source: trunk/src/STAtmosphere.h @ 1715

Last change on this file since 1715 was 1715, checked in by Max Voronkov, 14 years ago

changed pressure to the mean sea level to match miriad, bugfix, C++ code is now exposed to python

File size: 10.1 KB
Line 
1//#---------------------------------------------------------------------------
2//# STAtmosphere.h: Model of atmospheric opacity
3//#---------------------------------------------------------------------------
4//# Copyright (C) 2004
5//# ATNF
6//#
7//# The code is based on the Fortran code written by Bob Sault for MIRIAD.
8//# Converted to C++ by Max Voronkov. This code uses a simple model of the
9//# atmosphere and Liebe's model (1985) of the complex refractive index of
10//# air.
11//#
12//# The model of the atmosphere is one with an exponential fall-off in
13//# the water vapour content (scale height of 1540 m) and a temperature lapse
14//# rate of 6.5 mK/m. Otherwise the atmosphere obeys the ideal gas equation
15//# and hydrostatic equilibrium.
16//#
17//# This program is free software; you can redistribute it and/or modify it
18//# under the terms of the GNU General Public License as published by the Free
19//# Software Foundation; either version 2 of the License, or (at your option)
20//# any later version.
21//#
22//# This program is distributed in the hope that it will be useful, but
23//# WITHOUT ANY WARRANTY; without even the implied warranty of
24//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
25//# Public License for more details.
26//#
27//# You should have received a copy of the GNU General Public License along
28//# with this program; if not, write to the Free Software Foundation, Inc.,
29//# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
30//#
31//# Correspondence concerning this software should be addressed as follows:
32//#        Internet email: Malte.Marquarding@csiro.au
33//#        Postal address: Malte Marquarding,
34//#                        Australia Telescope National Facility,
35//#                        P.O. Box 76,
36//#                        Epping, NSW, 2121,
37//#                        AUSTRALIA
38//#
39//# $Id: STAtmosphere.h 1346 2007-04-26 03:24:41Z mar637 $
40//#---------------------------------------------------------------------------
41
42#ifndef STATMOSPHERE_H
43#define STATMOSPHERE_H
44
45// std includes
46#include <vector>
47#include <complex>
48
49namespace asap {
50
51/**
52  * This class implements opacity/atmospheric brightness temperature model
53  * equivalent to the model available in MIRIAD. The actual math is a
54  * convertion of the Fortran code written by Bob Sault for MIRIAD.
55  * It implements a simple model of the atmosphere and Liebe's model (1985)
56  * of the complex refractive index of air.
57  *
58  * The model of the atmosphere is one with an exponential fall-off in
59  * the water vapour content (scale height of 1540 m) and a temperature lapse
60  * rate of 6.5 mK/m. Otherwise the atmosphere obeys the ideal gas equation
61  * and hydrostatic equilibrium.
62  *
63  * Note, the model includes atmospheric lines up to 800 GHz, but was not
64  * rigorously tested above 100 GHz and for instruments located at
65  * a significant elevation. For high-elevation sites it may be necessary to
66  * adjust scale height and lapse rate.
67  *
68  * @brief The ASAP atmosphere opacity model
69  * @author Max Voronkov
70  * @date $Date: 2010-03-17 14:55:17 +1000 (Thu, 26 Apr 2007) $
71  * @version
72  */
73class STAtmosphere {
74public:
75  /**
76   * Default Constructor (apart from optional parameters).
77   * The class set up this way will assume International Standard Atmosphere (ISA) conditions,
78   * except for humidity. The latter is assumed to be 50%, which seems more realistic for
79   * Australian telescopes than 0%.
80   * @param[in] wvScale water vapour scale height (m), default is 1540m to match MIRIAD's model
81   * @param[in] maxAlt maximum altitude of the model atmosphere (m), plane parallel layers are spread linearly up to
82   *            this height, default is 10000m to match MIRIAD.
83   * @param[in] nLayers number of plane parallel layers in the model (essentially for a numberical integration),
84   *            default is 50 to match MIRIAD.
85   **/
86  explicit STAtmosphere(double wvScale = 1540., double maxAlt = 10000.0, size_t nLayers = 50);
87   
88  /**
89   * Constructor with explicitly given parameters of the atmosphere
90   * @param[in] temperature air temperature at the observatory (K)
91   * @param[in] pressure air pressure at the observatory (Pascals)
92   * @param[in] humidity air humidity at the observatory (fraction)
93   * @param[in] lapseRate temperature lapse rate (K/m), default is 0.0065 K/m to match MIRIAD and ISA
94   * @param[in] wvScale water vapour scale height (m), default is 1540m to match MIRIAD's model
95   * @param[in] maxAlt maximum altitude of the model atmosphere (m), plane parallel layers are spread linearly up to
96   *            this height, default is 10000m to match MIRIAD.
97   * @param[in] nLayers number of plane parallel layers in the model (essentially for a numberical integration),
98   *            default is 50 to match MIRIAD.
99   **/
100  STAtmosphere(double temperature, double pressure, double humidity, double lapseRate = 0.0065,
101               double wvScale = 1540., double maxAlt = 10000.0, size_t nLayers = 50);
102   
103  /**
104   * Set the new weather station data, recompute the model
105   * @param[in] temperature air temperature at the observatory (K)
106   * @param[in] pressure air pressure at the observatory (Pascals)
107   * @param[in] humidity air humidity at the observatory (fraction)
108   **/
109  void setWeather(double temperature, double pressure, double humidity);
110
111  /**
112   * Set the elevation of the observatory (height above mean sea level)
113   * By default, 200m is assumed.
114   * @param[in] elev elevation in metres
115   **/
116  void setObservatoryElevation(double elev);
117
118  /**
119   * Calculate zenith opacity at the given frequency. This is a simplified version
120   * of the routine implemented in MIRIAD, which calculates just zenith opacity and
121   * nothing else. Note, that if the opacity is high, 1/sin(el) law is not correct
122   * even in the plane parallel case due to refraction.
123   * @param[in] freq frequency of interest in Hz
124   * @return zenith opacity (nepers, i.e. dimensionless)
125   **/
126  double zenithOpacity(double freq) const;
127
128  /**
129   * Calculate zenith opacity for the range of frequencies. Same as zenithOpacity, but
130   * for a vector of frequencies.
131   * @param[in] freqs vector of frequencies in Hz
132   * @return vector of zenith opacities, one value per frequency (nepers, i.e. dimensionless)
133   **/
134  std::vector<double> zenithOpacities(const std::vector<double> &freqs) const;
135 
136  /**
137   * Calculate opacity at the given frequency and elevation. This is a simplified
138   * version of the routine implemented in MIRIAD, which calculates just the opacity and
139   * nothing else. In contract to zenithOpacity, this method takes into account refraction
140   * and is more accurate than if one assumes 1/sin(el) factor.
141   * @param[in] freq frequency of interest in Hz
142   * @param[in] el elevation in radians
143   * @return zenith opacity (nepers, i.e. dimensionless)
144   **/
145  double opacity(double freq, double el) const;
146
147  /**
148   * Calculate opacities for the range of frequencies at the given elevation. Same as
149   * opacity, but for a vector of frequencies.
150   * @param[in] freqs vector of frequencies in Hz
151   * @param[in] el elevation in radians
152   * @return vector of opacities, one value per frequency (nepers, i.e. dimensionless)
153   **/
154  std::vector<double> opacities(const std::vector<double> &freqs, double el) const;
155         
156protected:
157  /**
158   * Build the atmosphere model based on exponential fall-off, ideal gas and hydrostatic
159   * equilibrium. The model parameters are taken from the data members of this class.
160   **/
161  void recomputeAtmosphereModel();
162 
163  /**
164   * Obtain the number of model layers, do consistency check that everything is
165   * resized accordingly
166   * @retrun number of model layers
167   **/
168  size_t nLayers() const;
169 
170  /**
171   * Determine the saturation pressure of water vapour for the given temperature.
172   *
173   * Reference:
174   * Waters, Refraction effects in the neutral atmosphere. Methods of
175   * Experimental Physics, vol 12B, p 186-200 (1976).
176   *   
177   * @param[in] temperature temperature in K
178   * @return vapour saturation pressure (Pascals)
179   **/
180  static double wvSaturationPressure(double temperature);
181   
182  /**
183   * Compute the complex refractivity of the dry components of the atmosphere
184   * (oxygen lines) at the given frequency.
185   * @param[in] freq frequency (Hz)
186   * @param[in] temperature air temperature (K)
187   * @param[in] pDry partial pressure of dry components (Pascals)
188   * @param[in] pVapour partial pressure of water vapour (Pascals)
189   * @return complex refractivity
190   *
191   * Reference:
192   * Liebe, An updated model for millimeter wave propogation in moist air,
193   * Radio Science, 20, 1069-1089 (1985).
194   **/
195  static std::complex<double> dryRefractivity(double freq, double temperature,
196                     double pDry, double pVapour);
197 
198  /**
199   * Compute the complex refractivity of the water vapour monomers
200   * at the given frequency.
201   * @param[in] freq frequency (Hz)
202   * @param[in] temperature air temperature (K)
203   * @param[in] pDry partial pressure of dry components (Pascals)
204   * @param[in] pVapour partial pressure of water vapour (Pascals)
205   * @return complex refractivity
206   *
207   * Reference:
208   * Liebe, An updated model for millimeter wave propogation in moist air,
209   * Radio Science, 20, 1069-1089 (1985).
210   **/
211  static std::complex<double> vapourRefractivity(double freq, double temperature,
212                     double pDry, double pVapour);
213     
214private:
215 
216  // heights of all model layers
217  std::vector<double> itsHeights;
218 
219  // temperatures of all model layers
220  std::vector<double> itsTemperatures;
221 
222  // partial pressures of dry component for all model layers
223  std::vector<double> itsDryPressures;
224 
225  // partial pressure of water vapour for all model layers
226  std::vector<double> itsVapourPressures;
227 
228  /**
229   *  Atmosphere parameters
230   **/
231 
232  // ground level temperature (K)
233  double itsGndTemperature;
234 
235  // sea level pressure (Pascals)
236  double itsPressure;
237 
238  // ground level humidity (fraction)
239  double itsGndHumidity;
240 
241  // lapse rate (K/m)
242  double itsLapseRate;
243 
244  // water vapour scale height (m)
245  double itsWVScale;
246 
247  // altitude of the highest layer of the model (m)
248  double itsMaxAlt;
249 
250  // observatory elevation (m)
251  double itsObsHeight;
252};
253
254} // namespace asap
255
256#endif // #ifndef STATMOSPHERE_H
257
Note: See TracBrowser for help on using the repository browser.