source: trunk/src/STApplyCal.cpp@ 2754

Last change on this file since 2754 was 2750, checked in by Takeshi Nakazato, 12 years ago

New Development: No

JIRA Issue: Yes CAS-4770

Ready for Test: Yes

Interface Changes: No

What Interface Changed: Please list interface changes

Test Programs: List test programs

Put in Release Notes: Yes/No

Module(s): Module Names change impacts.

Description: Describe your changes here...

Various fixes to avoid segmentation fault, and a few updates on
python interface.


File size: 15.6 KB
Line 
1//
2// C++ Implementation: STApplyCal
3//
4// Description:
5//
6//
7// Author: Takeshi Nakazato <takeshi.nakazato@nao.ac.jp> (C) 2012
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12#include <assert.h>
13
14#include <casa/Arrays/Array.h>
15#include <casa/Arrays/Vector.h>
16#include <casa/Arrays/Matrix.h>
17#include <casa/Arrays/ArrayIO.h>
18#include <casa/Arrays/ArrayMath.h>
19#include <casa/BasicSL/String.h>
20#include <casa/Logging/LogIO.h>
21#include <casa/Exceptions/Error.h>
22#include <casa/Utilities/CountedPtr.h>
23#include <casa/Utilities/Sort.h>
24#include <tables/Tables/Table.h>
25
26#include "Scantable.h"
27#include "STApplyCal.h"
28#include "STApplyTable.h"
29#include "STCalTsysTable.h"
30#include "STCalSkyTable.h"
31#include "STCalEnum.h"
32#include "STIdxIter.h"
33#include "Calibrator.h"
34#include "PSAlmaCalibrator.h"
35#include "Interpolator1D.h"
36#include "NearestInterpolator1D.h"
37#include "BufferedLinearInterpolator1D.h"
38#include "PolynomialInterpolator1D.h"
39#include "CubicSplineInterpolator1D.h"
40#include <atnf/PKSIO/SrcType.h>
41
42
43using namespace casa;
44using namespace std;
45
46namespace asap {
47
48STApplyCal::STApplyCal()
49{
50 init();
51}
52
53STApplyCal::STApplyCal(CountedPtr<Scantable> target)
54 : target_(target)
55{
56 init();
57}
58
59STApplyCal::~STApplyCal()
60{
61}
62
63void STApplyCal::init()
64{
65 caltype_ = STCalEnum::NoType;
66 doTsys_ = False;
67 iTime_ = STCalEnum::DefaultInterpolation;
68 iFreq_ = STCalEnum::DefaultInterpolation;
69}
70
71void STApplyCal::reset()
72{
73 // call init
74 init();
75
76 // clear apply tables
77 // do not delete object here
78 skytable_.resize(0);
79 tsystable_.resize(0);
80
81 // clear mapping for Tsys transfer
82 spwmap_.clear();
83
84 // reset selector
85 sel_.reset();
86
87 // delete interpolators
88 interpolatorT_ = 0;
89 interpolatorS_ = 0;
90 interpolatorF_ = 0;
91
92 // clear working scantable
93 work_ = 0;
94
95 // clear calibrator
96 calibrator_ = 0;
97}
98
99void STApplyCal::completeReset()
100{
101 reset();
102 target_ = 0;
103}
104
105void STApplyCal::setTarget(CountedPtr<Scantable> target)
106{
107 target_ = target;
108}
109
110void STApplyCal::setTarget(const String &name)
111{
112 // always create PlainTable
113 target_ = new Scantable(name, Table::Plain);
114}
115
116void STApplyCal::push(STCalSkyTable *table)
117{
118 os_.origin(LogOrigin("STApplyCal","push",WHERE));
119 skytable_.push_back(table);
120 STCalEnum::CalType caltype = STApplyTable::getCalType(table);
121 os_ << "caltype=" << caltype << LogIO::POST;
122 if (caltype_ == STCalEnum::NoType ||
123 caltype_ == STCalEnum::DefaultType ||
124 caltype_ == STCalEnum::CalTsys) {
125 caltype_ = caltype;
126 }
127 os_ << "caltype_=" << caltype_ << LogIO::POST;
128}
129
130void STApplyCal::push(STCalTsysTable *table)
131{
132 tsystable_.push_back(table);
133 doTsys_ = True;
134}
135
136void STApplyCal::setTimeInterpolation(STCalEnum::InterpolationType itype, Int order)
137{
138 iTime_ = itype;
139 order_ = order;
140}
141
142void STApplyCal::setFrequencyInterpolation(STCalEnum::InterpolationType itype, Int order)
143{
144 iFreq_ = itype;
145 order_ = order;
146}
147
148void STApplyCal::setTsysTransfer(uInt from, Vector<uInt> to)
149{
150 os_.origin(LogOrigin("STApplyCal","setTsysTransfer",WHERE));
151 os_ << "from=" << from << ", to=" << to << LogIO::POST;
152 map<uInt, Vector<uInt> >::iterator i = spwmap_.find(from);
153 if (i == spwmap_.end()) {
154 spwmap_.insert(pair<uInt, Vector<uInt> >(from, to));
155 }
156 else {
157 Vector<uInt> toNew = i->second;
158 spwmap_.erase(i);
159 uInt k = toNew.nelements();
160 toNew.resize(k+to.nelements(), True);
161 for (uInt i = 0; i < to.nelements(); i++)
162 toNew[i+k] = to[i];
163 spwmap_.insert(pair<uInt, Vector<uInt> >(from, toNew));
164 }
165}
166
167void STApplyCal::apply(Bool insitu, Bool filltsys)
168{
169 os_.origin(LogOrigin("STApplyCal","apply",WHERE));
170
171 assert(!target_.null());
172
173 // calibrator
174 if (caltype_ == STCalEnum::CalPSAlma)
175 calibrator_ = new PSAlmaCalibrator();
176
177 // interpolator
178 initInterpolator();
179
180 // select data
181 sel_.reset();
182 if (caltype_ == STCalEnum::CalPSAlma ||
183 caltype_ == STCalEnum::CalPS) {
184 sel_.setTypes(vector<int>(1,(int)SrcType::PSON));
185 }
186 target_->setSelection(sel_);
187
188 //os_ << "sel_.print()=" << sel_.print() << LogIO::POST;
189
190 // working data
191 if (insitu) {
192 os_.origin(LogOrigin("STApplyCal","apply",WHERE));
193 os_ << "Overwrite input scantable" << LogIO::POST;
194 work_ = target_;
195 }
196 else {
197 os_.origin(LogOrigin("STApplyCal","apply",WHERE));
198 os_ << "Create output scantable from input" << LogIO::POST;
199 work_ = new Scantable(*target_, false);
200 }
201
202 //os_ << "work_->nrow()=" << work_->nrow() << LogIO::POST;
203
204 // list of apply tables for sky calibration
205 Vector<uInt> skycalList;
206 uInt numSkyCal = 0;
207 uInt nrowSky = 0;
208
209 // list of apply tables for Tsys calibration
210 for (uInt i = 0 ; i < skytable_.size(); i++) {
211 STCalEnum::CalType caltype = STApplyTable::getCalType(skytable_[i]);
212 if (caltype == caltype_) {
213 skycalList.resize(numSkyCal+1, True);
214 skycalList[numSkyCal] = i;
215 numSkyCal++;
216 nrowSky += skytable_[i]->nrow();
217 }
218 }
219
220
221 vector<string> cols( 3 ) ;
222 cols[0] = "BEAMNO" ;
223 cols[1] = "POLNO" ;
224 cols[2] = "IFNO" ;
225 CountedPtr<STIdxIter> iter = new STIdxIterAcc(work_, cols) ;
226 while (!iter->pastEnd()) {
227 Vector<uInt> ids = iter->current();
228 Vector<uInt> rows = iter->getRows(SHARE);
229 if (rows.nelements() > 0)
230 doapply(ids[0], ids[2], ids[1], rows, skycalList, filltsys);
231 iter->next();
232 }
233
234 target_->unsetSelection();
235}
236
237void STApplyCal::doapply(uInt beamno, uInt ifno, uInt polno,
238 Vector<uInt> &rows,
239 Vector<uInt> &skylist,
240 Bool filltsys)
241{
242 os_.origin(LogOrigin("STApplyCal","doapply",WHERE));
243 Bool doTsys = doTsys_;
244
245 STSelector sel;
246 vector<int> id(1);
247 id[0] = beamno;
248 sel.setBeams(id);
249 id[0] = ifno;
250 sel.setIFs(id);
251 id[0] = polno;
252 sel.setPolarizations(id);
253
254 // apply selection to apply tables
255 uInt nrowSky = 0;
256 uInt nrowTsys = 0;
257 for (uInt i = 0; i < skylist.nelements(); i++) {
258 skytable_[skylist[i]]->setSelection(sel);
259 nrowSky += skytable_[skylist[i]]->nrow();
260 os_ << "nrowSky=" << nrowSky << LogIO::POST;
261 }
262 uInt nchanTsys = 0;
263 Vector<Double> ftsys;
264 uInt tsysifno = getIFForTsys(ifno);
265 os_ << "tsysifno=" << tsysifno << LogIO::POST;
266 if (tsystable_.size() == 0) {
267 os_.origin(LogOrigin("STApplyTable", "doapply", WHERE));
268 os_ << "No Tsys tables are given. Skip Tsys calibratoin." << LogIO::POST;
269 doTsys = False;
270 }
271 else if (tsysifno == (uInt)-1) {
272 os_.origin(LogOrigin("STApplyTable", "doapply", WHERE));
273 os_ << "No corresponding Tsys for IFNO " << ifno << ". Skip Tsys calibration" << LogIO::POST;
274 doTsys = False;
275 }
276 else {
277 nchanTsys = tsystable_[0]->nchan(tsysifno);
278 ftsys = tsystable_[0]->getBaseFrequency(0);
279 interpolatorF_->setX(ftsys.data(), nchanTsys);
280 id[0] = (int)tsysifno;
281 sel.setIFs(id);
282 for (uInt i = 0; i < tsystable_.size() ; i++) {
283 tsystable_[i]->setSelection(sel);
284 nrowTsys += tsystable_[i]->nrow();
285 }
286 }
287
288 uInt nchanSp = skytable_[skylist[0]]->nchan(ifno);
289 Vector<Double> timeSky(nrowSky);
290 Matrix<Float> spoff(nchanSp, nrowSky);
291 Vector<Float> iOff(nchanSp);
292 nrowSky = 0;
293 for (uInt i = 0 ; i < skylist.nelements(); i++) {
294 STCalSkyTable *p = skytable_[skylist[i]];
295 Vector<Double> t = p->getTime();
296 Matrix<Float> sp = p->getSpectra();
297 for (uInt j = 0; j < t.nelements(); j++) {
298 timeSky[nrowSky] = t[j];
299 spoff.column(nrowSky) = sp.column(j);
300 nrowSky++;
301 }
302 }
303
304 Vector<uInt> skyIdx = timeSort(timeSky);
305
306 Double *xa = new Double[skyIdx.nelements()];
307 Float *ya = new Float[skyIdx.nelements()];
308 IPosition ipos(1, skyIdx.nelements());
309 Vector<Double> timeSkySorted(ipos, xa, TAKE_OVER);
310 Vector<Float> tmpOff(ipos, ya, TAKE_OVER);
311 for (uInt i = 0 ; i < skyIdx.nelements(); i++) {
312 timeSkySorted[i] = timeSky[skyIdx[i]];
313 }
314
315 interpolatorS_->setX(xa, skyIdx.nelements());
316
317 Vector<uInt> tsysIdx;
318 Vector<Double> timeTsys(nrowTsys);
319 Matrix<Float> tsys;
320 Vector<Double> timeTsysSorted;
321 Vector<Float> tmpTsys;
322 if (doTsys) {
323 os_ << "doTsys" << LogIO::POST;
324 timeTsys.resize(nrowTsys);
325 tsys.resize(nchanTsys, nrowTsys);
326 nrowTsys = 0;
327 for (uInt i = 0 ; i < tsystable_.size(); i++) {
328 STCalTsysTable *p = tsystable_[i];
329 Vector<Double> t = p->getTime();
330 Matrix<Float> ts = p->getTsys();
331 for (uInt j = 0; j < t.nelements(); j++) {
332 timeTsys[nrowTsys] = t[j];
333 tsys.column(nrowTsys) = ts.column(j);
334 nrowTsys++;
335 }
336 }
337 tsysIdx = timeSort(timeTsys);
338
339 Double *xb = new Double[tsysIdx.nelements()];
340 Float *yb = new Float[tsysIdx.nelements()];
341 IPosition ipos(1, tsysIdx.nelements());
342 timeTsysSorted.takeStorage(ipos, xb, TAKE_OVER);
343 tmpTsys.takeStorage(ipos, yb, TAKE_OVER);
344 for (uInt i = 0 ; i < tsysIdx.nelements(); i++) {
345 timeTsysSorted[i] = timeTsys[tsysIdx[i]];
346 }
347 interpolatorT_->setX(xb, tsysIdx.nelements());
348 }
349
350 Table tab = work_->table();
351 ArrayColumn<Float> spCol(tab, "SPECTRA");
352 ArrayColumn<Float> tsysCol(tab, "TSYS");
353 ScalarColumn<Double> timeCol(tab, "TIME");
354 Vector<Float> on;
355 for (uInt i = 0; i < rows.nelements(); i++) {
356 os_ << "start i = " << i << " (row = " << rows[i] << ")" << LogIO::POST;
357 uInt irow = rows[i];
358
359 // target spectral data
360 on = spCol(irow);
361 calibrator_->setSource(on);
362
363 // interpolation
364 Double t0 = timeCol(irow);
365 for (uInt ichan = 0; ichan < nchanSp; ichan++) {
366 Vector<Float> spOffSlice = spoff.row(ichan);
367 //os_ << "spOffSlice = " << spOffSlice << LogIO::POST;
368 for (uInt j = 0; j < skyIdx.nelements(); j++) {
369 tmpOff[j] = spOffSlice[skyIdx[j]];
370 }
371 interpolatorS_->setY(ya, skyIdx.nelements());
372 iOff[ichan] = interpolatorS_->interpolate(t0);
373 }
374 //os_ << "iOff=" << iOff << LogIO::POST;
375 calibrator_->setReference(iOff);
376
377 Float *Y = new Float[nchanSp];
378 Vector<Float> iTsys(IPosition(1,nchanSp), Y, TAKE_OVER);
379 if (doTsys) {
380 // Tsys correction
381 Float *yt = new Float[nchanTsys];
382 Vector<Float> iTsysT(IPosition(1,nchanTsys), yt, TAKE_OVER);
383 Float *yb = tmpTsys.data();
384 for (uInt ichan = 0; ichan < nchanTsys; ichan++) {
385 Vector<Float> tsysSlice = tsys.row(ichan);
386 for (uInt j = 0; j < tsysIdx.nelements(); j++) {
387 tmpTsys[j] = tsysSlice[tsysIdx[j]];
388 }
389 interpolatorT_->setY(yb, tsysIdx.nelements());
390 iTsysT[ichan] = interpolatorT_->interpolate(t0);
391 }
392 if (nchanSp == 1) {
393 // take average
394 iTsys[0] = mean(iTsysT);
395 }
396 else {
397 // interpolation on frequency axis
398 Vector<Double> fsp = getBaseFrequency(rows[i]);
399 interpolatorF_->setY(yt, nchanTsys);
400 for (uInt ichan = 0; ichan < nchanSp; ichan++) {
401 iTsys[ichan] = interpolatorF_->interpolate(fsp[ichan]);
402 }
403 }
404 }
405 else {
406 iTsys = 1.0;
407 }
408 //os_ << "iTsys=" << iTsys << LogIO::POST;
409 calibrator_->setScaler(iTsys);
410
411 // do calibration
412 calibrator_->calibrate();
413
414 // update table
415 //os_ << "calibrated=" << calibrator_->getCalibrated() << LogIO::POST;
416 spCol.put(irow, calibrator_->getCalibrated());
417 if (filltsys)
418 tsysCol.put(irow, iTsys);
419 }
420
421
422 // reset selection on apply tables
423 for (uInt i = 0; i < skylist.nelements(); i++)
424 skytable_[i]->unsetSelection();
425 for (uInt i = 0; i < tsystable_.size(); i++)
426 tsystable_[i]->unsetSelection();
427
428
429 // reset interpolator
430 interpolatorS_->reset();
431 interpolatorF_->reset();
432 interpolatorT_->reset();
433}
434
435Vector<uInt> STApplyCal::timeSort(Vector<Double> &t)
436{
437 Sort sort;
438 sort.sortKey(&t[0], TpDouble, 0, Sort::Ascending);
439 Vector<uInt> idx;
440 sort.sort(idx, t.nelements(), Sort::QuickSort|Sort::NoDuplicates);
441 return idx;
442}
443
444uInt STApplyCal::getIFForTsys(uInt to)
445{
446 for (map<casa::uInt, Vector<uInt> >::iterator i = spwmap_.begin();
447 i != spwmap_.end(); i++) {
448 Vector<uInt> tolist = i->second;
449 os_ << "from=" << i->first << ": tolist=" << tolist << LogIO::POST;
450 for (uInt j = 0; j < tolist.nelements(); j++) {
451 if (tolist[j] == to)
452 return i->first;
453 }
454 }
455 return (uInt)-1;
456}
457
458void STApplyCal::save(const String &name)
459{
460 assert(!work_.null());
461
462 work_->setSelection(sel_);
463 work_->makePersistent(name);
464 work_->unsetSelection();
465}
466
467Vector<Double> STApplyCal::getBaseFrequency(uInt whichrow)
468{
469 assert(whichrow <= (uInt)work_->nrow());
470 ROTableColumn col(work_->table(), "IFNO");
471 uInt ifno = col.asuInt(whichrow);
472 col.attach(work_->table(), "FREQ_ID");
473 uInt freqid = col.asuInt(whichrow);
474 uInt nc = work_->nchan(ifno);
475 STFrequencies ftab = work_->frequencies();
476 Double rp, rf, inc;
477 ftab.getEntry(rp, rf, inc, freqid);
478 Vector<Double> r(nc);
479 indgen(r, rf-rp*inc, inc);
480 return r;
481}
482
483void STApplyCal::initInterpolator()
484{
485 os_.origin(LogOrigin("STApplyCal","initInterpolator",WHERE));
486 int order = (order_ > 0) ? order_ : 1;
487 switch (iTime_) {
488 case STCalEnum::NearestInterpolation:
489 {
490 os_ << "use NearestInterpolator in time axis" << LogIO::POST;
491 interpolatorS_ = new NearestInterpolator1D<Double, Float>();
492 interpolatorT_ = new NearestInterpolator1D<Double, Float>();
493 break;
494 }
495 case STCalEnum::LinearInterpolation:
496 {
497 os_ << "use BufferedLinearInterpolator in time axis" << LogIO::POST;
498 interpolatorS_ = new BufferedLinearInterpolator1D<Double, Float>();
499 interpolatorT_ = new BufferedLinearInterpolator1D<Double, Float>();
500 break;
501 }
502 case STCalEnum::CubicSplineInterpolation:
503 {
504 os_ << "use CubicSplineInterpolator in time axis" << LogIO::POST;
505 interpolatorS_ = new CubicSplineInterpolator1D<Double, Float>();
506 interpolatorT_ = new CubicSplineInterpolator1D<Double, Float>();
507 break;
508 }
509 case STCalEnum::PolynomialInterpolation:
510 {
511 os_ << "use PolynomialInterpolator in time axis" << LogIO::POST;
512 if (order == 0) {
513 interpolatorS_ = new NearestInterpolator1D<Double, Float>();
514 interpolatorT_ = new NearestInterpolator1D<Double, Float>();
515 }
516 else {
517 interpolatorS_ = new PolynomialInterpolator1D<Double, Float>();
518 interpolatorT_ = new PolynomialInterpolator1D<Double, Float>();
519 interpolatorS_->setOrder(order);
520 interpolatorT_->setOrder(order);
521 }
522 break;
523 }
524 default:
525 {
526 os_ << "use BufferedLinearInterpolator in time axis" << LogIO::POST;
527 interpolatorS_ = new BufferedLinearInterpolator1D<Double, Float>();
528 interpolatorT_ = new BufferedLinearInterpolator1D<Double, Float>();
529 break;
530 }
531 }
532
533 switch (iFreq_) {
534 case STCalEnum::NearestInterpolation:
535 {
536 os_ << "use NearestInterpolator in frequency axis" << LogIO::POST;
537 interpolatorF_ = new NearestInterpolator1D<Double, Float>();
538 break;
539 }
540 case STCalEnum::LinearInterpolation:
541 {
542 os_ << "use BufferedLinearInterpolator in frequency axis" << LogIO::POST;
543 interpolatorF_ = new BufferedLinearInterpolator1D<Double, Float>();
544 break;
545 }
546 case STCalEnum::CubicSplineInterpolation:
547 {
548 os_ << "use CubicSplineInterpolator in frequency axis" << LogIO::POST;
549 interpolatorF_ = new CubicSplineInterpolator1D<Double, Float>();
550 break;
551 }
552 case STCalEnum::PolynomialInterpolation:
553 {
554 os_ << "use PolynomialInterpolator in frequency axis" << LogIO::POST;
555 if (order == 0) {
556 interpolatorF_ = new NearestInterpolator1D<Double, Float>();
557 }
558 else {
559 interpolatorF_ = new PolynomialInterpolator1D<Double, Float>();
560 interpolatorF_->setOrder(order);
561 }
562 break;
563 }
564 default:
565 {
566 os_ << "use LinearInterpolator in frequency axis" << LogIO::POST;
567 interpolatorF_ = new BufferedLinearInterpolator1D<Double, Float>();
568 break;
569 }
570 }
571}
572}
Note: See TracBrowser for help on using the repository browser.