source: trunk/src/STLineFinder.cpp@ 1651

Last change on this file since 1651 was 1644, checked in by Max Voronkov, 15 years ago

line finder: added more options on how the noise is to be estimated. See doc on linefinder.set_options for more info

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 52.0 KB
RevLine 
[297]1//#---------------------------------------------------------------------------
[881]2//# STLineFinder.cc: A class for automated spectral line search
[297]3//#--------------------------------------------------------------------------
4//# Copyright (C) 2004
5//# ATNF
6//#
7//# This program is free software; you can redistribute it and/or modify it
8//# under the terms of the GNU General Public License as published by the Free
9//# Software Foundation; either version 2 of the License, or (at your option)
10//# any later version.
11//#
12//# This program is distributed in the hope that it will be useful, but
13//# WITHOUT ANY WARRANTY; without even the implied warranty of
14//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
15//# Public License for more details.
16//#
17//# You should have received a copy of the GNU General Public License along
18//# with this program; if not, write to the Free Software Foundation, Inc.,
19//# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
20//#
21//# Correspondence concerning this software should be addressed as follows:
22//# Internet email: Malte.Marquarding@csiro.au
23//# Postal address: Malte Marquarding,
24//# Australia Telescope National Facility,
25//# P.O. Box 76,
26//# Epping, NSW, 2121,
27//# AUSTRALIA
28//#
[890]29//# $Id: STLineFinder.cpp 1644 2009-10-03 14:53:18Z MaximVoronkov $
[297]30//#---------------------------------------------------------------------------
31
32
33// ASAP
[894]34#include "STLineFinder.h"
35#include "STFitter.h"
[1642]36#include "IndexedCompare.h"
[297]37
38// STL
[343]39#include <functional>
40#include <algorithm>
[297]41#include <iostream>
[351]42#include <fstream>
[297]43
44using namespace asap;
45using namespace casa;
46using namespace std;
47
[344]48namespace asap {
49
[343]50///////////////////////////////////////////////////////////////////////////////
51//
[881]52// RunningBox - a running box calculator. This class implements
[1315]53// iterations over the specified spectrum and calculates
[351]54// running box filter statistics.
[343]55//
56
[351]57class RunningBox {
[331]58 // The input data to work with. Use reference symantics to avoid
[881]59 // an unnecessary copying
[331]60 const casa::Vector<casa::Float> &spectrum; // a buffer for the spectrum
61 const casa::Vector<casa::Bool> &mask; // associated mask
62 const std::pair<int,int> &edge; // start and stop+1 channels
63 // to work with
[881]64
[351]65 // statistics for running box filtering
66 casa::Float sumf; // sum of fluxes
67 casa::Float sumf2; // sum of squares of fluxes
68 casa::Float sumch; // sum of channel numbers (for linear fit)
69 casa::Float sumch2; // sum of squares of channel numbers (for linear fit)
70 casa::Float sumfch; // sum of flux*(channel number) (for linear fit)
[881]71
[331]72 int box_chan_cntr; // actual number of channels in the box
73 int max_box_nchan; // maximum allowed number of channels in the box
74 // (calculated from boxsize and actual spectrum size)
[351]75 // cache for derivative statistics
76 mutable casa::Bool need2recalculate; // if true, values of the statistics
77 // below are invalid
78 mutable casa::Float linmean; // a value of the linear fit to the
79 // points in the running box
80 mutable casa::Float linvariance; // the same for variance
81 int cur_channel; // the number of the current channel
82 int start_advance; // number of channel from which the box can
83 // be moved (the middle of the box, if there is no
[996]84 // masking)
[351]85public:
86 // set up the object with the references to actual data
87 // as well as the number of channels in the running box
88 RunningBox(const casa::Vector<casa::Float> &in_spectrum,
89 const casa::Vector<casa::Bool> &in_mask,
[996]90 const std::pair<int,int> &in_edge,
91 int in_max_box_nchan) throw(AipsError);
[881]92
[351]93 // access to the statistics
94 const casa::Float& getLinMean() const throw(AipsError);
95 const casa::Float& getLinVariance() const throw(AipsError);
96 const casa::Float aboveMean() const throw(AipsError);
97 int getChannel() const throw();
[881]98
[351]99 // actual number of channels in the box (max_box_nchan, if no channels
100 // are masked)
101 int getNumberOfBoxPoints() const throw();
[297]102
[351]103 // next channel
104 void next() throw(AipsError);
105
106 // checking whether there are still elements
107 casa::Bool haveMore() const throw();
108
109 // go to start
110 void rewind() throw(AipsError);
[881]111
[351]112protected:
[1644]113 // supplementary function to control running mean/median calculations.
114 // It adds a specified channel to the running box and
[351]115 // removes (ch-maxboxnchan+1)'th channel from there
116 // Channels, for which the mask is false or index is beyond the
117 // allowed range, are ignored
118 void advanceRunningBox(int ch) throw(casa::AipsError);
119
120 // calculate derivative statistics. This function is const, because
121 // it updates the cache only
122 void updateDerivativeStatistics() const throw(AipsError);
123};
124
125//
126///////////////////////////////////////////////////////////////////////////////
127
128///////////////////////////////////////////////////////////////////////////////
129//
130// LFAboveThreshold An algorithm for line detection using running box
131// statistics. Line is detected if it is above the
132// specified threshold at the specified number of
133// consequtive channels. Prefix LF stands for Line Finder
134//
[352]135class LFAboveThreshold : protected LFLineListOperations {
[331]136 // temporary line edge channels and flag, which is True if the line
137 // was detected in the previous channels.
138 std::pair<int,int> cur_line;
139 casa::Bool is_detected_before;
140 int min_nchan; // A minimum number of consequtive
141 // channels, which should satisfy
[996]142 // the detection criterion, to be
143 // a detection
[881]144 casa::Float threshold; // detection threshold - the
[331]145 // minimal signal to noise ratio
[351]146 std::list<pair<int,int> > &lines; // list where detections are saved
147 // (pair: start and stop+1 channel)
148 RunningBox *running_box; // running box filter
[551]149 casa::Vector<Int> signs; // An array to store the signs of
150 // the value - current mean
[996]151 // (used to search wings)
[907]152 casa::Int last_sign; // a sign (+1, -1 or 0) of the
153 // last point of the detected line
154 //
[1644]155 bool itsUseMedian; // true if median statistics is used
156 // to determine the noise level, otherwise
157 // it is the mean of the lowest 80% of deviations
158 // (default)
159 int itsNoiseSampleSize; // sample size used to estimate the noise statistics
160 // Negative value means the whole spectrum is used (default)
[331]161public:
[351]162
163 // set up the detection criterion
164 LFAboveThreshold(std::list<pair<int,int> > &in_lines,
165 int in_min_nchan = 3,
[1644]166 casa::Float in_threshold = 5,
167 bool use_median = false,
168 int noise_sample_size = -1) throw();
[351]169 virtual ~LFAboveThreshold() throw();
[881]170
[331]171 // replace the detection criterion
172 void setCriterion(int in_min_nchan, casa::Float in_threshold) throw();
[297]173
[551]174 // return the array with signs of the value-current mean
175 // An element is +1 if value>mean, -1 if less, 0 if equal.
176 // This array is updated each time the findLines method is called and
177 // is used to search the line wings
178 const casa::Vector<Int>& getSigns() const throw();
179
[331]180 // find spectral lines and add them into list
[344]181 // if statholder is not NULL, the accumulate function of it will be
182 // called for each channel to save statistics
[351]183 // spectrum, mask and edge - reference to the data
184 // max_box_nchan - number of channels in the running box
185 void findLines(const casa::Vector<casa::Float> &spectrum,
[996]186 const casa::Vector<casa::Bool> &mask,
187 const std::pair<int,int> &edge,
188 int max_box_nchan) throw(casa::AipsError);
[351]189
[331]190protected:
[297]191
[331]192 // process a channel: update curline and is_detected before and
193 // add a new line to the list, if necessary using processCurLine()
[351]194 // detect=true indicates that the current channel satisfies the criterion
195 void processChannel(Bool detect, const casa::Vector<casa::Bool> &mask)
196 throw(casa::AipsError);
[297]197
[331]198 // process the interval of channels stored in curline
199 // if it satisfies the criterion, add this interval as a new line
[351]200 void processCurLine(const casa::Vector<casa::Bool> &mask)
201 throw(casa::AipsError);
[924]202
[907]203 // get the sign of runningBox->aboveMean(). The RunningBox pointer
204 // should be defined
205 casa::Int getAboveMeanSign() const throw();
[331]206};
[344]207
208//
209///////////////////////////////////////////////////////////////////////////////
[351]210
[1642]211///////////////////////////////////////////////////////////////////////////////
212//
213// LFNoiseEstimator a helper class designed to estimate off-line variance
214// using statistics depending on the distribution of
215// values (e.g. like a median)
216//
217// Two statistics are supported: median and an average of
218// 80% of smallest values.
219//
220
221struct LFNoiseEstimator {
222 // construct an object
223 // size - maximum sample size. After a size number of elements is processed
224 // any new samples would cause the algorithm to drop the oldest samples in the
225 // buffer.
226 explicit LFNoiseEstimator(size_t size);
227
228 // add a new sample
229 // in - the new value
230 void add(float in);
231
232 // median of the distribution
233 float median() const;
234
235 // mean of lowest 80% of the samples
236 float meanLowest80Percent() const;
237
[1644]238 // return true if the buffer is full (i.e. statistics are representative)
239 inline bool filledToCapacity() const { return itsBufferFull;}
240
[1642]241protected:
242 // update cache of sorted indices
243 // (it is assumed that itsSampleNumber points to the newly
244 // replaced element)
245 void updateSortedCache() const;
246
247 // build sorted cache from the scratch
248 void buildSortedCache() const;
249
250 // number of samples accumulated so far
251 // (can be less than the buffer size)
252 size_t numberOfSamples() const;
253
254 // this helper method builds the cache if
255 // necessary using one of the methods
256 void fillCacheIfNecessary() const;
257
258private:
259 // buffer with samples (unsorted)
260 std::vector<float> itsVariances;
261 // current sample number (<=itsVariances.size())
262 size_t itsSampleNumber;
263 // true, if the buffer all values in the sample buffer are used
264 bool itsBufferFull;
265 // cached indices into vector of samples
266 mutable std::vector<size_t> itsSortedIndices;
267 // true if any of the statistics have been obtained at least
268 // once. This flag allows to implement a more efficient way of
269 // calculating statistics, if they are needed at once and not
270 // after each addition of a new element
271 mutable bool itsStatisticsAccessed;
272};
273
274//
275///////////////////////////////////////////////////////////////////////////////
276
277
[331]278} // namespace asap
[297]279
[344]280///////////////////////////////////////////////////////////////////////////////
[343]281//
[1642]282// LFNoiseEstimator a helper class designed to estimate off-line variance
283// using statistics depending on the distribution of
284// values (e.g. like a median)
285//
286// Two statistics are supported: median and an average of
287// 80% of smallest values.
288//
289
290// construct an object
291// size - maximum sample size. After a size number of elements is processed
292// any new samples would cause the algorithm to drop the oldest samples in the
293// buffer.
294LFNoiseEstimator::LFNoiseEstimator(size_t size) : itsVariances(size),
295 itsSampleNumber(0), itsBufferFull(false), itsSortedIndices(size),
296 itsStatisticsAccessed(false)
297{
298 AlwaysAssert(size>0,AipsError);
299}
300
301
302// add a new sample
303// in - the new value
304void LFNoiseEstimator::add(float in)
305{
306 itsVariances[itsSampleNumber] = in;
307
308 if (itsStatisticsAccessed) {
309 // only do element by element addition if on-the-fly
310 // statistics are needed
311 updateSortedCache();
312 }
313
314 // advance itsSampleNumber now
315 ++itsSampleNumber;
316 if (itsSampleNumber == itsVariances.size()) {
317 itsSampleNumber = 0;
318 itsBufferFull = true;
319 }
320 AlwaysAssert(itsSampleNumber<itsVariances.size(),AipsError);
321}
322
323// number of samples accumulated so far
324// (can be less than the buffer size)
325size_t LFNoiseEstimator::numberOfSamples() const
326{
327 // the number of samples accumulated so far may be less than the
328 // buffer size
329 const size_t nSamples = itsBufferFull ? itsVariances.size(): itsSampleNumber;
[1643]330 AlwaysAssert( (nSamples > 0) && (nSamples <= itsVariances.size()), AipsError);
[1642]331 return nSamples;
332}
333
334// this helper method builds the cache if
335// necessary using one of the methods
336void LFNoiseEstimator::fillCacheIfNecessary() const
337{
338 if (!itsStatisticsAccessed) {
339 if ((itsSampleNumber!=0) || itsBufferFull) {
340 // build the whole cache efficiently
341 buildSortedCache();
342 } else {
343 updateSortedCache();
344 }
345 itsStatisticsAccessed = true;
346 } // otherwise, it is updated in 'add' using on-the-fly method
347}
348
349// median of the distribution
350float LFNoiseEstimator::median() const
351{
352 fillCacheIfNecessary();
353 // the number of samples accumulated so far may be less than the
354 // buffer size
355 const size_t nSamples = numberOfSamples();
356 const size_t medSample = nSamples / 2;
357 AlwaysAssert(medSample < itsSortedIndices.size(), AipsError);
358 return itsVariances[itsSortedIndices[medSample]];
359}
360
361// mean of lowest 80% of the samples
362float LFNoiseEstimator::meanLowest80Percent() const
363{
364 fillCacheIfNecessary();
365 // the number of samples accumulated so far may be less than the
366 // buffer size
367 const size_t nSamples = numberOfSamples();
368 float result = 0;
369 size_t numpt=size_t(0.8*nSamples);
370 if (!numpt) {
371 numpt=nSamples; // no much else left,
372 // although it is very inaccurate
373 }
374 AlwaysAssert( (numpt > 0) && (numpt<itsSortedIndices.size()), AipsError);
375 for (size_t ch=0; ch<numpt; ++ch) {
376 result += itsVariances[itsSortedIndices[ch]];
377 }
378 result /= float(numpt);
379 return result;
380}
381
382// update cache of sorted indices
383// (it is assumed that itsSampleNumber points to the newly
384// replaced element)
385void LFNoiseEstimator::updateSortedCache() const
386{
387 // the number of samples accumulated so far may be less than the
388 // buffer size
389 const size_t nSamples = numberOfSamples();
390
391 if (itsBufferFull) {
392 // first find the index of the element which is being replaced
393 size_t index = nSamples;
394 for (size_t i=0; i<nSamples; ++i) {
395 AlwaysAssert(i < itsSortedIndices.size(), AipsError);
396 if (itsSortedIndices[i] == itsSampleNumber) {
397 index = i;
398 break;
399 }
400 }
401 AlwaysAssert( index < nSamples, AipsError);
402
403 const vector<size_t>::iterator indStart = itsSortedIndices.begin();
404 // merge this element with preceeding block first
405 if (index != 0) {
406 // merge indices on the basis of variances
407 inplace_merge(indStart,indStart+index,indStart+index+1,
408 indexedCompare<size_t>(itsVariances.begin()));
409 }
410 // merge with the following block
411 if (index + 1 != nSamples) {
412 // merge indices on the basis of variances
413 inplace_merge(indStart,indStart+index+1,indStart+nSamples,
414 indexedCompare<size_t>(itsVariances.begin()));
415 }
416 } else {
417 // itsSampleNumber is the index of the new element
418 AlwaysAssert(itsSampleNumber < itsSortedIndices.size(), AipsError);
419 itsSortedIndices[itsSampleNumber] = itsSampleNumber;
420 if (itsSampleNumber >= 1) {
421 // we have to place this new sample in
422 const vector<size_t>::iterator indStart = itsSortedIndices.begin();
423 // merge indices on the basis of variances
424 inplace_merge(indStart,indStart+itsSampleNumber,indStart+itsSampleNumber+1,
425 indexedCompare<size_t>(itsVariances.begin()));
426 }
427 }
428}
429
430// build sorted cache from the scratch
431void LFNoiseEstimator::buildSortedCache() const
432{
433 // the number of samples accumulated so far may be less than the
434 // buffer size
435 const size_t nSamples = numberOfSamples();
[1643]436 AlwaysAssert(nSamples <= itsSortedIndices.size(), AipsError);
[1642]437 for (size_t i=0; i<nSamples; ++i) {
438 itsSortedIndices[i]=i;
439 }
440
441 // sort indices, but check the array of variances
442 const vector<size_t>::iterator indStart = itsSortedIndices.begin();
443 stable_sort(indStart,indStart+nSamples, indexedCompare<size_t>(itsVariances.begin()));
444}
445
446//
447///////////////////////////////////////////////////////////////////////////////
448
449///////////////////////////////////////////////////////////////////////////////
450//
[881]451// RunningBox - a running box calculator. This class implements
[351]452// interations over the specified spectrum and calculates
453// running box filter statistics.
[331]454//
[297]455
[331]456// set up the object with the references to actual data
457// and the number of channels in the running box
[351]458RunningBox::RunningBox(const casa::Vector<casa::Float> &in_spectrum,
459 const casa::Vector<casa::Bool> &in_mask,
[996]460 const std::pair<int,int> &in_edge,
461 int in_max_box_nchan) throw(AipsError) :
[331]462 spectrum(in_spectrum), mask(in_mask), edge(in_edge),
[996]463 max_box_nchan(in_max_box_nchan)
[351]464{
465 rewind();
466}
[331]467
[351]468void RunningBox::rewind() throw(AipsError) {
469 // fill statistics for initial box
470 box_chan_cntr=0; // no channels are currently in the box
471 sumf=0.; // initialize statistics
472 sumf2=0.;
473 sumch=0.;
474 sumch2=0.;
475 sumfch=0.;
476 int initial_box_ch=edge.first;
477 for (;initial_box_ch<edge.second && box_chan_cntr<max_box_nchan;
478 ++initial_box_ch)
479 advanceRunningBox(initial_box_ch);
[881]480
481 if (initial_box_ch==edge.second)
[351]482 throw AipsError("RunningBox::rewind - too much channels are masked");
483
484 cur_channel=edge.first;
[881]485 start_advance=initial_box_ch-max_box_nchan/2;
[351]486}
487
488// access to the statistics
489const casa::Float& RunningBox::getLinMean() const throw(AipsError)
[331]490{
[351]491 DebugAssert(cur_channel<edge.second, AipsError);
492 if (need2recalculate) updateDerivativeStatistics();
493 return linmean;
[297]494}
495
[351]496const casa::Float& RunningBox::getLinVariance() const throw(AipsError)
497{
498 DebugAssert(cur_channel<edge.second, AipsError);
499 if (need2recalculate) updateDerivativeStatistics();
500 return linvariance;
501}
[331]502
[351]503const casa::Float RunningBox::aboveMean() const throw(AipsError)
504{
505 DebugAssert(cur_channel<edge.second, AipsError);
506 if (need2recalculate) updateDerivativeStatistics();
507 return spectrum[cur_channel]-linmean;
508}
509
510int RunningBox::getChannel() const throw()
511{
512 return cur_channel;
513}
514
515// actual number of channels in the box (max_box_nchan, if no channels
516// are masked)
517int RunningBox::getNumberOfBoxPoints() const throw()
518{
519 return box_chan_cntr;
520}
521
[1644]522// supplementary function to control running mean/median calculations.
523// It adds a specified channel to the running box and
[297]524// removes (ch-max_box_nchan+1)'th channel from there
525// Channels, for which the mask is false or index is beyond the
526// allowed range, are ignored
[351]527void RunningBox::advanceRunningBox(int ch) throw(AipsError)
[297]528{
529 if (ch>=edge.first && ch<edge.second)
530 if (mask[ch]) { // ch is a valid channel
531 ++box_chan_cntr;
[351]532 sumf+=spectrum[ch];
533 sumf2+=square(spectrum[ch]);
[996]534 sumch+=Float(ch);
535 sumch2+=square(Float(ch));
536 sumfch+=spectrum[ch]*Float(ch);
537 need2recalculate=True;
[297]538 }
539 int ch2remove=ch-max_box_nchan;
540 if (ch2remove>=edge.first && ch2remove<edge.second)
541 if (mask[ch2remove]) { // ch2remove is a valid channel
542 --box_chan_cntr;
[351]543 sumf-=spectrum[ch2remove];
[881]544 sumf2-=square(spectrum[ch2remove]);
[996]545 sumch-=Float(ch2remove);
546 sumch2-=square(Float(ch2remove));
547 sumfch-=spectrum[ch2remove]*Float(ch2remove);
548 need2recalculate=True;
[297]549 }
550}
551
[351]552// next channel
553void RunningBox::next() throw(AipsError)
[297]554{
[351]555 AlwaysAssert(cur_channel<edge.second,AipsError);
556 ++cur_channel;
557 if (cur_channel+max_box_nchan/2<edge.second && cur_channel>=start_advance)
558 advanceRunningBox(cur_channel+max_box_nchan/2); // update statistics
[297]559}
560
[351]561// checking whether there are still elements
562casa::Bool RunningBox::haveMore() const throw()
563{
564 return cur_channel<edge.second;
565}
566
567// calculate derivative statistics. This function is const, because
568// it updates the cache only
569void RunningBox::updateDerivativeStatistics() const throw(AipsError)
570{
571 AlwaysAssert(box_chan_cntr, AipsError);
[881]572
[351]573 Float mean=sumf/Float(box_chan_cntr);
574
575 // linear LSF formulae
576 Float meanch=sumch/Float(box_chan_cntr);
577 Float meanch2=sumch2/Float(box_chan_cntr);
578 if (meanch==meanch2 || box_chan_cntr<3) {
579 // vertical line in the spectrum, can't calculate linmean and linvariance
580 linmean=0.;
581 linvariance=0.;
582 } else {
583 Float coeff=(sumfch/Float(box_chan_cntr)-meanch*mean)/
584 (meanch2-square(meanch));
585 linmean=coeff*(Float(cur_channel)-meanch)+mean;
586 linvariance=sqrt(sumf2/Float(box_chan_cntr)-square(mean)-
587 square(coeff)*(meanch2-square(meanch)));
588 }
589 need2recalculate=False;
590}
591
592
593//
594///////////////////////////////////////////////////////////////////////////////
595
596///////////////////////////////////////////////////////////////////////////////
597//
[1644]598// LFAboveThreshold - a running mean/median algorithm for line detection
[351]599//
600//
601
602
603// set up the detection criterion
604LFAboveThreshold::LFAboveThreshold(std::list<pair<int,int> > &in_lines,
605 int in_min_nchan,
[1644]606 casa::Float in_threshold,
607 bool use_median,
608 int noise_sample_size) throw() :
[351]609 min_nchan(in_min_nchan), threshold(in_threshold),
[1644]610 lines(in_lines), running_box(NULL), itsUseMedian(use_median),
611 itsNoiseSampleSize(noise_sample_size) {}
[351]612
613LFAboveThreshold::~LFAboveThreshold() throw()
614{
615 if (running_box!=NULL) delete running_box;
616}
617
618// replace the detection criterion
619void LFAboveThreshold::setCriterion(int in_min_nchan, casa::Float in_threshold)
620 throw()
621{
622 min_nchan=in_min_nchan;
623 threshold=in_threshold;
624}
625
[907]626// get the sign of runningBox->aboveMean(). The RunningBox pointer
627// should be defined
628casa::Int LFAboveThreshold::getAboveMeanSign() const throw()
629{
630 const Float buf=running_box->aboveMean();
631 if (buf>0) return 1;
632 if (buf<0) return -1;
633 return 0;
634}
[351]635
[907]636
[297]637// process a channel: update cur_line and is_detected before and
638// add a new line to the list, if necessary
[351]639void LFAboveThreshold::processChannel(Bool detect,
640 const casa::Vector<casa::Bool> &mask) throw(casa::AipsError)
[297]641{
642 try {
[907]643 if (is_detected_before) {
644 // we have to check that the current detection has the
645 // same sign of running_box->aboveMean
646 // otherwise it could be a spurious detection
647 if (last_sign && last_sign!=getAboveMeanSign())
648 detect=False;
[1315]649 }
650 if (detect) {
651 last_sign=getAboveMeanSign();
652 if (is_detected_before)
653 cur_line.second=running_box->getChannel()+1;
654 else {
655 is_detected_before=True;
656 cur_line.first=running_box->getChannel();
657 cur_line.second=running_box->getChannel()+1;
658 }
659 } else processCurLine(mask);
[297]660 }
661 catch (const AipsError &ae) {
662 throw;
[881]663 }
[297]664 catch (const exception &ex) {
[351]665 throw AipsError(String("LFAboveThreshold::processChannel - STL error: ")+ex.what());
[297]666 }
667}
668
669// process the interval of channels stored in cur_line
670// if it satisfies the criterion, add this interval as a new line
[351]671void LFAboveThreshold::processCurLine(const casa::Vector<casa::Bool> &mask)
[331]672 throw(casa::AipsError)
[297]673{
674 try {
[881]675 if (is_detected_before) {
[1315]676 if (cur_line.second-cur_line.first>=min_nchan) {
[996]677 // it was a detection. We need to change the list
678 Bool add_new_line=False;
679 if (lines.size()) {
680 for (int i=lines.back().second;i<cur_line.first;++i)
681 if (mask[i]) { // one valid channel in between
682 // means that we deal with a separate line
683 add_new_line=True;
684 break;
685 }
686 } else add_new_line=True;
687 if (add_new_line)
688 lines.push_back(cur_line);
[881]689 else lines.back().second=cur_line.second;
[996]690 }
691 is_detected_before=False;
[881]692 }
[297]693 }
694 catch (const AipsError &ae) {
695 throw;
[881]696 }
[297]697 catch (const exception &ex) {
[351]698 throw AipsError(String("LFAboveThreshold::processCurLine - STL error: ")+ex.what());
[297]699 }
700}
701
[551]702// return the array with signs of the value-current mean
703// An element is +1 if value>mean, -1 if less, 0 if equal.
704// This array is updated each time the findLines method is called and
705// is used to search the line wings
706const casa::Vector<Int>& LFAboveThreshold::getSigns() const throw()
707{
708 return signs;
709}
710
[331]711// find spectral lines and add them into list
[351]712void LFAboveThreshold::findLines(const casa::Vector<casa::Float> &spectrum,
[996]713 const casa::Vector<casa::Bool> &mask,
714 const std::pair<int,int> &edge,
715 int max_box_nchan)
[331]716 throw(casa::AipsError)
717{
718 const int minboxnchan=4;
[351]719 try {
[331]720
[351]721 if (running_box!=NULL) delete running_box;
722 running_box=new RunningBox(spectrum,mask,edge,max_box_nchan);
[368]723
724 // determine the off-line variance first
725 // an assumption made: lines occupy a small part of the spectrum
[881]726
[1644]727 const size_t noiseSampleSize = itsNoiseSampleSize<0 ? size_t(edge.second-edge.first) :
728 std::min(size_t(itsNoiseSampleSize), size_t(edge.second-edge.first));
729 DebugAssert(noiseSampleSize,AipsError);
730 const bool globalNoise = (size_t(edge.second - edge.first) == noiseSampleSize);
731 LFNoiseEstimator ne(noiseSampleSize);
[881]732
[1643]733 for (;running_box->haveMore();running_box->next()) {
[1644]734 ne.add(running_box->getLinVariance());
735 if (ne.filledToCapacity()) {
736 break;
737 }
[1643]738 }
[881]739
[1644]740 Float offline_variance = -1; // just a flag that it is unset
741
742 if (globalNoise) {
743 offline_variance = itsUseMedian ? ne.median() : ne.meanLowest80Percent();
744 }
[881]745
[351]746 // actual search algorithm
747 is_detected_before=False;
[368]748
[551]749 // initiate the signs array
750 signs.resize(spectrum.nelements());
751 signs=Vector<Int>(spectrum.nelements(),0);
752
[369]753 //ofstream os("dbg.dat");
[368]754 for (running_box->rewind();running_box->haveMore();
755 running_box->next()) {
[351]756 const int ch=running_box->getChannel();
[1644]757 if (!globalNoise) {
758 // add a next point for a local noise estimate
759 ne.add(running_box->getLinVariance());
760 }
761 if (running_box->getNumberOfBoxPoints()>=minboxnchan) {
762 if (!globalNoise) {
763 offline_variance = itsUseMedian ? ne.median() : ne.meanLowest80Percent();
764 }
765 AlwaysAssert(offline_variance>0.,AipsError);
[996]766 processChannel(mask[ch] && (fabs(running_box->aboveMean()) >=
767 threshold*offline_variance), mask);
[1644]768 } else processCurLine(mask); // just finish what was accumulated before
[907]769
[996]770 signs[ch]=getAboveMeanSign();
[1641]771 //os<<ch<<" "<<spectrum[ch]<<" "<<fabs(running_box->aboveMean())<<" "<<
772 //threshold*offline_variance<<endl;
[351]773 }
[352]774 if (lines.size())
775 searchForWings(lines,signs,mask,edge);
[344]776 }
[351]777 catch (const AipsError &ae) {
778 throw;
[881]779 }
[351]780 catch (const exception &ex) {
781 throw AipsError(String("LFAboveThreshold::findLines - STL error: ")+ex.what());
782 }
[331]783}
784
785//
786///////////////////////////////////////////////////////////////////////////////
787
[343]788///////////////////////////////////////////////////////////////////////////////
789//
[352]790// LFLineListOperations::IntersectsWith - An auxiliary object function
791// to test whether two lines have a non-void intersection
[343]792//
[331]793
[343]794
795// line1 - range of the first line: start channel and stop+1
[352]796LFLineListOperations::IntersectsWith::IntersectsWith(const std::pair<int,int> &in_line1) :
[343]797 line1(in_line1) {}
798
799
800// return true if line2 intersects with line1 with at least one
801// common channel, and false otherwise
802// line2 - range of the second line: start channel and stop+1
[352]803bool LFLineListOperations::IntersectsWith::operator()(const std::pair<int,int> &line2)
[343]804 const throw()
805{
806 if (line2.second<line1.first) return false; // line2 is at lower channels
807 if (line2.first>line1.second) return false; // line2 is at upper channels
808 return true; // line2 has an intersection or is adjacent to line1
809}
810
811//
812///////////////////////////////////////////////////////////////////////////////
813
814///////////////////////////////////////////////////////////////////////////////
815//
[352]816// LFLineListOperations::BuildUnion - An auxiliary object function to build a union
[343]817// of several lines to account for a possibility of merging the nearby lines
818//
819
820// set an initial line (can be a first line in the sequence)
[352]821LFLineListOperations::BuildUnion::BuildUnion(const std::pair<int,int> &line1) :
[343]822 temp_line(line1) {}
823
824// update temp_line with a union of temp_line and new_line
825// provided there is no gap between the lines
[352]826void LFLineListOperations::BuildUnion::operator()(const std::pair<int,int> &new_line)
[343]827 throw()
828{
829 if (new_line.first<temp_line.first) temp_line.first=new_line.first;
830 if (new_line.second>temp_line.second) temp_line.second=new_line.second;
831}
832
833// return the result (temp_line)
[352]834const std::pair<int,int>& LFLineListOperations::BuildUnion::result() const throw()
[343]835{
836 return temp_line;
837}
838
839//
840///////////////////////////////////////////////////////////////////////////////
841
842///////////////////////////////////////////////////////////////////////////////
843//
[352]844// LFLineListOperations::LaterThan - An auxiliary object function to test whether a
[343]845// specified line is at lower spectral channels (to preserve the order in
846// the line list)
847//
848
849// setup the line to compare with
[352]850LFLineListOperations::LaterThan::LaterThan(const std::pair<int,int> &in_line1) :
[343]851 line1(in_line1) {}
852
853// return true if line2 should be placed later than line1
854// in the ordered list (so, it is at greater channel numbers)
[352]855bool LFLineListOperations::LaterThan::operator()(const std::pair<int,int> &line2)
[343]856 const throw()
857{
858 if (line2.second<line1.first) return false; // line2 is at lower channels
859 if (line2.first>line1.second) return true; // line2 is at upper channels
[881]860
[343]861 // line2 intersects with line1. We should have no such situation in
862 // practice
863 return line2.first>line1.first;
864}
865
866//
867///////////////////////////////////////////////////////////////////////////////
868
869
870///////////////////////////////////////////////////////////////////////////////
871//
[881]872// STLineFinder - a class for automated spectral line search
[343]873//
874//
[331]875
[881]876STLineFinder::STLineFinder() throw() : edge(0,0)
[331]877{
[369]878 setOptions();
[331]879}
880
[369]881// set the parameters controlling algorithm
882// in_threshold a single channel threshold default is sqrt(3), which
883// means together with 3 minimum channels at least 3 sigma
884// detection criterion
885// For bad baseline shape, in_threshold may need to be
886// increased
887// in_min_nchan minimum number of channels above the threshold to report
888// a detection, default is 3
889// in_avg_limit perform the averaging of no more than in_avg_limit
890// adjacent channels to search for broad lines
[881]891// Default is 8, but for a bad baseline shape this
[369]892// parameter should be decreased (may be even down to a
893// minimum of 1 to disable this option) to avoid
894// confusing of baseline undulations with a real line.
[881]895// Setting a very large value doesn't usually provide
896// valid detections.
[1644]897// in_box_size the box size for running mean/median calculation. Default is
[369]898// 1./5. of the whole spectrum size
[1644]899// in_noise_box the box size for off-line noise estimation (if working with
900// local noise. Negative value means use global noise estimate
901// Default is -1 (i.e. estimate using the whole spectrum)
902// in_median true if median statistics is used as opposed to average of
903// the lowest 80% of deviations (default)
[881]904void STLineFinder::setOptions(const casa::Float &in_threshold,
[369]905 const casa::Int &in_min_nchan,
[996]906 const casa::Int &in_avg_limit,
[1644]907 const casa::Float &in_box_size,
908 const casa::Float &in_noise_box,
909 const casa::Bool &in_median) throw()
[369]910{
911 threshold=in_threshold;
912 min_nchan=in_min_nchan;
913 avg_limit=in_avg_limit;
914 box_size=in_box_size;
[1644]915 itsNoiseBox = in_noise_box;
916 itsUseMedian = in_median;
[369]917}
918
[881]919STLineFinder::~STLineFinder() throw(AipsError) {}
[331]920
[907]921// set scan to work with (in_scan parameter)
922void STLineFinder::setScan(const ScantableWrapper &in_scan) throw(AipsError)
923{
924 scan=in_scan.getCP();
925 AlwaysAssert(!scan.null(),AipsError);
[924]926
[907]927}
928
929// search for spectral lines. Number of lines found is returned
930// in_edge and in_mask control channel rejection for a given row
[331]931// if in_edge has zero length, all channels chosen by mask will be used
932// if in_edge has one element only, it represents the number of
933// channels to drop from both sides of the spectrum
934// in_edge is introduced for convinience, although all functionality
[881]935// can be achieved using a spectrum mask only
[907]936int STLineFinder::findLines(const std::vector<bool> &in_mask,
[996]937 const std::vector<int> &in_edge,
938 const casa::uInt &whichRow) throw(casa::AipsError)
[331]939{
[907]940 if (scan.null())
941 throw AipsError("STLineFinder::findLines - a scan should be set first,"
942 " use set_scan");
[924]943
944 uInt nchan = scan->nchan(scan->getIF(whichRow));
[907]945 // set up mask and edge rejection
[924]946 // no mask given...
947 if (in_mask.size() == 0) {
948 mask = Vector<Bool>(nchan,True);
949 } else {
950 // use provided mask
951 mask=Vector<Bool>(in_mask);
952 }
953 if (mask.nelements()!=nchan)
[907]954 throw AipsError("STLineFinder::findLines - in_scan and in_mask have different"
955 "number of spectral channels.");
[1641]956
957 // taking flagged channels into account
958 vector<bool> flaggedChannels = scan->getMask(whichRow);
959 if (flaggedChannels.size()) {
960 // there is a mask set for this row
961 if (flaggedChannels.size() != mask.nelements()) {
962 throw AipsError("STLineFinder::findLines - internal inconsistency: number of mask elements do not match the number of channels");
963 }
964 for (size_t ch = 0; ch<mask.nelements(); ++ch) {
965 mask[ch] &= flaggedChannels[ch];
966 }
967 }
968
[907]969 // number of elements in in_edge
970 if (in_edge.size()>2)
971 throw AipsError("STLineFinder::findLines - the length of the in_edge parameter"
[996]972 "should not exceed 2");
[907]973 if (!in_edge.size()) {
[881]974 // all spectra, no rejection
[331]975 edge.first=0;
[996]976 edge.second=nchan;
[907]977 } else {
978 edge.first=in_edge[0];
[996]979 if (edge.first<0)
980 throw AipsError("STLineFinder::findLines - the in_edge parameter has a negative"
981 "number of channels to drop");
982 if (edge.first>=int(nchan))
983 throw AipsError("STLineFinder::findLines - all channels are rejected by the in_edge parameter");
[907]984 if (in_edge.size()==2) {
[996]985 edge.second=in_edge[1];
986 if (edge.second<0)
987 throw AipsError("STLineFinder::findLines - the in_edge parameter has a negative"
988 "number of channels to drop");
[924]989 edge.second=nchan-edge.second;
[996]990 } else edge.second=nchan-edge.first;
[369]991 if (edge.second<0 || (edge.first>=edge.second))
[996]992 throw AipsError("STLineFinder::findLines - all channels are rejected by the in_edge parameter");
[881]993 }
[924]994
[907]995 //
[924]996 int max_box_nchan=int(nchan*box_size); // number of channels in running
[331]997 // box
998 if (max_box_nchan<2)
[881]999 throw AipsError("STLineFinder::findLines - box_size is too small");
[331]1000
[1644]1001 // number of elements in the sample for noise estimate
1002 const int noise_box = itsNoiseBox<0 ? -1 : int(nchan * itsNoiseBox);
1003
1004 if ((noise_box!= -1) and (noise_box<2))
1005 throw AipsError("STLineFinder::findLines - noise_box is supposed to be at least 2 elements");
1006
[881]1007 spectrum.resize();
1008 spectrum = Vector<Float>(scan->getSpectrum(whichRow));
[331]1009
1010 lines.resize(0); // search from the scratch
[370]1011 last_row_used=whichRow;
[331]1012 Vector<Bool> temp_mask(mask);
[351]1013
1014 Bool first_pass=True;
[368]1015 Int avg_factor=1; // this number of adjacent channels is averaged together
1016 // the total number of the channels is not altered
[996]1017 // instead, min_nchan is also scaled
1018 // it helps to search for broad lines
[551]1019 Vector<Int> signs; // a buffer for signs of the value - mean quantity
1020 // see LFAboveThreshold for details
[996]1021 // We need only signs resulted from last iteration
1022 // because all previous values may be corrupted by the
1023 // presence of spectral lines
[344]1024 while (true) {
[351]1025 // a buffer for new lines found at this iteration
[881]1026 std::list<pair<int,int> > new_lines;
[351]1027
1028 try {
[369]1029 // line find algorithm
[1644]1030 LFAboveThreshold lfalg(new_lines,avg_factor*min_nchan, threshold, itsUseMedian,noise_box);
[352]1031 lfalg.findLines(spectrum,temp_mask,edge,max_box_nchan);
[996]1032 signs.resize(lfalg.getSigns().nelements());
1033 signs=lfalg.getSigns();
[368]1034 first_pass=False;
1035 if (!new_lines.size())
[996]1036 throw AipsError("spurious"); // nothing new - use the same
1037 // code as for a real exception
[351]1038 }
1039 catch(const AipsError &ae) {
1040 if (first_pass) throw;
[368]1041 // nothing new - proceed to the next step of averaging, if any
[996]1042 // (to search for broad lines)
[1315]1043 if (avg_factor>=avg_limit) break; // averaging up to avg_limit
[996]1044 // adjacent channels,
1045 // stop after that
1046 avg_factor*=2; // twice as more averaging
1047 subtractBaseline(temp_mask,9);
1048 averageAdjacentChannels(temp_mask,avg_factor);
1049 continue;
[1315]1050 }
[368]1051 keepStrongestOnly(temp_mask,new_lines,max_box_nchan);
[343]1052 // update the list (lines) merging intervals, if necessary
[344]1053 addNewSearchResult(new_lines,lines);
1054 // get a new mask
[881]1055 temp_mask=getMask();
[343]1056 }
[881]1057
[551]1058 // an additional search for wings because in the presence of very strong
1059 // lines temporary mean used at each iteration will be higher than
1060 // the true mean
[881]1061
[551]1062 if (lines.size())
1063 LFLineListOperations::searchForWings(lines,signs,mask,edge);
[881]1064
[331]1065 return int(lines.size());
1066}
1067
[369]1068// auxiliary function to fit and subtract a polynomial from the current
[890]1069// spectrum. It uses the Fitter class. This action is required before
[369]1070// reducing the spectral resolution if the baseline shape is bad
[881]1071void STLineFinder::subtractBaseline(const casa::Vector<casa::Bool> &temp_mask,
[369]1072 const casa::Int &order) throw(casa::AipsError)
1073{
1074 AlwaysAssert(spectrum.nelements(),AipsError);
1075 // use the fact that temp_mask excludes channels rejected at the edge
[890]1076 Fitter sdf;
[369]1077 std::vector<float> absc(spectrum.nelements());
[996]1078 for (unsigned int i=0;i<absc.size();++i)
[369]1079 absc[i]=float(i)/float(spectrum.nelements());
1080 std::vector<float> spec;
1081 spectrum.tovector(spec);
1082 std::vector<bool> std_mask;
1083 temp_mask.tovector(std_mask);
1084 sdf.setData(absc,spec,std_mask);
1085 sdf.setExpression("poly",order);
1086 if (!sdf.fit()) return; // fit failed, use old spectrum
[881]1087 spectrum=casa::Vector<casa::Float>(sdf.getResidual());
[369]1088}
1089
[368]1090// auxiliary function to average adjacent channels and update the mask
1091// if at least one channel involved in summation is masked, all
1092// output channels will be masked. This function works with the
1093// spectrum and edge fields of this class, but updates the mask
1094// array specified, rather than the field of this class
1095// boxsize - a number of adjacent channels to average
[881]1096void STLineFinder::averageAdjacentChannels(casa::Vector<casa::Bool> &mask2update,
[368]1097 const casa::Int &boxsize)
1098 throw(casa::AipsError)
1099{
1100 DebugAssert(mask2update.nelements()==spectrum.nelements(), AipsError);
1101 DebugAssert(boxsize!=0,AipsError);
[881]1102
[368]1103 for (int n=edge.first;n<edge.second;n+=boxsize) {
1104 DebugAssert(n<spectrum.nelements(),AipsError);
1105 int nboxch=0; // number of channels currently in the box
1106 Float mean=0; // buffer for mean calculations
1107 for (int k=n;k<n+boxsize && k<edge.second;++k)
1108 if (mask2update[k]) { // k is a valid channel
[996]1109 mean+=spectrum[k];
1110 ++nboxch;
[881]1111 }
[368]1112 if (nboxch<boxsize) // mask these channels
1113 for (int k=n;k<n+boxsize && k<edge.second;++k)
[996]1114 mask2update[k]=False;
[368]1115 else {
1116 mean/=Float(boxsize);
[996]1117 for (int k=n;k<n+boxsize && k<edge.second;++k)
1118 spectrum[k]=mean;
[368]1119 }
1120 }
1121}
[331]1122
[368]1123
[297]1124// get the mask to mask out all lines that have been found (default)
1125// if invert=true, only channels belong to lines will be unmasked
1126// Note: all channels originally masked by the input mask (in_mask
1127// in setScan) or dropped out by the edge parameter (in_edge
1128// in setScan) are still excluded regardless on the invert option
[881]1129std::vector<bool> STLineFinder::getMask(bool invert)
[297]1130 const throw(casa::AipsError)
1131{
1132 try {
1133 if (scan.null())
[881]1134 throw AipsError("STLineFinder::getMask - a scan should be set first,"
[297]1135 " use set_scan followed by find_lines");
[924]1136 DebugAssert(mask.nelements()==scan->getChannels(last_row_used), AipsError);
[297]1137 /*
1138 if (!lines.size())
[881]1139 throw AipsError("STLineFinder::getMask - one have to search for "
[996]1140 "lines first, use find_lines");
[881]1141 */
[297]1142 std::vector<bool> res_mask(mask.nelements());
1143 // iterator through lines
1144 std::list<std::pair<int,int> >::const_iterator cli=lines.begin();
[1497]1145 for (int ch=0;ch<int(res_mask.size());++ch) {
[297]1146 if (ch<edge.first || ch>=edge.second) res_mask[ch]=false;
[996]1147 else if (!mask[ch]) res_mask[ch]=false;
1148 else {
1149 res_mask[ch]=!invert; // no line by default
[1497]1150 if (cli!=lines.end())
1151 if (ch>=cli->first && ch<cli->second)
1152 res_mask[ch]=invert; // this is a line
1153 }
1154 if (cli!=lines.end())
1155 if (ch>=cli->second) {
1156 ++cli; // next line in the list
1157 }
1158 }
[297]1159 return res_mask;
1160 }
1161 catch (const AipsError &ae) {
1162 throw;
[881]1163 }
[297]1164 catch (const exception &ex) {
[881]1165 throw AipsError(String("STLineFinder::getMask - STL error: ")+ex.what());
[297]1166 }
1167}
1168
[370]1169// get range for all lines found. The same units as used in the scan
1170// will be returned (e.g. velocity instead of channels).
[881]1171std::vector<double> STLineFinder::getLineRanges()
[297]1172 const throw(casa::AipsError)
1173{
[370]1174 // convert to required abscissa units
1175 std::vector<double> vel=scan->getAbcissa(last_row_used);
1176 std::vector<int> ranges=getLineRangesInChannels();
1177 std::vector<double> res(ranges.size());
1178
1179 std::vector<int>::const_iterator cri=ranges.begin();
1180 std::vector<double>::iterator outi=res.begin();
1181 for (;cri!=ranges.end() && outi!=res.end();++cri,++outi)
1182 if (uInt(*cri)>=vel.size())
[881]1183 throw AipsError("STLineFinder::getLineRanges - getAbcissa provided less channels than reqired");
[370]1184 else *outi=vel[*cri];
1185 return res;
1186}
1187
1188// The same as getLineRanges, but channels are always used to specify
1189// the range
[881]1190std::vector<int> STLineFinder::getLineRangesInChannels()
[370]1191 const throw(casa::AipsError)
1192{
[297]1193 try {
1194 if (scan.null())
[881]1195 throw AipsError("STLineFinder::getLineRangesInChannels - a scan should be set first,"
[297]1196 " use set_scan followed by find_lines");
[924]1197 DebugAssert(mask.nelements()==scan->getChannels(last_row_used), AipsError);
[881]1198
[297]1199 if (!lines.size())
[881]1200 throw AipsError("STLineFinder::getLineRangesInChannels - one have to search for "
[996]1201 "lines first, use find_lines");
[881]1202
[297]1203 std::vector<int> res(2*lines.size());
1204 // iterator through lines & result
1205 std::list<std::pair<int,int> >::const_iterator cli=lines.begin();
1206 std::vector<int>::iterator ri=res.begin();
[881]1207 for (;cli!=lines.end() && ri!=res.end();++cli,++ri) {
[996]1208 *ri=cli->first;
1209 if (++ri!=res.end())
1210 *ri=cli->second-1;
[881]1211 }
[297]1212 return res;
1213 }
1214 catch (const AipsError &ae) {
1215 throw;
[881]1216 }
[297]1217 catch (const exception &ex) {
[881]1218 throw AipsError(String("STLineFinder::getLineRanges - STL error: ")+ex.what());
[297]1219 }
1220}
[331]1221
[370]1222
1223
[368]1224// an auxiliary function to remove all lines from the list, except the
1225// strongest one (by absolute value). If the lines removed are real,
[881]1226// they will be find again at the next iteration. This approach
1227// increases the number of iterations required, but is able to remove
[1315]1228// spurious detections likely to occur near strong lines.
[368]1229// Later a better criterion may be implemented, e.g.
1230// taking into consideration the brightness of different lines. Now
[881]1231// use the simplest solution
[368]1232// temp_mask - mask to work with (may be different from original mask as
1233// the lines previously found may be masked)
1234// lines2update - a list of lines to work with
1235// nothing will be done if it is empty
1236// max_box_nchan - channels in the running box for baseline filtering
[881]1237void STLineFinder::keepStrongestOnly(const casa::Vector<casa::Bool> &temp_mask,
[996]1238 std::list<std::pair<int, int> > &lines2update,
1239 int max_box_nchan)
[368]1240 throw (casa::AipsError)
1241{
1242 try {
1243 if (!lines2update.size()) return; // ignore an empty list
1244
1245 // current line
1246 std::list<std::pair<int,int> >::iterator li=lines2update.begin();
1247 // strongest line
1248 std::list<std::pair<int,int> >::iterator strongli=lines2update.begin();
1249 // the flux (absolute value) of the strongest line
1250 Float peak_flux=-1; // negative value - a flag showing uninitialized
1251 // value
1252 // the algorithm below relies on the list being ordered
1253 Float tmp_flux=-1; // a temporary peak
1254 for (RunningBox running_box(spectrum,temp_mask,edge,max_box_nchan);
1255 running_box.haveMore(); running_box.next()) {
1256
1257 if (li==lines2update.end()) break; // no more lines
[996]1258 const int ch=running_box.getChannel();
1259 if (ch>=li->first && ch<li->second)
1260 if (temp_mask[ch] && tmp_flux<fabs(running_box.aboveMean()))
1261 tmp_flux=fabs(running_box.aboveMean());
1262 if (ch==li->second-1) {
1263 if (peak_flux<tmp_flux) { // if peak_flux=-1, this condition
1264 peak_flux=tmp_flux; // will be satisfied
1265 strongli=li;
1266 }
1267 ++li;
1268 tmp_flux=-1;
1269 }
[881]1270 }
[368]1271 std::list<std::pair<int,int> > res;
1272 res.splice(res.end(),lines2update,strongli);
1273 lines2update.clear();
1274 lines2update.splice(lines2update.end(),res);
1275 }
1276 catch (const AipsError &ae) {
1277 throw;
[881]1278 }
[368]1279 catch (const exception &ex) {
[881]1280 throw AipsError(String("STLineFinder::keepStrongestOnly - STL error: ")+ex.what());
[368]1281 }
1282
1283}
1284
[352]1285//
1286///////////////////////////////////////////////////////////////////////////////
1287
1288
1289///////////////////////////////////////////////////////////////////////////////
1290//
1291// LFLineListOperations - a class incapsulating operations with line lists
1292// The LF prefix stands for Line Finder
1293//
1294
[331]1295// concatenate two lists preserving the order. If two lines appear to
1296// be adjacent, they are joined into the new one
[352]1297void LFLineListOperations::addNewSearchResult(const std::list<pair<int, int> > &newlines,
[881]1298 std::list<std::pair<int, int> > &lines_list)
[331]1299 throw(AipsError)
1300{
1301 try {
1302 for (std::list<pair<int,int> >::const_iterator cli=newlines.begin();
1303 cli!=newlines.end();++cli) {
[881]1304
[996]1305 // the first item, which has a non-void intersection or touches
1306 // the new line
1307 std::list<pair<int,int> >::iterator pos_beg=find_if(lines_list.begin(),
1308 lines_list.end(), IntersectsWith(*cli));
1309 // the last such item
1310 std::list<pair<int,int> >::iterator pos_end=find_if(pos_beg,
1311 lines_list.end(), not1(IntersectsWith(*cli)));
[343]1312
1313 // extract all lines which intersect or touch a new one into
[996]1314 // a temporary buffer. This may invalidate the iterators
1315 // line_buffer may be empty, if no lines intersects with a new
1316 // one.
1317 std::list<pair<int,int> > lines_buffer;
1318 lines_buffer.splice(lines_buffer.end(),lines_list, pos_beg, pos_end);
[343]1319
[996]1320 // build a union of all intersecting lines
1321 pair<int,int> union_line=for_each(lines_buffer.begin(),
1322 lines_buffer.end(),BuildUnion(*cli)).result();
[881]1323
[996]1324 // search for a right place for the new line (union_line) and add
1325 std::list<pair<int,int> >::iterator pos2insert=find_if(lines_list.begin(),
1326 lines_list.end(), LaterThan(union_line));
1327 lines_list.insert(pos2insert,union_line);
[331]1328 }
1329 }
1330 catch (const AipsError &ae) {
1331 throw;
[881]1332 }
[331]1333 catch (const exception &ex) {
[352]1334 throw AipsError(String("LFLineListOperations::addNewSearchResult - STL error: ")+ex.what());
[331]1335 }
1336}
[344]1337
1338// extend all line ranges to the point where a value stored in the
1339// specified vector changes (e.g. value-mean change its sign)
1340// This operation is necessary to include line wings, which are below
1341// the detection threshold. If lines becomes adjacent, they are
1342// merged together. Any masked channel stops the extension
[352]1343void LFLineListOperations::searchForWings(std::list<std::pair<int, int> > &newlines,
1344 const casa::Vector<casa::Int> &signs,
[996]1345 const casa::Vector<casa::Bool> &mask,
1346 const std::pair<int,int> &edge) throw(casa::AipsError)
[344]1347{
1348 try {
1349 for (std::list<pair<int,int> >::iterator li=newlines.begin();
1350 li!=newlines.end();++li) {
[996]1351 // update the left hand side
1352 for (int n=li->first-1;n>=edge.first;--n) {
1353 if (!mask[n]) break;
1354 if (signs[n]==signs[li->first] && signs[li->first])
1355 li->first=n;
1356 else break;
1357 }
1358 // update the right hand side
1359 for (int n=li->second;n<edge.second;++n) {
1360 if (!mask[n]) break;
1361 if (signs[n]==signs[li->second-1] && signs[li->second-1])
1362 li->second=n;
1363 else break;
1364 }
[344]1365 }
1366 // need to search for possible mergers.
1367 std::list<std::pair<int, int> > result_buffer;
1368 addNewSearchResult(newlines,result_buffer);
1369 newlines.clear();
1370 newlines.splice(newlines.end(),result_buffer);
1371 }
1372 catch (const AipsError &ae) {
1373 throw;
[881]1374 }
[344]1375 catch (const exception &ex) {
[352]1376 throw AipsError(String("LFLineListOperations::extendLines - STL error: ")+ex.what());
[344]1377 }
1378}
[352]1379
1380//
1381///////////////////////////////////////////////////////////////////////////////
Note: See TracBrowser for help on using the repository browser.