| [1708] | 1 | //#--------------------------------------------------------------------------- | 
|---|
|  | 2 | //# STAtmosphere.h: Model of atmospheric opacity | 
|---|
|  | 3 | //#--------------------------------------------------------------------------- | 
|---|
|  | 4 | //# Copyright (C) 2004 | 
|---|
|  | 5 | //# ATNF | 
|---|
|  | 6 | //# | 
|---|
|  | 7 | //# The code is based on the Fortran code written by Bob Sault for MIRIAD. | 
|---|
|  | 8 | //# Converted to C++ by Max Voronkov. This code uses a simple model of the | 
|---|
|  | 9 | //# atmosphere and Liebe's model (1985) of the complex refractive index of | 
|---|
|  | 10 | //# air. | 
|---|
|  | 11 | //# | 
|---|
|  | 12 | //# The model of the atmosphere is one with an exponential fall-off in | 
|---|
|  | 13 | //# the water vapour content (scale height of 1540 m) and a temperature lapse | 
|---|
|  | 14 | //# rate of 6.5 mK/m. Otherwise the atmosphere obeys the ideal gas equation | 
|---|
|  | 15 | //# and hydrostatic equilibrium. | 
|---|
|  | 16 | //# | 
|---|
|  | 17 | //# This program is free software; you can redistribute it and/or modify it | 
|---|
|  | 18 | //# under the terms of the GNU General Public License as published by the Free | 
|---|
|  | 19 | //# Software Foundation; either version 2 of the License, or (at your option) | 
|---|
|  | 20 | //# any later version. | 
|---|
|  | 21 | //# | 
|---|
|  | 22 | //# This program is distributed in the hope that it will be useful, but | 
|---|
|  | 23 | //# WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
|  | 24 | //# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General | 
|---|
|  | 25 | //# Public License for more details. | 
|---|
|  | 26 | //# | 
|---|
|  | 27 | //# You should have received a copy of the GNU General Public License along | 
|---|
|  | 28 | //# with this program; if not, write to the Free Software Foundation, Inc., | 
|---|
|  | 29 | //# 675 Massachusetts Ave, Cambridge, MA 02139, USA. | 
|---|
|  | 30 | //# | 
|---|
|  | 31 | //# Correspondence concerning this software should be addressed as follows: | 
|---|
|  | 32 | //#        Internet email: Malte.Marquarding@csiro.au | 
|---|
|  | 33 | //#        Postal address: Malte Marquarding, | 
|---|
|  | 34 | //#                        Australia Telescope National Facility, | 
|---|
|  | 35 | //#                        P.O. Box 76, | 
|---|
|  | 36 | //#                        Epping, NSW, 2121, | 
|---|
|  | 37 | //#                        AUSTRALIA | 
|---|
|  | 38 | //# | 
|---|
|  | 39 | //# $Id: STAtmosphere.h 1346 2007-04-26 03:24:41Z mar637 $ | 
|---|
|  | 40 | //#--------------------------------------------------------------------------- | 
|---|
|  | 41 |  | 
|---|
|  | 42 | // own includes | 
|---|
|  | 43 | #include "STAtmosphere.h" | 
|---|
|  | 44 |  | 
|---|
|  | 45 | // casa includes | 
|---|
|  | 46 | #include <casa/Utilities/Assert.h> | 
|---|
| [1709] | 47 | #include <casa/Quanta.h> | 
|---|
| [1708] | 48 |  | 
|---|
| [1709] | 49 | // std includes | 
|---|
|  | 50 | #include <cmath> | 
|---|
|  | 51 |  | 
|---|
| [1708] | 52 | using namespace casa; | 
|---|
|  | 53 | using namespace asap; | 
|---|
|  | 54 |  | 
|---|
|  | 55 | /** | 
|---|
|  | 56 | * Default Constructor (apart from optional parameters). | 
|---|
|  | 57 | * The class set up this way will assume International Standard Atmosphere (ISA) conditions, | 
|---|
|  | 58 | * except for humidity. The latter is assumed to be 50%, which seems more realistic for | 
|---|
|  | 59 | * Australian telescopes than 0%. | 
|---|
|  | 60 | * @param[in] wvScale water vapour scale height (m), default is 1540m to match MIRIAD's model | 
|---|
|  | 61 | * @param[in] maxAlt maximum altitude of the model atmosphere (m), plane parallel layers are spread linearly up to | 
|---|
|  | 62 | *            this height, default is 10000m to match MIRIAD. | 
|---|
|  | 63 | * @param[in] nLayers number of plane parallel layers in the model (essentially for a numberical integration), | 
|---|
|  | 64 | *            default is 50 to match MIRIAD. | 
|---|
|  | 65 | **/ | 
|---|
|  | 66 | STAtmosphere::STAtmosphere(double wvScale, double maxAlt, size_t nLayers) : | 
|---|
| [1709] | 67 | itsGndTemperature(288.), itsGndPressure(101325.), itsGndHumidity(0.5), | 
|---|
| [1708] | 68 | itsLapseRate(0.0065), itsWVScale(wvScale), itsMaxAlt(maxAlt), | 
|---|
|  | 69 | itsHeights(nLayers), itsTemperatures(nLayers), | 
|---|
|  | 70 | itsDryPressures(nLayers), itsVapourPressures(nLayers) | 
|---|
|  | 71 | { | 
|---|
|  | 72 | recomputeAtmosphereModel(); | 
|---|
|  | 73 | } | 
|---|
|  | 74 |  | 
|---|
|  | 75 | /** | 
|---|
|  | 76 | * Constructor with explicitly given parameters of the atmosphere | 
|---|
|  | 77 | * @param[in] temperature air temperature at the observatory (K) | 
|---|
|  | 78 | * @param[in] pressure air pressure at the observatory (Pascals) | 
|---|
|  | 79 | * @param[in] humidity air humidity at the observatory (fraction) | 
|---|
|  | 80 | * @param[in] lapseRate temperature lapse rate (K/m), default is 0.0065 K/m to match MIRIAD and ISA | 
|---|
|  | 81 | * @param[in] wvScale water vapour scale height (m), default is 1540m to match MIRIAD's model | 
|---|
|  | 82 | * @param[in] maxAlt maximum altitude of the model atmosphere (m), plane parallel layers are spread linearly up to | 
|---|
|  | 83 | *            this height, default is 10000m to match MIRIAD. | 
|---|
|  | 84 | * @param[in] nLayers number of plane parallel layers in the model (essentially for a numberical integration), | 
|---|
|  | 85 | *            default is 50 to match MIRIAD. | 
|---|
|  | 86 | **/ | 
|---|
|  | 87 | STAtmosphere::STAtmosphere(double temperature, double pressure, double humidity, double lapseRate, | 
|---|
|  | 88 | double wvScale, double maxAlt, size_t nLayers) : | 
|---|
| [1709] | 89 | itsGndTemperature(temperature), itsGndPressure(pressure), itsGndHumidity(humidity), | 
|---|
| [1708] | 90 | itsLapseRate(lapseRate), itsWVScale(wvScale), itsMaxAlt(maxAlt), | 
|---|
|  | 91 | itsHeights(nLayers), itsTemperatures(nLayers), | 
|---|
|  | 92 | itsDryPressures(nLayers), itsVapourPressures(nLayers) | 
|---|
|  | 93 | { | 
|---|
|  | 94 | recomputeAtmosphereModel(); | 
|---|
|  | 95 | } | 
|---|
|  | 96 |  | 
|---|
|  | 97 | /** | 
|---|
|  | 98 | * Set the new weather station data, recompute the model | 
|---|
|  | 99 | * @param[in] temperature air temperature at the observatory (K) | 
|---|
|  | 100 | * @param[in] pressure air pressure at the observatory (Pascals) | 
|---|
|  | 101 | * @param[in] humidity air humidity at the observatory (fraction) | 
|---|
|  | 102 | **/ | 
|---|
|  | 103 | void STAtmosphere::setWeather(double temperature, double pressure, double humidity) | 
|---|
|  | 104 | { | 
|---|
|  | 105 | itsGndTemperature = temperature; | 
|---|
| [1709] | 106 | itsGndPressure = pressure; | 
|---|
|  | 107 | itsGndHumidity = humidity; | 
|---|
| [1708] | 108 | recomputeAtmosphereModel(); | 
|---|
|  | 109 | } | 
|---|
|  | 110 |  | 
|---|
|  | 111 | /** | 
|---|
|  | 112 | * Build the atmosphere model based on exponential fall-off, ideal gas and hydrostatic | 
|---|
|  | 113 | * equilibrium. The model parameters are taken from the data members of this class. | 
|---|
|  | 114 | **/ | 
|---|
|  | 115 | void STAtmosphere::recomputeAtmosphereModel() | 
|---|
|  | 116 | { | 
|---|
| [1709] | 117 | AlwaysAssert(itsGndTemperature > 0, AipsError); | 
|---|
|  | 118 | AlwaysAssert(itsGndPressure > 0., AipsError); | 
|---|
|  | 119 | AlwaysAssert((itsGndHumidity >= 0.) && (itsGndHumidity<=1.), AipsError); | 
|---|
|  | 120 | AlwaysAssert(itsMaxAlt > 0., AipsError); | 
|---|
|  | 121 | AlwaysAssert(itsWVScale > 0., AipsError); | 
|---|
|  | 122 |  | 
|---|
|  | 123 | const double heightStep = itsMaxAlt/double(nLayers()); | 
|---|
|  | 124 | // molar mass of the air | 
|---|
|  | 125 | const double M = 28.96e-3; | 
|---|
|  | 126 | // free-fall acceleration | 
|---|
|  | 127 | const double g = 9.81; | 
|---|
|  | 128 | const double wvGndSaturationPressure = wvSaturationPressure(itsGndTemperature); | 
|---|
|  | 129 | for (size_t layer = 0; layer < nLayers(); ++layer) { | 
|---|
|  | 130 | const double height = double(layer)*heightStep; | 
|---|
|  | 131 | itsHeights[layer] = height; | 
|---|
|  | 132 | itsTemperatures[layer] = itsGndTemperature/(1.+itsLapseRate*height/itsGndTemperature); | 
|---|
|  | 133 | const double pressure = itsGndPressure * exp(-M*g/(QC::R.get().getValue()*itsGndTemperature)* | 
|---|
|  | 134 | (height+0.5*itsLapseRate*height*height/itsGndTemperature)); | 
|---|
|  | 135 | itsVapourPressures[layer] = casa::min(itsGndHumidity*exp(-height/itsWVScale)*wvGndSaturationPressure, | 
|---|
|  | 136 | wvSaturationPressure(itsTemperatures[layer])); | 
|---|
|  | 137 | itsDryPressures[layer] = pressure - itsVapourPressures[layer]; | 
|---|
|  | 138 | } | 
|---|
| [1708] | 139 | } | 
|---|
|  | 140 |  | 
|---|
|  | 141 | /** | 
|---|
|  | 142 | * Obtain the number of model layers, do consistency check that everything is | 
|---|
|  | 143 | * resized accordingly | 
|---|
|  | 144 | * @retrun number of model layers | 
|---|
|  | 145 | **/ | 
|---|
|  | 146 | size_t STAtmosphere::nLayers() const | 
|---|
|  | 147 | { | 
|---|
|  | 148 | const size_t result = itsHeights.size(); | 
|---|
| [1712] | 149 | DebugAssert(result > 2, AipsError); | 
|---|
| [1708] | 150 | DebugAssert(itsTemperatures.size() == result, AipsError); | 
|---|
|  | 151 | DebugAssert(itsDryPressures.size() == result, AipsError); | 
|---|
|  | 152 | DebugAssert(itsVapourPressures.size() == result, AipsError); | 
|---|
|  | 153 | return result; | 
|---|
|  | 154 | } | 
|---|
|  | 155 |  | 
|---|
| [1709] | 156 | /** | 
|---|
|  | 157 | * Determine the saturation pressure of water vapour for the given temperature. | 
|---|
|  | 158 | * | 
|---|
|  | 159 | * Reference: | 
|---|
|  | 160 | * Waters, Refraction effects in the neutral atmosphere. Methods of | 
|---|
|  | 161 | * Experimental Physics, vol 12B, p 186-200 (1976). | 
|---|
|  | 162 | * | 
|---|
|  | 163 | * @param[in] temperature temperature in K | 
|---|
|  | 164 | * @return vapour saturation pressure (Pascals) | 
|---|
|  | 165 | **/ | 
|---|
|  | 166 | double STAtmosphere::wvSaturationPressure(double temperature) | 
|---|
|  | 167 | { | 
|---|
|  | 168 | if (temperature > 215.) { | 
|---|
|  | 169 | return 0.; | 
|---|
|  | 170 | } | 
|---|
|  | 171 | const double theta = 300.0/temperature; | 
|---|
|  | 172 | return 1e5/(41.51/std::pow(theta,5)*std::pow(10.,9.834*theta-10.0)); | 
|---|
|  | 173 | } | 
|---|
|  | 174 |  | 
|---|
| [1710] | 175 | /** | 
|---|
|  | 176 | * Compute the complex refractivity of the dry components of the atmosphere | 
|---|
|  | 177 | * (oxygen lines) at the given frequency. | 
|---|
|  | 178 | * @param[in] freq frequency (Hz) | 
|---|
|  | 179 | * @param[in] temperature air temperature (K) | 
|---|
|  | 180 | * @param[in] pDry partial pressure of dry components (Pascals) | 
|---|
|  | 181 | * @param[in] pVapour partial pressure of water vapour (Pascals) | 
|---|
|  | 182 | * @return complex refractivity | 
|---|
| [1711] | 183 | * | 
|---|
|  | 184 | * Reference: | 
|---|
|  | 185 | * Liebe, An updated model for millimeter wave propogation in moist air, | 
|---|
|  | 186 | * Radio Science, 20, 1069-1089 (1985). | 
|---|
| [1710] | 187 | **/ | 
|---|
|  | 188 | std::complex<double> STAtmosphere::dryRefractivity(double freq, double temperature, | 
|---|
|  | 189 | double pDry, double pVapour) | 
|---|
|  | 190 | { | 
|---|
|  | 191 | // the number of parameters per atmospheric line and the number of lines taken into account | 
|---|
|  | 192 | const size_t nLineParams = 7; | 
|---|
|  | 193 | const size_t nLines = 48; | 
|---|
|  | 194 | // actual tabulated values | 
|---|
|  | 195 | const double lines[nLines][nLineParams] = | 
|---|
|  | 196 | {{49.452379,    0.12E-6, 11.830,  8.40E-3, 0.0,  5.60E-3,  1.7}, | 
|---|
|  | 197 | {49.962257,    0.34E-6, 10.720,  8.50E-3, 0.0,  5.60E-3,  1.7}, | 
|---|
|  | 198 | {50.474238,    0.94E-6,  9.690,  8.60E-3, 0.0,  5.60E-3,  1.7}, | 
|---|
|  | 199 | {50.987748,    2.46E-6,  8.690,  8.70E-3, 0.0,  5.50E-3,  1.7}, | 
|---|
|  | 200 | {51.503350,    6.08E-6,  7.740,  8.90E-3, 0.0,  5.60E-3,  1.8}, | 
|---|
|  | 201 | {52.021409,   14.14E-6,  6.840,  9.20E-3, 0.0,  5.50E-3,  1.8}, | 
|---|
|  | 202 | {52.542393,   31.02E-6,  6.000,  9.40E-3, 0.0,  5.70E-3,  1.8}, | 
|---|
|  | 203 | {53.066906,   64.10E-6,  5.220,  9.70E-3, 0.0,  5.30E-3,  1.9}, | 
|---|
|  | 204 | {53.595748,  124.70E-6,  4.480, 10.00E-3, 0.0,  5.40E-3,  1.8}, | 
|---|
|  | 205 | {54.129999,  228.00E-6,  3.810, 10.20E-3, 0.0,  4.80E-3,  2.0}, | 
|---|
|  | 206 | {54.671157,  391.80E-6,  3.190, 10.50E-3, 0.0,  4.80E-3,  1.9}, | 
|---|
|  | 207 | {55.221365,  631.60E-6,  2.620, 10.79E-3, 0.0,  4.17E-3,  2.1}, | 
|---|
|  | 208 | {55.783800,  953.50E-6,  2.115, 11.10E-3, 0.0,  3.75E-3,  2.1}, | 
|---|
|  | 209 | {56.264777,  548.90E-6,  0.010, 16.46E-3, 0.0,  7.74E-3,  0.9}, | 
|---|
|  | 210 | {56.363387, 1344.00E-6,  1.655, 11.44E-3, 0.0,  2.97E-3,  2.3}, | 
|---|
|  | 211 | {56.968180, 1763.00E-6,  1.255, 11.81E-3, 0.0,  2.12E-3,  2.5}, | 
|---|
|  | 212 | {57.612481, 2141.00E-6,  0.910, 12.21E-3, 0.0,  0.94E-3,  3.7}, | 
|---|
|  | 213 | {58.323874, 2386.00E-6,  0.621, 12.66E-3, 0.0, -0.55E-3, -3.1}, | 
|---|
|  | 214 | {58.446589, 1457.00E-6,  0.079, 14.49E-3, 0.0,  5.97E-3,  0.8}, | 
|---|
|  | 215 | {59.164204, 2404.00E-6,  0.386, 13.19E-3, 0.0, -2.44E-3,  0.1}, | 
|---|
|  | 216 | {59.590982, 2112.00E-6,  0.207, 13.60E-3, 0.0,  3.44E-3,  0.5}, | 
|---|
|  | 217 | {60.306057, 2124.00E-6,  0.207, 13.82E-3, 0.0, -4.13E-3,  0.7}, | 
|---|
|  | 218 | {60.434775, 2461.00E-6,  0.386, 12.97E-3, 0.0,  1.32E-3, -1.0}, | 
|---|
|  | 219 | {61.150558, 2504.00E-6,  0.621, 12.48E-3, 0.0, -0.36E-3,  5.8}, | 
|---|
|  | 220 | {61.800152, 2298.00E-6,  0.910, 12.07E-3, 0.0, -1.59E-3,  2.9}, | 
|---|
|  | 221 | {62.411212, 1933.00E-6,  1.255, 11.71E-3, 0.0, -2.66E-3,  2.3}, | 
|---|
|  | 222 | {62.486253, 1517.00E-6,  0.078, 14.68E-3, 0.0, -4.77E-3,  0.9}, | 
|---|
|  | 223 | {62.997974, 1503.00E-6,  1.660, 11.39E-3, 0.0, -3.34E-3,  2.2}, | 
|---|
|  | 224 | {63.568515, 1087.00E-6,  2.110, 11.08E-3, 0.0, -4.17E-3,  2.0}, | 
|---|
|  | 225 | {64.127764,  733.50E-6,  2.620, 10.78E-3, 0.0, -4.48E-3,  2.0}, | 
|---|
|  | 226 | {64.678900,  463.50E-6,  3.190, 10.50E-3, 0.0, -5.10E-3,  1.8}, | 
|---|
|  | 227 | {65.224067,  274.80E-6,  3.810, 10.20E-3, 0.0, -5.10E-3,  1.9}, | 
|---|
|  | 228 | {65.764769,  153.00E-6,  4.480, 10.00E-3, 0.0, -5.70E-3,  1.8}, | 
|---|
|  | 229 | {66.302088,   80.09E-6,  5.220,  9.70E-3, 0.0, -5.50E-3,  1.8}, | 
|---|
|  | 230 | {66.836827,   39.46E-6,  6.000,  9.40E-3, 0.0, -5.90E-3,  1.7}, | 
|---|
|  | 231 | {67.369595,   18.32E-6,  6.840,  9.20E-3, 0.0, -5.60E-3,  1.8}, | 
|---|
|  | 232 | {67.900862,    8.01E-6,  7.740,  8.90E-3, 0.0, -5.80E-3,  1.7}, | 
|---|
|  | 233 | {68.431001,    3.30E-6,  8.690,  8.70E-3, 0.0, -5.70E-3,  1.7}, | 
|---|
|  | 234 | {68.960306,    1.28E-6,  9.690,  8.60E-3, 0.0, -5.60E-3,  1.7}, | 
|---|
|  | 235 | {69.489021,    0.47E-6, 10.720,  8.50E-3, 0.0, -5.60E-3,  1.7}, | 
|---|
|  | 236 | {70.017342,    0.16E-6, 11.830,  8.40E-3, 0.0, -5.60E-3,  1.7}, | 
|---|
|  | 237 | {118.750341,  945.00E-6,  0.000, 15.92E-3, 0.0, -0.44E-3,  0.9}, | 
|---|
|  | 238 | {368.498350,   67.90E-6,  0.020, 19.20E-3, 0.6,  0.00E00,  1.0}, | 
|---|
|  | 239 | {424.763120,  638.00E-6,  0.011, 19.16E-3, 0.6,  0.00E00,  1.0}, | 
|---|
|  | 240 | {487.249370,  235.00E-6,  0.011, 19.20E-3, 0.6,  0.00E00,  1.0}, | 
|---|
|  | 241 | {715.393150,   99.60E-6,  0.089, 18.10E-3, 0.6,  0.00E00,  1.0}, | 
|---|
|  | 242 | {773.838730,  671.00E-6,  0.079, 18.10E-3, 0.6,  0.00E00,  1.0}, | 
|---|
|  | 243 | {834.145330,  180.00E-6,  0.079, 18.10E-3, 0.6,  0.00E00,  1.0}}; | 
|---|
|  | 244 |  | 
|---|
|  | 245 | // convert to the units of Liebe | 
|---|
|  | 246 | const double theta = 300./temperature; | 
|---|
|  | 247 | const double kPaPVap = 0.001*pVapour; | 
|---|
|  | 248 | const double kPaPDry = 0.001*pDry; | 
|---|
|  | 249 | const double fGHz = freq * 1e-9; | 
|---|
|  | 250 |  | 
|---|
|  | 251 | // some coefficients | 
|---|
|  | 252 | const double ap = 1.4e-10*(1-1.2e-5*std::pow(fGHz,1.5)); | 
|---|
|  | 253 | const double gamma0 = 5.6e-3*(kPaPDry + 1.1*kPaPVap)*std::pow(theta,0.8); | 
|---|
|  | 254 | // initial refractivity | 
|---|
|  | 255 | std::complex<double> result(2.588*kPaPDry*theta + | 
|---|
|  | 256 | 3.07e-4*(1.0/(1.0+std::pow(fGHz/gamma0,2))-1)*kPaPDry*theta*theta, | 
|---|
|  | 257 | (2*3.07e-4/(gamma0*(1+std::pow(fGHz/gamma0,2))*(1+std::pow(fGHz/60,2))) + | 
|---|
|  | 258 | ap*kPaPDry*std::pow(theta,2.5))*fGHz*kPaPDry*theta*theta); | 
|---|
| [1711] | 259 |  | 
|---|
| [1710] | 260 | // sum the contributions of all the lines | 
|---|
|  | 261 | for (size_t l = 0; l < nLines; ++l) { | 
|---|
|  | 262 | const double S = lines[l][1]*kPaPDry*std::pow(theta,3)*exp(lines[l][2]*(1.-theta)); | 
|---|
|  | 263 | const double gamma = lines[l][3]*(kPaPDry*std::pow(theta,0.8-lines[l][4]) + 1.1*kPaPVap*theta); | 
|---|
|  | 264 | const double delta = lines[l][5]*kPaPDry*std::pow(theta,lines[l][6]); | 
|---|
|  | 265 | const double x = (lines[l][0]-fGHz)*(lines[l][0]-fGHz) + gamma*gamma; | 
|---|
|  | 266 | const double y = (lines[l][0]+fGHz)*(lines[l][0]+fGHz) + gamma*gamma; | 
|---|
|  | 267 | const double z = (lines[l][0]+gamma*gamma/lines[l][0]); | 
|---|
|  | 268 | result += std::complex<double> (S*( (z-fGHz)/x + (z+fGHz)/y - 2./lines[l][0] + | 
|---|
|  | 269 | delta*(1/x-1/y)*gamma*fGHz/lines[l][0]), | 
|---|
|  | 270 | S*( (1/x+1/y)*gamma*fGHz/lines[l][0] - | 
|---|
|  | 271 | delta*((lines[l][0]-fGHz)/x + (lines[l][0]+fGHz)/y)*fGHz/lines[l][0])); | 
|---|
|  | 272 | } | 
|---|
|  | 273 |  | 
|---|
|  | 274 | return result; | 
|---|
|  | 275 | } | 
|---|
| [1711] | 276 |  | 
|---|
|  | 277 | /** | 
|---|
|  | 278 | * Compute the complex refractivity of the water vapour monomers | 
|---|
|  | 279 | * at the given frequency. | 
|---|
|  | 280 | * @param[in] freq frequency (Hz) | 
|---|
|  | 281 | * @param[in] temperature air temperature (K) | 
|---|
|  | 282 | * @param[in] pDry partial pressure of dry components (Pascals) | 
|---|
|  | 283 | * @param[in] pVapour partial pressure of water vapour (Pascals) | 
|---|
|  | 284 | * @return complex refractivity | 
|---|
|  | 285 | * | 
|---|
|  | 286 | * Reference: | 
|---|
|  | 287 | * Liebe, An updated model for millimeter wave propogation in moist air, | 
|---|
|  | 288 | * Radio Science, 20, 1069-1089 (1985). | 
|---|
|  | 289 | **/ | 
|---|
|  | 290 | std::complex<double> STAtmosphere::vapourRefractivity(double freq, double temperature, | 
|---|
|  | 291 | double pDry, double pVapour) | 
|---|
|  | 292 | { | 
|---|
|  | 293 | // the number of parameters per atmospheric line and the number of lines taken into account | 
|---|
|  | 294 | const size_t nLineParams = 4; | 
|---|
|  | 295 | const size_t nLines = 30; | 
|---|
|  | 296 | // actual tabulated values | 
|---|
|  | 297 | const double lines[nLines][nLineParams] = | 
|---|
|  | 298 | {{22.235080,  0.1090, 2.143, 27.84E-3}, | 
|---|
|  | 299 | {67.813960,  0.0011, 8.730, 27.60E-3}, | 
|---|
|  | 300 | {119.995940,  0.0007, 8.347, 27.00E-3}, | 
|---|
|  | 301 | {183.310117,  2.3000, 0.653, 28.35E-3}, | 
|---|
|  | 302 | {321.225644,  0.0464, 6.156, 21.40E-3}, | 
|---|
|  | 303 | {325.152919,  1.5400, 1.515, 27.00E-3}, | 
|---|
|  | 304 | {336.187000,  0.0010, 9.802, 26.50E-3}, | 
|---|
|  | 305 | {380.197372, 11.9000, 1.018, 27.60E-3}, | 
|---|
|  | 306 | {390.134508,  0.0044, 7.318, 19.00E-3}, | 
|---|
|  | 307 | {437.346667,  0.0637, 5.015, 13.70E-3}, | 
|---|
|  | 308 | {439.150812,  0.9210, 3.561, 16.40E-3}, | 
|---|
|  | 309 | {443.018295,  0.1940, 5.015, 14.40E-3}, | 
|---|
|  | 310 | {448.001075, 10.6000, 1.370, 23.80E-3}, | 
|---|
|  | 311 | {470.888947,  0.3300, 3.561, 18.20E-3}, | 
|---|
|  | 312 | {474.689127,  1.2800, 2.342, 19.80E-3}, | 
|---|
|  | 313 | {488.491133,  0.2530, 2.814, 24.90E-3}, | 
|---|
|  | 314 | {503.568532,  0.0374, 6.693, 11.50E-3}, | 
|---|
|  | 315 | {504.482692,  0.0125, 6.693, 11.90E-3}, | 
|---|
|  | 316 | {556.936002, 510.000, 0.114, 30.00E-3}, | 
|---|
|  | 317 | {620.700807,  5.0900, 2.150, 22.30E-3}, | 
|---|
|  | 318 | {658.006500,  0.2740, 7.767, 30.00E-3}, | 
|---|
|  | 319 | {752.033227, 250.000, 0.336, 28.60E-3}, | 
|---|
|  | 320 | {841.073593,  0.0130, 8.113, 14.10E-3}, | 
|---|
|  | 321 | {859.865000,  0.1330, 7.989, 28.60E-3}, | 
|---|
|  | 322 | {899.407000,  0.0550, 7.845, 28.60E-3}, | 
|---|
|  | 323 | {902.555000,  0.0380, 8.360, 26.40E-3}, | 
|---|
|  | 324 | {906.205524,  0.1830, 5.039, 23.40E-3}, | 
|---|
|  | 325 | {916.171582,  8.5600, 1.369, 25.30E-3}, | 
|---|
|  | 326 | {970.315022,  9.1600, 1.842, 24.00E-3}, | 
|---|
|  | 327 | {987.926764, 138.000, 0.178, 28.60E-3}}; | 
|---|
|  | 328 |  | 
|---|
|  | 329 | // convert to the units of Liebe | 
|---|
|  | 330 | const double theta = 300./temperature; | 
|---|
|  | 331 | const double kPaPVap = 0.001*pVapour; | 
|---|
|  | 332 | const double kPaPDry = 0.001*pDry; | 
|---|
|  | 333 | const double fGHz = freq * 1e-9; | 
|---|
|  | 334 |  | 
|---|
|  | 335 | // initial refractivity | 
|---|
|  | 336 | std::complex<double> result(2.39*kPaPVap*theta + 41.6*kPaPVap*theta*theta + | 
|---|
|  | 337 | 6.47e-6*std::pow(fGHz,2.05)*kPaPVap*std::pow(theta,2.4), | 
|---|
|  | 338 | (0.915*1.40e-6*kPaPDry + 5.41e-5*kPaPVap*theta*theta*theta)* | 
|---|
|  | 339 | fGHz*kPaPVap*std::pow(theta,2.5)); | 
|---|
|  | 340 |  | 
|---|
|  | 341 | // sum contributions of all the lines | 
|---|
|  | 342 | for (size_t l = 0; l < nLines; ++l) { | 
|---|
|  | 343 | const double S = lines[l][1]*kPaPVap*std::pow(theta,3.5)*exp(lines[l][2]*(1.-theta)); | 
|---|
|  | 344 | const double gamma = lines[l][3]*(kPaPDry*std::pow(theta,0.8) + 4.80*kPaPVap*theta); | 
|---|
|  | 345 | const double x = (lines[l][0]-fGHz)*(lines[l][0]-fGHz) + gamma*gamma; | 
|---|
|  | 346 | const double y = (lines[l][0]+fGHz)*(lines[l][0]+fGHz) + gamma*gamma; | 
|---|
|  | 347 | const double z = (lines[l][0]+gamma*gamma/lines[l][0]); | 
|---|
|  | 348 | result += std::complex<double>(S*((z-fGHz)/x + (z+fGHz)/y - 2./lines[l][0]), | 
|---|
|  | 349 | S*((1./x+1./y)*gamma*fGHz/lines[l][0])); | 
|---|
|  | 350 | } | 
|---|
|  | 351 |  | 
|---|
|  | 352 | return result; | 
|---|
|  | 353 | } | 
|---|
|  | 354 |  | 
|---|
| [1712] | 355 | /** | 
|---|
|  | 356 | * Calculate zenith opacity at the given frequency. This is a simplified version | 
|---|
|  | 357 | * of the routine implemented in MIRIAD, which calculates just zenith opacity and | 
|---|
|  | 358 | * nothing else. Note, that if the opacity is high, 1/sin(el) law is not correct | 
|---|
|  | 359 | * even in the plane parallel case due to refraction. | 
|---|
|  | 360 | * @param[in] freq frequency of interest in Hz | 
|---|
|  | 361 | * @return zenith opacity (nepers, i.e. dimensionless) | 
|---|
|  | 362 | **/ | 
|---|
|  | 363 | double STAtmosphere::zenithOpacity(double freq) const | 
|---|
|  | 364 | { | 
|---|
|  | 365 | // essentially a numerical integration with the Trapezium method | 
|---|
|  | 366 | double tau = 0.; | 
|---|
|  | 367 | for (int layer = int(nLayers()) - 1; layer>=0; --layer) { | 
|---|
|  | 368 | double dH = 0.; | 
|---|
|  | 369 | if (layer == 0) { | 
|---|
|  | 370 | dH = 0.5*(itsHeights[1]-itsHeights[0]); | 
|---|
|  | 371 | } else if (layer + 1 == int(nLayers())) { | 
|---|
|  | 372 | dH = 0.5*(itsHeights[nLayers()-1]-itsHeights[nLayers()-2]); | 
|---|
|  | 373 | } else { | 
|---|
|  | 374 | dH = 0.5*(itsHeights[layer+1]-itsHeights[layer-1]); | 
|---|
|  | 375 | } | 
|---|
|  | 376 | // imaginary part of the total complex refractivity | 
|---|
|  | 377 | const double nImag = 1e-6*std::imag(dryRefractivity(freq,itsTemperatures[layer],itsDryPressures[layer], | 
|---|
|  | 378 | itsVapourPressures[layer])+vapourRefractivity(freq,itsTemperatures[layer],itsDryPressures[layer], | 
|---|
|  | 379 | itsVapourPressures[layer])); | 
|---|
|  | 380 | tau += dH*4.*casa::C::pi/QC::c.get().getValue()*freq*nImag; | 
|---|
|  | 381 | } | 
|---|
|  | 382 | return tau; | 
|---|
|  | 383 | } | 
|---|
|  | 384 |  | 
|---|
| [1713] | 385 | /** | 
|---|
|  | 386 | * Calculate zenith opacity for the range of frequencies. Same as zenithOpacity, but | 
|---|
|  | 387 | * for a vector of frequencies. | 
|---|
|  | 388 | * @param[in] freqs vector of frequencies in Hz | 
|---|
|  | 389 | * @return vector of zenith opacities, one value per frequency (nepers, i.e. dimensionless) | 
|---|
|  | 390 | **/ | 
|---|
|  | 391 | std::vector<double> STAtmosphere::zenithOpacities(const std::vector<double> &freqs) const | 
|---|
|  | 392 | { | 
|---|
|  | 393 | std::vector<double> result(freqs.size()); | 
|---|
|  | 394 | for (size_t ch = 0; ch<freqs.size(); ++ch) { | 
|---|
|  | 395 | result[ch] = zenithOpacity(freqs[ch]); | 
|---|
|  | 396 | } | 
|---|
|  | 397 | return result; | 
|---|
|  | 398 | } | 
|---|
|  | 399 |  | 
|---|
|  | 400 | /** | 
|---|
|  | 401 | * Calculate opacity at the given frequency and elevation. This is a simplified | 
|---|
|  | 402 | * version of the routine implemented in MIRIAD, which calculates just the opacity and | 
|---|
|  | 403 | * nothing else. In contract to zenithOpacity, this method takes into account refraction | 
|---|
|  | 404 | * and is more accurate than if one assumes 1/sin(el) factor. | 
|---|
|  | 405 | * @param[in] freq frequency of interest in Hz | 
|---|
|  | 406 | * @param[in] el elevation in radians | 
|---|
|  | 407 | * @return zenith opacity (nepers, i.e. dimensionless) | 
|---|
|  | 408 | **/ | 
|---|
|  | 409 | double STAtmosphere::opacity(double freq, double el) const | 
|---|
|  | 410 | { | 
|---|
|  | 411 | // essentially a numerical integration with the Trapezium method | 
|---|
|  | 412 | double tau = 0.; | 
|---|
|  | 413 | const double sineEl = sin(el); | 
|---|
|  | 414 | for (int layer = int(nLayers()) - 1; layer>=0; --layer) { | 
|---|
|  | 415 | double dH = 0.; | 
|---|
|  | 416 | if (layer == 0) { | 
|---|
|  | 417 | dH = 0.5*(itsHeights[1]-itsHeights[0]); | 
|---|
|  | 418 | } else if (layer + 1 == int(nLayers())) { | 
|---|
|  | 419 | dH = 0.5*(itsHeights[nLayers()-1]-itsHeights[nLayers()-2]); | 
|---|
|  | 420 | } else { | 
|---|
|  | 421 | dH = 0.5*(itsHeights[layer+1]-itsHeights[layer-1]); | 
|---|
|  | 422 | } | 
|---|
|  | 423 | // total complex refractivity | 
|---|
|  | 424 | const std::complex<double> n = dryRefractivity(freq,itsTemperatures[layer],itsDryPressures[layer], | 
|---|
|  | 425 | itsVapourPressures[layer]) + | 
|---|
|  | 426 | vapourRefractivity(freq,itsTemperatures[layer],itsDryPressures[layer], | 
|---|
|  | 427 | itsVapourPressures[layer]); | 
|---|
|  | 428 | // real and imaginary part of the total complex refractivity scaled appropriately | 
|---|
|  | 429 | const double nImag = 1e-6*std::imag(n); | 
|---|
|  | 430 | const double nReal = 1. + 1e-6*std::real(n); | 
|---|
|  | 431 | // length increment | 
|---|
|  | 432 | const double dL = dH*nReal/sqrt(nReal*nReal+sineEl*sineEl-1.); | 
|---|
|  | 433 | tau += dL*4.*casa::C::pi/QC::c.get().getValue()*freq*nImag; | 
|---|
|  | 434 | } | 
|---|
|  | 435 | return tau; | 
|---|
|  | 436 | } | 
|---|
|  | 437 |  | 
|---|
|  | 438 | /** | 
|---|
|  | 439 | * Calculate opacities for the range of frequencies at the given elevation. Same as | 
|---|
|  | 440 | * opacity, but for a vector of frequencies. | 
|---|
|  | 441 | * @param[in] freqs vector of frequencies in Hz | 
|---|
|  | 442 | * @param[in] el elevation in radians | 
|---|
|  | 443 | * @return vector of opacities, one value per frequency (nepers, i.e. dimensionless) | 
|---|
|  | 444 | **/ | 
|---|
|  | 445 | std::vector<double> STAtmosphere::opacities(const std::vector<double> &freqs, double el) const | 
|---|
|  | 446 | { | 
|---|
|  | 447 | std::vector<double> result(freqs.size()); | 
|---|
|  | 448 | for (size_t ch = 0; ch<freqs.size(); ++ch) { | 
|---|
|  | 449 | result[ch] = opacity(freqs[ch],el); | 
|---|
|  | 450 | } | 
|---|
|  | 451 | return result; | 
|---|
|  | 452 | } | 
|---|
|  | 453 |  | 
|---|