[91] | 1 | //#---------------------------------------------------------------------------
|
---|
[890] | 2 | //# Fitter.cc: A Fitter class for spectra
|
---|
[91] | 3 | //#--------------------------------------------------------------------------
|
---|
| 4 | //# Copyright (C) 2004
|
---|
[125] | 5 | //# ATNF
|
---|
[91] | 6 | //#
|
---|
| 7 | //# This program is free software; you can redistribute it and/or modify it
|
---|
| 8 | //# under the terms of the GNU General Public License as published by the Free
|
---|
| 9 | //# Software Foundation; either version 2 of the License, or (at your option)
|
---|
| 10 | //# any later version.
|
---|
| 11 | //#
|
---|
| 12 | //# This program is distributed in the hope that it will be useful, but
|
---|
| 13 | //# WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | //# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
---|
| 15 | //# Public License for more details.
|
---|
| 16 | //#
|
---|
| 17 | //# You should have received a copy of the GNU General Public License along
|
---|
| 18 | //# with this program; if not, write to the Free Software Foundation, Inc.,
|
---|
| 19 | //# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
|
---|
| 20 | //#
|
---|
| 21 | //# Correspondence concerning this software should be addressed as follows:
|
---|
| 22 | //# Internet email: Malte.Marquarding@csiro.au
|
---|
| 23 | //# Postal address: Malte Marquarding,
|
---|
| 24 | //# Australia Telescope National Facility,
|
---|
| 25 | //# P.O. Box 76,
|
---|
| 26 | //# Epping, NSW, 2121,
|
---|
| 27 | //# AUSTRALIA
|
---|
| 28 | //#
|
---|
[891] | 29 | //# $Id: STFitter.cpp 2163 2011-05-10 05:02:56Z MalteMarquarding $
|
---|
[91] | 30 | //#---------------------------------------------------------------------------
|
---|
[125] | 31 | #include <casa/aips.h>
|
---|
[91] | 32 | #include <casa/Arrays/ArrayMath.h>
|
---|
| 33 | #include <casa/Arrays/ArrayLogical.h>
|
---|
[1819] | 34 | #include <casa/Logging/LogIO.h>
|
---|
[91] | 35 | #include <scimath/Fitting.h>
|
---|
| 36 | #include <scimath/Fitting/LinearFit.h>
|
---|
| 37 | #include <scimath/Functionals/CompiledFunction.h>
|
---|
| 38 | #include <scimath/Functionals/CompoundFunction.h>
|
---|
| 39 | #include <scimath/Functionals/Gaussian1D.h>
|
---|
[1819] | 40 | #include "Lorentzian1D.h"
|
---|
[2047] | 41 | #include <scimath/Functionals/Sinusoid1D.h>
|
---|
[91] | 42 | #include <scimath/Functionals/Polynomial.h>
|
---|
| 43 | #include <scimath/Mathematics/AutoDiff.h>
|
---|
| 44 | #include <scimath/Mathematics/AutoDiffMath.h>
|
---|
| 45 | #include <scimath/Fitting/NonLinearFitLM.h>
|
---|
| 46 | #include <components/SpectralComponents/SpectralEstimate.h>
|
---|
| 47 |
|
---|
[894] | 48 | #include "STFitter.h"
|
---|
| 49 |
|
---|
[91] | 50 | using namespace asap;
|
---|
[125] | 51 | using namespace casa;
|
---|
[91] | 52 |
|
---|
[890] | 53 | Fitter::Fitter()
|
---|
[91] | 54 | {
|
---|
| 55 | }
|
---|
| 56 |
|
---|
[890] | 57 | Fitter::~Fitter()
|
---|
[91] | 58 | {
|
---|
[517] | 59 | reset();
|
---|
[91] | 60 | }
|
---|
| 61 |
|
---|
[890] | 62 | void Fitter::clear()
|
---|
[91] | 63 | {
|
---|
[517] | 64 | for (uInt i=0;i< funcs_.nelements();++i) {
|
---|
| 65 | delete funcs_[i]; funcs_[i] = 0;
|
---|
| 66 | }
|
---|
[612] | 67 | funcs_.resize(0,True);
|
---|
[517] | 68 | parameters_.resize();
|
---|
[1232] | 69 | fixedpar_.resize();
|
---|
[517] | 70 | error_.resize();
|
---|
| 71 | thefit_.resize();
|
---|
| 72 | estimate_.resize();
|
---|
| 73 | chisquared_ = 0.0;
|
---|
[91] | 74 | }
|
---|
[517] | 75 |
|
---|
[890] | 76 | void Fitter::reset()
|
---|
[91] | 77 | {
|
---|
[517] | 78 | clear();
|
---|
| 79 | x_.resize();
|
---|
| 80 | y_.resize();
|
---|
| 81 | m_.resize();
|
---|
[91] | 82 | }
|
---|
| 83 |
|
---|
| 84 |
|
---|
[890] | 85 | bool Fitter::computeEstimate() {
|
---|
[517] | 86 | if (x_.nelements() == 0 || y_.nelements() == 0)
|
---|
| 87 | throw (AipsError("No x/y data specified."));
|
---|
[91] | 88 |
|
---|
[517] | 89 | if (dynamic_cast<Gaussian1D<Float>* >(funcs_[0]) == 0)
|
---|
| 90 | return false;
|
---|
| 91 | uInt n = funcs_.nelements();
|
---|
| 92 | SpectralEstimate estimator(n);
|
---|
| 93 | estimator.setQ(5);
|
---|
| 94 | Int mn,mx;
|
---|
| 95 | mn = 0;
|
---|
| 96 | mx = m_.nelements()-1;
|
---|
| 97 | for (uInt i=0; i<m_.nelements();++i) {
|
---|
| 98 | if (m_[i]) {
|
---|
| 99 | mn = i;
|
---|
| 100 | break;
|
---|
[108] | 101 | }
|
---|
[517] | 102 | }
|
---|
[2163] | 103 | // use Int to suppress compiler warning
|
---|
| 104 | for (Int j=m_.nelements()-1; j>=0;--j) {
|
---|
[517] | 105 | if (m_[j]) {
|
---|
| 106 | mx = j;
|
---|
| 107 | break;
|
---|
[108] | 108 | }
|
---|
[517] | 109 | }
|
---|
[1067] | 110 | //mn = 0+x_.nelements()/10;
|
---|
| 111 | //mx = x_.nelements()-x_.nelements()/10;
|
---|
[517] | 112 | estimator.setRegion(mn,mx);
|
---|
| 113 | //estimator.setWindowing(True);
|
---|
| 114 | SpectralList listGauss = estimator.estimate(x_, y_);
|
---|
| 115 | parameters_.resize(n*3);
|
---|
| 116 | Gaussian1D<Float>* g = 0;
|
---|
| 117 | for (uInt i=0; i<n;i++) {
|
---|
| 118 | g = dynamic_cast<Gaussian1D<Float>* >(funcs_[i]);
|
---|
| 119 | if (g) {
|
---|
| 120 | (*g)[0] = listGauss[i].getAmpl();
|
---|
| 121 | (*g)[1] = listGauss[i].getCenter();
|
---|
| 122 | (*g)[2] = listGauss[i].getFWHM();
|
---|
[91] | 123 | }
|
---|
[517] | 124 | }
|
---|
| 125 | estimate_.resize();
|
---|
| 126 | listGauss.evaluate(estimate_,x_);
|
---|
| 127 | return true;
|
---|
[91] | 128 | }
|
---|
| 129 |
|
---|
[890] | 130 | std::vector<float> Fitter::getEstimate() const
|
---|
[91] | 131 | {
|
---|
[517] | 132 | if (estimate_.nelements() == 0)
|
---|
| 133 | throw (AipsError("No estimate set."));
|
---|
| 134 | std::vector<float> stlout;
|
---|
| 135 | estimate_.tovector(stlout);
|
---|
| 136 | return stlout;
|
---|
[91] | 137 | }
|
---|
| 138 |
|
---|
| 139 |
|
---|
[890] | 140 | bool Fitter::setExpression(const std::string& expr, int ncomp)
|
---|
[91] | 141 | {
|
---|
[517] | 142 | clear();
|
---|
| 143 | if (expr == "gauss") {
|
---|
| 144 | if (ncomp < 1) throw (AipsError("Need at least one gaussian to fit."));
|
---|
| 145 | funcs_.resize(ncomp);
|
---|
[1932] | 146 | funcnames_.clear();
|
---|
| 147 | funccomponents_.clear();
|
---|
[517] | 148 | for (Int k=0; k<ncomp; ++k) {
|
---|
| 149 | funcs_[k] = new Gaussian1D<Float>();
|
---|
[1932] | 150 | funcnames_.push_back(expr);
|
---|
| 151 | funccomponents_.push_back(3);
|
---|
[517] | 152 | }
|
---|
[1819] | 153 | } else if (expr == "lorentz") {
|
---|
| 154 | if (ncomp < 1) throw (AipsError("Need at least one lorentzian to fit."));
|
---|
| 155 | funcs_.resize(ncomp);
|
---|
[1932] | 156 | funcnames_.clear();
|
---|
| 157 | funccomponents_.clear();
|
---|
[1819] | 158 | for (Int k=0; k<ncomp; ++k) {
|
---|
| 159 | funcs_[k] = new Lorentzian1D<Float>();
|
---|
[1932] | 160 | funcnames_.push_back(expr);
|
---|
| 161 | funccomponents_.push_back(3);
|
---|
[1819] | 162 | }
|
---|
[2047] | 163 | } else if (expr == "sinusoid") {
|
---|
| 164 | if (ncomp < 1) throw (AipsError("Need at least one sinusoid to fit."));
|
---|
| 165 | funcs_.resize(ncomp);
|
---|
| 166 | funcnames_.clear();
|
---|
| 167 | funccomponents_.clear();
|
---|
| 168 | for (Int k=0; k<ncomp; ++k) {
|
---|
| 169 | funcs_[k] = new Sinusoid1D<Float>();
|
---|
| 170 | funcnames_.push_back(expr);
|
---|
| 171 | funccomponents_.push_back(3);
|
---|
| 172 | }
|
---|
| 173 | } else if (expr == "poly") {
|
---|
| 174 | funcs_.resize(1);
|
---|
| 175 | funcnames_.clear();
|
---|
| 176 | funccomponents_.clear();
|
---|
| 177 | funcs_[0] = new Polynomial<Float>(ncomp);
|
---|
| 178 | funcnames_.push_back(expr);
|
---|
| 179 | funccomponents_.push_back(ncomp);
|
---|
[517] | 180 | } else {
|
---|
[1819] | 181 | LogIO os( LogOrigin( "Fitter", "setExpression()", WHERE ) ) ;
|
---|
| 182 | os << LogIO::WARN << " compiled functions not yet implemented" << LogIO::POST;
|
---|
[517] | 183 | //funcs_.resize(1);
|
---|
| 184 | //funcs_[0] = new CompiledFunction<Float>();
|
---|
| 185 | //funcs_[0]->setFunction(String(expr));
|
---|
| 186 | return false;
|
---|
| 187 | }
|
---|
| 188 | return true;
|
---|
[91] | 189 | }
|
---|
| 190 |
|
---|
[890] | 191 | bool Fitter::setData(std::vector<float> absc, std::vector<float> spec,
|
---|
[91] | 192 | std::vector<bool> mask)
|
---|
| 193 | {
|
---|
| 194 | x_.resize();
|
---|
| 195 | y_.resize();
|
---|
| 196 | m_.resize();
|
---|
| 197 | // convert std::vector to casa Vector
|
---|
| 198 | Vector<Float> tmpx(absc);
|
---|
| 199 | Vector<Float> tmpy(spec);
|
---|
| 200 | Vector<Bool> tmpm(mask);
|
---|
| 201 | AlwaysAssert(tmpx.nelements() == tmpy.nelements(), AipsError);
|
---|
| 202 | x_ = tmpx;
|
---|
| 203 | y_ = tmpy;
|
---|
| 204 | m_ = tmpm;
|
---|
| 205 | return true;
|
---|
| 206 | }
|
---|
| 207 |
|
---|
[890] | 208 | std::vector<float> Fitter::getResidual() const
|
---|
[91] | 209 | {
|
---|
| 210 | if (residual_.nelements() == 0)
|
---|
| 211 | throw (AipsError("Function not yet fitted."));
|
---|
| 212 | std::vector<float> stlout;
|
---|
| 213 | residual_.tovector(stlout);
|
---|
| 214 | return stlout;
|
---|
| 215 | }
|
---|
| 216 |
|
---|
[890] | 217 | std::vector<float> Fitter::getFit() const
|
---|
[91] | 218 | {
|
---|
| 219 | Vector<Float> out = thefit_;
|
---|
| 220 | std::vector<float> stlout;
|
---|
| 221 | out.tovector(stlout);
|
---|
| 222 | return stlout;
|
---|
| 223 |
|
---|
| 224 | }
|
---|
| 225 |
|
---|
[890] | 226 | std::vector<float> Fitter::getErrors() const
|
---|
[91] | 227 | {
|
---|
| 228 | Vector<Float> out = error_;
|
---|
| 229 | std::vector<float> stlout;
|
---|
| 230 | out.tovector(stlout);
|
---|
| 231 | return stlout;
|
---|
| 232 | }
|
---|
| 233 |
|
---|
[890] | 234 | bool Fitter::setParameters(std::vector<float> params)
|
---|
[91] | 235 | {
|
---|
| 236 | Vector<Float> tmppar(params);
|
---|
| 237 | if (funcs_.nelements() == 0)
|
---|
| 238 | throw (AipsError("Function not yet set."));
|
---|
| 239 | if (parameters_.nelements() > 0 && tmppar.nelements() != parameters_.nelements())
|
---|
| 240 | throw (AipsError("Number of parameters inconsistent with function."));
|
---|
[1232] | 241 | if (parameters_.nelements() == 0) {
|
---|
[91] | 242 | parameters_.resize(tmppar.nelements());
|
---|
[1232] | 243 | if (tmppar.nelements() != fixedpar_.nelements()) {
|
---|
| 244 | fixedpar_.resize(tmppar.nelements());
|
---|
| 245 | fixedpar_ = False;
|
---|
| 246 | }
|
---|
| 247 | }
|
---|
[91] | 248 | if (dynamic_cast<Gaussian1D<Float>* >(funcs_[0]) != 0) {
|
---|
| 249 | uInt count = 0;
|
---|
| 250 | for (uInt j=0; j < funcs_.nelements(); ++j) {
|
---|
| 251 | for (uInt i=0; i < funcs_[j]->nparameters(); ++i) {
|
---|
| 252 | (funcs_[j]->parameters())[i] = tmppar[count];
|
---|
| 253 | parameters_[count] = tmppar[count];
|
---|
| 254 | ++count;
|
---|
| 255 | }
|
---|
| 256 | }
|
---|
[1819] | 257 | } else if (dynamic_cast<Lorentzian1D<Float>* >(funcs_[0]) != 0) {
|
---|
| 258 | uInt count = 0;
|
---|
| 259 | for (uInt j=0; j < funcs_.nelements(); ++j) {
|
---|
| 260 | for (uInt i=0; i < funcs_[j]->nparameters(); ++i) {
|
---|
| 261 | (funcs_[j]->parameters())[i] = tmppar[count];
|
---|
| 262 | parameters_[count] = tmppar[count];
|
---|
| 263 | ++count;
|
---|
| 264 | }
|
---|
| 265 | }
|
---|
[2047] | 266 | } else if (dynamic_cast<Sinusoid1D<Float>* >(funcs_[0]) != 0) {
|
---|
| 267 | uInt count = 0;
|
---|
| 268 | for (uInt j=0; j < funcs_.nelements(); ++j) {
|
---|
| 269 | for (uInt i=0; i < funcs_[j]->nparameters(); ++i) {
|
---|
| 270 | (funcs_[j]->parameters())[i] = tmppar[count];
|
---|
| 271 | parameters_[count] = tmppar[count];
|
---|
| 272 | ++count;
|
---|
| 273 | }
|
---|
| 274 | }
|
---|
| 275 | } else if (dynamic_cast<Polynomial<Float>* >(funcs_[0]) != 0) {
|
---|
| 276 | for (uInt i=0; i < funcs_[0]->nparameters(); ++i) {
|
---|
| 277 | parameters_[i] = tmppar[i];
|
---|
| 278 | (funcs_[0]->parameters())[i] = tmppar[i];
|
---|
| 279 | }
|
---|
[91] | 280 | }
|
---|
[1232] | 281 | // reset
|
---|
| 282 | if (params.size() == 0) {
|
---|
| 283 | parameters_.resize();
|
---|
| 284 | fixedpar_.resize();
|
---|
| 285 | }
|
---|
[91] | 286 | return true;
|
---|
| 287 | }
|
---|
| 288 |
|
---|
[890] | 289 | bool Fitter::setFixedParameters(std::vector<bool> fixed)
|
---|
[91] | 290 | {
|
---|
| 291 | if (funcs_.nelements() == 0)
|
---|
| 292 | throw (AipsError("Function not yet set."));
|
---|
[1232] | 293 | if (fixedpar_.nelements() > 0 && fixed.size() != fixedpar_.nelements())
|
---|
[91] | 294 | throw (AipsError("Number of mask elements inconsistent with function."));
|
---|
[1232] | 295 | if (fixedpar_.nelements() == 0) {
|
---|
| 296 | fixedpar_.resize(parameters_.nelements());
|
---|
| 297 | fixedpar_ = False;
|
---|
| 298 | }
|
---|
[91] | 299 | if (dynamic_cast<Gaussian1D<Float>* >(funcs_[0]) != 0) {
|
---|
| 300 | uInt count = 0;
|
---|
| 301 | for (uInt j=0; j < funcs_.nelements(); ++j) {
|
---|
| 302 | for (uInt i=0; i < funcs_[j]->nparameters(); ++i) {
|
---|
[1232] | 303 | funcs_[j]->mask(i) = !fixed[count];
|
---|
| 304 | fixedpar_[count] = fixed[count];
|
---|
[91] | 305 | ++count;
|
---|
| 306 | }
|
---|
| 307 | }
|
---|
[1819] | 308 | } else if (dynamic_cast<Lorentzian1D<Float>* >(funcs_[0]) != 0) {
|
---|
| 309 | uInt count = 0;
|
---|
| 310 | for (uInt j=0; j < funcs_.nelements(); ++j) {
|
---|
| 311 | for (uInt i=0; i < funcs_[j]->nparameters(); ++i) {
|
---|
| 312 | funcs_[j]->mask(i) = !fixed[count];
|
---|
| 313 | fixedpar_[count] = fixed[count];
|
---|
| 314 | ++count;
|
---|
| 315 | }
|
---|
| 316 | }
|
---|
[2047] | 317 | } else if (dynamic_cast<Sinusoid1D<Float>* >(funcs_[0]) != 0) {
|
---|
| 318 | uInt count = 0;
|
---|
| 319 | for (uInt j=0; j < funcs_.nelements(); ++j) {
|
---|
| 320 | for (uInt i=0; i < funcs_[j]->nparameters(); ++i) {
|
---|
| 321 | funcs_[j]->mask(i) = !fixed[count];
|
---|
| 322 | fixedpar_[count] = fixed[count];
|
---|
| 323 | ++count;
|
---|
| 324 | }
|
---|
| 325 | }
|
---|
| 326 | } else if (dynamic_cast<Polynomial<Float>* >(funcs_[0]) != 0) {
|
---|
| 327 | for (uInt i=0; i < funcs_[0]->nparameters(); ++i) {
|
---|
| 328 | fixedpar_[i] = fixed[i];
|
---|
| 329 | funcs_[0]->mask(i) = !fixed[i];
|
---|
| 330 | }
|
---|
[91] | 331 | }
|
---|
| 332 | return true;
|
---|
| 333 | }
|
---|
| 334 |
|
---|
[890] | 335 | std::vector<float> Fitter::getParameters() const {
|
---|
[91] | 336 | Vector<Float> out = parameters_;
|
---|
| 337 | std::vector<float> stlout;
|
---|
| 338 | out.tovector(stlout);
|
---|
| 339 | return stlout;
|
---|
| 340 | }
|
---|
| 341 |
|
---|
[890] | 342 | std::vector<bool> Fitter::getFixedParameters() const {
|
---|
[108] | 343 | Vector<Bool> out(parameters_.nelements());
|
---|
| 344 | if (fixedpar_.nelements() == 0) {
|
---|
[1232] | 345 | return std::vector<bool>();
|
---|
[108] | 346 | //throw (AipsError("No parameter mask set."));
|
---|
| 347 | } else {
|
---|
| 348 | out = fixedpar_;
|
---|
| 349 | }
|
---|
| 350 | std::vector<bool> stlout;
|
---|
| 351 | out.tovector(stlout);
|
---|
| 352 | return stlout;
|
---|
[91] | 353 | }
|
---|
| 354 |
|
---|
[890] | 355 | float Fitter::getChisquared() const {
|
---|
[91] | 356 | return chisquared_;
|
---|
| 357 | }
|
---|
| 358 |
|
---|
[890] | 359 | bool Fitter::fit() {
|
---|
[517] | 360 | NonLinearFitLM<Float> fitter;
|
---|
| 361 | CompoundFunction<Float> func;
|
---|
[612] | 362 |
|
---|
| 363 | uInt n = funcs_.nelements();
|
---|
[517] | 364 | for (uInt i=0; i<n; ++i) {
|
---|
| 365 | func.addFunction(*funcs_[i]);
|
---|
| 366 | }
|
---|
[612] | 367 |
|
---|
[517] | 368 | fitter.setFunction(func);
|
---|
| 369 | fitter.setMaxIter(50+n*10);
|
---|
| 370 | // Convergence criterium
|
---|
| 371 | fitter.setCriteria(0.001);
|
---|
[612] | 372 |
|
---|
[517] | 373 | // Fit
|
---|
| 374 | Vector<Float> sigma(x_.nelements());
|
---|
| 375 | sigma = 1.0;
|
---|
[890] | 376 |
|
---|
[517] | 377 | parameters_.resize();
|
---|
| 378 | parameters_ = fitter.fit(x_, y_, sigma, &m_);
|
---|
[1067] | 379 | if ( !fitter.converged() ) {
|
---|
| 380 | return false;
|
---|
| 381 | }
|
---|
[517] | 382 | std::vector<float> ps;
|
---|
| 383 | parameters_.tovector(ps);
|
---|
| 384 | setParameters(ps);
|
---|
[612] | 385 |
|
---|
[517] | 386 | error_.resize();
|
---|
| 387 | error_ = fitter.errors();
|
---|
[612] | 388 |
|
---|
[517] | 389 | chisquared_ = fitter.getChi2();
|
---|
[890] | 390 |
|
---|
[517] | 391 | residual_.resize();
|
---|
| 392 | residual_ = y_;
|
---|
| 393 | fitter.residual(residual_,x_);
|
---|
| 394 | // use fitter.residual(model=True) to get the model
|
---|
| 395 | thefit_.resize(x_.nelements());
|
---|
| 396 | fitter.residual(thefit_,x_,True);
|
---|
| 397 | return true;
|
---|
| 398 | }
|
---|
[483] | 399 |
|
---|
[1391] | 400 | bool Fitter::lfit() {
|
---|
| 401 | LinearFit<Float> fitter;
|
---|
| 402 | CompoundFunction<Float> func;
|
---|
[483] | 403 |
|
---|
[1391] | 404 | uInt n = funcs_.nelements();
|
---|
| 405 | for (uInt i=0; i<n; ++i) {
|
---|
| 406 | func.addFunction(*funcs_[i]);
|
---|
| 407 | }
|
---|
| 408 |
|
---|
| 409 | fitter.setFunction(func);
|
---|
| 410 | //fitter.setMaxIter(50+n*10);
|
---|
| 411 | // Convergence criterium
|
---|
| 412 | //fitter.setCriteria(0.001);
|
---|
| 413 |
|
---|
| 414 | // Fit
|
---|
| 415 | Vector<Float> sigma(x_.nelements());
|
---|
| 416 | sigma = 1.0;
|
---|
| 417 |
|
---|
| 418 | parameters_.resize();
|
---|
| 419 | parameters_ = fitter.fit(x_, y_, sigma, &m_);
|
---|
| 420 | std::vector<float> ps;
|
---|
| 421 | parameters_.tovector(ps);
|
---|
| 422 | setParameters(ps);
|
---|
| 423 |
|
---|
| 424 | error_.resize();
|
---|
| 425 | error_ = fitter.errors();
|
---|
| 426 |
|
---|
| 427 | chisquared_ = fitter.getChi2();
|
---|
| 428 |
|
---|
| 429 | residual_.resize();
|
---|
| 430 | residual_ = y_;
|
---|
| 431 | fitter.residual(residual_,x_);
|
---|
| 432 | // use fitter.residual(model=True) to get the model
|
---|
| 433 | thefit_.resize(x_.nelements());
|
---|
| 434 | fitter.residual(thefit_,x_,True);
|
---|
| 435 | return true;
|
---|
| 436 | }
|
---|
| 437 |
|
---|
[890] | 438 | std::vector<float> Fitter::evaluate(int whichComp) const
|
---|
| 439 | {
|
---|
[517] | 440 | std::vector<float> stlout;
|
---|
[890] | 441 | uInt idx = uInt(whichComp);
|
---|
[517] | 442 | Float y;
|
---|
| 443 | if ( idx < funcs_.nelements() ) {
|
---|
| 444 | for (uInt i=0; i<x_.nelements(); ++i) {
|
---|
| 445 | y = (*funcs_[idx])(x_[i]);
|
---|
| 446 | stlout.push_back(float(y));
|
---|
| 447 | }
|
---|
| 448 | }
|
---|
| 449 | return stlout;
|
---|
| 450 | }
|
---|
[483] | 451 |
|
---|
[1932] | 452 | STFitEntry Fitter::getFitEntry() const
|
---|
| 453 | {
|
---|
| 454 | STFitEntry fit;
|
---|
| 455 | fit.setParameters(getParameters());
|
---|
| 456 | fit.setErrors(getErrors());
|
---|
| 457 | fit.setComponents(funccomponents_);
|
---|
| 458 | fit.setFunctions(funcnames_);
|
---|
| 459 | fit.setParmasks(getFixedParameters());
|
---|
| 460 | return fit;
|
---|
| 461 | }
|
---|