source: trunk/src/SDMath.cc @ 314

Last change on this file since 314 was 309, checked in by kil064, 19 years ago

remove 'velocityALignment' functions for new 'frequencyAlignment' ones

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 49.6 KB
Line 
1//#---------------------------------------------------------------------------
2//# SDMath.cc: A collection of single dish mathematical operations
3//#---------------------------------------------------------------------------
4//# Copyright (C) 2004
5//# ATNF
6//#
7//# This program is free software; you can redistribute it and/or modify it
8//# under the terms of the GNU General Public License as published by the Free
9//# Software Foundation; either version 2 of the License, or (at your option)
10//# any later version.
11//#
12//# This program is distributed in the hope that it will be useful, but
13//# WITHOUT ANY WARRANTY; without even the implied warranty of
14//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
15//# Public License for more details.
16//#
17//# You should have received a copy of the GNU General Public License along
18//# with this program; if not, write to the Free Software Foundation, Inc.,
19//# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
20//#
21//# Correspondence concerning this software should be addressed as follows:
22//#        Internet email: Malte.Marquarding@csiro.au
23//#        Postal address: Malte Marquarding,
24//#                        Australia Telescope National Facility,
25//#                        P.O. Box 76,
26//#                        Epping, NSW, 2121,
27//#                        AUSTRALIA
28//#
29//# $Id:
30//#---------------------------------------------------------------------------
31#include <vector>
32
33#include <casa/aips.h>
34#include <casa/BasicSL/String.h>
35#include <casa/Arrays/IPosition.h>
36#include <casa/Arrays/Array.h>
37#include <casa/Arrays/ArrayIter.h>
38#include <casa/Arrays/VectorIter.h>
39#include <casa/Arrays/ArrayMath.h>
40#include <casa/Arrays/ArrayLogical.h>
41#include <casa/Arrays/MaskedArray.h>
42#include <casa/Arrays/MaskArrMath.h>
43#include <casa/Arrays/MaskArrLogi.h>
44#include <casa/BasicMath/Math.h>
45#include <casa/Containers/Block.h>
46#include <casa/Exceptions.h>
47#include <casa/Quanta/Quantum.h>
48#include <casa/Quanta/Unit.h>
49#include <casa/Quanta/MVEpoch.h>
50#include <casa/Quanta/QC.h>
51#include <casa/Quanta/MVTime.h>
52#include <casa/Utilities/Assert.h>
53
54#include <coordinates/Coordinates/SpectralCoordinate.h>
55#include <coordinates/Coordinates/CoordinateSystem.h>
56#include <coordinates/Coordinates/CoordinateUtil.h>
57#include <coordinates/Coordinates/FrequencyAligner.h>
58
59#include <lattices/Lattices/LatticeUtilities.h>
60#include <lattices/Lattices/RebinLattice.h>
61
62#include <measures/Measures/MEpoch.h>
63#include <measures/Measures/MDirection.h>
64#include <measures/Measures/MPosition.h>
65
66#include <scimath/Mathematics/VectorKernel.h>
67#include <scimath/Mathematics/Convolver.h>
68#include <scimath/Mathematics/InterpolateArray1D.h>
69#include <scimath/Functionals/Polynomial.h>
70
71#include <tables/Tables/Table.h>
72#include <tables/Tables/ScalarColumn.h>
73#include <tables/Tables/ArrayColumn.h>
74#include <tables/Tables/ReadAsciiTable.h>
75
76#include "MathUtils.h"
77#include "SDDefs.h"
78#include "SDContainer.h"
79#include "SDMemTable.h"
80
81#include "SDMath.h"
82
83using namespace casa;
84using namespace asap;
85
86
87SDMath::SDMath()
88{;}
89
90SDMath::SDMath(const SDMath& other)
91{
92
93// No state
94
95}
96
97SDMath& SDMath::operator=(const SDMath& other)
98{
99  if (this != &other) {
100// No state
101  }
102  return *this;
103}
104
105SDMath::~SDMath()
106{;}
107
108
109
110SDMemTable* SDMath::frequencyAlignment (const SDMemTable& in, const String& refTime) const
111{
112
113// Get frame info from Table
114
115   std::vector<std::string> info = in.getCoordInfo();
116
117// Parse frequency system
118
119   String systemStr(info[1]);
120   String baseSystemStr(info[3]);
121   if (baseSystemStr==systemStr) {
122      throw(AipsError("You have not set a frequency frame different from the initial - use function set_freqframe"));
123   }
124//
125   MFrequency::Types freqSystem;
126   MFrequency::getType(freqSystem, systemStr);
127
128// Do it
129
130   return frequencyAlign (in, freqSystem, refTime);
131}
132
133
134
135CountedPtr<SDMemTable> SDMath::average(const Block<CountedPtr<SDMemTable> >& in,
136                                       const Vector<Bool>& mask, Bool scanAv,
137                                       const String& weightStr, Bool alignFreq) const
138//
139// Weighted averaging of spectra from one or more Tables.
140//
141{
142
143// Convert weight type
144 
145  WeightType wtType = NONE;
146  convertWeightString(wtType, weightStr);
147
148// Create output Table by cloning from the first table
149
150  SDMemTable* pTabOut = new SDMemTable(*in[0],True);
151
152// Setup
153
154  IPosition shp = in[0]->rowAsMaskedArray(0).shape();      // Must not change
155  Array<Float> arr(shp);
156  Array<Bool> barr(shp);
157  const Bool useMask = (mask.nelements() == shp(asap::ChanAxis));
158
159// Columns from Tables
160
161  ROArrayColumn<Float> tSysCol;
162  ROScalarColumn<Double> mjdCol;
163  ROScalarColumn<String> srcNameCol;
164  ROScalarColumn<Double> intCol;
165  ROArrayColumn<uInt> fqIDCol;
166
167// Create accumulation MaskedArray. We accumulate for each channel,if,pol,beam
168// Note that the mask of the accumulation array will ALWAYS remain ALL True.
169// The MA is only used so that when data which is masked Bad is added to it,
170// that data does not contribute.
171
172  Array<Float> zero(shp);
173  zero=0.0;
174  Array<Bool> good(shp);
175  good = True;
176  MaskedArray<Float> sum(zero,good);
177
178// Counter arrays
179
180  Array<Float> nPts(shp);             // Number of points
181  nPts = 0.0;
182  Array<Float> nInc(shp);             // Increment
183  nInc = 1.0;
184
185// Create accumulation Array for variance. We accumulate for
186// each if,pol,beam, but average over channel.  So we need
187// a shape with one less axis dropping channels.
188
189  const uInt nAxesSub = shp.nelements() - 1;
190  IPosition shp2(nAxesSub);
191  for (uInt i=0,j=0; i<(nAxesSub+1); i++) {
192     if (i!=asap::ChanAxis) {
193       shp2(j) = shp(i);
194       j++;
195     }
196  }
197  Array<Float> sumSq(shp2);
198  sumSq = 0.0;
199  IPosition pos2(nAxesSub,0);                        // For indexing
200
201// Time-related accumulators
202
203  Double time;
204  Double timeSum = 0.0;
205  Double intSum = 0.0;
206  Double interval = 0.0;
207
208// To get the right shape for the Tsys accumulator we need to
209// access a column from the first table.  The shape of this
210// array must not change
211
212  Array<Float> tSysSum;
213  {
214    const Table& tabIn = in[0]->table();
215    tSysCol.attach(tabIn,"TSYS");
216    tSysSum.resize(tSysCol.shape(0));
217  }
218  tSysSum =0.0;
219  Array<Float> tSys;
220
221// Scan and row tracking
222
223  Int oldScanID = 0;
224  Int outScanID = 0;
225  Int scanID = 0;
226  Int rowStart = 0;
227  Int nAccum = 0;
228  Int tableStart = 0;
229
230// Source and FreqID
231
232  String sourceName, oldSourceName, sourceNameStart;
233  Vector<uInt> freqID, freqIDStart, oldFreqID;
234
235// Loop over tables
236
237  Float fac = 1.0;
238  const uInt nTables = in.nelements();
239  for (uInt iTab=0; iTab<nTables; iTab++) {
240
241// Should check that the frequency tables don't change if doing FreqAlignment
242
243// Attach columns to Table
244
245     const Table& tabIn = in[iTab]->table();
246     tSysCol.attach(tabIn, "TSYS");
247     mjdCol.attach(tabIn, "TIME");
248     srcNameCol.attach(tabIn, "SRCNAME");
249     intCol.attach(tabIn, "INTERVAL");
250     fqIDCol.attach(tabIn, "FREQID");
251
252// Loop over rows in Table
253
254     const uInt nRows = in[iTab]->nRow();
255     for (uInt iRow=0; iRow<nRows; iRow++) {
256
257// Check conformance
258
259        IPosition shp2 = in[iTab]->rowAsMaskedArray(iRow).shape();
260        if (!shp.isEqual(shp2)) {
261           throw (AipsError("Shapes for all rows must be the same"));
262        }
263
264// If we are not doing scan averages, make checks for source and
265// frequency setup and warn if averaging across them
266
267// Get copy of Scan Container for this row
268
269        SDContainer sc = in[iTab]->getSDContainer(iRow);
270        scanID = sc.scanid;
271
272// Get quantities from columns
273
274        srcNameCol.getScalar(iRow, sourceName);
275        mjdCol.get(iRow, time);
276        tSysCol.get(iRow, tSys);
277        intCol.get(iRow, interval);
278        fqIDCol.get(iRow, freqID);
279
280// Initialize first source and freqID
281
282        if (iRow==0 && iTab==0) {
283          sourceNameStart = sourceName;
284          freqIDStart = freqID;
285        }
286
287// If we are doing scan averages, see if we are at the end of an
288// accumulation period (scan).  We must check soutce names too,
289// since we might have two tables with one scan each but different
290// source names; we shouldn't average different sources together
291
292        if (scanAv && ( (scanID != oldScanID)  ||
293                        (iRow==0 && iTab>0 && sourceName!=oldSourceName))) {
294
295// Normalize data in 'sum' accumulation array according to weighting scheme
296
297           normalize(sum, sumSq, nPts, wtType, asap::ChanAxis, nAxesSub);
298
299// Fill scan container. The source and freqID come from the
300// first row of the first table that went into this average (
301// should be the same for all rows in the scan average)
302
303           Float nR(nAccum);
304           fillSDC(sc, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
305                    timeSum/nR, intSum, sourceNameStart, freqIDStart);
306
307// Write container out to Table
308
309           pTabOut->putSDContainer(sc);
310
311// Reset accumulators
312
313           sum = 0.0;
314           sumSq = 0.0;
315           nAccum = 0;
316//
317           tSysSum =0.0;
318           timeSum = 0.0;
319           intSum = 0.0;
320           nPts = 0.0;
321
322// Increment
323
324           rowStart = iRow;              // First row for next accumulation
325           tableStart = iTab;            // First table for next accumulation
326           sourceNameStart = sourceName; // First source name for next accumulation
327           freqIDStart = freqID;         // First FreqID for next accumulation
328//
329           oldScanID = scanID;
330           outScanID += 1;               // Scan ID for next accumulation period
331        }
332
333// Accumulate
334
335        accumulate(timeSum, intSum, nAccum, sum, sumSq, nPts, tSysSum,
336                    tSys, nInc, mask, time, interval, in, iTab, iRow, asap::ChanAxis,
337                    nAxesSub, useMask, wtType);
338//
339       oldSourceName = sourceName;
340       oldFreqID = freqID;
341     }
342  }
343
344// OK at this point we have accumulation data which is either
345//   - accumulated from all tables into one row
346// or
347//   - accumulated from the last scan average
348//
349// Normalize data in 'sum' accumulation array according to weighting scheme
350  normalize(sum, sumSq, nPts, wtType, asap::ChanAxis, nAxesSub);
351
352// Create and fill container.  The container we clone will be from
353// the last Table and the first row that went into the current
354// accumulation.  It probably doesn't matter that much really...
355
356  Float nR(nAccum);
357  SDContainer sc = in[tableStart]->getSDContainer(rowStart);
358  fillSDC(sc, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
359           timeSum/nR, intSum, sourceNameStart, freqIDStart);
360  pTabOut->putSDContainer(sc);
361  pTabOut->resetCursor();
362//
363  return CountedPtr<SDMemTable>(pTabOut);
364}
365
366
367
368CountedPtr<SDMemTable> SDMath::binaryOperate (const CountedPtr<SDMemTable>& left,
369                                              const CountedPtr<SDMemTable>& right,
370                                              const String& op, Bool preserve,
371                                              Bool doTSys)  const
372{
373
374// Check operator
375
376  String op2(op);
377  op2.upcase();
378  uInt what = 0;
379  if (op2=="ADD") {
380     what = 0;
381  } else if (op2=="SUB") {
382     what = 1;
383  } else if (op2=="MUL") {
384     what = 2;
385  } else if (op2=="DIV") {
386     what = 3;
387  } else if (op2=="QUOTIENT") {
388     what = 4;
389     doTSys = True;
390  } else {
391    throw( AipsError("Unrecognized operation"));
392  }
393
394// Check rows
395
396  const uInt nRowLeft = left->nRow();
397  const uInt nRowRight = right->nRow();
398  Bool ok = (nRowRight==1&&nRowLeft>0) ||
399            (nRowRight>=1&&nRowLeft==nRowRight);
400  if (!ok) {
401     throw (AipsError("The right Scan Table can have one row or the same number of rows as the left Scan Table"));
402  }
403
404// Input Tables
405
406  const Table& tLeft = left->table();
407  const Table& tRight = right->table();
408
409// TSys columns
410
411  ROArrayColumn<Float> tSysLeftCol, tSysRightCol;
412  if (doTSys) {
413     tSysLeftCol.attach(tLeft, "TSYS");
414     tSysRightCol.attach(tRight, "TSYS");
415  }
416
417// First row for right
418
419  Array<Float> tSysLeftArr, tSysRightArr;
420  if (doTSys) tSysRightCol.get(0, tSysRightArr);
421  MaskedArray<Float>* pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(0));
422  IPosition shpRight = pMRight->shape();
423
424// Output Table cloned from left
425
426  SDMemTable* pTabOut = new SDMemTable(*left, True);
427
428// Loop over rows
429
430  for (uInt i=0; i<nRowLeft; i++) {
431
432// Get data
433
434     MaskedArray<Float> mLeft(left->rowAsMaskedArray(i));
435     IPosition shpLeft = mLeft.shape();
436     if (doTSys) tSysLeftCol.get(i, tSysLeftArr);
437//
438     if (nRowRight>1) {
439        delete pMRight;
440        pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(i));
441        shpRight = pMRight->shape();
442        if (doTSys) tSysRightCol.get(i, tSysRightArr);
443     }
444//
445     if (!shpRight.isEqual(shpLeft)) {
446        throw(AipsError("left and right scan tables are not conformant"));
447     }
448     if (doTSys) {
449        if (!tSysRightArr.shape().isEqual(tSysRightArr.shape())) {
450           throw(AipsError("left and right Tsys data are not conformant"));
451        }
452        if (!shpRight.isEqual(tSysRightArr.shape())) {
453           throw(AipsError("left and right scan tables are not conformant"));
454        }
455     }
456
457// Make container
458
459     SDContainer sc = left->getSDContainer(i);
460
461// Operate on data and TSys
462
463     if (what==0) {                               
464        MaskedArray<Float> tmp = mLeft + *pMRight;
465        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
466        if (doTSys) sc.putTsys(tSysLeftArr+tSysRightArr);
467     } else if (what==1) {
468        MaskedArray<Float> tmp = mLeft - *pMRight;
469        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
470        if (doTSys) sc.putTsys(tSysLeftArr-tSysRightArr);
471     } else if (what==2) {
472        MaskedArray<Float> tmp = mLeft * *pMRight;
473        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
474        if (doTSys) sc.putTsys(tSysLeftArr*tSysRightArr);
475     } else if (what==3) {
476        MaskedArray<Float> tmp = mLeft / *pMRight;
477        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
478        if (doTSys) sc.putTsys(tSysLeftArr/tSysRightArr);
479     } else if (what==4) {
480        if (preserve) {     
481           MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) - tSysRightArr;
482           putDataInSDC(sc, tmp.getArray(), tmp.getMask());
483        } else {
484           MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) - tSysLeftArr;
485           putDataInSDC(sc, tmp.getArray(), tmp.getMask());
486        }
487        sc.putTsys(tSysRightArr);
488     }
489
490// Put new row in output Table
491
492     pTabOut->putSDContainer(sc);
493  }
494  if (pMRight) delete pMRight;
495  pTabOut->resetCursor();
496//
497  return CountedPtr<SDMemTable>(pTabOut);
498}
499
500
501
502std::vector<float> SDMath::statistic(const CountedPtr<SDMemTable>& in,
503                                     const Vector<Bool>& mask,
504                                     const String& which, Int row) const
505//
506// Perhaps iteration over pol/beam/if should be in here
507// and inside the nrow iteration ?
508//
509{
510  const uInt nRow = in->nRow();
511
512// Specify cursor location
513
514  IPosition start, end;
515  getCursorLocation(start, end, *in);
516
517// Loop over rows
518
519  const uInt nEl = mask.nelements();
520  uInt iStart = 0;
521  uInt iEnd = in->nRow()-1;
522// 
523  if (row>=0) {
524     iStart = row;
525     iEnd = row;
526  }
527//
528  std::vector<float> result(iEnd-iStart+1);
529  for (uInt ii=iStart; ii <= iEnd; ++ii) {
530
531// Get row and deconstruct
532
533     MaskedArray<Float> marr(in->rowAsMaskedArray(ii));
534     Array<Float> arr = marr.getArray();
535     Array<Bool> barr = marr.getMask();
536
537// Access desired piece of data
538
539     Array<Float> v((arr(start,end)).nonDegenerate());
540     Array<Bool> m((barr(start,end)).nonDegenerate());
541
542// Apply OTF mask
543
544     MaskedArray<Float> tmp;
545     if (m.nelements()==nEl) {
546       tmp.setData(v,m&&mask);
547     } else {
548       tmp.setData(v,m);
549     }
550
551// Get statistic
552
553     result[ii-iStart] = mathutil::statistics(which, tmp);
554  }
555//
556  return result;
557}
558
559
560SDMemTable* SDMath::bin(const SDMemTable& in, Int width) const
561{
562  SDHeader sh = in.getSDHeader();
563  SDMemTable* pTabOut = new SDMemTable(in, True);
564
565// Bin up SpectralCoordinates
566
567  IPosition factors(1);
568  factors(0) = width;
569  for (uInt j=0; j<in.nCoordinates(); ++j) {
570    CoordinateSystem cSys;
571    cSys.addCoordinate(in.getSpectralCoordinate(j));
572    CoordinateSystem cSysBin =
573      CoordinateUtil::makeBinnedCoordinateSystem(factors, cSys, False);
574//
575    SpectralCoordinate sCBin = cSysBin.spectralCoordinate(0);
576    pTabOut->setCoordinate(sCBin, j);
577  }
578
579// Use RebinLattice to find shape
580
581  IPosition shapeIn(1,sh.nchan);
582  IPosition shapeOut = RebinLattice<Float>::rebinShape(shapeIn, factors);
583  sh.nchan = shapeOut(0);
584  pTabOut->putSDHeader(sh);
585
586// Loop over rows and bin along channel axis
587 
588  for (uInt i=0; i < in.nRow(); ++i) {
589    SDContainer sc = in.getSDContainer(i);
590//
591    Array<Float> tSys(sc.getTsys());                           // Get it out before sc changes shape
592
593// Bin up spectrum
594
595    MaskedArray<Float> marr(in.rowAsMaskedArray(i));
596    MaskedArray<Float> marrout;
597    LatticeUtilities::bin(marrout, marr, asap::ChanAxis, width);
598
599// Put back the binned data and flags
600
601    IPosition ip2 = marrout.shape();
602    sc.resize(ip2);
603//
604    putDataInSDC(sc, marrout.getArray(), marrout.getMask());
605
606// Bin up Tsys. 
607
608    Array<Bool> allGood(tSys.shape(),True);
609    MaskedArray<Float> tSysIn(tSys, allGood, True);
610//
611    MaskedArray<Float> tSysOut;   
612    LatticeUtilities::bin(tSysOut, tSysIn, asap::ChanAxis, width);
613    sc.putTsys(tSysOut.getArray());
614//
615    pTabOut->putSDContainer(sc);
616  }
617  return pTabOut;
618}
619
620SDMemTable* SDMath::resample (const SDMemTable& in, const String& methodStr,
621                              Float width) const
622//
623// Should add the possibility of width being specified in km/s. This means
624// that for each freqID (SpectralCoordinate) we will need to convert to an
625// average channel width (say at the reference pixel).  Then we would need 
626// to be careful to make sure each spectrum (of different freqID)
627// is the same length.
628//
629{
630   Bool doVel = False;
631   if (doVel) {
632      for (uInt j=0; j<in.nCoordinates(); ++j) {
633         SpectralCoordinate sC = in.getSpectralCoordinate(j);
634      }
635   }
636
637
638// Interpolation method
639
640  Int interpMethod = 0;
641  convertInterpString(interpMethod, methodStr);
642
643// Make output table
644
645  SDMemTable* pTabOut = new SDMemTable(in, True);
646
647// Resample SpectralCoordinates (one per freqID)
648
649  const uInt nCoord = in.nCoordinates();
650  Vector<Float> offset(1,0.0);
651  Vector<Float> factors(1,1.0/width);
652  Vector<Int> newShape;
653  for (uInt j=0; j<in.nCoordinates(); ++j) {
654    CoordinateSystem cSys;
655    cSys.addCoordinate(in.getSpectralCoordinate(j));
656    CoordinateSystem cSys2 = cSys.subImage(offset, factors, newShape);
657    SpectralCoordinate sC = cSys2.spectralCoordinate(0);
658//
659    pTabOut->setCoordinate(sC, j);
660  }
661
662// Get header
663
664  SDHeader sh = in.getSDHeader();
665
666// Generate resampling vectors
667
668  const uInt nChanIn = sh.nchan;
669  Vector<Float> xIn(nChanIn);
670  indgen(xIn);
671//
672  Int fac =  Int(nChanIn/width);
673  Vector<Float> xOut(fac+10);          // 10 to be safe - resize later
674  uInt i = 0;
675  Float x = 0.0;
676  Bool more = True;
677  while (more) {
678    xOut(i) = x;
679//
680    i++;
681    x += width;
682    if (x>nChanIn-1) more = False;
683  }
684  const uInt nChanOut = i;
685  xOut.resize(nChanOut,True);
686//
687  IPosition shapeIn(in.rowAsMaskedArray(0).shape());
688  sh.nchan = nChanOut;
689  pTabOut->putSDHeader(sh);
690
691// Loop over rows and resample along channel axis
692
693  Array<Float> valuesOut;
694  Array<Bool> maskOut; 
695  Array<Float> tSysOut;
696  Array<Bool> tSysMaskIn(shapeIn,True);
697  Array<Bool> tSysMaskOut;
698  for (uInt i=0; i < in.nRow(); ++i) {
699
700// Get container
701
702     SDContainer sc = in.getSDContainer(i);
703
704// Get data and Tsys
705   
706     const Array<Float>& tSysIn = sc.getTsys();
707     const MaskedArray<Float>& dataIn(in.rowAsMaskedArray(i));
708     Array<Float> valuesIn = dataIn.getArray();
709     Array<Bool> maskIn = dataIn.getMask();
710
711// Interpolate data
712
713     InterpolateArray1D<Float,Float>::interpolate(valuesOut, maskOut, xOut,
714                                                  xIn, valuesIn, maskIn,
715                                                  interpMethod, True, True);
716     sc.resize(valuesOut.shape());
717     putDataInSDC(sc, valuesOut, maskOut);
718
719// Interpolate TSys
720
721     InterpolateArray1D<Float,Float>::interpolate(tSysOut, tSysMaskOut, xOut,
722                                                  xIn, tSysIn, tSysMaskIn,
723                                                  interpMethod, True, True);
724    sc.putTsys(tSysOut);
725
726// Put container in output
727
728    pTabOut->putSDContainer(sc);
729  }
730//
731  return pTabOut;
732}
733
734SDMemTable* SDMath::unaryOperate(const SDMemTable& in, Float val, Bool doAll,
735                                 uInt what, Bool doTSys) const
736//
737// what = 0   Multiply
738//        1   Add
739{
740   SDMemTable* pOut = new SDMemTable(in,False);
741   const Table& tOut = pOut->table();
742   ArrayColumn<Float> specCol(tOut,"SPECTRA"); 
743   ArrayColumn<Float> tSysCol(tOut,"TSYS"); 
744   Array<Float> tSysArr;
745//
746   if (doAll) {
747      for (uInt i=0; i < tOut.nrow(); i++) {
748
749// Modify data
750
751         MaskedArray<Float> dataIn(pOut->rowAsMaskedArray(i));
752         if (what==0) {
753            dataIn  *= val;
754         } else if (what==1) {
755            dataIn += val;
756         }
757         specCol.put(i, dataIn.getArray());
758
759// Modify Tsys
760
761         if (doTSys) {
762            tSysCol.get(i, tSysArr);
763            if (what==0) {
764               tSysArr *= val;
765            } else if (what==1) {
766               tSysArr += val;
767            }
768            tSysCol.put(i, tSysArr);
769         }
770      }
771   } else {
772
773// Get cursor location
774
775      IPosition start, end;
776      getCursorLocation(start, end, in);
777//
778      for (uInt i=0; i < tOut.nrow(); i++) {
779
780// Modify data
781
782         MaskedArray<Float> dataIn(pOut->rowAsMaskedArray(i));
783         MaskedArray<Float> dataIn2 = dataIn(start,end);    // Reference
784         if (what==0) {
785            dataIn2 *= val;
786         } else if (what==1) {
787            dataIn2 += val;
788         }
789         specCol.put(i, dataIn.getArray());
790
791// Modify Tsys
792
793         if (doTSys) {
794            tSysCol.get(i, tSysArr);
795            Array<Float> tSysArr2 = tSysArr(start,end);     // Reference
796            if (what==0) {
797               tSysArr2 *= val;
798            } else if (what==1) {
799               tSysArr2 += val;
800            }
801            tSysCol.put(i, tSysArr);
802         }
803      }
804   }
805//
806   return pOut;
807}
808
809
810
811SDMemTable* SDMath::averagePol(const SDMemTable& in, const Vector<Bool>& mask) const
812//
813// Average all polarizations together, weighted by variance
814//
815{
816//   WeightType wtType = NONE;
817//   convertWeightString(wtType, weight);
818
819   const uInt nRows = in.nRow();
820
821// Create output Table and reshape number of polarizations
822
823  Bool clear=True;
824  SDMemTable* pTabOut = new SDMemTable(in, clear);
825  SDHeader header = pTabOut->getSDHeader();
826  header.npol = 1;
827  pTabOut->putSDHeader(header);
828
829// Shape of input and output data
830
831  const IPosition& shapeIn = in.rowAsMaskedArray(0u, False).shape();
832  IPosition shapeOut(shapeIn);
833  shapeOut(asap::PolAxis) = 1;                          // Average all polarizations
834//
835  const uInt nChan = shapeIn(asap::ChanAxis);
836  const IPosition vecShapeOut(4,1,1,1,nChan);     // A multi-dim form of a Vector shape
837  IPosition start(4), end(4);
838
839// Output arrays
840
841  Array<Float> outData(shapeOut, 0.0);
842  Array<Bool> outMask(shapeOut, True);
843  const IPosition axes(2, asap::PolAxis, asap::ChanAxis);              // pol-channel plane
844//
845  const Bool useMask = (mask.nelements() == shapeIn(asap::ChanAxis));
846
847// Loop over rows
848
849   for (uInt iRow=0; iRow<nRows; iRow++) {
850
851// Get data for this row
852
853      MaskedArray<Float> marr(in.rowAsMaskedArray(iRow));
854      Array<Float>& arr = marr.getRWArray();
855      const Array<Bool>& barr = marr.getMask();
856
857// Make iterators to iterate by pol-channel planes
858
859      ReadOnlyArrayIterator<Float> itDataPlane(arr, axes);
860      ReadOnlyArrayIterator<Bool> itMaskPlane(barr, axes);
861
862// Accumulations
863
864      Float fac = 1.0;
865      Vector<Float> vecSum(nChan,0.0);
866
867// Iterate through data by pol-channel planes
868
869      while (!itDataPlane.pastEnd()) {
870
871// Iterate through plane by polarization  and accumulate Vectors
872
873        Vector<Float> t1(nChan); t1 = 0.0;
874        Vector<Bool> t2(nChan); t2 = True;
875        MaskedArray<Float> vecSum(t1,t2);
876        Float varSum = 0.0;
877        {
878           ReadOnlyVectorIterator<Float> itDataVec(itDataPlane.array(), 1);
879           ReadOnlyVectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
880           while (!itDataVec.pastEnd()) {     
881
882// Create MA of data & mask (optionally including OTF mask) and  get variance
883
884              if (useMask) {
885                 const MaskedArray<Float> spec(itDataVec.vector(),mask&&itMaskVec.vector());
886                 fac = 1.0 / variance(spec);
887              } else {
888                 const MaskedArray<Float> spec(itDataVec.vector(),itMaskVec.vector());
889                 fac = 1.0 / variance(spec);
890              }
891
892// Normalize spectrum (without OTF mask) and accumulate
893
894              const MaskedArray<Float> spec(fac*itDataVec.vector(), itMaskVec.vector());
895              vecSum += spec;
896              varSum += fac;
897
898// Next
899
900              itDataVec.next();
901              itMaskVec.next();
902           }
903        }
904
905// Normalize summed spectrum
906
907        vecSum /= varSum;
908
909// FInd position in input data array.  We are iterating by pol-channel
910// plane so all that will change is beam and IF and that's what we want.
911
912        IPosition pos = itDataPlane.pos();
913
914// Write out data. This is a bit messy. We have to reform the Vector
915// accumulator into an Array of shape (1,1,1,nChan)
916
917        start = pos;
918        end = pos;
919        end(asap::ChanAxis) = nChan-1;
920        outData(start,end) = vecSum.getArray().reform(vecShapeOut);
921        outMask(start,end) = vecSum.getMask().reform(vecShapeOut);
922
923// Step to next beam/IF combination
924
925        itDataPlane.next();
926        itMaskPlane.next();
927      }
928
929// Generate output container and write it to output table
930
931      SDContainer sc = in.getSDContainer();
932      sc.resize(shapeOut);
933//
934      putDataInSDC(sc, outData, outMask);
935      pTabOut->putSDContainer(sc);
936   }
937
938// Set polarization cursor to 0
939
940  pTabOut->setPol(0);
941//
942  return pTabOut;
943}
944
945
946SDMemTable* SDMath::smooth(const SDMemTable& in,
947                           const casa::String& kernelType,
948                           casa::Float width, Bool doAll) const
949//
950// Should smooth TSys as well
951//
952{
953
954// Number of channels
955
956   SDHeader sh = in.getSDHeader();
957   const uInt nChan = sh.nchan;
958
959// Generate Kernel
960
961   VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernelType);
962   Vector<Float> kernel = VectorKernel::make(type, width, nChan, True, False);
963
964// Generate Convolver
965
966   IPosition shape(1,nChan);
967   Convolver<Float> conv(kernel, shape);
968
969// New Table
970
971   SDMemTable* pTabOut = new SDMemTable(in,True);
972
973// Get cursor location
974         
975  IPosition start, end;
976  getCursorLocation(start, end, in);
977//
978  IPosition shapeOut(4,1);
979
980// Output Vectors
981
982  Vector<Float> valuesOut(nChan);
983  Vector<Bool> maskOut(nChan);
984
985// Loop over rows in Table
986
987  for (uInt ri=0; ri < in.nRow(); ++ri) {
988
989// Get copy of data
990   
991    const MaskedArray<Float>& dataIn(in.rowAsMaskedArray(ri));
992    AlwaysAssert(dataIn.shape()(asap::ChanAxis)==nChan, AipsError);
993//
994    Array<Float> valuesIn = dataIn.getArray();
995    Array<Bool> maskIn = dataIn.getMask();
996
997// Branch depending on whether we smooth all locations or just
998// those pointed at by the current selection cursor
999
1000    if (doAll) {
1001       VectorIterator<Float> itValues(valuesIn, asap::ChanAxis);
1002       VectorIterator<Bool> itMask(maskIn, asap::ChanAxis);
1003       while (!itValues.pastEnd()) {
1004
1005// Smooth
1006          if (kernelType==VectorKernel::HANNING) {
1007             mathutil::hanning(valuesOut, maskOut, itValues.vector(), itMask.vector());
1008             itMask.vector() = maskOut;
1009          } else {
1010             mathutil::replaceMaskByZero(itValues.vector(), itMask.vector());
1011             conv.linearConv(valuesOut, itValues.vector());
1012          }
1013//
1014          itValues.vector() = valuesOut;
1015//
1016          itValues.next();
1017          itMask.next();
1018       }
1019    } else {
1020
1021// Set multi-dim Vector shape
1022
1023       shapeOut(asap::ChanAxis) = valuesIn.shape()(asap::ChanAxis);
1024
1025// Stuff about with shapes so that we don't have conformance run-time errors
1026
1027       Vector<Float> valuesIn2 = valuesIn(start,end).nonDegenerate();
1028       Vector<Bool> maskIn2 = maskIn(start,end).nonDegenerate();
1029
1030// Smooth
1031
1032       if (kernelType==VectorKernel::HANNING) {
1033          mathutil::hanning(valuesOut, maskOut, valuesIn2, maskIn2);
1034          maskIn(start,end) = maskOut.reform(shapeOut);
1035       } else {
1036          mathutil::replaceMaskByZero(valuesIn2, maskIn2);
1037          conv.linearConv(valuesOut, valuesIn2);
1038       }
1039//
1040       valuesIn(start,end) = valuesOut.reform(shapeOut);
1041    }
1042
1043// Create and put back
1044
1045    SDContainer sc = in.getSDContainer(ri);
1046    putDataInSDC(sc, valuesIn, maskIn);
1047//
1048    pTabOut->putSDContainer(sc);
1049  }
1050//
1051  return pTabOut;
1052}
1053
1054
1055
1056SDMemTable* SDMath::convertFlux (const SDMemTable& in, Float a, Float eta, Bool doAll) const
1057//
1058// As it is, this function could be implemented with 'simpleOperate'
1059// However, I anticipate that eventually we will look the conversion
1060// values up in a Table and apply them in a frequency dependent way,
1061// so I have implemented it fully here
1062//
1063{
1064  SDHeader sh = in.getSDHeader();
1065  SDMemTable* pTabOut = new SDMemTable(in, True);
1066
1067// FInd out how to convert values into Jy and K (e.g. units might be mJy or mK)
1068// Also automatically find out what we are converting to according to the
1069// flux unit
1070
1071  Unit fluxUnit(sh.fluxunit);
1072  Unit K(String("K"));
1073  Unit JY(String("Jy"));
1074//
1075  Bool toKelvin = True;
1076  Double inFac = 1.0;
1077  if (fluxUnit==JY) {
1078     cerr << "Converting to K" << endl;
1079//
1080     Quantum<Double> t(1.0,fluxUnit);
1081     Quantum<Double> t2 = t.get(JY);
1082     inFac = (t2 / t).getValue();
1083//
1084     toKelvin = True;
1085     sh.fluxunit = "K";
1086  } else if (fluxUnit==K) {
1087     cerr << "Converting to Jy" << endl;
1088//
1089     Quantum<Double> t(1.0,fluxUnit);
1090     Quantum<Double> t2 = t.get(K);
1091     inFac = (t2 / t).getValue();
1092//
1093     toKelvin = False;
1094     sh.fluxunit = "Jy";
1095  } else {
1096     throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
1097  }
1098  pTabOut->putSDHeader(sh);
1099
1100// Compute conversion factor. 'a' and 'eta' are really frequency, time and 
1101// telescope dependent and should be looked// up in a table
1102
1103  Float factor = 2.0 * inFac * 1.0e-7 * 1.0e26 *
1104                 QC::k.getValue(Unit(String("erg/K"))) / a / eta;
1105  if (toKelvin) {
1106    factor = 1.0 / factor;
1107  }
1108  cerr << "Applying conversion factor = " << factor << endl;
1109
1110// Generate correction vector.  Apply same factor regardless
1111// of beam/pol/IF.  This will need to change somewhen.
1112
1113  Vector<Float> factors(in.nRow(), factor);
1114
1115// Correct
1116
1117  correctFromVector (pTabOut, in, doAll, factors);
1118//
1119  return pTabOut;
1120}
1121
1122
1123SDMemTable* SDMath::gainElevation (const SDMemTable& in, const Vector<Float>& coeffs,
1124                                   const String& fileName,
1125                                   const String& methodStr, Bool doAll) const
1126{
1127
1128// Get header and clone output table
1129
1130  SDHeader sh = in.getSDHeader();
1131  SDMemTable* pTabOut = new SDMemTable(in, True);
1132
1133// Get elevation data from SDMemTable and convert to degrees
1134
1135  const Table& tab = in.table();
1136  ROScalarColumn<Float> elev(tab, "ELEVATION");
1137  Vector<Float> x = elev.getColumn();
1138  x *= Float(180 / C::pi);
1139//
1140  const uInt nC = coeffs.nelements();
1141  if (fileName.length()>0 && nC>0) {
1142     throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
1143  }
1144
1145// Correct
1146
1147  if (nC>0 || fileName.length()==0) {
1148
1149// Find instrument
1150
1151     Bool throwIt = True;
1152     Instrument inst = SDMemTable::convertInstrument (sh.antennaname, throwIt);
1153     
1154// Set polynomial
1155
1156     Polynomial<Float>* pPoly = 0;
1157     Vector<Float> coeff;
1158     String msg;
1159     if (nC>0) {
1160        pPoly = new Polynomial<Float>(nC);
1161        coeff = coeffs;
1162        msg = String("user");
1163     } else {
1164        if (inst==ATPKSMB) {
1165        } else if (inst==ATPKSHOH) {
1166        } else if (inst==TIDBINBILLA) {
1167           pPoly = new Polynomial<Float>(3);
1168           coeff.resize(3);
1169           coeff(0) = 3.58788e-1;
1170           coeff(1) = 2.87243e-2;
1171           coeff(2) = -3.219093e-4;
1172        } else if (inst==ATMOPRA) {
1173        } else {
1174        }
1175        msg = String("built in");
1176     }
1177//
1178     if (coeff.nelements()>0) {
1179        pPoly->setCoefficients(coeff);
1180     } else {
1181        throw(AipsError("There is no known gain-el polynomial known for this instrument"));
1182     }
1183//
1184     cerr << "Making polynomial correction with " << msg << " coefficients" << endl;
1185     const uInt nRow = in.nRow();
1186     Vector<Float> factor(nRow);
1187     for (uInt i=0; i<nRow; i++) {
1188        factor[i] = (*pPoly)(x[i]);
1189     }
1190     delete pPoly;
1191//
1192     correctFromVector (pTabOut, in, doAll, factor);
1193  } else {
1194
1195// Indicate which columns to read from ascii file
1196
1197     String col0("ELEVATION");
1198     String col1("FACTOR");
1199
1200// Read and correct
1201
1202     cerr << "Making correction from ascii Table" << endl;
1203     correctFromAsciiTable (pTabOut, in, fileName, col0, col1,
1204                            methodStr, doAll, x);
1205   }
1206//
1207   return pTabOut;
1208}
1209
1210 
1211
1212SDMemTable* SDMath::opacity (const SDMemTable& in, Float tau, Bool doAll) const
1213{
1214
1215// Get header and clone output table
1216
1217  SDHeader sh = in.getSDHeader();
1218  SDMemTable* pTabOut = new SDMemTable(in, True);
1219
1220// Get elevation data from SDMemTable and convert to degrees
1221
1222  const Table& tab = in.table();
1223  ROScalarColumn<Float> elev(tab, "ELEVATION");
1224  Vector<Float> zDist = elev.getColumn();
1225  zDist = Float(C::pi_2) - zDist;
1226
1227// Generate correction factor
1228
1229  const uInt nRow = in.nRow();
1230  Vector<Float> factor(nRow);
1231  Vector<Float> factor2(nRow);
1232  for (uInt i=0; i<nRow; i++) {
1233     factor[i] = exp(tau)/cos(zDist[i]);
1234  }
1235
1236// Correct
1237
1238  correctFromVector (pTabOut, in, doAll, factor);
1239//
1240  return pTabOut;
1241}
1242
1243
1244
1245
1246// 'private' functions
1247
1248
1249SDMemTable* SDMath::frequencyAlign (const SDMemTable& in,
1250                                   MFrequency::Types freqSystem,
1251                                   const String& refTime) const
1252{
1253// Get Header
1254
1255   SDHeader sh = in.getSDHeader();
1256   const uInt nChan = sh.nchan;
1257   const uInt nRows = in.nRow();
1258
1259// Get Table reference
1260
1261   const Table& tabIn = in.table();
1262
1263// Get Columns from Table
1264
1265   ROScalarColumn<Double> mjdCol(tabIn, "TIME");
1266   ROScalarColumn<String> srcCol(tabIn, "SRCNAME");
1267   ROArrayColumn<uInt> fqIDCol(tabIn, "FREQID");
1268//
1269   Vector<Double> times = mjdCol.getColumn();
1270   Vector<String> srcNames = srcCol.getColumn();
1271   Vector<uInt> freqID;
1272
1273// Generate Source table
1274
1275   Vector<String> srcTab;
1276   Vector<uInt> srcIdx, firstRow;
1277   generateSourceTable (srcTab, srcIdx, firstRow, srcNames);
1278   const uInt nSrcTab = srcTab.nelements();
1279   cerr << "Found " << srcTab.nelements() << " sources to align " << endl;
1280
1281// Get reference Epoch to time of first row or given String
1282
1283   Unit DAY(String("d"));
1284   MEpoch::Ref epochRef(in.getTimeReference());
1285   MEpoch refEpoch;
1286   if (refTime.length()>0) {
1287      refEpoch = epochFromString(refTime, in.getTimeReference());
1288   } else {
1289      refEpoch = in.getEpoch(0);
1290   }
1291   cerr << "Aligning at reference Epoch " << formatEpoch(refEpoch) <<
1292           " in frame " << MFrequency::showType(freqSystem) << endl;
1293
1294// Get Reference Position
1295
1296   MPosition refPos = in.getAntennaPosition();
1297
1298// Get Frequency Table
1299
1300   SDFrequencyTable fTab = in.getSDFreqTable();
1301   const uInt nFreqIDs = fTab.length();
1302
1303// Create FrequencyAligner Block. One VA for each possible
1304// source/freqID combination
1305
1306   PtrBlock<FrequencyAligner<Float>* > a(nFreqIDs*nSrcTab);
1307   generateFrequencyAligners (a, in, nChan, nFreqIDs, nSrcTab, firstRow,
1308                              freqSystem, refPos, refEpoch);
1309
1310// New output Table
1311
1312   SDMemTable* pTabOut = new SDMemTable(in,True);
1313
1314// Loop over rows in Table
1315
1316   const IPosition polChanAxes(2, asap::PolAxis, asap::ChanAxis);
1317   FrequencyAligner<Float>::Method method = FrequencyAligner<Float>::LINEAR;
1318   Bool extrapolate=False;
1319   Bool useCachedAbcissa = False;
1320   Bool first = True;
1321   Bool ok;
1322   Vector<Float> yOut;
1323   Vector<Bool> maskOut;
1324   uInt ifIdx, faIdx;
1325//
1326   for (uInt iRow=0; iRow<nRows; ++iRow) {
1327      if (iRow%10==0) {
1328         cerr << "Processing row " << iRow << endl;
1329      }
1330
1331// Get EPoch
1332
1333     Quantum<Double> tQ2(times[iRow],DAY);
1334     MVEpoch mv2(tQ2);
1335     MEpoch epoch(mv2, epochRef);
1336
1337// Get FreqID vector.  One freqID per IF
1338
1339     fqIDCol.get(iRow, freqID);
1340
1341// Get copy of data
1342   
1343     const MaskedArray<Float>& mArrIn(in.rowAsMaskedArray(iRow));
1344     Array<Float> values = mArrIn.getArray();
1345     Array<Bool> mask = mArrIn.getMask();
1346
1347// cerr << "values in = " << values(IPosition(4,0,0,0,0),IPosition(4,0,0,0,9)) << endl;
1348
1349// For each row, the Frequency abcissa will be the same regardless
1350// of polarization.  For all other axes (IF and BEAM) the abcissa
1351// will change.  So we iterate through the data by pol-chan planes
1352// to mimimize the work.  At this point, I think the Direction
1353// is stored as the same for each beam. DOn't know where the
1354// offsets are or what to do about them right now.  For now
1355// all beams get same position and velocoity abcissa.
1356
1357     ArrayIterator<Float> itValuesPlane(values, polChanAxes);
1358     ArrayIterator<Bool> itMaskPlane(mask, polChanAxes);
1359     while (!itValuesPlane.pastEnd()) {
1360
1361// Find the IF index and then the FA PtrBlock index
1362
1363        const IPosition& pos = itValuesPlane.pos();
1364        ifIdx = pos(asap::IFAxis);
1365        faIdx = (srcIdx[iRow]*nFreqIDs) + freqID[ifIdx];
1366//
1367        VectorIterator<Float> itValuesVec(itValuesPlane.array(), 1);
1368        VectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
1369//
1370        first = True;
1371        useCachedAbcissa=False;
1372        while (!itValuesVec.pastEnd()) {     
1373           ok = a[faIdx]->align (yOut, maskOut, itValuesVec.vector(),
1374                                  itMaskVec.vector(), epoch, useCachedAbcissa,
1375                                  method, extrapolate);
1376           itValuesVec.vector() = yOut;
1377           itMaskVec.vector() = maskOut;
1378//
1379           itValuesVec.next();
1380           itMaskVec.next();
1381//
1382           if (first) {
1383              useCachedAbcissa = True;
1384              first = False;
1385           }
1386        }
1387//
1388       itValuesPlane.next();
1389       itMaskPlane.next();
1390     }
1391
1392// cerr << "values out = " << values(IPosition(4,0,0,0,0),IPosition(4,0,0,0,9)) << endl;
1393
1394// Create and put back
1395
1396    SDContainer sc = in.getSDContainer(iRow);
1397    putDataInSDC(sc, values, mask);
1398//
1399    pTabOut->putSDContainer(sc);
1400   }
1401
1402
1403// Write out correct frequency table information for output.
1404// CLone from input and overwrite
1405
1406   SDFrequencyTable freqTab = in.getSDFreqTable();
1407   freqTab.setLength(0);
1408
1409// Note that we don't have anyway to hold frequency table information
1410// in the SDMemTable which is source dependent.  Each FrequencyAligner
1411// is generated for an freqID/Source combination.  Don't know what to
1412// do about this apart from to pick the aligned SC from the first source
1413// at the moment.  ASAP really needs to handle data description id
1414// like in aips++ which is a combination of source and freqid. Otherwise
1415// all else I can do in this function is disallow multiple sources
1416
1417   Bool linear=True;
1418   Vector<String> units(1);
1419   units = String("Hz");
1420   for (uInt fqID=0; fqID<nFreqIDs; fqID++) {
1421      for (uInt iSrc=0; iSrc<nSrcTab; iSrc++) {
1422         uInt idx = (iSrc*nFreqIDs) + fqID;
1423
1424// Get Aligned SC in Hz
1425
1426         if (iSrc==0) {
1427            SpectralCoordinate sC = a[idx]->alignedSpectralCoordinate(linear);
1428            sC.setWorldAxisUnits(units);
1429
1430// Write out frequency table information to SDMemTable
1431
1432            Int idx = freqTab.addFrequency(sC.referencePixel()[0],
1433                                           sC.referenceValue()[0],
1434                                           sC.increment()[0]);
1435         }
1436      }
1437   }
1438   pTabOut->putSDFreqTable(freqTab);
1439
1440// Now we must set the base and extra frames to the
1441// input frame
1442
1443   std::vector<string> info = pTabOut->getCoordInfo();
1444   info[1] = MFrequency::showType(freqSystem);   // Conversion frame
1445   info[3] = info[1];                            // Base frame
1446   pTabOut->setCoordInfo(info);
1447
1448// Clean up PointerBlock
1449
1450   for (uInt i=0; i<a.nelements(); i++) delete a[i];
1451//
1452   return pTabOut;
1453}
1454
1455
1456void SDMath::fillSDC(SDContainer& sc,
1457                     const Array<Bool>& mask,
1458                     const Array<Float>& data,
1459                     const Array<Float>& tSys,
1460                     Int scanID, Double timeStamp,
1461                     Double interval, const String& sourceName,
1462                     const Vector<uInt>& freqID) const
1463{
1464// Data and mask
1465
1466  putDataInSDC(sc, data, mask);
1467
1468// TSys
1469
1470  sc.putTsys(tSys);
1471
1472// Time things
1473
1474  sc.timestamp = timeStamp;
1475  sc.interval = interval;
1476  sc.scanid = scanID;
1477//
1478  sc.sourcename = sourceName;
1479  sc.putFreqMap(freqID);
1480}
1481
1482void SDMath::normalize(MaskedArray<Float>& sum,
1483                        const Array<Float>& sumSq,
1484                        const Array<Float>& nPts,
1485                        WeightType wtType, Int axis,
1486                        Int nAxesSub) const
1487{
1488   IPosition pos2(nAxesSub,0);
1489//
1490   if (wtType==NONE) {
1491
1492// We just average by the number of points accumulated.
1493// We need to make a MA out of nPts so that no divide by
1494// zeros occur
1495
1496      MaskedArray<Float> t(nPts, (nPts>Float(0.0)));
1497      sum /= t;
1498   } else if (wtType==VAR) {
1499
1500// Normalize each spectrum by sum(1/var) where the variance
1501// is worked out for each spectrum
1502
1503      Array<Float>& data = sum.getRWArray();
1504      VectorIterator<Float> itData(data, axis);
1505      while (!itData.pastEnd()) {
1506         pos2 = itData.pos().getFirst(nAxesSub);
1507         itData.vector() /= sumSq(pos2);
1508         itData.next();
1509      }
1510   } else if (wtType==TSYS) {
1511   }
1512}
1513
1514
1515void SDMath::accumulate(Double& timeSum, Double& intSum, Int& nAccum,
1516                        MaskedArray<Float>& sum, Array<Float>& sumSq,
1517                        Array<Float>& nPts, Array<Float>& tSysSum,
1518                        const Array<Float>& tSys, const Array<Float>& nInc,
1519                        const Vector<Bool>& mask, Double time, Double interval,
1520                        const Block<CountedPtr<SDMemTable> >& in,
1521                        uInt iTab, uInt iRow, uInt axis,
1522                        uInt nAxesSub, Bool useMask,
1523                        WeightType wtType) const
1524{
1525
1526// Get data
1527
1528   MaskedArray<Float> dataIn(in[iTab]->rowAsMaskedArray(iRow));
1529   Array<Float>& valuesIn = dataIn.getRWArray();           // writable reference
1530   const Array<Bool>& maskIn = dataIn.getMask();          // RO reference
1531//
1532   if (wtType==NONE) {
1533      const MaskedArray<Float> n(nInc,dataIn.getMask());
1534      nPts += n;                               // Only accumulates where mask==T
1535   } else if (wtType==VAR) {
1536
1537// We are going to average the data, weighted by the noise for each pol, beam and IF.
1538// So therefore we need to iterate through by spectrum (axis 3)
1539
1540      VectorIterator<Float> itData(valuesIn, axis);
1541      ReadOnlyVectorIterator<Bool> itMask(maskIn, axis);
1542      Float fac = 1.0;
1543      IPosition pos(nAxesSub,0); 
1544//
1545      while (!itData.pastEnd()) {
1546
1547// Make MaskedArray of Vector, optionally apply OTF mask, and find scaling factor
1548
1549        if (useMask) {
1550           MaskedArray<Float> tmp(itData.vector(),mask&&itMask.vector());
1551           fac = 1.0/variance(tmp);
1552        } else {
1553           MaskedArray<Float> tmp(itData.vector(),itMask.vector());
1554           fac = 1.0/variance(tmp);
1555        }
1556
1557// Scale data
1558
1559        itData.vector() *= fac;     // Writes back into 'dataIn'
1560//
1561// Accumulate variance per if/pol/beam averaged over spectrum
1562// This method to get pos2 from itData.pos() is only valid
1563// because the spectral axis is the last one (so we can just
1564// copy the first nAXesSub positions out)
1565
1566        pos = itData.pos().getFirst(nAxesSub);
1567        sumSq(pos) += fac;
1568//
1569        itData.next();
1570        itMask.next();
1571      }
1572   } else if (wtType==TSYS) {
1573   }
1574
1575// Accumulate sum of (possibly scaled) data
1576
1577   sum += dataIn;
1578
1579// Accumulate Tsys, time, and interval
1580
1581   tSysSum += tSys;
1582   timeSum += time;
1583   intSum += interval;
1584   nAccum += 1;
1585}
1586
1587
1588
1589
1590void SDMath::getCursorLocation(IPosition& start, IPosition& end,
1591                               const SDMemTable& in) const
1592{
1593  const uInt nDim = 4;
1594  const uInt i = in.getBeam();
1595  const uInt j = in.getIF();
1596  const uInt k = in.getPol();
1597  const uInt n = in.nChan();
1598//
1599  start.resize(nDim);
1600  start(0) = i;
1601  start(1) = j;
1602  start(2) = k;
1603  start(3) = 0;
1604//
1605  end.resize(nDim);
1606  end(0) = i;
1607  end(1) = j;
1608  end(2) = k;
1609  end(3) = n-1;
1610}
1611
1612
1613void SDMath::convertWeightString(WeightType& wtType, const String& weightStr) const
1614{
1615  String tStr(weightStr);
1616  tStr.upcase();
1617  if (tStr.contains(String("NONE"))) {
1618     wtType = NONE;
1619  } else if (tStr.contains(String("VAR"))) {
1620     wtType = VAR;
1621  } else if (tStr.contains(String("TSYS"))) {
1622     wtType = TSYS;
1623     throw(AipsError("T_sys weighting not yet implemented"));
1624  } else {
1625    throw(AipsError("Unrecognized weighting type"));
1626  }
1627}
1628
1629void SDMath::convertInterpString(Int& type, const String& interp) const
1630{
1631  String tStr(interp);
1632  tStr.upcase();
1633  if (tStr.contains(String("NEAR"))) {
1634     type = InterpolateArray1D<Float,Float>::nearestNeighbour;
1635  } else if (tStr.contains(String("LIN"))) {
1636     type = InterpolateArray1D<Float,Float>::linear;
1637  } else if (tStr.contains(String("CUB"))) {
1638     type = InterpolateArray1D<Float,Float>::cubic;
1639  } else if (tStr.contains(String("SPL"))) {
1640     type = InterpolateArray1D<Float,Float>::spline;
1641  } else {
1642    throw(AipsError("Unrecognized interpolation type"));
1643  }
1644}
1645
1646void SDMath::putDataInSDC(SDContainer& sc, const Array<Float>& data,
1647                          const Array<Bool>& mask) const
1648{
1649    sc.putSpectrum(data);
1650//
1651    Array<uChar> outflags(data.shape());
1652    convertArray(outflags,!mask);
1653    sc.putFlags(outflags);
1654}
1655
1656Table SDMath::readAsciiFile (const String& fileName) const
1657{
1658   String formatString;
1659   Table tbl = readAsciiTable (formatString, Table::Memory, fileName, "", "", False);
1660   return tbl;
1661}
1662
1663
1664
1665void SDMath::correctFromAsciiTable(SDMemTable* pTabOut,
1666                                   const SDMemTable& in, const String& fileName,
1667                                   const String& col0, const String& col1,
1668                                   const String& methodStr, Bool doAll,
1669                                   const Vector<Float>& xOut) const
1670{
1671
1672// Read gain-elevation ascii file data into a Table.
1673
1674  Table geTable = readAsciiFile (fileName);
1675//
1676  correctFromTable (pTabOut, in, geTable, col0, col1, methodStr, doAll, xOut);
1677}
1678
1679void SDMath::correctFromTable(SDMemTable* pTabOut, const SDMemTable& in,
1680                              const Table& tTable, const String& col0,
1681                              const String& col1,
1682                              const String& methodStr, Bool doAll,
1683                              const Vector<Float>& xOut) const
1684{
1685
1686// Get data from Table
1687
1688  ROScalarColumn<Float> geElCol(tTable, col0);
1689  ROScalarColumn<Float> geFacCol(tTable, col1);
1690  Vector<Float> xIn = geElCol.getColumn();
1691  Vector<Float> yIn = geFacCol.getColumn();
1692  Vector<Bool> maskIn(xIn.nelements(),True);
1693
1694// Interpolate (and extrapolate) with desired method
1695
1696   Int method = 0;
1697   convertInterpString(method, methodStr);
1698//
1699   Vector<Float> yOut;
1700   Vector<Bool> maskOut;
1701   InterpolateArray1D<Float,Float>::interpolate(yOut, maskOut, xOut,
1702                                                xIn, yIn, maskIn, method,
1703                                                True, True);
1704// Apply
1705
1706   correctFromVector (pTabOut, in, doAll, yOut);
1707}
1708
1709
1710void SDMath::correctFromVector (SDMemTable* pTabOut, const SDMemTable& in,
1711                                Bool doAll, const Vector<Float>& factor) const
1712{
1713
1714// For operations only on specified cursor location
1715
1716  IPosition start, end;
1717  getCursorLocation(start, end, in);
1718
1719// Loop over rows and apply correction factor
1720 
1721  const uInt axis = asap::ChanAxis;
1722  for (uInt i=0; i < in.nRow(); ++i) {
1723
1724// Get data
1725
1726    MaskedArray<Float> dataIn(in.rowAsMaskedArray(i));
1727
1728// Apply factor
1729
1730    if (doAll) {
1731       dataIn *= factor[i];
1732    } else {
1733       MaskedArray<Float> dataIn2 = dataIn(start,end);  // reference
1734       dataIn2 *= factor[i];
1735    }
1736
1737// Write out
1738
1739    SDContainer sc = in.getSDContainer(i);
1740    putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
1741//
1742    pTabOut->putSDContainer(sc);
1743  }
1744}
1745
1746
1747void SDMath::generateSourceTable (Vector<String>& srcTab,
1748                                  Vector<uInt>& srcIdx,
1749                                  Vector<uInt>& firstRow,
1750                                  const Vector<String>& srcNames) const
1751//
1752// This algorithm assumes that if there are multiple beams
1753// that the source names are diffent.  Oterwise we would need
1754// to look atthe direction for each beam...
1755//
1756{
1757   const uInt nRow = srcNames.nelements();
1758   srcTab.resize(0);
1759   srcIdx.resize(nRow);
1760   firstRow.resize(0);
1761//
1762   uInt nSrc = 0;
1763   for (uInt i=0; i<nRow; i++) {
1764      String srcName = srcNames[i];
1765     
1766// Do we have this source already ?
1767
1768      Int idx = -1;
1769      if (nSrc>0) {
1770         for (uInt j=0; j<nSrc; j++) {
1771           if (srcName==srcTab[j]) {
1772              idx = j;
1773              break;
1774           }
1775         }
1776      }
1777
1778// Add new entry if not found
1779
1780      if (idx==-1) {
1781         nSrc++;
1782         srcTab.resize(nSrc,True);
1783         srcTab(nSrc-1) = srcName;
1784         idx = nSrc-1;
1785//
1786         firstRow.resize(nSrc,True);
1787         firstRow(nSrc-1) = i;       // First row for which this source occurs
1788      }
1789
1790// Set index for this row
1791
1792      srcIdx[i] = idx;
1793   }
1794}
1795
1796MEpoch SDMath::epochFromString (const String& str, MEpoch::Types timeRef) const
1797{
1798   Quantum<Double> qt;
1799   if (MVTime::read(qt,str)) {
1800      MVEpoch mv(qt);
1801      MEpoch me(mv, timeRef);
1802      return me;
1803   } else {
1804      throw(AipsError("Invalid format for Epoch string"));
1805   }
1806}
1807
1808
1809String SDMath::formatEpoch(const MEpoch& epoch)  const
1810{
1811   MVTime mvt(epoch.getValue());
1812   return mvt.string(MVTime::YMD) + String(" (") + epoch.getRefString() + String(")");
1813}
1814
1815
1816
1817void SDMath::generateFrequencyAligners (PtrBlock<FrequencyAligner<Float>* >& a,
1818                                       const SDMemTable& in, uInt nChan,
1819                                       uInt nFreqIDs, uInt nSrcTab,
1820                                       const Vector<uInt>& firstRow,
1821                                       MFrequency::Types system,
1822                                       const MPosition& refPos,
1823                                       const MEpoch& refEpoch) const
1824{
1825   for (uInt fqID=0; fqID<nFreqIDs; fqID++) {
1826      SpectralCoordinate sC = in.getSpectralCoordinate(fqID);
1827      for (uInt iSrc=0; iSrc<nSrcTab; iSrc++) {
1828         MDirection refDir = in.getDirection(firstRow[iSrc]);
1829         uInt idx = (iSrc*nFreqIDs) + fqID;
1830         a[idx] = new FrequencyAligner<Float>(sC, nChan, refEpoch, refDir, refPos, system);
1831      }
1832   }
1833}
1834
1835
Note: See TracBrowser for help on using the repository browser.