//#--------------------------------------------------------------------------- //# STAtmosphere.h: Model of atmospheric opacity //#--------------------------------------------------------------------------- //# Copyright (C) 2004 //# ATNF //# //# The code is based on the Fortran code written by Bob Sault for MIRIAD. //# Converted to C++ by Max Voronkov. This code uses a simple model of the //# atmosphere and Liebe's model (1985) of the complex refractive index of //# air. //# //# The model of the atmosphere is one with an exponential fall-off in //# the water vapour content (scale height of 1540 m) and a temperature lapse //# rate of 6.5 mK/m. Otherwise the atmosphere obeys the ideal gas equation //# and hydrostatic equilibrium. //# //# This program is free software; you can redistribute it and/or modify it //# under the terms of the GNU General Public License as published by the Free //# Software Foundation; either version 2 of the License, or (at your option) //# any later version. //# //# This program is distributed in the hope that it will be useful, but //# WITHOUT ANY WARRANTY; without even the implied warranty of //# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General //# Public License for more details. //# //# You should have received a copy of the GNU General Public License along //# with this program; if not, write to the Free Software Foundation, Inc., //# 675 Massachusetts Ave, Cambridge, MA 02139, USA. //# //# Correspondence concerning this software should be addressed as follows: //# Internet email: Malte.Marquarding@csiro.au //# Postal address: Malte Marquarding, //# Australia Telescope National Facility, //# P.O. Box 76, //# Epping, NSW, 2121, //# AUSTRALIA //# //# $Id: STAtmosphere.h 1346 2007-04-26 03:24:41Z mar637 $ //#--------------------------------------------------------------------------- // own includes #include "STAtmosphere.h" // casa includes #include #include // std includes #include using namespace casa; using namespace asap; /** * Default Constructor (apart from optional parameters). * The class set up this way will assume International Standard Atmosphere (ISA) conditions, * except for humidity. The latter is assumed to be 50%, which seems more realistic for * Australian telescopes than 0%. * @param[in] wvScale water vapour scale height (m), default is 1540m to match MIRIAD's model * @param[in] maxAlt maximum altitude of the model atmosphere (m), plane parallel layers are spread linearly up to * this height, default is 10000m to match MIRIAD. * @param[in] nLayers number of plane parallel layers in the model (essentially for a numberical integration), * default is 50 to match MIRIAD. **/ STAtmosphere::STAtmosphere(double wvScale, double maxAlt, size_t nLayers) : itsGndTemperature(288.), itsGndPressure(101325.), itsGndHumidity(0.5), itsLapseRate(0.0065), itsWVScale(wvScale), itsMaxAlt(maxAlt), itsHeights(nLayers), itsTemperatures(nLayers), itsDryPressures(nLayers), itsVapourPressures(nLayers) { recomputeAtmosphereModel(); } /** * Constructor with explicitly given parameters of the atmosphere * @param[in] temperature air temperature at the observatory (K) * @param[in] pressure air pressure at the observatory (Pascals) * @param[in] humidity air humidity at the observatory (fraction) * @param[in] lapseRate temperature lapse rate (K/m), default is 0.0065 K/m to match MIRIAD and ISA * @param[in] wvScale water vapour scale height (m), default is 1540m to match MIRIAD's model * @param[in] maxAlt maximum altitude of the model atmosphere (m), plane parallel layers are spread linearly up to * this height, default is 10000m to match MIRIAD. * @param[in] nLayers number of plane parallel layers in the model (essentially for a numberical integration), * default is 50 to match MIRIAD. **/ STAtmosphere::STAtmosphere(double temperature, double pressure, double humidity, double lapseRate, double wvScale, double maxAlt, size_t nLayers) : itsGndTemperature(temperature), itsGndPressure(pressure), itsGndHumidity(humidity), itsLapseRate(lapseRate), itsWVScale(wvScale), itsMaxAlt(maxAlt), itsHeights(nLayers), itsTemperatures(nLayers), itsDryPressures(nLayers), itsVapourPressures(nLayers) { recomputeAtmosphereModel(); } /** * Set the new weather station data, recompute the model * @param[in] temperature air temperature at the observatory (K) * @param[in] pressure air pressure at the observatory (Pascals) * @param[in] humidity air humidity at the observatory (fraction) **/ void STAtmosphere::setWeather(double temperature, double pressure, double humidity) { itsGndTemperature = temperature; itsGndPressure = pressure; itsGndHumidity = humidity; recomputeAtmosphereModel(); } /** * Build the atmosphere model based on exponential fall-off, ideal gas and hydrostatic * equilibrium. The model parameters are taken from the data members of this class. **/ void STAtmosphere::recomputeAtmosphereModel() { AlwaysAssert(itsGndTemperature > 0, AipsError); AlwaysAssert(itsGndPressure > 0., AipsError); AlwaysAssert((itsGndHumidity >= 0.) && (itsGndHumidity<=1.), AipsError); AlwaysAssert(itsMaxAlt > 0., AipsError); AlwaysAssert(itsWVScale > 0., AipsError); const double heightStep = itsMaxAlt/double(nLayers()); // molar mass of the air const double M = 28.96e-3; // free-fall acceleration const double g = 9.81; const double wvGndSaturationPressure = wvSaturationPressure(itsGndTemperature); for (size_t layer = 0; layer < nLayers(); ++layer) { const double height = double(layer)*heightStep; itsHeights[layer] = height; itsTemperatures[layer] = itsGndTemperature/(1.+itsLapseRate*height/itsGndTemperature); const double pressure = itsGndPressure * exp(-M*g/(QC::R.get().getValue()*itsGndTemperature)* (height+0.5*itsLapseRate*height*height/itsGndTemperature)); itsVapourPressures[layer] = casa::min(itsGndHumidity*exp(-height/itsWVScale)*wvGndSaturationPressure, wvSaturationPressure(itsTemperatures[layer])); itsDryPressures[layer] = pressure - itsVapourPressures[layer]; } } /** * Obtain the number of model layers, do consistency check that everything is * resized accordingly * @retrun number of model layers **/ size_t STAtmosphere::nLayers() const { const size_t result = itsHeights.size(); DebugAssert(result > 2, AipsError); DebugAssert(itsTemperatures.size() == result, AipsError); DebugAssert(itsDryPressures.size() == result, AipsError); DebugAssert(itsVapourPressures.size() == result, AipsError); return result; } /** * Determine the saturation pressure of water vapour for the given temperature. * * Reference: * Waters, Refraction effects in the neutral atmosphere. Methods of * Experimental Physics, vol 12B, p 186-200 (1976). * * @param[in] temperature temperature in K * @return vapour saturation pressure (Pascals) **/ double STAtmosphere::wvSaturationPressure(double temperature) { if (temperature > 215.) { return 0.; } const double theta = 300.0/temperature; return 1e5/(41.51/std::pow(theta,5)*std::pow(10.,9.834*theta-10.0)); } /** * Compute the complex refractivity of the dry components of the atmosphere * (oxygen lines) at the given frequency. * @param[in] freq frequency (Hz) * @param[in] temperature air temperature (K) * @param[in] pDry partial pressure of dry components (Pascals) * @param[in] pVapour partial pressure of water vapour (Pascals) * @return complex refractivity * * Reference: * Liebe, An updated model for millimeter wave propogation in moist air, * Radio Science, 20, 1069-1089 (1985). **/ std::complex STAtmosphere::dryRefractivity(double freq, double temperature, double pDry, double pVapour) { // the number of parameters per atmospheric line and the number of lines taken into account const size_t nLineParams = 7; const size_t nLines = 48; // actual tabulated values const double lines[nLines][nLineParams] = {{49.452379, 0.12E-6, 11.830, 8.40E-3, 0.0, 5.60E-3, 1.7}, {49.962257, 0.34E-6, 10.720, 8.50E-3, 0.0, 5.60E-3, 1.7}, {50.474238, 0.94E-6, 9.690, 8.60E-3, 0.0, 5.60E-3, 1.7}, {50.987748, 2.46E-6, 8.690, 8.70E-3, 0.0, 5.50E-3, 1.7}, {51.503350, 6.08E-6, 7.740, 8.90E-3, 0.0, 5.60E-3, 1.8}, {52.021409, 14.14E-6, 6.840, 9.20E-3, 0.0, 5.50E-3, 1.8}, {52.542393, 31.02E-6, 6.000, 9.40E-3, 0.0, 5.70E-3, 1.8}, {53.066906, 64.10E-6, 5.220, 9.70E-3, 0.0, 5.30E-3, 1.9}, {53.595748, 124.70E-6, 4.480, 10.00E-3, 0.0, 5.40E-3, 1.8}, {54.129999, 228.00E-6, 3.810, 10.20E-3, 0.0, 4.80E-3, 2.0}, {54.671157, 391.80E-6, 3.190, 10.50E-3, 0.0, 4.80E-3, 1.9}, {55.221365, 631.60E-6, 2.620, 10.79E-3, 0.0, 4.17E-3, 2.1}, {55.783800, 953.50E-6, 2.115, 11.10E-3, 0.0, 3.75E-3, 2.1}, {56.264777, 548.90E-6, 0.010, 16.46E-3, 0.0, 7.74E-3, 0.9}, {56.363387, 1344.00E-6, 1.655, 11.44E-3, 0.0, 2.97E-3, 2.3}, {56.968180, 1763.00E-6, 1.255, 11.81E-3, 0.0, 2.12E-3, 2.5}, {57.612481, 2141.00E-6, 0.910, 12.21E-3, 0.0, 0.94E-3, 3.7}, {58.323874, 2386.00E-6, 0.621, 12.66E-3, 0.0, -0.55E-3, -3.1}, {58.446589, 1457.00E-6, 0.079, 14.49E-3, 0.0, 5.97E-3, 0.8}, {59.164204, 2404.00E-6, 0.386, 13.19E-3, 0.0, -2.44E-3, 0.1}, {59.590982, 2112.00E-6, 0.207, 13.60E-3, 0.0, 3.44E-3, 0.5}, {60.306057, 2124.00E-6, 0.207, 13.82E-3, 0.0, -4.13E-3, 0.7}, {60.434775, 2461.00E-6, 0.386, 12.97E-3, 0.0, 1.32E-3, -1.0}, {61.150558, 2504.00E-6, 0.621, 12.48E-3, 0.0, -0.36E-3, 5.8}, {61.800152, 2298.00E-6, 0.910, 12.07E-3, 0.0, -1.59E-3, 2.9}, {62.411212, 1933.00E-6, 1.255, 11.71E-3, 0.0, -2.66E-3, 2.3}, {62.486253, 1517.00E-6, 0.078, 14.68E-3, 0.0, -4.77E-3, 0.9}, {62.997974, 1503.00E-6, 1.660, 11.39E-3, 0.0, -3.34E-3, 2.2}, {63.568515, 1087.00E-6, 2.110, 11.08E-3, 0.0, -4.17E-3, 2.0}, {64.127764, 733.50E-6, 2.620, 10.78E-3, 0.0, -4.48E-3, 2.0}, {64.678900, 463.50E-6, 3.190, 10.50E-3, 0.0, -5.10E-3, 1.8}, {65.224067, 274.80E-6, 3.810, 10.20E-3, 0.0, -5.10E-3, 1.9}, {65.764769, 153.00E-6, 4.480, 10.00E-3, 0.0, -5.70E-3, 1.8}, {66.302088, 80.09E-6, 5.220, 9.70E-3, 0.0, -5.50E-3, 1.8}, {66.836827, 39.46E-6, 6.000, 9.40E-3, 0.0, -5.90E-3, 1.7}, {67.369595, 18.32E-6, 6.840, 9.20E-3, 0.0, -5.60E-3, 1.8}, {67.900862, 8.01E-6, 7.740, 8.90E-3, 0.0, -5.80E-3, 1.7}, {68.431001, 3.30E-6, 8.690, 8.70E-3, 0.0, -5.70E-3, 1.7}, {68.960306, 1.28E-6, 9.690, 8.60E-3, 0.0, -5.60E-3, 1.7}, {69.489021, 0.47E-6, 10.720, 8.50E-3, 0.0, -5.60E-3, 1.7}, {70.017342, 0.16E-6, 11.830, 8.40E-3, 0.0, -5.60E-3, 1.7}, {118.750341, 945.00E-6, 0.000, 15.92E-3, 0.0, -0.44E-3, 0.9}, {368.498350, 67.90E-6, 0.020, 19.20E-3, 0.6, 0.00E00, 1.0}, {424.763120, 638.00E-6, 0.011, 19.16E-3, 0.6, 0.00E00, 1.0}, {487.249370, 235.00E-6, 0.011, 19.20E-3, 0.6, 0.00E00, 1.0}, {715.393150, 99.60E-6, 0.089, 18.10E-3, 0.6, 0.00E00, 1.0}, {773.838730, 671.00E-6, 0.079, 18.10E-3, 0.6, 0.00E00, 1.0}, {834.145330, 180.00E-6, 0.079, 18.10E-3, 0.6, 0.00E00, 1.0}}; // convert to the units of Liebe const double theta = 300./temperature; const double kPaPVap = 0.001*pVapour; const double kPaPDry = 0.001*pDry; const double fGHz = freq * 1e-9; // some coefficients const double ap = 1.4e-10*(1-1.2e-5*std::pow(fGHz,1.5)); const double gamma0 = 5.6e-3*(kPaPDry + 1.1*kPaPVap)*std::pow(theta,0.8); // initial refractivity std::complex result(2.588*kPaPDry*theta + 3.07e-4*(1.0/(1.0+std::pow(fGHz/gamma0,2))-1)*kPaPDry*theta*theta, (2*3.07e-4/(gamma0*(1+std::pow(fGHz/gamma0,2))*(1+std::pow(fGHz/60,2))) + ap*kPaPDry*std::pow(theta,2.5))*fGHz*kPaPDry*theta*theta); // sum the contributions of all the lines for (size_t l = 0; l < nLines; ++l) { const double S = lines[l][1]*kPaPDry*std::pow(theta,3)*exp(lines[l][2]*(1.-theta)); const double gamma = lines[l][3]*(kPaPDry*std::pow(theta,0.8-lines[l][4]) + 1.1*kPaPVap*theta); const double delta = lines[l][5]*kPaPDry*std::pow(theta,lines[l][6]); const double x = (lines[l][0]-fGHz)*(lines[l][0]-fGHz) + gamma*gamma; const double y = (lines[l][0]+fGHz)*(lines[l][0]+fGHz) + gamma*gamma; const double z = (lines[l][0]+gamma*gamma/lines[l][0]); result += std::complex (S*( (z-fGHz)/x + (z+fGHz)/y - 2./lines[l][0] + delta*(1/x-1/y)*gamma*fGHz/lines[l][0]), S*( (1/x+1/y)*gamma*fGHz/lines[l][0] - delta*((lines[l][0]-fGHz)/x + (lines[l][0]+fGHz)/y)*fGHz/lines[l][0])); } return result; } /** * Compute the complex refractivity of the water vapour monomers * at the given frequency. * @param[in] freq frequency (Hz) * @param[in] temperature air temperature (K) * @param[in] pDry partial pressure of dry components (Pascals) * @param[in] pVapour partial pressure of water vapour (Pascals) * @return complex refractivity * * Reference: * Liebe, An updated model for millimeter wave propogation in moist air, * Radio Science, 20, 1069-1089 (1985). **/ std::complex STAtmosphere::vapourRefractivity(double freq, double temperature, double pDry, double pVapour) { // the number of parameters per atmospheric line and the number of lines taken into account const size_t nLineParams = 4; const size_t nLines = 30; // actual tabulated values const double lines[nLines][nLineParams] = {{22.235080, 0.1090, 2.143, 27.84E-3}, {67.813960, 0.0011, 8.730, 27.60E-3}, {119.995940, 0.0007, 8.347, 27.00E-3}, {183.310117, 2.3000, 0.653, 28.35E-3}, {321.225644, 0.0464, 6.156, 21.40E-3}, {325.152919, 1.5400, 1.515, 27.00E-3}, {336.187000, 0.0010, 9.802, 26.50E-3}, {380.197372, 11.9000, 1.018, 27.60E-3}, {390.134508, 0.0044, 7.318, 19.00E-3}, {437.346667, 0.0637, 5.015, 13.70E-3}, {439.150812, 0.9210, 3.561, 16.40E-3}, {443.018295, 0.1940, 5.015, 14.40E-3}, {448.001075, 10.6000, 1.370, 23.80E-3}, {470.888947, 0.3300, 3.561, 18.20E-3}, {474.689127, 1.2800, 2.342, 19.80E-3}, {488.491133, 0.2530, 2.814, 24.90E-3}, {503.568532, 0.0374, 6.693, 11.50E-3}, {504.482692, 0.0125, 6.693, 11.90E-3}, {556.936002, 510.000, 0.114, 30.00E-3}, {620.700807, 5.0900, 2.150, 22.30E-3}, {658.006500, 0.2740, 7.767, 30.00E-3}, {752.033227, 250.000, 0.336, 28.60E-3}, {841.073593, 0.0130, 8.113, 14.10E-3}, {859.865000, 0.1330, 7.989, 28.60E-3}, {899.407000, 0.0550, 7.845, 28.60E-3}, {902.555000, 0.0380, 8.360, 26.40E-3}, {906.205524, 0.1830, 5.039, 23.40E-3}, {916.171582, 8.5600, 1.369, 25.30E-3}, {970.315022, 9.1600, 1.842, 24.00E-3}, {987.926764, 138.000, 0.178, 28.60E-3}}; // convert to the units of Liebe const double theta = 300./temperature; const double kPaPVap = 0.001*pVapour; const double kPaPDry = 0.001*pDry; const double fGHz = freq * 1e-9; // initial refractivity std::complex result(2.39*kPaPVap*theta + 41.6*kPaPVap*theta*theta + 6.47e-6*std::pow(fGHz,2.05)*kPaPVap*std::pow(theta,2.4), (0.915*1.40e-6*kPaPDry + 5.41e-5*kPaPVap*theta*theta*theta)* fGHz*kPaPVap*std::pow(theta,2.5)); // sum contributions of all the lines for (size_t l = 0; l < nLines; ++l) { const double S = lines[l][1]*kPaPVap*std::pow(theta,3.5)*exp(lines[l][2]*(1.-theta)); const double gamma = lines[l][3]*(kPaPDry*std::pow(theta,0.8) + 4.80*kPaPVap*theta); const double x = (lines[l][0]-fGHz)*(lines[l][0]-fGHz) + gamma*gamma; const double y = (lines[l][0]+fGHz)*(lines[l][0]+fGHz) + gamma*gamma; const double z = (lines[l][0]+gamma*gamma/lines[l][0]); result += std::complex(S*((z-fGHz)/x + (z+fGHz)/y - 2./lines[l][0]), S*((1./x+1./y)*gamma*fGHz/lines[l][0])); } return result; } /** * Calculate zenith opacity at the given frequency. This is a simplified version * of the routine implemented in MIRIAD, which calculates just zenith opacity and * nothing else. Note, that if the opacity is high, 1/sin(el) law is not correct * even in the plane parallel case due to refraction. * @param[in] freq frequency of interest in Hz * @return zenith opacity (nepers, i.e. dimensionless) **/ double STAtmosphere::zenithOpacity(double freq) const { // essentially a numerical integration with the Trapezium method double tau = 0.; for (int layer = int(nLayers()) - 1; layer>=0; --layer) { double dH = 0.; if (layer == 0) { dH = 0.5*(itsHeights[1]-itsHeights[0]); } else if (layer + 1 == int(nLayers())) { dH = 0.5*(itsHeights[nLayers()-1]-itsHeights[nLayers()-2]); } else { dH = 0.5*(itsHeights[layer+1]-itsHeights[layer-1]); } // imaginary part of the total complex refractivity const double nImag = 1e-6*std::imag(dryRefractivity(freq,itsTemperatures[layer],itsDryPressures[layer], itsVapourPressures[layer])+vapourRefractivity(freq,itsTemperatures[layer],itsDryPressures[layer], itsVapourPressures[layer])); tau += dH*4.*casa::C::pi/QC::c.get().getValue()*freq*nImag; } return tau; } /** * Calculate zenith opacity for the range of frequencies. Same as zenithOpacity, but * for a vector of frequencies. * @param[in] freqs vector of frequencies in Hz * @return vector of zenith opacities, one value per frequency (nepers, i.e. dimensionless) **/ std::vector STAtmosphere::zenithOpacities(const std::vector &freqs) const { std::vector result(freqs.size()); for (size_t ch = 0; ch=0; --layer) { double dH = 0.; if (layer == 0) { dH = 0.5*(itsHeights[1]-itsHeights[0]); } else if (layer + 1 == int(nLayers())) { dH = 0.5*(itsHeights[nLayers()-1]-itsHeights[nLayers()-2]); } else { dH = 0.5*(itsHeights[layer+1]-itsHeights[layer-1]); } // total complex refractivity const std::complex n = dryRefractivity(freq,itsTemperatures[layer],itsDryPressures[layer], itsVapourPressures[layer]) + vapourRefractivity(freq,itsTemperatures[layer],itsDryPressures[layer], itsVapourPressures[layer]); // real and imaginary part of the total complex refractivity scaled appropriately const double nImag = 1e-6*std::imag(n); const double nReal = 1. + 1e-6*std::real(n); // length increment const double dL = dH*nReal/sqrt(nReal*nReal+sineEl*sineEl-1.); tau += dL*4.*casa::C::pi/QC::c.get().getValue()*freq*nImag; } return tau; } /** * Calculate opacities for the range of frequencies at the given elevation. Same as * opacity, but for a vector of frequencies. * @param[in] freqs vector of frequencies in Hz * @param[in] el elevation in radians * @return vector of opacities, one value per frequency (nepers, i.e. dimensionless) **/ std::vector STAtmosphere::opacities(const std::vector &freqs, double el) const { std::vector result(freqs.size()); for (size_t ch = 0; ch