source: trunk/src/STAtmosphere.cpp@ 1714

Last change on this file since 1714 was 1713, checked in by Max Voronkov, 15 years ago

added method to calculate opacity including refraction effects + methods to work on a vector of frequencies

File size: 20.4 KB
RevLine 
[1708]1//#---------------------------------------------------------------------------
2//# STAtmosphere.h: Model of atmospheric opacity
3//#---------------------------------------------------------------------------
4//# Copyright (C) 2004
5//# ATNF
6//#
7//# The code is based on the Fortran code written by Bob Sault for MIRIAD.
8//# Converted to C++ by Max Voronkov. This code uses a simple model of the
9//# atmosphere and Liebe's model (1985) of the complex refractive index of
10//# air.
11//#
12//# The model of the atmosphere is one with an exponential fall-off in
13//# the water vapour content (scale height of 1540 m) and a temperature lapse
14//# rate of 6.5 mK/m. Otherwise the atmosphere obeys the ideal gas equation
15//# and hydrostatic equilibrium.
16//#
17//# This program is free software; you can redistribute it and/or modify it
18//# under the terms of the GNU General Public License as published by the Free
19//# Software Foundation; either version 2 of the License, or (at your option)
20//# any later version.
21//#
22//# This program is distributed in the hope that it will be useful, but
23//# WITHOUT ANY WARRANTY; without even the implied warranty of
24//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
25//# Public License for more details.
26//#
27//# You should have received a copy of the GNU General Public License along
28//# with this program; if not, write to the Free Software Foundation, Inc.,
29//# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
30//#
31//# Correspondence concerning this software should be addressed as follows:
32//# Internet email: Malte.Marquarding@csiro.au
33//# Postal address: Malte Marquarding,
34//# Australia Telescope National Facility,
35//# P.O. Box 76,
36//# Epping, NSW, 2121,
37//# AUSTRALIA
38//#
39//# $Id: STAtmosphere.h 1346 2007-04-26 03:24:41Z mar637 $
40//#---------------------------------------------------------------------------
41
42// own includes
43#include "STAtmosphere.h"
44
45// casa includes
46#include <casa/Utilities/Assert.h>
[1709]47#include <casa/Quanta.h>
[1708]48
[1709]49// std includes
50#include <cmath>
51
[1708]52using namespace casa;
53using namespace asap;
54
55/**
56 * Default Constructor (apart from optional parameters).
57 * The class set up this way will assume International Standard Atmosphere (ISA) conditions,
58 * except for humidity. The latter is assumed to be 50%, which seems more realistic for
59 * Australian telescopes than 0%.
60 * @param[in] wvScale water vapour scale height (m), default is 1540m to match MIRIAD's model
61 * @param[in] maxAlt maximum altitude of the model atmosphere (m), plane parallel layers are spread linearly up to
62 * this height, default is 10000m to match MIRIAD.
63 * @param[in] nLayers number of plane parallel layers in the model (essentially for a numberical integration),
64 * default is 50 to match MIRIAD.
65 **/
66STAtmosphere::STAtmosphere(double wvScale, double maxAlt, size_t nLayers) :
[1709]67 itsGndTemperature(288.), itsGndPressure(101325.), itsGndHumidity(0.5),
[1708]68 itsLapseRate(0.0065), itsWVScale(wvScale), itsMaxAlt(maxAlt),
69 itsHeights(nLayers), itsTemperatures(nLayers),
70 itsDryPressures(nLayers), itsVapourPressures(nLayers)
71{
72 recomputeAtmosphereModel();
73}
74
75/**
76 * Constructor with explicitly given parameters of the atmosphere
77 * @param[in] temperature air temperature at the observatory (K)
78 * @param[in] pressure air pressure at the observatory (Pascals)
79 * @param[in] humidity air humidity at the observatory (fraction)
80 * @param[in] lapseRate temperature lapse rate (K/m), default is 0.0065 K/m to match MIRIAD and ISA
81 * @param[in] wvScale water vapour scale height (m), default is 1540m to match MIRIAD's model
82 * @param[in] maxAlt maximum altitude of the model atmosphere (m), plane parallel layers are spread linearly up to
83 * this height, default is 10000m to match MIRIAD.
84 * @param[in] nLayers number of plane parallel layers in the model (essentially for a numberical integration),
85 * default is 50 to match MIRIAD.
86 **/
87STAtmosphere::STAtmosphere(double temperature, double pressure, double humidity, double lapseRate,
88 double wvScale, double maxAlt, size_t nLayers) :
[1709]89 itsGndTemperature(temperature), itsGndPressure(pressure), itsGndHumidity(humidity),
[1708]90 itsLapseRate(lapseRate), itsWVScale(wvScale), itsMaxAlt(maxAlt),
91 itsHeights(nLayers), itsTemperatures(nLayers),
92 itsDryPressures(nLayers), itsVapourPressures(nLayers)
93{
94 recomputeAtmosphereModel();
95}
96
97/**
98 * Set the new weather station data, recompute the model
99 * @param[in] temperature air temperature at the observatory (K)
100 * @param[in] pressure air pressure at the observatory (Pascals)
101 * @param[in] humidity air humidity at the observatory (fraction)
102 **/
103void STAtmosphere::setWeather(double temperature, double pressure, double humidity)
104{
105 itsGndTemperature = temperature;
[1709]106 itsGndPressure = pressure;
107 itsGndHumidity = humidity;
[1708]108 recomputeAtmosphereModel();
109}
110
111/**
112 * Build the atmosphere model based on exponential fall-off, ideal gas and hydrostatic
113 * equilibrium. The model parameters are taken from the data members of this class.
114 **/
115void STAtmosphere::recomputeAtmosphereModel()
116{
[1709]117 AlwaysAssert(itsGndTemperature > 0, AipsError);
118 AlwaysAssert(itsGndPressure > 0., AipsError);
119 AlwaysAssert((itsGndHumidity >= 0.) && (itsGndHumidity<=1.), AipsError);
120 AlwaysAssert(itsMaxAlt > 0., AipsError);
121 AlwaysAssert(itsWVScale > 0., AipsError);
122
123 const double heightStep = itsMaxAlt/double(nLayers());
124 // molar mass of the air
125 const double M = 28.96e-3;
126 // free-fall acceleration
127 const double g = 9.81;
128 const double wvGndSaturationPressure = wvSaturationPressure(itsGndTemperature);
129 for (size_t layer = 0; layer < nLayers(); ++layer) {
130 const double height = double(layer)*heightStep;
131 itsHeights[layer] = height;
132 itsTemperatures[layer] = itsGndTemperature/(1.+itsLapseRate*height/itsGndTemperature);
133 const double pressure = itsGndPressure * exp(-M*g/(QC::R.get().getValue()*itsGndTemperature)*
134 (height+0.5*itsLapseRate*height*height/itsGndTemperature));
135 itsVapourPressures[layer] = casa::min(itsGndHumidity*exp(-height/itsWVScale)*wvGndSaturationPressure,
136 wvSaturationPressure(itsTemperatures[layer]));
137 itsDryPressures[layer] = pressure - itsVapourPressures[layer];
138 }
[1708]139}
140
141/**
142 * Obtain the number of model layers, do consistency check that everything is
143 * resized accordingly
144 * @retrun number of model layers
145 **/
146size_t STAtmosphere::nLayers() const
147{
148 const size_t result = itsHeights.size();
[1712]149 DebugAssert(result > 2, AipsError);
[1708]150 DebugAssert(itsTemperatures.size() == result, AipsError);
151 DebugAssert(itsDryPressures.size() == result, AipsError);
152 DebugAssert(itsVapourPressures.size() == result, AipsError);
153 return result;
154}
155
[1709]156/**
157 * Determine the saturation pressure of water vapour for the given temperature.
158 *
159 * Reference:
160 * Waters, Refraction effects in the neutral atmosphere. Methods of
161 * Experimental Physics, vol 12B, p 186-200 (1976).
162 *
163 * @param[in] temperature temperature in K
164 * @return vapour saturation pressure (Pascals)
165 **/
166double STAtmosphere::wvSaturationPressure(double temperature)
167{
168 if (temperature > 215.) {
169 return 0.;
170 }
171 const double theta = 300.0/temperature;
172 return 1e5/(41.51/std::pow(theta,5)*std::pow(10.,9.834*theta-10.0));
173}
174
[1710]175/**
176 * Compute the complex refractivity of the dry components of the atmosphere
177 * (oxygen lines) at the given frequency.
178 * @param[in] freq frequency (Hz)
179 * @param[in] temperature air temperature (K)
180 * @param[in] pDry partial pressure of dry components (Pascals)
181 * @param[in] pVapour partial pressure of water vapour (Pascals)
182 * @return complex refractivity
[1711]183 *
184 * Reference:
185 * Liebe, An updated model for millimeter wave propogation in moist air,
186 * Radio Science, 20, 1069-1089 (1985).
[1710]187 **/
188std::complex<double> STAtmosphere::dryRefractivity(double freq, double temperature,
189 double pDry, double pVapour)
190{
191 // the number of parameters per atmospheric line and the number of lines taken into account
192 const size_t nLineParams = 7;
193 const size_t nLines = 48;
194 // actual tabulated values
195 const double lines[nLines][nLineParams] =
196 {{49.452379, 0.12E-6, 11.830, 8.40E-3, 0.0, 5.60E-3, 1.7},
197 {49.962257, 0.34E-6, 10.720, 8.50E-3, 0.0, 5.60E-3, 1.7},
198 {50.474238, 0.94E-6, 9.690, 8.60E-3, 0.0, 5.60E-3, 1.7},
199 {50.987748, 2.46E-6, 8.690, 8.70E-3, 0.0, 5.50E-3, 1.7},
200 {51.503350, 6.08E-6, 7.740, 8.90E-3, 0.0, 5.60E-3, 1.8},
201 {52.021409, 14.14E-6, 6.840, 9.20E-3, 0.0, 5.50E-3, 1.8},
202 {52.542393, 31.02E-6, 6.000, 9.40E-3, 0.0, 5.70E-3, 1.8},
203 {53.066906, 64.10E-6, 5.220, 9.70E-3, 0.0, 5.30E-3, 1.9},
204 {53.595748, 124.70E-6, 4.480, 10.00E-3, 0.0, 5.40E-3, 1.8},
205 {54.129999, 228.00E-6, 3.810, 10.20E-3, 0.0, 4.80E-3, 2.0},
206 {54.671157, 391.80E-6, 3.190, 10.50E-3, 0.0, 4.80E-3, 1.9},
207 {55.221365, 631.60E-6, 2.620, 10.79E-3, 0.0, 4.17E-3, 2.1},
208 {55.783800, 953.50E-6, 2.115, 11.10E-3, 0.0, 3.75E-3, 2.1},
209 {56.264777, 548.90E-6, 0.010, 16.46E-3, 0.0, 7.74E-3, 0.9},
210 {56.363387, 1344.00E-6, 1.655, 11.44E-3, 0.0, 2.97E-3, 2.3},
211 {56.968180, 1763.00E-6, 1.255, 11.81E-3, 0.0, 2.12E-3, 2.5},
212 {57.612481, 2141.00E-6, 0.910, 12.21E-3, 0.0, 0.94E-3, 3.7},
213 {58.323874, 2386.00E-6, 0.621, 12.66E-3, 0.0, -0.55E-3, -3.1},
214 {58.446589, 1457.00E-6, 0.079, 14.49E-3, 0.0, 5.97E-3, 0.8},
215 {59.164204, 2404.00E-6, 0.386, 13.19E-3, 0.0, -2.44E-3, 0.1},
216 {59.590982, 2112.00E-6, 0.207, 13.60E-3, 0.0, 3.44E-3, 0.5},
217 {60.306057, 2124.00E-6, 0.207, 13.82E-3, 0.0, -4.13E-3, 0.7},
218 {60.434775, 2461.00E-6, 0.386, 12.97E-3, 0.0, 1.32E-3, -1.0},
219 {61.150558, 2504.00E-6, 0.621, 12.48E-3, 0.0, -0.36E-3, 5.8},
220 {61.800152, 2298.00E-6, 0.910, 12.07E-3, 0.0, -1.59E-3, 2.9},
221 {62.411212, 1933.00E-6, 1.255, 11.71E-3, 0.0, -2.66E-3, 2.3},
222 {62.486253, 1517.00E-6, 0.078, 14.68E-3, 0.0, -4.77E-3, 0.9},
223 {62.997974, 1503.00E-6, 1.660, 11.39E-3, 0.0, -3.34E-3, 2.2},
224 {63.568515, 1087.00E-6, 2.110, 11.08E-3, 0.0, -4.17E-3, 2.0},
225 {64.127764, 733.50E-6, 2.620, 10.78E-3, 0.0, -4.48E-3, 2.0},
226 {64.678900, 463.50E-6, 3.190, 10.50E-3, 0.0, -5.10E-3, 1.8},
227 {65.224067, 274.80E-6, 3.810, 10.20E-3, 0.0, -5.10E-3, 1.9},
228 {65.764769, 153.00E-6, 4.480, 10.00E-3, 0.0, -5.70E-3, 1.8},
229 {66.302088, 80.09E-6, 5.220, 9.70E-3, 0.0, -5.50E-3, 1.8},
230 {66.836827, 39.46E-6, 6.000, 9.40E-3, 0.0, -5.90E-3, 1.7},
231 {67.369595, 18.32E-6, 6.840, 9.20E-3, 0.0, -5.60E-3, 1.8},
232 {67.900862, 8.01E-6, 7.740, 8.90E-3, 0.0, -5.80E-3, 1.7},
233 {68.431001, 3.30E-6, 8.690, 8.70E-3, 0.0, -5.70E-3, 1.7},
234 {68.960306, 1.28E-6, 9.690, 8.60E-3, 0.0, -5.60E-3, 1.7},
235 {69.489021, 0.47E-6, 10.720, 8.50E-3, 0.0, -5.60E-3, 1.7},
236 {70.017342, 0.16E-6, 11.830, 8.40E-3, 0.0, -5.60E-3, 1.7},
237 {118.750341, 945.00E-6, 0.000, 15.92E-3, 0.0, -0.44E-3, 0.9},
238 {368.498350, 67.90E-6, 0.020, 19.20E-3, 0.6, 0.00E00, 1.0},
239 {424.763120, 638.00E-6, 0.011, 19.16E-3, 0.6, 0.00E00, 1.0},
240 {487.249370, 235.00E-6, 0.011, 19.20E-3, 0.6, 0.00E00, 1.0},
241 {715.393150, 99.60E-6, 0.089, 18.10E-3, 0.6, 0.00E00, 1.0},
242 {773.838730, 671.00E-6, 0.079, 18.10E-3, 0.6, 0.00E00, 1.0},
243 {834.145330, 180.00E-6, 0.079, 18.10E-3, 0.6, 0.00E00, 1.0}};
244
245 // convert to the units of Liebe
246 const double theta = 300./temperature;
247 const double kPaPVap = 0.001*pVapour;
248 const double kPaPDry = 0.001*pDry;
249 const double fGHz = freq * 1e-9;
250
251 // some coefficients
252 const double ap = 1.4e-10*(1-1.2e-5*std::pow(fGHz,1.5));
253 const double gamma0 = 5.6e-3*(kPaPDry + 1.1*kPaPVap)*std::pow(theta,0.8);
254 // initial refractivity
255 std::complex<double> result(2.588*kPaPDry*theta +
256 3.07e-4*(1.0/(1.0+std::pow(fGHz/gamma0,2))-1)*kPaPDry*theta*theta,
257 (2*3.07e-4/(gamma0*(1+std::pow(fGHz/gamma0,2))*(1+std::pow(fGHz/60,2))) +
258 ap*kPaPDry*std::pow(theta,2.5))*fGHz*kPaPDry*theta*theta);
[1711]259
[1710]260 // sum the contributions of all the lines
261 for (size_t l = 0; l < nLines; ++l) {
262 const double S = lines[l][1]*kPaPDry*std::pow(theta,3)*exp(lines[l][2]*(1.-theta));
263 const double gamma = lines[l][3]*(kPaPDry*std::pow(theta,0.8-lines[l][4]) + 1.1*kPaPVap*theta);
264 const double delta = lines[l][5]*kPaPDry*std::pow(theta,lines[l][6]);
265 const double x = (lines[l][0]-fGHz)*(lines[l][0]-fGHz) + gamma*gamma;
266 const double y = (lines[l][0]+fGHz)*(lines[l][0]+fGHz) + gamma*gamma;
267 const double z = (lines[l][0]+gamma*gamma/lines[l][0]);
268 result += std::complex<double> (S*( (z-fGHz)/x + (z+fGHz)/y - 2./lines[l][0] +
269 delta*(1/x-1/y)*gamma*fGHz/lines[l][0]),
270 S*( (1/x+1/y)*gamma*fGHz/lines[l][0] -
271 delta*((lines[l][0]-fGHz)/x + (lines[l][0]+fGHz)/y)*fGHz/lines[l][0]));
272 }
273
274 return result;
275}
[1711]276
277/**
278 * Compute the complex refractivity of the water vapour monomers
279 * at the given frequency.
280 * @param[in] freq frequency (Hz)
281 * @param[in] temperature air temperature (K)
282 * @param[in] pDry partial pressure of dry components (Pascals)
283 * @param[in] pVapour partial pressure of water vapour (Pascals)
284 * @return complex refractivity
285 *
286 * Reference:
287 * Liebe, An updated model for millimeter wave propogation in moist air,
288 * Radio Science, 20, 1069-1089 (1985).
289 **/
290std::complex<double> STAtmosphere::vapourRefractivity(double freq, double temperature,
291 double pDry, double pVapour)
292{
293 // the number of parameters per atmospheric line and the number of lines taken into account
294 const size_t nLineParams = 4;
295 const size_t nLines = 30;
296 // actual tabulated values
297 const double lines[nLines][nLineParams] =
298 {{22.235080, 0.1090, 2.143, 27.84E-3},
299 {67.813960, 0.0011, 8.730, 27.60E-3},
300 {119.995940, 0.0007, 8.347, 27.00E-3},
301 {183.310117, 2.3000, 0.653, 28.35E-3},
302 {321.225644, 0.0464, 6.156, 21.40E-3},
303 {325.152919, 1.5400, 1.515, 27.00E-3},
304 {336.187000, 0.0010, 9.802, 26.50E-3},
305 {380.197372, 11.9000, 1.018, 27.60E-3},
306 {390.134508, 0.0044, 7.318, 19.00E-3},
307 {437.346667, 0.0637, 5.015, 13.70E-3},
308 {439.150812, 0.9210, 3.561, 16.40E-3},
309 {443.018295, 0.1940, 5.015, 14.40E-3},
310 {448.001075, 10.6000, 1.370, 23.80E-3},
311 {470.888947, 0.3300, 3.561, 18.20E-3},
312 {474.689127, 1.2800, 2.342, 19.80E-3},
313 {488.491133, 0.2530, 2.814, 24.90E-3},
314 {503.568532, 0.0374, 6.693, 11.50E-3},
315 {504.482692, 0.0125, 6.693, 11.90E-3},
316 {556.936002, 510.000, 0.114, 30.00E-3},
317 {620.700807, 5.0900, 2.150, 22.30E-3},
318 {658.006500, 0.2740, 7.767, 30.00E-3},
319 {752.033227, 250.000, 0.336, 28.60E-3},
320 {841.073593, 0.0130, 8.113, 14.10E-3},
321 {859.865000, 0.1330, 7.989, 28.60E-3},
322 {899.407000, 0.0550, 7.845, 28.60E-3},
323 {902.555000, 0.0380, 8.360, 26.40E-3},
324 {906.205524, 0.1830, 5.039, 23.40E-3},
325 {916.171582, 8.5600, 1.369, 25.30E-3},
326 {970.315022, 9.1600, 1.842, 24.00E-3},
327 {987.926764, 138.000, 0.178, 28.60E-3}};
328
329 // convert to the units of Liebe
330 const double theta = 300./temperature;
331 const double kPaPVap = 0.001*pVapour;
332 const double kPaPDry = 0.001*pDry;
333 const double fGHz = freq * 1e-9;
334
335 // initial refractivity
336 std::complex<double> result(2.39*kPaPVap*theta + 41.6*kPaPVap*theta*theta +
337 6.47e-6*std::pow(fGHz,2.05)*kPaPVap*std::pow(theta,2.4),
338 (0.915*1.40e-6*kPaPDry + 5.41e-5*kPaPVap*theta*theta*theta)*
339 fGHz*kPaPVap*std::pow(theta,2.5));
340
341 // sum contributions of all the lines
342 for (size_t l = 0; l < nLines; ++l) {
343 const double S = lines[l][1]*kPaPVap*std::pow(theta,3.5)*exp(lines[l][2]*(1.-theta));
344 const double gamma = lines[l][3]*(kPaPDry*std::pow(theta,0.8) + 4.80*kPaPVap*theta);
345 const double x = (lines[l][0]-fGHz)*(lines[l][0]-fGHz) + gamma*gamma;
346 const double y = (lines[l][0]+fGHz)*(lines[l][0]+fGHz) + gamma*gamma;
347 const double z = (lines[l][0]+gamma*gamma/lines[l][0]);
348 result += std::complex<double>(S*((z-fGHz)/x + (z+fGHz)/y - 2./lines[l][0]),
349 S*((1./x+1./y)*gamma*fGHz/lines[l][0]));
350 }
351
352 return result;
353}
354
[1712]355/**
356 * Calculate zenith opacity at the given frequency. This is a simplified version
357 * of the routine implemented in MIRIAD, which calculates just zenith opacity and
358 * nothing else. Note, that if the opacity is high, 1/sin(el) law is not correct
359 * even in the plane parallel case due to refraction.
360 * @param[in] freq frequency of interest in Hz
361 * @return zenith opacity (nepers, i.e. dimensionless)
362 **/
363double STAtmosphere::zenithOpacity(double freq) const
364{
365 // essentially a numerical integration with the Trapezium method
366 double tau = 0.;
367 for (int layer = int(nLayers()) - 1; layer>=0; --layer) {
368 double dH = 0.;
369 if (layer == 0) {
370 dH = 0.5*(itsHeights[1]-itsHeights[0]);
371 } else if (layer + 1 == int(nLayers())) {
372 dH = 0.5*(itsHeights[nLayers()-1]-itsHeights[nLayers()-2]);
373 } else {
374 dH = 0.5*(itsHeights[layer+1]-itsHeights[layer-1]);
375 }
376 // imaginary part of the total complex refractivity
377 const double nImag = 1e-6*std::imag(dryRefractivity(freq,itsTemperatures[layer],itsDryPressures[layer],
378 itsVapourPressures[layer])+vapourRefractivity(freq,itsTemperatures[layer],itsDryPressures[layer],
379 itsVapourPressures[layer]));
380 tau += dH*4.*casa::C::pi/QC::c.get().getValue()*freq*nImag;
381 }
382 return tau;
383}
384
[1713]385/**
386 * Calculate zenith opacity for the range of frequencies. Same as zenithOpacity, but
387 * for a vector of frequencies.
388 * @param[in] freqs vector of frequencies in Hz
389 * @return vector of zenith opacities, one value per frequency (nepers, i.e. dimensionless)
390 **/
391std::vector<double> STAtmosphere::zenithOpacities(const std::vector<double> &freqs) const
392{
393 std::vector<double> result(freqs.size());
394 for (size_t ch = 0; ch<freqs.size(); ++ch) {
395 result[ch] = zenithOpacity(freqs[ch]);
396 }
397 return result;
398}
399
400/**
401 * Calculate opacity at the given frequency and elevation. This is a simplified
402 * version of the routine implemented in MIRIAD, which calculates just the opacity and
403 * nothing else. In contract to zenithOpacity, this method takes into account refraction
404 * and is more accurate than if one assumes 1/sin(el) factor.
405 * @param[in] freq frequency of interest in Hz
406 * @param[in] el elevation in radians
407 * @return zenith opacity (nepers, i.e. dimensionless)
408 **/
409double STAtmosphere::opacity(double freq, double el) const
410{
411 // essentially a numerical integration with the Trapezium method
412 double tau = 0.;
413 const double sineEl = sin(el);
414 for (int layer = int(nLayers()) - 1; layer>=0; --layer) {
415 double dH = 0.;
416 if (layer == 0) {
417 dH = 0.5*(itsHeights[1]-itsHeights[0]);
418 } else if (layer + 1 == int(nLayers())) {
419 dH = 0.5*(itsHeights[nLayers()-1]-itsHeights[nLayers()-2]);
420 } else {
421 dH = 0.5*(itsHeights[layer+1]-itsHeights[layer-1]);
422 }
423 // total complex refractivity
424 const std::complex<double> n = dryRefractivity(freq,itsTemperatures[layer],itsDryPressures[layer],
425 itsVapourPressures[layer]) +
426 vapourRefractivity(freq,itsTemperatures[layer],itsDryPressures[layer],
427 itsVapourPressures[layer]);
428 // real and imaginary part of the total complex refractivity scaled appropriately
429 const double nImag = 1e-6*std::imag(n);
430 const double nReal = 1. + 1e-6*std::real(n);
431 // length increment
432 const double dL = dH*nReal/sqrt(nReal*nReal+sineEl*sineEl-1.);
433 tau += dL*4.*casa::C::pi/QC::c.get().getValue()*freq*nImag;
434 }
435 return tau;
436}
437
438/**
439 * Calculate opacities for the range of frequencies at the given elevation. Same as
440 * opacity, but for a vector of frequencies.
441 * @param[in] freqs vector of frequencies in Hz
442 * @param[in] el elevation in radians
443 * @return vector of opacities, one value per frequency (nepers, i.e. dimensionless)
444 **/
445std::vector<double> STAtmosphere::opacities(const std::vector<double> &freqs, double el) const
446{
447 std::vector<double> result(freqs.size());
448 for (size_t ch = 0; ch<freqs.size(); ++ch) {
449 result[ch] = opacity(freqs[ch],el);
450 }
451 return result;
452}
453
Note: See TracBrowser for help on using the repository browser.