source: trunk/src/SDMath.cc @ 397

Last change on this file since 397 was 397, checked in by kil064, 19 years ago

add support in frequency alignment for a perIF (caters to
manual doppler tracking) or perFreqID mode (caters to no
doppler tracking)

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 53.2 KB
Line 
1//#---------------------------------------------------------------------------
2//# SDMath.cc: A collection of single dish mathematical operations
3//#---------------------------------------------------------------------------
4//# Copyright (C) 2004
5//# ATNF
6//#
7//# This program is free software; you can redistribute it and/or modify it
8//# under the terms of the GNU General Public License as published by the Free
9//# Software Foundation; either version 2 of the License, or (at your option)
10//# any later version.
11//#
12//# This program is distributed in the hope that it will be useful, but
13//# WITHOUT ANY WARRANTY; without even the implied warranty of
14//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
15//# Public License for more details.
16//#
17//# You should have received a copy of the GNU General Public License along
18//# with this program; if not, write to the Free Software Foundation, Inc.,
19//# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
20//#
21//# Correspondence concerning this software should be addressed as follows:
22//#        Internet email: Malte.Marquarding@csiro.au
23//#        Postal address: Malte Marquarding,
24//#                        Australia Telescope National Facility,
25//#                        P.O. Box 76,
26//#                        Epping, NSW, 2121,
27//#                        AUSTRALIA
28//#
29//# $Id:
30//#---------------------------------------------------------------------------
31#include <vector>
32
33#include <casa/aips.h>
34#include <casa/iostream.h>
35#include <casa/iomanip.h>
36#include <casa/BasicSL/String.h>
37#include <casa/Arrays/IPosition.h>
38#include <casa/Arrays/Array.h>
39#include <casa/Arrays/ArrayIter.h>
40#include <casa/Arrays/VectorIter.h>
41#include <casa/Arrays/ArrayMath.h>
42#include <casa/Arrays/ArrayLogical.h>
43#include <casa/Arrays/MaskedArray.h>
44#include <casa/Arrays/MaskArrMath.h>
45#include <casa/Arrays/MaskArrLogi.h>
46#include <casa/Arrays/Matrix.h>
47#include <casa/BasicMath/Math.h>
48#include <casa/Containers/Block.h>
49#include <casa/Exceptions.h>
50#include <casa/Quanta/Quantum.h>
51#include <casa/Quanta/Unit.h>
52#include <casa/Quanta/MVEpoch.h>
53#include <casa/Quanta/MVTime.h>
54#include <casa/Utilities/Assert.h>
55
56#include <coordinates/Coordinates/SpectralCoordinate.h>
57#include <coordinates/Coordinates/CoordinateSystem.h>
58#include <coordinates/Coordinates/CoordinateUtil.h>
59#include <coordinates/Coordinates/FrequencyAligner.h>
60
61#include <lattices/Lattices/LatticeUtilities.h>
62#include <lattices/Lattices/RebinLattice.h>
63
64#include <measures/Measures/MEpoch.h>
65#include <measures/Measures/MDirection.h>
66#include <measures/Measures/MPosition.h>
67
68#include <scimath/Mathematics/VectorKernel.h>
69#include <scimath/Mathematics/Convolver.h>
70#include <scimath/Mathematics/InterpolateArray1D.h>
71#include <scimath/Functionals/Polynomial.h>
72
73#include <tables/Tables/Table.h>
74#include <tables/Tables/ScalarColumn.h>
75#include <tables/Tables/ArrayColumn.h>
76#include <tables/Tables/ReadAsciiTable.h>
77
78#include "MathUtils.h"
79#include "SDDefs.h"
80#include "SDAttr.h"
81#include "SDContainer.h"
82#include "SDMemTable.h"
83
84#include "SDMath.h"
85
86using namespace casa;
87using namespace asap;
88
89
90SDMath::SDMath()
91{;}
92
93SDMath::SDMath(const SDMath& other)
94{
95
96// No state
97
98}
99
100SDMath& SDMath::operator=(const SDMath& other)
101{
102  if (this != &other) {
103// No state
104  }
105  return *this;
106}
107
108SDMath::~SDMath()
109{;}
110
111
112
113SDMemTable* SDMath::frequencyAlignment (const SDMemTable& in, const String& refTime,
114                                         const String& method, Bool perFreqID) const
115{
116// Get frame info from Table
117
118   std::vector<std::string> info = in.getCoordInfo();
119
120// Parse frequency system
121
122   String systemStr(info[1]);
123   String baseSystemStr(info[3]);
124   if (baseSystemStr==systemStr) {
125      throw(AipsError("You have not set a frequency frame different from the initial - use function set_freqframe"));
126   }
127//
128   MFrequency::Types freqSystem;
129   MFrequency::getType(freqSystem, systemStr);
130
131// Do it
132
133   return frequencyAlign (in, freqSystem, refTime, method, perFreqID);
134}
135
136
137
138CountedPtr<SDMemTable> SDMath::average(const Block<CountedPtr<SDMemTable> >& in,
139                                       const Vector<Bool>& mask, Bool scanAv,
140                                       const String& weightStr, Bool alignFreq) const
141//
142// Weighted averaging of spectra from one or more Tables.
143//
144{
145
146// Convert weight type
147 
148  WeightType wtType = NONE;
149  convertWeightString(wtType, weightStr);
150
151// Create output Table by cloning from the first table
152
153  SDMemTable* pTabOut = new SDMemTable(*in[0],True);
154
155// Setup
156
157  IPosition shp = in[0]->rowAsMaskedArray(0).shape();      // Must not change
158  Array<Float> arr(shp);
159  Array<Bool> barr(shp);
160  const Bool useMask = (mask.nelements() == shp(asap::ChanAxis));
161
162// Columns from Tables
163
164  ROArrayColumn<Float> tSysCol;
165  ROScalarColumn<Double> mjdCol;
166  ROScalarColumn<String> srcNameCol;
167  ROScalarColumn<Double> intCol;
168  ROArrayColumn<uInt> fqIDCol;
169
170// Create accumulation MaskedArray. We accumulate for each channel,if,pol,beam
171// Note that the mask of the accumulation array will ALWAYS remain ALL True.
172// The MA is only used so that when data which is masked Bad is added to it,
173// that data does not contribute.
174
175  Array<Float> zero(shp);
176  zero=0.0;
177  Array<Bool> good(shp);
178  good = True;
179  MaskedArray<Float> sum(zero,good);
180
181// Counter arrays
182
183  Array<Float> nPts(shp);             // Number of points
184  nPts = 0.0;
185  Array<Float> nInc(shp);             // Increment
186  nInc = 1.0;
187
188// Create accumulation Array for variance. We accumulate for
189// each if,pol,beam, but average over channel.  So we need
190// a shape with one less axis dropping channels.
191
192  const uInt nAxesSub = shp.nelements() - 1;
193  IPosition shp2(nAxesSub);
194  for (uInt i=0,j=0; i<(nAxesSub+1); i++) {
195     if (i!=asap::ChanAxis) {
196       shp2(j) = shp(i);
197       j++;
198     }
199  }
200  Array<Float> sumSq(shp2);
201  sumSq = 0.0;
202  IPosition pos2(nAxesSub,0);                        // For indexing
203
204// Time-related accumulators
205
206  Double time;
207  Double timeSum = 0.0;
208  Double intSum = 0.0;
209  Double interval = 0.0;
210
211// To get the right shape for the Tsys accumulator we need to
212// access a column from the first table.  The shape of this
213// array must not change
214
215  Array<Float> tSysSum;
216  {
217    const Table& tabIn = in[0]->table();
218    tSysCol.attach(tabIn,"TSYS");
219    tSysSum.resize(tSysCol.shape(0));
220  }
221  tSysSum =0.0;
222  Array<Float> tSys;
223
224// Scan and row tracking
225
226  Int oldScanID = 0;
227  Int outScanID = 0;
228  Int scanID = 0;
229  Int rowStart = 0;
230  Int nAccum = 0;
231  Int tableStart = 0;
232
233// Source and FreqID
234
235  String sourceName, oldSourceName, sourceNameStart;
236  Vector<uInt> freqID, freqIDStart, oldFreqID;
237
238// Loop over tables
239
240  Float fac = 1.0;
241  const uInt nTables = in.nelements();
242  for (uInt iTab=0; iTab<nTables; iTab++) {
243
244// Should check that the frequency tables don't change if doing FreqAlignment
245
246// Attach columns to Table
247
248     const Table& tabIn = in[iTab]->table();
249     tSysCol.attach(tabIn, "TSYS");
250     mjdCol.attach(tabIn, "TIME");
251     srcNameCol.attach(tabIn, "SRCNAME");
252     intCol.attach(tabIn, "INTERVAL");
253     fqIDCol.attach(tabIn, "FREQID");
254
255// Loop over rows in Table
256
257     const uInt nRows = in[iTab]->nRow();
258     for (uInt iRow=0; iRow<nRows; iRow++) {
259
260// Check conformance
261
262        IPosition shp2 = in[iTab]->rowAsMaskedArray(iRow).shape();
263        if (!shp.isEqual(shp2)) {
264           throw (AipsError("Shapes for all rows must be the same"));
265        }
266
267// If we are not doing scan averages, make checks for source and
268// frequency setup and warn if averaging across them
269
270// Get copy of Scan Container for this row
271
272        SDContainer sc = in[iTab]->getSDContainer(iRow);
273        scanID = sc.scanid;
274
275// Get quantities from columns
276
277        srcNameCol.getScalar(iRow, sourceName);
278        mjdCol.get(iRow, time);
279        tSysCol.get(iRow, tSys);
280        intCol.get(iRow, interval);
281        fqIDCol.get(iRow, freqID);
282
283// Initialize first source and freqID
284
285        if (iRow==0 && iTab==0) {
286          sourceNameStart = sourceName;
287          freqIDStart = freqID;
288        }
289
290// If we are doing scan averages, see if we are at the end of an
291// accumulation period (scan).  We must check soutce names too,
292// since we might have two tables with one scan each but different
293// source names; we shouldn't average different sources together
294
295        if (scanAv && ( (scanID != oldScanID)  ||
296                        (iRow==0 && iTab>0 && sourceName!=oldSourceName))) {
297
298// Normalize data in 'sum' accumulation array according to weighting scheme
299
300           normalize(sum, sumSq, nPts, wtType, asap::ChanAxis, nAxesSub);
301
302// Fill scan container. The source and freqID come from the
303// first row of the first table that went into this average (
304// should be the same for all rows in the scan average)
305
306           Float nR(nAccum);
307           fillSDC(sc, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
308                    timeSum/nR, intSum, sourceNameStart, freqIDStart);
309
310// Write container out to Table
311
312           pTabOut->putSDContainer(sc);
313
314// Reset accumulators
315
316           sum = 0.0;
317           sumSq = 0.0;
318           nAccum = 0;
319//
320           tSysSum =0.0;
321           timeSum = 0.0;
322           intSum = 0.0;
323           nPts = 0.0;
324
325// Increment
326
327           rowStart = iRow;              // First row for next accumulation
328           tableStart = iTab;            // First table for next accumulation
329           sourceNameStart = sourceName; // First source name for next accumulation
330           freqIDStart = freqID;         // First FreqID for next accumulation
331//
332           oldScanID = scanID;
333           outScanID += 1;               // Scan ID for next accumulation period
334        }
335
336// Accumulate
337
338        accumulate(timeSum, intSum, nAccum, sum, sumSq, nPts, tSysSum,
339                    tSys, nInc, mask, time, interval, in, iTab, iRow, asap::ChanAxis,
340                    nAxesSub, useMask, wtType);
341//
342       oldSourceName = sourceName;
343       oldFreqID = freqID;
344     }
345  }
346
347// OK at this point we have accumulation data which is either
348//   - accumulated from all tables into one row
349// or
350//   - accumulated from the last scan average
351//
352// Normalize data in 'sum' accumulation array according to weighting scheme
353  normalize(sum, sumSq, nPts, wtType, asap::ChanAxis, nAxesSub);
354
355// Create and fill container.  The container we clone will be from
356// the last Table and the first row that went into the current
357// accumulation.  It probably doesn't matter that much really...
358
359  Float nR(nAccum);
360  SDContainer sc = in[tableStart]->getSDContainer(rowStart);
361  fillSDC(sc, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
362           timeSum/nR, intSum, sourceNameStart, freqIDStart);
363  pTabOut->putSDContainer(sc);
364  pTabOut->resetCursor();
365//
366  return CountedPtr<SDMemTable>(pTabOut);
367}
368
369
370
371CountedPtr<SDMemTable> SDMath::binaryOperate (const CountedPtr<SDMemTable>& left,
372                                              const CountedPtr<SDMemTable>& right,
373                                              const String& op, Bool preserve,
374                                              Bool doTSys)  const
375{
376
377// Check operator
378
379  String op2(op);
380  op2.upcase();
381  uInt what = 0;
382  if (op2=="ADD") {
383     what = 0;
384  } else if (op2=="SUB") {
385     what = 1;
386  } else if (op2=="MUL") {
387     what = 2;
388  } else if (op2=="DIV") {
389     what = 3;
390  } else if (op2=="QUOTIENT") {
391     what = 4;
392     doTSys = True;
393  } else {
394    throw( AipsError("Unrecognized operation"));
395  }
396
397// Check rows
398
399  const uInt nRowLeft = left->nRow();
400  const uInt nRowRight = right->nRow();
401  Bool ok = (nRowRight==1&&nRowLeft>0) ||
402            (nRowRight>=1&&nRowLeft==nRowRight);
403  if (!ok) {
404     throw (AipsError("The right Scan Table can have one row or the same number of rows as the left Scan Table"));
405  }
406
407// Input Tables
408
409  const Table& tLeft = left->table();
410  const Table& tRight = right->table();
411
412// TSys columns
413
414  ROArrayColumn<Float> tSysLeftCol, tSysRightCol;
415  if (doTSys) {
416     tSysLeftCol.attach(tLeft, "TSYS");
417     tSysRightCol.attach(tRight, "TSYS");
418  }
419
420// First row for right
421
422  Array<Float> tSysLeftArr, tSysRightArr;
423  if (doTSys) tSysRightCol.get(0, tSysRightArr);
424  MaskedArray<Float>* pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(0));
425  IPosition shpRight = pMRight->shape();
426
427// Output Table cloned from left
428
429  SDMemTable* pTabOut = new SDMemTable(*left, True);
430
431// Loop over rows
432
433  for (uInt i=0; i<nRowLeft; i++) {
434
435// Get data
436
437     MaskedArray<Float> mLeft(left->rowAsMaskedArray(i));
438     IPosition shpLeft = mLeft.shape();
439     if (doTSys) tSysLeftCol.get(i, tSysLeftArr);
440//
441     if (nRowRight>1) {
442        delete pMRight;
443        pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(i));
444        shpRight = pMRight->shape();
445        if (doTSys) tSysRightCol.get(i, tSysRightArr);
446     }
447//
448     if (!shpRight.isEqual(shpLeft)) {
449        throw(AipsError("left and right scan tables are not conformant"));
450     }
451     if (doTSys) {
452        if (!tSysRightArr.shape().isEqual(tSysRightArr.shape())) {
453           throw(AipsError("left and right Tsys data are not conformant"));
454        }
455        if (!shpRight.isEqual(tSysRightArr.shape())) {
456           throw(AipsError("left and right scan tables are not conformant"));
457        }
458     }
459
460// Make container
461
462     SDContainer sc = left->getSDContainer(i);
463
464// Operate on data and TSys
465
466     if (what==0) {                               
467        MaskedArray<Float> tmp = mLeft + *pMRight;
468        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
469        if (doTSys) sc.putTsys(tSysLeftArr+tSysRightArr);
470     } else if (what==1) {
471        MaskedArray<Float> tmp = mLeft - *pMRight;
472        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
473        if (doTSys) sc.putTsys(tSysLeftArr-tSysRightArr);
474     } else if (what==2) {
475        MaskedArray<Float> tmp = mLeft * *pMRight;
476        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
477        if (doTSys) sc.putTsys(tSysLeftArr*tSysRightArr);
478     } else if (what==3) {
479        MaskedArray<Float> tmp = mLeft / *pMRight;
480        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
481        if (doTSys) sc.putTsys(tSysLeftArr/tSysRightArr);
482     } else if (what==4) {
483        if (preserve) {     
484           MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) - tSysRightArr;
485           putDataInSDC(sc, tmp.getArray(), tmp.getMask());
486        } else {
487           MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) - tSysLeftArr;
488           putDataInSDC(sc, tmp.getArray(), tmp.getMask());
489        }
490        sc.putTsys(tSysRightArr);
491     }
492
493// Put new row in output Table
494
495     pTabOut->putSDContainer(sc);
496  }
497  if (pMRight) delete pMRight;
498  pTabOut->resetCursor();
499//
500  return CountedPtr<SDMemTable>(pTabOut);
501}
502
503
504
505std::vector<float> SDMath::statistic(const CountedPtr<SDMemTable>& in,
506                                     const Vector<Bool>& mask,
507                                     const String& which, Int row) const
508//
509// Perhaps iteration over pol/beam/if should be in here
510// and inside the nrow iteration ?
511//
512{
513  const uInt nRow = in->nRow();
514
515// Specify cursor location
516
517  IPosition start, end;
518  getCursorLocation(start, end, *in);
519
520// Loop over rows
521
522  const uInt nEl = mask.nelements();
523  uInt iStart = 0;
524  uInt iEnd = in->nRow()-1;
525// 
526  if (row>=0) {
527     iStart = row;
528     iEnd = row;
529  }
530//
531  std::vector<float> result(iEnd-iStart+1);
532  for (uInt ii=iStart; ii <= iEnd; ++ii) {
533
534// Get row and deconstruct
535
536     MaskedArray<Float> marr(in->rowAsMaskedArray(ii));
537     Array<Float> arr = marr.getArray();
538     Array<Bool> barr = marr.getMask();
539
540// Access desired piece of data
541
542     Array<Float> v((arr(start,end)).nonDegenerate());
543     Array<Bool> m((barr(start,end)).nonDegenerate());
544
545// Apply OTF mask
546
547     MaskedArray<Float> tmp;
548     if (m.nelements()==nEl) {
549       tmp.setData(v,m&&mask);
550     } else {
551       tmp.setData(v,m);
552     }
553
554// Get statistic
555
556     result[ii-iStart] = mathutil::statistics(which, tmp);
557  }
558//
559  return result;
560}
561
562
563SDMemTable* SDMath::bin(const SDMemTable& in, Int width) const
564{
565  SDHeader sh = in.getSDHeader();
566  SDMemTable* pTabOut = new SDMemTable(in, True);
567
568// Bin up SpectralCoordinates
569
570  IPosition factors(1);
571  factors(0) = width;
572  for (uInt j=0; j<in.nCoordinates(); ++j) {
573    CoordinateSystem cSys;
574    cSys.addCoordinate(in.getSpectralCoordinate(j));
575    CoordinateSystem cSysBin =
576      CoordinateUtil::makeBinnedCoordinateSystem(factors, cSys, False);
577//
578    SpectralCoordinate sCBin = cSysBin.spectralCoordinate(0);
579    pTabOut->setCoordinate(sCBin, j);
580  }
581
582// Use RebinLattice to find shape
583
584  IPosition shapeIn(1,sh.nchan);
585  IPosition shapeOut = RebinLattice<Float>::rebinShape(shapeIn, factors);
586  sh.nchan = shapeOut(0);
587  pTabOut->putSDHeader(sh);
588
589// Loop over rows and bin along channel axis
590 
591  for (uInt i=0; i < in.nRow(); ++i) {
592    SDContainer sc = in.getSDContainer(i);
593//
594    Array<Float> tSys(sc.getTsys());                           // Get it out before sc changes shape
595
596// Bin up spectrum
597
598    MaskedArray<Float> marr(in.rowAsMaskedArray(i));
599    MaskedArray<Float> marrout;
600    LatticeUtilities::bin(marrout, marr, asap::ChanAxis, width);
601
602// Put back the binned data and flags
603
604    IPosition ip2 = marrout.shape();
605    sc.resize(ip2);
606//
607    putDataInSDC(sc, marrout.getArray(), marrout.getMask());
608
609// Bin up Tsys. 
610
611    Array<Bool> allGood(tSys.shape(),True);
612    MaskedArray<Float> tSysIn(tSys, allGood, True);
613//
614    MaskedArray<Float> tSysOut;   
615    LatticeUtilities::bin(tSysOut, tSysIn, asap::ChanAxis, width);
616    sc.putTsys(tSysOut.getArray());
617//
618    pTabOut->putSDContainer(sc);
619  }
620  return pTabOut;
621}
622
623SDMemTable* SDMath::resample (const SDMemTable& in, const String& methodStr,
624                              Float width) const
625//
626// Should add the possibility of width being specified in km/s. This means
627// that for each freqID (SpectralCoordinate) we will need to convert to an
628// average channel width (say at the reference pixel).  Then we would need 
629// to be careful to make sure each spectrum (of different freqID)
630// is the same length.
631//
632{
633   Bool doVel = False;
634   if (doVel) {
635      for (uInt j=0; j<in.nCoordinates(); ++j) {
636         SpectralCoordinate sC = in.getSpectralCoordinate(j);
637      }
638   }
639
640// Interpolation method
641
642  InterpolateArray1D<Double,Float>::InterpolationMethod interp;
643  convertInterpString(interp, methodStr);
644  Int interpMethod(interp);
645
646// Make output table
647
648  SDMemTable* pTabOut = new SDMemTable(in, True);
649
650// Resample SpectralCoordinates (one per freqID)
651
652  const uInt nCoord = in.nCoordinates();
653  Vector<Float> offset(1,0.0);
654  Vector<Float> factors(1,1.0/width);
655  Vector<Int> newShape;
656  for (uInt j=0; j<in.nCoordinates(); ++j) {
657    CoordinateSystem cSys;
658    cSys.addCoordinate(in.getSpectralCoordinate(j));
659    CoordinateSystem cSys2 = cSys.subImage(offset, factors, newShape);
660    SpectralCoordinate sC = cSys2.spectralCoordinate(0);
661//
662    pTabOut->setCoordinate(sC, j);
663  }
664
665// Get header
666
667  SDHeader sh = in.getSDHeader();
668
669// Generate resampling vectors
670
671  const uInt nChanIn = sh.nchan;
672  Vector<Float> xIn(nChanIn);
673  indgen(xIn);
674//
675  Int fac =  Int(nChanIn/width);
676  Vector<Float> xOut(fac+10);          // 10 to be safe - resize later
677  uInt i = 0;
678  Float x = 0.0;
679  Bool more = True;
680  while (more) {
681    xOut(i) = x;
682//
683    i++;
684    x += width;
685    if (x>nChanIn-1) more = False;
686  }
687  const uInt nChanOut = i;
688  xOut.resize(nChanOut,True);
689//
690  IPosition shapeIn(in.rowAsMaskedArray(0).shape());
691  sh.nchan = nChanOut;
692  pTabOut->putSDHeader(sh);
693
694// Loop over rows and resample along channel axis
695
696  Array<Float> valuesOut;
697  Array<Bool> maskOut; 
698  Array<Float> tSysOut;
699  Array<Bool> tSysMaskIn(shapeIn,True);
700  Array<Bool> tSysMaskOut;
701  for (uInt i=0; i < in.nRow(); ++i) {
702
703// Get container
704
705     SDContainer sc = in.getSDContainer(i);
706
707// Get data and Tsys
708   
709     const Array<Float>& tSysIn = sc.getTsys();
710     const MaskedArray<Float>& dataIn(in.rowAsMaskedArray(i));
711     Array<Float> valuesIn = dataIn.getArray();
712     Array<Bool> maskIn = dataIn.getMask();
713
714// Interpolate data
715
716     InterpolateArray1D<Float,Float>::interpolate(valuesOut, maskOut, xOut,
717                                                  xIn, valuesIn, maskIn,
718                                                  interpMethod, True, True);
719     sc.resize(valuesOut.shape());
720     putDataInSDC(sc, valuesOut, maskOut);
721
722// Interpolate TSys
723
724     InterpolateArray1D<Float,Float>::interpolate(tSysOut, tSysMaskOut, xOut,
725                                                  xIn, tSysIn, tSysMaskIn,
726                                                  interpMethod, True, True);
727    sc.putTsys(tSysOut);
728
729// Put container in output
730
731    pTabOut->putSDContainer(sc);
732  }
733//
734  return pTabOut;
735}
736
737SDMemTable* SDMath::unaryOperate(const SDMemTable& in, Float val, Bool doAll,
738                                 uInt what, Bool doTSys) const
739//
740// what = 0   Multiply
741//        1   Add
742{
743   SDMemTable* pOut = new SDMemTable(in,False);
744   const Table& tOut = pOut->table();
745   ArrayColumn<Float> specCol(tOut,"SPECTRA"); 
746   ArrayColumn<Float> tSysCol(tOut,"TSYS"); 
747   Array<Float> tSysArr;
748//
749   if (doAll) {
750      for (uInt i=0; i < tOut.nrow(); i++) {
751
752// Modify data
753
754         MaskedArray<Float> dataIn(pOut->rowAsMaskedArray(i));
755         if (what==0) {
756            dataIn  *= val;
757         } else if (what==1) {
758            dataIn += val;
759         }
760         specCol.put(i, dataIn.getArray());
761
762// Modify Tsys
763
764         if (doTSys) {
765            tSysCol.get(i, tSysArr);
766            if (what==0) {
767               tSysArr *= val;
768            } else if (what==1) {
769               tSysArr += val;
770            }
771            tSysCol.put(i, tSysArr);
772         }
773      }
774   } else {
775
776// Get cursor location
777
778      IPosition start, end;
779      getCursorLocation(start, end, in);
780//
781      for (uInt i=0; i < tOut.nrow(); i++) {
782
783// Modify data
784
785         MaskedArray<Float> dataIn(pOut->rowAsMaskedArray(i));
786         MaskedArray<Float> dataIn2 = dataIn(start,end);    // Reference
787         if (what==0) {
788            dataIn2 *= val;
789         } else if (what==1) {
790            dataIn2 += val;
791         }
792         specCol.put(i, dataIn.getArray());
793
794// Modify Tsys
795
796         if (doTSys) {
797            tSysCol.get(i, tSysArr);
798            Array<Float> tSysArr2 = tSysArr(start,end);     // Reference
799            if (what==0) {
800               tSysArr2 *= val;
801            } else if (what==1) {
802               tSysArr2 += val;
803            }
804            tSysCol.put(i, tSysArr);
805         }
806      }
807   }
808//
809   return pOut;
810}
811
812
813
814SDMemTable* SDMath::averagePol(const SDMemTable& in, const Vector<Bool>& mask,
815                               const String& weightStr) const
816//
817// Average all polarizations together, weighted by variance
818//
819{
820   WeightType wtType = NONE;
821   convertWeightString(wtType, weightStr);
822
823   const uInt nRows = in.nRow();
824
825// Create output Table and reshape number of polarizations
826
827  Bool clear=True;
828  SDMemTable* pTabOut = new SDMemTable(in, clear);
829  SDHeader header = pTabOut->getSDHeader();
830  header.npol = 1;
831  pTabOut->putSDHeader(header);
832
833// Shape of input and output data
834
835  const IPosition& shapeIn = in.rowAsMaskedArray(0u, False).shape();
836  IPosition shapeOut(shapeIn);
837  shapeOut(asap::PolAxis) = 1;                          // Average all polarizations
838  if (shapeIn(asap::PolAxis)==1) {
839     throw(AipsError("The input has only one polarisation"));
840  }
841//
842  const uInt nChan = shapeIn(asap::ChanAxis);
843  const IPosition vecShapeOut(4,1,1,1,nChan);     // A multi-dim form of a Vector shape
844  IPosition start(4), end(4);
845
846// Output arrays
847
848  Array<Float> outData(shapeOut, 0.0);
849  Array<Bool> outMask(shapeOut, True);
850  const IPosition axes(2, asap::PolAxis, asap::ChanAxis);              // pol-channel plane
851//
852  const Bool useMask = (mask.nelements() == shapeIn(asap::ChanAxis));
853
854// Loop over rows
855
856   for (uInt iRow=0; iRow<nRows; iRow++) {
857
858// Get data for this row
859
860      MaskedArray<Float> marr(in.rowAsMaskedArray(iRow));
861      Array<Float>& arr = marr.getRWArray();
862      const Array<Bool>& barr = marr.getMask();
863
864// Make iterators to iterate by pol-channel planes
865
866      ReadOnlyArrayIterator<Float> itDataPlane(arr, axes);
867      ReadOnlyArrayIterator<Bool> itMaskPlane(barr, axes);
868
869// Accumulations
870
871      Float fac = 1.0;
872      Vector<Float> vecSum(nChan,0.0);
873
874// Iterate through data by pol-channel planes
875
876      while (!itDataPlane.pastEnd()) {
877
878// Iterate through plane by polarization  and accumulate Vectors
879
880        Vector<Float> t1(nChan); t1 = 0.0;
881        Vector<Bool> t2(nChan); t2 = True;
882        MaskedArray<Float> vecSum(t1,t2);
883        Float norm = 0.0;
884        {
885           ReadOnlyVectorIterator<Float> itDataVec(itDataPlane.array(), 1);
886           ReadOnlyVectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
887           while (!itDataVec.pastEnd()) {     
888
889// Create MA of data & mask (optionally including OTF mask) and  get variance for this spectrum
890
891              if (useMask) {
892                 const MaskedArray<Float> spec(itDataVec.vector(),mask&&itMaskVec.vector());
893                 if (wtType==VAR) fac = 1.0 / variance(spec);
894              } else {
895                 const MaskedArray<Float> spec(itDataVec.vector(),itMaskVec.vector());
896                 if (wtType==VAR) fac = 1.0 / variance(spec);
897              }
898
899// Normalize spectrum (without OTF mask) and accumulate
900
901              const MaskedArray<Float> spec(fac*itDataVec.vector(), itMaskVec.vector());
902              vecSum += spec;
903              norm += fac;
904
905// Next
906
907              itDataVec.next();
908              itMaskVec.next();
909           }
910        }
911
912// Normalize summed spectrum
913
914        vecSum /= norm;
915
916// FInd position in input data array.  We are iterating by pol-channel
917// plane so all that will change is beam and IF and that's what we want.
918
919        IPosition pos = itDataPlane.pos();
920
921// Write out data. This is a bit messy. We have to reform the Vector
922// accumulator into an Array of shape (1,1,1,nChan)
923
924        start = pos;
925        end = pos;
926        end(asap::ChanAxis) = nChan-1;
927        outData(start,end) = vecSum.getArray().reform(vecShapeOut);
928        outMask(start,end) = vecSum.getMask().reform(vecShapeOut);
929
930// Step to next beam/IF combination
931
932        itDataPlane.next();
933        itMaskPlane.next();
934      }
935
936// Generate output container and write it to output table
937
938      SDContainer sc = in.getSDContainer();
939      sc.resize(shapeOut);
940//
941      putDataInSDC(sc, outData, outMask);
942      pTabOut->putSDContainer(sc);
943   }
944
945// Set polarization cursor to 0
946
947  pTabOut->setPol(0);
948//
949  return pTabOut;
950}
951
952
953SDMemTable* SDMath::smooth(const SDMemTable& in,
954                           const casa::String& kernelType,
955                           casa::Float width, Bool doAll) const
956//
957// Should smooth TSys as well
958//
959{
960
961// Number of channels
962
963   SDHeader sh = in.getSDHeader();
964   const uInt nChan = sh.nchan;
965
966// Generate Kernel
967
968   VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernelType);
969   Vector<Float> kernel = VectorKernel::make(type, width, nChan, True, False);
970
971// Generate Convolver
972
973   IPosition shape(1,nChan);
974   Convolver<Float> conv(kernel, shape);
975
976// New Table
977
978   SDMemTable* pTabOut = new SDMemTable(in,True);
979
980// Get cursor location
981         
982  IPosition start, end;
983  getCursorLocation(start, end, in);
984//
985  IPosition shapeOut(4,1);
986
987// Output Vectors
988
989  Vector<Float> valuesOut(nChan);
990  Vector<Bool> maskOut(nChan);
991
992// Loop over rows in Table
993
994  for (uInt ri=0; ri < in.nRow(); ++ri) {
995
996// Get copy of data
997   
998    const MaskedArray<Float>& dataIn(in.rowAsMaskedArray(ri));
999    AlwaysAssert(dataIn.shape()(asap::ChanAxis)==nChan, AipsError);
1000//
1001    Array<Float> valuesIn = dataIn.getArray();
1002    Array<Bool> maskIn = dataIn.getMask();
1003
1004// Branch depending on whether we smooth all locations or just
1005// those pointed at by the current selection cursor
1006
1007    if (doAll) {
1008       VectorIterator<Float> itValues(valuesIn, asap::ChanAxis);
1009       VectorIterator<Bool> itMask(maskIn, asap::ChanAxis);
1010       while (!itValues.pastEnd()) {
1011
1012// Smooth
1013          if (kernelType==VectorKernel::HANNING) {
1014             mathutil::hanning(valuesOut, maskOut, itValues.vector(), itMask.vector());
1015             itMask.vector() = maskOut;
1016          } else {
1017             mathutil::replaceMaskByZero(itValues.vector(), itMask.vector());
1018             conv.linearConv(valuesOut, itValues.vector());
1019          }
1020//
1021          itValues.vector() = valuesOut;
1022//
1023          itValues.next();
1024          itMask.next();
1025       }
1026    } else {
1027
1028// Set multi-dim Vector shape
1029
1030       shapeOut(asap::ChanAxis) = valuesIn.shape()(asap::ChanAxis);
1031
1032// Stuff about with shapes so that we don't have conformance run-time errors
1033
1034       Vector<Float> valuesIn2 = valuesIn(start,end).nonDegenerate();
1035       Vector<Bool> maskIn2 = maskIn(start,end).nonDegenerate();
1036
1037// Smooth
1038
1039       if (kernelType==VectorKernel::HANNING) {
1040          mathutil::hanning(valuesOut, maskOut, valuesIn2, maskIn2);
1041          maskIn(start,end) = maskOut.reform(shapeOut);
1042       } else {
1043          mathutil::replaceMaskByZero(valuesIn2, maskIn2);
1044          conv.linearConv(valuesOut, valuesIn2);
1045       }
1046//
1047       valuesIn(start,end) = valuesOut.reform(shapeOut);
1048    }
1049
1050// Create and put back
1051
1052    SDContainer sc = in.getSDContainer(ri);
1053    putDataInSDC(sc, valuesIn, maskIn);
1054//
1055    pTabOut->putSDContainer(sc);
1056  }
1057//
1058  return pTabOut;
1059}
1060
1061
1062
1063SDMemTable* SDMath::convertFlux (const SDMemTable& in, Float D, Float etaAp,
1064                                 Float JyPerK, Bool doAll) const
1065//
1066// etaAp = aperture efficiency
1067// D     = geometric diameter (m)
1068// JyPerK
1069//
1070{
1071  SDHeader sh = in.getSDHeader();
1072  SDMemTable* pTabOut = new SDMemTable(in, True);
1073
1074// Find out how to convert values into Jy and K (e.g. units might be mJy or mK)
1075// Also automatically find out what we are converting to according to the
1076// flux unit
1077
1078  Unit fluxUnit(sh.fluxunit);
1079  Unit K(String("K"));
1080  Unit JY(String("Jy"));
1081//
1082  Bool toKelvin = True;
1083  Double cFac = 1.0;   
1084  if (fluxUnit==JY) {
1085     cerr << "Converting to K" << endl;
1086//
1087     Quantum<Double> t(1.0,fluxUnit);
1088     Quantum<Double> t2 = t.get(JY);
1089     cFac = (t2 / t).getValue();               // value to Jy
1090//
1091     toKelvin = True;
1092     sh.fluxunit = "K";
1093  } else if (fluxUnit==K) {
1094     cerr << "Converting to Jy" << endl;
1095//
1096     Quantum<Double> t(1.0,fluxUnit);
1097     Quantum<Double> t2 = t.get(K);
1098     cFac = (t2 / t).getValue();              // value to K
1099//
1100     toKelvin = False;
1101     sh.fluxunit = "Jy";
1102  } else {
1103     throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
1104  }
1105  pTabOut->putSDHeader(sh);
1106
1107// Make sure input values are converted to either Jy or K first...
1108
1109  Float factor = cFac;
1110
1111// Select method
1112
1113  if (JyPerK>0.0) {
1114     factor *= JyPerK;
1115     if (toKelvin) factor = 1.0 / JyPerK;
1116//
1117     cerr << "Applying supplied conversion factor = " << factor << endl;
1118     Vector<Float> factors(in.nRow(), factor);
1119     correctFromVector (pTabOut, in, doAll, factors);
1120  } else if (etaAp>0.0) {
1121     factor *= SDAttr::findJyPerKFac (etaAp, D);
1122     if (toKelvin) {
1123        factor = 1.0 / factor;
1124     }
1125//
1126     cerr << "Applying supplied conversion factor = " << factor << endl;
1127     Vector<Float> factors(in.nRow(), factor);
1128     correctFromVector (pTabOut, in, doAll, factors);
1129  } else {
1130
1131// OK now we must deal with automatic look up of values.
1132// We must also deal with the fact that the factors need
1133// to be computed per IF and may be different and may
1134// change per integration.
1135
1136     cerr << "Looking up conversion factors" << endl;
1137     convertBrightnessUnits (pTabOut, in, toKelvin, cFac, doAll);
1138  }
1139//
1140  return pTabOut;
1141}
1142
1143
1144
1145
1146
1147SDMemTable* SDMath::gainElevation (const SDMemTable& in, const Vector<Float>& coeffs,
1148                                   const String& fileName,
1149                                   const String& methodStr, Bool doAll) const
1150{
1151
1152// Get header and clone output table
1153
1154  SDHeader sh = in.getSDHeader();
1155  SDMemTable* pTabOut = new SDMemTable(in, True);
1156
1157// Get elevation data from SDMemTable and convert to degrees
1158
1159  const Table& tab = in.table();
1160  ROScalarColumn<Float> elev(tab, "ELEVATION");
1161  Vector<Float> x = elev.getColumn();
1162  x *= Float(180 / C::pi);                        // Degrees
1163//
1164  const uInt nC = coeffs.nelements();
1165  if (fileName.length()>0 && nC>0) {
1166     throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
1167  }
1168
1169// Correct
1170
1171  if (nC>0 || fileName.length()==0) {
1172
1173// Find instrument
1174
1175     Bool throwIt = True;
1176     Instrument inst = SDMemTable::convertInstrument (sh.antennaname, throwIt);
1177     
1178// Set polynomial
1179
1180     Polynomial<Float>* pPoly = 0;
1181     Vector<Float> coeff;
1182     String msg;
1183     if (nC>0) {
1184        pPoly = new Polynomial<Float>(nC);
1185        coeff = coeffs;
1186        msg = String("user");
1187     } else {
1188        SDAttr sdAttr;
1189        coeff = sdAttr.gainElevationPoly(inst);
1190        pPoly = new Polynomial<Float>(3);
1191        msg = String("built in");
1192     }
1193//
1194     if (coeff.nelements()>0) {
1195        pPoly->setCoefficients(coeff);
1196     } else {
1197        throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
1198     }
1199//
1200     cerr << "Making polynomial correction with " << msg << " coefficients" << endl;
1201     const uInt nRow = in.nRow();
1202     Vector<Float> factor(nRow);
1203     for (uInt i=0; i<nRow; i++) {
1204        factor[i] = (*pPoly)(x[i]);
1205     }
1206     delete pPoly;
1207//
1208     correctFromVector (pTabOut, in, doAll, factor);
1209  } else {
1210
1211// Indicate which columns to read from ascii file
1212
1213     String col0("ELEVATION");
1214     String col1("FACTOR");
1215
1216// Read and correct
1217
1218     cerr << "Making correction from ascii Table" << endl;
1219     correctFromAsciiTable (pTabOut, in, fileName, col0, col1,
1220                            methodStr, doAll, x);
1221   }
1222//
1223   return pTabOut;
1224}
1225
1226 
1227
1228SDMemTable* SDMath::opacity (const SDMemTable& in, Float tau, Bool doAll) const
1229{
1230
1231// Get header and clone output table
1232
1233  SDHeader sh = in.getSDHeader();
1234  SDMemTable* pTabOut = new SDMemTable(in, True);
1235
1236// Get elevation data from SDMemTable and convert to degrees
1237
1238  const Table& tab = in.table();
1239  ROScalarColumn<Float> elev(tab, "ELEVATION");
1240  Vector<Float> zDist = elev.getColumn();
1241  zDist = Float(C::pi_2) - zDist;
1242
1243// Generate correction factor
1244
1245  const uInt nRow = in.nRow();
1246  Vector<Float> factor(nRow);
1247  Vector<Float> factor2(nRow);
1248  for (uInt i=0; i<nRow; i++) {
1249     factor[i] = exp(tau)/cos(zDist[i]);
1250  }
1251
1252// Correct
1253
1254  correctFromVector (pTabOut, in, doAll, factor);
1255//
1256  return pTabOut;
1257}
1258
1259
1260
1261
1262// 'private' functions
1263
1264void SDMath::convertBrightnessUnits (SDMemTable* pTabOut, const SDMemTable& in,
1265                                     Bool toKelvin, Float cFac, Bool doAll) const
1266{
1267
1268// Get header
1269
1270   SDHeader sh = in.getSDHeader();
1271   const uInt nChan = sh.nchan;
1272
1273// Get instrument
1274
1275   Bool throwIt = True;
1276   Instrument inst = SDMemTable::convertInstrument (sh.antennaname, throwIt);
1277
1278// Get Diameter (m)
1279
1280   SDAttr sdAtt;
1281
1282// Get epoch of first row
1283
1284   MEpoch dateObs = in.getEpoch(0);
1285
1286// Generate a Vector of correction factors. One per FreqID
1287
1288   SDFrequencyTable sdft = in.getSDFreqTable();
1289   Vector<uInt> freqIDs;
1290//
1291   Vector<Float> freqs(sdft.length());
1292   for (uInt i=0; i<sdft.length(); i++) {
1293      freqs(i) = (nChan/2 - sdft.referencePixel(i))*sdft.increment(i) + sdft.referenceValue(i);
1294   }
1295//
1296   Vector<Float> JyPerK = sdAtt.JyPerK(inst, dateObs, freqs);
1297   cerr << "Jy/K = " << JyPerK << endl;
1298   Vector<Float> factors = cFac * JyPerK;
1299   if (toKelvin) factors = Float(1.0) / factors;
1300
1301// For operations only on specified cursor location
1302
1303   IPosition start, end;
1304   getCursorLocation(start, end, in);
1305   const uInt ifAxis = in.getIF();
1306
1307// Iteration axes
1308
1309   IPosition axes(asap::nAxes-1,0);
1310   for (uInt i=0,j=0; i<asap::nAxes; i++) {
1311      if (i!=asap::IFAxis) {
1312         axes(j++) = i;
1313      }
1314   }
1315
1316// Loop over rows and apply correction factor
1317
1318   Float factor = 1.0; 
1319   const uInt axis = asap::ChanAxis;
1320   for (uInt i=0; i < in.nRow(); ++i) {
1321
1322// Get data
1323
1324      MaskedArray<Float> dataIn(in.rowAsMaskedArray(i));
1325      Array<Float>& values = dataIn.getRWArray();
1326
1327// Get SDCOntainer
1328
1329      SDContainer sc = in.getSDContainer(i);
1330
1331// Get FreqIDs
1332
1333      freqIDs = sc.getFreqMap();
1334
1335// Now the conversion factor depends only upon frequency
1336// So we need to iterate through by IF only giving
1337// us BEAM/POL/CHAN cubes
1338
1339      if (doAll) {
1340         ArrayIterator<Float> itIn(values, axes);
1341         uInt ax = 0;
1342         while (!itIn.pastEnd()) {
1343           itIn.array() *= factors(freqIDs(ax));         // Writes back to dataIn
1344           itIn.next();
1345         }
1346      } else {
1347         MaskedArray<Float> dataIn2 = dataIn(start,end);  // reference
1348         dataIn2 *= factors(freqIDs(ifAxis));
1349      }
1350
1351// Write out
1352
1353      putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
1354//
1355      pTabOut->putSDContainer(sc);
1356   }
1357}
1358
1359
1360
1361SDMemTable* SDMath::frequencyAlign (const SDMemTable& in,
1362                                   MFrequency::Types freqSystem,
1363                                   const String& refTime,
1364                                   const String& methodStr,
1365                                   Bool perFreqID) const
1366{
1367// Get Header
1368
1369   SDHeader sh = in.getSDHeader();
1370   const uInt nChan = sh.nchan;
1371   const uInt nRows = in.nRow();
1372   const uInt nIF = sh.nif;
1373
1374// Get Table reference
1375
1376   const Table& tabIn = in.table();
1377
1378// Get Columns from Table
1379
1380   ROScalarColumn<Double> mjdCol(tabIn, "TIME");
1381   ROScalarColumn<String> srcCol(tabIn, "SRCNAME");
1382   ROArrayColumn<uInt> fqIDCol(tabIn, "FREQID");
1383   Vector<Double> times = mjdCol.getColumn();
1384
1385// Generate DataDesc table
1386 
1387   Matrix<uInt> ddIdx;
1388   SDDataDesc dDesc;
1389   generateDataDescTable (ddIdx, dDesc, nIF, in, tabIn, srcCol, fqIDCol, perFreqID);
1390
1391// Get reference Epoch to time of first row or given String
1392
1393   Unit DAY(String("d"));
1394   MEpoch::Ref epochRef(in.getTimeReference());
1395   MEpoch refEpoch;
1396   if (refTime.length()>0) {
1397      refEpoch = epochFromString(refTime, in.getTimeReference());
1398   } else {
1399      refEpoch = in.getEpoch(0);
1400   }
1401   cerr << "Aligning at reference Epoch " << formatEpoch(refEpoch) <<
1402           " in frame " << MFrequency::showType(freqSystem) << endl;
1403
1404// Get Reference Position
1405
1406   MPosition refPos = in.getAntennaPosition();
1407
1408// Create FrequencyAligner Block. One FA for each possible
1409// source/freqID (perFreqID=True) or source/IF (perFreqID=False) combination
1410
1411   PtrBlock<FrequencyAligner<Float>* > a(dDesc.length());
1412   generateFrequencyAligners (a, dDesc, in, nChan, freqSystem, refPos,
1413                              refEpoch, perFreqID);
1414
1415// Generate and fill output Frequency Table.  WHen perFreqID=True, there is one output FreqID
1416// for each entry in the SDDataDesc table.  However, in perFreqID=False mode, there may be
1417// some degeneracy, so we need a little translation map
1418
1419   SDFrequencyTable freqTabOut = in.getSDFreqTable();
1420   freqTabOut.setLength(0);
1421   Vector<String> units(1);
1422   units = String("Hz");
1423   Bool linear=True;
1424//
1425   Vector<uInt> ddFQTrans(dDesc.length(),0);
1426   for (uInt i=0; i<dDesc.length(); i++) {
1427
1428// Get Aligned SC in Hz
1429
1430      SpectralCoordinate sC = a[i]->alignedSpectralCoordinate(linear);
1431      sC.setWorldAxisUnits(units);
1432
1433// Add FreqID
1434
1435      uInt idx = freqTabOut.addFrequency(sC.referencePixel()[0],
1436                                         sC.referenceValue()[0],
1437                                         sC.increment()[0]);
1438      ddFQTrans(i) = idx;                                       // output FreqID = ddFQTrans(ddIdx)
1439   }
1440
1441// Interpolation method
1442
1443   InterpolateArray1D<Double,Float>::InterpolationMethod interp;
1444   convertInterpString(interp, methodStr);
1445
1446// New output Table
1447
1448   cerr << "Create output table" << endl;
1449   SDMemTable* pTabOut = new SDMemTable(in,True);
1450   pTabOut->putSDFreqTable(freqTabOut);
1451
1452// Loop over rows in Table
1453
1454   Bool extrapolate=False;
1455   const IPosition polChanAxes(2, asap::PolAxis, asap::ChanAxis);
1456   Bool useCachedAbcissa = False;
1457   Bool first = True;
1458   Bool ok;
1459   Vector<Float> yOut;
1460   Vector<Bool> maskOut;
1461   Vector<uInt> freqID(nIF);
1462   uInt ifIdx, faIdx;
1463   Vector<Double> xIn;
1464//
1465   for (uInt iRow=0; iRow<nRows; ++iRow) {
1466      if (iRow%10==0) {
1467         cerr << "Processing row " << iRow << endl;
1468      }
1469
1470// Get EPoch
1471
1472     Quantum<Double> tQ2(times[iRow],DAY);
1473     MVEpoch mv2(tQ2);
1474     MEpoch epoch(mv2, epochRef);
1475
1476// Get copy of data
1477   
1478     const MaskedArray<Float>& mArrIn(in.rowAsMaskedArray(iRow));
1479     Array<Float> values = mArrIn.getArray();
1480     Array<Bool> mask = mArrIn.getMask();
1481
1482// For each row, the Frequency abcissa will be the same regardless
1483// of polarization.  For all other axes (IF and BEAM) the abcissa
1484// will change.  So we iterate through the data by pol-chan planes
1485// to mimimize the work.  Probably won't work for multiple beams
1486// at this point.
1487
1488     ArrayIterator<Float> itValuesPlane(values, polChanAxes);
1489     ArrayIterator<Bool> itMaskPlane(mask, polChanAxes);
1490     while (!itValuesPlane.pastEnd()) {
1491
1492// Find the IF index and then the FA PtrBlock index
1493
1494        const IPosition& pos = itValuesPlane.pos();
1495        ifIdx = pos(asap::IFAxis);
1496        faIdx = ddIdx(iRow,ifIdx);
1497
1498// Generate abcissa for perIF.  Could cache this in a Matrix
1499// on a per scan basis.   Pretty expensive doing it for every row.
1500
1501        if (!perFreqID) {
1502           xIn.resize(nChan);
1503           uInt fqID = dDesc.secID(ddIdx(iRow,ifIdx));
1504           SpectralCoordinate sC = in.getSpectralCoordinate(fqID);
1505           Double w;
1506           for (uInt i=0; i<nChan; i++) {
1507              sC.toWorld(w,Double(i));
1508              xIn[i] = w;
1509           }
1510        }
1511//
1512        VectorIterator<Float> itValuesVec(itValuesPlane.array(), 1);
1513        VectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
1514
1515// Iterate through the plane by vector and align
1516
1517        first = True;
1518        useCachedAbcissa=False;
1519        while (!itValuesVec.pastEnd()) {     
1520           if (perFreqID) {
1521              ok = a[faIdx]->align (yOut, maskOut, itValuesVec.vector(),
1522                                    itMaskVec.vector(), epoch, useCachedAbcissa,
1523                                    interp, extrapolate);
1524           } else {
1525              ok = a[faIdx]->align (yOut, maskOut, xIn, itValuesVec.vector(),
1526                                    itMaskVec.vector(), epoch, useCachedAbcissa,
1527                                    interp, extrapolate);
1528           }
1529//
1530           itValuesVec.vector() = yOut;
1531           itMaskVec.vector() = maskOut;
1532//
1533           itValuesVec.next();
1534           itMaskVec.next();
1535//
1536           if (first) {
1537              useCachedAbcissa = True;
1538              first = False;
1539           }
1540        }
1541//
1542       itValuesPlane.next();
1543       itMaskPlane.next();
1544     }
1545
1546// Create SDContainer and put back
1547
1548    SDContainer sc = in.getSDContainer(iRow);
1549    putDataInSDC(sc, values, mask);
1550
1551// Set output FreqIDs
1552
1553    for (uInt i=0; i<nIF; i++) {
1554       uInt idx = ddIdx(iRow,i);               // Index into SDDataDesc table
1555       freqID(i) = ddFQTrans(idx);             // FreqID in output FQ table
1556    }
1557    sc.putFreqMap(freqID);
1558//
1559    pTabOut->putSDContainer(sc);
1560   }
1561
1562// Now we must set the base and extra frames to the
1563// input frame
1564
1565   std::vector<string> info = pTabOut->getCoordInfo();
1566   info[1] = MFrequency::showType(freqSystem);   // Conversion frame
1567   info[3] = info[1];                            // Base frame
1568   pTabOut->setCoordInfo(info);
1569
1570// Clean up PointerBlock
1571
1572   for (uInt i=0; i<a.nelements(); i++) delete a[i];
1573//
1574   return pTabOut;
1575}
1576
1577
1578void SDMath::fillSDC(SDContainer& sc,
1579                     const Array<Bool>& mask,
1580                     const Array<Float>& data,
1581                     const Array<Float>& tSys,
1582                     Int scanID, Double timeStamp,
1583                     Double interval, const String& sourceName,
1584                     const Vector<uInt>& freqID) const
1585{
1586// Data and mask
1587
1588  putDataInSDC(sc, data, mask);
1589
1590// TSys
1591
1592  sc.putTsys(tSys);
1593
1594// Time things
1595
1596  sc.timestamp = timeStamp;
1597  sc.interval = interval;
1598  sc.scanid = scanID;
1599//
1600  sc.sourcename = sourceName;
1601  sc.putFreqMap(freqID);
1602}
1603
1604void SDMath::normalize(MaskedArray<Float>& sum,
1605                        const Array<Float>& sumSq,
1606                        const Array<Float>& nPts,
1607                        WeightType wtType, Int axis,
1608                        Int nAxesSub) const
1609{
1610   IPosition pos2(nAxesSub,0);
1611//
1612   if (wtType==NONE) {
1613
1614// We just average by the number of points accumulated.
1615// We need to make a MA out of nPts so that no divide by
1616// zeros occur
1617
1618      MaskedArray<Float> t(nPts, (nPts>Float(0.0)));
1619      sum /= t;
1620   } else if (wtType==VAR) {
1621
1622// Normalize each spectrum by sum(1/var) where the variance
1623// is worked out for each spectrum
1624
1625      Array<Float>& data = sum.getRWArray();
1626      VectorIterator<Float> itData(data, axis);
1627      while (!itData.pastEnd()) {
1628         pos2 = itData.pos().getFirst(nAxesSub);
1629         itData.vector() /= sumSq(pos2);
1630         itData.next();
1631      }
1632   } else if (wtType==TSYS) {
1633   }
1634}
1635
1636
1637void SDMath::accumulate(Double& timeSum, Double& intSum, Int& nAccum,
1638                        MaskedArray<Float>& sum, Array<Float>& sumSq,
1639                        Array<Float>& nPts, Array<Float>& tSysSum,
1640                        const Array<Float>& tSys, const Array<Float>& nInc,
1641                        const Vector<Bool>& mask, Double time, Double interval,
1642                        const Block<CountedPtr<SDMemTable> >& in,
1643                        uInt iTab, uInt iRow, uInt axis,
1644                        uInt nAxesSub, Bool useMask,
1645                        WeightType wtType) const
1646{
1647
1648// Get data
1649
1650   MaskedArray<Float> dataIn(in[iTab]->rowAsMaskedArray(iRow));
1651   Array<Float>& valuesIn = dataIn.getRWArray();           // writable reference
1652   const Array<Bool>& maskIn = dataIn.getMask();          // RO reference
1653//
1654   if (wtType==NONE) {
1655      const MaskedArray<Float> n(nInc,dataIn.getMask());
1656      nPts += n;                               // Only accumulates where mask==T
1657   } else if (wtType==VAR) {
1658
1659// We are going to average the data, weighted by the noise for each pol, beam and IF.
1660// So therefore we need to iterate through by spectrum (axis 3)
1661
1662      VectorIterator<Float> itData(valuesIn, axis);
1663      ReadOnlyVectorIterator<Bool> itMask(maskIn, axis);
1664      Float fac = 1.0;
1665      IPosition pos(nAxesSub,0); 
1666//
1667      while (!itData.pastEnd()) {
1668
1669// Make MaskedArray of Vector, optionally apply OTF mask, and find scaling factor
1670
1671        if (useMask) {
1672           MaskedArray<Float> tmp(itData.vector(),mask&&itMask.vector());
1673           fac = 1.0/variance(tmp);
1674        } else {
1675           MaskedArray<Float> tmp(itData.vector(),itMask.vector());
1676           fac = 1.0/variance(tmp);
1677        }
1678
1679// Scale data
1680
1681        itData.vector() *= fac;     // Writes back into 'dataIn'
1682//
1683// Accumulate variance per if/pol/beam averaged over spectrum
1684// This method to get pos2 from itData.pos() is only valid
1685// because the spectral axis is the last one (so we can just
1686// copy the first nAXesSub positions out)
1687
1688        pos = itData.pos().getFirst(nAxesSub);
1689        sumSq(pos) += fac;
1690//
1691        itData.next();
1692        itMask.next();
1693      }
1694   } else if (wtType==TSYS) {
1695   }
1696
1697// Accumulate sum of (possibly scaled) data
1698
1699   sum += dataIn;
1700
1701// Accumulate Tsys, time, and interval
1702
1703   tSysSum += tSys;
1704   timeSum += time;
1705   intSum += interval;
1706   nAccum += 1;
1707}
1708
1709
1710
1711
1712void SDMath::getCursorLocation(IPosition& start, IPosition& end,
1713                               const SDMemTable& in) const
1714{
1715  const uInt nDim = 4;
1716  const uInt i = in.getBeam();
1717  const uInt j = in.getIF();
1718  const uInt k = in.getPol();
1719  const uInt n = in.nChan();
1720//
1721  start.resize(nDim);
1722  start(0) = i;
1723  start(1) = j;
1724  start(2) = k;
1725  start(3) = 0;
1726//
1727  end.resize(nDim);
1728  end(0) = i;
1729  end(1) = j;
1730  end(2) = k;
1731  end(3) = n-1;
1732}
1733
1734
1735void SDMath::convertWeightString(WeightType& wtType, const String& weightStr) const
1736{
1737  String tStr(weightStr);
1738  tStr.upcase();
1739  if (tStr.contains(String("NONE"))) {
1740     wtType = NONE;
1741  } else if (tStr.contains(String("VAR"))) {
1742     wtType = VAR;
1743  } else if (tStr.contains(String("TSYS"))) {
1744     wtType = TSYS;
1745     throw(AipsError("T_sys weighting not yet implemented"));
1746  } else {
1747    throw(AipsError("Unrecognized weighting type"));
1748  }
1749}
1750
1751
1752void SDMath::convertInterpString(casa::InterpolateArray1D<Double,Float>::InterpolationMethod& type, 
1753                                 const casa::String& interp) const
1754{
1755  String tStr(interp);
1756  tStr.upcase();
1757  if (tStr.contains(String("NEAR"))) {
1758     type = InterpolateArray1D<Double,Float>::nearestNeighbour;
1759  } else if (tStr.contains(String("LIN"))) {
1760     type = InterpolateArray1D<Double,Float>::linear;
1761  } else if (tStr.contains(String("CUB"))) {
1762     type = InterpolateArray1D<Double,Float>::cubic;
1763  } else if (tStr.contains(String("SPL"))) {
1764     type = InterpolateArray1D<Double,Float>::spline;
1765  } else {
1766    throw(AipsError("Unrecognized interpolation type"));
1767  }
1768}
1769
1770void SDMath::putDataInSDC(SDContainer& sc, const Array<Float>& data,
1771                          const Array<Bool>& mask) const
1772{
1773    sc.putSpectrum(data);
1774//
1775    Array<uChar> outflags(data.shape());
1776    convertArray(outflags,!mask);
1777    sc.putFlags(outflags);
1778}
1779
1780Table SDMath::readAsciiFile (const String& fileName) const
1781{
1782   String formatString;
1783   Table tbl = readAsciiTable (formatString, Table::Memory, fileName, "", "", False);
1784   return tbl;
1785}
1786
1787
1788
1789void SDMath::correctFromAsciiTable(SDMemTable* pTabOut,
1790                                   const SDMemTable& in, const String& fileName,
1791                                   const String& col0, const String& col1,
1792                                   const String& methodStr, Bool doAll,
1793                                   const Vector<Float>& xOut) const
1794{
1795
1796// Read gain-elevation ascii file data into a Table.
1797
1798  Table geTable = readAsciiFile (fileName);
1799//
1800  correctFromTable (pTabOut, in, geTable, col0, col1, methodStr, doAll, xOut);
1801}
1802
1803void SDMath::correctFromTable(SDMemTable* pTabOut, const SDMemTable& in,
1804                              const Table& tTable, const String& col0,
1805                              const String& col1,
1806                              const String& methodStr, Bool doAll,
1807                              const Vector<Float>& xOut) const
1808{
1809
1810// Get data from Table
1811
1812  ROScalarColumn<Float> geElCol(tTable, col0);
1813  ROScalarColumn<Float> geFacCol(tTable, col1);
1814  Vector<Float> xIn = geElCol.getColumn();
1815  Vector<Float> yIn = geFacCol.getColumn();
1816  Vector<Bool> maskIn(xIn.nelements(),True);
1817
1818// Interpolate (and extrapolate) with desired method
1819
1820   InterpolateArray1D<Double,Float>::InterpolationMethod method;
1821   convertInterpString(method, methodStr);
1822   Int intMethod(method);
1823//
1824   Vector<Float> yOut;
1825   Vector<Bool> maskOut;
1826   InterpolateArray1D<Float,Float>::interpolate(yOut, maskOut, xOut,
1827                                                xIn, yIn, maskIn, intMethod,
1828                                                True, True);
1829// Apply
1830
1831   correctFromVector (pTabOut, in, doAll, yOut);
1832}
1833
1834
1835void SDMath::correctFromVector (SDMemTable* pTabOut, const SDMemTable& in,
1836                                Bool doAll, const Vector<Float>& factor) const
1837{
1838
1839// For operations only on specified cursor location
1840
1841  IPosition start, end;
1842  getCursorLocation(start, end, in);
1843
1844// Loop over rows and apply correction factor
1845 
1846  const uInt axis = asap::ChanAxis;
1847  for (uInt i=0; i < in.nRow(); ++i) {
1848
1849// Get data
1850
1851    MaskedArray<Float> dataIn(in.rowAsMaskedArray(i));
1852
1853// Apply factor
1854
1855    if (doAll) {
1856       dataIn *= factor[i];
1857    } else {
1858       MaskedArray<Float> dataIn2 = dataIn(start,end);  // reference
1859       dataIn2 *= factor[i];
1860    }
1861
1862// Write out
1863
1864    SDContainer sc = in.getSDContainer(i);
1865    putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
1866//
1867    pTabOut->putSDContainer(sc);
1868  }
1869}
1870
1871
1872
1873
1874void SDMath::generateDataDescTable (Matrix<uInt>& ddIdx,
1875                                    SDDataDesc& dDesc,
1876                                    uInt nIF,
1877                                    const SDMemTable& in,
1878                                    const Table& tabIn,
1879                                    const ROScalarColumn<String>& srcCol,
1880                                    const ROArrayColumn<uInt>& fqIDCol,
1881                                    Bool perFreqID) const
1882{
1883   const uInt nRows = tabIn.nrow();
1884   ddIdx.resize(nRows,nIF);
1885//
1886   String srcName;
1887   Vector<uInt> freqIDs;
1888   for (uInt iRow=0; iRow<nRows; iRow++) {
1889      srcCol.get(iRow, srcName);
1890      fqIDCol.get(iRow, freqIDs);
1891      const MDirection& dir = in.getDirection(iRow);
1892//
1893      if (perFreqID) {
1894
1895// One entry per source/freqID pair
1896
1897         for (uInt iIF=0; iIF<nIF; iIF++) {
1898            ddIdx(iRow,iIF) = dDesc.addEntry(srcName, freqIDs[iIF], dir, 0);
1899         }
1900      } else {
1901
1902// One entry per source/IF pair.  Hang onto the FreqID as well
1903
1904         for (uInt iIF=0; iIF<nIF; iIF++) {
1905            ddIdx(iRow,iIF) = dDesc.addEntry(srcName, iIF, dir, freqIDs[iIF]);
1906         }
1907      }
1908   }
1909}
1910
1911
1912
1913
1914
1915MEpoch SDMath::epochFromString (const String& str, MEpoch::Types timeRef) const
1916{
1917   Quantum<Double> qt;
1918   if (MVTime::read(qt,str)) {
1919      MVEpoch mv(qt);
1920      MEpoch me(mv, timeRef);
1921      return me;
1922   } else {
1923      throw(AipsError("Invalid format for Epoch string"));
1924   }
1925}
1926
1927
1928String SDMath::formatEpoch(const MEpoch& epoch)  const
1929{
1930   MVTime mvt(epoch.getValue());
1931   return mvt.string(MVTime::YMD) + String(" (") + epoch.getRefString() + String(")");
1932}
1933
1934
1935
1936void SDMath::generateFrequencyAligners (PtrBlock<FrequencyAligner<Float>* >& a,
1937                                        const SDDataDesc& dDesc,
1938                                        const SDMemTable& in, uInt nChan,
1939                                        MFrequency::Types system,
1940                                        const MPosition& refPos,
1941                                        const MEpoch& refEpoch,
1942                                        Bool perFreqID) const
1943{
1944   for (uInt i=0; i<dDesc.length(); i++) {
1945      uInt ID = dDesc.ID(i);
1946      uInt secID = dDesc.secID(i);
1947      const MDirection& refDir = dDesc.secDir(i);
1948//
1949      if (perFreqID) {
1950
1951// One aligner per source/FreqID pair. 
1952
1953         SpectralCoordinate sC = in.getSpectralCoordinate(ID);
1954         a[i] = new FrequencyAligner<Float>(sC, nChan, refEpoch, refDir, refPos, system);
1955      } else {
1956
1957// One aligner per source/IF pair.  But we still need the FreqID to
1958// get the right SC.  Hence the messing about with the secondary ID
1959
1960         SpectralCoordinate sC = in.getSpectralCoordinate(secID);
1961         a[i] = new FrequencyAligner<Float>(sC, nChan, refEpoch, refDir, refPos, system);
1962      }
1963   }
1964}
Note: See TracBrowser for help on using the repository browser.