source: trunk/src/STMath.cpp @ 2004

Last change on this file since 2004 was 2004, checked in by Takeshi Nakazato, 13 years ago

New Development: No

JIRA Issue: Yes .CAS-2718

Ready for Test: Yes

Interface Changes: No

What Interface Changed: Please list interface changes

Test Programs: List test programs

Put in Release Notes: Yes/No?

Module(s): Module Names change impacts.

Description: Describe your changes here...

The MSFiller is called instead of PKSFiller when input data is MS.
I have tested all task regressions as well as sdsave unit test and passed.

A few modification was needed for STMath::dototalpower() and
STWriter::write().


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 166.1 KB
Line 
1//
2// C++ Implementation: STMath
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2006
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12
13#include <casa/iomanip.h>
14#include <casa/Exceptions/Error.h>
15#include <casa/Containers/Block.h>
16#include <casa/BasicSL/String.h>
17#include <casa/Arrays/MaskArrLogi.h>
18#include <casa/Arrays/MaskArrMath.h>
19#include <casa/Arrays/ArrayLogical.h>
20#include <casa/Arrays/ArrayMath.h>
21#include <casa/Arrays/Slice.h>
22#include <casa/Arrays/Slicer.h>
23#include <casa/Containers/RecordField.h>
24#include <tables/Tables/TableRow.h>
25#include <tables/Tables/TableVector.h>
26#include <tables/Tables/TabVecMath.h>
27#include <tables/Tables/ExprNode.h>
28#include <tables/Tables/TableRecord.h>
29#include <tables/Tables/TableParse.h>
30#include <tables/Tables/ReadAsciiTable.h>
31#include <tables/Tables/TableIter.h>
32#include <tables/Tables/TableCopy.h>
33#include <scimath/Mathematics/FFTServer.h>
34
35#include <lattices/Lattices/LatticeUtilities.h>
36
37#include <coordinates/Coordinates/SpectralCoordinate.h>
38#include <coordinates/Coordinates/CoordinateSystem.h>
39#include <coordinates/Coordinates/CoordinateUtil.h>
40#include <coordinates/Coordinates/FrequencyAligner.h>
41
42#include <scimath/Mathematics/VectorKernel.h>
43#include <scimath/Mathematics/Convolver.h>
44#include <scimath/Functionals/Polynomial.h>
45
46#include <atnf/PKSIO/SrcType.h>
47
48#include <casa/Logging/LogIO.h>
49#include <sstream>
50
51#include "MathUtils.h"
52#include "RowAccumulator.h"
53#include "STAttr.h"
54#include "STSelector.h"
55
56#include "STMath.h"
57using namespace casa;
58
59using namespace asap;
60
61// tolerance for direction comparison (rad)
62#define TOL_OTF    1.0e-15
63#define TOL_POINT  2.9088821e-4  // 1 arcmin
64
65STMath::STMath(bool insitu) :
66  insitu_(insitu)
67{
68}
69
70
71STMath::~STMath()
72{
73}
74
75CountedPtr<Scantable>
76STMath::average( const std::vector<CountedPtr<Scantable> >& in,
77                 const std::vector<bool>& mask,
78                 const std::string& weight,
79                 const std::string& avmode)
80{
81  LogIO os( LogOrigin( "STMath", "average()", WHERE ) ) ;
82  if ( avmode == "SCAN" && in.size() != 1 )
83    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
84                    "Use merge first."));
85  WeightType wtype = stringToWeight(weight);
86
87  // check if OTF observation
88  String obstype = in[0]->getHeader().obstype ;
89  Double tol = 0.0 ;
90  if ( (obstype.find( "OTF" ) != String::npos) || (obstype.find( "OBSERVE_TARGET" ) != String::npos) ) {
91    tol = TOL_OTF ;
92  }
93  else {
94    tol = TOL_POINT ;
95  }
96
97  // output
98  // clone as this is non insitu
99  bool insitu = insitu_;
100  setInsitu(false);
101  CountedPtr< Scantable > out = getScantable(in[0], true);
102  setInsitu(insitu);
103  std::vector<CountedPtr<Scantable> >::const_iterator stit = in.begin();
104  ++stit;
105  while ( stit != in.end() ) {
106    out->appendToHistoryTable((*stit)->history());
107    ++stit;
108  }
109
110  Table& tout = out->table();
111
112  /// @todo check if all scantables are conformant
113
114  ArrayColumn<Float> specColOut(tout,"SPECTRA");
115  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
116  ArrayColumn<Float> tsysColOut(tout,"TSYS");
117  ScalarColumn<Double> mjdColOut(tout,"TIME");
118  ScalarColumn<Double> intColOut(tout,"INTERVAL");
119  ScalarColumn<uInt> cycColOut(tout,"CYCLENO");
120  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
121
122  // set up the output table rows. These are based on the structure of the
123  // FIRST scantable in the vector
124  const Table& baset = in[0]->table();
125
126  Block<String> cols(3);
127  cols[0] = String("BEAMNO");
128  cols[1] = String("IFNO");
129  cols[2] = String("POLNO");
130  if ( avmode == "SOURCE" ) {
131    cols.resize(4);
132    cols[3] = String("SRCNAME");
133  }
134  if ( avmode == "SCAN"  && in.size() == 1) {
135    //cols.resize(4);
136    //cols[3] = String("SCANNO");
137    cols.resize(5);
138    cols[3] = String("SRCNAME");
139    cols[4] = String("SCANNO");
140  }
141  uInt outrowCount = 0;
142  TableIterator iter(baset, cols);
143//   int count = 0 ;
144  while (!iter.pastEnd()) {
145    Table subt = iter.table();
146//     // copy the first row of this selection into the new table
147//     tout.addRow();
148//     TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
149//     // re-index to 0
150//     if ( avmode != "SCAN" && avmode != "SOURCE" ) {
151//       scanColOut.put(outrowCount, uInt(0));
152//     }
153//     ++outrowCount;
154    MDirection::ScalarColumn dircol ;
155    dircol.attach( subt, "DIRECTION" ) ;
156    Int length = subt.nrow() ;
157    vector< Vector<Double> > dirs ;
158    vector<int> indexes ;
159    for ( Int i = 0 ; i < length ; i++ ) {
160      Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
161      //os << << count++ << ": " ;
162      //os << "[" << t[0] << "," << t[1] << "]" << LogIO::POST ;
163      bool adddir = true ;
164      for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
165        //if ( allTrue( t == dirs[j] ) ) {
166        Double dx = t[0] - dirs[j][0] ;
167        Double dy = t[1] - dirs[j][1] ;
168        Double dd = sqrt( dx * dx + dy * dy ) ;
169        //if ( allNearAbs( t, dirs[j], tol ) ) {
170        if ( dd <= tol ) {
171          adddir = false ;
172          break ;
173        }
174      }
175      if ( adddir ) {
176        dirs.push_back( t ) ;
177        indexes.push_back( i ) ;
178      }
179    }
180    uInt rowNum = dirs.size() ;
181    tout.addRow( rowNum ) ;
182    for ( uInt i = 0 ; i < rowNum ; i++ ) {
183      TableCopy::copyRows( tout, subt, outrowCount+i, indexes[i], 1 ) ;
184      // re-index to 0
185      if ( avmode != "SCAN" && avmode != "SOURCE" ) {
186        scanColOut.put(outrowCount+i, uInt(0));
187      }       
188    }
189    outrowCount += rowNum ;
190    ++iter;
191  }
192  RowAccumulator acc(wtype);
193  Vector<Bool> cmask(mask);
194  acc.setUserMask(cmask);
195  ROTableRow row(tout);
196  ROArrayColumn<Float> specCol, tsysCol;
197  ROArrayColumn<uChar> flagCol;
198  ROScalarColumn<Double> mjdCol, intCol;
199  ROScalarColumn<Int> scanIDCol;
200
201  Vector<uInt> rowstodelete;
202
203  for (uInt i=0; i < tout.nrow(); ++i) {
204    for ( int j=0; j < int(in.size()); ++j ) {
205      const Table& tin = in[j]->table();
206      const TableRecord& rec = row.get(i);
207      ROScalarColumn<Double> tmp(tin, "TIME");
208      Double td;tmp.get(0,td);
209      Table basesubt = tin(tin.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
210                       && tin.col("IFNO") == Int(rec.asuInt("IFNO"))
211                       && tin.col("POLNO") == Int(rec.asuInt("POLNO")) );
212      Table subt;
213      if ( avmode == "SOURCE") {
214        subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME") );
215      } else if (avmode == "SCAN") {
216        //subt = basesubt( basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO")) );
217        subt = basesubt( basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO"))
218                         && basesubt.col("SRCNAME") == rec.asString("SRCNAME") );
219      } else {
220        subt = basesubt;
221      }
222
223      vector<uInt> removeRows ;
224      uInt nrsubt = subt.nrow() ;
225      for ( uInt irow = 0 ; irow < nrsubt ; irow++ ) {
226        //if ( !allTrue((subt.col("DIRECTION").getArrayDouble(TableExprId(irow)))==rec.asArrayDouble("DIRECTION")) ) {
227        Vector<Double> x0 = (subt.col("DIRECTION").getArrayDouble(TableExprId(irow))) ;
228        Vector<Double> x1 = rec.asArrayDouble("DIRECTION") ;
229        double dx = x0[0] - x1[0] ;
230        double dy = x0[0] - x1[0] ;
231        Double dd = sqrt( dx * dx + dy * dy ) ;
232        //if ( !allNearAbs((subt.col("DIRECTION").getArrayDouble(TableExprId(irow))), rec.asArrayDouble("DIRECTION"), tol ) ) {
233        if ( dd > tol ) {
234          removeRows.push_back( irow ) ;
235        }
236      }
237      if ( removeRows.size() != 0 ) {
238        subt.removeRow( removeRows ) ;
239      }
240     
241      if ( nrsubt == removeRows.size() )
242        throw(AipsError("Averaging data is empty.")) ;
243
244      specCol.attach(subt,"SPECTRA");
245      flagCol.attach(subt,"FLAGTRA");
246      tsysCol.attach(subt,"TSYS");
247      intCol.attach(subt,"INTERVAL");
248      mjdCol.attach(subt,"TIME");
249      Vector<Float> spec,tsys;
250      Vector<uChar> flag;
251      Double inter,time;
252      for (uInt k = 0; k < subt.nrow(); ++k ) {
253        flagCol.get(k, flag);
254        Vector<Bool> bflag(flag.shape());
255        convertArray(bflag, flag);
256        /*
257        if ( allEQ(bflag, True) ) {
258        continue;//don't accumulate
259        }
260        */
261        specCol.get(k, spec);
262        tsysCol.get(k, tsys);
263        intCol.get(k, inter);
264        mjdCol.get(k, time);
265        // spectrum has to be added last to enable weighting by the other values
266        acc.add(spec, !bflag, tsys, inter, time);
267      }
268    }
269    const Vector<Bool>& msk = acc.getMask();
270    if ( allEQ(msk, False) ) {
271      uint n = rowstodelete.nelements();
272      rowstodelete.resize(n+1, True);
273      rowstodelete[n] = i;
274      continue;
275    }
276    //write out
277    if (acc.state()) {
278      Vector<uChar> flg(msk.shape());
279      convertArray(flg, !msk);
280      flagColOut.put(i, flg);
281      specColOut.put(i, acc.getSpectrum());
282      tsysColOut.put(i, acc.getTsys());
283      intColOut.put(i, acc.getInterval());
284      mjdColOut.put(i, acc.getTime());
285      // we should only have one cycle now -> reset it to be 0
286      // frequency switched data has different CYCLENO for different IFNO
287      // which requires resetting this value
288      cycColOut.put(i, uInt(0));
289    } else {
290      ostringstream oss;
291      oss << "For output row="<<i<<", all input rows of data are flagged. no averaging" << endl;
292      pushLog(String(oss));
293    }
294    acc.reset();
295  }
296  if (rowstodelete.nelements() > 0) {
297    //cout << rowstodelete << endl;
298    os << rowstodelete << LogIO::POST ;
299    tout.removeRow(rowstodelete);
300    if (tout.nrow() == 0) {
301      throw(AipsError("Can't average fully flagged data."));
302    }
303  }
304  return out;
305}
306
307CountedPtr< Scantable >
308  STMath::averageChannel( const CountedPtr < Scantable > & in,
309                          const std::string & mode,
310                          const std::string& avmode )
311{
312  // check if OTF observation
313  String obstype = in->getHeader().obstype ;
314  Double tol = 0.0 ;
315  if ( obstype.find( "OTF" ) != String::npos ) {
316    tol = TOL_OTF ;
317  }
318  else {
319    tol = TOL_POINT ;
320  }
321
322  // clone as this is non insitu
323  bool insitu = insitu_;
324  setInsitu(false);
325  CountedPtr< Scantable > out = getScantable(in, true);
326  setInsitu(insitu);
327  Table& tout = out->table();
328  ArrayColumn<Float> specColOut(tout,"SPECTRA");
329  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
330  ArrayColumn<Float> tsysColOut(tout,"TSYS");
331  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
332  ScalarColumn<Double> intColOut(tout, "INTERVAL");
333  Table tmp = in->table().sort("BEAMNO");
334  Block<String> cols(3);
335  cols[0] = String("BEAMNO");
336  cols[1] = String("IFNO");
337  cols[2] = String("POLNO");
338  if ( avmode == "SCAN") {
339    cols.resize(4);
340    cols[3] = String("SCANNO");
341  }
342  uInt outrowCount = 0;
343  uChar userflag = 1 << 7;
344  TableIterator iter(tmp, cols);
345  while (!iter.pastEnd()) {
346    Table subt = iter.table();
347    ROArrayColumn<Float> specCol, tsysCol;
348    ROArrayColumn<uChar> flagCol;
349    ROScalarColumn<Double> intCol(subt, "INTERVAL");
350    specCol.attach(subt,"SPECTRA");
351    flagCol.attach(subt,"FLAGTRA");
352    tsysCol.attach(subt,"TSYS");
353//     tout.addRow();
354//     TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
355//     if ( avmode != "SCAN") {
356//       scanColOut.put(outrowCount, uInt(0));
357//     }
358//     Vector<Float> tmp;
359//     specCol.get(0, tmp);
360//     uInt nchan = tmp.nelements();
361//     // have to do channel by channel here as MaskedArrMath
362//     // doesn't have partialMedians
363//     Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
364//     Vector<Float> outspec(nchan);
365//     Vector<uChar> outflag(nchan,0);
366//     Vector<Float> outtsys(1);/// @fixme when tsys is channel based
367//     for (uInt i=0; i<nchan; ++i) {
368//       Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
369//       MaskedArray<Float> ma = maskedArray(specs,flags);
370//       outspec[i] = median(ma);
371//       if ( allEQ(ma.getMask(), False) )
372//         outflag[i] = userflag;// flag data
373//     }
374//     outtsys[0] = median(tsysCol.getColumn());
375//     specColOut.put(outrowCount, outspec);
376//     flagColOut.put(outrowCount, outflag);
377//     tsysColOut.put(outrowCount, outtsys);
378//     Double intsum = sum(intCol.getColumn());
379//     intColOut.put(outrowCount, intsum);
380//     ++outrowCount;
381//     ++iter;
382    MDirection::ScalarColumn dircol ;
383    dircol.attach( subt, "DIRECTION" ) ;
384    Int length = subt.nrow() ;
385    vector< Vector<Double> > dirs ;
386    vector<int> indexes ;
387    for ( Int i = 0 ; i < length ; i++ ) {
388      Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
389      bool adddir = true ;
390      for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
391        //if ( allTrue( t == dirs[j] ) ) {
392        Double dx = t[0] - dirs[j][0] ;
393        Double dy = t[1] - dirs[j][1] ;
394        Double dd = sqrt( dx * dx + dy * dy ) ;
395        //if ( allNearAbs( t, dirs[j], tol ) ) {
396        if ( dd <= tol ) {
397          adddir = false ;
398          break ;
399        }
400      }
401      if ( adddir ) {
402        dirs.push_back( t ) ;
403        indexes.push_back( i ) ;
404      }
405    }
406    uInt rowNum = dirs.size() ;
407    tout.addRow( rowNum );
408    for ( uInt i = 0 ; i < rowNum ; i++ ) {
409      TableCopy::copyRows(tout, subt, outrowCount+i, indexes[i], 1) ;
410      if ( avmode != "SCAN") {
411        //scanColOut.put(outrowCount+i, uInt(0));
412      }
413    }
414    MDirection::ScalarColumn dircolOut ;
415    dircolOut.attach( tout, "DIRECTION" ) ;
416    for ( uInt irow = 0 ; irow < rowNum ; irow++ ) {
417      Vector<Double> t = dircolOut(outrowCount+irow).getAngle(Unit(String("rad"))).getValue() ;
418      Vector<Float> tmp;
419      specCol.get(0, tmp);
420      uInt nchan = tmp.nelements();
421      // have to do channel by channel here as MaskedArrMath
422      // doesn't have partialMedians
423      Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
424      // mask spectra for different DIRECTION
425      for ( uInt jrow = 0 ; jrow < subt.nrow() ; jrow++ ) {
426        Vector<Double> direction = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
427        //if ( t[0] != direction[0] || t[1] != direction[1] ) {
428        Double dx = t[0] - direction[0] ;
429        Double dy = t[1] - direction[1] ;
430        Double dd = sqrt( dx * dx + dy * dy ) ;
431        //if ( !allNearAbs( t, direction, tol ) ) {
432        if ( dd > tol ) {
433          flags[jrow] = userflag ;
434        }
435      }
436      Vector<Float> outspec(nchan);
437      Vector<uChar> outflag(nchan,0);
438      Vector<Float> outtsys(1);/// @fixme when tsys is channel based
439      for (uInt i=0; i<nchan; ++i) {
440        Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
441        MaskedArray<Float> ma = maskedArray(specs,flags);
442        outspec[i] = median(ma);
443        if ( allEQ(ma.getMask(), False) )
444          outflag[i] = userflag;// flag data
445      }
446      outtsys[0] = median(tsysCol.getColumn());
447      specColOut.put(outrowCount+irow, outspec);
448      flagColOut.put(outrowCount+irow, outflag);
449      tsysColOut.put(outrowCount+irow, outtsys);
450      Vector<Double> integ = intCol.getColumn() ;
451      MaskedArray<Double> mi = maskedArray( integ, flags ) ;
452      Double intsum = sum(mi);
453      intColOut.put(outrowCount+irow, intsum);
454    }
455    outrowCount += rowNum ;
456    ++iter;
457  }
458  return out;
459}
460
461CountedPtr< Scantable > STMath::getScantable(const CountedPtr< Scantable >& in,
462                                             bool droprows)
463{
464  if (insitu_) {
465    return in;
466  }
467  else {
468    // clone
469    return CountedPtr<Scantable>(new Scantable(*in, Bool(droprows)));
470  }
471}
472
473CountedPtr< Scantable > STMath::unaryOperate( const CountedPtr< Scantable >& in,
474                                              float val,
475                                              const std::string& mode,
476                                              bool tsys )
477{
478  CountedPtr< Scantable > out = getScantable(in, false);
479  Table& tab = out->table();
480  ArrayColumn<Float> specCol(tab,"SPECTRA");
481  ArrayColumn<Float> tsysCol(tab,"TSYS");
482  for (uInt i=0; i<tab.nrow(); ++i) {
483    Vector<Float> spec;
484    Vector<Float> ts;
485    specCol.get(i, spec);
486    tsysCol.get(i, ts);
487    if (mode == "MUL" || mode == "DIV") {
488      if (mode == "DIV") val = 1.0/val;
489      spec *= val;
490      specCol.put(i, spec);
491      if ( tsys ) {
492        ts *= val;
493        tsysCol.put(i, ts);
494      }
495    } else if ( mode == "ADD"  || mode == "SUB") {
496      if (mode == "SUB") val *= -1.0;
497      spec += val;
498      specCol.put(i, spec);
499      if ( tsys ) {
500        ts += val;
501        tsysCol.put(i, ts);
502      }
503    }
504  }
505  return out;
506}
507
508CountedPtr< Scantable > STMath::arrayOperate( const CountedPtr< Scantable >& in,
509                                              const std::vector<float> val,
510                                              const std::string& mode,
511                                              const std::string& opmode,
512                                              bool tsys )
513{
514  CountedPtr< Scantable > out ;
515  if ( opmode == "channel" ) {
516    out = arrayOperateChannel( in, val, mode, tsys ) ;
517  }
518  else if ( opmode == "row" ) {
519    out = arrayOperateRow( in, val, mode, tsys ) ;
520  }
521  else {
522    throw( AipsError( "Unknown array operation mode." ) ) ;
523  }
524  return out ;
525}
526
527CountedPtr< Scantable > STMath::arrayOperateChannel( const CountedPtr< Scantable >& in,
528                                                     const std::vector<float> val,
529                                                     const std::string& mode,
530                                                     bool tsys )
531{
532  if ( val.size() == 1 ){
533    return unaryOperate( in, val[0], mode, tsys ) ;
534  }
535
536  // conformity of SPECTRA and TSYS
537  if ( tsys ) {
538    TableIterator titer(in->table(), "IFNO");
539    while ( !titer.pastEnd() ) {
540      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
541      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
542      Array<Float> spec = specCol.getColumn() ;
543      Array<Float> ts = tsysCol.getColumn() ;
544      if ( !spec.conform( ts ) ) {
545        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
546      }
547      titer.next() ;
548    }
549  }
550
551  // check if all spectra in the scantable have the same number of channel
552  vector<uInt> nchans;
553  vector<uInt> ifnos = in->getIFNos() ;
554  for ( uInt i = 0 ; i < ifnos.size() ; i++ ) {
555    nchans.push_back( in->nchan( ifnos[i] ) ) ;
556  }
557  Vector<uInt> mchans( nchans ) ;
558  if ( anyNE( mchans, mchans[0] ) ) {
559    throw( AipsError("All spectra in the input scantable must have the same number of channel for vector operation." ) ) ;
560  }
561
562  // check if vector size is equal to nchan
563  Vector<Float> fact( val ) ;
564  if ( fact.nelements() != mchans[0] ) {
565    throw( AipsError("Vector size must be 1 or be same as number of channel.") ) ;
566  }
567
568  // check divided by zero
569  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
570    throw( AipsError("Divided by zero is not recommended." ) ) ;
571  }
572
573  CountedPtr< Scantable > out = getScantable(in, false);
574  Table& tab = out->table();
575  ArrayColumn<Float> specCol(tab,"SPECTRA");
576  ArrayColumn<Float> tsysCol(tab,"TSYS");
577  for (uInt i=0; i<tab.nrow(); ++i) {
578    Vector<Float> spec;
579    Vector<Float> ts;
580    specCol.get(i, spec);
581    tsysCol.get(i, ts);
582    if (mode == "MUL" || mode == "DIV") {
583      if (mode == "DIV") fact = (float)1.0 / fact;
584      spec *= fact;
585      specCol.put(i, spec);
586      if ( tsys ) {
587        ts *= fact;
588        tsysCol.put(i, ts);
589      }
590    } else if ( mode == "ADD"  || mode == "SUB") {
591      if (mode == "SUB") fact *= (float)-1.0 ;
592      spec += fact;
593      specCol.put(i, spec);
594      if ( tsys ) {
595        ts += fact;
596        tsysCol.put(i, ts);
597      }
598    }
599  }
600  return out;
601}
602
603CountedPtr< Scantable > STMath::arrayOperateRow( const CountedPtr< Scantable >& in,
604                                                 const std::vector<float> val,
605                                                 const std::string& mode,
606                                                 bool tsys )
607{
608  if ( val.size() == 1 ) {
609    return unaryOperate( in, val[0], mode, tsys ) ;
610  }
611
612  // conformity of SPECTRA and TSYS
613  if ( tsys ) {
614    TableIterator titer(in->table(), "IFNO");
615    while ( !titer.pastEnd() ) {
616      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
617      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
618      Array<Float> spec = specCol.getColumn() ;
619      Array<Float> ts = tsysCol.getColumn() ;
620      if ( !spec.conform( ts ) ) {
621        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
622      }
623      titer.next() ;
624    }
625  }
626
627  // check if vector size is equal to nrow
628  Vector<Float> fact( val ) ;
629  if ( fact.nelements() != in->nrow() ) {
630    throw( AipsError("Vector size must be 1 or be same as number of row.") ) ;
631  }
632
633  // check divided by zero
634  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
635    throw( AipsError("Divided by zero is not recommended." ) ) ;
636  }
637
638  CountedPtr< Scantable > out = getScantable(in, false);
639  Table& tab = out->table();
640  ArrayColumn<Float> specCol(tab,"SPECTRA");
641  ArrayColumn<Float> tsysCol(tab,"TSYS");
642  if (mode == "DIV") fact = (float)1.0 / fact;
643  if (mode == "SUB") fact *= (float)-1.0 ;
644  for (uInt i=0; i<tab.nrow(); ++i) {
645    Vector<Float> spec;
646    Vector<Float> ts;
647    specCol.get(i, spec);
648    tsysCol.get(i, ts);
649    if (mode == "MUL" || mode == "DIV") {
650      spec *= fact[i];
651      specCol.put(i, spec);
652      if ( tsys ) {
653        ts *= fact[i];
654        tsysCol.put(i, ts);
655      }
656    } else if ( mode == "ADD"  || mode == "SUB") {
657      spec += fact[i];
658      specCol.put(i, spec);
659      if ( tsys ) {
660        ts += fact[i];
661        tsysCol.put(i, ts);
662      }
663    }
664  }
665  return out;
666}
667
668CountedPtr< Scantable > STMath::array2dOperate( const CountedPtr< Scantable >& in,
669                                                const std::vector< std::vector<float> > val,
670                                                const std::string& mode,
671                                                bool tsys )
672{
673  // conformity of SPECTRA and TSYS
674  if ( tsys ) {
675    TableIterator titer(in->table(), "IFNO");
676    while ( !titer.pastEnd() ) {
677      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
678      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
679      Array<Float> spec = specCol.getColumn() ;
680      Array<Float> ts = tsysCol.getColumn() ;
681      if ( !spec.conform( ts ) ) {
682        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
683      }
684      titer.next() ;
685    }
686  }
687
688  // some checks
689  vector<uInt> nchans;
690  for ( uInt i = 0 ; i < in->nrow() ; i++ ) {
691    nchans.push_back( (in->getSpectrum( i )).size() ) ;
692  }
693  //Vector<uInt> mchans( nchans ) ;
694  vector< Vector<Float> > facts ;
695  for ( uInt i = 0 ; i < nchans.size() ; i++ ) {
696    Vector<Float> tmp( val[i] ) ;
697    // check divided by zero
698    if ( ( mode == "DIV" ) && anyEQ( tmp, (float)0.0 ) ) {
699      throw( AipsError("Divided by zero is not recommended." ) ) ;
700    }
701    // conformity check
702    if ( tmp.nelements() != nchans[i] ) {
703      stringstream ss ;
704      ss << "Row " << i << ": Vector size must be same as number of channel." ;
705      throw( AipsError( ss.str() ) ) ;
706    }
707    facts.push_back( tmp ) ;
708  }
709
710
711  CountedPtr< Scantable > out = getScantable(in, false);
712  Table& tab = out->table();
713  ArrayColumn<Float> specCol(tab,"SPECTRA");
714  ArrayColumn<Float> tsysCol(tab,"TSYS");
715  for (uInt i=0; i<tab.nrow(); ++i) {
716    Vector<Float> fact = facts[i] ;
717    Vector<Float> spec;
718    Vector<Float> ts;
719    specCol.get(i, spec);
720    tsysCol.get(i, ts);
721    if (mode == "MUL" || mode == "DIV") {
722      if (mode == "DIV") fact = (float)1.0 / fact;
723      spec *= fact;
724      specCol.put(i, spec);
725      if ( tsys ) {
726        ts *= fact;
727        tsysCol.put(i, ts);
728      }
729    } else if ( mode == "ADD"  || mode == "SUB") {
730      if (mode == "SUB") fact *= (float)-1.0 ;
731      spec += fact;
732      specCol.put(i, spec);
733      if ( tsys ) {
734        ts += fact;
735        tsysCol.put(i, ts);
736      }
737    }
738  }
739  return out;
740}
741
742CountedPtr<Scantable> STMath::binaryOperate(const CountedPtr<Scantable>& left,
743                                            const CountedPtr<Scantable>& right,
744                                            const std::string& mode)
745{
746  bool insitu = insitu_;
747  if ( ! left->conformant(*right) ) {
748    throw(AipsError("'left' and 'right' scantables are not conformant."));
749  }
750  setInsitu(false);
751  CountedPtr< Scantable > out = getScantable(left, false);
752  setInsitu(insitu);
753  Table& tout = out->table();
754  Block<String> coln(5);
755  coln[0] = "SCANNO";  coln[1] = "CYCLENO";  coln[2] = "BEAMNO";
756  coln[3] = "IFNO";  coln[4] = "POLNO";
757  Table tmpl = tout.sort(coln);
758  Table tmpr = right->table().sort(coln);
759  ArrayColumn<Float> lspecCol(tmpl,"SPECTRA");
760  ROArrayColumn<Float> rspecCol(tmpr,"SPECTRA");
761  ArrayColumn<uChar> lflagCol(tmpl,"FLAGTRA");
762  ROArrayColumn<uChar> rflagCol(tmpr,"FLAGTRA");
763
764  for (uInt i=0; i<tout.nrow(); ++i) {
765    Vector<Float> lspecvec, rspecvec;
766    Vector<uChar> lflagvec, rflagvec;
767    lspecvec = lspecCol(i);    rspecvec = rspecCol(i);
768    lflagvec = lflagCol(i);    rflagvec = rflagCol(i);
769    MaskedArray<Float> mleft = maskedArray(lspecvec, lflagvec);
770    MaskedArray<Float> mright = maskedArray(rspecvec, rflagvec);
771    if (mode == "ADD") {
772      mleft += mright;
773    } else if ( mode == "SUB") {
774      mleft -= mright;
775    } else if ( mode == "MUL") {
776      mleft *= mright;
777    } else if ( mode == "DIV") {
778      mleft /= mright;
779    } else {
780      throw(AipsError("Illegal binary operator"));
781    }
782    lspecCol.put(i, mleft.getArray());
783  }
784  return out;
785}
786
787
788
789MaskedArray<Float> STMath::maskedArray( const Vector<Float>& s,
790                                        const Vector<uChar>& f)
791{
792  Vector<Bool> mask;
793  mask.resize(f.shape());
794  convertArray(mask, f);
795  return MaskedArray<Float>(s,!mask);
796}
797
798MaskedArray<Double> STMath::maskedArray( const Vector<Double>& s,
799                                         const Vector<uChar>& f)
800{
801  Vector<Bool> mask;
802  mask.resize(f.shape());
803  convertArray(mask, f);
804  return MaskedArray<Double>(s,!mask);
805}
806
807Vector<uChar> STMath::flagsFromMA(const MaskedArray<Float>& ma)
808{
809  const Vector<Bool>& m = ma.getMask();
810  Vector<uChar> flags(m.shape());
811  convertArray(flags, !m);
812  return flags;
813}
814
815CountedPtr< Scantable > STMath::autoQuotient( const CountedPtr< Scantable >& in,
816                                              const std::string & mode,
817                                              bool preserve )
818{
819  /// @todo make other modes available
820  /// modes should be "nearest", "pair"
821  // make this operation non insitu
822  const Table& tin = in->table();
823  Table ons = tin(tin.col("SRCTYPE") == Int(SrcType::PSON));
824  Table offs = tin(tin.col("SRCTYPE") == Int(SrcType::PSOFF));
825  if ( offs.nrow() == 0 )
826    throw(AipsError("No 'off' scans present."));
827  // put all "on" scans into output table
828
829  bool insitu = insitu_;
830  setInsitu(false);
831  CountedPtr< Scantable > out = getScantable(in, true);
832  setInsitu(insitu);
833  Table& tout = out->table();
834
835  TableCopy::copyRows(tout, ons);
836  TableRow row(tout);
837  ROScalarColumn<Double> offtimeCol(offs, "TIME");
838  ArrayColumn<Float> outspecCol(tout, "SPECTRA");
839  ROArrayColumn<Float> outtsysCol(tout, "TSYS");
840  ArrayColumn<uChar> outflagCol(tout, "FLAGTRA");
841  for (uInt i=0; i < tout.nrow(); ++i) {
842    const TableRecord& rec = row.get(i);
843    Double ontime = rec.asDouble("TIME");
844    Table presel = offs(offs.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
845                        && offs.col("IFNO") == Int(rec.asuInt("IFNO"))
846                        && offs.col("POLNO") == Int(rec.asuInt("POLNO")) );
847    ROScalarColumn<Double> offtimeCol(presel, "TIME");
848
849    Double mindeltat = min(abs(offtimeCol.getColumn() - ontime));
850    // Timestamp may vary within a cycle ???!!!
851    // increase this by 0.01 sec in case of rounding errors...
852    // There might be a better way to do this.
853    // fix to this fix. TIME is MJD, so 1.0d not 1.0s
854    mindeltat += 0.01/24./60./60.;
855    Table sel = presel( abs(presel.col("TIME")-ontime) <= mindeltat);
856
857    if ( sel.nrow() < 1 )  {
858      throw(AipsError("No closest in time found... This could be a rounding "
859                      "issue. Try quotient instead."));
860    }
861    TableRow offrow(sel);
862    const TableRecord& offrec = offrow.get(0);//should only be one row
863    RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
864    RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
865    RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
866    /// @fixme this assumes tsys is a scalar not vector
867    Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
868    Vector<Float> specon, tsyson;
869    outtsysCol.get(i, tsyson);
870    outspecCol.get(i, specon);
871    Vector<uChar> flagon;
872    outflagCol.get(i, flagon);
873    MaskedArray<Float> mon = maskedArray(specon, flagon);
874    MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
875    MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
876    if (preserve) {
877      quot -= tsysoffscalar;
878    } else {
879      quot -= tsyson[0];
880    }
881    outspecCol.put(i, quot.getArray());
882    outflagCol.put(i, flagsFromMA(quot));
883  }
884  // renumber scanno
885  TableIterator it(tout, "SCANNO");
886  uInt i = 0;
887  while ( !it.pastEnd() ) {
888    Table t = it.table();
889    TableVector<uInt> vec(t, "SCANNO");
890    vec = i;
891    ++i;
892    ++it;
893  }
894  return out;
895}
896
897
898CountedPtr< Scantable > STMath::quotient( const CountedPtr< Scantable > & on,
899                                          const CountedPtr< Scantable > & off,
900                                          bool preserve )
901{
902  bool insitu = insitu_;
903  if ( ! on->conformant(*off) ) {
904    throw(AipsError("'on' and 'off' scantables are not conformant."));
905  }
906  setInsitu(false);
907  CountedPtr< Scantable > out = getScantable(on, false);
908  setInsitu(insitu);
909  Table& tout = out->table();
910  const Table& toff = off->table();
911  TableIterator sit(tout, "SCANNO");
912  TableIterator s2it(toff, "SCANNO");
913  while ( !sit.pastEnd() ) {
914    Table ton = sit.table();
915    TableRow row(ton);
916    Table t = s2it.table();
917    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
918    ROArrayColumn<Float> outtsysCol(ton, "TSYS");
919    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
920    for (uInt i=0; i < ton.nrow(); ++i) {
921      const TableRecord& rec = row.get(i);
922      Table offsel = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
923                          && t.col("IFNO") == Int(rec.asuInt("IFNO"))
924                          && t.col("POLNO") == Int(rec.asuInt("POLNO")) );
925      if ( offsel.nrow() == 0 )
926        throw AipsError("STMath::quotient: no matching off");
927      TableRow offrow(offsel);
928      const TableRecord& offrec = offrow.get(0);//should be ncycles - take first
929      RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
930      RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
931      RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
932      Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
933      Vector<Float> specon, tsyson;
934      outtsysCol.get(i, tsyson);
935      outspecCol.get(i, specon);
936      Vector<uChar> flagon;
937      outflagCol.get(i, flagon);
938      MaskedArray<Float> mon = maskedArray(specon, flagon);
939      MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
940      MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
941      if (preserve) {
942        quot -= tsysoffscalar;
943      } else {
944        quot -= tsyson[0];
945      }
946      outspecCol.put(i, quot.getArray());
947      outflagCol.put(i, flagsFromMA(quot));
948    }
949    ++sit;
950    ++s2it;
951    // take the first off for each on scan which doesn't have a
952    // matching off scan
953    // non <= noff:  matching pairs, non > noff matching pairs then first off
954    if ( s2it.pastEnd() ) s2it.reset();
955  }
956  return out;
957}
958
959// dototalpower (migration of GBTIDL procedure dototalpower.pro)
960// calibrate the CAL on-off pair. It calculate Tsys and average CAL on-off subintegrations
961// do it for each cycles in a specific scan.
962CountedPtr< Scantable > STMath::dototalpower( const CountedPtr< Scantable >& calon,
963                                              const CountedPtr< Scantable >& caloff, Float tcal )
964{
965if ( ! calon->conformant(*caloff) ) {
966    throw(AipsError("'CAL on' and 'CAL off' scantables are not conformant."));
967  }
968  setInsitu(false);
969  CountedPtr< Scantable > out = getScantable(caloff, false);
970  Table& tout = out->table();
971  const Table& tcon = calon->table();
972  Vector<Float> tcalout;
973  Vector<Float> tcalout2;  //debug
974
975  if ( tout.nrow() != tcon.nrow() ) {
976    throw(AipsError("Mismatch in number of rows to form cal on - off pair."));
977  }
978  // iteration by scanno or cycle no.
979  TableIterator sit(tout, "SCANNO");
980  TableIterator s2it(tcon, "SCANNO");
981  while ( !sit.pastEnd() ) {
982    Table toff = sit.table();
983    TableRow row(toff);
984    Table t = s2it.table();
985    ScalarColumn<Double> outintCol(toff, "INTERVAL");
986    ArrayColumn<Float> outspecCol(toff, "SPECTRA");
987    ArrayColumn<Float> outtsysCol(toff, "TSYS");
988    ArrayColumn<uChar> outflagCol(toff, "FLAGTRA");
989    ROScalarColumn<uInt> outtcalIdCol(toff, "TCAL_ID");
990    ROScalarColumn<uInt> outpolCol(toff, "POLNO");
991    ROScalarColumn<Double> onintCol(t, "INTERVAL");
992    ROArrayColumn<Float> onspecCol(t, "SPECTRA");
993    ROArrayColumn<Float> ontsysCol(t, "TSYS");
994    ROArrayColumn<uChar> onflagCol(t, "FLAGTRA");
995    //ROScalarColumn<uInt> ontcalIdCol(t, "TCAL_ID");
996
997    for (uInt i=0; i < toff.nrow(); ++i) {
998      //skip these checks -> assumes the data order are the same between the cal on off pairs
999      //
1000      Vector<Float> specCalon, specCaloff;
1001      // to store scalar (mean) tsys
1002      Vector<Float> tsysout(1);
1003      uInt tcalId, polno;
1004      Double offint, onint;
1005      outpolCol.get(i, polno);
1006      outspecCol.get(i, specCaloff);
1007      onspecCol.get(i, specCalon);
1008      Vector<uChar> flagCaloff, flagCalon;
1009      outflagCol.get(i, flagCaloff);
1010      onflagCol.get(i, flagCalon);
1011      outtcalIdCol.get(i, tcalId);
1012      outintCol.get(i, offint);
1013      onintCol.get(i, onint);
1014      // caluculate mean Tsys
1015      uInt nchan = specCaloff.nelements();
1016      // percentage of edge cut off
1017      uInt pc = 10;
1018      uInt bchan = nchan/pc;
1019      uInt echan = nchan-bchan;
1020
1021      Slicer chansl(IPosition(1,bchan-1), IPosition(1,echan-1), IPosition(1,1),Slicer::endIsLast);
1022      Vector<Float> testsubsp = specCaloff(chansl);
1023      MaskedArray<Float> spoff = maskedArray( specCaloff(chansl),flagCaloff(chansl) );
1024      MaskedArray<Float> spon = maskedArray( specCalon(chansl),flagCalon(chansl) );
1025      MaskedArray<Float> spdiff = spon-spoff;
1026      uInt noff = spoff.nelementsValid();
1027      //uInt non = spon.nelementsValid();
1028      uInt ndiff = spdiff.nelementsValid();
1029      Float meantsys;
1030
1031/**
1032      Double subspec, subdiff;
1033      uInt usednchan;
1034      subspec = 0;
1035      subdiff = 0;
1036      usednchan = 0;
1037      for(uInt k=(bchan-1); k<echan; k++) {
1038        subspec += specCaloff[k];
1039        subdiff += static_cast<Double>(specCalon[k]-specCaloff[k]);
1040        ++usednchan;
1041      }
1042**/
1043      // get tcal if input tcal <= 0
1044      String tcalt;
1045      Float tcalUsed;
1046      tcalUsed = tcal;
1047      if ( tcal <= 0.0 ) {
1048        caloff->tcal().getEntry(tcalt, tcalout, tcalId);
1049//         if (polno<=3) {
1050//           tcalUsed = tcalout[polno];
1051//         }
1052//         else {
1053//           tcalUsed = tcalout[0];
1054//         }
1055        if ( tcalout.size() == 1 )
1056          tcalUsed = tcalout[0] ;
1057        else if ( tcalout.size() == nchan )
1058          tcalUsed = mean(tcalout) ;
1059        else {
1060          uInt ipol = polno ;
1061          if ( ipol > 3 ) ipol = 0 ;
1062          tcalUsed = tcalout[ipol] ;
1063        }
1064      }
1065
1066      Float meanoff;
1067      Float meandiff;
1068      if (noff && ndiff) {
1069         //Debug
1070         //if(noff!=ndiff) cerr<<"noff and ndiff is not equal"<<endl;
1071         //LogIO os( LogOrigin( "STMath", "dototalpower()", WHERE ) ) ;
1072         //if(noff!=ndiff) os<<"noff and ndiff is not equal"<<LogIO::POST;
1073         meanoff = sum(spoff)/noff;
1074         meandiff = sum(spdiff)/ndiff;
1075         meantsys= (meanoff/meandiff )*tcalUsed + tcalUsed/2;
1076      }
1077      else {
1078         meantsys=1;
1079      }
1080
1081      tsysout[0] = Float(meantsys);
1082      MaskedArray<Float> mcaloff = maskedArray(specCaloff, flagCaloff);
1083      MaskedArray<Float> mcalon = maskedArray(specCalon, flagCalon);
1084      MaskedArray<Float> sig =   Float(0.5) * (mcaloff + mcalon);
1085      //uInt ncaloff = mcaloff.nelementsValid();
1086      //uInt ncalon = mcalon.nelementsValid();
1087
1088      outintCol.put(i, offint+onint);
1089      outspecCol.put(i, sig.getArray());
1090      outflagCol.put(i, flagsFromMA(sig));
1091      outtsysCol.put(i, tsysout);
1092    }
1093    ++sit;
1094    ++s2it;
1095  }
1096  return out;
1097}
1098
1099//dosigref - migrated from GBT IDL's dosigref.pro, do calibration of position switch
1100// observatiions.
1101// input: sig and ref scantables, and an optional boxcar smoothing width(default width=0,
1102//        no smoothing).
1103// output: resultant scantable [= (sig-ref/ref)*tsys]
1104CountedPtr< Scantable > STMath::dosigref( const CountedPtr < Scantable >& sig,
1105                                          const CountedPtr < Scantable >& ref,
1106                                          int smoothref,
1107                                          casa::Float tsysv,
1108                                          casa::Float tau )
1109{
1110if ( ! ref->conformant(*sig) ) {
1111    throw(AipsError("'sig' and 'ref' scantables are not conformant."));
1112  }
1113  setInsitu(false);
1114  CountedPtr< Scantable > out = getScantable(sig, false);
1115  CountedPtr< Scantable > smref;
1116  if ( smoothref > 1 ) {
1117    float fsmoothref = static_cast<float>(smoothref);
1118    std::string inkernel = "boxcar";
1119    smref = smooth(ref, inkernel, fsmoothref );
1120    ostringstream oss;
1121    oss<<"Applied smoothing of "<<fsmoothref<<" on the reference."<<endl;
1122    pushLog(String(oss));
1123  }
1124  else {
1125    smref = ref;
1126  }
1127  Table& tout = out->table();
1128  const Table& tref = smref->table();
1129  if ( tout.nrow() != tref.nrow() ) {
1130    throw(AipsError("Mismatch in number of rows to form on-source and reference pair."));
1131  }
1132  // iteration by scanno? or cycle no.
1133  TableIterator sit(tout, "SCANNO");
1134  TableIterator s2it(tref, "SCANNO");
1135  while ( !sit.pastEnd() ) {
1136    Table ton = sit.table();
1137    Table t = s2it.table();
1138    ScalarColumn<Double> outintCol(ton, "INTERVAL");
1139    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1140    ArrayColumn<Float> outtsysCol(ton, "TSYS");
1141    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1142    ArrayColumn<Float> refspecCol(t, "SPECTRA");
1143    ROScalarColumn<Double> refintCol(t, "INTERVAL");
1144    ROArrayColumn<Float> reftsysCol(t, "TSYS");
1145    ArrayColumn<uChar> refflagCol(t, "FLAGTRA");
1146    ROScalarColumn<Float> refelevCol(t, "ELEVATION");
1147    for (uInt i=0; i < ton.nrow(); ++i) {
1148
1149      Double onint, refint;
1150      Vector<Float> specon, specref;
1151      // to store scalar (mean) tsys
1152      Vector<Float> tsysref;
1153      outintCol.get(i, onint);
1154      refintCol.get(i, refint);
1155      outspecCol.get(i, specon);
1156      refspecCol.get(i, specref);
1157      Vector<uChar> flagref, flagon;
1158      outflagCol.get(i, flagon);
1159      refflagCol.get(i, flagref);
1160      reftsysCol.get(i, tsysref);
1161
1162      Float tsysrefscalar;
1163      if ( tsysv > 0.0 ) {
1164        ostringstream oss;
1165        Float elev;
1166        refelevCol.get(i, elev);
1167        oss << "user specified Tsys = " << tsysv;
1168        // do recalc elevation if EL = 0
1169        if ( elev == 0 ) {
1170          throw(AipsError("EL=0, elevation data is missing."));
1171        } else {
1172          if ( tau <= 0.0 ) {
1173            throw(AipsError("Valid tau is not supplied."));
1174          } else {
1175            tsysrefscalar = tsysv * exp(tau/elev);
1176          }
1177        }
1178        oss << ", corrected (for El) tsys= "<<tsysrefscalar;
1179        pushLog(String(oss));
1180      }
1181      else {
1182        tsysrefscalar = tsysref[0];
1183      }
1184      //get quotient spectrum
1185      MaskedArray<Float> mref = maskedArray(specref, flagref);
1186      MaskedArray<Float> mon = maskedArray(specon, flagon);
1187      MaskedArray<Float> specres =   tsysrefscalar*((mon - mref)/mref);
1188      Double resint = onint*refint*smoothref/(onint+refint*smoothref);
1189
1190      //Debug
1191      //cerr<<"Tsys used="<<tsysrefscalar<<endl;
1192      //LogIO os( LogOrigin( "STMath", "dosigref", WHERE ) ) ;
1193      //os<<"Tsys used="<<tsysrefscalar<<LogIO::POST;
1194      // fill the result, replay signal tsys by reference tsys
1195      outintCol.put(i, resint);
1196      outspecCol.put(i, specres.getArray());
1197      outflagCol.put(i, flagsFromMA(specres));
1198      outtsysCol.put(i, tsysref);
1199    }
1200    ++sit;
1201    ++s2it;
1202  }
1203  return out;
1204}
1205
1206CountedPtr< Scantable > STMath::donod(const casa::CountedPtr<Scantable>& s,
1207                                     const std::vector<int>& scans,
1208                                     int smoothref,
1209                                     casa::Float tsysv,
1210                                     casa::Float tau,
1211                                     casa::Float tcal )
1212
1213{
1214  setInsitu(false);
1215  STSelector sel;
1216  std::vector<int> scan1, scan2, beams, types;
1217  std::vector< vector<int> > scanpair;
1218  //std::vector<string> calstate;
1219  std::vector<int> calstate;
1220  String msg;
1221
1222  CountedPtr< Scantable > s1b1on, s1b1off, s1b2on, s1b2off;
1223  CountedPtr< Scantable > s2b1on, s2b1off, s2b2on, s2b2off;
1224
1225  std::vector< CountedPtr< Scantable > > sctables;
1226  sctables.push_back(s1b1on);
1227  sctables.push_back(s1b1off);
1228  sctables.push_back(s1b2on);
1229  sctables.push_back(s1b2off);
1230  sctables.push_back(s2b1on);
1231  sctables.push_back(s2b1off);
1232  sctables.push_back(s2b2on);
1233  sctables.push_back(s2b2off);
1234
1235  //check scanlist
1236  int n=s->checkScanInfo(scans);
1237  if (n==1) {
1238     throw(AipsError("Incorrect scan pairs. "));
1239  }
1240
1241  // Assume scans contain only a pair of consecutive scan numbers.
1242  // It is assumed that first beam, b1,  is on target.
1243  // There is no check if the first beam is on or not.
1244  if ( scans.size()==1 ) {
1245    scan1.push_back(scans[0]);
1246    scan2.push_back(scans[0]+1);
1247  } else if ( scans.size()==2 ) {
1248   scan1.push_back(scans[0]);
1249   scan2.push_back(scans[1]);
1250  } else {
1251    if ( scans.size()%2 == 0 ) {
1252      for (uInt i=0; i<scans.size(); i++) {
1253        if (i%2 == 0) {
1254          scan1.push_back(scans[i]);
1255        }
1256        else {
1257          scan2.push_back(scans[i]);
1258        }
1259      }
1260    } else {
1261      throw(AipsError("Odd numbers of scans, cannot form pairs."));
1262    }
1263  }
1264  scanpair.push_back(scan1);
1265  scanpair.push_back(scan2);
1266  //calstate.push_back("*calon");
1267  //calstate.push_back("*[^calon]");
1268  calstate.push_back(SrcType::NODCAL);
1269  calstate.push_back(SrcType::NOD);
1270  CountedPtr< Scantable > ws = getScantable(s, false);
1271  uInt l=0;
1272  while ( l < sctables.size() ) {
1273    for (uInt i=0; i < 2; i++) {
1274      for (uInt j=0; j < 2; j++) {
1275        for (uInt k=0; k < 2; k++) {
1276          sel.reset();
1277          sel.setScans(scanpair[i]);
1278          //sel.setName(calstate[k]);
1279          types.clear();
1280          types.push_back(calstate[k]);
1281          sel.setTypes(types);
1282          beams.clear();
1283          beams.push_back(j);
1284          sel.setBeams(beams);
1285          ws->setSelection(sel);
1286          sctables[l]= getScantable(ws, false);
1287          l++;
1288        }
1289      }
1290    }
1291  }
1292
1293  // replace here by splitData or getData functionality
1294  CountedPtr< Scantable > sig1;
1295  CountedPtr< Scantable > ref1;
1296  CountedPtr< Scantable > sig2;
1297  CountedPtr< Scantable > ref2;
1298  CountedPtr< Scantable > calb1;
1299  CountedPtr< Scantable > calb2;
1300
1301  msg=String("Processing dototalpower for subset of the data");
1302  ostringstream oss1;
1303  oss1 << msg  << endl;
1304  pushLog(String(oss1));
1305  // Debug for IRC CS data
1306  //float tcal1=7.0;
1307  //float tcal2=4.0;
1308  sig1 = dototalpower(sctables[0], sctables[1], tcal=tcal);
1309  ref1 = dototalpower(sctables[2], sctables[3], tcal=tcal);
1310  ref2 = dototalpower(sctables[4], sctables[5], tcal=tcal);
1311  sig2 = dototalpower(sctables[6], sctables[7], tcal=tcal);
1312
1313  // correction of user-specified tsys for elevation here
1314
1315  // dosigref calibration
1316  msg=String("Processing dosigref for subset of the data");
1317  ostringstream oss2;
1318  oss2 << msg  << endl;
1319  pushLog(String(oss2));
1320  calb1=dosigref(sig1,ref2,smoothref,tsysv,tau);
1321  calb2=dosigref(sig2,ref1,smoothref,tsysv,tau);
1322
1323  // iteration by scanno or cycle no.
1324  Table& tcalb1 = calb1->table();
1325  Table& tcalb2 = calb2->table();
1326  TableIterator sit(tcalb1, "SCANNO");
1327  TableIterator s2it(tcalb2, "SCANNO");
1328  while ( !sit.pastEnd() ) {
1329    Table t1 = sit.table();
1330    Table t2= s2it.table();
1331    ArrayColumn<Float> outspecCol(t1, "SPECTRA");
1332    ArrayColumn<Float> outtsysCol(t1, "TSYS");
1333    ArrayColumn<uChar> outflagCol(t1, "FLAGTRA");
1334    ScalarColumn<Double> outintCol(t1, "INTERVAL");
1335    ArrayColumn<Float> t2specCol(t2, "SPECTRA");
1336    ROArrayColumn<Float> t2tsysCol(t2, "TSYS");
1337    ArrayColumn<uChar> t2flagCol(t2, "FLAGTRA");
1338    ROScalarColumn<Double> t2intCol(t2, "INTERVAL");
1339    for (uInt i=0; i < t1.nrow(); ++i) {
1340      Vector<Float> spec1, spec2;
1341      // to store scalar (mean) tsys
1342      Vector<Float> tsys1, tsys2;
1343      Vector<uChar> flag1, flag2;
1344      Double tint1, tint2;
1345      outspecCol.get(i, spec1);
1346      t2specCol.get(i, spec2);
1347      outflagCol.get(i, flag1);
1348      t2flagCol.get(i, flag2);
1349      outtsysCol.get(i, tsys1);
1350      t2tsysCol.get(i, tsys2);
1351      outintCol.get(i, tint1);
1352      t2intCol.get(i, tint2);
1353      // average
1354      // assume scalar tsys for weights
1355      Float wt1, wt2, tsyssq1, tsyssq2;
1356      tsyssq1 = tsys1[0]*tsys1[0];
1357      tsyssq2 = tsys2[0]*tsys2[0];
1358      wt1 = Float(tint1)/tsyssq1;
1359      wt2 = Float(tint2)/tsyssq2;
1360      Float invsumwt=1/(wt1+wt2);
1361      MaskedArray<Float> mspec1 = maskedArray(spec1, flag1);
1362      MaskedArray<Float> mspec2 = maskedArray(spec2, flag2);
1363      MaskedArray<Float> avspec =  invsumwt * (wt1*mspec1 + wt2*mspec2);
1364      //Array<Float> avtsys =  Float(0.5) * (tsys1 + tsys2);
1365      // cerr<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<endl;
1366      // LogIO os( LogOrigin( "STMath", "donod", WHERE ) ) ;
1367      // os<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<LogIO::POST;
1368      tsys1[0] = sqrt(tsyssq1 + tsyssq2);
1369      Array<Float> avtsys =  tsys1;
1370
1371      outspecCol.put(i, avspec.getArray());
1372      outflagCol.put(i, flagsFromMA(avspec));
1373      outtsysCol.put(i, avtsys);
1374    }
1375    ++sit;
1376    ++s2it;
1377  }
1378  return calb1;
1379}
1380
1381//GBTIDL version of frequency switched data calibration
1382CountedPtr< Scantable > STMath::dofs( const CountedPtr< Scantable >& s,
1383                                      const std::vector<int>& scans,
1384                                      int smoothref,
1385                                      casa::Float tsysv,
1386                                      casa::Float tau,
1387                                      casa::Float tcal )
1388{
1389
1390
1391  STSelector sel;
1392  CountedPtr< Scantable > ws = getScantable(s, false);
1393  CountedPtr< Scantable > sig, sigwcal, ref, refwcal;
1394  CountedPtr< Scantable > calsig, calref, out, out1, out2;
1395  Bool nofold=False;
1396  vector<int> types ;
1397
1398  //split the data
1399  //sel.setName("*_fs");
1400  types.push_back( SrcType::FSON ) ;
1401  sel.setTypes( types ) ;
1402  ws->setSelection(sel);
1403  sig = getScantable(ws,false);
1404  sel.reset();
1405  types.clear() ;
1406  //sel.setName("*_fs_calon");
1407  types.push_back( SrcType::FONCAL ) ;
1408  sel.setTypes( types ) ;
1409  ws->setSelection(sel);
1410  sigwcal = getScantable(ws,false);
1411  sel.reset();
1412  types.clear() ;
1413  //sel.setName("*_fsr");
1414  types.push_back( SrcType::FSOFF ) ;
1415  sel.setTypes( types ) ;
1416  ws->setSelection(sel);
1417  ref = getScantable(ws,false);
1418  sel.reset();
1419  types.clear() ;
1420  //sel.setName("*_fsr_calon");
1421  types.push_back( SrcType::FOFFCAL ) ;
1422  sel.setTypes( types ) ;
1423  ws->setSelection(sel);
1424  refwcal = getScantable(ws,false);
1425  sel.reset() ;
1426  types.clear() ;
1427
1428  calsig = dototalpower(sigwcal, sig, tcal=tcal);
1429  calref = dototalpower(refwcal, ref, tcal=tcal);
1430
1431  out1=dosigref(calsig,calref,smoothref,tsysv,tau);
1432  out2=dosigref(calref,calsig,smoothref,tsysv,tau);
1433
1434  Table& tabout1=out1->table();
1435  Table& tabout2=out2->table();
1436  ROScalarColumn<uInt> freqidCol1(tabout1, "FREQ_ID");
1437  ScalarColumn<uInt> freqidCol2(tabout2, "FREQ_ID");
1438  ROArrayColumn<Float> specCol(tabout2, "SPECTRA");
1439  Vector<Float> spec; specCol.get(0, spec);
1440  uInt nchan = spec.nelements();
1441  uInt freqid1; freqidCol1.get(0,freqid1);
1442  uInt freqid2; freqidCol2.get(0,freqid2);
1443  Double rp1, rp2, rv1, rv2, inc1, inc2;
1444  out1->frequencies().getEntry(rp1, rv1, inc1, freqid1);
1445  out2->frequencies().getEntry(rp2, rv2, inc2, freqid2);
1446  //cerr << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << endl ;
1447  //LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1448  //os << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << LogIO::POST ;
1449  if (rp1==rp2) {
1450    Double foffset = rv1 - rv2;
1451    uInt choffset = static_cast<uInt>(foffset/abs(inc2));
1452    if (choffset >= nchan) {
1453      //cerr<<"out-band frequency switching, no folding"<<endl;
1454      LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1455      os<<"out-band frequency switching, no folding"<<LogIO::POST;
1456      nofold = True;
1457    }
1458  }
1459
1460  if (nofold) {
1461    std::vector< CountedPtr< Scantable > > tabs;
1462    tabs.push_back(out1);
1463    tabs.push_back(out2);
1464    out = merge(tabs);
1465  }
1466  else {
1467    //out = out1;
1468    Double choffset = ( rv1 - rv2 ) / inc2 ;
1469    out = dofold( out1, out2, choffset ) ;
1470  }
1471   
1472  return out;
1473}
1474
1475CountedPtr<Scantable> STMath::dofold( const CountedPtr<Scantable> &sig,
1476                                      const CountedPtr<Scantable> &ref,
1477                                      Double choffset,
1478                                      Double choffset2 )
1479{
1480  LogIO os( LogOrigin( "STMath", "dofold", WHERE ) ) ;
1481  os << "choffset=" << choffset << " choffset2=" << choffset2 << LogIO::POST ;
1482
1483  // output scantable
1484  CountedPtr<Scantable> out = getScantable( sig, false ) ;
1485
1486  // separate choffset to integer part and decimal part
1487  Int ioffset = (Int)choffset ;
1488  Double doffset = choffset - ioffset ;
1489  Int ioffset2 = (Int)choffset2 ;
1490  Double doffset2 = choffset2 - ioffset2 ;
1491  os << "ioffset=" << ioffset << " doffset=" << doffset << LogIO::POST ;
1492  os << "ioffset2=" << ioffset2 << " doffset2=" << doffset2 << LogIO::POST ; 
1493
1494  // get column
1495  ROArrayColumn<Float> specCol1( sig->table(), "SPECTRA" ) ;
1496  ROArrayColumn<Float> specCol2( ref->table(), "SPECTRA" ) ;
1497  ROArrayColumn<Float> tsysCol1( sig->table(), "TSYS" ) ;
1498  ROArrayColumn<Float> tsysCol2( ref->table(), "TSYS" ) ;
1499  ROArrayColumn<uChar> flagCol1( sig->table(), "FLAGTRA" ) ;
1500  ROArrayColumn<uChar> flagCol2( ref->table(), "FLAGTRA" ) ;
1501  ROScalarColumn<Double> mjdCol1( sig->table(), "TIME" ) ;
1502  ROScalarColumn<Double> mjdCol2( ref->table(), "TIME" ) ;
1503  ROScalarColumn<Double> intervalCol1( sig->table(), "INTERVAL" ) ;
1504  ROScalarColumn<Double> intervalCol2( ref->table(), "INTERVAL" ) ;
1505
1506  // check
1507  if ( ioffset == 0 ) {
1508    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1509    os << "channel offset is zero, no folding" << LogIO::POST ;
1510    return out ;
1511  }
1512  int nchan = ref->nchan() ;
1513  if ( abs(ioffset) >= nchan ) {
1514    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1515    os << "out-band frequency switching, no folding" << LogIO::POST ;
1516    return out ;
1517  }
1518
1519  // attach column for output scantable
1520  ArrayColumn<Float> specColOut( out->table(), "SPECTRA" ) ;
1521  ArrayColumn<uChar> flagColOut( out->table(), "FLAGTRA" ) ;
1522  ArrayColumn<Float> tsysColOut( out->table(), "TSYS" ) ;
1523  ScalarColumn<Double> mjdColOut( out->table(), "TIME" ) ;
1524  ScalarColumn<Double> intervalColOut( out->table(), "INTERVAL" ) ;
1525  ScalarColumn<uInt> fidColOut( out->table(), "FREQ_ID" ) ;
1526
1527  // for each row
1528  // assume that the data order are same between sig and ref
1529  RowAccumulator acc( asap::W_TINTSYS ) ;
1530  for ( int i = 0 ; i < sig->nrow() ; i++ ) {
1531    // get values
1532    Vector<Float> spsig ;
1533    specCol1.get( i, spsig ) ;
1534    Vector<Float> spref ;
1535    specCol2.get( i, spref ) ;
1536    Vector<Float> tsyssig ;
1537    tsysCol1.get( i, tsyssig ) ;
1538    Vector<Float> tsysref ;
1539    tsysCol2.get( i, tsysref ) ;
1540    Vector<uChar> flagsig ;
1541    flagCol1.get( i, flagsig ) ;
1542    Vector<uChar> flagref ;
1543    flagCol2.get( i, flagref ) ;
1544    Double timesig ;
1545    mjdCol1.get( i, timesig ) ;
1546    Double timeref ;
1547    mjdCol2.get( i, timeref ) ;
1548    Double intsig ;
1549    intervalCol1.get( i, intsig ) ;
1550    Double intref ;
1551    intervalCol2.get( i, intref ) ;
1552
1553    // shift reference spectra
1554    int refchan = spref.nelements() ;
1555    Vector<Float> sspref( spref.nelements() ) ;
1556    Vector<Float> stsysref( tsysref.nelements() ) ;
1557    Vector<uChar> sflagref( flagref.nelements() ) ;
1558    if ( ioffset > 0 ) {
1559      // SPECTRA and FLAGTRA
1560      for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1561        sspref[j] = spref[j+ioffset] ;
1562        sflagref[j] = flagref[j+ioffset] ;
1563      }
1564      for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1565        sspref[j] = spref[j-refchan+ioffset] ;
1566        sflagref[j] = flagref[j-refchan+ioffset] ;
1567      }
1568      spref = sspref.copy() ;
1569      flagref = sflagref.copy() ;
1570      for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1571        sspref[j] = doffset * spref[j+1] + ( 1.0 - doffset ) * spref[j] ;
1572        sflagref[j] = flagref[j+1] + flagref[j] ;
1573      }
1574      sspref[refchan-1] = doffset * spref[0] + ( 1.0 - doffset ) * spref[refchan-1] ;
1575      sflagref[refchan-1] = flagref[0] + flagref[refchan-1] ;
1576
1577      // TSYS
1578      if ( spref.nelements() == tsysref.nelements() ) {
1579        for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1580          stsysref[j] = tsysref[j+ioffset] ;
1581        }
1582        for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1583          stsysref[j] = tsysref[j-refchan+ioffset] ;
1584        }
1585        tsysref = stsysref.copy() ;
1586        for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1587          stsysref[j] = doffset * tsysref[j+1] + ( 1.0 - doffset ) * tsysref[j] ;
1588        }
1589        stsysref[refchan-1] = doffset * tsysref[0] + ( 1.0 - doffset ) * tsysref[refchan-1] ;
1590      }
1591    }
1592    else {
1593      // SPECTRA and FLAGTRA
1594      for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1595        sspref[j] = spref[refchan+ioffset+j] ;
1596        sflagref[j] = flagref[refchan+ioffset+j] ;
1597      }
1598      for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1599        sspref[j] = spref[j+ioffset] ;
1600        sflagref[j] = flagref[j+ioffset] ;
1601      }
1602      spref = sspref.copy() ;
1603      flagref = sflagref.copy() ;
1604      sspref[0] = doffset * spref[refchan-1] + ( 1.0 - doffset ) * spref[0] ;
1605      sflagref[0] = flagref[0] + flagref[refchan-1] ;
1606      for ( int j = 1 ; j < refchan ; j++ ) {
1607        sspref[j] = doffset * spref[j-1] + ( 1.0 - doffset ) * spref[j] ;
1608        sflagref[j] = flagref[j-1] + flagref[j] ;
1609      }
1610      // TSYS
1611      if ( spref.nelements() == tsysref.nelements() ) {
1612        for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1613          stsysref[j] = tsysref[refchan+ioffset+j] ;
1614        }
1615        for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1616          stsysref[j] = tsysref[j+ioffset] ;
1617        }
1618        tsysref = stsysref.copy() ;
1619        stsysref[0] = doffset * tsysref[refchan-1] + ( 1.0 - doffset ) * tsysref[0] ;
1620        for ( int j = 1 ; j < refchan ; j++ ) {
1621          stsysref[j] = doffset * tsysref[j-1] + ( 1.0 - doffset ) * tsysref[j] ;
1622        }
1623      }
1624    }
1625
1626    // shift signal spectra if necessary (only for APEX?)
1627    if ( choffset2 != 0.0 ) {
1628      int sigchan = spsig.nelements() ;
1629      Vector<Float> sspsig( spsig.nelements() ) ;
1630      Vector<Float> stsyssig( tsyssig.nelements() ) ;
1631      Vector<uChar> sflagsig( flagsig.nelements() ) ;
1632      if ( ioffset2 > 0 ) {
1633        // SPECTRA and FLAGTRA
1634        for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1635          sspsig[j] = spsig[j+ioffset2] ;
1636          sflagsig[j] = flagsig[j+ioffset2] ;
1637        }
1638        for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1639          sspsig[j] = spsig[j-sigchan+ioffset2] ;
1640          sflagsig[j] = flagsig[j-sigchan+ioffset2] ;
1641        }
1642        spsig = sspsig.copy() ;
1643        flagsig = sflagsig.copy() ;
1644        for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1645          sspsig[j] = doffset2 * spsig[j+1] + ( 1.0 - doffset2 ) * spsig[j] ;
1646          sflagsig[j] = flagsig[j+1] || flagsig[j] ;
1647        }
1648        sspsig[sigchan-1] = doffset2 * spsig[0] + ( 1.0 - doffset2 ) * spsig[sigchan-1] ;
1649        sflagsig[sigchan-1] = flagsig[0] || flagsig[sigchan-1] ;
1650        // TSTS
1651        if ( spsig.nelements() == tsyssig.nelements() ) {
1652          for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1653            stsyssig[j] = tsyssig[j+ioffset2] ;
1654          }
1655          for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1656            stsyssig[j] = tsyssig[j-sigchan+ioffset2] ;
1657          }
1658          tsyssig = stsyssig.copy() ;
1659          for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1660            stsyssig[j] = doffset2 * tsyssig[j+1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1661          }
1662          stsyssig[sigchan-1] = doffset2 * tsyssig[0] + ( 1.0 - doffset2 ) * tsyssig[sigchan-1] ;
1663        }
1664      }
1665      else {
1666        // SPECTRA and FLAGTRA
1667        for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1668          sspsig[j] = spsig[sigchan+ioffset2+j] ;
1669          sflagsig[j] = flagsig[sigchan+ioffset2+j] ;
1670        }
1671        for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1672          sspsig[j] = spsig[j+ioffset2] ;
1673          sflagsig[j] = flagsig[j+ioffset2] ;
1674        }
1675        spsig = sspsig.copy() ;
1676        flagsig = sflagsig.copy() ;
1677        sspsig[0] = doffset2 * spsig[sigchan-1] + ( 1.0 - doffset2 ) * spsig[0] ;
1678        sflagsig[0] = flagsig[0] + flagsig[sigchan-1] ;
1679        for ( int j = 1 ; j < sigchan ; j++ ) {
1680          sspsig[j] = doffset2 * spsig[j-1] + ( 1.0 - doffset2 ) * spsig[j] ;
1681          sflagsig[j] = flagsig[j-1] + flagsig[j] ;
1682        }
1683        // TSYS
1684        if ( spsig.nelements() == tsyssig.nelements() ) {
1685          for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1686            stsyssig[j] = tsyssig[sigchan+ioffset2+j] ;
1687          }
1688          for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1689            stsyssig[j] = tsyssig[j+ioffset2] ;
1690          }
1691          tsyssig = stsyssig.copy() ;
1692          stsyssig[0] = doffset2 * tsyssig[sigchan-1] + ( 1.0 - doffset2 ) * tsyssig[0] ;
1693          for ( int j = 1 ; j < sigchan ; j++ ) {
1694            stsyssig[j] = doffset2 * tsyssig[j-1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1695          }
1696        }
1697      }
1698    }
1699
1700    // folding
1701    acc.add( spsig, !flagsig, tsyssig, intsig, timesig ) ;
1702    acc.add( sspref, !sflagref, stsysref, intref, timeref ) ;
1703   
1704    // put result
1705    specColOut.put( i, acc.getSpectrum() ) ;
1706    const Vector<Bool> &msk = acc.getMask() ;
1707    Vector<uChar> flg( msk.shape() ) ;
1708    convertArray( flg, !msk ) ;
1709    flagColOut.put( i, flg ) ;
1710    tsysColOut.put( i, acc.getTsys() ) ;
1711    intervalColOut.put( i, acc.getInterval() ) ;
1712    mjdColOut.put( i, acc.getTime() ) ;
1713    // change FREQ_ID to unshifted IF setting (only for APEX?)
1714    if ( choffset2 != 0.0 ) {
1715      uInt freqid = fidColOut( 0 ) ; // assume single-IF data
1716      double refpix, refval, increment ;
1717      out->frequencies().getEntry( refpix, refval, increment, freqid ) ;
1718      refval -= choffset * increment ;
1719      uInt newfreqid = out->frequencies().addEntry( refpix, refval, increment ) ;
1720      Vector<uInt> freqids = fidColOut.getColumn() ;
1721      for ( uInt j = 0 ; j < freqids.nelements() ; j++ ) {
1722        if ( freqids[j] == freqid )
1723          freqids[j] = newfreqid ;
1724      }
1725      fidColOut.putColumn( freqids ) ;
1726    }
1727
1728    acc.reset() ;
1729  }
1730
1731  return out ;
1732}
1733
1734
1735CountedPtr< Scantable > STMath::freqSwitch( const CountedPtr< Scantable >& in )
1736{
1737  // make copy or reference
1738  CountedPtr< Scantable > out = getScantable(in, false);
1739  Table& tout = out->table();
1740  Block<String> cols(4);
1741  cols[0] = String("SCANNO");
1742  cols[1] = String("CYCLENO");
1743  cols[2] = String("BEAMNO");
1744  cols[3] = String("POLNO");
1745  TableIterator iter(tout, cols);
1746  while (!iter.pastEnd()) {
1747    Table subt = iter.table();
1748    // this should leave us with two rows for the two IFs....if not ignore
1749    if (subt.nrow() != 2 ) {
1750      continue;
1751    }
1752    ArrayColumn<Float> specCol(subt, "SPECTRA");
1753    ArrayColumn<Float> tsysCol(subt, "TSYS");
1754    ArrayColumn<uChar> flagCol(subt, "FLAGTRA");
1755    Vector<Float> onspec,offspec, ontsys, offtsys;
1756    Vector<uChar> onflag, offflag;
1757    tsysCol.get(0, ontsys);   tsysCol.get(1, offtsys);
1758    specCol.get(0, onspec);   specCol.get(1, offspec);
1759    flagCol.get(0, onflag);   flagCol.get(1, offflag);
1760    MaskedArray<Float> on  = maskedArray(onspec, onflag);
1761    MaskedArray<Float> off = maskedArray(offspec, offflag);
1762    MaskedArray<Float> oncopy = on.copy();
1763
1764    on /= off; on -= 1.0f;
1765    on *= ontsys[0];
1766    off /= oncopy; off -= 1.0f;
1767    off *= offtsys[0];
1768    specCol.put(0, on.getArray());
1769    const Vector<Bool>& m0 = on.getMask();
1770    Vector<uChar> flags0(m0.shape());
1771    convertArray(flags0, !m0);
1772    flagCol.put(0, flags0);
1773
1774    specCol.put(1, off.getArray());
1775    const Vector<Bool>& m1 = off.getMask();
1776    Vector<uChar> flags1(m1.shape());
1777    convertArray(flags1, !m1);
1778    flagCol.put(1, flags1);
1779    ++iter;
1780  }
1781
1782  return out;
1783}
1784
1785std::vector< float > STMath::statistic( const CountedPtr< Scantable > & in,
1786                                        const std::vector< bool > & mask,
1787                                        const std::string& which )
1788{
1789
1790  Vector<Bool> m(mask);
1791  const Table& tab = in->table();
1792  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1793  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1794  std::vector<float> out;
1795  for (uInt i=0; i < tab.nrow(); ++i ) {
1796    Vector<Float> spec; specCol.get(i, spec);
1797    Vector<uChar> flag; flagCol.get(i, flag);
1798    MaskedArray<Float> ma  = maskedArray(spec, flag);
1799    float outstat = 0.0;
1800    if ( spec.nelements() == m.nelements() ) {
1801      outstat = mathutil::statistics(which, ma(m));
1802    } else {
1803      outstat = mathutil::statistics(which, ma);
1804    }
1805    out.push_back(outstat);
1806  }
1807  return out;
1808}
1809
1810std::vector< float > STMath::statisticRow( const CountedPtr< Scantable > & in,
1811                                        const std::vector< bool > & mask,
1812                                        const std::string& which,
1813                                        int row )
1814{
1815
1816  Vector<Bool> m(mask);
1817  const Table& tab = in->table();
1818  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1819  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1820  std::vector<float> out;
1821
1822  Vector<Float> spec; specCol.get(row, spec);
1823  Vector<uChar> flag; flagCol.get(row, flag);
1824  MaskedArray<Float> ma  = maskedArray(spec, flag);
1825  float outstat = 0.0;
1826  if ( spec.nelements() == m.nelements() ) {
1827    outstat = mathutil::statistics(which, ma(m));
1828  } else {
1829    outstat = mathutil::statistics(which, ma);
1830  }
1831  out.push_back(outstat);
1832
1833  return out;
1834}
1835
1836std::vector< int > STMath::minMaxChan( const CountedPtr< Scantable > & in,
1837                                        const std::vector< bool > & mask,
1838                                        const std::string& which )
1839{
1840
1841  Vector<Bool> m(mask);
1842  const Table& tab = in->table();
1843  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1844  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1845  std::vector<int> out;
1846  for (uInt i=0; i < tab.nrow(); ++i ) {
1847    Vector<Float> spec; specCol.get(i, spec);
1848    Vector<uChar> flag; flagCol.get(i, flag);
1849    MaskedArray<Float> ma  = maskedArray(spec, flag);
1850    if (ma.ndim() != 1) {
1851      throw (ArrayError(
1852          "std::vector<int> STMath::minMaxChan("
1853          "ContedPtr<Scantable> &in, std::vector<bool> &mask, "
1854          " std::string &which)"
1855          " - MaskedArray is not 1D"));
1856    }
1857    IPosition outpos(1,0);
1858    if ( spec.nelements() == m.nelements() ) {
1859      outpos = mathutil::minMaxPos(which, ma(m));
1860    } else {
1861      outpos = mathutil::minMaxPos(which, ma);
1862    }
1863    out.push_back(outpos[0]);
1864  }
1865  return out;
1866}
1867
1868CountedPtr< Scantable > STMath::bin( const CountedPtr< Scantable > & in,
1869                                     int width )
1870{
1871  if ( !in->getSelection().empty() ) throw(AipsError("Can't bin subset of the data."));
1872  CountedPtr< Scantable > out = getScantable(in, false);
1873  Table& tout = out->table();
1874  out->frequencies().rescale(width, "BIN");
1875  ArrayColumn<Float> specCol(tout, "SPECTRA");
1876  ArrayColumn<uChar> flagCol(tout, "FLAGTRA");
1877  for (uInt i=0; i < tout.nrow(); ++i ) {
1878    MaskedArray<Float> main  = maskedArray(specCol(i), flagCol(i));
1879    MaskedArray<Float> maout;
1880    LatticeUtilities::bin(maout, main, 0, Int(width));
1881    /// @todo implement channel based tsys binning
1882    specCol.put(i, maout.getArray());
1883    flagCol.put(i, flagsFromMA(maout));
1884    // take only the first binned spectrum's length for the deprecated
1885    // global header item nChan
1886    if (i==0) tout.rwKeywordSet().define(String("nChan"),
1887                                       Int(maout.getArray().nelements()));
1888  }
1889  return out;
1890}
1891
1892CountedPtr< Scantable > STMath::resample( const CountedPtr< Scantable >& in,
1893                                          const std::string& method,
1894                                          float width )
1895//
1896// Should add the possibility of width being specified in km/s. This means
1897// that for each freqID (SpectralCoordinate) we will need to convert to an
1898// average channel width (say at the reference pixel).  Then we would need
1899// to be careful to make sure each spectrum (of different freqID)
1900// is the same length.
1901//
1902{
1903  //InterpolateArray1D<Double,Float>::InterpolationMethod interp;
1904  Int interpMethod(stringToIMethod(method));
1905
1906  CountedPtr< Scantable > out = getScantable(in, false);
1907  Table& tout = out->table();
1908
1909// Resample SpectralCoordinates (one per freqID)
1910  out->frequencies().rescale(width, "RESAMPLE");
1911  TableIterator iter(tout, "IFNO");
1912  TableRow row(tout);
1913  while ( !iter.pastEnd() ) {
1914    Table tab = iter.table();
1915    ArrayColumn<Float> specCol(tab, "SPECTRA");
1916    //ArrayColumn<Float> tsysCol(tout, "TSYS");
1917    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1918    Vector<Float> spec;
1919    Vector<uChar> flag;
1920    specCol.get(0,spec); // the number of channels should be constant per IF
1921    uInt nChanIn = spec.nelements();
1922    Vector<Float> xIn(nChanIn); indgen(xIn);
1923    Int fac =  Int(nChanIn/width);
1924    Vector<Float> xOut(fac+10); // 10 to be safe - resize later
1925    uInt k = 0;
1926    Float x = 0.0;
1927    while (x < Float(nChanIn) ) {
1928      xOut(k) = x;
1929      k++;
1930      x += width;
1931    }
1932    uInt nChanOut = k;
1933    xOut.resize(nChanOut, True);
1934    // process all rows for this IFNO
1935    Vector<Float> specOut;
1936    Vector<Bool> maskOut;
1937    Vector<uChar> flagOut;
1938    for (uInt i=0; i < tab.nrow(); ++i) {
1939      specCol.get(i, spec);
1940      flagCol.get(i, flag);
1941      Vector<Bool> mask(flag.nelements());
1942      convertArray(mask, flag);
1943
1944      IPosition shapeIn(spec.shape());
1945      //sh.nchan = nChanOut;
1946      InterpolateArray1D<Float,Float>::interpolate(specOut, maskOut, xOut,
1947                                                   xIn, spec, mask,
1948                                                   interpMethod, True, True);
1949      /// @todo do the same for channel based Tsys
1950      flagOut.resize(maskOut.nelements());
1951      convertArray(flagOut, maskOut);
1952      specCol.put(i, specOut);
1953      flagCol.put(i, flagOut);
1954    }
1955    ++iter;
1956  }
1957
1958  return out;
1959}
1960
1961STMath::imethod STMath::stringToIMethod(const std::string& in)
1962{
1963  static STMath::imap lookup;
1964
1965  // initialize the lookup table if necessary
1966  if ( lookup.empty() ) {
1967    lookup["nearest"]   = InterpolateArray1D<Double,Float>::nearestNeighbour;
1968    lookup["linear"] = InterpolateArray1D<Double,Float>::linear;
1969    lookup["cubic"]  = InterpolateArray1D<Double,Float>::cubic;
1970    lookup["spline"]  = InterpolateArray1D<Double,Float>::spline;
1971  }
1972
1973  STMath::imap::const_iterator iter = lookup.find(in);
1974
1975  if ( lookup.end() == iter ) {
1976    std::string message = in;
1977    message += " is not a valid interpolation mode";
1978    throw(AipsError(message));
1979  }
1980  return iter->second;
1981}
1982
1983WeightType STMath::stringToWeight(const std::string& in)
1984{
1985  static std::map<std::string, WeightType> lookup;
1986
1987  // initialize the lookup table if necessary
1988  if ( lookup.empty() ) {
1989    lookup["NONE"]   = asap::W_NONE;
1990    lookup["TINT"] = asap::W_TINT;
1991    lookup["TINTSYS"]  = asap::W_TINTSYS;
1992    lookup["TSYS"]  = asap::W_TSYS;
1993    lookup["VAR"]  = asap::W_VAR;
1994  }
1995
1996  std::map<std::string, WeightType>::const_iterator iter = lookup.find(in);
1997
1998  if ( lookup.end() == iter ) {
1999    std::string message = in;
2000    message += " is not a valid weighting mode";
2001    throw(AipsError(message));
2002  }
2003  return iter->second;
2004}
2005
2006CountedPtr< Scantable > STMath::gainElevation( const CountedPtr< Scantable >& in,
2007                                               const vector< float > & coeff,
2008                                               const std::string & filename,
2009                                               const std::string& method)
2010{
2011  // Get elevation data from Scantable and convert to degrees
2012  CountedPtr< Scantable > out = getScantable(in, false);
2013  Table& tab = out->table();
2014  ROScalarColumn<Float> elev(tab, "ELEVATION");
2015  Vector<Float> x = elev.getColumn();
2016  x *= Float(180 / C::pi);                        // Degrees
2017
2018  Vector<Float> coeffs(coeff);
2019  const uInt nc = coeffs.nelements();
2020  if ( filename.length() > 0 && nc > 0 ) {
2021    throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
2022  }
2023
2024  // Correct
2025  if ( nc > 0 || filename.length() == 0 ) {
2026    // Find instrument
2027    Bool throwit = True;
2028    Instrument inst =
2029      STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2030                                throwit);
2031
2032    // Set polynomial
2033    Polynomial<Float>* ppoly = 0;
2034    Vector<Float> coeff;
2035    String msg;
2036    if ( nc > 0 ) {
2037      ppoly = new Polynomial<Float>(nc-1);
2038      coeff = coeffs;
2039      msg = String("user");
2040    } else {
2041      STAttr sdAttr;
2042      coeff = sdAttr.gainElevationPoly(inst);
2043      ppoly = new Polynomial<Float>(coeff.nelements()-1);
2044      msg = String("built in");
2045    }
2046
2047    if ( coeff.nelements() > 0 ) {
2048      ppoly->setCoefficients(coeff);
2049    } else {
2050      delete ppoly;
2051      throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
2052    }
2053    ostringstream oss;
2054    oss << "Making polynomial correction with " << msg << " coefficients:" << endl;
2055    oss << "   " <<  coeff;
2056    pushLog(String(oss));
2057    const uInt nrow = tab.nrow();
2058    Vector<Float> factor(nrow);
2059    for ( uInt i=0; i < nrow; ++i ) {
2060      factor[i] = 1.0 / (*ppoly)(x[i]);
2061    }
2062    delete ppoly;
2063    scaleByVector(tab, factor, true);
2064
2065  } else {
2066    // Read and correct
2067    pushLog("Making correction from ascii Table");
2068    scaleFromAsciiTable(tab, filename, method, x, true);
2069  }
2070  return out;
2071}
2072
2073void STMath::scaleFromAsciiTable(Table& in, const std::string& filename,
2074                                 const std::string& method,
2075                                 const Vector<Float>& xout, bool dotsys)
2076{
2077
2078// Read gain-elevation ascii file data into a Table.
2079
2080  String formatString;
2081  Table tbl = readAsciiTable(formatString, Table::Memory, filename, "", "", False);
2082  scaleFromTable(in, tbl, method, xout, dotsys);
2083}
2084
2085void STMath::scaleFromTable(Table& in,
2086                            const Table& table,
2087                            const std::string& method,
2088                            const Vector<Float>& xout, bool dotsys)
2089{
2090
2091  ROScalarColumn<Float> geElCol(table, "ELEVATION");
2092  ROScalarColumn<Float> geFacCol(table, "FACTOR");
2093  Vector<Float> xin = geElCol.getColumn();
2094  Vector<Float> yin = geFacCol.getColumn();
2095  Vector<Bool> maskin(xin.nelements(),True);
2096
2097  // Interpolate (and extrapolate) with desired method
2098
2099  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2100
2101   Vector<Float> yout;
2102   Vector<Bool> maskout;
2103   InterpolateArray1D<Float,Float>::interpolate(yout, maskout, xout,
2104                                                xin, yin, maskin, interp,
2105                                                True, True);
2106
2107   scaleByVector(in, Float(1.0)/yout, dotsys);
2108}
2109
2110void STMath::scaleByVector( Table& in,
2111                            const Vector< Float >& factor,
2112                            bool dotsys )
2113{
2114  uInt nrow = in.nrow();
2115  if ( factor.nelements() != nrow ) {
2116    throw(AipsError("factors.nelements() != table.nelements()"));
2117  }
2118  ArrayColumn<Float> specCol(in, "SPECTRA");
2119  ArrayColumn<uChar> flagCol(in, "FLAGTRA");
2120  ArrayColumn<Float> tsysCol(in, "TSYS");
2121  for (uInt i=0; i < nrow; ++i) {
2122    MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2123    ma *= factor[i];
2124    specCol.put(i, ma.getArray());
2125    flagCol.put(i, flagsFromMA(ma));
2126    if ( dotsys ) {
2127      Vector<Float> tsys = tsysCol(i);
2128      tsys *= factor[i];
2129      tsysCol.put(i,tsys);
2130    }
2131  }
2132}
2133
2134CountedPtr< Scantable > STMath::convertFlux( const CountedPtr< Scantable >& in,
2135                                             float d, float etaap,
2136                                             float jyperk )
2137{
2138  CountedPtr< Scantable > out = getScantable(in, false);
2139  Table& tab = in->table();
2140  Unit fluxUnit(tab.keywordSet().asString("FluxUnit"));
2141  Unit K(String("K"));
2142  Unit JY(String("Jy"));
2143
2144  bool tokelvin = true;
2145  Double cfac = 1.0;
2146
2147  if ( fluxUnit == JY ) {
2148    pushLog("Converting to K");
2149    Quantum<Double> t(1.0,fluxUnit);
2150    Quantum<Double> t2 = t.get(JY);
2151    cfac = (t2 / t).getValue();               // value to Jy
2152
2153    tokelvin = true;
2154    out->setFluxUnit("K");
2155  } else if ( fluxUnit == K ) {
2156    pushLog("Converting to Jy");
2157    Quantum<Double> t(1.0,fluxUnit);
2158    Quantum<Double> t2 = t.get(K);
2159    cfac = (t2 / t).getValue();              // value to K
2160
2161    tokelvin = false;
2162    out->setFluxUnit("Jy");
2163  } else {
2164    throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
2165  }
2166  // Make sure input values are converted to either Jy or K first...
2167  Float factor = cfac;
2168
2169  // Select method
2170  if (jyperk > 0.0) {
2171    factor *= jyperk;
2172    if ( tokelvin ) factor = 1.0 / jyperk;
2173    ostringstream oss;
2174    oss << "Jy/K = " << jyperk;
2175    pushLog(String(oss));
2176    Vector<Float> factors(tab.nrow(), factor);
2177    scaleByVector(tab,factors, false);
2178  } else if ( etaap > 0.0) {
2179    if (d < 0) {
2180      Instrument inst =
2181        STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2182                                  True);
2183      STAttr sda;
2184      d = sda.diameter(inst);
2185    }
2186    jyperk = STAttr::findJyPerK(etaap, d);
2187    ostringstream oss;
2188    oss << "Jy/K = " << jyperk;
2189    pushLog(String(oss));
2190    factor *= jyperk;
2191    if ( tokelvin ) {
2192      factor = 1.0 / factor;
2193    }
2194    Vector<Float> factors(tab.nrow(), factor);
2195    scaleByVector(tab, factors, False);
2196  } else {
2197
2198    // OK now we must deal with automatic look up of values.
2199    // We must also deal with the fact that the factors need
2200    // to be computed per IF and may be different and may
2201    // change per integration.
2202
2203    pushLog("Looking up conversion factors");
2204    convertBrightnessUnits(out, tokelvin, cfac);
2205  }
2206
2207  return out;
2208}
2209
2210void STMath::convertBrightnessUnits( CountedPtr<Scantable>& in,
2211                                     bool tokelvin, float cfac )
2212{
2213  Table& table = in->table();
2214  Instrument inst =
2215    STAttr::convertInstrument(table.keywordSet().asString("AntennaName"), True);
2216  TableIterator iter(table, "FREQ_ID");
2217  STFrequencies stfreqs = in->frequencies();
2218  STAttr sdAtt;
2219  while (!iter.pastEnd()) {
2220    Table tab = iter.table();
2221    ArrayColumn<Float> specCol(tab, "SPECTRA");
2222    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2223    ROScalarColumn<uInt> freqidCol(tab, "FREQ_ID");
2224    MEpoch::ROScalarColumn timeCol(tab, "TIME");
2225
2226    uInt freqid; freqidCol.get(0, freqid);
2227    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2228    // STAttr.JyPerK has a Vector interface... change sometime.
2229    Vector<Float> freqs(1,stfreqs.getRefFreq(freqid, tmpspec.nelements()));
2230    for ( uInt i=0; i<tab.nrow(); ++i) {
2231      Float jyperk = (sdAtt.JyPerK(inst, timeCol(i), freqs))[0];
2232      Float factor = cfac * jyperk;
2233      if ( tokelvin ) factor = Float(1.0) / factor;
2234      MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2235      ma *= factor;
2236      specCol.put(i, ma.getArray());
2237      flagCol.put(i, flagsFromMA(ma));
2238    }
2239  ++iter;
2240  }
2241}
2242
2243CountedPtr< Scantable > STMath::opacity( const CountedPtr< Scantable > & in,
2244                                         const std::vector<float>& tau )
2245{
2246  CountedPtr< Scantable > out = getScantable(in, false);
2247
2248  Table outtab = out->table();
2249
2250  const uInt ntau = uInt(tau.size());
2251  std::vector<float>::const_iterator tauit = tau.begin();
2252  AlwaysAssert((ntau == 1 || ntau == in->nif() || ntau == in->nif() * in->npol()),
2253               AipsError);
2254  TableIterator iiter(outtab, "IFNO");
2255  while ( !iiter.pastEnd() ) {
2256    Table itab = iiter.table();
2257    TableIterator piter(outtab, "POLNO");
2258    while ( !piter.pastEnd() ) {
2259      Table tab = piter.table();
2260      ROScalarColumn<Float> elev(tab, "ELEVATION");
2261      ArrayColumn<Float> specCol(tab, "SPECTRA");
2262      ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2263      ArrayColumn<Float> tsysCol(tab, "TSYS");
2264      for ( uInt i=0; i<tab.nrow(); ++i) {
2265        Float zdist = Float(C::pi_2) - elev(i);
2266        Float factor = exp(*tauit/cos(zdist));
2267        MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2268        ma *= factor;
2269        specCol.put(i, ma.getArray());
2270        flagCol.put(i, flagsFromMA(ma));
2271        Vector<Float> tsys;
2272        tsysCol.get(i, tsys);
2273        tsys *= factor;
2274        tsysCol.put(i, tsys);
2275      }
2276      if (ntau == in->nif()*in->npol() ) {
2277        tauit++;
2278      }
2279      piter++;
2280    }
2281    if (ntau >= in->nif() ) {
2282      tauit++;
2283    }
2284    iiter++;
2285  }
2286  return out;
2287}
2288
2289CountedPtr< Scantable > STMath::smoothOther( const CountedPtr< Scantable >& in,
2290                                             const std::string& kernel,
2291                                             float width, int order)
2292{
2293  CountedPtr< Scantable > out = getScantable(in, false);
2294  Table& table = out->table();
2295  ArrayColumn<Float> specCol(table, "SPECTRA");
2296  ArrayColumn<uChar> flagCol(table, "FLAGTRA");
2297  Vector<Float> spec;
2298  Vector<uChar> flag;
2299  for ( uInt i=0; i<table.nrow(); ++i) {
2300    specCol.get(i, spec);
2301    flagCol.get(i, flag);
2302    Vector<Bool> mask(flag.nelements());
2303    convertArray(mask, flag);
2304    Vector<Float> specout;
2305    Vector<Bool> maskout;
2306    if ( kernel == "hanning" ) {
2307      mathutil::hanning(specout, maskout, spec , !mask);
2308      convertArray(flag, !maskout);
2309    } else if (  kernel == "rmedian" ) {
2310      mathutil::runningMedian(specout, maskout, spec , mask, width);
2311      convertArray(flag, maskout);
2312    } else if ( kernel == "poly" ) {
2313      mathutil::polyfit(specout, maskout, spec, !mask, width, order);
2314      convertArray(flag, !maskout);
2315    }
2316    flagCol.put(i, flag);
2317    specCol.put(i, specout);
2318  }
2319  return out;
2320}
2321
2322CountedPtr< Scantable > STMath::smooth( const CountedPtr< Scantable >& in,
2323                                        const std::string& kernel, float width,
2324                                        int order)
2325{
2326  if (kernel == "rmedian"  || kernel == "hanning" || kernel == "poly") {
2327    return smoothOther(in, kernel, width, order);
2328  }
2329  CountedPtr< Scantable > out = getScantable(in, false);
2330  Table& table = out->table();
2331  VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernel);
2332  // same IFNO should have same no of channels
2333  // this saves overhead
2334  TableIterator iter(table, "IFNO");
2335  while (!iter.pastEnd()) {
2336    Table tab = iter.table();
2337    ArrayColumn<Float> specCol(tab, "SPECTRA");
2338    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2339    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2340    uInt nchan = tmpspec.nelements();
2341    Vector<Float> kvec = VectorKernel::make(type, width, nchan, True, False);
2342    Convolver<Float> conv(kvec, IPosition(1,nchan));
2343    Vector<Float> spec;
2344    Vector<uChar> flag;
2345    for ( uInt i=0; i<tab.nrow(); ++i) {
2346      specCol.get(i, spec);
2347      flagCol.get(i, flag);
2348      Vector<Bool> mask(flag.nelements());
2349      convertArray(mask, flag);
2350      Vector<Float> specout;
2351      mathutil::replaceMaskByZero(specout, mask);
2352      conv.linearConv(specout, spec);
2353      specCol.put(i, specout);
2354    }
2355    ++iter;
2356  }
2357  return out;
2358}
2359
2360CountedPtr< Scantable >
2361  STMath::merge( const std::vector< CountedPtr < Scantable > >& in )
2362{
2363  if ( in.size() < 2 ) {
2364    throw(AipsError("Need at least two scantables to perform a merge."));
2365  }
2366  std::vector<CountedPtr < Scantable > >::const_iterator it = in.begin();
2367  bool insitu = insitu_;
2368  setInsitu(false);
2369  CountedPtr< Scantable > out = getScantable(*it, false);
2370  setInsitu(insitu);
2371  Table& tout = out->table();
2372  ScalarColumn<uInt> freqidcol(tout,"FREQ_ID"), molidcol(tout, "MOLECULE_ID");
2373  ScalarColumn<uInt> scannocol(tout,"SCANNO"), focusidcol(tout,"FOCUS_ID");
2374  // Renumber SCANNO to be 0-based
2375  Vector<uInt> scannos = scannocol.getColumn();
2376  uInt offset = min(scannos);
2377  scannos -= offset;
2378  scannocol.putColumn(scannos);
2379  uInt newscanno = max(scannos)+1;
2380  ++it;
2381  while ( it != in.end() ){
2382    if ( ! (*it)->conformant(*out) ) {
2383      // non conformant.
2384      //pushLog(String("Warning: Can't merge scantables as header info differs."));
2385      LogIO os( LogOrigin( "STMath", "merge()", WHERE ) ) ;
2386      os << LogIO::SEVERE << "Can't merge scantables as header informations (any one of AntennaName, Equinox, and FluxUnit) differ." << LogIO::EXCEPTION ;
2387    }
2388    out->appendToHistoryTable((*it)->history());
2389    const Table& tab = (*it)->table();
2390    TableIterator scanit(tab, "SCANNO");
2391    while (!scanit.pastEnd()) {
2392      TableIterator freqit(scanit.table(), "FREQ_ID");
2393      while ( !freqit.pastEnd() ) {
2394        Table thetab = freqit.table();
2395        uInt nrow = tout.nrow();
2396        tout.addRow(thetab.nrow());
2397        TableCopy::copyRows(tout, thetab, nrow, 0, thetab.nrow());
2398        ROTableRow row(thetab);
2399        for ( uInt i=0; i<thetab.nrow(); ++i) {
2400          uInt k = nrow+i;
2401          scannocol.put(k, newscanno);
2402          const TableRecord& rec = row.get(i);
2403          Double rv,rp,inc;
2404          (*it)->frequencies().getEntry(rp, rv, inc, rec.asuInt("FREQ_ID"));
2405          uInt id;
2406          id = out->frequencies().addEntry(rp, rv, inc);
2407          freqidcol.put(k,id);
2408          //String name,fname;Double rf;
2409          Vector<String> name,fname;Vector<Double> rf;
2410          (*it)->molecules().getEntry(rf, name, fname, rec.asuInt("MOLECULE_ID"));
2411          id = out->molecules().addEntry(rf, name, fname);
2412          molidcol.put(k, id);
2413          Float fpa,frot,fax,ftan,fhand,fmount,fuser, fxy, fxyp;
2414          (*it)->focus().getEntry(fpa, fax, ftan, frot, fhand,
2415                                  fmount,fuser, fxy, fxyp,
2416                                  rec.asuInt("FOCUS_ID"));
2417          id = out->focus().addEntry(fpa, fax, ftan, frot, fhand,
2418                                     fmount,fuser, fxy, fxyp);
2419          focusidcol.put(k, id);
2420        }
2421        ++freqit;
2422      }
2423      ++newscanno;
2424      ++scanit;
2425    }
2426    ++it;
2427  }
2428  return out;
2429}
2430
2431CountedPtr< Scantable >
2432  STMath::invertPhase( const CountedPtr < Scantable >& in )
2433{
2434  return applyToPol(in, &STPol::invertPhase, Float(0.0));
2435}
2436
2437CountedPtr< Scantable >
2438  STMath::rotateXYPhase( const CountedPtr < Scantable >& in, float phase )
2439{
2440   return applyToPol(in, &STPol::rotatePhase, Float(phase));
2441}
2442
2443CountedPtr< Scantable >
2444  STMath::rotateLinPolPhase( const CountedPtr < Scantable >& in, float phase )
2445{
2446  return applyToPol(in, &STPol::rotateLinPolPhase, Float(phase));
2447}
2448
2449CountedPtr< Scantable > STMath::applyToPol( const CountedPtr<Scantable>& in,
2450                                             STPol::polOperation fptr,
2451                                             Float phase )
2452{
2453  CountedPtr< Scantable > out = getScantable(in, false);
2454  Table& tout = out->table();
2455  Block<String> cols(4);
2456  cols[0] = String("SCANNO");
2457  cols[1] = String("BEAMNO");
2458  cols[2] = String("IFNO");
2459  cols[3] = String("CYCLENO");
2460  TableIterator iter(tout, cols);
2461  CountedPtr<STPol> stpol = STPol::getPolClass(out->factories_,
2462                                               out->getPolType() );
2463  while (!iter.pastEnd()) {
2464    Table t = iter.table();
2465    ArrayColumn<Float> speccol(t, "SPECTRA");
2466    ScalarColumn<uInt> focidcol(t, "FOCUS_ID");
2467    Matrix<Float> pols(speccol.getColumn());
2468    try {
2469      stpol->setSpectra(pols);
2470      Float fang,fhand;
2471      fang = in->focusTable_.getTotalAngle(focidcol(0));
2472      fhand = in->focusTable_.getFeedHand(focidcol(0));
2473      stpol->setPhaseCorrections(fang, fhand);
2474      // use a member function pointer in STPol.  This only works on
2475      // the STPol pointer itself, not the Counted Pointer so
2476      // derefernce it.
2477      (&(*(stpol))->*fptr)(phase);
2478      speccol.putColumn(stpol->getSpectra());
2479    } catch (AipsError& e) {
2480      //delete stpol;stpol=0;
2481      throw(e);
2482    }
2483    ++iter;
2484  }
2485  //delete stpol;stpol=0;
2486  return out;
2487}
2488
2489CountedPtr< Scantable >
2490  STMath::swapPolarisations( const CountedPtr< Scantable > & in )
2491{
2492  CountedPtr< Scantable > out = getScantable(in, false);
2493  Table& tout = out->table();
2494  Table t0 = tout(tout.col("POLNO") == 0);
2495  Table t1 = tout(tout.col("POLNO") == 1);
2496  if ( t0.nrow() != t1.nrow() )
2497    throw(AipsError("Inconsistent number of polarisations"));
2498  ArrayColumn<Float> speccol0(t0, "SPECTRA");
2499  ArrayColumn<uChar> flagcol0(t0, "FLAGTRA");
2500  ArrayColumn<Float> speccol1(t1, "SPECTRA");
2501  ArrayColumn<uChar> flagcol1(t1, "FLAGTRA");
2502  Matrix<Float> s0 = speccol0.getColumn();
2503  Matrix<uChar> f0 = flagcol0.getColumn();
2504  speccol0.putColumn(speccol1.getColumn());
2505  flagcol0.putColumn(flagcol1.getColumn());
2506  speccol1.putColumn(s0);
2507  flagcol1.putColumn(f0);
2508  return out;
2509}
2510
2511CountedPtr< Scantable >
2512  STMath::averagePolarisations( const CountedPtr< Scantable > & in,
2513                                const std::vector<bool>& mask,
2514                                const std::string& weight )
2515{
2516  if (in->npol() < 2 )
2517    throw(AipsError("averagePolarisations can only be applied to two or more"
2518                    "polarisations"));
2519  bool insitu = insitu_;
2520  setInsitu(false);
2521  CountedPtr< Scantable > pols = getScantable(in, true);
2522  setInsitu(insitu);
2523  Table& tout = pols->table();
2524  std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
2525  Table tab = tableCommand(taql, in->table());
2526  if (tab.nrow() == 0 )
2527    throw(AipsError("Could not find  any rows with POLNO==0 and POLNO==1"));
2528  TableCopy::copyRows(tout, tab);
2529  TableVector<uInt> vec(tout, "POLNO");
2530  vec = 0;
2531  pols->table_.rwKeywordSet().define("nPol", Int(1));
2532  //pols->table_.rwKeywordSet().define("POLTYPE", String("stokes"));
2533  pols->table_.rwKeywordSet().define("POLTYPE", in->getPolType());
2534  std::vector<CountedPtr<Scantable> > vpols;
2535  vpols.push_back(pols);
2536  CountedPtr< Scantable > out = average(vpols, mask, weight, "SCAN");
2537  return out;
2538}
2539
2540CountedPtr< Scantable >
2541  STMath::averageBeams( const CountedPtr< Scantable > & in,
2542                        const std::vector<bool>& mask,
2543                        const std::string& weight )
2544{
2545  bool insitu = insitu_;
2546  setInsitu(false);
2547  CountedPtr< Scantable > beams = getScantable(in, false);
2548  setInsitu(insitu);
2549  Table& tout = beams->table();
2550  // give all rows the same BEAMNO
2551  TableVector<uInt> vec(tout, "BEAMNO");
2552  vec = 0;
2553  beams->table_.rwKeywordSet().define("nBeam", Int(1));
2554  std::vector<CountedPtr<Scantable> > vbeams;
2555  vbeams.push_back(beams);
2556  CountedPtr< Scantable > out = average(vbeams, mask, weight, "SCAN");
2557  return out;
2558}
2559
2560
2561CountedPtr< Scantable >
2562  asap::STMath::frequencyAlign( const CountedPtr< Scantable > & in,
2563                                const std::string & refTime,
2564                                const std::string & method)
2565{
2566  // clone as this is not working insitu
2567  bool insitu = insitu_;
2568  setInsitu(false);
2569  CountedPtr< Scantable > out = getScantable(in, false);
2570  setInsitu(insitu);
2571  Table& tout = out->table();
2572  // Get reference Epoch to time of first row or given String
2573  Unit DAY(String("d"));
2574  MEpoch::Ref epochRef(in->getTimeReference());
2575  MEpoch refEpoch;
2576  if (refTime.length()>0) {
2577    Quantum<Double> qt;
2578    if (MVTime::read(qt,refTime)) {
2579      MVEpoch mv(qt);
2580      refEpoch = MEpoch(mv, epochRef);
2581   } else {
2582      throw(AipsError("Invalid format for Epoch string"));
2583   }
2584  } else {
2585    refEpoch = in->timeCol_(0);
2586  }
2587  MPosition refPos = in->getAntennaPosition();
2588
2589  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2590  /*
2591  // Comment from MV.
2592  // the following code has been commented out because different FREQ_IDs have to be aligned together even
2593  // if the frame doesn't change. So far, lack of this check didn't cause any problems.
2594  // test if user frame is different to base frame
2595  if ( in->frequencies().getFrameString(true)
2596       == in->frequencies().getFrameString(false) ) {
2597    throw(AipsError("Can't convert as no output frame has been set"
2598                    " (use set_freqframe) or it is aligned already."));
2599  }
2600  */
2601  MFrequency::Types system = in->frequencies().getFrame();
2602  MVTime mvt(refEpoch.getValue());
2603  String epochout = mvt.string(MVTime::YMD) + String(" (") + refEpoch.getRefString() + String(")");
2604  ostringstream oss;
2605  oss << "Aligned at reference Epoch " << epochout
2606      << " in frame " << MFrequency::showType(system);
2607  pushLog(String(oss));
2608  // set up the iterator
2609  Block<String> cols(4);
2610  // select by constant direction
2611  cols[0] = String("SRCNAME");
2612  cols[1] = String("BEAMNO");
2613  // select by IF ( no of channels varies over this )
2614  cols[2] = String("IFNO");
2615  // select by restfrequency
2616  cols[3] = String("MOLECULE_ID");
2617  TableIterator iter(tout, cols);
2618  while ( !iter.pastEnd() ) {
2619    Table t = iter.table();
2620    MDirection::ROScalarColumn dirCol(t, "DIRECTION");
2621    TableIterator fiter(t, "FREQ_ID");
2622    // determine nchan from the first row. This should work as
2623    // we are iterating over BEAMNO and IFNO    // we should have constant direction
2624
2625    ROArrayColumn<Float> sCol(t, "SPECTRA");
2626    const MDirection direction = dirCol(0);
2627    const uInt nchan = sCol(0).nelements();
2628
2629    // skip operations if there is nothing to align
2630    if (fiter.pastEnd()) {
2631        continue;
2632    }
2633
2634    Table ftab = fiter.table();
2635    // align all frequency ids with respect to the first encountered id
2636    ScalarColumn<uInt> freqidCol(ftab, "FREQ_ID");
2637    // get the SpectralCoordinate for the freqid, which we are iterating over
2638    SpectralCoordinate sC = in->frequencies().getSpectralCoordinate(freqidCol(0));
2639    FrequencyAligner<Float> fa( sC, nchan, refEpoch,
2640                                direction, refPos, system );
2641    // realign the SpectralCoordinate and put into the output Scantable
2642    Vector<String> units(1);
2643    units = String("Hz");
2644    Bool linear=True;
2645    SpectralCoordinate sc2 = fa.alignedSpectralCoordinate(linear);
2646    sc2.setWorldAxisUnits(units);
2647    const uInt id = out->frequencies().addEntry(sc2.referencePixel()[0],
2648                                                sc2.referenceValue()[0],
2649                                                sc2.increment()[0]);
2650    while ( !fiter.pastEnd() ) {
2651      ftab = fiter.table();
2652      // spectral coordinate for the current FREQ_ID
2653      ScalarColumn<uInt> freqidCol2(ftab, "FREQ_ID");
2654      sC = in->frequencies().getSpectralCoordinate(freqidCol2(0));
2655      // create the "global" abcissa for alignment with same FREQ_ID
2656      Vector<Double> abc(nchan);
2657      for (uInt i=0; i<nchan; i++) {
2658           Double w;
2659           sC.toWorld(w,Double(i));
2660           abc[i] = w;
2661      }
2662      TableVector<uInt> tvec(ftab, "FREQ_ID");
2663      // assign new frequency id to all rows
2664      tvec = id;
2665      // cache abcissa for same time stamps, so iterate over those
2666      TableIterator timeiter(ftab, "TIME");
2667      while ( !timeiter.pastEnd() ) {
2668        Table tab = timeiter.table();
2669        ArrayColumn<Float> specCol(tab, "SPECTRA");
2670        ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2671        MEpoch::ROScalarColumn timeCol(tab, "TIME");
2672        // use align abcissa cache after the first row
2673        // these rows should be just be POLNO
2674        bool first = true;
2675        for (int i=0; i<int(tab.nrow()); ++i) {
2676          // input values
2677          Vector<uChar> flag = flagCol(i);
2678          Vector<Bool> mask(flag.shape());
2679          Vector<Float> specOut, spec;
2680          spec  = specCol(i);
2681          Vector<Bool> maskOut;Vector<uChar> flagOut;
2682          convertArray(mask, flag);
2683          // alignment
2684          Bool ok = fa.align(specOut, maskOut, abc, spec,
2685                             mask, timeCol(i), !first,
2686                             interp, False);
2687          // back into scantable
2688          flagOut.resize(maskOut.nelements());
2689          convertArray(flagOut, maskOut);
2690          flagCol.put(i, flagOut);
2691          specCol.put(i, specOut);
2692          // start abcissa caching
2693          first = false;
2694        }
2695        // next timestamp
2696        ++timeiter;
2697      }
2698      // next FREQ_ID
2699      ++fiter;
2700    }
2701    // next aligner
2702    ++iter;
2703  }
2704  // set this afterwards to ensure we are doing insitu correctly.
2705  out->frequencies().setFrame(system, true);
2706  return out;
2707}
2708
2709CountedPtr<Scantable>
2710  asap::STMath::convertPolarisation( const CountedPtr<Scantable>& in,
2711                                     const std::string & newtype )
2712{
2713  if (in->npol() != 2 && in->npol() != 4)
2714    throw(AipsError("Can only convert two or four polarisations."));
2715  if ( in->getPolType() == newtype )
2716    throw(AipsError("No need to convert."));
2717  if ( ! in->selector_.empty() )
2718    throw(AipsError("Can only convert whole scantable. Unset the selection."));
2719  bool insitu = insitu_;
2720  setInsitu(false);
2721  CountedPtr< Scantable > out = getScantable(in, true);
2722  setInsitu(insitu);
2723  Table& tout = out->table();
2724  tout.rwKeywordSet().define("POLTYPE", String(newtype));
2725
2726  Block<String> cols(4);
2727  cols[0] = "SCANNO";
2728  cols[1] = "CYCLENO";
2729  cols[2] = "BEAMNO";
2730  cols[3] = "IFNO";
2731  TableIterator it(in->originalTable_, cols);
2732  String basetype = in->getPolType();
2733  STPol* stpol = STPol::getPolClass(in->factories_, basetype);
2734  try {
2735    while ( !it.pastEnd() ) {
2736      Table tab = it.table();
2737      uInt row = tab.rowNumbers()[0];
2738      stpol->setSpectra(in->getPolMatrix(row));
2739      Float fang,fhand;
2740      fang = in->focusTable_.getTotalAngle(in->mfocusidCol_(row));
2741      fhand = in->focusTable_.getFeedHand(in->mfocusidCol_(row));
2742      stpol->setPhaseCorrections(fang, fhand);
2743      Int npolout = 0;
2744      for (uInt i=0; i<tab.nrow(); ++i) {
2745        Vector<Float> outvec = stpol->getSpectrum(i, newtype);
2746        if ( outvec.nelements() > 0 ) {
2747          tout.addRow();
2748          TableCopy::copyRows(tout, tab, tout.nrow()-1, 0, 1);
2749          ArrayColumn<Float> sCol(tout,"SPECTRA");
2750          ScalarColumn<uInt> pCol(tout,"POLNO");
2751          sCol.put(tout.nrow()-1 ,outvec);
2752          pCol.put(tout.nrow()-1 ,uInt(npolout));
2753          npolout++;
2754       }
2755      }
2756      tout.rwKeywordSet().define("nPol", npolout);
2757      ++it;
2758    }
2759  } catch (AipsError& e) {
2760    delete stpol;
2761    throw(e);
2762  }
2763  delete stpol;
2764  return out;
2765}
2766
2767CountedPtr< Scantable >
2768  asap::STMath::mxExtract( const CountedPtr< Scantable > & in,
2769                           const std::string & scantype )
2770{
2771  bool insitu = insitu_;
2772  setInsitu(false);
2773  CountedPtr< Scantable > out = getScantable(in, true);
2774  setInsitu(insitu);
2775  Table& tout = out->table();
2776  std::string taql = "SELECT FROM $1 WHERE BEAMNO != REFBEAMNO";
2777  if (scantype == "on") {
2778    taql = "SELECT FROM $1 WHERE BEAMNO == REFBEAMNO";
2779  }
2780  Table tab = tableCommand(taql, in->table());
2781  TableCopy::copyRows(tout, tab);
2782  if (scantype == "on") {
2783    // re-index SCANNO to 0
2784    TableVector<uInt> vec(tout, "SCANNO");
2785    vec = 0;
2786  }
2787  return out;
2788}
2789
2790CountedPtr< Scantable >
2791  asap::STMath::lagFlag( const CountedPtr< Scantable > & in,
2792                         double start, double end,
2793                         const std::string& mode)
2794{
2795  CountedPtr< Scantable > out = getScantable(in, false);
2796  Table& tout = out->table();
2797  TableIterator iter(tout, "FREQ_ID");
2798  FFTServer<Float,Complex> ffts;
2799  while ( !iter.pastEnd() ) {
2800    Table tab = iter.table();
2801    Double rp,rv,inc;
2802    ROTableRow row(tab);
2803    const TableRecord& rec = row.get(0);
2804    uInt freqid = rec.asuInt("FREQ_ID");
2805    out->frequencies().getEntry(rp, rv, inc, freqid);
2806    ArrayColumn<Float> specCol(tab, "SPECTRA");
2807    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2808    for (int i=0; i<int(tab.nrow()); ++i) {
2809      Vector<Float> spec = specCol(i);
2810      Vector<uChar> flag = flagCol(i);
2811      int fstart = -1;
2812      int fend = -1;
2813      for (unsigned int k=0; k < flag.nelements(); ++k ) {
2814        if (flag[k] > 0) {
2815          fstart = k;
2816          while (flag[k] > 0 && k < flag.nelements()) {
2817            fend = k;
2818            k++;
2819          }
2820        }
2821        Float interp = 0.0;
2822        if (fstart-1 > 0 ) {
2823          interp = spec[fstart-1];
2824          if (fend+1 < spec.nelements()) {
2825            interp = (interp+spec[fend+1])/2.0;
2826          }
2827        } else {
2828          interp = spec[fend+1];
2829        }
2830        if (fstart > -1 && fend > -1) {
2831          for (int j=fstart;j<=fend;++j) {
2832            spec[j] = interp;
2833          }
2834        }
2835        fstart =-1;
2836        fend = -1;
2837      }
2838      Vector<Complex> lags;
2839      ffts.fft0(lags, spec);
2840      Int lag0(start+0.5);
2841      Int lag1(end+0.5);
2842      if (mode == "frequency") {
2843        lag0 = Int(spec.nelements()*abs(inc)/(start)+0.5);
2844        lag1 = Int(spec.nelements()*abs(inc)/(end)+0.5);
2845      }
2846      Int lstart =  max(0, lag0);
2847      Int lend =  min(Int(lags.nelements()-1), lag1);
2848      if (lstart == lend) {
2849        lags[lstart] = Complex(0.0);
2850      } else {
2851        if (lstart > lend) {
2852          Int tmp = lend;
2853          lend = lstart;
2854          lstart = tmp;
2855        }
2856        for (int j=lstart; j <=lend ;++j) {
2857          lags[j] = Complex(0.0);
2858        }
2859      }
2860      ffts.fft0(spec, lags);
2861      specCol.put(i, spec);
2862    }
2863    ++iter;
2864  }
2865  return out;
2866}
2867
2868// Averaging spectra with different channel/resolution
2869CountedPtr<Scantable>
2870STMath::new_average( const std::vector<CountedPtr<Scantable> >& in,
2871                     const bool& compel,
2872                     const std::vector<bool>& mask,
2873                     const std::string& weight,
2874                     const std::string& avmode )
2875  throw ( casa::AipsError )
2876{
2877  LogIO os( LogOrigin( "STMath", "new_average()", WHERE ) ) ;
2878  if ( avmode == "SCAN" && in.size() != 1 )
2879    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
2880                    "Use merge first."));
2881 
2882  // check if OTF observation
2883  String obstype = in[0]->getHeader().obstype ;
2884  Double tol = 0.0 ;
2885  if ( obstype.find( "OTF" ) != String::npos ) {
2886    tol = TOL_OTF ;
2887  }
2888  else {
2889    tol = TOL_POINT ;
2890  }
2891
2892  CountedPtr<Scantable> out ;     // processed result
2893  if ( compel ) {
2894    std::vector< CountedPtr<Scantable> > newin ; // input for average process
2895    uInt insize = in.size() ;    // number of input scantables
2896
2897    // TEST: do normal average in each table before IF grouping
2898    os << "Do preliminary averaging" << LogIO::POST ;
2899    vector< CountedPtr<Scantable> > tmpin( insize ) ;
2900    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2901      vector< CountedPtr<Scantable> > v( 1, in[itable] ) ;
2902      tmpin[itable] = average( v, mask, weight, avmode ) ;
2903    }
2904
2905    // warning
2906    os << "Average spectra with different spectral resolution" << LogIO::POST ;
2907
2908    // temporarily set coordinfo
2909    vector<string> oldinfo( insize ) ;
2910    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2911      vector<string> coordinfo = in[itable]->getCoordInfo() ;
2912      oldinfo[itable] = coordinfo[0] ;
2913      coordinfo[0] = "Hz" ;
2914      tmpin[itable]->setCoordInfo( coordinfo ) ;
2915    }
2916
2917    // columns
2918    ScalarColumn<uInt> freqIDCol ;
2919    ScalarColumn<uInt> ifnoCol ;
2920    ScalarColumn<uInt> scannoCol ;
2921
2922
2923    // check IF frequency coverage
2924    // freqid: list of FREQ_ID, which is used, in each table 
2925    // iffreq: list of minimum and maximum frequency for each FREQ_ID in
2926    //         each table
2927    // freqid[insize][numIF]
2928    // freqid: [[id00, id01, ...],
2929    //          [id10, id11, ...],
2930    //          ...
2931    //          [idn0, idn1, ...]]
2932    // iffreq[insize][numIF*2]
2933    // iffreq: [[min_id00, max_id00, min_id01, max_id01, ...],
2934    //          [min_id10, max_id10, min_id11, max_id11, ...],
2935    //          ...
2936    //          [min_idn0, max_idn0, min_idn1, max_idn1, ...]]
2937    //os << "Check IF settings in each table" << LogIO::POST ;
2938    vector< vector<uInt> > freqid( insize );
2939    vector< vector<double> > iffreq( insize ) ;
2940    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2941      uInt rows = tmpin[itable]->nrow() ;
2942      uInt freqnrows = tmpin[itable]->frequencies().table().nrow() ;
2943      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
2944        if ( freqid[itable].size() == freqnrows ) {
2945          break ;
2946        }
2947        else {
2948          freqIDCol.attach( tmpin[itable]->table(), "FREQ_ID" ) ;
2949          ifnoCol.attach( tmpin[itable]->table(), "IFNO" ) ;
2950          uInt id = freqIDCol( irow ) ;
2951          if ( freqid[itable].size() == 0 || count( freqid[itable].begin(), freqid[itable].end(), id ) == 0 ) {
2952            //os << "itable = " << itable << ": IF " << id << " is included in the list" << LogIO::POST ;
2953            vector<double> abcissa = tmpin[itable]->getAbcissa( irow ) ;
2954            freqid[itable].push_back( id ) ;
2955            iffreq[itable].push_back( abcissa[0] - 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
2956            iffreq[itable].push_back( abcissa[abcissa.size()-1] + 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
2957          }
2958        }
2959      }
2960    }
2961
2962    // debug
2963    //os << "IF settings summary:" << endl ;
2964    //for ( uInt i = 0 ; i < freqid.size() ; i++ ) {
2965    //os << "   Table" << i << endl ;
2966    //for ( uInt j = 0 ; j < freqid[i].size() ; j++ ) {
2967    //os << "      id = " << freqid[i][j] << " (min,max) = (" << iffreq[i][2*j] << "," << iffreq[i][2*j+1] << ")" << endl ;
2968    //}
2969    //}
2970    //os << endl ;
2971    //os.post() ;
2972
2973    // IF grouping based on their frequency coverage
2974    // ifgrp: list of table index and FREQ_ID for all members in each IF group
2975    // ifgfreq: list of minimum and maximum frequency in each IF group
2976    // ifgrp[numgrp][nummember*2]
2977    // ifgrp: [[table00, freqrow00, table01, freqrow01, ...],
2978    //         [table10, freqrow10, table11, freqrow11, ...],
2979    //         ...
2980    //         [tablen0, freqrown0, tablen1, freqrown1, ...]]
2981    // ifgfreq[numgrp*2]
2982    // ifgfreq: [min0_grp0, max0_grp0, min1_grp1, max1_grp1, ...]
2983    //os << "IF grouping based on their frequency coverage" << LogIO::POST ;
2984    vector< vector<uInt> > ifgrp ;
2985    vector<double> ifgfreq ;
2986
2987    // parameter for IF grouping
2988    // groupmode = OR    retrieve all region
2989    //             AND   only retrieve overlaped region
2990    //string groupmode = "AND" ;
2991    string groupmode = "OR" ;
2992    uInt sizecr = 0 ;
2993    if ( groupmode == "AND" )
2994      sizecr = 2 ;
2995    else if ( groupmode == "OR" )
2996      sizecr = 0 ;
2997
2998    vector<double> sortedfreq ;
2999    for ( uInt i = 0 ; i < iffreq.size() ; i++ ) {
3000      for ( uInt j = 0 ; j < iffreq[i].size() ; j++ ) {
3001        if ( count( sortedfreq.begin(), sortedfreq.end(), iffreq[i][j] ) == 0 )
3002          sortedfreq.push_back( iffreq[i][j] ) ;
3003      }
3004    }
3005    sort( sortedfreq.begin(), sortedfreq.end() ) ;
3006    for ( vector<double>::iterator i = sortedfreq.begin() ; i != sortedfreq.end()-1 ; i++ ) {
3007      ifgfreq.push_back( *i ) ;
3008      ifgfreq.push_back( *(i+1) ) ;
3009    }
3010    ifgrp.resize( ifgfreq.size()/2 ) ;
3011    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3012      for ( uInt iif = 0 ; iif < freqid[itable].size() ; iif++ ) {
3013        double range0 = iffreq[itable][2*iif] ;
3014        double range1 = iffreq[itable][2*iif+1] ;
3015        for ( uInt j = 0 ; j < ifgrp.size() ; j++ ) {
3016          double fmin = max( range0, ifgfreq[2*j] ) ;
3017          double fmax = min( range1, ifgfreq[2*j+1] ) ;
3018          if ( fmin < fmax ) {
3019            ifgrp[j].push_back( itable ) ;
3020            ifgrp[j].push_back( freqid[itable][iif] ) ;
3021          }
3022        }
3023      }
3024    }
3025    vector< vector<uInt> >::iterator fiter = ifgrp.begin() ;
3026    vector<double>::iterator giter = ifgfreq.begin() ;
3027    while( fiter != ifgrp.end() ) {
3028      if ( fiter->size() <= sizecr ) {
3029        fiter = ifgrp.erase( fiter ) ;
3030        giter = ifgfreq.erase( giter ) ;
3031        giter = ifgfreq.erase( giter ) ;
3032      }
3033      else {
3034        fiter++ ;
3035        advance( giter, 2 ) ;
3036      }
3037    }
3038
3039    // Grouping continuous IF groups (without frequency gap)
3040    // freqgrp: list of IF group indexes in each frequency group
3041    // freqrange: list of minimum and maximum frequency in each frequency group
3042    // freqgrp[numgrp][nummember]
3043    // freqgrp: [[ifgrp00, ifgrp01, ifgrp02, ...],
3044    //           [ifgrp10, ifgrp11, ifgrp12, ...],
3045    //           ...
3046    //           [ifgrpn0, ifgrpn1, ifgrpn2, ...]]
3047    // freqrange[numgrp*2]
3048    // freqrange: [min_grp0, max_grp0, min_grp1, max_grp1, ...]
3049    vector< vector<uInt> > freqgrp ;
3050    double freqrange = 0.0 ;
3051    uInt grpnum = 0 ;
3052    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3053      // Assumed that ifgfreq was sorted
3054      if ( grpnum != 0 && freqrange == ifgfreq[2*i] ) {
3055        freqgrp[grpnum-1].push_back( i ) ;
3056      }
3057      else {
3058        vector<uInt> grp0( 1, i ) ;
3059        freqgrp.push_back( grp0 ) ;
3060        grpnum++ ;
3061      }
3062      freqrange = ifgfreq[2*i+1] ;
3063    }
3064       
3065
3066    // print IF groups
3067    ostringstream oss ;
3068    oss << "IF Group summary: " << endl ;
3069    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3070    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3071      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3072      for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3073        oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3074      }
3075      oss << endl ;
3076    }
3077    oss << endl ;
3078    os << oss.str() << LogIO::POST ;
3079   
3080    // print frequency group
3081    oss.str("") ;
3082    oss << "Frequency Group summary: " << endl ;
3083    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: IF_GROUP_ID" << endl ;
3084    for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3085      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*freqgrp[i][0]] << "," << ifgfreq[2*freqgrp[i][freqgrp[i].size()-1]+1] << "]: " ;
3086      for ( uInt j = 0 ; j < freqgrp[i].size() ; j++ ) {
3087        oss << freqgrp[i][j] << " " ;
3088      }
3089      oss << endl ;
3090    }
3091    oss << endl ;
3092    os << oss.str() << LogIO::POST ;
3093
3094    // membership check
3095    // groups: list of IF group indexes whose frequency range overlaps with
3096    //         that of each table and IF
3097    // groups[numtable][numIF][nummembership]
3098    // groups: [[[grp, grp,...], [grp, grp,...],...],
3099    //          [[grp, grp,...], [grp, grp,...],...],
3100    //          ...
3101    //          [[grp, grp,...], [grp, grp,...],...]]
3102    vector< vector< vector<uInt> > > groups( insize ) ;
3103    for ( uInt i = 0 ; i < insize ; i++ ) {
3104      groups[i].resize( freqid[i].size() ) ;
3105    }
3106    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3107      for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3108        uInt tableid = ifgrp[igrp][2*imem] ;
3109        vector<uInt>::iterator iter = find( freqid[tableid].begin(), freqid[tableid].end(), ifgrp[igrp][2*imem+1] ) ;
3110        if ( iter != freqid[tableid].end() ) {
3111          uInt rowid = distance( freqid[tableid].begin(), iter ) ;
3112          groups[tableid][rowid].push_back( igrp ) ;
3113        }
3114      }
3115    }
3116
3117    // print membership
3118    //oss.str("") ;
3119    //for ( uInt i = 0 ; i < insize ; i++ ) {
3120    //oss << "Table " << i << endl ;
3121    //for ( uInt j = 0 ; j < groups[i].size() ; j++ ) {
3122    //oss << "   FREQ_ID " <<  setw( 2 ) << freqid[i][j] << ": " ;
3123    //for ( uInt k = 0 ; k < groups[i][j].size() ; k++ ) {
3124    //oss << setw( 2 ) << groups[i][j][k] << " " ;
3125    //}
3126    //oss << endl ;
3127    //}
3128    //}
3129    //os << oss.str() << LogIO::POST ;
3130
3131    // set back coordinfo
3132    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3133      vector<string> coordinfo = tmpin[itable]->getCoordInfo() ;
3134      coordinfo[0] = oldinfo[itable] ;
3135      tmpin[itable]->setCoordInfo( coordinfo ) ;
3136    }
3137
3138    // Create additional table if needed
3139    bool oldInsitu = insitu_ ;
3140    setInsitu( false ) ;
3141    vector< vector<uInt> > addrow( insize ) ;
3142    vector<uInt> addtable( insize, 0 ) ;
3143    vector<uInt> newtableids( insize ) ;
3144    vector<uInt> newifids( insize, 0 ) ;
3145    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3146      //os << "Table " << itable << ": " ;
3147      for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3148        addrow[itable].push_back( groups[itable][ifrow].size()-1 ) ;
3149        //os << addrow[itable][ifrow] << " " ;
3150      }
3151      addtable[itable] = *max_element( addrow[itable].begin(), addrow[itable].end() ) ;
3152      //os << "(" << addtable[itable] << ")" << LogIO::POST ;
3153    }
3154    newin.resize( insize ) ;
3155    copy( tmpin.begin(), tmpin.end(), newin.begin() ) ;
3156    for ( uInt i = 0 ; i < insize ; i++ ) {
3157      newtableids[i] = i ;
3158    }
3159    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3160      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3161        CountedPtr<Scantable> add = getScantable( newin[itable], false ) ;
3162        vector<int> freqidlist ;
3163        for ( uInt i = 0 ; i < groups[itable].size() ; i++ ) {
3164          if ( groups[itable][i].size() > iadd + 1 ) {
3165            freqidlist.push_back( freqid[itable][i] ) ;
3166          }
3167        }
3168        stringstream taqlstream ;
3169        taqlstream << "SELECT FROM $1 WHERE FREQ_ID IN [" ;
3170        for ( uInt i = 0 ; i < freqidlist.size() ; i++ ) {
3171          taqlstream << i ;
3172          if ( i < freqidlist.size() - 1 )
3173            taqlstream << "," ;
3174          else
3175            taqlstream << "]" ;
3176        }
3177        string taql = taqlstream.str() ;
3178        //os << "taql = " << taql << LogIO::POST ;
3179        STSelector selector = STSelector() ;
3180        selector.setTaQL( taql ) ;
3181        add->setSelection( selector ) ;
3182        newin.push_back( add ) ;
3183        newtableids.push_back( itable ) ;
3184        newifids.push_back( iadd + 1 ) ;
3185      }
3186    }
3187
3188    // udpate ifgrp
3189    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3190      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3191        for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3192          if ( groups[itable][ifrow].size() > iadd + 1 ) {
3193            uInt igrp = groups[itable][ifrow][iadd+1] ;
3194            for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3195              if ( ifgrp[igrp][2*imem] == newtableids[iadd+insize] && ifgrp[igrp][2*imem+1] == freqid[newtableids[iadd+insize]][ifrow] ) {
3196                ifgrp[igrp][2*imem] = insize + iadd ;
3197              }
3198            }
3199          }
3200        }
3201      }
3202    }
3203
3204    // print IF groups again for debug
3205    //oss.str( "" ) ;
3206    //oss << "IF Group summary: " << endl ;
3207    //oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3208    //for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3209    //oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3210    //for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3211    //oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3212    //}
3213    //oss << endl ;
3214    //}
3215    //oss << endl ;
3216    //os << oss.str() << LogIO::POST ;
3217
3218    // reset SCANNO and IFNO/FREQ_ID: IF is reset by the result of sortation
3219    os << "All scan number is set to 0" << LogIO::POST ;
3220    //os << "All IF number is set to IF group index" << LogIO::POST ;
3221    insize = newin.size() ;
3222    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3223      uInt rows = newin[itable]->nrow() ;
3224      Table &tmpt = newin[itable]->table() ;
3225      freqIDCol.attach( tmpt, "FREQ_ID" ) ;
3226      scannoCol.attach( tmpt, "SCANNO" ) ;
3227      ifnoCol.attach( tmpt, "IFNO" ) ;
3228      for ( uInt irow=0 ; irow < rows ; irow++ ) {
3229        scannoCol.put( irow, 0 ) ;
3230        uInt freqID = freqIDCol( irow ) ;
3231        vector<uInt>::iterator iter = find( freqid[newtableids[itable]].begin(), freqid[newtableids[itable]].end(), freqID ) ;
3232        if ( iter != freqid[newtableids[itable]].end() ) {
3233          uInt index = distance( freqid[newtableids[itable]].begin(), iter ) ;
3234          ifnoCol.put( irow, groups[newtableids[itable]][index][newifids[itable]] ) ;
3235        }
3236        else {
3237          throw(AipsError("IF grouping was wrong in additional tables.")) ;
3238        }
3239      }
3240    }
3241    oldinfo.resize( insize ) ;
3242    setInsitu( oldInsitu ) ;
3243
3244    // temporarily set coordinfo
3245    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3246      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3247      oldinfo[itable] = coordinfo[0] ;
3248      coordinfo[0] = "Hz" ;
3249      newin[itable]->setCoordInfo( coordinfo ) ;
3250    }
3251
3252    // save column values in the vector
3253    vector< vector<uInt> > freqTableIdVec( insize ) ;
3254    vector< vector<uInt> > freqIdVec( insize ) ;
3255    vector< vector<uInt> > ifNoVec( insize ) ;
3256    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3257      ScalarColumn<uInt> freqIDs ;
3258      freqIDs.attach( newin[itable]->frequencies().table(), "ID" ) ;
3259      ifnoCol.attach( newin[itable]->table(), "IFNO" ) ;
3260      freqIDCol.attach( newin[itable]->table(), "FREQ_ID" ) ;
3261      for ( uInt irow = 0 ; irow < newin[itable]->frequencies().table().nrow() ; irow++ ) {
3262        freqTableIdVec[itable].push_back( freqIDs( irow ) ) ;
3263      }
3264      for ( uInt irow = 0 ; irow < newin[itable]->table().nrow() ; irow++ ) {
3265        freqIdVec[itable].push_back( freqIDCol( irow ) ) ;
3266        ifNoVec[itable].push_back( ifnoCol( irow ) ) ;
3267      }
3268    }
3269
3270    // reset spectra and flagtra: pick up common part of frequency coverage
3271    //os << "Pick common frequency range and align resolution" << LogIO::POST ;
3272    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3273      uInt rows = newin[itable]->nrow() ;
3274      int nminchan = -1 ;
3275      int nmaxchan = -1 ;
3276      vector<uInt> freqIdUpdate ;
3277      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3278        uInt ifno = ifNoVec[itable][irow] ;  // IFNO is reset by group index
3279        double minfreq = ifgfreq[2*ifno] ;
3280        double maxfreq = ifgfreq[2*ifno+1] ;
3281        //os << "frequency range: [" << minfreq << "," << maxfreq << "]" << LogIO::POST ;
3282        vector<double> abcissa = newin[itable]->getAbcissa( irow ) ;
3283        int nchan = abcissa.size() ;
3284        double resol = abcissa[1] - abcissa[0] ;
3285        //os << "abcissa range  : [" << abcissa[0] << "," << abcissa[nchan-1] << "]" << LogIO::POST ;
3286        if ( minfreq <= abcissa[0] )
3287          nminchan = 0 ;
3288        else {
3289          //double cfreq = ( minfreq - abcissa[0] ) / resol ;
3290          double cfreq = ( minfreq - abcissa[0] + 0.5 * resol ) / resol ;
3291          nminchan = int(cfreq) + ( ( cfreq - int(cfreq) <= 0.5 ) ? 0 : 1 ) ;
3292        }
3293        if ( maxfreq >= abcissa[abcissa.size()-1] )
3294          nmaxchan = abcissa.size() - 1 ;
3295        else {
3296          //double cfreq = ( abcissa[abcissa.size()-1] - maxfreq ) / resol ;
3297          double cfreq = ( abcissa[abcissa.size()-1] - maxfreq + 0.5 * resol ) / resol ;
3298          nmaxchan = abcissa.size() - 1 - int(cfreq) - ( ( cfreq - int(cfreq) >= 0.5 ) ? 1 : 0 ) ;
3299        }
3300        //os << "channel range (" << irow << "): [" << nminchan << "," << nmaxchan << "]" << LogIO::POST ;
3301        if ( nmaxchan > nminchan ) {
3302          newin[itable]->reshapeSpectrum( nminchan, nmaxchan, irow ) ;
3303          int newchan = nmaxchan - nminchan + 1 ;
3304          if ( count( freqIdUpdate.begin(), freqIdUpdate.end(), freqIdVec[itable][irow] ) == 0 && newchan < nchan )
3305            freqIdUpdate.push_back( freqIdVec[itable][irow] ) ;
3306        }
3307        else {
3308          throw(AipsError("Failed to pick up common part of frequency range.")) ;
3309        }
3310      }
3311      for ( uInt i = 0 ; i < freqIdUpdate.size() ; i++ ) {
3312        uInt freqId = freqIdUpdate[i] ;
3313        Double refpix ;
3314        Double refval ;
3315        Double increment ;
3316       
3317        // update row
3318        newin[itable]->frequencies().getEntry( refpix, refval, increment, freqId ) ;
3319        refval = refval - ( refpix - nminchan ) * increment ;
3320        refpix = 0 ;
3321        newin[itable]->frequencies().setEntry( refpix, refval, increment, freqId ) ;
3322      }   
3323    }
3324
3325   
3326    // reset spectra and flagtra: align spectral resolution
3327    //os << "Align spectral resolution" << LogIO::POST ;
3328    // gmaxdnu: the coarsest frequency resolution in the frequency group
3329    // gmemid: member index that have a resolution equal to gmaxdnu
3330    // gmaxdnu[numfreqgrp]
3331    // gmaxdnu: [dnu0, dnu1, ...]
3332    // gmemid[numfreqgrp]
3333    // gmemid: [id0, id1, ...]
3334    vector<double> gmaxdnu( freqgrp.size(), 0.0 ) ;
3335    vector<uInt> gmemid( freqgrp.size(), 0 ) ;
3336    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3337      double maxdnu = 0.0 ;       // maximum (coarsest) frequency resolution
3338      int minchan = INT_MAX ;     // minimum channel number
3339      Double refpixref = -1 ;     // reference of 'reference pixel'
3340      Double refvalref = -1 ;     // reference of 'reference frequency'
3341      Double refinc = -1 ;        // reference frequency resolution
3342      uInt refreqid ;
3343      uInt reftable = INT_MAX;
3344      // process only if group member > 1
3345      if ( ifgrp[igrp].size() > 2 ) {
3346        // find minchan and maxdnu in each group
3347        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3348          uInt tableid = ifgrp[igrp][2*imem] ;
3349          uInt rowid = ifgrp[igrp][2*imem+1] ;
3350          vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3351          if ( iter != freqIdVec[tableid].end() ) {
3352            uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3353            vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3354            int nchan = abcissa.size() ;
3355            double dnu = abcissa[1] - abcissa[0] ;
3356            //os << "GROUP " << igrp << " (" << tableid << "," << rowid << "): nchan = " << nchan << " (minchan = " << minchan << ")" << LogIO::POST ;
3357            if ( nchan < minchan ) {
3358              minchan = nchan ;
3359              maxdnu = dnu ;
3360              newin[tableid]->frequencies().getEntry( refpixref, refvalref, refinc, rowid ) ;
3361              refreqid = rowid ;
3362              reftable = tableid ;
3363            }
3364          }
3365        }
3366        // regrid spectra in each group
3367        os << "GROUP " << igrp << endl ;
3368        os << "   Channel number is adjusted to " << minchan << endl ;
3369        os << "   Corresponding frequency resolution is " << maxdnu << "Hz" << LogIO::POST ;
3370        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3371          uInt tableid = ifgrp[igrp][2*imem] ;
3372          uInt rowid = ifgrp[igrp][2*imem+1] ;
3373          freqIDCol.attach( newin[tableid]->table(), "FREQ_ID" ) ;
3374          //os << "tableid = " << tableid << " rowid = " << rowid << ": " << LogIO::POST ;
3375          //os << "   regridChannel applied to " ;
3376          if ( tableid != reftable )
3377            refreqid = newin[tableid]->frequencies().addEntry( refpixref, refvalref, refinc ) ;
3378          for ( uInt irow = 0 ; irow < newin[tableid]->table().nrow() ; irow++ ) {
3379            uInt tfreqid = freqIdVec[tableid][irow] ;
3380            if ( tfreqid == rowid ) {     
3381              //os << irow << " " ;
3382              newin[tableid]->regridChannel( minchan, maxdnu, irow ) ;
3383              freqIDCol.put( irow, refreqid ) ;
3384              freqIdVec[tableid][irow] = refreqid ;
3385            }
3386          }
3387          //os << LogIO::POST ;
3388        }
3389      }
3390      else {
3391        uInt tableid = ifgrp[igrp][0] ;
3392        uInt rowid = ifgrp[igrp][1] ;
3393        vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3394        if ( iter != freqIdVec[tableid].end() ) {
3395          uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3396          vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3397          minchan = abcissa.size() ;
3398          maxdnu = abcissa[1] - abcissa[0] ;
3399        }
3400      }
3401      for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3402        if ( count( freqgrp[i].begin(), freqgrp[i].end(), igrp ) > 0 ) {
3403          if ( maxdnu > gmaxdnu[i] ) {
3404            gmaxdnu[i] = maxdnu ;
3405            gmemid[i] = igrp ;
3406          }
3407          break ;
3408        }
3409      }
3410    }
3411
3412    // set back coordinfo
3413    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3414      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3415      coordinfo[0] = oldinfo[itable] ;
3416      newin[itable]->setCoordInfo( coordinfo ) ;
3417    }     
3418
3419    // accumulate all rows into the first table
3420    // NOTE: assumed in.size() = 1
3421    vector< CountedPtr<Scantable> > tmp( 1 ) ;
3422    if ( newin.size() == 1 )
3423      tmp[0] = newin[0] ;
3424    else
3425      tmp[0] = merge( newin ) ;
3426
3427    //return tmp[0] ;
3428
3429    // average
3430    CountedPtr<Scantable> tmpout = average( tmp, mask, weight, avmode ) ;
3431
3432    //return tmpout ;
3433
3434    // combine frequency group
3435    os << "Combine spectra based on frequency grouping" << LogIO::POST ;
3436    os << "IFNO is renumbered as frequency group ID (see above)" << LogIO::POST ;
3437    vector<string> coordinfo = tmpout->getCoordInfo() ;
3438    oldinfo[0] = coordinfo[0] ;
3439    coordinfo[0] = "Hz" ;
3440    tmpout->setCoordInfo( coordinfo ) ;
3441    // create proformas of output table
3442    stringstream taqlstream ;
3443    taqlstream << "SELECT FROM $1 WHERE IFNO IN [" ;
3444    for ( uInt i = 0 ; i < gmemid.size() ; i++ ) {
3445      taqlstream << gmemid[i] ;
3446      if ( i < gmemid.size() - 1 )
3447        taqlstream << "," ;
3448      else
3449        taqlstream << "]" ;
3450    }
3451    string taql = taqlstream.str() ;
3452    //os << "taql = " << taql << LogIO::POST ;
3453    STSelector selector = STSelector() ;
3454    selector.setTaQL( taql ) ;
3455    oldInsitu = insitu_ ;
3456    setInsitu( false ) ;
3457    out = getScantable( tmpout, false ) ;
3458    setInsitu( oldInsitu ) ;
3459    out->setSelection( selector ) ;
3460    // regrid rows
3461    ifnoCol.attach( tmpout->table(), "IFNO" ) ;
3462    for ( uInt irow = 0 ; irow < tmpout->table().nrow() ; irow++ ) {
3463      uInt ifno = ifnoCol( irow ) ;
3464      for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3465        if ( count( freqgrp[igrp].begin(), freqgrp[igrp].end(), ifno ) > 0 ) {
3466          vector<double> abcissa = tmpout->getAbcissa( irow ) ;
3467          double bw = ( abcissa[1] - abcissa[0] ) * abcissa.size() ;
3468          int nchan = (int)( bw / gmaxdnu[igrp] ) ;
3469          tmpout->regridChannel( nchan, gmaxdnu[igrp], irow ) ;
3470          break ;
3471        }
3472      }
3473    }
3474    // combine spectra
3475    ArrayColumn<Float> specColOut ;
3476    specColOut.attach( out->table(), "SPECTRA" ) ;
3477    ArrayColumn<uChar> flagColOut ;
3478    flagColOut.attach( out->table(), "FLAGTRA" ) ;
3479    ScalarColumn<uInt> ifnoColOut ;
3480    ifnoColOut.attach( out->table(), "IFNO" ) ;
3481    ScalarColumn<uInt> polnoColOut ;
3482    polnoColOut.attach( out->table(), "POLNO" ) ;
3483    ScalarColumn<uInt> freqidColOut ;
3484    freqidColOut.attach( out->table(), "FREQ_ID" ) ;
3485    MDirection::ScalarColumn dirColOut ;
3486    dirColOut.attach( out->table(), "DIRECTION" ) ;
3487    Table &tab = tmpout->table() ;
3488    Block<String> cols(1);
3489    cols[0] = String("POLNO") ;
3490    TableIterator iter( tab, cols ) ;
3491    bool done = false ;
3492    vector< vector<uInt> > sizes( freqgrp.size() ) ;
3493    while( !iter.pastEnd() ) {
3494      vector< vector<Float> > specout( freqgrp.size() ) ;
3495      vector< vector<uChar> > flagout( freqgrp.size() ) ;
3496      ArrayColumn<Float> specCols ;
3497      specCols.attach( iter.table(), "SPECTRA" ) ;
3498      ArrayColumn<uChar> flagCols ;
3499      flagCols.attach( iter.table(), "FLAGTRA" ) ;
3500      ifnoCol.attach( iter.table(), "IFNO" ) ;
3501      ScalarColumn<uInt> polnos ;
3502      polnos.attach( iter.table(), "POLNO" ) ;
3503      MDirection::ScalarColumn dircol ;
3504      dircol.attach( iter.table(), "DIRECTION" ) ;
3505      uInt polno = polnos( 0 ) ;
3506      //os << "POLNO iteration: " << polno << LogIO::POST ;
3507//       for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3508//      sizes[igrp].resize( freqgrp[igrp].size() ) ;
3509//      for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3510//        for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3511//          uInt ifno = ifnoCol( irow ) ;
3512//          if ( ifno == freqgrp[igrp][imem] ) {
3513//            Vector<Float> spec = specCols( irow ) ;
3514//            Vector<uChar> flag = flagCols( irow ) ;
3515//            vector<Float> svec ;
3516//            spec.tovector( svec ) ;
3517//            vector<uChar> fvec ;
3518//            flag.tovector( fvec ) ;
3519//            //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3520//            specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3521//            flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3522//            //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3523//            sizes[igrp][imem] = spec.nelements() ;
3524//          }
3525//        }
3526//      }
3527//      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3528//        uInt ifout = ifnoColOut( irow ) ;
3529//        uInt polout = polnoColOut( irow ) ;
3530//        if ( ifout == gmemid[igrp] && polout == polno ) {
3531//          // set SPECTRA and FRAGTRA
3532//          Vector<Float> newspec( specout[igrp] ) ;
3533//          Vector<uChar> newflag( flagout[igrp] ) ;
3534//          specColOut.put( irow, newspec ) ;
3535//          flagColOut.put( irow, newflag ) ;
3536//          // IFNO renumbering
3537//          ifnoColOut.put( irow, igrp ) ;
3538//        }
3539//      }
3540//       }
3541      // get a list of number of channels for each frequency group member
3542      if ( !done ) {
3543        for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3544          sizes[igrp].resize( freqgrp[igrp].size() ) ;
3545          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3546            for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3547              uInt ifno = ifnoCol( irow ) ;
3548              if ( ifno == freqgrp[igrp][imem] ) {
3549                Vector<Float> spec = specCols( irow ) ;
3550                sizes[igrp][imem] = spec.nelements() ;
3551                break ;
3552              }               
3553            }
3554          }
3555        }
3556        done = true ;
3557      }
3558      // combine spectra
3559      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3560        uInt polout = polnoColOut( irow ) ;
3561        if ( polout == polno ) {
3562          uInt ifout = ifnoColOut( irow ) ;
3563          Vector<Double> direction = dirColOut(irow).getAngle(Unit(String("rad"))).getValue() ;
3564          uInt igrp ;
3565          for ( uInt jgrp = 0 ; jgrp < freqgrp.size() ; jgrp++ ) {
3566            if ( ifout == gmemid[jgrp] ) {
3567              igrp = jgrp ;
3568              break ;
3569            }
3570          }
3571          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3572            for ( uInt jrow = 0 ; jrow < iter.table().nrow() ; jrow++ ) {
3573              uInt ifno = ifnoCol( jrow ) ;
3574              Vector<Double> tdir = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
3575              //if ( ifno == freqgrp[igrp][imem] && allTrue( tdir == direction  ) ) {
3576              Double dx = tdir[0] - direction[0] ;
3577              Double dy = tdir[1] - direction[1] ;
3578              Double dd = sqrt( dx * dx + dy * dy ) ;
3579              //if ( ifno == freqgrp[igrp][imem] && allNearAbs( tdir, direction, tol ) ) {
3580              if ( ifno == freqgrp[igrp][imem] && dd <= tol ) {
3581                Vector<Float> spec = specCols( jrow ) ;
3582                Vector<uChar> flag = flagCols( jrow ) ;
3583                vector<Float> svec ;
3584                spec.tovector( svec ) ;
3585                vector<uChar> fvec ;
3586                flag.tovector( fvec ) ;
3587                //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3588                specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3589                flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3590                //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3591              }
3592            }
3593          }
3594          // set SPECTRA and FRAGTRA
3595          Vector<Float> newspec( specout[igrp] ) ;
3596          Vector<uChar> newflag( flagout[igrp] ) ;
3597          specColOut.put( irow, newspec ) ;
3598          flagColOut.put( irow, newflag ) ;
3599          // IFNO renumbering
3600          ifnoColOut.put( irow, igrp ) ;
3601        }
3602      }
3603      iter++ ;
3604    }
3605    // update FREQUENCIES subtable
3606    vector<bool> updated( freqgrp.size(), false ) ;
3607    for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3608      uInt index = 0 ;
3609      uInt pixShift = 0 ;
3610      while ( freqgrp[igrp][index] != gmemid[igrp] ) {
3611        pixShift += sizes[igrp][index++] ;
3612      }
3613      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3614        if ( ifnoColOut( irow ) == gmemid[igrp] && !updated[igrp] ) {
3615          uInt freqidOut = freqidColOut( irow ) ;
3616          //os << "freqgrp " << igrp << " freqidOut = " << freqidOut << LogIO::POST ;
3617          double refpix ;
3618          double refval ;
3619          double increm ;
3620          out->frequencies().getEntry( refpix, refval, increm, freqidOut ) ;
3621          refpix += pixShift ;
3622          out->frequencies().setEntry( refpix, refval, increm, freqidOut ) ;
3623          updated[igrp] = true ;
3624        }
3625      }
3626    }
3627
3628    //out = tmpout ;
3629
3630    coordinfo = tmpout->getCoordInfo() ;
3631    coordinfo[0] = oldinfo[0] ;
3632    tmpout->setCoordInfo( coordinfo ) ;
3633  }
3634  else {
3635    // simple average
3636    out =  average( in, mask, weight, avmode ) ;
3637  }
3638 
3639  return out ;
3640}
3641
3642CountedPtr<Scantable> STMath::cwcal( const CountedPtr<Scantable>& s,
3643                                     const String calmode,
3644                                     const String antname )
3645{
3646  // frequency switch
3647  if ( calmode == "fs" ) {
3648    return cwcalfs( s, antname ) ;
3649  }
3650  else {
3651    vector<bool> masks = s->getMask( 0 ) ;
3652    vector<int> types ;
3653
3654    // sky scan
3655    STSelector sel = STSelector() ;
3656    types.push_back( SrcType::SKY ) ;
3657    sel.setTypes( types ) ;
3658    s->setSelection( sel ) ;
3659    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3660    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
3661    s->unsetSelection() ;
3662    sel.reset() ;
3663    types.clear() ;
3664
3665    // hot scan
3666    types.push_back( SrcType::HOT ) ;
3667    sel.setTypes( types ) ;
3668    s->setSelection( sel ) ;
3669    tmp.clear() ;
3670    tmp.push_back( getScantable( s, false ) ) ;
3671    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
3672    s->unsetSelection() ;
3673    sel.reset() ;
3674    types.clear() ;
3675   
3676    // cold scan
3677    CountedPtr<Scantable> acold ;
3678//     types.push_back( SrcType::COLD ) ;
3679//     sel.setTypes( types ) ;
3680//     s->setSelection( sel ) ;
3681//     tmp.clear() ;
3682//     tmp.push_back( getScantable( s, false ) ) ;
3683//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCNAN" ) ;
3684//     s->unsetSelection() ;
3685//     sel.reset() ;
3686//     types.clear() ;
3687
3688    // off scan
3689    types.push_back( SrcType::PSOFF ) ;
3690    sel.setTypes( types ) ;
3691    s->setSelection( sel ) ;
3692    tmp.clear() ;
3693    tmp.push_back( getScantable( s, false ) ) ;
3694    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3695    s->unsetSelection() ;
3696    sel.reset() ;
3697    types.clear() ;
3698   
3699    // on scan
3700    bool insitu = insitu_ ;
3701    insitu_ = false ;
3702    CountedPtr<Scantable> out = getScantable( s, true ) ;
3703    insitu_ = insitu ;
3704    types.push_back( SrcType::PSON ) ;
3705    sel.setTypes( types ) ;
3706    s->setSelection( sel ) ;
3707    TableCopy::copyRows( out->table(), s->table() ) ;
3708    s->unsetSelection() ;
3709    sel.reset() ;
3710    types.clear() ;
3711   
3712    // process each on scan
3713    ArrayColumn<Float> tsysCol ;
3714    tsysCol.attach( out->table(), "TSYS" ) ;
3715    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3716      vector<float> sp = getCalibratedSpectra( out, aoff, asky, ahot, acold, i, antname ) ;
3717      out->setSpectrum( sp, i ) ;
3718      string reftime = out->getTime( i ) ;
3719      vector<int> ii( 1, out->getIF( i ) ) ;
3720      vector<int> ib( 1, out->getBeam( i ) ) ;
3721      vector<int> ip( 1, out->getPol( i ) ) ;
3722      sel.setIFs( ii ) ;
3723      sel.setBeams( ib ) ;
3724      sel.setPolarizations( ip ) ;
3725      asky->setSelection( sel ) ;   
3726      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
3727      const Vector<Float> Vtsys( sptsys ) ;
3728      tsysCol.put( i, Vtsys ) ;
3729      asky->unsetSelection() ;
3730      sel.reset() ;
3731    }
3732
3733    // flux unit
3734    out->setFluxUnit( "K" ) ;
3735
3736    return out ;
3737  }
3738}
3739 
3740CountedPtr<Scantable> STMath::almacal( const CountedPtr<Scantable>& s,
3741                                       const String calmode )
3742{
3743  // frequency switch
3744  if ( calmode == "fs" ) {
3745    return almacalfs( s ) ;
3746  }
3747  else {
3748    vector<bool> masks = s->getMask( 0 ) ;
3749   
3750    // off scan
3751    STSelector sel = STSelector() ;
3752    vector<int> types ;
3753    types.push_back( SrcType::PSOFF ) ;
3754    sel.setTypes( types ) ;
3755    s->setSelection( sel ) ;
3756    // TODO 2010/01/08 TN
3757    // Grouping by time should be needed before averaging.
3758    // Each group must have own unique SCANNO (should be renumbered).
3759    // See PIPELINE/SDCalibration.py
3760    CountedPtr<Scantable> soff = getScantable( s, false ) ;
3761    Table ttab = soff->table() ;
3762    ROScalarColumn<Double> timeCol( ttab, "TIME" ) ;
3763    uInt nrow = timeCol.nrow() ;
3764    Vector<Double> timeSep( nrow - 1 ) ;
3765    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3766      timeSep[i] = timeCol(i+1) - timeCol(i) ;
3767    }
3768    ScalarColumn<Double> intervalCol( ttab, "INTERVAL" ) ;
3769    Vector<Double> interval = intervalCol.getColumn() ;
3770    interval /= 86400.0 ;
3771    ScalarColumn<uInt> scanCol( ttab, "SCANNO" ) ;
3772    vector<uInt> glist ;
3773    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3774      double gap = 2.0 * timeSep[i] / ( interval[i] + interval[i+1] ) ;
3775      //cout << "gap[" << i << "]=" << setw(5) << gap << endl ;
3776      if ( gap > 1.1 ) {
3777        glist.push_back( i ) ;
3778      }
3779    }
3780    Vector<uInt> gaplist( glist ) ;
3781    //cout << "gaplist = " << gaplist << endl ;
3782    uInt newid = 0 ;
3783    for ( uInt i = 0 ; i < nrow ; i++ ) {
3784      scanCol.put( i, newid ) ;
3785      if ( i == gaplist[newid] ) {
3786        newid++ ;
3787      }
3788    }
3789    //cout << "new scancol = " << scanCol.getColumn() << endl ;
3790    vector< CountedPtr<Scantable> > tmp( 1, soff ) ;
3791    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3792    //cout << "aoff.nrow = " << aoff->nrow() << endl ;
3793    s->unsetSelection() ;
3794    sel.reset() ;
3795    types.clear() ;
3796   
3797    // on scan
3798    bool insitu = insitu_ ;
3799    insitu_ = false ;
3800    CountedPtr<Scantable> out = getScantable( s, true ) ;
3801    insitu_ = insitu ;
3802    types.push_back( SrcType::PSON ) ;
3803    sel.setTypes( types ) ;
3804    s->setSelection( sel ) ;
3805    TableCopy::copyRows( out->table(), s->table() ) ;
3806    s->unsetSelection() ;
3807    sel.reset() ;
3808    types.clear() ;
3809   
3810    // process each on scan
3811    ArrayColumn<Float> tsysCol ;
3812    tsysCol.attach( out->table(), "TSYS" ) ;
3813    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3814      vector<float> sp = getCalibratedSpectra( out, aoff, i ) ;
3815      out->setSpectrum( sp, i ) ;
3816    }
3817
3818    // flux unit
3819    out->setFluxUnit( "K" ) ;
3820
3821    return out ;
3822  }
3823}
3824
3825CountedPtr<Scantable> STMath::cwcalfs( const CountedPtr<Scantable>& s,
3826                                       const String antname )
3827{
3828  vector<int> types ;
3829
3830  // APEX calibration mode
3831  int apexcalmode = 1 ;
3832 
3833  if ( antname.find( "APEX" ) != string::npos ) {
3834    // check if off scan exists or not
3835    STSelector sel = STSelector() ;
3836    //sel.setName( offstr1 ) ;
3837    types.push_back( SrcType::FLOOFF ) ;
3838    sel.setTypes( types ) ;
3839    try {
3840      s->setSelection( sel ) ;
3841    }
3842    catch ( AipsError &e ) {
3843      apexcalmode = 0 ;
3844    }
3845    sel.reset() ;
3846  }
3847  s->unsetSelection() ;
3848  types.clear() ;
3849
3850  vector<bool> masks = s->getMask( 0 ) ;
3851  CountedPtr<Scantable> ssig, sref ;
3852  CountedPtr<Scantable> out ;
3853
3854  if ( antname.find( "APEX" ) != string::npos ) {
3855    // APEX calibration
3856    // sky scan
3857    STSelector sel = STSelector() ;
3858    types.push_back( SrcType::FLOSKY ) ;
3859    sel.setTypes( types ) ;
3860    s->setSelection( sel ) ;
3861    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3862    CountedPtr<Scantable> askylo = average( tmp, masks, "TINT", "SCAN" ) ;
3863    s->unsetSelection() ;
3864    sel.reset() ;
3865    types.clear() ;
3866    types.push_back( SrcType::FHISKY ) ;
3867    sel.setTypes( types ) ;
3868    s->setSelection( sel ) ;
3869    tmp.clear() ;
3870    tmp.push_back( getScantable( s, false ) ) ;
3871    CountedPtr<Scantable> askyhi = average( tmp, masks, "TINT", "SCAN" ) ;
3872    s->unsetSelection() ;
3873    sel.reset() ;
3874    types.clear() ;
3875   
3876    // hot scan
3877    types.push_back( SrcType::FLOHOT ) ;
3878    sel.setTypes( types ) ;
3879    s->setSelection( sel ) ;
3880    tmp.clear() ;
3881    tmp.push_back( getScantable( s, false ) ) ;
3882    CountedPtr<Scantable> ahotlo = average( tmp, masks, "TINT", "SCAN" ) ;
3883    s->unsetSelection() ;
3884    sel.reset() ;
3885    types.clear() ;
3886    types.push_back( SrcType::FHIHOT ) ;
3887    sel.setTypes( types ) ;
3888    s->setSelection( sel ) ;
3889    tmp.clear() ;
3890    tmp.push_back( getScantable( s, false ) ) ;
3891    CountedPtr<Scantable> ahothi = average( tmp, masks, "TINT", "SCAN" ) ;
3892    s->unsetSelection() ;
3893    sel.reset() ;
3894    types.clear() ;
3895   
3896    // cold scan
3897    CountedPtr<Scantable> acoldlo, acoldhi ;
3898//     types.push_back( SrcType::FLOCOLD ) ;
3899//     sel.setTypes( types ) ;
3900//     s->setSelection( sel ) ;
3901//     tmp.clear() ;
3902//     tmp.push_back( getScantable( s, false ) ) ;
3903//     CountedPtr<Scantable> acoldlo = average( tmp, masks, "TINT", "SCAN" ) ;
3904//     s->unsetSelection() ;
3905//     sel.reset() ;
3906//     types.clear() ;
3907//     types.push_back( SrcType::FHICOLD ) ;
3908//     sel.setTypes( types ) ;
3909//     s->setSelection( sel ) ;
3910//     tmp.clear() ;
3911//     tmp.push_back( getScantable( s, false ) ) ;
3912//     CountedPtr<Scantable> acoldhi = average( tmp, masks, "TINT", "SCAN" ) ;
3913//     s->unsetSelection() ;
3914//     sel.reset() ;
3915//     types.clear() ;
3916
3917    // ref scan
3918    bool insitu = insitu_ ;
3919    insitu_ = false ;
3920    sref = getScantable( s, true ) ;
3921    insitu_ = insitu ;
3922    types.push_back( SrcType::FSLO ) ;
3923    sel.setTypes( types ) ;
3924    s->setSelection( sel ) ;
3925    TableCopy::copyRows( sref->table(), s->table() ) ;
3926    s->unsetSelection() ;
3927    sel.reset() ;
3928    types.clear() ;
3929   
3930    // sig scan
3931    insitu_ = false ;
3932    ssig = getScantable( s, true ) ;
3933    insitu_ = insitu ;
3934    types.push_back( SrcType::FSHI ) ;
3935    sel.setTypes( types ) ;
3936    s->setSelection( sel ) ;
3937    TableCopy::copyRows( ssig->table(), s->table() ) ;
3938    s->unsetSelection() ;
3939    sel.reset() ; 
3940    types.clear() ;
3941         
3942    if ( apexcalmode == 0 ) {
3943      // APEX fs data without off scan
3944      // process each sig and ref scan
3945      ArrayColumn<Float> tsysCollo ;
3946      tsysCollo.attach( ssig->table(), "TSYS" ) ;
3947      ArrayColumn<Float> tsysColhi ;
3948      tsysColhi.attach( sref->table(), "TSYS" ) ;
3949      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
3950        vector< CountedPtr<Scantable> > sky( 2 ) ;
3951        sky[0] = askylo ;
3952        sky[1] = askyhi ;
3953        vector< CountedPtr<Scantable> > hot( 2 ) ;
3954        hot[0] = ahotlo ;
3955        hot[1] = ahothi ;
3956        vector< CountedPtr<Scantable> > cold( 2 ) ;
3957        //cold[0] = acoldlo ;
3958        //cold[1] = acoldhi ;
3959        vector<float> sp = getFSCalibratedSpectra( ssig, sref, sky, hot, cold, i ) ;
3960        ssig->setSpectrum( sp, i ) ;
3961        string reftime = ssig->getTime( i ) ;
3962        vector<int> ii( 1, ssig->getIF( i ) ) ;
3963        vector<int> ib( 1, ssig->getBeam( i ) ) ;
3964        vector<int> ip( 1, ssig->getPol( i ) ) ;
3965        sel.setIFs( ii ) ;
3966        sel.setBeams( ib ) ;
3967        sel.setPolarizations( ip ) ;
3968        askylo->setSelection( sel ) ;
3969        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
3970        const Vector<Float> Vtsyslo( sptsys ) ;
3971        tsysCollo.put( i, Vtsyslo ) ;
3972        askylo->unsetSelection() ;
3973        sel.reset() ;
3974        sky[0] = askyhi ;
3975        sky[1] = askylo ;
3976        hot[0] = ahothi ;
3977        hot[1] = ahotlo ;
3978        cold[0] = acoldhi ;
3979        cold[1] = acoldlo ;
3980        sp = getFSCalibratedSpectra( sref, ssig, sky, hot, cold, i ) ;
3981        sref->setSpectrum( sp, i ) ;
3982        reftime = sref->getTime( i ) ;
3983        ii[0] = sref->getIF( i )  ;
3984        ib[0] = sref->getBeam( i ) ;
3985        ip[0] = sref->getPol( i ) ;
3986        sel.setIFs( ii ) ;
3987        sel.setBeams( ib ) ;
3988        sel.setPolarizations( ip ) ;
3989        askyhi->setSelection( sel ) ;   
3990        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
3991        const Vector<Float> Vtsyshi( sptsys ) ;
3992        tsysColhi.put( i, Vtsyshi ) ;
3993        askyhi->unsetSelection() ;
3994        sel.reset() ;
3995      }
3996    }
3997    else if ( apexcalmode == 1 ) {
3998      // APEX fs data with off scan
3999      // off scan
4000      types.push_back( SrcType::FLOOFF ) ;
4001      sel.setTypes( types ) ;
4002      s->setSelection( sel ) ;
4003      tmp.clear() ;
4004      tmp.push_back( getScantable( s, false ) ) ;
4005      CountedPtr<Scantable> aofflo = average( tmp, masks, "TINT", "SCAN" ) ;
4006      s->unsetSelection() ;
4007      sel.reset() ;
4008      types.clear() ;
4009      types.push_back( SrcType::FHIOFF ) ;
4010      sel.setTypes( types ) ;
4011      s->setSelection( sel ) ;
4012      tmp.clear() ;
4013      tmp.push_back( getScantable( s, false ) ) ;
4014      CountedPtr<Scantable> aoffhi = average( tmp, masks, "TINT", "SCAN" ) ;
4015      s->unsetSelection() ;
4016      sel.reset() ;
4017      types.clear() ;
4018     
4019      // process each sig and ref scan
4020      ArrayColumn<Float> tsysCollo ;
4021      tsysCollo.attach( ssig->table(), "TSYS" ) ;
4022      ArrayColumn<Float> tsysColhi ;
4023      tsysColhi.attach( sref->table(), "TSYS" ) ;
4024      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4025        vector<float> sp = getCalibratedSpectra( ssig, aofflo, askylo, ahotlo, acoldlo, i, antname ) ;
4026        ssig->setSpectrum( sp, i ) ;
4027        sp = getCalibratedSpectra( sref, aoffhi, askyhi, ahothi, acoldhi, i, antname ) ;
4028        string reftime = ssig->getTime( i ) ;
4029        vector<int> ii( 1, ssig->getIF( i ) ) ;
4030        vector<int> ib( 1, ssig->getBeam( i ) ) ;
4031        vector<int> ip( 1, ssig->getPol( i ) ) ;
4032        sel.setIFs( ii ) ;
4033        sel.setBeams( ib ) ;
4034        sel.setPolarizations( ip ) ;
4035        askylo->setSelection( sel ) ;
4036        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4037        const Vector<Float> Vtsyslo( sptsys ) ;
4038        tsysCollo.put( i, Vtsyslo ) ;
4039        askylo->unsetSelection() ;
4040        sel.reset() ;
4041        sref->setSpectrum( sp, i ) ;
4042        reftime = sref->getTime( i ) ;
4043        ii[0] = sref->getIF( i )  ;
4044        ib[0] = sref->getBeam( i ) ;
4045        ip[0] = sref->getPol( i ) ;
4046        sel.setIFs( ii ) ;
4047        sel.setBeams( ib ) ;
4048        sel.setPolarizations( ip ) ;
4049        askyhi->setSelection( sel ) ;   
4050        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4051        const Vector<Float> Vtsyshi( sptsys ) ;
4052        tsysColhi.put( i, Vtsyshi ) ;
4053        askyhi->unsetSelection() ;
4054        sel.reset() ;
4055      }
4056    }
4057  }
4058  else {
4059    // non-APEX fs data
4060    // sky scan
4061    STSelector sel = STSelector() ;
4062    types.push_back( SrcType::SKY ) ;
4063    sel.setTypes( types ) ;
4064    s->setSelection( sel ) ;
4065    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
4066    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
4067    s->unsetSelection() ;
4068    sel.reset() ;
4069    types.clear() ;
4070   
4071    // hot scan
4072    types.push_back( SrcType::HOT ) ;
4073    sel.setTypes( types ) ;
4074    s->setSelection( sel ) ;
4075    tmp.clear() ;
4076    tmp.push_back( getScantable( s, false ) ) ;
4077    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
4078    s->unsetSelection() ;
4079    sel.reset() ;
4080    types.clear() ;
4081
4082    // cold scan
4083    CountedPtr<Scantable> acold ;
4084//     types.push_back( SrcType::COLD ) ;
4085//     sel.setTypes( types ) ;
4086//     s->setSelection( sel ) ;
4087//     tmp.clear() ;
4088//     tmp.push_back( getScantable( s, false ) ) ;
4089//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCAN" ) ;
4090//     s->unsetSelection() ;
4091//     sel.reset() ;
4092//     types.clear() ;
4093   
4094    // ref scan
4095    bool insitu = insitu_ ;
4096    insitu_ = false ;
4097    sref = getScantable( s, true ) ;
4098    insitu_ = insitu ;
4099    types.push_back( SrcType::FSOFF ) ;
4100    sel.setTypes( types ) ;
4101    s->setSelection( sel ) ;
4102    TableCopy::copyRows( sref->table(), s->table() ) ;
4103    s->unsetSelection() ;
4104    sel.reset() ;
4105    types.clear() ;
4106   
4107    // sig scan
4108    insitu_ = false ;
4109    ssig = getScantable( s, true ) ;
4110    insitu_ = insitu ;
4111    types.push_back( SrcType::FSON ) ;
4112    sel.setTypes( types ) ;
4113    s->setSelection( sel ) ;
4114    TableCopy::copyRows( ssig->table(), s->table() ) ;
4115    s->unsetSelection() ;
4116    sel.reset() ;
4117    types.clear() ;
4118
4119    // process each sig and ref scan
4120    ArrayColumn<Float> tsysColsig ;
4121    tsysColsig.attach( ssig->table(), "TSYS" ) ;
4122    ArrayColumn<Float> tsysColref ;
4123    tsysColref.attach( ssig->table(), "TSYS" ) ;
4124    for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4125      vector<float> sp = getFSCalibratedSpectra( ssig, sref, asky, ahot, acold, i ) ;
4126      ssig->setSpectrum( sp, i ) ;
4127      string reftime = ssig->getTime( i ) ;
4128      vector<int> ii( 1, ssig->getIF( i ) ) ;
4129      vector<int> ib( 1, ssig->getBeam( i ) ) ;
4130      vector<int> ip( 1, ssig->getPol( i ) ) ;
4131      sel.setIFs( ii ) ;
4132      sel.setBeams( ib ) ;
4133      sel.setPolarizations( ip ) ;
4134      asky->setSelection( sel ) ;
4135      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
4136      const Vector<Float> Vtsys( sptsys ) ;
4137      tsysColsig.put( i, Vtsys ) ;
4138      asky->unsetSelection() ;
4139      sel.reset() ;
4140      sp = getFSCalibratedSpectra( sref, ssig, asky, ahot, acold, i ) ;
4141      sref->setSpectrum( sp, i ) ;
4142      tsysColref.put( i, Vtsys ) ;
4143    }
4144  }
4145
4146  // do folding if necessary
4147  Table sigtab = ssig->table() ;
4148  Table reftab = sref->table() ;
4149  ScalarColumn<uInt> sigifnoCol ;
4150  ScalarColumn<uInt> refifnoCol ;
4151  ScalarColumn<uInt> sigfidCol ;
4152  ScalarColumn<uInt> reffidCol ;
4153  Int nchan = (Int)ssig->nchan() ;
4154  sigifnoCol.attach( sigtab, "IFNO" ) ;
4155  refifnoCol.attach( reftab, "IFNO" ) ;
4156  sigfidCol.attach( sigtab, "FREQ_ID" ) ;
4157  reffidCol.attach( reftab, "FREQ_ID" ) ;
4158  Vector<uInt> sfids( sigfidCol.getColumn() ) ;
4159  Vector<uInt> rfids( reffidCol.getColumn() ) ;
4160  vector<uInt> sfids_unique ;
4161  vector<uInt> rfids_unique ;
4162  vector<uInt> sifno_unique ;
4163  vector<uInt> rifno_unique ;
4164  for ( uInt i = 0 ; i < sfids.nelements() ; i++ ) {
4165    if ( count( sfids_unique.begin(), sfids_unique.end(), sfids[i] ) == 0 ) {
4166      sfids_unique.push_back( sfids[i] ) ;
4167      sifno_unique.push_back( ssig->getIF( i ) ) ;
4168    }
4169    if ( count( rfids_unique.begin(), rfids_unique.end(),  rfids[i] ) == 0 ) {
4170      rfids_unique.push_back( rfids[i] ) ;
4171      rifno_unique.push_back( sref->getIF( i ) ) ;
4172    }
4173  }
4174  double refpix_sig, refval_sig, increment_sig ;
4175  double refpix_ref, refval_ref, increment_ref ;
4176  vector< CountedPtr<Scantable> > tmp( sfids_unique.size() ) ;
4177  for ( uInt i = 0 ; i < sfids_unique.size() ; i++ ) {
4178    ssig->frequencies().getEntry( refpix_sig, refval_sig, increment_sig, sfids_unique[i] ) ;
4179    sref->frequencies().getEntry( refpix_ref, refval_ref, increment_ref, rfids_unique[i] ) ;
4180    if ( refpix_sig == refpix_ref ) {
4181      double foffset = refval_ref - refval_sig ;
4182      int choffset = static_cast<int>(foffset/increment_sig) ;
4183      double doffset = foffset / increment_sig ;
4184      if ( abs(choffset) >= nchan ) {
4185        LogIO os( LogOrigin( "STMath", "cwcalfs", WHERE ) ) ;
4186        os << "FREQ_ID=[" << sfids_unique[i] << "," << rfids_unique[i] << "]: out-band frequency switching, no folding" << LogIO::POST ;
4187        os << "Just return signal data" << LogIO::POST ;
4188        //std::vector< CountedPtr<Scantable> > tabs ;
4189        //tabs.push_back( ssig ) ;
4190        //tabs.push_back( sref ) ;
4191        //out = merge( tabs ) ;
4192        tmp[i] = ssig ;
4193      }
4194      else {
4195        STSelector sel = STSelector() ;
4196        vector<int> v( 1, sifno_unique[i] ) ;
4197        sel.setIFs( v ) ;
4198        ssig->setSelection( sel ) ;
4199        sel.reset() ;
4200        v[0] = rifno_unique[i] ;
4201        sel.setIFs( v ) ;
4202        sref->setSelection( sel ) ;
4203        sel.reset() ;
4204        if ( antname.find( "APEX" ) != string::npos ) {
4205          tmp[i] = dofold( ssig, sref, 0.5*doffset, -0.5*doffset ) ;
4206          //tmp[i] = dofold( ssig, sref, doffset ) ;
4207        }
4208        else {
4209          tmp[i] = dofold( ssig, sref, doffset ) ;
4210        }
4211        ssig->unsetSelection() ;
4212        sref->unsetSelection() ;
4213      }
4214    }
4215  }
4216
4217  if ( tmp.size() > 1 ) {
4218    out = merge( tmp ) ;
4219  }
4220  else {
4221    out = tmp[0] ;
4222  }
4223
4224  // flux unit
4225  out->setFluxUnit( "K" ) ;
4226
4227  return out ;
4228}
4229
4230CountedPtr<Scantable> STMath::almacalfs( const CountedPtr<Scantable>& s )
4231{
4232  CountedPtr<Scantable> out ;
4233
4234  return out ;
4235}
4236
4237vector<float> STMath::getSpectrumFromTime( string reftime,
4238                                           CountedPtr<Scantable>& s,
4239                                           string mode )
4240{
4241  LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
4242  vector<float> sp ;
4243
4244  if ( s->nrow() == 0 ) {
4245    os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4246    return sp ;
4247  }
4248  else if ( s->nrow() == 1 ) {
4249    //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4250    return s->getSpectrum( 0 ) ;
4251  }
4252  else {
4253    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4254    if ( mode == "before" ) {
4255      int id = -1 ;
4256      if ( idx[0] != -1 ) {
4257        id = idx[0] ;
4258      }
4259      else if ( idx[1] != -1 ) {
4260        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4261        id = idx[1] ;
4262      }
4263      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4264      sp = s->getSpectrum( id ) ;
4265    }
4266    else if ( mode == "after" ) {
4267      int id = -1 ;
4268      if ( idx[1] != -1 ) {
4269        id = idx[1] ;
4270      }
4271      else if ( idx[0] != -1 ) {
4272        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4273        id = idx[1] ;
4274      }
4275      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4276      sp = s->getSpectrum( id ) ;
4277    }
4278    else if ( mode == "nearest" ) {
4279      int id = -1 ;
4280      if ( idx[0] == -1 ) {
4281        id = idx[1] ;
4282      }
4283      else if ( idx[1] == -1 ) {
4284        id = idx[0] ;
4285      }
4286      else if ( idx[0] == idx[1] ) {
4287        id = idx[0] ;
4288      }
4289      else {
4290        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4291        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4292        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4293        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4294        double tref = getMJD( reftime ) ;
4295        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4296          id = idx[1] ;
4297        }
4298        else {
4299          id = idx[0] ;
4300        }
4301      }
4302      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4303      sp = s->getSpectrum( id ) ;     
4304    }
4305    else if ( mode == "linear" ) {
4306      if ( idx[0] == -1 ) {
4307        // use after
4308        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4309        int id = idx[1] ;
4310        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4311        sp = s->getSpectrum( id ) ;
4312      }
4313      else if ( idx[1] == -1 ) {
4314        // use before
4315        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4316        int id = idx[0] ;
4317        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4318        sp = s->getSpectrum( id ) ;
4319      }
4320      else if ( idx[0] == idx[1] ) {
4321        // use before
4322        //os << "No need to interporate." << LogIO::POST ;
4323        int id = idx[0] ;
4324        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4325        sp = s->getSpectrum( id ) ;
4326      }
4327      else {
4328        // do interpolation
4329        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4330        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4331        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4332        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4333        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4334        double tref = getMJD( reftime ) ;
4335        vector<float> sp0 = s->getSpectrum( idx[0] ) ;
4336        vector<float> sp1 = s->getSpectrum( idx[1] ) ;
4337        for ( unsigned int i = 0 ; i < sp0.size() ; i++ ) {
4338          float v = ( sp1[i] - sp0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + sp0[i] ;
4339          sp.push_back( v ) ;
4340        }
4341      }
4342    }
4343    else {
4344      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4345    }
4346    return sp ;
4347  }
4348}
4349
4350double STMath::getMJD( string strtime )
4351{
4352  if ( strtime.find("/") == string::npos ) {
4353    // MJD time string
4354    return atof( strtime.c_str() ) ;
4355  }
4356  else {
4357    // string in YYYY/MM/DD/HH:MM:SS format
4358    uInt year = atoi( strtime.substr( 0, 4 ).c_str() ) ;
4359    uInt month = atoi( strtime.substr( 5, 2 ).c_str() ) ;
4360    uInt day = atoi( strtime.substr( 8, 2 ).c_str() ) ;
4361    uInt hour = atoi( strtime.substr( 11, 2 ).c_str() ) ;
4362    uInt minute = atoi( strtime.substr( 14, 2 ).c_str() ) ;
4363    uInt sec = atoi( strtime.substr( 17, 2 ).c_str() ) ;
4364    Time t( year, month, day, hour, minute, sec ) ;
4365    return t.modifiedJulianDay() ;
4366  }
4367}
4368
4369vector<int> STMath::getRowIdFromTime( string reftime, CountedPtr<Scantable> &s )
4370{
4371  double reft = getMJD( reftime ) ;
4372  double dtmin = 1.0e100 ;
4373  double dtmax = -1.0e100 ;
4374  vector<double> dt ;
4375  int just_before = -1 ;
4376  int just_after = -1 ;
4377  for ( int i = 0 ; i < s->nrow() ; i++ ) {
4378    dt.push_back( getMJD( s->getTime( i ) ) - reft ) ;
4379  }
4380  for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
4381    if ( dt[i] > 0.0 ) {
4382      // after reftime
4383      if ( dt[i] < dtmin ) {
4384        just_after = i ;
4385        dtmin = dt[i] ;
4386      }
4387    }
4388    else if ( dt[i] < 0.0 ) {
4389      // before reftime
4390      if ( dt[i] > dtmax ) {
4391        just_before = i ;
4392        dtmax = dt[i] ;
4393      }
4394    }
4395    else {
4396      // just a reftime
4397      just_before = i ;
4398      just_after = i ;
4399      dtmax = 0 ;
4400      dtmin = 0 ;
4401      break ;
4402    }
4403  }
4404
4405  vector<int> v ;
4406  v.push_back( just_before ) ;
4407  v.push_back( just_after ) ;
4408
4409  return v ;
4410}
4411
4412vector<float> STMath::getTcalFromTime( string reftime,
4413                                       CountedPtr<Scantable>& s,
4414                                       string mode )
4415{
4416  LogIO os( LogOrigin( "STMath", "getTcalFromTime", WHERE ) ) ;
4417  vector<float> tcal ;
4418  STTcal tcalTable = s->tcal() ;
4419  String time ;
4420  Vector<Float> tcalval ;
4421  if ( s->nrow() == 0 ) {
4422    os << LogIO::SEVERE << "No row in the input scantable. Return empty tcal." << LogIO::POST ;
4423    return tcal ;
4424  }
4425  else if ( s->nrow() == 1 ) {
4426    uInt tcalid = s->getTcalId( 0 ) ;
4427    //os << "use row " << 0 << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4428    tcalTable.getEntry( time, tcalval, tcalid ) ;
4429    tcalval.tovector( tcal ) ;
4430    return tcal ;
4431  }
4432  else {
4433    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4434    if ( mode == "before" ) {
4435      int id = -1 ;
4436      if ( idx[0] != -1 ) {
4437        id = idx[0] ;
4438      }
4439      else if ( idx[1] != -1 ) {
4440        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4441        id = idx[1] ;
4442      }
4443      uInt tcalid = s->getTcalId( id ) ;
4444      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4445      tcalTable.getEntry( time, tcalval, tcalid ) ;
4446      tcalval.tovector( tcal ) ;
4447    }
4448    else if ( mode == "after" ) {
4449      int id = -1 ;
4450      if ( idx[1] != -1 ) {
4451        id = idx[1] ;
4452      }
4453      else if ( idx[0] != -1 ) {
4454        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4455        id = idx[1] ;
4456      }
4457      uInt tcalid = s->getTcalId( id ) ;
4458      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4459      tcalTable.getEntry( time, tcalval, tcalid ) ;
4460      tcalval.tovector( tcal ) ;
4461    }
4462    else if ( mode == "nearest" ) {
4463      int id = -1 ;
4464      if ( idx[0] == -1 ) {
4465        id = idx[1] ;
4466      }
4467      else if ( idx[1] == -1 ) {
4468        id = idx[0] ;
4469      }
4470      else if ( idx[0] == idx[1] ) {
4471        id = idx[0] ;
4472      }
4473      else {
4474        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4475        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4476        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4477        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4478        double tref = getMJD( reftime ) ;
4479        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4480          id = idx[1] ;
4481        }
4482        else {
4483          id = idx[0] ;
4484        }
4485      }
4486      uInt tcalid = s->getTcalId( id ) ;
4487      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4488      tcalTable.getEntry( time, tcalval, tcalid ) ;
4489      tcalval.tovector( tcal ) ;
4490    }
4491    else if ( mode == "linear" ) {
4492      if ( idx[0] == -1 ) {
4493        // use after
4494        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4495        int id = idx[1] ;
4496        uInt tcalid = s->getTcalId( id ) ;
4497        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4498        tcalTable.getEntry( time, tcalval, tcalid ) ;
4499        tcalval.tovector( tcal ) ;
4500      }
4501      else if ( idx[1] == -1 ) {
4502        // use before
4503        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4504        int id = idx[0] ;
4505        uInt tcalid = s->getTcalId( id ) ;
4506        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4507        tcalTable.getEntry( time, tcalval, tcalid ) ;
4508        tcalval.tovector( tcal ) ;
4509      }
4510      else if ( idx[0] == idx[1] ) {
4511        // use before
4512        //os << "No need to interporate." << LogIO::POST ;
4513        int id = idx[0] ;
4514        uInt tcalid = s->getTcalId( id ) ;
4515        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4516        tcalTable.getEntry( time, tcalval, tcalid ) ;
4517        tcalval.tovector( tcal ) ;
4518      }
4519      else {
4520        // do interpolation
4521        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4522        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4523        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4524        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4525        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4526        double tref = getMJD( reftime ) ;
4527        vector<float> tcal0 ;
4528        vector<float> tcal1 ;
4529        uInt tcalid0 = s->getTcalId( idx[0] ) ;
4530        uInt tcalid1 = s->getTcalId( idx[1] ) ;
4531        tcalTable.getEntry( time, tcalval, tcalid0 ) ;
4532        tcalval.tovector( tcal0 ) ;
4533        tcalTable.getEntry( time, tcalval, tcalid1 ) ;
4534        tcalval.tovector( tcal1 ) ;       
4535        for ( unsigned int i = 0 ; i < tcal0.size() ; i++ ) {
4536          float v = ( tcal1[i] - tcal0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tcal0[i] ;
4537          tcal.push_back( v ) ;
4538        }
4539      }
4540    }
4541    else {
4542      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4543    }
4544    return tcal ;
4545  }
4546}
4547
4548vector<float> STMath::getTsysFromTime( string reftime,
4549                                       CountedPtr<Scantable>& s,
4550                                       string mode )
4551{
4552  LogIO os( LogOrigin( "STMath", "getTsysFromTime", WHERE ) ) ;
4553  ArrayColumn<Float> tsysCol ;
4554  tsysCol.attach( s->table(), "TSYS" ) ;
4555  vector<float> tsys ;
4556  String time ;
4557  Vector<Float> tsysval ;
4558  if ( s->nrow() == 0 ) {
4559    os << LogIO::SEVERE << "No row in the input scantable. Return empty tsys." << LogIO::POST ;
4560    return tsys ;
4561  }
4562  else if ( s->nrow() == 1 ) {
4563    //os << "use row " << 0 << LogIO::POST ;
4564    tsysval = tsysCol( 0 ) ;
4565    tsysval.tovector( tsys ) ;
4566    return tsys ;
4567  }
4568  else {
4569    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4570    if ( mode == "before" ) {
4571      int id = -1 ;
4572      if ( idx[0] != -1 ) {
4573        id = idx[0] ;
4574      }
4575      else if ( idx[1] != -1 ) {
4576        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4577        id = idx[1] ;
4578      }
4579      //os << "use row " << id << LogIO::POST ;
4580      tsysval = tsysCol( id ) ;
4581      tsysval.tovector( tsys ) ;
4582    }
4583    else if ( mode == "after" ) {
4584      int id = -1 ;
4585      if ( idx[1] != -1 ) {
4586        id = idx[1] ;
4587      }
4588      else if ( idx[0] != -1 ) {
4589        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4590        id = idx[1] ;
4591      }
4592      //os << "use row " << id << LogIO::POST ;
4593      tsysval = tsysCol( id ) ;
4594      tsysval.tovector( tsys ) ;
4595    }
4596    else if ( mode == "nearest" ) {
4597      int id = -1 ;
4598      if ( idx[0] == -1 ) {
4599        id = idx[1] ;
4600      }
4601      else if ( idx[1] == -1 ) {
4602        id = idx[0] ;
4603      }
4604      else if ( idx[0] == idx[1] ) {
4605        id = idx[0] ;
4606      }
4607      else {
4608        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4609        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4610        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4611        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4612        double tref = getMJD( reftime ) ;
4613        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4614          id = idx[1] ;
4615        }
4616        else {
4617          id = idx[0] ;
4618        }
4619      }
4620      //os << "use row " << id << LogIO::POST ;
4621      tsysval = tsysCol( id ) ;
4622      tsysval.tovector( tsys ) ;
4623    }
4624    else if ( mode == "linear" ) {
4625      if ( idx[0] == -1 ) {
4626        // use after
4627        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4628        int id = idx[1] ;
4629        //os << "use row " << id << LogIO::POST ;
4630        tsysval = tsysCol( id ) ;
4631        tsysval.tovector( tsys ) ;
4632      }
4633      else if ( idx[1] == -1 ) {
4634        // use before
4635        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4636        int id = idx[0] ;
4637        //os << "use row " << id << LogIO::POST ;
4638        tsysval = tsysCol( id ) ;
4639        tsysval.tovector( tsys ) ;
4640      }
4641      else if ( idx[0] == idx[1] ) {
4642        // use before
4643        //os << "No need to interporate." << LogIO::POST ;
4644        int id = idx[0] ;
4645        //os << "use row " << id << LogIO::POST ;
4646        tsysval = tsysCol( id ) ;
4647        tsysval.tovector( tsys ) ;
4648      }
4649      else {
4650        // do interpolation
4651        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4652        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4653        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4654        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4655        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4656        double tref = getMJD( reftime ) ;
4657        vector<float> tsys0 ;
4658        vector<float> tsys1 ;
4659        tsysval = tsysCol( idx[0] ) ;
4660        tsysval.tovector( tsys0 ) ;
4661        tsysval = tsysCol( idx[1] ) ;
4662        tsysval.tovector( tsys1 ) ;       
4663        for ( unsigned int i = 0 ; i < tsys0.size() ; i++ ) {
4664          float v = ( tsys1[i] - tsys0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tsys0[i] ;
4665          tsys.push_back( v ) ;
4666        }
4667      }
4668    }
4669    else {
4670      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4671    }
4672    return tsys ;
4673  }
4674}
4675
4676vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
4677                                            CountedPtr<Scantable>& off,
4678                                            CountedPtr<Scantable>& sky,
4679                                            CountedPtr<Scantable>& hot,
4680                                            CountedPtr<Scantable>& cold,
4681                                            int index,
4682                                            string antname )
4683{
4684  string reftime = on->getTime( index ) ;
4685  vector<int> ii( 1, on->getIF( index ) ) ;
4686  vector<int> ib( 1, on->getBeam( index ) ) ;
4687  vector<int> ip( 1, on->getPol( index ) ) ;
4688  vector<int> ic( 1, on->getScan( index ) ) ;
4689  STSelector sel = STSelector() ;
4690  sel.setIFs( ii ) ;
4691  sel.setBeams( ib ) ;
4692  sel.setPolarizations( ip ) ;
4693  sky->setSelection( sel ) ;
4694  hot->setSelection( sel ) ;
4695  //cold->setSelection( sel ) ;
4696  off->setSelection( sel ) ;
4697  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
4698  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
4699  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
4700  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
4701  vector<float> spec = on->getSpectrum( index ) ;
4702  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4703  vector<float> sp( tcal.size() ) ;
4704  if ( antname.find( "APEX" ) != string::npos ) {
4705    // using gain array
4706    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4707      float v = ( ( spec[j] - spoff[j] ) / spoff[j] )
4708        * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
4709      sp[j] = v ;
4710    }
4711  }
4712  else {
4713    // Chopper-Wheel calibration (Ulich & Haas 1976)
4714    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4715      float v = ( spec[j] - spoff[j] ) / ( sphot[j] - spsky[j] ) * tcal[j] ;
4716      sp[j] = v ;
4717    }
4718  }
4719  sel.reset() ;
4720  sky->unsetSelection() ;
4721  hot->unsetSelection() ;
4722  //cold->unsetSelection() ;
4723  off->unsetSelection() ;
4724
4725  return sp ;
4726}
4727
4728vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
4729                                            CountedPtr<Scantable>& off,
4730                                            int index )
4731{
4732  string reftime = on->getTime( index ) ;
4733  vector<int> ii( 1, on->getIF( index ) ) ;
4734  vector<int> ib( 1, on->getBeam( index ) ) ;
4735  vector<int> ip( 1, on->getPol( index ) ) ;
4736  vector<int> ic( 1, on->getScan( index ) ) ;
4737  STSelector sel = STSelector() ;
4738  sel.setIFs( ii ) ;
4739  sel.setBeams( ib ) ;
4740  sel.setPolarizations( ip ) ;
4741  off->setSelection( sel ) ;
4742  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
4743  vector<float> spec = on->getSpectrum( index ) ;
4744  //vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4745  //vector<float> tsys = on->getTsysVec( index ) ;
4746  ArrayColumn<Float> tsysCol( on->table(), "TSYS" ) ;
4747  Vector<Float> tsys = tsysCol( index ) ;
4748  vector<float> sp( spec.size() ) ;
4749  // ALMA Calibration
4750  //
4751  // Ta* = Tsys * ( ON - OFF ) / OFF
4752  //
4753  // 2010/01/07 Takeshi Nakazato
4754  unsigned int tsyssize = tsys.nelements() ;
4755  unsigned int spsize = sp.size() ;
4756  for ( unsigned int j = 0 ; j < sp.size() ; j++ ) {
4757    float tscale = 0.0 ;
4758    if ( tsyssize == spsize )
4759      tscale = tsys[j] ;
4760    else
4761      tscale = tsys[0] ;
4762    float v = tscale * ( spec[j] - spoff[j] ) / spoff[j] ;
4763    sp[j] = v ;
4764  }
4765  sel.reset() ;
4766  off->unsetSelection() ;
4767
4768  return sp ;
4769}
4770
4771vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
4772                                              CountedPtr<Scantable>& ref,
4773                                              CountedPtr<Scantable>& sky,
4774                                              CountedPtr<Scantable>& hot,
4775                                              CountedPtr<Scantable>& cold,
4776                                              int index )
4777{
4778  string reftime = sig->getTime( index ) ;
4779  vector<int> ii( 1, sig->getIF( index ) ) ;
4780  vector<int> ib( 1, sig->getBeam( index ) ) ;
4781  vector<int> ip( 1, sig->getPol( index ) ) ;
4782  vector<int> ic( 1, sig->getScan( index ) ) ;
4783  STSelector sel = STSelector() ;
4784  sel.setIFs( ii ) ;
4785  sel.setBeams( ib ) ;
4786  sel.setPolarizations( ip ) ;
4787  sky->setSelection( sel ) ;
4788  hot->setSelection( sel ) ;
4789  //cold->setSelection( sel ) ;
4790  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
4791  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
4792  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
4793  vector<float> spref = ref->getSpectrum( index ) ;
4794  vector<float> spsig = sig->getSpectrum( index ) ;
4795  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4796  vector<float> sp( tcal.size() ) ;
4797  for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4798    float v = tcal[j] * spsky[j] / ( sphot[j] - spsky[j] ) * ( spsig[j] - spref[j] ) / spref[j] ;
4799    sp[j] = v ;
4800  }
4801  sel.reset() ;
4802  sky->unsetSelection() ;
4803  hot->unsetSelection() ;
4804  //cold->unsetSelection() ;
4805
4806  return sp ;
4807}
4808
4809vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
4810                                              CountedPtr<Scantable>& ref,
4811                                              vector< CountedPtr<Scantable> >& sky,
4812                                              vector< CountedPtr<Scantable> >& hot,
4813                                              vector< CountedPtr<Scantable> >& cold,
4814                                              int index )
4815{
4816  string reftime = sig->getTime( index ) ;
4817  vector<int> ii( 1, sig->getIF( index ) ) ;
4818  vector<int> ib( 1, sig->getBeam( index ) ) ;
4819  vector<int> ip( 1, sig->getPol( index ) ) ;
4820  vector<int> ic( 1, sig->getScan( index ) ) ;
4821  STSelector sel = STSelector() ;
4822  sel.setIFs( ii ) ;
4823  sel.setBeams( ib ) ;
4824  sel.setPolarizations( ip ) ;
4825  sky[0]->setSelection( sel ) ;
4826  hot[0]->setSelection( sel ) ;
4827  //cold[0]->setSelection( sel ) ;
4828  vector<float> spskys = getSpectrumFromTime( reftime, sky[0], "linear" ) ;
4829  vector<float> sphots = getSpectrumFromTime( reftime, hot[0], "linear" ) ;
4830  //vector<float> spcolds = getSpectrumFromTime( reftime, cold[0], "linear" ) ;
4831  vector<float> tcals = getTcalFromTime( reftime, sky[0], "linear" ) ;
4832  sel.reset() ;
4833  ii[0] = ref->getIF( index ) ;
4834  sel.setIFs( ii ) ;
4835  sel.setBeams( ib ) ;
4836  sel.setPolarizations( ip ) ;
4837  sky[1]->setSelection( sel ) ;
4838  hot[1]->setSelection( sel ) ;
4839  //cold[1]->setSelection( sel ) ;
4840  vector<float> spskyr = getSpectrumFromTime( reftime, sky[1], "linear" ) ;
4841  vector<float> sphotr = getSpectrumFromTime( reftime, hot[1], "linear" ) ;
4842  //vector<float> spcoldr = getSpectrumFromTime( reftime, cold[1], "linear" ) ;
4843  vector<float> tcalr = getTcalFromTime( reftime, sky[1], "linear" ) ; 
4844  vector<float> spref = ref->getSpectrum( index ) ;
4845  vector<float> spsig = sig->getSpectrum( index ) ;
4846  vector<float> sp( tcals.size() ) ;
4847  for ( unsigned int j = 0 ; j < tcals.size() ; j++ ) {
4848    float v = tcals[j] * spsig[j] / ( sphots[j] - spskys[j] ) - tcalr[j] * spref[j] / ( sphotr[j] - spskyr[j] ) ;
4849    sp[j] = v ;
4850  }
4851  sel.reset() ;
4852  sky[0]->unsetSelection() ;
4853  hot[0]->unsetSelection() ;
4854  //cold[0]->unsetSelection() ;
4855  sky[1]->unsetSelection() ;
4856  hot[1]->unsetSelection() ;
4857  //cold[1]->unsetSelection() ;
4858
4859  return sp ;
4860}
Note: See TracBrowser for help on using the repository browser.