[91] | 1 | //#---------------------------------------------------------------------------
|
---|
[890] | 2 | //# Fitter.cc: A Fitter class for spectra
|
---|
[91] | 3 | //#--------------------------------------------------------------------------
|
---|
| 4 | //# Copyright (C) 2004
|
---|
[125] | 5 | //# ATNF
|
---|
[91] | 6 | //#
|
---|
| 7 | //# This program is free software; you can redistribute it and/or modify it
|
---|
| 8 | //# under the terms of the GNU General Public License as published by the Free
|
---|
| 9 | //# Software Foundation; either version 2 of the License, or (at your option)
|
---|
| 10 | //# any later version.
|
---|
| 11 | //#
|
---|
| 12 | //# This program is distributed in the hope that it will be useful, but
|
---|
| 13 | //# WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | //# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
---|
| 15 | //# Public License for more details.
|
---|
| 16 | //#
|
---|
| 17 | //# You should have received a copy of the GNU General Public License along
|
---|
| 18 | //# with this program; if not, write to the Free Software Foundation, Inc.,
|
---|
| 19 | //# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
|
---|
| 20 | //#
|
---|
| 21 | //# Correspondence concerning this software should be addressed as follows:
|
---|
| 22 | //# Internet email: Malte.Marquarding@csiro.au
|
---|
| 23 | //# Postal address: Malte Marquarding,
|
---|
| 24 | //# Australia Telescope National Facility,
|
---|
| 25 | //# P.O. Box 76,
|
---|
| 26 | //# Epping, NSW, 2121,
|
---|
| 27 | //# AUSTRALIA
|
---|
| 28 | //#
|
---|
[891] | 29 | //# $Id: STFitter.cpp 891 2006-03-08 02:36:36Z mar637 $
|
---|
[91] | 30 | //#---------------------------------------------------------------------------
|
---|
[125] | 31 | #include <casa/aips.h>
|
---|
[91] | 32 | #include <casa/Arrays/ArrayMath.h>
|
---|
| 33 | #include <casa/Arrays/ArrayLogical.h>
|
---|
| 34 | #include <scimath/Fitting.h>
|
---|
| 35 | #include <scimath/Fitting/LinearFit.h>
|
---|
| 36 | #include <scimath/Functionals/CompiledFunction.h>
|
---|
| 37 | #include <scimath/Functionals/CompoundFunction.h>
|
---|
| 38 | #include <scimath/Functionals/Gaussian1D.h>
|
---|
| 39 | #include <scimath/Functionals/Polynomial.h>
|
---|
| 40 | #include <scimath/Mathematics/AutoDiff.h>
|
---|
| 41 | #include <scimath/Mathematics/AutoDiffMath.h>
|
---|
| 42 | #include <scimath/Fitting/NonLinearFitLM.h>
|
---|
| 43 | #include <components/SpectralComponents/SpectralEstimate.h>
|
---|
| 44 |
|
---|
| 45 | #include "SDFitter.h"
|
---|
| 46 | using namespace asap;
|
---|
[125] | 47 | using namespace casa;
|
---|
[91] | 48 |
|
---|
[890] | 49 | Fitter::Fitter()
|
---|
[91] | 50 | {
|
---|
| 51 | }
|
---|
| 52 |
|
---|
[890] | 53 | Fitter::~Fitter()
|
---|
[91] | 54 | {
|
---|
[517] | 55 | reset();
|
---|
[91] | 56 | }
|
---|
| 57 |
|
---|
[890] | 58 | void Fitter::clear()
|
---|
[91] | 59 | {
|
---|
[517] | 60 | for (uInt i=0;i< funcs_.nelements();++i) {
|
---|
| 61 | delete funcs_[i]; funcs_[i] = 0;
|
---|
| 62 | }
|
---|
[612] | 63 | funcs_.resize(0,True);
|
---|
[517] | 64 | parameters_.resize();
|
---|
| 65 | error_.resize();
|
---|
| 66 | thefit_.resize();
|
---|
| 67 | estimate_.resize();
|
---|
| 68 | chisquared_ = 0.0;
|
---|
[91] | 69 | }
|
---|
[517] | 70 |
|
---|
[890] | 71 | void Fitter::reset()
|
---|
[91] | 72 | {
|
---|
[517] | 73 | clear();
|
---|
| 74 | x_.resize();
|
---|
| 75 | y_.resize();
|
---|
| 76 | m_.resize();
|
---|
[91] | 77 | }
|
---|
| 78 |
|
---|
| 79 |
|
---|
[890] | 80 | bool Fitter::computeEstimate() {
|
---|
[517] | 81 | if (x_.nelements() == 0 || y_.nelements() == 0)
|
---|
| 82 | throw (AipsError("No x/y data specified."));
|
---|
[91] | 83 |
|
---|
[517] | 84 | if (dynamic_cast<Gaussian1D<Float>* >(funcs_[0]) == 0)
|
---|
| 85 | return false;
|
---|
| 86 | uInt n = funcs_.nelements();
|
---|
| 87 | SpectralEstimate estimator(n);
|
---|
| 88 | estimator.setQ(5);
|
---|
| 89 | Int mn,mx;
|
---|
| 90 | mn = 0;
|
---|
| 91 | mx = m_.nelements()-1;
|
---|
| 92 | for (uInt i=0; i<m_.nelements();++i) {
|
---|
| 93 | if (m_[i]) {
|
---|
| 94 | mn = i;
|
---|
| 95 | break;
|
---|
[108] | 96 | }
|
---|
[517] | 97 | }
|
---|
| 98 | for (uInt j=m_.nelements()-1; j>=0;--j) {
|
---|
| 99 | if (m_[j]) {
|
---|
| 100 | mx = j;
|
---|
| 101 | break;
|
---|
[108] | 102 | }
|
---|
[517] | 103 | }
|
---|
| 104 | mn = 0+x_.nelements()/10;
|
---|
| 105 | mx = x_.nelements()-x_.nelements()/10;
|
---|
| 106 | estimator.setRegion(mn,mx);
|
---|
| 107 | //estimator.setWindowing(True);
|
---|
| 108 | SpectralList listGauss = estimator.estimate(x_, y_);
|
---|
| 109 | parameters_.resize(n*3);
|
---|
| 110 | Gaussian1D<Float>* g = 0;
|
---|
| 111 | for (uInt i=0; i<n;i++) {
|
---|
| 112 | g = dynamic_cast<Gaussian1D<Float>* >(funcs_[i]);
|
---|
| 113 | if (g) {
|
---|
| 114 | (*g)[0] = listGauss[i].getAmpl();
|
---|
| 115 | (*g)[1] = listGauss[i].getCenter();
|
---|
| 116 | (*g)[2] = listGauss[i].getFWHM();
|
---|
[91] | 117 | }
|
---|
[517] | 118 | }
|
---|
| 119 | estimate_.resize();
|
---|
| 120 | listGauss.evaluate(estimate_,x_);
|
---|
| 121 | return true;
|
---|
[91] | 122 | }
|
---|
| 123 |
|
---|
[890] | 124 | std::vector<float> Fitter::getEstimate() const
|
---|
[91] | 125 | {
|
---|
[517] | 126 | if (estimate_.nelements() == 0)
|
---|
| 127 | throw (AipsError("No estimate set."));
|
---|
| 128 | std::vector<float> stlout;
|
---|
| 129 | estimate_.tovector(stlout);
|
---|
| 130 | return stlout;
|
---|
[91] | 131 | }
|
---|
| 132 |
|
---|
| 133 |
|
---|
[890] | 134 | bool Fitter::setExpression(const std::string& expr, int ncomp)
|
---|
[91] | 135 | {
|
---|
[517] | 136 | clear();
|
---|
| 137 | if (expr == "gauss") {
|
---|
| 138 | if (ncomp < 1) throw (AipsError("Need at least one gaussian to fit."));
|
---|
| 139 | funcs_.resize(ncomp);
|
---|
| 140 | for (Int k=0; k<ncomp; ++k) {
|
---|
| 141 | funcs_[k] = new Gaussian1D<Float>();
|
---|
| 142 | }
|
---|
| 143 | } else if (expr == "poly") {
|
---|
| 144 | funcs_.resize(1);
|
---|
| 145 | funcs_[0] = new Polynomial<Float>(ncomp);
|
---|
| 146 | } else {
|
---|
| 147 | cerr << " compiled functions not yet implemented" << endl;
|
---|
| 148 | //funcs_.resize(1);
|
---|
| 149 | //funcs_[0] = new CompiledFunction<Float>();
|
---|
| 150 | //funcs_[0]->setFunction(String(expr));
|
---|
| 151 | return false;
|
---|
| 152 | }
|
---|
| 153 | return true;
|
---|
[91] | 154 | }
|
---|
| 155 |
|
---|
[890] | 156 | bool Fitter::setData(std::vector<float> absc, std::vector<float> spec,
|
---|
[91] | 157 | std::vector<bool> mask)
|
---|
| 158 | {
|
---|
| 159 | x_.resize();
|
---|
| 160 | y_.resize();
|
---|
| 161 | m_.resize();
|
---|
| 162 | // convert std::vector to casa Vector
|
---|
| 163 | Vector<Float> tmpx(absc);
|
---|
| 164 | Vector<Float> tmpy(spec);
|
---|
| 165 | Vector<Bool> tmpm(mask);
|
---|
| 166 | AlwaysAssert(tmpx.nelements() == tmpy.nelements(), AipsError);
|
---|
| 167 | x_ = tmpx;
|
---|
| 168 | y_ = tmpy;
|
---|
| 169 | m_ = tmpm;
|
---|
| 170 | return true;
|
---|
| 171 | }
|
---|
| 172 |
|
---|
[890] | 173 | std::vector<float> Fitter::getResidual() const
|
---|
[91] | 174 | {
|
---|
| 175 | if (residual_.nelements() == 0)
|
---|
| 176 | throw (AipsError("Function not yet fitted."));
|
---|
| 177 | std::vector<float> stlout;
|
---|
| 178 | residual_.tovector(stlout);
|
---|
| 179 | return stlout;
|
---|
| 180 | }
|
---|
| 181 |
|
---|
[890] | 182 | std::vector<float> Fitter::getFit() const
|
---|
[91] | 183 | {
|
---|
| 184 | Vector<Float> out = thefit_;
|
---|
| 185 | std::vector<float> stlout;
|
---|
| 186 | out.tovector(stlout);
|
---|
| 187 | return stlout;
|
---|
| 188 |
|
---|
| 189 | }
|
---|
| 190 |
|
---|
[890] | 191 | std::vector<float> Fitter::getErrors() const
|
---|
[91] | 192 | {
|
---|
| 193 | Vector<Float> out = error_;
|
---|
| 194 | std::vector<float> stlout;
|
---|
| 195 | out.tovector(stlout);
|
---|
| 196 | return stlout;
|
---|
| 197 | }
|
---|
| 198 |
|
---|
[890] | 199 | bool Fitter::setParameters(std::vector<float> params)
|
---|
[91] | 200 | {
|
---|
| 201 | Vector<Float> tmppar(params);
|
---|
| 202 | if (funcs_.nelements() == 0)
|
---|
| 203 | throw (AipsError("Function not yet set."));
|
---|
| 204 | if (parameters_.nelements() > 0 && tmppar.nelements() != parameters_.nelements())
|
---|
| 205 | throw (AipsError("Number of parameters inconsistent with function."));
|
---|
| 206 | if (parameters_.nelements() == 0)
|
---|
| 207 | parameters_.resize(tmppar.nelements());
|
---|
| 208 | fixedpar_.resize(tmppar.nelements());
|
---|
| 209 | fixedpar_ = False;
|
---|
| 210 | if (dynamic_cast<Gaussian1D<Float>* >(funcs_[0]) != 0) {
|
---|
| 211 | uInt count = 0;
|
---|
| 212 | for (uInt j=0; j < funcs_.nelements(); ++j) {
|
---|
| 213 | for (uInt i=0; i < funcs_[j]->nparameters(); ++i) {
|
---|
| 214 | (funcs_[j]->parameters())[i] = tmppar[count];
|
---|
| 215 | parameters_[count] = tmppar[count];
|
---|
| 216 | ++count;
|
---|
| 217 | }
|
---|
| 218 | }
|
---|
| 219 | } else if (dynamic_cast<Polynomial<Float>* >(funcs_[0]) != 0) {
|
---|
| 220 | for (uInt i=0; i < funcs_[0]->nparameters(); ++i) {
|
---|
| 221 | parameters_[i] = tmppar[i];
|
---|
| 222 | (funcs_[0]->parameters())[i] = tmppar[i];
|
---|
| 223 | }
|
---|
| 224 | }
|
---|
| 225 | return true;
|
---|
| 226 | }
|
---|
| 227 |
|
---|
[890] | 228 | bool Fitter::setFixedParameters(std::vector<bool> fixed)
|
---|
[91] | 229 | {
|
---|
| 230 | Vector<Bool> tmp(fixed);
|
---|
| 231 | if (funcs_.nelements() == 0)
|
---|
| 232 | throw (AipsError("Function not yet set."));
|
---|
| 233 | if (fixedpar_.nelements() > 0 && tmp.nelements() != fixedpar_.nelements())
|
---|
| 234 | throw (AipsError("Number of mask elements inconsistent with function."));
|
---|
| 235 | if (dynamic_cast<Gaussian1D<Float>* >(funcs_[0]) != 0) {
|
---|
| 236 | uInt count = 0;
|
---|
| 237 | for (uInt j=0; j < funcs_.nelements(); ++j) {
|
---|
| 238 | for (uInt i=0; i < funcs_[j]->nparameters(); ++i) {
|
---|
| 239 | funcs_[j]->mask(i) = !tmp[count];
|
---|
| 240 | fixedpar_[count] = !tmp[count];
|
---|
| 241 | ++count;
|
---|
| 242 | }
|
---|
| 243 | }
|
---|
| 244 | } else if (dynamic_cast<Polynomial<Float>* >(funcs_[0]) != 0) {
|
---|
| 245 | for (uInt i=0; i < funcs_[0]->nparameters(); ++i) {
|
---|
| 246 | fixedpar_[i] = tmp[i];
|
---|
| 247 | funcs_[0]->mask(i) = tmp[i];
|
---|
| 248 | }
|
---|
| 249 | }
|
---|
| 250 | //fixedpar_ = !tmpmsk;
|
---|
| 251 | return true;
|
---|
| 252 | }
|
---|
| 253 |
|
---|
[890] | 254 | std::vector<float> Fitter::getParameters() const {
|
---|
[91] | 255 | Vector<Float> out = parameters_;
|
---|
| 256 | std::vector<float> stlout;
|
---|
| 257 | out.tovector(stlout);
|
---|
| 258 | return stlout;
|
---|
| 259 | }
|
---|
| 260 |
|
---|
[890] | 261 | std::vector<bool> Fitter::getFixedParameters() const {
|
---|
[108] | 262 | Vector<Bool> out(parameters_.nelements());
|
---|
| 263 | if (fixedpar_.nelements() == 0) {
|
---|
| 264 | out = False;
|
---|
| 265 | //throw (AipsError("No parameter mask set."));
|
---|
| 266 | } else {
|
---|
| 267 | out = fixedpar_;
|
---|
| 268 | }
|
---|
| 269 | std::vector<bool> stlout;
|
---|
| 270 | out.tovector(stlout);
|
---|
| 271 | return stlout;
|
---|
[91] | 272 | }
|
---|
| 273 |
|
---|
[890] | 274 | float Fitter::getChisquared() const {
|
---|
[91] | 275 | return chisquared_;
|
---|
| 276 | }
|
---|
| 277 |
|
---|
[890] | 278 | bool Fitter::fit() {
|
---|
[517] | 279 | NonLinearFitLM<Float> fitter;
|
---|
| 280 | CompoundFunction<Float> func;
|
---|
[612] | 281 |
|
---|
| 282 | uInt n = funcs_.nelements();
|
---|
[517] | 283 | for (uInt i=0; i<n; ++i) {
|
---|
| 284 | func.addFunction(*funcs_[i]);
|
---|
| 285 | }
|
---|
[612] | 286 |
|
---|
[517] | 287 | fitter.setFunction(func);
|
---|
| 288 | fitter.setMaxIter(50+n*10);
|
---|
| 289 | // Convergence criterium
|
---|
| 290 | fitter.setCriteria(0.001);
|
---|
[612] | 291 |
|
---|
[517] | 292 | // Fit
|
---|
| 293 | Vector<Float> sigma(x_.nelements());
|
---|
| 294 | sigma = 1.0;
|
---|
[890] | 295 |
|
---|
[517] | 296 | parameters_.resize();
|
---|
| 297 | parameters_ = fitter.fit(x_, y_, sigma, &m_);
|
---|
| 298 | std::vector<float> ps;
|
---|
| 299 | parameters_.tovector(ps);
|
---|
| 300 | setParameters(ps);
|
---|
[612] | 301 |
|
---|
[517] | 302 | error_.resize();
|
---|
| 303 | error_ = fitter.errors();
|
---|
[612] | 304 |
|
---|
[517] | 305 | chisquared_ = fitter.getChi2();
|
---|
[890] | 306 |
|
---|
[517] | 307 | residual_.resize();
|
---|
| 308 | residual_ = y_;
|
---|
| 309 | fitter.residual(residual_,x_);
|
---|
[612] | 310 |
|
---|
[517] | 311 | // use fitter.residual(model=True) to get the model
|
---|
| 312 | thefit_.resize(x_.nelements());
|
---|
| 313 | fitter.residual(thefit_,x_,True);
|
---|
| 314 | return true;
|
---|
| 315 | }
|
---|
[483] | 316 |
|
---|
| 317 |
|
---|
[890] | 318 | std::vector<float> Fitter::evaluate(int whichComp) const
|
---|
| 319 | {
|
---|
[517] | 320 | std::vector<float> stlout;
|
---|
[890] | 321 | uInt idx = uInt(whichComp);
|
---|
[517] | 322 | Float y;
|
---|
| 323 | if ( idx < funcs_.nelements() ) {
|
---|
| 324 | for (uInt i=0; i<x_.nelements(); ++i) {
|
---|
| 325 | y = (*funcs_[idx])(x_[i]);
|
---|
| 326 | stlout.push_back(float(y));
|
---|
| 327 | }
|
---|
| 328 | }
|
---|
| 329 | return stlout;
|
---|
| 330 | }
|
---|
[483] | 331 |
|
---|