910      apexcalmode = 0 ;
3911    }
3912    sel.reset() ;
3913  }
3914  s->unsetSelection() ;
3915  types.clear() ;
3916
3917  vector<bool> masks = s->getMask( 0 ) ;
3918  CountedPtr<Scantable> ssig, sref ;
3919  CountedPtr<Scantable> out ;
3920
3921  if ( antname.find( "APEX" ) != string::npos ) {
3922    // APEX calibration
3923    // sky scan
3924    STSelector sel = STSelector() ;
3925    types.push_back( SrcType::FLOSKY ) ;
3926    sel.setTypes( types ) ;
3927    s->setSelection( sel ) ;
3928    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3929    CountedPtr<Scantable> askylo = average( tmp, masks, "TINT", "SCAN" ) ;
3930    s->unsetSelection() ;
3931    sel.reset() ;
3932    types.clear() ;
3933    types.push_back( SrcType::FHISKY ) ;
3934    sel.setTypes( types ) ;
3935    s->setSelection( sel ) ;
3936    tmp.clear() ;
3937    tmp.push_back( getScantable( s, false ) ) ;
3938    CountedPtr<Scantable> askyhi = average( tmp, masks, "TINT", "SCAN" ) ;
3939    s->unsetSelection() ;
3940    sel.reset() ;
3941    types.clear() ;
3942   
3943    // hot scan
3944    types.push_back( SrcType::FLOHOT ) ;
3945    sel.setTypes( types ) ;
3946    s->setSelection( sel ) ;
3947    tmp.clear() ;
3948    tmp.push_back( getScantable( s, false ) ) ;
3949    CountedPtr<Scantable> ahotlo = average( tmp, masks, "TINT", "SCAN" ) ;
3950    s->unsetSelection() ;
3951    sel.reset() ;
3952    types.clear() ;
3953    types.push_back( SrcType::FHIHOT ) ;
3954    sel.setTypes( types ) ;
3955    s->setSelection( sel ) ;
3956    tmp.clear() ;
3957    tmp.push_back( getScantable( s, false ) ) ;
3958    CountedPtr<Scantable> ahothi = average( tmp, masks, "TINT", "SCAN" ) ;
3959    s->unsetSelection() ;
3960    sel.reset() ;
3961    types.clear() ;
3962   
3963    // cold scan
3964    CountedPtr<Scantable> acoldlo, acoldhi ;
3965//     types.push_back( SrcType::FLOCOLD ) ;
3966//     sel.setTypes( types ) ;
3967//     s->setSelection( sel ) ;
3968//     tmp.clear() ;
3969//     tmp.push_back( getScantable( s, false ) ) ;
3970//     CountedPtr<Scantable> acoldlo = average( tmp, masks, "TINT", "SCAN" ) ;
3971//     s->unsetSelection() ;
3972//     sel.reset() ;
3973//     types.clear() ;
3974//     types.push_back( SrcType::FHICOLD ) ;
3975//     sel.setTypes( types ) ;
3976//     s->setSelection( sel ) ;
3977//     tmp.clear() ;
3978//     tmp.push_back( getScantable( s, false ) ) ;
3979//     CountedPtr<Scantable> acoldhi = average( tmp, masks, "TINT", "SCAN" ) ;
3980//     s->unsetSelection() ;
3981//     sel.reset() ;
3982//     types.clear() ;
3983
3984    // ref scan
3985    bool insitu = insitu_ ;
3986    insitu_ = false ;
3987    sref = getScantable( s, true ) ;
3988    insitu_ = insitu ;
3989    types.push_back( SrcType::FSLO ) ;
3990    sel.setTypes( types ) ;
3991    s->setSelection( sel ) ;
3992    TableCopy::copyRows( sref->table(), s->table() ) ;
3993    s->unsetSelection() ;
3994    sel.reset() ;
3995    types.clear() ;
3996   
3997    // sig scan
3998    insitu_ = false ;
3999    ssig = getScantable( s, true ) ;
4000    insitu_ = insitu ;
4001    types.push_back( SrcType::FSHI ) ;
4002    sel.setTypes( types ) ;
4003    s->setSelection( sel ) ;
4004    TableCopy::copyRows( ssig->table(), s->table() ) ;
4005    s->unsetSelection() ;
4006    sel.reset() ; 
4007    types.clear() ;
4008         
4009    if ( apexcalmode == 0 ) {
4010      // APEX fs data without off scan
4011      // process each sig and ref scan
4012      ArrayColumn<Float> tsysCollo ;
4013      tsysCollo.attach( ssig->table(), "TSYS" ) ;
4014      ArrayColumn<Float> tsysColhi ;
4015      tsysColhi.attach( sref->table(), "TSYS" ) ;
4016      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4017        vector< CountedPtr<Scantable> > sky( 2 ) ;
4018        sky[0] = askylo ;
4019        sky[1] = askyhi ;
4020        vector< CountedPtr<Scantable> > hot( 2 ) ;
4021        hot[0] = ahotlo ;
4022        hot[1] = ahothi ;
4023        vector< CountedPtr<Scantable> > cold( 2 ) ;
4024        //cold[0] = acoldlo ;
4025        //cold[1] = acoldhi ;
4026        vector<float> sp = getFSCalibratedSpectra( ssig, sref, sky, hot, cold, i ) ;
4027        ssig->setSpectrum( sp, i ) ;
4028        string reftime = ssig->getTime( i ) ;
4029        vector<int> ii( 1, ssig->getIF( i ) ) ;
4030        vector<int> ib( 1, ssig->getBeam( i ) ) ;
4031        vector<int> ip( 1, ssig->getPol( i ) ) ;
4032        sel.setIFs( ii ) ;
4033        sel.setBeams( ib ) ;
4034        sel.setPolarizations( ip ) ;
4035        askylo->setSelection( sel ) ;
4036        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4037        const Vector<Float> Vtsyslo( sptsys ) ;
4038        tsysCollo.put( i, Vtsyslo ) ;
4039        askylo->unsetSelection() ;
4040        sel.reset() ;
4041        sky[0] = askyhi ;
4042        sky[1] = askylo ;
4043        hot[0] = ahothi ;
4044        hot[1] = ahotlo ;
4045        cold[0] = acoldhi ;
4046        cold[1] = acoldlo ;
4047        sp = getFSCalibratedSpectra( sref, ssig, sky, hot, cold, i ) ;
4048        sref->setSpectrum( sp, i ) ;
4049        reftime = sref->getTime( i ) ;
4050        ii[0] = sref->getIF( i )  ;
4051        ib[0] = sref->getBeam( i ) ;
4052        ip[0] = sref->getPol( i ) ;
4053        sel.setIFs( ii ) ;
4054        sel.setBeams( ib ) ;
4055        sel.setPolarizations( ip ) ;
4056        askyhi->setSelection( sel ) ;   
4057        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4058        const Vector<Float> Vtsyshi( sptsys ) ;
4059        tsysColhi.put( i, Vtsyshi ) ;
4060        askyhi->unsetSelection() ;
4061        sel.reset() ;
4062      }
4063    }
4064    else if ( apexcalmode == 1 ) {
4065      // APEX fs data with off scan
4066      // off scan
4067      types.push_back( SrcType::FLOOFF ) ;
4068      sel.setTypes( types ) ;
4069      s->setSelection( sel ) ;
4070      tmp.clear() ;
4071      tmp.push_back( getScantable( s, false ) ) ;
4072      CountedPtr<Scantable> aofflo = average( tmp, masks, "TINT", "SCAN" ) ;
4073      s->unsetSelection() ;
4074      sel.reset() ;
4075      types.clear() ;
4076      types.push_back( SrcType::FHIOFF ) ;
4077      sel.setTypes( types ) ;
4078      s->setSelection( sel ) ;
4079      tmp.clear() ;
4080      tmp.push_back( getScantable( s, false ) ) ;
4081      CountedPtr<Scantable> aoffhi = average( tmp, masks, "TINT", "SCAN" ) ;
4082      s->unsetSelection() ;
4083      sel.reset() ;
4084      types.clear() ;
4085     
4086      // process each sig and ref scan
4087      ArrayColumn<Float> tsysCollo ;
4088      tsysCollo.attach( ssig->table(), "TSYS" ) ;
4089      ArrayColumn<Float> tsysColhi ;
4090      tsysColhi.attach( sref->table(), "TSYS" ) ;
4091      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4092        vector<float> sp = getCalibratedSpectra( ssig, aofflo, askylo, ahotlo, acoldlo, i, antname ) ;
4093        ssig->setSpectrum( sp, i ) ;
4094        sp = getCalibratedSpectra( sref, aoffhi, askyhi, ahothi, acoldhi, i, antname ) ;
4095        string reftime = ssig->getTime( i ) ;
4096        vector<int> ii( 1, ssig->getIF( i ) ) ;
4097        vector<int> ib( 1, ssig->getBeam( i ) ) ;
4098        vector<int> ip( 1, ssig->getPol( i ) ) ;
4099        sel.setIFs( ii ) ;
4100        sel.setBeams( ib ) ;
4101        sel.setPolarizations( ip ) ;
4102        askylo->setSelection( sel ) ;
4103        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4104        const Vector<Float> Vtsyslo( sptsys ) ;
4105        tsysCollo.put( i, Vtsyslo ) ;
4106        askylo->unsetSelection() ;
4107        sel.reset() ;
4108        sref->setSpectrum( sp, i ) ;
4109        reftime = sref->getTime( i ) ;
4110        ii[0] = sref->getIF( i )  ;
4111        ib[0] = sref->getBeam( i ) ;
4112        ip[0] = sref->getPol( i ) ;
4113        sel.setIFs( ii ) ;
4114        sel.setBeams( ib ) ;
4115        sel.setPolarizations( ip ) ;
4116        askyhi->setSelection( sel ) ;   
4117        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4118        const Vector<Float> Vtsyshi( sptsys ) ;
4119        tsysColhi.put( i, Vtsyshi ) ;
4120        askyhi->unsetSelection() ;
4121        sel.reset() ;
4122      }
4123    }
4124  }
4125  else {
4126    // non-APEX fs data
4127    // sky scan
4128    STSelector sel = STSelector() ;
4129    types.push_back( SrcType::SKY ) ;
4130    sel.setTypes( types ) ;
4131    s->setSelection( sel ) ;
4132    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
4133    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
4134    s->unsetSelection() ;
4135    sel.reset() ;
4136    types.clear() ;
4137   
4138    // hot scan
4139    types.push_back( SrcType::HOT ) ;
4140    sel.setTypes( types ) ;
4141    s->setSelection( sel ) ;
4142    tmp.clear() ;
4143    tmp.push_back( getScantable( s, false ) ) ;
4144    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
4145    s->unsetSelection() ;
4146    sel.reset() ;
4147    types.clear() ;
4148
4149    // cold scan
4150    CountedPtr<Scantable> acold ;
4151//     types.push_back( SrcType::COLD ) ;
4152//     sel.setTypes( types ) ;
4153//     s->setSelection( sel ) ;
4154//     tmp.clear() ;
4155//     tmp.push_back( getScantable( s, false ) ) ;
4156//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCAN" ) ;
4157//     s->unsetSelection() ;
4158//     sel.reset() ;
4159//     types.clear() ;
4160   
4161    // ref scan
4162    bool insitu = insitu_ ;
4163    insitu_ = false ;
4164    sref = getScantable( s, true ) ;
4165    insitu_ = insitu ;
4166    types.push_back( SrcType::FSOFF ) ;
4167    sel.setTypes( types ) ;
4168    s->setSelection( sel ) ;
4169    TableCopy::copyRows( sref->table(), s->table() ) ;
4170    s->unsetSelection() ;
4171    sel.reset() ;
4172    types.clear() ;
4173   
4174    // sig scan
4175    insitu_ = false ;
4176    ssig = getScantable( s, true ) ;
4177    insitu_ = insitu ;
4178    types.push_back( SrcType::FSON ) ;
4179    sel.setTypes( types ) ;
4180    s->setSelection( sel ) ;
4181    TableCopy::copyRows( ssig->table(), s->table() ) ;
4182    s->unsetSelection() ;
4183    sel.reset() ;
4184    types.clear() ;
4185
4186    // process each sig and ref scan
4187    ArrayColumn<Float> tsysColsig ;
4188    tsysColsig.attach( ssig->table(), "TSYS" ) ;
4189    ArrayColumn<Float> tsysColref ;
4190    tsysColref.attach( ssig->table(), "TSYS" ) ;
4191    for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4192      vector<float> sp = getFSCalibratedSpectra( ssig, sref, asky, ahot, acold, i ) ;
4193      ssig->setSpectrum( sp, i ) ;
4194      string reftime = ssig->getTime( i ) ;
4195      vector<int> ii( 1, ssig->getIF( i ) ) ;
4196      vector<int> ib( 1, ssig->getBeam( i ) ) ;
4197      vector<int> ip( 1, ssig->getPol( i ) ) ;
4198      sel.setIFs( ii ) ;
4199      sel.setBeams( ib ) ;
4200      sel.setPolarizations( ip ) ;
4201      asky->setSelection( sel ) ;
4202      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
4203      const Vector<Float> Vtsys( sptsys ) ;
4204      tsysColsig.put( i, Vtsys ) ;
4205      asky->unsetSelection() ;
4206      sel.reset() ;
4207      sp = getFSCalibratedSpectra( sref, ssig, asky, ahot, acold, i ) ;
4208      sref->setSpectrum( sp, i ) ;
4209      tsysColref.put( i, Vtsys ) ;
4210    }
4211  }
4212
4213  // do folding if necessary
4214  Table sigtab = ssig->table() ;
4215  Table reftab = sref->table() ;
4216  ScalarColumn<uInt> sigifnoCol ;
4217  ScalarColumn<uInt> refifnoCol ;
4218  ScalarColumn<uInt> sigfidCol ;
4219  ScalarColumn<uInt> reffidCol ;
4220  Int nchan = (Int)ssig->nchan() ;
4221  sigifnoCol.attach( sigtab, "IFNO" ) ;
4222  refifnoCol.attach( reftab, "IFNO" ) ;
4223  sigfidCol.attach( sigtab, "FREQ_ID" ) ;
4224  reffidCol.attach( reftab, "FREQ_ID" ) ;
4225  Vector<uInt> sfids( sigfidCol.getColumn() ) ;
4226  Vector<uInt> rfids( reffidCol.getColumn() ) ;
4227  vector<uInt> sfids_unique ;
4228  vector<uInt> rfids_unique ;
4229  vector<uInt> sifno_unique ;
4230  vector<uInt> rifno_unique ;
4231  for ( uInt i = 0 ; i < sfids.nelements() ; i++ ) {
4232    if ( count( sfids_unique.begin(), sfids_unique.end(), sfids[i] ) == 0 ) {
4233      sfids_unique.push_back( sfids[i] ) ;
4234      sifno_unique.push_back( ssig->getIF( i ) ) ;
4235    }
4236    if ( count( rfids_unique.begin(), rfids_unique.end(),  rfids[i] ) == 0 ) {
4237      rfids_unique.push_back( rfids[i] ) ;
4238      rifno_unique.push_back( sref->getIF( i ) ) ;
4239    }
4240  }
4241  double refpix_sig, refval_sig, increment_sig ;
4242  double refpix_ref, refval_ref, increment_ref ;
4243  vector< CountedPtr<Scantable> > tmp( sfids_unique.size() ) ;
4244  for ( uInt i = 0 ; i < sfids_unique.size() ; i++ ) {
4245    ssig->frequencies().getEntry( refpix_sig, refval_sig, increment_sig, sfids_unique[i] ) ;
4246    sref->frequencies().getEntry( refpix_ref, refval_ref, increment_ref, rfids_unique[i] ) ;
4247    if ( refpix_sig == refpix_ref ) {
4248      double foffset = refval_ref - refval_sig ;
4249      int choffset = static_cast<int>(foffset/increment_sig) ;
4250      double doffset = foffset / increment_sig ;
4251      if ( abs(choffset) >= nchan ) {
4252        LogIO os( LogOrigin( "STMath", "cwcalfs", WHERE ) ) ;
4253        os << "FREQ_ID=[" << sfids_unique[i] << "," << rfids_unique[i] << "]: out-band frequency switching, no folding" << LogIO::POST ;
4254        os << "Just return signal data" << LogIO::POST ;
4255        //std::vector< CountedPtr<Scantable> > tabs ;
4256        //tabs.push_back( ssig ) ;
4257        //tabs.push_back( sref ) ;
4258        //out = merge( tabs ) ;
4259        tmp[i] = ssig ;
4260      }
4261      else {
4262        STSelector sel = STSelector() ;
4263        vector<int> v( 1, sifno_unique[i] ) ;
4264        sel.setIFs( v ) ;
4265        ssig->setSelection( sel ) ;
4266        sel.reset() ;
4267        v[0] = rifno_unique[i] ;
4268        sel.setIFs( v ) ;
4269        sref->setSelection( sel ) ;
4270        sel.reset() ;
4271        if ( antname.find( "APEX" ) != string::npos ) {
4272          tmp[i] = dofold( ssig, sref, 0.5*doffset, -0.5*doffset ) ;
4273          //tmp[i] = dofold( ssig, sref, doffset ) ;
4274        }
4275        else {
4276          tmp[i] = dofold( ssig, sref, doffset ) ;
4277        }
4278        ssig->unsetSelection() ;
4279        sref->unsetSelection() ;
4280      }
4281    }
4282  }
4283
4284  if ( tmp.size() > 1 ) {
4285    out = merge( tmp ) ;
4286  }
4287  else {
4288    out = tmp[0] ;
4289  }
4290
4291  // flux unit
4292  out->setFluxUnit( "K" ) ;
4293
4294  return out ;
4295}
4296
4297CountedPtr<Scantable> STMath::almacalfs( const CountedPtr<Scantable>& s )
4298{
4299  (void) s; //currently unused
4300  CountedPtr<Scantable> out ;
4301
4302  return out ;
4303}
4304
4305vector<float> STMath::getSpectrumFromTime( string reftime,
4306                                           CountedPtr<Scantable>& s,
4307                                           string mode )
4308{
4309  LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
4310  vector<float> sp ;
4311
4312  if ( s->nrow() == 0 ) {
4313    os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4314    return sp ;
4315  }
4316  else if ( s->nrow() == 1 ) {
4317    //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4318    return s->getSpectrum( 0 ) ;
4319  }
4320  else {
4321    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4322    if ( mode == "before" ) {
4323      int id = -1 ;
4324      if ( idx[0] != -1 ) {
4325        id = idx[0] ;
4326      }
4327      else if ( idx[1] != -1 ) {
4328        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4329        id = idx[1] ;
4330      }
4331      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4332      sp = s->getSpectrum( id ) ;
4333    }
4334    else if ( mode == "after" ) {
4335      int id = -1 ;
4336      if ( idx[1] != -1 ) {
4337        id = idx[1] ;
4338      }
4339      else if ( idx[0] != -1 ) {
4340        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4341        id = idx[1] ;
4342      }
4343      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4344      sp = s->getSpectrum( id ) ;
4345    }
4346    else if ( mode == "nearest" ) {
4347      int id = -1 ;
4348      if ( idx[0] == -1 ) {
4349        id = idx[1] ;
4350      }
4351      else if ( idx[1] == -1 ) {
4352        id = idx[0] ;
4353      }
4354      else if ( idx[0] == idx[1] ) {
4355        id = idx[0] ;
4356      }
4357      else {
4358        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4359        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4360        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4361        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4362        double tref = getMJD( reftime ) ;
4363        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4364          id = idx[1] ;
4365        }
4366        else {
4367          id = idx[0] ;
4368        }
4369      }
4370      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4371      sp = s->getSpectrum( id ) ;     
4372    }
4373    else if ( mode == "linear" ) {
4374      if ( idx[0] == -1 ) {
4375        // use after
4376        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4377        int id = idx[1] ;
4378        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4379        sp = s->getSpectrum( id ) ;
4380      }
4381      else if ( idx[1] == -1 ) {
4382        // use before
4383        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4384        int id = idx[0] ;
4385        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4386        sp = s->getSpectrum( id ) ;
4387      }
4388      else if ( idx[0] == idx[1] ) {
4389        // use before
4390        //os << "No need to interporate." << LogIO::POST ;
4391        int id = idx[0] ;
4392        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4393        sp = s->getSpectrum( id ) ;
4394      }
4395      else {
4396        // do interpolation
4397        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4398        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4399        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4400        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4401        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4402        double tref = getMJD( reftime ) ;
4403        vector<float> sp0 = s->getSpectrum( idx[0] ) ;
4404        vector<float> sp1 = s->getSpectrum( idx[1] ) ;
4405        for ( unsigned int i = 0 ; i < sp0.size() ; i++ ) {
4406          float v = ( sp1[i] - sp0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + sp0[i] ;
4407          sp.push_back( v ) ;
4408        }
4409      }
4410    }
4411    else {
4412      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4413    }
4414    return sp ;
4415  }
4416}
4417
4418double STMath::getMJD( string strtime )
4419{
4420  if ( strtime.find("/") == string::npos ) {
4421    // MJD time string
4422    return atof( strtime.c_str() ) ;
4423  }
4424  else {
4425    // string in YYYY/MM/DD/HH:MM:SS format
4426    uInt year = atoi( strtime.substr( 0, 4 ).c_str() ) ;
4427    uInt month = atoi( strtime.substr( 5, 2 ).c_str() ) ;
4428    uInt day = atoi( strtime.substr( 8, 2 ).c_str() ) ;
4429    uInt hour = atoi( strtime.substr( 11, 2 ).c_str() ) ;
4430    uInt minute = atoi( strtime.substr( 14, 2 ).c_str() ) ;
4431    uInt sec = atoi( strtime.substr( 17, 2 ).c_str() ) ;
4432    Time t( year, month, day, hour, minute, sec ) ;
4433    return t.modifiedJulianDay() ;
4434  }
4435}
4436
4437vector<int> STMath::getRowIdFromTime( string reftime, CountedPtr<Scantable> &s )
4438{
4439  double reft = getMJD( reftime ) ;
4440  double dtmin = 1.0e100 ;
4441  double dtmax = -1.0e100 ;
4442  vector<double> dt ;
4443  int just_before = -1 ;
4444  int just_after = -1 ;
4445  for ( int i = 0 ; i < s->nrow() ; i++ ) {
4446    dt.push_back( getMJD( s->getTime( i ) ) - reft ) ;
4447  }
4448  for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
4449    if ( dt[i] > 0.0 ) {
4450      // after reftime
4451      if ( dt[i] < dtmin ) {
4452        just_after = i ;
4453        dtmin = dt[i] ;
4454      }
4455    }
4456    else if ( dt[i] < 0.0 ) {
4457      // before reftime
4458      if ( dt[i] > dtmax ) {
4459        just_before = i ;
4460        dtmax = dt[i] ;
4461      }
4462    }
4463    else {
4464      // just a reftime
4465      just_before = i ;
4466      just_after = i ;
4467      dtmax = 0 ;
4468      dtmin = 0 ;
4469      break ;
4470    }
4471  }
4472
4473  vector<int> v ;
4474  v.push_back( just_before ) ;
4475  v.push_back( just_after ) ;
4476
4477  return v ;
4478}
4479
4480vector<float> STMath::getTcalFromTime( string reftime,
4481                                       CountedPtr<Scantable>& s,
4482                                       string mode )
4483{
4484  LogIO os( LogOrigin( "STMath", "getTcalFromTime", WHERE ) ) ;
4485  vector<float> tcal ;
4486  STTcal tcalTable = s->tcal() ;
4487  String time ;
4488  Vector<Float> tcalval ;
4489  if ( s->nrow() == 0 ) {
4490    os << LogIO::SEVERE << "No row in the input scantable. Return empty tcal." << LogIO::POST ;
4491    return tcal ;
4492  }
4493  else if ( s->nrow() == 1 ) {
4494    uInt tcalid = s->getTcalId( 0 ) ;
4495    //os << "use row " << 0 << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4496    tcalTable.getEntry( time, tcalval, tcalid ) ;
4497    tcalval.tovector( tcal ) ;
4498    return tcal ;
4499  }
4500  else {
4501    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4502    if ( mode == "before" ) {
4503      int id = -1 ;
4504      if ( idx[0] != -1 ) {
4505        id = idx[0] ;
4506      }
4507      else if ( idx[1] != -1 ) {
4508        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4509        id = idx[1] ;
4510      }
4511      uInt tcalid = s->getTcalId( id ) ;
4512      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4513      tcalTable.getEntry( time, tcalval, tcalid ) ;
4514      tcalval.tovector( tcal ) ;
4515    }
4516    else if ( mode == "after" ) {
4517      int id = -1 ;
4518      if ( idx[1] != -1 ) {
4519        id = idx[1] ;
4520      }
4521      else if ( idx[0] != -1 ) {
4522        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4523        id = idx[1] ;
4524      }
4525      uInt tcalid = s->getTcalId( id ) ;
4526      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4527      tcalTable.getEntry( time, tcalval, tcalid ) ;
4528      tcalval.tovector( tcal ) ;
4529    }
4530    else if ( mode == "nearest" ) {
4531      int id = -1 ;
4532      if ( idx[0] == -1 ) {
4533        id = idx[1] ;
4534      }
4535      else if ( idx[1] == -1 ) {
4536        id = idx[0] ;
4537      }
4538      else if ( idx[0] == idx[1] ) {
4539        id = idx[0] ;
4540      }
4541      else {
4542        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4543        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4544        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4545        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4546        double tref = getMJD( reftime ) ;
4547        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4548          id = idx[1] ;
4549        }
4550        else {
4551          id = idx[0] ;
4552        }
4553      }
4554      uInt tcalid = s->getTcalId( id ) ;
4555      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4556      tcalTable.getEntry( time, tcalval, tcalid ) ;
4557      tcalval.tovector( tcal ) ;
4558    }
4559    else if ( mode == "linear" ) {
4560      if ( idx[0] == -1 ) {
4561        // use after
4562        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4563        int id = idx[1] ;
4564        uInt tcalid = s->getTcalId( id ) ;
4565        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4566        tcalTable.getEntry( time, tcalval, tcalid ) ;
4567        tcalval.tovector( tcal ) ;
4568      }
4569      else if ( idx[1] == -1 ) {
4570        // use before
4571        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4572        int id = idx[0] ;
4573        uInt tcalid = s->getTcalId( id ) ;
4574        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4575        tcalTable.getEntry( time, tcalval, tcalid ) ;
4576        tcalval.tovector( tcal ) ;
4577      }
4578      else if ( idx[0] == idx[1] ) {
4579        // use before
4580        //os << "No need to interporate." << LogIO::POST ;
4581        int id = idx[0] ;
4582        uInt tcalid = s->getTcalId( id ) ;
4583        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4584        tcalTable.getEntry( time, tcalval, tcalid ) ;
4585        tcalval.tovector( tcal ) ;
4586      }
4587      else {
4588        // do interpolation
4589        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4590        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4591        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4592        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4593        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4594        double tref = getMJD( reftime ) ;
4595        vector<float> tcal0 ;
4596        vector<float> tcal1 ;
4597        uInt tcalid0 = s->getTcalId( idx[0] ) ;
4598        uInt tcalid1 = s->getTcalId( idx[1] ) ;
4599        tcalTable.getEntry( time, tcalval, tcalid0 ) ;
4600        tcalval.tovector( tcal0 ) ;
4601        tcalTable.getEntry( time, tcalval, tcalid1 ) ;
4602        tcalval.tovector( tcal1 ) ;       
4603        for ( unsigned int i = 0 ; i < tcal0.size() ; i++ ) {
4604          float v = ( tcal1[i] - tcal0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tcal0[i] ;
4605          tcal.push_back( v ) ;
4606        }
4607      }
4608    }
4609    else {
4610      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4611    }
4612    return tcal ;
4613  }
4614}
4615
4616vector<float> STMath::getTsysFromTime( string reftime,
4617                                       CountedPtr<Scantable>& s,
4618                                       string mode )
4619{
4620  LogIO os( LogOrigin( "STMath", "getTsysFromTime", WHERE ) ) ;
4621  ArrayColumn<Float> tsysCol ;
4622  tsysCol.attach( s->table(), "TSYS" ) ;
4623  vector<float> tsys ;
4624  String time ;
4625  Vector<Float> tsysval ;
4626  if ( s->nrow() == 0 ) {
4627    os << LogIO::SEVERE << "No row in the input scantable. Return empty tsys." << LogIO::POST ;
4628    return tsys ;
4629  }
4630  else if ( s->nrow() == 1 ) {
4631    //os << "use row " << 0 << LogIO::POST ;
4632    tsysval = tsysCol( 0 ) ;
4633    tsysval.tovector( tsys ) ;
4634    return tsys ;
4635  }
4636  else {
4637    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4638    if ( mode == "before" ) {
4639      int id = -1 ;
4640      if ( idx[0] != -1 ) {
4641        id = idx[0] ;
4642      }
4643      else if ( idx[1] != -1 ) {
4644        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4645        id = idx[1] ;
4646      }
4647      //os << "use row " << id << LogIO::POST ;
4648      tsysval = tsysCol( id ) ;
4649      tsysval.tovector( tsys ) ;
4650    }
4651    else if ( mode == "after" ) {
4652      int id = -1 ;
4653      if ( idx[1] != -1 ) {
4654        id = idx[1] ;
4655      }
4656      else if ( idx[0] != -1 ) {
4657        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4658        id = idx[1] ;
4659      }
4660      //os << "use row " << id << LogIO::POST ;
4661      tsysval = tsysCol( id ) ;
4662      tsysval.tovector( tsys ) ;
4663    }
4664    else if ( mode == "nearest" ) {
4665      int id = -1 ;
4666      if ( idx[0] == -1 ) {
4667        id = idx[1] ;
4668      }
4669      else if ( idx[1] == -1 ) {
4670        id = idx[0] ;
4671      }
4672      else if ( idx[0] == idx[1] ) {
4673        id = idx[0] ;
4674      }
4675      else {
4676        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4677        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4678        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4679        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4680        double tref = getMJD( reftime ) ;
4681        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4682          id = idx[1] ;
4683        }
4684        else {
4685          id = idx[0] ;
4686        }
4687      }
4688      //os << "use row " << id << LogIO::POST ;
4689      tsysval = tsysCol( id ) ;
4690      tsysval.tovector( tsys ) ;
4691    }
4692    else if ( mode == "linear" ) {
4693      if ( idx[0] == -1 ) {
4694        // use after
4695        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4696        int id = idx[1] ;
4697        //os << "use row " << id << LogIO::POST ;
4698        tsysval = tsysCol( id ) ;
4699        tsysval.tovector( tsys ) ;
4700      }
4701      else if ( idx[1] == -1 ) {
4702        // use before
4703        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4704        int id = idx[0] ;
4705        //os << "use row " << id << LogIO::POST ;
4706        tsysval = tsysCol( id ) ;
4707        tsysval.tovector( tsys ) ;
4708      }
4709      else if ( idx[0] == idx[1] ) {
4710        // use before
4711        //os << "No need to interporate." << LogIO::POST ;
4712        int id = idx[0] ;
4713        //os << "use row " << id << LogIO::POST ;
4714        tsysval = tsysCol( id ) ;
4715        tsysval.tovector( tsys ) ;
4716      }
4717      else {
4718        // do interpolation
4719        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4720        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4721        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4722        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4723        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4724        double tref = getMJD( reftime ) ;
4725        vector<float> tsys0 ;
4726        vector<float> tsys1 ;
4727        tsysval = tsysCol( idx[0] ) ;
4728        tsysval.tovector( tsys0 ) ;
4729        tsysval = tsysCol( idx[1] ) ;
4730        tsysval.tovector( tsys1 ) ;       
4731        for ( unsigned int i = 0 ; i < tsys0.size() ; i++ ) {
4732          float v = ( tsys1[i] - tsys0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tsys0[i] ;
4733          tsys.push_back( v ) ;
4734        }
4735      }
4736    }
4737    else {
4738      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4739    }
4740    return tsys ;
4741  }
4742}
4743
4744vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
4745                                            CountedPtr<Scantable>& off,
4746                                            CountedPtr<Scantable>& sky,
4747                                            CountedPtr<Scantable>& hot,
4748                                            CountedPtr<Scantable>& cold,
4749                                            int index,
4750                                            string antname )
4751{
4752  (void) cold; //currently unused
4753  string reftime = on->getTime( index ) ;
4754  vector<int> ii( 1, on->getIF( index ) ) ;
4755  vector<int> ib( 1, on->getBeam( index ) ) ;
4756  vector<int> ip( 1, on->getPol( index ) ) ;
4757  vector<int> ic( 1, on->getScan( index ) ) ;
4758  STSelector sel = STSelector() ;
4759  sel.setIFs( ii ) ;
4760  sel.setBeams( ib ) ;
4761  sel.setPolarizations( ip ) ;
4762  sky->setSelection( sel ) ;
4763  hot->setSelection( sel ) ;
4764  //cold->setSelection( sel ) ;
4765  off->setSelection( sel ) ;
4766  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
4767  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
4768  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
4769  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
4770  vector<float> spec = on->getSpectrum( index ) ;
4771  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4772  vector<float> sp( tcal.size() ) ;
4773  if ( antname.find( "APEX" ) != string::npos ) {
4774    // using gain array
4775    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4776      float v = ( ( spec[j] - spoff[j] ) / spoff[j] )
4777        * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
4778      sp[j] = v ;
4779    }
4780  }
4781  else {
4782    // Chopper-Wheel calibration (Ulich & Haas 1976)
4783    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4784      float v = ( spec[j] - spoff[j] ) / ( sphot[j] - spsky[j] ) * tcal[j] ;
4785      sp[j] = v ;
4786    }
4787  }
4788  sel.reset() ;
4789  sky->unsetSelection() ;
4790  hot->unsetSelection() ;
4791  //cold->unsetSelection() ;
4792  off->unsetSelection() ;
4793
4794  return sp ;
4795}
4796
4797vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
4798                                            CountedPtr<Scantable>& off,
4799                                            int index )
4800{
4801  string reftime = on->getTime( index ) ;
4802  vector<int> ii( 1, on->getIF( index ) ) ;
4803  vector<int> ib( 1, on->getBeam( index ) ) ;
4804  vector<int> ip( 1, on->getPol( index ) ) ;
4805  vector<int> ic( 1, on->getScan( index ) ) ;
4806  STSelector sel = STSelector() ;
4807  sel.setIFs( ii ) ;
4808  sel.setBeams( ib ) ;
4809  sel.setPolarizations( ip ) ;
4810  off->setSelection( sel ) ;
4811  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
4812  vector<float> spec = on->getSpectrum( index ) ;
4813  //vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4814  //vector<float> tsys = on->getTsysVec( index ) ;
4815  ArrayColumn<Float> tsysCol( on->table(), "TSYS" ) ;
4816  Vector<Float> tsys = tsysCol( index ) ;
4817  vector<float> sp( spec.size() ) ;
4818  // ALMA Calibration
4819  //
4820  // Ta* = Tsys * ( ON - OFF ) / OFF
4821  //
4822  // 2010/01/07 Takeshi Nakazato
4823  unsigned int tsyssize = tsys.nelements() ;
4824  unsigned int spsize = sp.size() ;
4825  for ( unsigned int j = 0 ; j < sp.size() ; j++ ) {
4826    float tscale = 0.0 ;
4827    if ( tsyssize == spsize )
4828      tscale = tsys[j] ;
4829    else
4830      tscale = tsys[0] ;
4831    float v = tscale * ( spec[j] - spoff[j] ) / spoff[j] ;
4832    sp[j] = v ;
4833  }
4834  sel.reset() ;
4835  off->unsetSelection() ;
4836
4837  return sp ;
4838}
4839
4840vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
4841                                              CountedPtr<Scantable>& ref,
4842                                              CountedPtr<Scantable>& sky,
4843                                              CountedPtr<Scantable>& hot,
4844                                              CountedPtr<Scantable>& cold,
4845                                              int index )
4846{
4847  (void) cold; //currently unused
4848  string reftime = sig->getTime( index ) ;
4849  vector<int> ii( 1, sig->getIF( index ) ) ;
4850  vector<int> ib( 1, sig->getBeam( index ) ) ;
4851  vector<int> ip( 1, sig->getPol( index ) ) ;
4852  vector<int> ic( 1, sig->getScan( index ) ) ;
4853  STSelector sel = STSelector() ;
4854  sel.setIFs( ii ) ;
4855  sel.setBeams( ib ) ;
4856  sel.setPolarizations( ip ) ;
4857  sky->setSelection( sel ) ;
4858  hot->setSelection( sel ) ;
4859  //cold->setSelection( sel ) ;
4860  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
4861  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
4862  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
4863  vector<float> spref = ref->getSpectrum( index ) ;
4864  vector<float> spsig = sig->getSpectrum( index ) ;
4865  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4866  vector<float> sp( tcal.size() ) ;
4867  for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4868    float v = tcal[j] * spsky[j] / ( sphot[j] - spsky[j] ) * ( spsig[j] - spref[j] ) / spref[j] ;
4869    sp[j] = v ;
4870  }
4871  sel.reset() ;
4872  sky->unsetSelection() ;
4873  hot->unsetSelection() ;
4874  //cold->unsetSelection() ;
4875
4876  return sp ;
4877}
4878
4879vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
4880                                              CountedPtr<Scantable>& ref,
4881                                              vector< CountedPtr<Scantable> >& sky,
4882                                              vector< CountedPtr<Scantable> >& hot,
4883                                              vector< CountedPtr<Scantable> >& cold,
4884                                              int index )
4885{
4886  (void) cold; //currently unused
4887  string reftime = sig->getTime( index ) ;
4888  vector<int> ii( 1, sig->getIF( index ) ) ;
4889  vector<int> ib( 1, sig->getBeam( index ) ) ;
4890  vector<int> ip( 1, sig->getPol( index ) ) ;
4891  vector<int> ic( 1, sig->getScan( index ) ) ;
4892  STSelector sel = STSelector() ;
4893  sel.setIFs( ii ) ;
4894  sel.setBeams( ib ) ;
4895  sel.setPolarizations( ip ) ;
4896  sky[0]->setSelection( sel ) ;
4897  hot[0]->setSelection( sel ) ;
4898  //cold[0]->setSelection( sel ) ;
4899  vector<float> spskys = getSpectrumFromTime( reftime, sky[0], "linear" ) ;
4900  vector<float> sphots = getSpectrumFromTime( reftime, hot[0], "linear" ) ;
4901  //vector<float> spcolds = getSpectrumFromTime( reftime, cold[0], "linear" ) ;
4902  vector<float> tcals = getTcalFromTime( reftime, sky[0], "linear" ) ;
4903  sel.reset() ;
4904  ii[0] = ref->getIF( index ) ;
4905  sel.setIFs( ii ) ;
4906  sel.setBeams( ib ) ;
4907  sel.setPolarizations( ip ) ;
4908  sky[1]->setSelection( sel ) ;
4909  hot[1]->setSelection( sel ) ;
4910  //cold[1]->setSelection( sel ) ;
4911  vector<float> spskyr = getSpectrumFromTime( reftime, sky[1], "linear" ) ;
4912  vector<float> sphotr = getSpectrumFromTime( reftime, hot[1], "linear" ) ;
4913  //vector<float> spcoldr = getSpectrumFromTime( reftime, cold[1], "linear" ) ;
4914  vector<float> tcalr = getTcalFromTime( reftime, sky[1], "linear" ) ; 
4915  vector<float> spref = ref->getSpectrum( index ) ;
4916  vector<float> spsig = sig->getSpectrum( index ) ;
4917  vector<float> sp( tcals.size() ) ;
4918  for ( unsigned int j = 0 ; j < tcals.size() ; j++ ) {
4919    float v = tcals[j] * spsig[j] / ( sphots[j] - spskys[j] ) - tcalr[j] * spref[j] / ( sphotr[j] - spskyr[j] ) ;
4920    sp[j] = v ;
4921  }
4922  sel.reset() ;
4923  sky[0]->unsetSelection() ;
4924  hot[0]->unsetSelection() ;
4925  //cold[0]->unsetSelection() ;
4926  sky[1]->unsetSelection() ;
4927  hot[1]->unsetSelection() ;
4928  //cold[1]->unsetSelection() ;
4929
4930  return sp ;
4931}
Note: See TracBrowser for help on using the repository browser.