source: trunk/src/STApplyCal.cpp @ 2848

Last change on this file since 2848 was 2848, checked in by Takeshi Nakazato, 11 years ago

New Development: No

JIRA Issue: No

Ready for Test: Yes

Interface Changes: No

What Interface Changed: Please list interface changes

Test Programs: List test programs

Put in Release Notes: No

Module(s): sd

Description: Describe your changes here...

Fixed a bug that frequency label for Tsys is not properly set.


File size: 16.3 KB
Line 
1//
2// C++ Implementation: STApplyCal
3//
4// Description:
5//
6//
7// Author: Takeshi Nakazato <takeshi.nakazato@nao.ac.jp> (C) 2012
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12#include <assert.h>
13
14#include <casa/Arrays/Array.h>
15#include <casa/Arrays/Vector.h>
16#include <casa/Arrays/Matrix.h>
17#include <casa/Arrays/ArrayIO.h>
18#include <casa/Arrays/ArrayMath.h>
19#include <casa/BasicSL/String.h>
20#include <casa/Logging/LogIO.h>
21#include <casa/Exceptions/Error.h>
22#include <casa/Utilities/CountedPtr.h>
23#include <casa/Utilities/Sort.h>
24#include <casa/Utilities/Assert.h>
25#include <tables/Tables/Table.h>
26
27#include "Scantable.h"
28#include "STApplyCal.h"
29#include "STApplyTable.h"
30#include "STCalTsysTable.h"
31#include "STCalSkyTable.h"
32#include "STCalEnum.h"
33#include "STIdxIter.h"
34#include "Calibrator.h"
35#include "PSAlmaCalibrator.h"
36#include "Interpolator1D.h"
37#include "NearestInterpolator1D.h"
38#include "BufferedLinearInterpolator1D.h"
39#include "PolynomialInterpolator1D.h"
40#include "CubicSplineInterpolator1D.h"
41#include <atnf/PKSIO/SrcType.h>
42
43
44using namespace casa;
45using namespace std;
46
47namespace asap {
48
49STApplyCal::STApplyCal()
50{
51  init();
52}
53
54STApplyCal::STApplyCal(CountedPtr<Scantable> target)
55  : target_(target)
56{
57  init();
58}
59
60STApplyCal::~STApplyCal()
61{
62}
63
64void STApplyCal::init()
65{
66  caltype_ = STCalEnum::NoType;
67  doTsys_ = False;
68  iTime_ = STCalEnum::DefaultInterpolation;
69  iFreq_ = STCalEnum::DefaultInterpolation;
70}
71
72void STApplyCal::reset()
73{
74  // call init
75  init();
76
77  // clear apply tables
78  // do not delete object here
79  skytable_.resize(0);
80  tsystable_.resize(0);
81
82  // clear mapping for Tsys transfer
83  spwmap_.clear();
84
85  // reset selector
86  sel_.reset();
87 
88  // delete interpolators
89  interpolatorT_ = 0;
90  interpolatorS_ = 0;
91  interpolatorF_ = 0;
92
93  // clear working scantable
94  work_ = 0;
95 
96  // clear calibrator
97  calibrator_ = 0;
98}
99
100void STApplyCal::completeReset()
101{
102  reset();
103  target_ = 0;
104}
105
106void STApplyCal::setTarget(CountedPtr<Scantable> target)
107{
108  target_ = target;
109}
110
111void STApplyCal::setTarget(const String &name)
112{
113  // always create PlainTable
114  target_ = new Scantable(name, Table::Plain);
115}
116
117void STApplyCal::push(STCalSkyTable *table)
118{
119  os_.origin(LogOrigin("STApplyCal","push",WHERE));
120  skytable_.push_back(table);
121  STCalEnum::CalType caltype = STApplyTable::getCalType(table);
122  os_ << "caltype=" <<  caltype << LogIO::POST;
123  if (caltype_ == STCalEnum::NoType ||
124      caltype_ == STCalEnum::DefaultType ||
125      caltype_ == STCalEnum::CalTsys) {
126    caltype_ = caltype;
127  }
128  os_ << "caltype_=" << caltype_ << LogIO::POST;
129}
130
131void STApplyCal::push(STCalTsysTable *table)
132{
133  tsystable_.push_back(table);
134  doTsys_ = True;
135}
136
137void STApplyCal::setTimeInterpolation(STCalEnum::InterpolationType itype, Int order)
138{
139  iTime_ = itype;
140  order_ = order;
141}
142
143void STApplyCal::setFrequencyInterpolation(STCalEnum::InterpolationType itype, Int order)
144{
145  iFreq_ = itype;
146  order_ = order;
147}
148
149void STApplyCal::setTsysTransfer(uInt from, Vector<uInt> to)
150{
151  os_.origin(LogOrigin("STApplyCal","setTsysTransfer",WHERE));
152  os_ << "from=" << from << ", to=" << to << LogIO::POST;
153  map<uInt, Vector<uInt> >::iterator i = spwmap_.find(from);
154  if (i == spwmap_.end()) {
155    spwmap_.insert(pair<uInt, Vector<uInt> >(from, to));
156  }
157  else {
158    Vector<uInt> toNew = i->second;
159    spwmap_.erase(i);
160    uInt k = toNew.nelements();
161    toNew.resize(k+to.nelements(), True);
162    for (uInt i = 0; i < to.nelements(); i++)
163      toNew[i+k] = to[i];
164    spwmap_.insert(pair<uInt, Vector<uInt> >(from, toNew));
165  }
166}
167
168void STApplyCal::apply(Bool insitu, Bool filltsys)
169{
170  os_.origin(LogOrigin("STApplyCal","apply",WHERE));
171 
172  //assert(!target_.null());
173  assert_<AipsError>(!target_.null(),"You have to set target scantable first.");
174
175  // calibrator
176  if (caltype_ == STCalEnum::CalPSAlma)
177    calibrator_ = new PSAlmaCalibrator();
178
179  // interpolator
180  initInterpolator();
181
182  // select data
183  sel_.reset();
184  sel_ = target_->getSelection();
185  if (caltype_ == STCalEnum::CalPSAlma ||
186      caltype_ == STCalEnum::CalPS) {
187    sel_.setTypes(vector<int>(1,(int)SrcType::PSON));
188  }
189  target_->setSelection(sel_);
190
191  //os_ << "sel_.print()=" << sel_.print() << LogIO::POST;
192
193  // working data
194  if (insitu) {
195    os_.origin(LogOrigin("STApplyCal","apply",WHERE));
196    os_ << "Overwrite input scantable" << LogIO::POST;
197    work_ = target_;
198  }
199  else {
200    os_.origin(LogOrigin("STApplyCal","apply",WHERE));
201    os_ << "Create output scantable from input" << LogIO::POST;
202    work_ = new Scantable(*target_, false);
203  }
204
205  //os_ << "work_->nrow()=" << work_->nrow() << LogIO::POST;
206
207  // list of apply tables for sky calibration
208  Vector<uInt> skycalList;
209  uInt numSkyCal = 0;
210  uInt nrowSky = 0;
211
212  // list of apply tables for Tsys calibration
213  for (uInt i = 0 ; i < skytable_.size(); i++) {
214    STCalEnum::CalType caltype = STApplyTable::getCalType(skytable_[i]);
215    if (caltype == caltype_) {
216      skycalList.resize(numSkyCal+1, True);
217      skycalList[numSkyCal] = i;
218      numSkyCal++;
219      nrowSky += skytable_[i]->nrow();
220    }
221  }
222
223
224  vector<string> cols( 3 ) ;
225  cols[0] = "BEAMNO" ;
226  cols[1] = "POLNO" ;
227  cols[2] = "IFNO" ;
228  CountedPtr<STIdxIter> iter = new STIdxIterAcc(work_, cols) ;
229  while (!iter->pastEnd()) {
230    Vector<uInt> ids = iter->current();
231    Vector<uInt> rows = iter->getRows(SHARE);
232    if (rows.nelements() > 0)
233      doapply(ids[0], ids[2], ids[1], rows, skycalList, filltsys);
234    iter->next();
235  }
236
237  target_->unsetSelection();
238}
239
240void STApplyCal::doapply(uInt beamno, uInt ifno, uInt polno,
241                         Vector<uInt> &rows,
242                         Vector<uInt> &skylist,
243                         Bool filltsys)
244{
245  os_.origin(LogOrigin("STApplyCal","doapply",WHERE));
246  Bool doTsys = doTsys_;
247
248  STSelector sel;
249  vector<int> id(1);
250  id[0] = beamno;
251  sel.setBeams(id);
252  id[0] = ifno;
253  sel.setIFs(id);
254  id[0] = polno;
255  sel.setPolarizations(id); 
256
257  // apply selection to apply tables
258  uInt nrowSky = 0;
259  uInt nrowTsys = 0;
260  for (uInt i = 0; i < skylist.nelements(); i++) {
261    skytable_[skylist[i]]->setSelection(sel);
262    nrowSky += skytable_[skylist[i]]->nrow();
263    os_ << "nrowSky=" << nrowSky << LogIO::POST;
264  }
265
266  // Skip IFNO without sky data
267  if (nrowSky == 0)
268    return;
269
270  uInt nchanTsys = 0;
271  Vector<Double> ftsys;
272  uInt tsysifno = getIFForTsys(ifno);
273  os_ << "tsysifno=" << (Int)tsysifno << LogIO::POST;
274  if (tsystable_.size() == 0) {
275    os_.origin(LogOrigin("STApplyTable", "doapply", WHERE));
276    os_ << "No Tsys tables are given. Skip Tsys calibratoin." << LogIO::POST;
277    doTsys = False;
278  }
279  else if (tsysifno == (uInt)-1) {
280    os_.origin(LogOrigin("STApplyTable", "doapply", WHERE));
281    os_ << "No corresponding Tsys for IFNO " << ifno << ". Skip Tsys calibration" << LogIO::POST;
282    doTsys = False;
283  }
284  else {
285    id[0] = (int)tsysifno;
286    sel.setIFs(id);
287    for (uInt i = 0; i < tsystable_.size() ; i++) {
288      tsystable_[i]->setSelection(sel);
289      uInt nrowThisTsys = tsystable_[i]->nrow();
290      nrowTsys += nrowThisTsys;
291      if (nrowThisTsys > 0 and nchanTsys == 0) {
292        nchanTsys = tsystable_[i]->nchan(tsysifno);
293        ftsys = tsystable_[i]->getBaseFrequency(0);
294      }
295    }
296    interpolatorF_->setX(ftsys.data(), nchanTsys);
297  }
298
299  uInt nchanSp = skytable_[skylist[0]]->nchan(ifno);
300  Vector<Double> timeSky(nrowSky);
301  Matrix<Float> spoff(nchanSp, nrowSky);
302  Vector<Float> iOff(nchanSp);
303  nrowSky = 0;
304  for (uInt i = 0 ; i < skylist.nelements(); i++) {
305    STCalSkyTable *p = skytable_[skylist[i]];
306    Vector<Double> t = p->getTime();
307    Matrix<Float> sp = p->getSpectra();
308    for (uInt j = 0; j < t.nelements(); j++) {
309      timeSky[nrowSky] = t[j];
310      spoff.column(nrowSky) = sp.column(j);
311      nrowSky++;
312    }
313  }
314
315  Vector<uInt> skyIdx = timeSort(timeSky);
316
317  Double *xa = new Double[skyIdx.nelements()];
318  Float *ya = new Float[skyIdx.nelements()];
319  IPosition ipos(1, skyIdx.nelements());
320  Vector<Double> timeSkySorted(ipos, xa, TAKE_OVER);
321  Vector<Float> tmpOff(ipos, ya, TAKE_OVER);
322  for (uInt i = 0 ; i < skyIdx.nelements(); i++) {
323    timeSkySorted[i] = timeSky[skyIdx[i]];
324  }
325
326  interpolatorS_->setX(xa, skyIdx.nelements());
327
328  Vector<uInt> tsysIdx;
329  Vector<Double> timeTsys(nrowTsys);
330  Matrix<Float> tsys;
331  Vector<Double> timeTsysSorted;
332  Vector<Float> tmpTsys;
333  if (doTsys) {
334    //os_ << "doTsys" << LogIO::POST;
335    timeTsys.resize(nrowTsys);
336    tsys.resize(nchanTsys, nrowTsys);
337    nrowTsys = 0;
338    for (uInt i = 0 ; i < tsystable_.size(); i++) {
339      STCalTsysTable *p = tsystable_[i];
340      Vector<Double> t = p->getTime();
341      Matrix<Float> ts = p->getTsys();
342      for (uInt j = 0; j < t.nelements(); j++) {
343        timeTsys[nrowTsys] = t[j];
344        tsys.column(nrowTsys) = ts.column(j);
345        nrowTsys++;
346      }
347    }
348    tsysIdx = timeSort(timeTsys);
349
350    Double *xb = new Double[tsysIdx.nelements()];
351    Float *yb = new Float[tsysIdx.nelements()];
352    IPosition ipos(1, tsysIdx.nelements());
353    timeTsysSorted.takeStorage(ipos, xb, TAKE_OVER);
354    tmpTsys.takeStorage(ipos, yb, TAKE_OVER);
355    for (uInt i = 0 ; i < tsysIdx.nelements(); i++) {
356      timeTsysSorted[i] = timeTsys[tsysIdx[i]];
357    }
358    interpolatorT_->setX(xb, tsysIdx.nelements());
359  }
360
361  Table tab = work_->table();
362  ArrayColumn<Float> spCol(tab, "SPECTRA");
363  ArrayColumn<Float> tsysCol(tab, "TSYS");
364  ScalarColumn<Double> timeCol(tab, "TIME");
365  Vector<Float> on;
366  for (uInt i = 0; i < rows.nelements(); i++) {
367    //os_ << "start i = " << i << " (row = " << rows[i] << ")" << LogIO::POST;
368    uInt irow = rows[i];
369
370    // target spectral data
371    on = spCol(irow);
372    calibrator_->setSource(on);
373
374    // interpolation
375    Double t0 = timeCol(irow);
376    for (uInt ichan = 0; ichan < nchanSp; ichan++) {
377      Vector<Float> spOffSlice = spoff.row(ichan);
378      //os_ << "spOffSlice = " << spOffSlice << LogIO::POST;
379      for (uInt j = 0; j < skyIdx.nelements(); j++) {
380        tmpOff[j] = spOffSlice[skyIdx[j]];
381      }
382      interpolatorS_->setY(ya, skyIdx.nelements());
383      iOff[ichan] = interpolatorS_->interpolate(t0);
384    }
385    //os_ << "iOff=" << iOff << LogIO::POST;
386    calibrator_->setReference(iOff);
387   
388    Float *Y = new Float[nchanSp];
389    Vector<Float> iTsys(IPosition(1,nchanSp), Y, TAKE_OVER);
390    if (doTsys) {
391      // Tsys correction
392      Float *yt = new Float[nchanTsys];
393      Vector<Float> iTsysT(IPosition(1,nchanTsys), yt, TAKE_OVER);
394      Float *yb = tmpTsys.data();
395      for (uInt ichan = 0; ichan < nchanTsys; ichan++) {
396        Vector<Float> tsysSlice = tsys.row(ichan);
397        for (uInt j = 0; j < tsysIdx.nelements(); j++) {
398          tmpTsys[j] = tsysSlice[tsysIdx[j]];
399        }
400        interpolatorT_->setY(yb, tsysIdx.nelements());
401        iTsysT[ichan] = interpolatorT_->interpolate(t0);
402      }
403      if (nchanSp == 1) {
404        // take average
405        iTsys[0] = mean(iTsysT);
406      }
407      else {
408        // interpolation on frequency axis
409        Vector<Double> fsp = getBaseFrequency(rows[i]);
410        interpolatorF_->setY(yt, nchanTsys);
411        for (uInt ichan = 0; ichan < nchanSp; ichan++) {
412          iTsys[ichan] = interpolatorF_->interpolate(fsp[ichan]);
413        }
414      }
415    }
416    else {
417      Vector<Float> tsysInRow = tsysCol(irow);
418      if (tsysInRow.nelements() == 1) {
419        iTsys = tsysInRow[0];
420      }
421      else {
422        for (uInt ichan = 0; ichan < nchanTsys; ++ichan)
423          iTsys[ichan] = tsysInRow[ichan];
424      }
425    }
426    //os_ << "iTsys=" << iTsys << LogIO::POST;
427    calibrator_->setScaler(iTsys);
428 
429    // do calibration
430    calibrator_->calibrate();
431
432    // update table
433    //os_ << "calibrated=" << calibrator_->getCalibrated() << LogIO::POST;
434    spCol.put(irow, calibrator_->getCalibrated());
435    if (filltsys)
436      tsysCol.put(irow, iTsys);
437  }
438 
439
440  // reset selection on apply tables
441  for (uInt i = 0; i < skylist.nelements(); i++)
442    skytable_[i]->unsetSelection();
443  for (uInt i = 0; i < tsystable_.size(); i++)
444    tsystable_[i]->unsetSelection();
445
446
447  // reset interpolator
448  interpolatorS_->reset();
449  interpolatorF_->reset();
450  interpolatorT_->reset();
451}
452
453Vector<uInt> STApplyCal::timeSort(Vector<Double> &t)
454{
455  Sort sort;
456  sort.sortKey(&t[0], TpDouble, 0, Sort::Ascending);
457  Vector<uInt> idx;
458  sort.sort(idx, t.nelements(), Sort::QuickSort|Sort::NoDuplicates);
459  return idx;
460}
461
462uInt STApplyCal::getIFForTsys(uInt to)
463{
464  for (map<casa::uInt, Vector<uInt> >::iterator i = spwmap_.begin();
465       i != spwmap_.end(); i++) {
466    Vector<uInt> tolist = i->second;
467    os_ << "from=" << i->first << ": tolist=" << tolist << LogIO::POST;
468    for (uInt j = 0; j < tolist.nelements(); j++) {
469      if (tolist[j] == to)
470        return i->first;
471    }
472  }
473  return (uInt)-1;
474}
475
476void STApplyCal::save(const String &name)
477{
478  //assert(!work_.null());
479  assert_<AipsError>(!work_.null(),"You have to execute apply method first.");
480
481  work_->setSelection(sel_);
482  work_->makePersistent(name);
483  work_->unsetSelection();
484}
485
486Vector<Double> STApplyCal::getBaseFrequency(uInt whichrow)
487{
488  //assert(whichrow <= (uInt)work_->nrow());
489  assert_<AipsError>(whichrow <= (uInt)work_->nrow(),"row index out of range.");
490  ROTableColumn col(work_->table(), "IFNO");
491  uInt ifno = col.asuInt(whichrow);
492  col.attach(work_->table(), "FREQ_ID");
493  uInt freqid = col.asuInt(whichrow);
494  uInt nc = work_->nchan(ifno);
495  STFrequencies ftab = work_->frequencies();
496  Double rp, rf, inc;
497  ftab.getEntry(rp, rf, inc, freqid);
498  Vector<Double> r(nc);
499  indgen(r, rf-rp*inc, inc);
500  return r;
501}
502
503void STApplyCal::initInterpolator()
504{
505  os_.origin(LogOrigin("STApplyCal","initInterpolator",WHERE));
506  int order = (order_ > 0) ? order_ : 1;
507  switch (iTime_) {
508  case STCalEnum::NearestInterpolation:
509    {
510      os_ << "use NearestInterpolator in time axis" << LogIO::POST;
511      interpolatorS_ = new NearestInterpolator1D<Double, Float>();
512      interpolatorT_ = new NearestInterpolator1D<Double, Float>();
513      break;
514    }
515  case STCalEnum::LinearInterpolation:
516    {
517      os_ << "use BufferedLinearInterpolator in time axis" << LogIO::POST;
518      interpolatorS_ = new BufferedLinearInterpolator1D<Double, Float>();
519      interpolatorT_ = new BufferedLinearInterpolator1D<Double, Float>();
520      break;     
521    }
522  case STCalEnum::CubicSplineInterpolation:
523    {
524      os_ << "use CubicSplineInterpolator in time axis" << LogIO::POST;
525      interpolatorS_ = new CubicSplineInterpolator1D<Double, Float>();
526      interpolatorT_ = new CubicSplineInterpolator1D<Double, Float>();
527      break;
528    }
529  case STCalEnum::PolynomialInterpolation:
530    {
531      os_ << "use PolynomialInterpolator in time axis" << LogIO::POST;
532      if (order == 0) {
533        interpolatorS_ = new NearestInterpolator1D<Double, Float>();
534        interpolatorT_ = new NearestInterpolator1D<Double, Float>();
535      }
536      else {
537        interpolatorS_ = new PolynomialInterpolator1D<Double, Float>();
538        interpolatorT_ = new PolynomialInterpolator1D<Double, Float>();
539        interpolatorS_->setOrder(order);
540        interpolatorT_->setOrder(order);
541      }
542      break;
543    }
544  default:
545    {
546      os_ << "use BufferedLinearInterpolator in time axis" << LogIO::POST;
547      interpolatorS_ = new BufferedLinearInterpolator1D<Double, Float>();
548      interpolatorT_ = new BufferedLinearInterpolator1D<Double, Float>();
549      break;     
550    }
551  }
552   
553  switch (iFreq_) {
554  case STCalEnum::NearestInterpolation:
555    {
556      os_ << "use NearestInterpolator in frequency axis" << LogIO::POST;
557      interpolatorF_ = new NearestInterpolator1D<Double, Float>();
558      break;
559    }
560  case STCalEnum::LinearInterpolation:
561    {
562      os_ << "use BufferedLinearInterpolator in frequency axis" << LogIO::POST;
563      interpolatorF_ = new BufferedLinearInterpolator1D<Double, Float>();
564      break;     
565    }
566  case STCalEnum::CubicSplineInterpolation:
567    {
568      os_ << "use CubicSplineInterpolator in frequency axis" << LogIO::POST;
569      interpolatorF_ = new CubicSplineInterpolator1D<Double, Float>();
570      break;
571    }
572  case STCalEnum::PolynomialInterpolation:
573    {
574      os_ << "use PolynomialInterpolator in frequency axis" << LogIO::POST;
575      if (order == 0) {
576        interpolatorF_ = new NearestInterpolator1D<Double, Float>();
577      }
578      else {
579        interpolatorF_ = new PolynomialInterpolator1D<Double, Float>();
580        interpolatorF_->setOrder(order);
581      }
582      break;
583    }
584  default:
585    {
586      os_ << "use LinearInterpolator in frequency axis" << LogIO::POST;
587      interpolatorF_ = new BufferedLinearInterpolator1D<Double, Float>();
588      break;     
589    }
590  }
591}
592}
Note: See TracBrowser for help on using the repository browser.