source: trunk/src/STApplyCal.cpp@ 2964

Last change on this file since 2964 was 2964, checked in by Takeshi Nakazato, 11 years ago

New Development: No

JIRA Issue: Yes CAS-6585, CAS-6571

Ready for Test: Yes

Interface Changes: Yes/No

What Interface Changed: Please list interface changes

Test Programs: List test programs

Put in Release Notes: Yes/No

Module(s): Module Names change impacts.

Description: Describe your changes here...

Code refactoring.


File size: 20.0 KB
Line 
1//
2// C++ Implementation: STApplyCal
3//
4// Description:
5//
6//
7// Author: Takeshi Nakazato <takeshi.nakazato@nao.ac.jp> (C) 2012
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12#include <assert.h>
13
14#include <casa/Arrays/Array.h>
15#include <casa/Arrays/Vector.h>
16#include <casa/Arrays/Matrix.h>
17#include <casa/Arrays/ArrayIO.h>
18#include <casa/Arrays/ArrayMath.h>
19#include <casa/BasicSL/String.h>
20#include <casa/Logging/LogIO.h>
21#include <casa/Exceptions/Error.h>
22#include <casa/Utilities/CountedPtr.h>
23#include <casa/Utilities/Sort.h>
24#include <casa/Utilities/Assert.h>
25#include <tables/Tables/Table.h>
26
27#include "Scantable.h"
28#include "STApplyCal.h"
29#include "STApplyTable.h"
30#include "STCalTsysTable.h"
31#include "STCalSkyTable.h"
32#include "STCalEnum.h"
33#include "STIdxIter.h"
34#include "Calibrator.h"
35#include "PSAlmaCalibrator.h"
36#include "Interpolator1D.h"
37#include "NearestInterpolator1D.h"
38#include "BufferedLinearInterpolator1D.h"
39#include "PolynomialInterpolator1D.h"
40#include "CubicSplineInterpolator1D.h"
41#include <atnf/PKSIO/SrcType.h>
42
43
44using namespace casa;
45using namespace std;
46
47namespace {
48template<class Accessor, class Type>
49class AccessorInterface
50{
51public:
52 typedef Type TableType;
53 static void GetSortedData(const vector<TableType *> &tablelist,
54 const Vector<uInt> &tableIndex,
55 const uInt nrow,
56 const uInt nchan,
57 Vector<Double> &time,
58 Matrix<Float> &data,
59 Matrix<uChar> &flag)
60 {
61 Vector<Double> timeUnsorted;
62 Matrix<Float> dataUnsorted;
63 Matrix<uChar> flagUnsorted;
64 GetFromTable(tablelist, tableIndex, nrow, nchan,
65 timeUnsorted, dataUnsorted, flagUnsorted);
66 SortData(timeUnsorted, dataUnsorted, flagUnsorted,
67 time, data, flag);
68 }
69private:
70 static void GetFromTable(const vector<TableType *> &tableList,
71 const Vector<uInt> &tableIndex,
72 const uInt nrow,
73 const uInt nchan,
74 Vector<Double> &time,
75 Matrix<Float> &data,
76 Matrix<uChar> &flag)
77 {
78 time.resize(nrow, False);
79 const IPosition shape(2, nrow, nchan);
80 data.resize(shape, False);
81 flag.resize(shape, False);
82 uInt rowIndex = 0;
83 for (uInt i = 0 ; i < tableIndex.nelements(); i++) {
84 TableType *p = tableList[tableIndex[i]];
85 Vector<Double> t = Accessor::GetTime(p);
86 Matrix<Float> dt = Accessor::GetData(p);
87 Matrix<uChar> fl = Accessor::GetFlag(p);
88 for (uInt j = 0; j < t.nelements(); j++) {
89 time[rowIndex] = t[j];
90 data.row(rowIndex) = dt.column(j);
91 flag.row(rowIndex) = fl.column(j);
92 rowIndex++;
93 }
94 }
95 }
96
97 static Vector<uInt> IndexSort(const Vector<Double> &t)
98 {
99 Sort sort;
100 sort.sortKey(&t[0], TpDouble, 0, Sort::Ascending);
101 Vector<uInt> idx;
102 sort.sort(idx, t.nelements(), Sort::QuickSort|Sort::NoDuplicates);
103 return idx;
104 }
105
106 static void SortData(const Vector<Double> &key, const Matrix<Float> &data,
107 const Matrix<uChar> &flag,
108 Vector<Double> &sortedKey, Matrix<Float> &sortedData,
109 Matrix<uChar> &sortedFlag)
110 {
111 Vector<uInt> sortIndex = IndexSort(key);
112 uInt len = sortIndex.nelements();
113 IPosition shape = data.shape();
114 shape[0] = len;
115 Int64 nelements = shape.product();
116 sortedKey.takeStorage(IPosition(1, len), new Double[len], TAKE_OVER);
117 sortedData.takeStorage(shape, new Float[nelements], TAKE_OVER);
118 sortedFlag.takeStorage(shape, new uChar[nelements], TAKE_OVER);
119 for (uInt i = 0 ; i < len; i++) {
120 sortedKey[i] = key[sortIndex[i]];
121 }
122 for (uInt i = 0; i < len; ++i) {
123 sortedData.row(i) = data.row(sortIndex[i]);
124 sortedFlag.row(i) = flag.row(sortIndex[i]);
125 }
126 }
127
128};
129
130class SkyTableAccessor : public AccessorInterface<SkyTableAccessor, asap::STCalSkyTable>
131{
132public:
133 static Vector<Double> GetTime(const TableType *t) {return t->getTime();}
134 static Matrix<Float> GetData(const TableType *t) {return t->getSpectra();}
135 static Matrix<uChar> GetFlag(const TableType *t) {return t->getFlagtra();}
136};
137
138class TsysTableAccessor : public AccessorInterface<TsysTableAccessor, asap::STCalTsysTable>
139{
140public:
141 static Vector<Double> GetTime(const TableType *t) {return t->getTime();}
142 static Matrix<Float> GetData(const TableType *t) {return t->getTsys();}
143 static Matrix<uChar> GetFlag(const TableType *t) {return t->getFlagtra();}
144};
145}
146
147namespace asap {
148STApplyCal::STApplyCal()
149{
150 init();
151}
152
153STApplyCal::STApplyCal(CountedPtr<Scantable> target)
154 : target_(target)
155{
156 init();
157}
158
159STApplyCal::~STApplyCal()
160{
161}
162
163void STApplyCal::init()
164{
165 caltype_ = STCalEnum::NoType;
166 doTsys_ = False;
167 iTime_ = STCalEnum::DefaultInterpolation;
168 iFreq_ = STCalEnum::DefaultInterpolation;
169}
170
171void STApplyCal::reset()
172{
173 // call init
174 init();
175
176 // clear apply tables
177 // do not delete object here
178 skytable_.resize(0);
179 tsystable_.resize(0);
180
181 // clear mapping for Tsys transfer
182 spwmap_.clear();
183
184 // reset selector
185 sel_.reset();
186
187 // delete interpolators
188 interpolatorT_ = 0;
189 interpolatorS_ = 0;
190 interpolatorF_ = 0;
191
192 // clear working scantable
193 work_ = 0;
194
195 // clear calibrator
196 calibrator_ = 0;
197}
198
199void STApplyCal::completeReset()
200{
201 reset();
202 target_ = 0;
203}
204
205void STApplyCal::setTarget(CountedPtr<Scantable> target)
206{
207 target_ = target;
208}
209
210void STApplyCal::setTarget(const String &name)
211{
212 // always create PlainTable
213 target_ = new Scantable(name, Table::Plain);
214}
215
216void STApplyCal::push(STCalSkyTable *table)
217{
218 os_.origin(LogOrigin("STApplyCal","push",WHERE));
219 skytable_.push_back(table);
220 STCalEnum::CalType caltype = STApplyTable::getCalType(table);
221 os_ << "caltype=" << caltype << LogIO::POST;
222 if (caltype_ == STCalEnum::NoType ||
223 caltype_ == STCalEnum::DefaultType ||
224 caltype_ == STCalEnum::CalTsys) {
225 caltype_ = caltype;
226 }
227 os_ << "caltype_=" << caltype_ << LogIO::POST;
228}
229
230void STApplyCal::push(STCalTsysTable *table)
231{
232 tsystable_.push_back(table);
233 doTsys_ = True;
234}
235
236void STApplyCal::setTimeInterpolation(STCalEnum::InterpolationType itype, Int order)
237{
238 iTime_ = itype;
239 order_ = order;
240}
241
242void STApplyCal::setFrequencyInterpolation(STCalEnum::InterpolationType itype, Int order)
243{
244 iFreq_ = itype;
245 order_ = order;
246}
247
248void STApplyCal::setTsysTransfer(uInt from, Vector<uInt> to)
249{
250 os_.origin(LogOrigin("STApplyCal","setTsysTransfer",WHERE));
251 os_ << "from=" << from << ", to=" << to << LogIO::POST;
252 map<uInt, Vector<uInt> >::iterator i = spwmap_.find(from);
253 if (i == spwmap_.end()) {
254 spwmap_.insert(pair<uInt, Vector<uInt> >(from, to));
255 }
256 else {
257 Vector<uInt> toNew = i->second;
258 spwmap_.erase(i);
259 uInt k = toNew.nelements();
260 toNew.resize(k+to.nelements(), True);
261 for (uInt i = 0; i < to.nelements(); i++)
262 toNew[i+k] = to[i];
263 spwmap_.insert(pair<uInt, Vector<uInt> >(from, toNew));
264 }
265}
266
267void STApplyCal::apply(Bool insitu, Bool filltsys)
268{
269 os_.origin(LogOrigin("STApplyCal","apply",WHERE));
270
271 //assert(!target_.null());
272 assert_<AipsError>(!target_.null(),"You have to set target scantable first.");
273
274 // calibrator
275 if (caltype_ == STCalEnum::CalPSAlma)
276 calibrator_ = new PSAlmaCalibrator();
277
278 // interpolator
279 initInterpolator();
280
281 // select data
282 sel_.reset();
283 sel_ = target_->getSelection();
284 if (caltype_ == STCalEnum::CalPSAlma ||
285 caltype_ == STCalEnum::CalPS) {
286 sel_.setTypes(vector<int>(1,(int)SrcType::PSON));
287 }
288 target_->setSelection(sel_);
289
290 //os_ << "sel_.print()=" << sel_.print() << LogIO::POST;
291
292 // working data
293 if (insitu) {
294 os_.origin(LogOrigin("STApplyCal","apply",WHERE));
295 os_ << "Overwrite input scantable" << LogIO::POST;
296 work_ = target_;
297 }
298 else {
299 os_.origin(LogOrigin("STApplyCal","apply",WHERE));
300 os_ << "Create output scantable from input" << LogIO::POST;
301 work_ = new Scantable(*target_, false);
302 }
303
304 //os_ << "work_->nrow()=" << work_->nrow() << LogIO::POST;
305
306 // list of apply tables for sky calibration
307 Vector<uInt> skycalList(skytable_.size());
308 uInt numSkyCal = 0;
309
310 // list of apply tables for Tsys calibration
311 for (uInt i = 0 ; i < skytable_.size(); i++) {
312 STCalEnum::CalType caltype = STApplyTable::getCalType(skytable_[i]);
313 if (caltype == caltype_) {
314 skycalList[numSkyCal] = i;
315 numSkyCal++;
316 }
317 }
318 skycalList.resize(numSkyCal, True);
319
320
321 vector<string> cols( 3 ) ;
322 cols[0] = "BEAMNO" ;
323 cols[1] = "POLNO" ;
324 cols[2] = "IFNO" ;
325 CountedPtr<STIdxIter2> iter = new STIdxIter2(work_, cols) ;
326 double start = mathutil::gettimeofday_sec();
327 os_ << LogIO::DEBUGGING << "start iterative doapply: " << start << LogIO::POST;
328 while (!iter->pastEnd()) {
329 Record ids = iter->currentValue();
330 Vector<uInt> rows = iter->getRows(SHARE);
331 if (rows.nelements() > 0)
332 doapply(ids.asuInt("BEAMNO"), ids.asuInt("IFNO"), ids.asuInt("POLNO"), rows, skycalList, filltsys);
333 iter->next();
334 }
335 double end = mathutil::gettimeofday_sec();
336 os_ << LogIO::DEBUGGING << "end iterative doapply: " << end << LogIO::POST;
337 os_ << LogIO::DEBUGGING << "elapsed time for doapply: " << end - start << " sec" << LogIO::POST;
338
339 target_->unsetSelection();
340}
341
342void STApplyCal::doapply(uInt beamno, uInt ifno, uInt polno,
343 Vector<uInt> &rows,
344 Vector<uInt> &skylist,
345 Bool filltsys)
346{
347 os_.origin(LogOrigin("STApplyCal","doapply",WHERE));
348 Bool doTsys = doTsys_;
349
350 STSelector sel;
351 vector<int> id(1);
352 id[0] = beamno;
353 sel.setBeams(id);
354 id[0] = ifno;
355 sel.setIFs(id);
356 id[0] = polno;
357 sel.setPolarizations(id);
358
359 // apply selection to apply tables
360 uInt nrowSkyTotal = 0;
361 uInt nrowTsysTotal = 0;
362 for (uInt i = 0; i < skylist.nelements(); i++) {
363 skytable_[skylist[i]]->setSelection(sel);
364 nrowSkyTotal += skytable_[skylist[i]]->nrow();
365 os_ << "nrowSkyTotal=" << nrowSkyTotal << LogIO::POST;
366 }
367
368 // Skip IFNO without sky data
369 if (nrowSkyTotal == 0)
370 return;
371
372 uInt nchanTsys = 0;
373 Vector<Double> ftsys;
374 uInt tsysifno = getIFForTsys(ifno);
375 os_ << "tsysifno=" << (Int)tsysifno << LogIO::POST;
376 if (tsystable_.size() == 0) {
377 os_.origin(LogOrigin("STApplyTable", "doapply", WHERE));
378 os_ << "No Tsys tables are given. Skip Tsys calibratoin." << LogIO::POST;
379 doTsys = False;
380 }
381 else if (tsysifno == (uInt)-1) {
382 os_.origin(LogOrigin("STApplyTable", "doapply", WHERE));
383 os_ << "No corresponding Tsys for IFNO " << ifno << ". Skip Tsys calibration" << LogIO::POST;
384 doTsys = False;
385 }
386 else {
387 id[0] = (int)tsysifno;
388 sel.setIFs(id);
389 for (uInt i = 0; i < tsystable_.size() ; i++) {
390 tsystable_[i]->setSelection(sel);
391 uInt nrowThisTsys = tsystable_[i]->nrow();
392 nrowTsysTotal += nrowThisTsys;
393 if (nrowThisTsys > 0 && nchanTsys == 0) {
394 nchanTsys = tsystable_[i]->nchan(tsysifno);
395 ftsys = tsystable_[i]->getBaseFrequency(0);
396 }
397 }
398 }
399
400 uInt nchanSp = skytable_[skylist[0]]->nchan(ifno);
401 uInt nrowSky = nrowSkyTotal;
402 Vector<Double> timeSky;
403 Matrix<Float> spoff;
404 Matrix<uChar> flagoff;
405 SkyTableAccessor::GetSortedData(skytable_, skylist,
406 nrowSkyTotal, nchanSp,
407 timeSky, spoff, flagoff);
408 nrowSky = timeSky.nelements();
409
410 uInt nrowTsys = nrowTsysTotal;
411 Vector<Double> timeTsys;
412 Matrix<Float> tsys;
413 Matrix<uChar> flagtsys;
414 if (doTsys) {
415 //os_ << "doTsys" << LogIO::POST;
416 Vector<uInt> tsyslist(tsystable_.size());
417 indgen(tsyslist);
418 TsysTableAccessor::GetSortedData(tsystable_, tsyslist,
419 nrowTsysTotal, nchanTsys,
420 timeTsys, tsys, flagtsys);
421 nrowTsys = timeTsys.nelements();
422 }
423
424 Table tab = work_->table();
425 ArrayColumn<Float> spCol(tab, "SPECTRA");
426 ArrayColumn<uChar> flCol(tab, "FLAGTRA");
427 ArrayColumn<Float> tsysCol(tab, "TSYS");
428 ScalarColumn<Double> timeCol(tab, "TIME");
429
430 // Array for scaling factor (aka Tsys)
431 Vector<Float> iTsys(IPosition(1, nchanSp), new Float[nchanSp], TAKE_OVER);
432 // Array for Tsys interpolation
433 // This is empty array and is never referenced if doTsys == false
434 // (i.e. nchanTsys == 0)
435 Vector<Float> iTsysT(IPosition(1, nchanTsys), new Float[nchanTsys], TAKE_OVER);
436
437 // Array for interpolated off spectrum
438 Vector<Float> iOff(IPosition(1, nchanSp), new Float[nchanSp], TAKE_OVER);
439
440 // working array for interpolation with flags
441 uInt arraySize = max(max(nrowTsys, nchanTsys), nrowSky);
442 Vector<Double> xwork(IPosition(1, arraySize), new Double[arraySize], TAKE_OVER);
443 Vector<Float> ywork(IPosition(1, arraySize), new Float[arraySize], TAKE_OVER);
444 Vector<uChar> fwork(IPosition(1, nchanTsys), new uChar[nchanTsys], TAKE_OVER);
445
446 for (uInt i = 0; i < rows.nelements(); i++) {
447 //os_ << "start i = " << i << " (row = " << rows[i] << ")" << LogIO::POST;
448 uInt irow = rows[i];
449
450 // target spectral data
451 Vector<Float> on = spCol(irow);
452 Vector<uChar> flag = flCol(irow);
453 //os_ << "on=" << on[0] << LogIO::POST;
454 calibrator_->setSource(on);
455
456 // interpolation
457 Double t0 = timeCol(irow);
458 Double *xwork_p = xwork.data();
459 Float *ywork_p = ywork.data();
460 for (uInt ichan = 0; ichan < nchanSp; ichan++) {
461 Float *tmpY = &(spoff.data()[ichan * nrowSky]);
462 uChar *tmpF = &(flagoff.data()[ichan * nrowSky]);
463 uInt wnrow = 0;
464 for (uInt ir = 0; ir < nrowSky; ++ir) {
465 if (tmpF[ir] == 0) {
466 xwork_p[wnrow] = timeSky.data()[ir];
467 ywork_p[wnrow] = tmpY[ir];
468 wnrow++;
469 }
470 }
471 if (wnrow > 0) {
472 // any valid reference data
473 interpolatorS_->setData(xwork_p, ywork_p, wnrow);
474 }
475 else {
476 // no valid reference data
477 // interpolate data regardless of flag
478 interpolatorS_->setData(timeSky.data(), tmpY, nrowSky);
479 // flag this channel for calibrated data
480 flag[ichan] = 1 << 7; // user flag
481 }
482 iOff[ichan] = interpolatorS_->interpolate(t0);
483 }
484 //os_ << "iOff=" << iOff[0] << LogIO::POST;
485 calibrator_->setReference(iOff);
486
487 if (doTsys) {
488 // Tsys correction
489 // interpolation on time axis
490 Float *yt = iTsysT.data();
491 uChar *fwork_p = fwork.data();
492 for (uInt ichan = 0; ichan < nchanTsys; ichan++) {
493 Float *tmpY = &(tsys.data()[ichan * nrowTsys]);
494 uChar *tmpF = &(flagtsys.data()[ichan * nrowTsys]);
495 uInt wnrow = 0;
496 for (uInt ir = 0; ir < nrowTsys; ++ir) {
497 if (tmpF[ir] == 0) {
498 xwork_p[wnrow] = timeTsys.data()[ir];
499 ywork_p[wnrow] = tmpY[ir];
500 wnrow++;
501 }
502 }
503 if (wnrow > 0) {
504 // any valid value exists
505 interpolatorT_->setData(xwork_p, ywork_p, wnrow);
506 iTsysT[ichan] = interpolatorT_->interpolate(t0);
507 fwork_p[ichan] = 0;
508 }
509 else {
510 // no valid data
511 fwork_p[ichan] = 1 << 7; // user flag
512 }
513 }
514 if (nchanSp == 1) {
515 // take average
516 iTsys[0] = mean(iTsysT);
517 }
518 else {
519 // interpolation on frequency axis
520 Vector<Double> fsp = getBaseFrequency(rows[i]);
521 uInt wnchan = 0;
522 for (uInt ichan = 0; ichan < nchanTsys; ++ichan) {
523 if (fwork_p[ichan] == 0) {
524 xwork_p[wnchan] = ftsys.data()[ichan];
525 ywork_p[wnchan] = yt[ichan];
526 ++wnchan;
527 }
528 }
529 //interpolatorF_->setY(yt, nchanTsys);
530 interpolatorF_->setData(xwork_p, ywork_p, wnchan);
531 for (uInt ichan = 0; ichan < nchanSp; ichan++) {
532 iTsys[ichan] = interpolatorF_->interpolate(fsp[ichan]);
533 }
534 }
535 }
536 else {
537 Vector<Float> tsysInRow = tsysCol(irow);
538 if (tsysInRow.nelements() == 1) {
539 iTsys = tsysInRow[0];
540 }
541 else {
542 for (uInt ichan = 0; ichan < tsysInRow.nelements(); ++ichan)
543 iTsys[ichan] = tsysInRow[ichan];
544 }
545 }
546 //os_ << "iTsys=" << iTsys[0] << LogIO::POST;
547 calibrator_->setScaler(iTsys);
548
549 // do calibration
550 calibrator_->calibrate();
551
552 // update table
553 //os_ << "calibrated=" << calibrator_->getCalibrated()[0] << LogIO::POST;
554 spCol.put(irow, calibrator_->getCalibrated());
555 flCol.put(irow, flag);
556 if (filltsys)
557 tsysCol.put(irow, iTsys);
558 }
559
560
561 // reset selection on apply tables
562 for (uInt i = 0; i < skylist.nelements(); i++)
563 skytable_[i]->unsetSelection();
564 for (uInt i = 0; i < tsystable_.size(); i++)
565 tsystable_[i]->unsetSelection();
566
567
568 // reset interpolator
569 interpolatorS_->reset();
570 interpolatorF_->reset();
571 interpolatorT_->reset();
572}
573
574uInt STApplyCal::getIFForTsys(uInt to)
575{
576 for (map<casa::uInt, Vector<uInt> >::iterator i = spwmap_.begin();
577 i != spwmap_.end(); i++) {
578 Vector<uInt> tolist = i->second;
579 os_ << "from=" << i->first << ": tolist=" << tolist << LogIO::POST;
580 for (uInt j = 0; j < tolist.nelements(); j++) {
581 if (tolist[j] == to)
582 return i->first;
583 }
584 }
585 return (uInt)-1;
586}
587
588void STApplyCal::save(const String &name)
589{
590 //assert(!work_.null());
591 assert_<AipsError>(!work_.null(),"You have to execute apply method first.");
592
593 work_->setSelection(sel_);
594 work_->makePersistent(name);
595 work_->unsetSelection();
596}
597
598Vector<Double> STApplyCal::getBaseFrequency(uInt whichrow)
599{
600 //assert(whichrow <= (uInt)work_->nrow());
601 assert_<AipsError>(whichrow <= (uInt)work_->nrow(),"row index out of range.");
602 ROTableColumn col(work_->table(), "IFNO");
603 uInt ifno = col.asuInt(whichrow);
604 col.attach(work_->table(), "FREQ_ID");
605 uInt freqid = col.asuInt(whichrow);
606 uInt nc = work_->nchan(ifno);
607 STFrequencies ftab = work_->frequencies();
608 Double rp, rf, inc;
609 ftab.getEntry(rp, rf, inc, freqid);
610 Vector<Double> r(nc);
611 indgen(r, rf-rp*inc, inc);
612 return r;
613}
614
615void STApplyCal::initInterpolator()
616{
617 os_.origin(LogOrigin("STApplyCal","initInterpolator",WHERE));
618 int order = (order_ > 0) ? order_ : 1;
619 switch (iTime_) {
620 case STCalEnum::NearestInterpolation:
621 {
622 os_ << "use NearestInterpolator in time axis" << LogIO::POST;
623 interpolatorS_ = new NearestInterpolator1D<Double, Float>();
624 interpolatorT_ = new NearestInterpolator1D<Double, Float>();
625 break;
626 }
627 case STCalEnum::LinearInterpolation:
628 {
629 os_ << "use BufferedLinearInterpolator in time axis" << LogIO::POST;
630 interpolatorS_ = new BufferedLinearInterpolator1D<Double, Float>();
631 interpolatorT_ = new BufferedLinearInterpolator1D<Double, Float>();
632 break;
633 }
634 case STCalEnum::CubicSplineInterpolation:
635 {
636 os_ << "use CubicSplineInterpolator in time axis" << LogIO::POST;
637 interpolatorS_ = new CubicSplineInterpolator1D<Double, Float>();
638 interpolatorT_ = new CubicSplineInterpolator1D<Double, Float>();
639 break;
640 }
641 case STCalEnum::PolynomialInterpolation:
642 {
643 os_ << "use PolynomialInterpolator in time axis" << LogIO::POST;
644 if (order == 0) {
645 interpolatorS_ = new NearestInterpolator1D<Double, Float>();
646 interpolatorT_ = new NearestInterpolator1D<Double, Float>();
647 }
648 else {
649 interpolatorS_ = new PolynomialInterpolator1D<Double, Float>();
650 interpolatorT_ = new PolynomialInterpolator1D<Double, Float>();
651 interpolatorS_->setOrder(order);
652 interpolatorT_->setOrder(order);
653 }
654 break;
655 }
656 default:
657 {
658 os_ << "use BufferedLinearInterpolator in time axis" << LogIO::POST;
659 interpolatorS_ = new BufferedLinearInterpolator1D<Double, Float>();
660 interpolatorT_ = new BufferedLinearInterpolator1D<Double, Float>();
661 break;
662 }
663 }
664
665 switch (iFreq_) {
666 case STCalEnum::NearestInterpolation:
667 {
668 os_ << "use NearestInterpolator in frequency axis" << LogIO::POST;
669 interpolatorF_ = new NearestInterpolator1D<Double, Float>();
670 break;
671 }
672 case STCalEnum::LinearInterpolation:
673 {
674 os_ << "use BufferedLinearInterpolator in frequency axis" << LogIO::POST;
675 interpolatorF_ = new BufferedLinearInterpolator1D<Double, Float>();
676 break;
677 }
678 case STCalEnum::CubicSplineInterpolation:
679 {
680 os_ << "use CubicSplineInterpolator in frequency axis" << LogIO::POST;
681 interpolatorF_ = new CubicSplineInterpolator1D<Double, Float>();
682 break;
683 }
684 case STCalEnum::PolynomialInterpolation:
685 {
686 os_ << "use PolynomialInterpolator in frequency axis" << LogIO::POST;
687 if (order == 0) {
688 interpolatorF_ = new NearestInterpolator1D<Double, Float>();
689 }
690 else {
691 interpolatorF_ = new PolynomialInterpolator1D<Double, Float>();
692 interpolatorF_->setOrder(order);
693 }
694 break;
695 }
696 default:
697 {
698 os_ << "use LinearInterpolator in frequency axis" << LogIO::POST;
699 interpolatorF_ = new BufferedLinearInterpolator1D<Double, Float>();
700 break;
701 }
702 }
703}
704
705}
Note: See TracBrowser for help on using the repository browser.