[91] | 1 | //#---------------------------------------------------------------------------
|
---|
[890] | 2 | //# Fitter.cc: A Fitter class for spectra
|
---|
[91] | 3 | //#--------------------------------------------------------------------------
|
---|
| 4 | //# Copyright (C) 2004
|
---|
[125] | 5 | //# ATNF
|
---|
[91] | 6 | //#
|
---|
| 7 | //# This program is free software; you can redistribute it and/or modify it
|
---|
| 8 | //# under the terms of the GNU General Public License as published by the Free
|
---|
| 9 | //# Software Foundation; either version 2 of the License, or (at your option)
|
---|
| 10 | //# any later version.
|
---|
| 11 | //#
|
---|
| 12 | //# This program is distributed in the hope that it will be useful, but
|
---|
| 13 | //# WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | //# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
---|
| 15 | //# Public License for more details.
|
---|
| 16 | //#
|
---|
| 17 | //# You should have received a copy of the GNU General Public License along
|
---|
| 18 | //# with this program; if not, write to the Free Software Foundation, Inc.,
|
---|
| 19 | //# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
|
---|
| 20 | //#
|
---|
| 21 | //# Correspondence concerning this software should be addressed as follows:
|
---|
| 22 | //# Internet email: Malte.Marquarding@csiro.au
|
---|
| 23 | //# Postal address: Malte Marquarding,
|
---|
| 24 | //# Australia Telescope National Facility,
|
---|
| 25 | //# P.O. Box 76,
|
---|
| 26 | //# Epping, NSW, 2121,
|
---|
| 27 | //# AUSTRALIA
|
---|
| 28 | //#
|
---|
[891] | 29 | //# $Id: STFitter.cpp 1391 2007-07-30 01:59:36Z MalteMarquarding $
|
---|
[91] | 30 | //#---------------------------------------------------------------------------
|
---|
[125] | 31 | #include <casa/aips.h>
|
---|
[91] | 32 | #include <casa/Arrays/ArrayMath.h>
|
---|
| 33 | #include <casa/Arrays/ArrayLogical.h>
|
---|
| 34 | #include <scimath/Fitting.h>
|
---|
| 35 | #include <scimath/Fitting/LinearFit.h>
|
---|
| 36 | #include <scimath/Functionals/CompiledFunction.h>
|
---|
| 37 | #include <scimath/Functionals/CompoundFunction.h>
|
---|
| 38 | #include <scimath/Functionals/Gaussian1D.h>
|
---|
| 39 | #include <scimath/Functionals/Polynomial.h>
|
---|
| 40 | #include <scimath/Mathematics/AutoDiff.h>
|
---|
| 41 | #include <scimath/Mathematics/AutoDiffMath.h>
|
---|
| 42 | #include <scimath/Fitting/NonLinearFitLM.h>
|
---|
| 43 | #include <components/SpectralComponents/SpectralEstimate.h>
|
---|
| 44 |
|
---|
[894] | 45 | #include "STFitter.h"
|
---|
| 46 |
|
---|
[91] | 47 | using namespace asap;
|
---|
[125] | 48 | using namespace casa;
|
---|
[91] | 49 |
|
---|
[890] | 50 | Fitter::Fitter()
|
---|
[91] | 51 | {
|
---|
| 52 | }
|
---|
| 53 |
|
---|
[890] | 54 | Fitter::~Fitter()
|
---|
[91] | 55 | {
|
---|
[517] | 56 | reset();
|
---|
[91] | 57 | }
|
---|
| 58 |
|
---|
[890] | 59 | void Fitter::clear()
|
---|
[91] | 60 | {
|
---|
[517] | 61 | for (uInt i=0;i< funcs_.nelements();++i) {
|
---|
| 62 | delete funcs_[i]; funcs_[i] = 0;
|
---|
| 63 | }
|
---|
[612] | 64 | funcs_.resize(0,True);
|
---|
[517] | 65 | parameters_.resize();
|
---|
[1232] | 66 | fixedpar_.resize();
|
---|
[517] | 67 | error_.resize();
|
---|
| 68 | thefit_.resize();
|
---|
| 69 | estimate_.resize();
|
---|
| 70 | chisquared_ = 0.0;
|
---|
[91] | 71 | }
|
---|
[517] | 72 |
|
---|
[890] | 73 | void Fitter::reset()
|
---|
[91] | 74 | {
|
---|
[517] | 75 | clear();
|
---|
| 76 | x_.resize();
|
---|
| 77 | y_.resize();
|
---|
| 78 | m_.resize();
|
---|
[91] | 79 | }
|
---|
| 80 |
|
---|
| 81 |
|
---|
[890] | 82 | bool Fitter::computeEstimate() {
|
---|
[517] | 83 | if (x_.nelements() == 0 || y_.nelements() == 0)
|
---|
| 84 | throw (AipsError("No x/y data specified."));
|
---|
[91] | 85 |
|
---|
[517] | 86 | if (dynamic_cast<Gaussian1D<Float>* >(funcs_[0]) == 0)
|
---|
| 87 | return false;
|
---|
| 88 | uInt n = funcs_.nelements();
|
---|
| 89 | SpectralEstimate estimator(n);
|
---|
| 90 | estimator.setQ(5);
|
---|
| 91 | Int mn,mx;
|
---|
| 92 | mn = 0;
|
---|
| 93 | mx = m_.nelements()-1;
|
---|
| 94 | for (uInt i=0; i<m_.nelements();++i) {
|
---|
| 95 | if (m_[i]) {
|
---|
| 96 | mn = i;
|
---|
| 97 | break;
|
---|
[108] | 98 | }
|
---|
[517] | 99 | }
|
---|
| 100 | for (uInt j=m_.nelements()-1; j>=0;--j) {
|
---|
| 101 | if (m_[j]) {
|
---|
| 102 | mx = j;
|
---|
| 103 | break;
|
---|
[108] | 104 | }
|
---|
[517] | 105 | }
|
---|
[1067] | 106 | //mn = 0+x_.nelements()/10;
|
---|
| 107 | //mx = x_.nelements()-x_.nelements()/10;
|
---|
[517] | 108 | estimator.setRegion(mn,mx);
|
---|
| 109 | //estimator.setWindowing(True);
|
---|
| 110 | SpectralList listGauss = estimator.estimate(x_, y_);
|
---|
| 111 | parameters_.resize(n*3);
|
---|
| 112 | Gaussian1D<Float>* g = 0;
|
---|
| 113 | for (uInt i=0; i<n;i++) {
|
---|
| 114 | g = dynamic_cast<Gaussian1D<Float>* >(funcs_[i]);
|
---|
| 115 | if (g) {
|
---|
| 116 | (*g)[0] = listGauss[i].getAmpl();
|
---|
| 117 | (*g)[1] = listGauss[i].getCenter();
|
---|
| 118 | (*g)[2] = listGauss[i].getFWHM();
|
---|
[91] | 119 | }
|
---|
[517] | 120 | }
|
---|
| 121 | estimate_.resize();
|
---|
| 122 | listGauss.evaluate(estimate_,x_);
|
---|
| 123 | return true;
|
---|
[91] | 124 | }
|
---|
| 125 |
|
---|
[890] | 126 | std::vector<float> Fitter::getEstimate() const
|
---|
[91] | 127 | {
|
---|
[517] | 128 | if (estimate_.nelements() == 0)
|
---|
| 129 | throw (AipsError("No estimate set."));
|
---|
| 130 | std::vector<float> stlout;
|
---|
| 131 | estimate_.tovector(stlout);
|
---|
| 132 | return stlout;
|
---|
[91] | 133 | }
|
---|
| 134 |
|
---|
| 135 |
|
---|
[890] | 136 | bool Fitter::setExpression(const std::string& expr, int ncomp)
|
---|
[91] | 137 | {
|
---|
[517] | 138 | clear();
|
---|
| 139 | if (expr == "gauss") {
|
---|
| 140 | if (ncomp < 1) throw (AipsError("Need at least one gaussian to fit."));
|
---|
| 141 | funcs_.resize(ncomp);
|
---|
| 142 | for (Int k=0; k<ncomp; ++k) {
|
---|
| 143 | funcs_[k] = new Gaussian1D<Float>();
|
---|
| 144 | }
|
---|
| 145 | } else if (expr == "poly") {
|
---|
| 146 | funcs_.resize(1);
|
---|
| 147 | funcs_[0] = new Polynomial<Float>(ncomp);
|
---|
| 148 | } else {
|
---|
| 149 | cerr << " compiled functions not yet implemented" << endl;
|
---|
| 150 | //funcs_.resize(1);
|
---|
| 151 | //funcs_[0] = new CompiledFunction<Float>();
|
---|
| 152 | //funcs_[0]->setFunction(String(expr));
|
---|
| 153 | return false;
|
---|
| 154 | }
|
---|
| 155 | return true;
|
---|
[91] | 156 | }
|
---|
| 157 |
|
---|
[890] | 158 | bool Fitter::setData(std::vector<float> absc, std::vector<float> spec,
|
---|
[91] | 159 | std::vector<bool> mask)
|
---|
| 160 | {
|
---|
| 161 | x_.resize();
|
---|
| 162 | y_.resize();
|
---|
| 163 | m_.resize();
|
---|
| 164 | // convert std::vector to casa Vector
|
---|
| 165 | Vector<Float> tmpx(absc);
|
---|
| 166 | Vector<Float> tmpy(spec);
|
---|
| 167 | Vector<Bool> tmpm(mask);
|
---|
| 168 | AlwaysAssert(tmpx.nelements() == tmpy.nelements(), AipsError);
|
---|
| 169 | x_ = tmpx;
|
---|
| 170 | y_ = tmpy;
|
---|
| 171 | m_ = tmpm;
|
---|
| 172 | return true;
|
---|
| 173 | }
|
---|
| 174 |
|
---|
[890] | 175 | std::vector<float> Fitter::getResidual() const
|
---|
[91] | 176 | {
|
---|
| 177 | if (residual_.nelements() == 0)
|
---|
| 178 | throw (AipsError("Function not yet fitted."));
|
---|
| 179 | std::vector<float> stlout;
|
---|
| 180 | residual_.tovector(stlout);
|
---|
| 181 | return stlout;
|
---|
| 182 | }
|
---|
| 183 |
|
---|
[890] | 184 | std::vector<float> Fitter::getFit() const
|
---|
[91] | 185 | {
|
---|
| 186 | Vector<Float> out = thefit_;
|
---|
| 187 | std::vector<float> stlout;
|
---|
| 188 | out.tovector(stlout);
|
---|
| 189 | return stlout;
|
---|
| 190 |
|
---|
| 191 | }
|
---|
| 192 |
|
---|
[890] | 193 | std::vector<float> Fitter::getErrors() const
|
---|
[91] | 194 | {
|
---|
| 195 | Vector<Float> out = error_;
|
---|
| 196 | std::vector<float> stlout;
|
---|
| 197 | out.tovector(stlout);
|
---|
| 198 | return stlout;
|
---|
| 199 | }
|
---|
| 200 |
|
---|
[890] | 201 | bool Fitter::setParameters(std::vector<float> params)
|
---|
[91] | 202 | {
|
---|
| 203 | Vector<Float> tmppar(params);
|
---|
| 204 | if (funcs_.nelements() == 0)
|
---|
| 205 | throw (AipsError("Function not yet set."));
|
---|
| 206 | if (parameters_.nelements() > 0 && tmppar.nelements() != parameters_.nelements())
|
---|
| 207 | throw (AipsError("Number of parameters inconsistent with function."));
|
---|
[1232] | 208 | if (parameters_.nelements() == 0) {
|
---|
[91] | 209 | parameters_.resize(tmppar.nelements());
|
---|
[1232] | 210 | if (tmppar.nelements() != fixedpar_.nelements()) {
|
---|
| 211 | fixedpar_.resize(tmppar.nelements());
|
---|
| 212 | fixedpar_ = False;
|
---|
| 213 | }
|
---|
| 214 | }
|
---|
[91] | 215 | if (dynamic_cast<Gaussian1D<Float>* >(funcs_[0]) != 0) {
|
---|
| 216 | uInt count = 0;
|
---|
| 217 | for (uInt j=0; j < funcs_.nelements(); ++j) {
|
---|
| 218 | for (uInt i=0; i < funcs_[j]->nparameters(); ++i) {
|
---|
| 219 | (funcs_[j]->parameters())[i] = tmppar[count];
|
---|
| 220 | parameters_[count] = tmppar[count];
|
---|
| 221 | ++count;
|
---|
| 222 | }
|
---|
| 223 | }
|
---|
| 224 | } else if (dynamic_cast<Polynomial<Float>* >(funcs_[0]) != 0) {
|
---|
| 225 | for (uInt i=0; i < funcs_[0]->nparameters(); ++i) {
|
---|
| 226 | parameters_[i] = tmppar[i];
|
---|
| 227 | (funcs_[0]->parameters())[i] = tmppar[i];
|
---|
| 228 | }
|
---|
| 229 | }
|
---|
[1232] | 230 | // reset
|
---|
| 231 | if (params.size() == 0) {
|
---|
| 232 | parameters_.resize();
|
---|
| 233 | fixedpar_.resize();
|
---|
| 234 | }
|
---|
[91] | 235 | return true;
|
---|
| 236 | }
|
---|
| 237 |
|
---|
[890] | 238 | bool Fitter::setFixedParameters(std::vector<bool> fixed)
|
---|
[91] | 239 | {
|
---|
| 240 | if (funcs_.nelements() == 0)
|
---|
| 241 | throw (AipsError("Function not yet set."));
|
---|
[1232] | 242 | if (fixedpar_.nelements() > 0 && fixed.size() != fixedpar_.nelements())
|
---|
[91] | 243 | throw (AipsError("Number of mask elements inconsistent with function."));
|
---|
[1232] | 244 | if (fixedpar_.nelements() == 0) {
|
---|
| 245 | fixedpar_.resize(parameters_.nelements());
|
---|
| 246 | fixedpar_ = False;
|
---|
| 247 | }
|
---|
[91] | 248 | if (dynamic_cast<Gaussian1D<Float>* >(funcs_[0]) != 0) {
|
---|
| 249 | uInt count = 0;
|
---|
| 250 | for (uInt j=0; j < funcs_.nelements(); ++j) {
|
---|
| 251 | for (uInt i=0; i < funcs_[j]->nparameters(); ++i) {
|
---|
[1232] | 252 | funcs_[j]->mask(i) = !fixed[count];
|
---|
| 253 | fixedpar_[count] = fixed[count];
|
---|
[91] | 254 | ++count;
|
---|
| 255 | }
|
---|
| 256 | }
|
---|
| 257 | } else if (dynamic_cast<Polynomial<Float>* >(funcs_[0]) != 0) {
|
---|
| 258 | for (uInt i=0; i < funcs_[0]->nparameters(); ++i) {
|
---|
[1232] | 259 | fixedpar_[i] = fixed[i];
|
---|
| 260 | funcs_[0]->mask(i) = !fixed[i];
|
---|
[91] | 261 | }
|
---|
| 262 | }
|
---|
| 263 | return true;
|
---|
| 264 | }
|
---|
| 265 |
|
---|
[890] | 266 | std::vector<float> Fitter::getParameters() const {
|
---|
[91] | 267 | Vector<Float> out = parameters_;
|
---|
| 268 | std::vector<float> stlout;
|
---|
| 269 | out.tovector(stlout);
|
---|
| 270 | return stlout;
|
---|
| 271 | }
|
---|
| 272 |
|
---|
[890] | 273 | std::vector<bool> Fitter::getFixedParameters() const {
|
---|
[108] | 274 | Vector<Bool> out(parameters_.nelements());
|
---|
| 275 | if (fixedpar_.nelements() == 0) {
|
---|
[1232] | 276 | return std::vector<bool>();
|
---|
[108] | 277 | //throw (AipsError("No parameter mask set."));
|
---|
| 278 | } else {
|
---|
| 279 | out = fixedpar_;
|
---|
| 280 | }
|
---|
| 281 | std::vector<bool> stlout;
|
---|
| 282 | out.tovector(stlout);
|
---|
| 283 | return stlout;
|
---|
[91] | 284 | }
|
---|
| 285 |
|
---|
[890] | 286 | float Fitter::getChisquared() const {
|
---|
[91] | 287 | return chisquared_;
|
---|
| 288 | }
|
---|
| 289 |
|
---|
[890] | 290 | bool Fitter::fit() {
|
---|
[517] | 291 | NonLinearFitLM<Float> fitter;
|
---|
| 292 | CompoundFunction<Float> func;
|
---|
[612] | 293 |
|
---|
| 294 | uInt n = funcs_.nelements();
|
---|
[517] | 295 | for (uInt i=0; i<n; ++i) {
|
---|
| 296 | func.addFunction(*funcs_[i]);
|
---|
| 297 | }
|
---|
[612] | 298 |
|
---|
[517] | 299 | fitter.setFunction(func);
|
---|
| 300 | fitter.setMaxIter(50+n*10);
|
---|
| 301 | // Convergence criterium
|
---|
| 302 | fitter.setCriteria(0.001);
|
---|
[612] | 303 |
|
---|
[517] | 304 | // Fit
|
---|
| 305 | Vector<Float> sigma(x_.nelements());
|
---|
| 306 | sigma = 1.0;
|
---|
[890] | 307 |
|
---|
[517] | 308 | parameters_.resize();
|
---|
| 309 | parameters_ = fitter.fit(x_, y_, sigma, &m_);
|
---|
[1067] | 310 | if ( !fitter.converged() ) {
|
---|
| 311 | return false;
|
---|
| 312 | }
|
---|
[517] | 313 | std::vector<float> ps;
|
---|
| 314 | parameters_.tovector(ps);
|
---|
| 315 | setParameters(ps);
|
---|
[612] | 316 |
|
---|
[517] | 317 | error_.resize();
|
---|
| 318 | error_ = fitter.errors();
|
---|
[612] | 319 |
|
---|
[517] | 320 | chisquared_ = fitter.getChi2();
|
---|
[890] | 321 |
|
---|
[517] | 322 | residual_.resize();
|
---|
| 323 | residual_ = y_;
|
---|
| 324 | fitter.residual(residual_,x_);
|
---|
| 325 | // use fitter.residual(model=True) to get the model
|
---|
| 326 | thefit_.resize(x_.nelements());
|
---|
| 327 | fitter.residual(thefit_,x_,True);
|
---|
| 328 | return true;
|
---|
| 329 | }
|
---|
[483] | 330 |
|
---|
[1391] | 331 | bool Fitter::lfit() {
|
---|
| 332 | LinearFit<Float> fitter;
|
---|
| 333 | CompoundFunction<Float> func;
|
---|
[483] | 334 |
|
---|
[1391] | 335 | uInt n = funcs_.nelements();
|
---|
| 336 | for (uInt i=0; i<n; ++i) {
|
---|
| 337 | func.addFunction(*funcs_[i]);
|
---|
| 338 | }
|
---|
| 339 |
|
---|
| 340 | fitter.setFunction(func);
|
---|
| 341 | //fitter.setMaxIter(50+n*10);
|
---|
| 342 | // Convergence criterium
|
---|
| 343 | //fitter.setCriteria(0.001);
|
---|
| 344 |
|
---|
| 345 | // Fit
|
---|
| 346 | Vector<Float> sigma(x_.nelements());
|
---|
| 347 | sigma = 1.0;
|
---|
| 348 |
|
---|
| 349 | parameters_.resize();
|
---|
| 350 | parameters_ = fitter.fit(x_, y_, sigma, &m_);
|
---|
| 351 | std::vector<float> ps;
|
---|
| 352 | parameters_.tovector(ps);
|
---|
| 353 | setParameters(ps);
|
---|
| 354 |
|
---|
| 355 | error_.resize();
|
---|
| 356 | error_ = fitter.errors();
|
---|
| 357 |
|
---|
| 358 | chisquared_ = fitter.getChi2();
|
---|
| 359 |
|
---|
| 360 | residual_.resize();
|
---|
| 361 | residual_ = y_;
|
---|
| 362 | fitter.residual(residual_,x_);
|
---|
| 363 | // use fitter.residual(model=True) to get the model
|
---|
| 364 | thefit_.resize(x_.nelements());
|
---|
| 365 | fitter.residual(thefit_,x_,True);
|
---|
| 366 | return true;
|
---|
| 367 | }
|
---|
| 368 |
|
---|
[890] | 369 | std::vector<float> Fitter::evaluate(int whichComp) const
|
---|
| 370 | {
|
---|
[517] | 371 | std::vector<float> stlout;
|
---|
[890] | 372 | uInt idx = uInt(whichComp);
|
---|
[517] | 373 | Float y;
|
---|
| 374 | if ( idx < funcs_.nelements() ) {
|
---|
| 375 | for (uInt i=0; i<x_.nelements(); ++i) {
|
---|
| 376 | y = (*funcs_[idx])(x_[i]);
|
---|
| 377 | stlout.push_back(float(y));
|
---|
| 378 | }
|
---|
| 379 | }
|
---|
| 380 | return stlout;
|
---|
| 381 | }
|
---|
[483] | 382 |
|
---|