source: trunk/src/SDMath.cc @ 294

Last change on this file since 294 was 294, checked in by kil064, 19 years ago

move some code into function generateVelocityAligners
add arg. doTSys to binaryOperate and unaryOperate

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 45.7 KB
Line 
1//#---------------------------------------------------------------------------
2//# SDMath.cc: A collection of single dish mathematical operations
3//#---------------------------------------------------------------------------
4//# Copyright (C) 2004
5//# ATNF
6//#
7//# This program is free software; you can redistribute it and/or modify it
8//# under the terms of the GNU General Public License as published by the Free
9//# Software Foundation; either version 2 of the License, or (at your option)
10//# any later version.
11//#
12//# This program is distributed in the hope that it will be useful, but
13//# WITHOUT ANY WARRANTY; without even the implied warranty of
14//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
15//# Public License for more details.
16//#
17//# You should have received a copy of the GNU General Public License along
18//# with this program; if not, write to the Free Software Foundation, Inc.,
19//# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
20//#
21//# Correspondence concerning this software should be addressed as follows:
22//#        Internet email: Malte.Marquarding@csiro.au
23//#        Postal address: Malte Marquarding,
24//#                        Australia Telescope National Facility,
25//#                        P.O. Box 76,
26//#                        Epping, NSW, 2121,
27//#                        AUSTRALIA
28//#
29//# $Id:
30//#---------------------------------------------------------------------------
31#include <vector>
32
33#include <casa/aips.h>
34#include <casa/BasicSL/String.h>
35#include <casa/Arrays/IPosition.h>
36#include <casa/Arrays/Array.h>
37#include <casa/Arrays/ArrayIter.h>
38#include <casa/Arrays/VectorIter.h>
39#include <casa/Arrays/ArrayMath.h>
40#include <casa/Arrays/ArrayLogical.h>
41#include <casa/Arrays/MaskedArray.h>
42#include <casa/Arrays/MaskArrMath.h>
43#include <casa/Arrays/MaskArrLogi.h>
44#include <casa/BasicMath/Math.h>
45#include <casa/Containers/Block.h>
46#include <casa/Exceptions.h>
47#include <casa/Quanta/Quantum.h>
48#include <casa/Quanta/Unit.h>
49#include <casa/Quanta/MVEpoch.h>
50#include <casa/Quanta/QC.h>
51#include <casa/Quanta/MVTime.h>
52#include <casa/Utilities/Assert.h>
53
54#include <coordinates/Coordinates/SpectralCoordinate.h>
55#include <coordinates/Coordinates/CoordinateSystem.h>
56#include <coordinates/Coordinates/CoordinateUtil.h>
57#include <coordinates/Coordinates/VelocityAligner.h>
58
59#include <lattices/Lattices/LatticeUtilities.h>
60#include <lattices/Lattices/RebinLattice.h>
61
62#include <measures/Measures/MEpoch.h>
63#include <measures/Measures/MDirection.h>
64#include <measures/Measures/MPosition.h>
65
66#include <scimath/Mathematics/VectorKernel.h>
67#include <scimath/Mathematics/Convolver.h>
68#include <scimath/Mathematics/InterpolateArray1D.h>
69#include <scimath/Functionals/Polynomial.h>
70
71#include <tables/Tables/Table.h>
72#include <tables/Tables/ScalarColumn.h>
73#include <tables/Tables/ArrayColumn.h>
74#include <tables/Tables/ReadAsciiTable.h>
75
76#include "MathUtils.h"
77#include "SDDefs.h"
78#include "SDContainer.h"
79#include "SDMemTable.h"
80
81#include "SDMath.h"
82
83using namespace casa;
84using namespace asap;
85
86
87SDMath::SDMath()
88{;}
89
90SDMath::SDMath(const SDMath& other)
91{
92
93// No state
94
95}
96
97SDMath& SDMath::operator=(const SDMath& other)
98{
99  if (this != &other) {
100// No state
101  }
102  return *this;
103}
104
105SDMath::~SDMath()
106{;}
107
108
109
110SDMemTable* SDMath::velocityAlignment (const SDMemTable& in, const String& refTime) const
111{
112
113// Get velocity/frame info from Table
114
115   std::vector<std::string> info = in.getCoordInfo();
116
117// Parse unit ("" means channels)
118
119   String velUnit(info[0]);
120   if (velUnit.length()==0) {
121      throw(AipsError("You have not set a velocity abcissa unit - use function set_unit"));
122   } else {
123      Unit velUnitU(velUnit);
124      if (velUnitU!=Unit(String("m/s"))) {
125         throw(AipsError("Specified abcissa unit is not consistent with km/s - use function set_unit"));
126      }
127   }
128
129// Parse doppler
130
131   String dopplerStr(info[2]);
132   String velSystemStr(info[1]);
133   String velBaseSystemStr(info[3]);
134   if (velBaseSystemStr==velSystemStr) {
135      throw(AipsError("You have not set a velocity frame different from the initial - use function set_freqframe"));
136   }
137
138// Parse frequency system
139
140   MFrequency::Types velSystem;
141   MFrequency::getType(velSystem, velSystemStr);
142   MDoppler::Types doppler;
143   MDoppler::getType(doppler, dopplerStr);
144
145// Do it
146
147   return velocityAlign (in, velSystem, velUnit, doppler, refTime);
148}
149
150
151
152CountedPtr<SDMemTable> SDMath::average(const Block<CountedPtr<SDMemTable> >& in,
153                                       const Vector<Bool>& mask, Bool scanAv,
154                                       const String& weightStr, Bool alignVelocity) const
155//
156// Weighted averaging of spectra from one or more Tables.
157//
158{
159
160// Convert weight type
161 
162  WeightType wtType = NONE;
163  convertWeightString(wtType, weightStr);
164
165// Create output Table by cloning from the first table
166
167  SDMemTable* pTabOut = new SDMemTable(*in[0],True);
168
169// Setup
170
171  IPosition shp = in[0]->rowAsMaskedArray(0).shape();      // Must not change
172  Array<Float> arr(shp);
173  Array<Bool> barr(shp);
174  const Bool useMask = (mask.nelements() == shp(asap::ChanAxis));
175
176// Columns from Tables
177
178  ROArrayColumn<Float> tSysCol;
179  ROScalarColumn<Double> mjdCol;
180  ROScalarColumn<String> srcNameCol;
181  ROScalarColumn<Double> intCol;
182  ROArrayColumn<uInt> fqIDCol;
183
184// Create accumulation MaskedArray. We accumulate for each channel,if,pol,beam
185// Note that the mask of the accumulation array will ALWAYS remain ALL True.
186// The MA is only used so that when data which is masked Bad is added to it,
187// that data does not contribute.
188
189  Array<Float> zero(shp);
190  zero=0.0;
191  Array<Bool> good(shp);
192  good = True;
193  MaskedArray<Float> sum(zero,good);
194
195// Counter arrays
196
197  Array<Float> nPts(shp);             // Number of points
198  nPts = 0.0;
199  Array<Float> nInc(shp);             // Increment
200  nInc = 1.0;
201
202// Create accumulation Array for variance. We accumulate for
203// each if,pol,beam, but average over channel.  So we need
204// a shape with one less axis dropping channels.
205
206  const uInt nAxesSub = shp.nelements() - 1;
207  IPosition shp2(nAxesSub);
208  for (uInt i=0,j=0; i<(nAxesSub+1); i++) {
209     if (i!=asap::ChanAxis) {
210       shp2(j) = shp(i);
211       j++;
212     }
213  }
214  Array<Float> sumSq(shp2);
215  sumSq = 0.0;
216  IPosition pos2(nAxesSub,0);                        // For indexing
217
218// Time-related accumulators
219
220  Double time;
221  Double timeSum = 0.0;
222  Double intSum = 0.0;
223  Double interval = 0.0;
224
225// To get the right shape for the Tsys accumulator we need to
226// access a column from the first table.  The shape of this
227// array must not change
228
229  Array<Float> tSysSum;
230  {
231    const Table& tabIn = in[0]->table();
232    tSysCol.attach(tabIn,"TSYS");
233    tSysSum.resize(tSysCol.shape(0));
234  }
235  tSysSum =0.0;
236  Array<Float> tSys;
237
238// Scan and row tracking
239
240  Int oldScanID = 0;
241  Int outScanID = 0;
242  Int scanID = 0;
243  Int rowStart = 0;
244  Int nAccum = 0;
245  Int tableStart = 0;
246
247// Source and FreqID
248
249  String sourceName, oldSourceName, sourceNameStart;
250  Vector<uInt> freqID, freqIDStart, oldFreqID;
251
252// Loop over tables
253
254  Float fac = 1.0;
255  const uInt nTables = in.nelements();
256  for (uInt iTab=0; iTab<nTables; iTab++) {
257
258// Should check that the frequency tables don't change if doing VelocityAlignment
259
260// Attach columns to Table
261
262     const Table& tabIn = in[iTab]->table();
263     tSysCol.attach(tabIn, "TSYS");
264     mjdCol.attach(tabIn, "TIME");
265     srcNameCol.attach(tabIn, "SRCNAME");
266     intCol.attach(tabIn, "INTERVAL");
267     fqIDCol.attach(tabIn, "FREQID");
268
269// Loop over rows in Table
270
271     const uInt nRows = in[iTab]->nRow();
272     for (uInt iRow=0; iRow<nRows; iRow++) {
273
274// Check conformance
275
276        IPosition shp2 = in[iTab]->rowAsMaskedArray(iRow).shape();
277        if (!shp.isEqual(shp2)) {
278           throw (AipsError("Shapes for all rows must be the same"));
279        }
280
281// If we are not doing scan averages, make checks for source and
282// frequency setup and warn if averaging across them
283
284// Get copy of Scan Container for this row
285
286        SDContainer sc = in[iTab]->getSDContainer(iRow);
287        scanID = sc.scanid;
288
289// Get quantities from columns
290
291        srcNameCol.getScalar(iRow, sourceName);
292        mjdCol.get(iRow, time);
293        tSysCol.get(iRow, tSys);
294        intCol.get(iRow, interval);
295        fqIDCol.get(iRow, freqID);
296
297// Initialize first source and freqID
298
299        if (iRow==0 && iTab==0) {
300          sourceNameStart = sourceName;
301          freqIDStart = freqID;
302        }
303
304// If we are doing scan averages, see if we are at the end of an
305// accumulation period (scan).  We must check soutce names too,
306// since we might have two tables with one scan each but different
307// source names; we shouldn't average different sources together
308
309        if (scanAv && ( (scanID != oldScanID)  ||
310                        (iRow==0 && iTab>0 && sourceName!=oldSourceName))) {
311
312// Normalize data in 'sum' accumulation array according to weighting scheme
313
314           normalize(sum, sumSq, nPts, wtType, asap::ChanAxis, nAxesSub);
315
316// Fill scan container. The source and freqID come from the
317// first row of the first table that went into this average (
318// should be the same for all rows in the scan average)
319
320           Float nR(nAccum);
321           fillSDC(sc, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
322                    timeSum/nR, intSum, sourceNameStart, freqIDStart);
323
324// Write container out to Table
325
326           pTabOut->putSDContainer(sc);
327
328// Reset accumulators
329
330           sum = 0.0;
331           sumSq = 0.0;
332           nAccum = 0;
333//
334           tSysSum =0.0;
335           timeSum = 0.0;
336           intSum = 0.0;
337           nPts = 0.0;
338
339// Increment
340
341           rowStart = iRow;              // First row for next accumulation
342           tableStart = iTab;            // First table for next accumulation
343           sourceNameStart = sourceName; // First source name for next accumulation
344           freqIDStart = freqID;         // First FreqID for next accumulation
345//
346           oldScanID = scanID;
347           outScanID += 1;               // Scan ID for next accumulation period
348        }
349
350// Accumulate
351
352        accumulate(timeSum, intSum, nAccum, sum, sumSq, nPts, tSysSum,
353                    tSys, nInc, mask, time, interval, in, iTab, iRow, asap::ChanAxis,
354                    nAxesSub, useMask, wtType);
355//
356       oldSourceName = sourceName;
357       oldFreqID = freqID;
358     }
359  }
360
361// OK at this point we have accumulation data which is either
362//   - accumulated from all tables into one row
363// or
364//   - accumulated from the last scan average
365//
366// Normalize data in 'sum' accumulation array according to weighting scheme
367  normalize(sum, sumSq, nPts, wtType, asap::ChanAxis, nAxesSub);
368
369// Create and fill container.  The container we clone will be from
370// the last Table and the first row that went into the current
371// accumulation.  It probably doesn't matter that much really...
372
373  Float nR(nAccum);
374  SDContainer sc = in[tableStart]->getSDContainer(rowStart);
375  fillSDC(sc, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
376           timeSum/nR, intSum, sourceNameStart, freqIDStart);
377  pTabOut->putSDContainer(sc);
378//
379  return CountedPtr<SDMemTable>(pTabOut);
380}
381
382
383
384CountedPtr<SDMemTable> SDMath::binaryOperate (const CountedPtr<SDMemTable>& left,
385                                              const CountedPtr<SDMemTable>& right,
386                                              const String& op, Bool preserve,
387                                              Bool doTSys)  const
388{
389
390// Check operator
391
392  String op2(op);
393  op2.upcase();
394  uInt what = 0;
395  if (op2=="ADD") {
396     what = 0;
397  } else if (op2=="SUB") {
398     what = 1;
399  } else if (op2=="MUL") {
400     what = 2;
401  } else if (op2=="DIV") {
402     what = 3;
403  } else if (op2=="QUOTIENT") {
404     what = 4;
405     doTSys = True;
406  } else {
407    throw( AipsError("Unrecognized operation"));
408  }
409
410// Check rows
411
412  const uInt nRowLeft = left->nRow();
413  const uInt nRowRight = right->nRow();
414  Bool ok = (nRowRight==1&&nRowLeft>0) ||
415            (nRowRight>=1&&nRowLeft==nRowRight);
416  if (!ok) {
417     throw (AipsError("The right Scan Table can have one row or the same number of rows as the left Scan Table"));
418  }
419
420// Input Tables
421
422  const Table& tLeft = left->table();
423  const Table& tRight = right->table();
424
425// TSys columns
426
427  ROArrayColumn<Float> tSysLeftCol, tSysRightCol;
428  if (doTSys) {
429     tSysLeftCol.attach(tLeft, "TSYS");
430     tSysRightCol.attach(tRight, "TSYS");
431  }
432
433// First row for right
434
435  Array<Float> tSysLeftArr, tSysRightArr;
436  if (doTSys) tSysRightCol.get(0, tSysRightArr);
437  MaskedArray<Float>* pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(0));
438  IPosition shpRight = pMRight->shape();
439
440// Output Table cloned from left
441
442  SDMemTable* pTabOut = new SDMemTable(*left, True);
443
444// Loop over rows
445
446  for (uInt i=0; i<nRowLeft; i++) {
447
448// Get data
449
450     MaskedArray<Float> mLeft(left->rowAsMaskedArray(i));
451     IPosition shpLeft = mLeft.shape();
452     if (doTSys) tSysLeftCol.get(i, tSysLeftArr);
453//
454     if (nRowRight>1) {
455        delete pMRight;
456        pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(i));
457        shpRight = pMRight->shape();
458        if (doTSys) tSysRightCol.get(i, tSysRightArr);
459     }
460//
461     if (!shpRight.isEqual(shpLeft)) {
462        throw(AipsError("left and right scan tables are not conformant"));
463     }
464     if (doTSys) {
465        if (!tSysRightArr.shape().isEqual(tSysRightArr.shape())) {
466           throw(AipsError("left and right Tsys data are not conformant"));
467        }
468        if (!shpRight.isEqual(tSysRightArr.shape())) {
469           throw(AipsError("left and right scan tables are not conformant"));
470        }
471     }
472
473// Make container
474
475     SDContainer sc = left->getSDContainer(i);
476
477// Operate on data and TSys
478
479     if (what==0) {                               
480        MaskedArray<Float> tmp = mLeft + *pMRight;
481        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
482        if (doTSys) sc.putTsys(tSysLeftArr+tSysRightArr);
483     } else if (what==1) {
484        MaskedArray<Float> tmp = mLeft - *pMRight;
485        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
486        if (doTSys) sc.putTsys(tSysLeftArr-tSysRightArr);
487     } else if (what==2) {
488        MaskedArray<Float> tmp = mLeft * *pMRight;
489        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
490        if (doTSys) sc.putTsys(tSysLeftArr*tSysRightArr);
491     } else if (what==3) {
492        MaskedArray<Float> tmp = mLeft / *pMRight;
493        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
494        if (doTSys) sc.putTsys(tSysLeftArr/tSysRightArr);
495     } else if (what==4) {
496        if (preserve) {     
497           MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) - tSysRightArr;
498           putDataInSDC(sc, tmp.getArray(), tmp.getMask());
499        } else {
500           MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) - tSysLeftArr;
501           putDataInSDC(sc, tmp.getArray(), tmp.getMask());
502        }
503        sc.putTsys(tSysRightArr);
504     }
505
506// Put new row in output Table
507
508     pTabOut->putSDContainer(sc);
509  }
510  if (pMRight) delete pMRight;
511//
512  return CountedPtr<SDMemTable>(pTabOut);
513}
514
515
516
517std::vector<float> SDMath::statistic(const CountedPtr<SDMemTable>& in,
518                                     const Vector<Bool>& mask,
519                                     const String& which, Int row) const
520//
521// Perhaps iteration over pol/beam/if should be in here
522// and inside the nrow iteration ?
523//
524{
525  const uInt nRow = in->nRow();
526
527// Specify cursor location
528
529  IPosition start, end;
530  getCursorLocation(start, end, *in);
531
532// Loop over rows
533
534  const uInt nEl = mask.nelements();
535  uInt iStart = 0;
536  uInt iEnd = in->nRow()-1;
537// 
538  if (row>=0) {
539     iStart = row;
540     iEnd = row;
541  }
542//
543  std::vector<float> result(iEnd-iStart+1);
544  for (uInt ii=iStart; ii <= iEnd; ++ii) {
545
546// Get row and deconstruct
547
548     MaskedArray<Float> marr(in->rowAsMaskedArray(ii));
549     Array<Float> arr = marr.getArray();
550     Array<Bool> barr = marr.getMask();
551
552// Access desired piece of data
553
554     Array<Float> v((arr(start,end)).nonDegenerate());
555     Array<Bool> m((barr(start,end)).nonDegenerate());
556
557// Apply OTF mask
558
559     MaskedArray<Float> tmp;
560     if (m.nelements()==nEl) {
561       tmp.setData(v,m&&mask);
562     } else {
563       tmp.setData(v,m);
564     }
565
566// Get statistic
567
568     result[ii-iStart] = mathutil::statistics(which, tmp);
569  }
570//
571  return result;
572}
573
574
575SDMemTable* SDMath::bin(const SDMemTable& in, Int width) const
576{
577  SDHeader sh = in.getSDHeader();
578  SDMemTable* pTabOut = new SDMemTable(in, True);
579
580// Bin up SpectralCoordinates
581
582  IPosition factors(1);
583  factors(0) = width;
584  for (uInt j=0; j<in.nCoordinates(); ++j) {
585    CoordinateSystem cSys;
586    cSys.addCoordinate(in.getSpectralCoordinate(j));
587    CoordinateSystem cSysBin =
588      CoordinateUtil::makeBinnedCoordinateSystem(factors, cSys, False);
589//
590    SpectralCoordinate sCBin = cSysBin.spectralCoordinate(0);
591    pTabOut->setCoordinate(sCBin, j);
592  }
593
594// Use RebinLattice to find shape
595
596  IPosition shapeIn(1,sh.nchan);
597  IPosition shapeOut = RebinLattice<Float>::rebinShape(shapeIn, factors);
598  sh.nchan = shapeOut(0);
599  pTabOut->putSDHeader(sh);
600
601
602// Loop over rows and bin along channel axis
603 
604  for (uInt i=0; i < in.nRow(); ++i) {
605    SDContainer sc = in.getSDContainer(i);
606//
607    Array<Float> tSys(sc.getTsys());                           // Get it out before sc changes shape
608
609// Bin up spectrum
610
611    MaskedArray<Float> marr(in.rowAsMaskedArray(i));
612    MaskedArray<Float> marrout;
613    LatticeUtilities::bin(marrout, marr, asap::ChanAxis, width);
614
615// Put back the binned data and flags
616
617    IPosition ip2 = marrout.shape();
618    sc.resize(ip2);
619//
620    putDataInSDC(sc, marrout.getArray(), marrout.getMask());
621
622// Bin up Tsys. 
623
624    Array<Bool> allGood(tSys.shape(),True);
625    MaskedArray<Float> tSysIn(tSys, allGood, True);
626//
627    MaskedArray<Float> tSysOut;   
628    LatticeUtilities::bin(tSysOut, tSysIn, asap::ChanAxis, width);
629    sc.putTsys(tSysOut.getArray());
630//
631    pTabOut->putSDContainer(sc);
632  }
633  return pTabOut;
634}
635
636SDMemTable* SDMath::unaryOperate(const SDMemTable& in, Float val, Bool doAll,
637                                 uInt what, Bool doTSys) const
638//
639// what = 0   Multiply
640//        1   Add
641{
642   SDMemTable* pOut = new SDMemTable(in,False);
643   const Table& tOut = pOut->table();
644   ArrayColumn<Float> specCol(tOut,"SPECTRA"); 
645   ArrayColumn<Float> tSysCol(tOut,"TSYS"); 
646   Array<Float> tSysArr;
647//
648   if (doAll) {
649      for (uInt i=0; i < tOut.nrow(); i++) {
650
651// Modify data
652
653         MaskedArray<Float> dataIn(pOut->rowAsMaskedArray(i));
654         if (what==0) {
655            dataIn  *= val;
656         } else if (what==1) {
657            dataIn += val;
658         }
659         specCol.put(i, dataIn.getArray());
660
661// Modify Tsys
662
663         if (doTSys) {
664            tSysCol.get(i, tSysArr);
665            if (what==0) {
666               tSysArr *= val;
667            } else if (what==1) {
668               tSysArr += val;
669            }
670            tSysCol.put(i, tSysArr);
671         }
672      }
673   } else {
674
675// Get cursor location
676
677      IPosition start, end;
678      getCursorLocation(start, end, in);
679//
680      for (uInt i=0; i < tOut.nrow(); i++) {
681
682// Modify data
683
684         MaskedArray<Float> dataIn(pOut->rowAsMaskedArray(i));
685         MaskedArray<Float> dataIn2 = dataIn(start,end);    // Reference
686         if (what==0) {
687            dataIn2 *= val;
688         } else if (what==1) {
689            dataIn2 += val;
690         }
691         specCol.put(i, dataIn.getArray());
692
693// Modify Tsys
694
695         if (doTSys) {
696            tSysCol.get(i, tSysArr);
697            Array<Float> tSysArr2 = tSysArr(start,end);     // Reference
698            if (what==0) {
699               tSysArr2 *= val;
700            } else if (what==1) {
701               tSysArr2 += val;
702            }
703            tSysCol.put(i, tSysArr);
704         }
705      }
706   }
707//
708   return pOut;
709}
710
711
712
713SDMemTable* SDMath::averagePol(const SDMemTable& in, const Vector<Bool>& mask) const
714//
715// Average all polarizations together, weighted by variance
716//
717{
718//   WeightType wtType = NONE;
719//   convertWeightString(wtType, weight);
720
721   const uInt nRows = in.nRow();
722
723// Create output Table and reshape number of polarizations
724
725  Bool clear=True;
726  SDMemTable* pTabOut = new SDMemTable(in, clear);
727  SDHeader header = pTabOut->getSDHeader();
728  header.npol = 1;
729  pTabOut->putSDHeader(header);
730
731// Shape of input and output data
732
733  const IPosition& shapeIn = in.rowAsMaskedArray(0u, False).shape();
734  IPosition shapeOut(shapeIn);
735  shapeOut(asap::PolAxis) = 1;                          // Average all polarizations
736//
737  const uInt nChan = shapeIn(asap::ChanAxis);
738  const IPosition vecShapeOut(4,1,1,1,nChan);     // A multi-dim form of a Vector shape
739  IPosition start(4), end(4);
740
741// Output arrays
742
743  Array<Float> outData(shapeOut, 0.0);
744  Array<Bool> outMask(shapeOut, True);
745  const IPosition axes(2, asap::PolAxis, asap::ChanAxis);              // pol-channel plane
746//
747  const Bool useMask = (mask.nelements() == shapeIn(asap::ChanAxis));
748
749// Loop over rows
750
751   for (uInt iRow=0; iRow<nRows; iRow++) {
752
753// Get data for this row
754
755      MaskedArray<Float> marr(in.rowAsMaskedArray(iRow));
756      Array<Float>& arr = marr.getRWArray();
757      const Array<Bool>& barr = marr.getMask();
758
759// Make iterators to iterate by pol-channel planes
760
761      ReadOnlyArrayIterator<Float> itDataPlane(arr, axes);
762      ReadOnlyArrayIterator<Bool> itMaskPlane(barr, axes);
763
764// Accumulations
765
766      Float fac = 1.0;
767      Vector<Float> vecSum(nChan,0.0);
768
769// Iterate through data by pol-channel planes
770
771      while (!itDataPlane.pastEnd()) {
772
773// Iterate through plane by polarization  and accumulate Vectors
774
775        Vector<Float> t1(nChan); t1 = 0.0;
776        Vector<Bool> t2(nChan); t2 = True;
777        MaskedArray<Float> vecSum(t1,t2);
778        Float varSum = 0.0;
779        {
780           ReadOnlyVectorIterator<Float> itDataVec(itDataPlane.array(), 1);
781           ReadOnlyVectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
782           while (!itDataVec.pastEnd()) {     
783
784// Create MA of data & mask (optionally including OTF mask) and  get variance
785
786              if (useMask) {
787                 const MaskedArray<Float> spec(itDataVec.vector(),mask&&itMaskVec.vector());
788                 fac = 1.0 / variance(spec);
789              } else {
790                 const MaskedArray<Float> spec(itDataVec.vector(),itMaskVec.vector());
791                 fac = 1.0 / variance(spec);
792              }
793
794// Normalize spectrum (without OTF mask) and accumulate
795
796              const MaskedArray<Float> spec(fac*itDataVec.vector(), itMaskVec.vector());
797              vecSum += spec;
798              varSum += fac;
799
800// Next
801
802              itDataVec.next();
803              itMaskVec.next();
804           }
805        }
806
807// Normalize summed spectrum
808
809        vecSum /= varSum;
810
811// FInd position in input data array.  We are iterating by pol-channel
812// plane so all that will change is beam and IF and that's what we want.
813
814        IPosition pos = itDataPlane.pos();
815
816// Write out data. This is a bit messy. We have to reform the Vector
817// accumulator into an Array of shape (1,1,1,nChan)
818
819        start = pos;
820        end = pos;
821        end(asap::ChanAxis) = nChan-1;
822        outData(start,end) = vecSum.getArray().reform(vecShapeOut);
823        outMask(start,end) = vecSum.getMask().reform(vecShapeOut);
824
825// Step to next beam/IF combination
826
827        itDataPlane.next();
828        itMaskPlane.next();
829      }
830
831// Generate output container and write it to output table
832
833      SDContainer sc = in.getSDContainer();
834      sc.resize(shapeOut);
835//
836      putDataInSDC(sc, outData, outMask);
837      pTabOut->putSDContainer(sc);
838   }
839//
840  return pTabOut;
841}
842
843
844SDMemTable* SDMath::smooth(const SDMemTable& in,
845                           const casa::String& kernelType,
846                           casa::Float width, Bool doAll) const
847{
848
849// Number of channels
850
851   const uInt chanAxis = asap::ChanAxis;  // Spectral axis
852   SDHeader sh = in.getSDHeader();
853   const uInt nChan = sh.nchan;
854
855// Generate Kernel
856
857   VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernelType);
858   Vector<Float> kernel = VectorKernel::make(type, width, nChan, True, False);
859
860// Generate Convolver
861
862   IPosition shape(1,nChan);
863   Convolver<Float> conv(kernel, shape);
864
865// New Table
866
867   SDMemTable* pTabOut = new SDMemTable(in,True);
868
869// Get cursor location
870         
871  IPosition start, end;
872  getCursorLocation(start, end, in);
873//
874  IPosition shapeOut(4,1);
875
876// Output Vectors
877
878  Vector<Float> valuesOut(nChan);
879  Vector<Bool> maskOut(nChan);
880
881// Loop over rows in Table
882
883  for (uInt ri=0; ri < in.nRow(); ++ri) {
884
885// Get copy of data
886   
887    const MaskedArray<Float>& dataIn(in.rowAsMaskedArray(ri));
888    AlwaysAssert(dataIn.shape()(asap::ChanAxis)==nChan, AipsError);
889//
890    Array<Float> valuesIn = dataIn.getArray();
891    Array<Bool> maskIn = dataIn.getMask();
892
893// Branch depending on whether we smooth all locations or just
894// those pointed at by the current selection cursor
895
896    if (doAll) {
897       uInt axis = asap::ChanAxis;
898       VectorIterator<Float> itValues(valuesIn, axis);
899       VectorIterator<Bool> itMask(maskIn, axis);
900       while (!itValues.pastEnd()) {
901
902// Smooth
903          if (kernelType==VectorKernel::HANNING) {
904             mathutil::hanning(valuesOut, maskOut, itValues.vector(), itMask.vector());
905             itMask.vector() = maskOut;
906          } else {
907             mathutil::replaceMaskByZero(itValues.vector(), itMask.vector());
908             conv.linearConv(valuesOut, itValues.vector());
909          }
910//
911          itValues.vector() = valuesOut;
912//
913          itValues.next();
914          itMask.next();
915       }
916    } else {
917
918// Set multi-dim Vector shape
919
920       shapeOut(asap::ChanAxis) = valuesIn.shape()(chanAxis);
921
922// Stuff about with shapes so that we don't have conformance run-time errors
923
924       Vector<Float> valuesIn2 = valuesIn(start,end).nonDegenerate();
925       Vector<Bool> maskIn2 = maskIn(start,end).nonDegenerate();
926
927// Smooth
928
929       if (kernelType==VectorKernel::HANNING) {
930          mathutil::hanning(valuesOut, maskOut, valuesIn2, maskIn2);
931          maskIn(start,end) = maskOut.reform(shapeOut);
932       } else {
933          mathutil::replaceMaskByZero(valuesIn2, maskIn2);
934          conv.linearConv(valuesOut, valuesIn2);
935       }
936//
937       valuesIn(start,end) = valuesOut.reform(shapeOut);
938    }
939
940// Create and put back
941
942    SDContainer sc = in.getSDContainer(ri);
943    putDataInSDC(sc, valuesIn, maskIn);
944//
945    pTabOut->putSDContainer(sc);
946  }
947//
948  return pTabOut;
949}
950
951
952
953SDMemTable* SDMath::convertFlux (const SDMemTable& in, Float a, Float eta, Bool doAll) const
954//
955// As it is, this function could be implemented with 'simpleOperate'
956// However, I anticipate that eventually we will look the conversion
957// values up in a Table and apply them in a frequency dependent way,
958// so I have implemented it fully here
959//
960{
961  SDHeader sh = in.getSDHeader();
962  SDMemTable* pTabOut = new SDMemTable(in, True);
963
964// FInd out how to convert values into Jy and K (e.g. units might be mJy or mK)
965// Also automatically find out what we are converting to according to the
966// flux unit
967
968  Unit fluxUnit(sh.fluxunit);
969  Unit K(String("K"));
970  Unit JY(String("Jy"));
971//
972  Bool toKelvin = True;
973  Double inFac = 1.0;
974  if (fluxUnit==JY) {
975     cerr << "Converting to K" << endl;
976//
977     Quantum<Double> t(1.0,fluxUnit);
978     Quantum<Double> t2 = t.get(JY);
979     inFac = (t2 / t).getValue();
980//
981     toKelvin = True;
982     sh.fluxunit = "K";
983  } else if (fluxUnit==K) {
984     cerr << "Converting to Jy" << endl;
985//
986     Quantum<Double> t(1.0,fluxUnit);
987     Quantum<Double> t2 = t.get(K);
988     inFac = (t2 / t).getValue();
989//
990     toKelvin = False;
991     sh.fluxunit = "Jy";
992  } else {
993     throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
994  }
995  pTabOut->putSDHeader(sh);
996
997// Compute conversion factor. 'a' and 'eta' are really frequency, time and 
998// telescope dependent and should be looked// up in a table
999
1000  Float factor = 2.0 * inFac * 1.0e-7 * 1.0e26 *
1001                 QC::k.getValue(Unit(String("erg/K"))) / a / eta;
1002  if (toKelvin) {
1003    factor = 1.0 / factor;
1004  }
1005  cerr << "Applying conversion factor = " << factor << endl;
1006
1007// Generate correction vector.  Apply same factor regardless
1008// of beam/pol/IF.  This will need to change somewhen.
1009
1010  Vector<Float> factors(in.nRow(), factor);
1011
1012// Correct
1013
1014  correctFromVector (pTabOut, in, doAll, factors);
1015//
1016  return pTabOut;
1017}
1018
1019
1020SDMemTable* SDMath::gainElevation (const SDMemTable& in, const Vector<Float>& coeffs,
1021                                   const String& fileName,
1022                                   const String& methodStr, Bool doAll) const
1023{
1024
1025// Get header and clone output table
1026
1027  SDHeader sh = in.getSDHeader();
1028  SDMemTable* pTabOut = new SDMemTable(in, True);
1029
1030// Get elevation data from SDMemTable and convert to degrees
1031
1032  const Table& tab = in.table();
1033  ROScalarColumn<Float> elev(tab, "ELEVATION");
1034  Vector<Float> x = elev.getColumn();
1035  x *= Float(180 / C::pi);
1036//
1037  const uInt nC = coeffs.nelements();
1038  if (fileName.length()>0 && nC>0) {
1039     throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
1040  }
1041
1042// Correct
1043
1044  if (nC>0 || fileName.length()==0) {
1045
1046// Find instrument
1047
1048     Bool throwIt = True;
1049     Instrument inst = SDMemTable::convertInstrument (sh.antennaname, throwIt);
1050     
1051// Set polynomial
1052
1053     Polynomial<Float>* pPoly = 0;
1054     Vector<Float> coeff;
1055     String msg;
1056     if (nC>0) {
1057        pPoly = new Polynomial<Float>(nC);
1058        coeff = coeffs;
1059        msg = String("user");
1060     } else {
1061        if (inst==ATPKSMB) {
1062        } else if (inst==ATPKSHOH) {
1063        } else if (inst==TIDBINBILLA) {
1064           pPoly = new Polynomial<Float>(3);
1065           coeff.resize(3);
1066           coeff(0) = 3.58788e-1;
1067           coeff(1) = 2.87243e-2;
1068           coeff(2) = -3.219093e-4;
1069        } else if (inst==ATMOPRA) {
1070        } else {
1071        }
1072        msg = String("built in");
1073     }
1074//
1075     if (coeff.nelements()>0) {
1076        pPoly->setCoefficients(coeff);
1077     } else {
1078        throw(AipsError("There is no known gain-el polynomial known for this instrument"));
1079     }
1080//
1081     cerr << "Making polynomial correction with " << msg << " coefficients" << endl;
1082     const uInt nRow = in.nRow();
1083     Vector<Float> factor(nRow);
1084     for (uInt i=0; i<nRow; i++) {
1085        factor[i] = (*pPoly)(x[i]);
1086     }
1087     delete pPoly;
1088//
1089     correctFromVector (pTabOut, in, doAll, factor);
1090  } else {
1091
1092// Indicate which columns to read from ascii file
1093
1094     String col0("ELEVATION");
1095     String col1("FACTOR");
1096
1097// Read and correct
1098
1099     cerr << "Making correction from ascii Table" << endl;
1100     correctFromAsciiTable (pTabOut, in, fileName, col0, col1,
1101                            methodStr, doAll, x);
1102   }
1103//
1104   return pTabOut;
1105}
1106
1107 
1108
1109SDMemTable* SDMath::opacity (const SDMemTable& in, Float tau, Bool doAll) const
1110{
1111
1112// Get header and clone output table
1113
1114  SDHeader sh = in.getSDHeader();
1115  SDMemTable* pTabOut = new SDMemTable(in, True);
1116
1117// Get elevation data from SDMemTable and convert to degrees
1118
1119  const Table& tab = in.table();
1120  ROScalarColumn<Float> elev(tab, "ELEVATION");
1121  Vector<Float> zDist = elev.getColumn();
1122  zDist = Float(C::pi_2) - zDist;
1123
1124// Generate correction factor
1125
1126  const uInt nRow = in.nRow();
1127  Vector<Float> factor(nRow);
1128  Vector<Float> factor2(nRow);
1129  for (uInt i=0; i<nRow; i++) {
1130     factor[i] = exp(tau)/cos(zDist[i]);
1131  }
1132
1133// Correct
1134
1135  correctFromVector (pTabOut, in, doAll, factor);
1136//
1137  return pTabOut;
1138}
1139
1140
1141
1142
1143// 'private' functions
1144
1145SDMemTable* SDMath::velocityAlign (const SDMemTable& in,
1146                                   MFrequency::Types velSystem,
1147                                   const String& velUnit,
1148                                   MDoppler::Types doppler,
1149                                   const String& refTime) const
1150{
1151// Get Header
1152
1153   SDHeader sh = in.getSDHeader();
1154   const uInt nChan = sh.nchan;
1155   const uInt nRows = in.nRow();
1156
1157// Get Table reference
1158
1159   const Table& tabIn = in.table();
1160
1161// Get Columns from Table
1162
1163   ROScalarColumn<Double> mjdCol(tabIn, "TIME");
1164   ROScalarColumn<String> srcCol(tabIn, "SRCNAME");
1165   ROArrayColumn<uInt> fqIDCol(tabIn, "FREQID");
1166//
1167   Vector<Double> times = mjdCol.getColumn();
1168   Vector<String> srcNames = srcCol.getColumn();
1169   Vector<uInt> freqID;
1170
1171// Generate Source table
1172
1173   Vector<String> srcTab;
1174   Vector<uInt> srcIdx, firstRow;
1175   generateSourceTable (srcTab, srcIdx, firstRow, srcNames);
1176   const uInt nSrcTab = srcTab.nelements();
1177   cerr << "Found " << srcTab.nelements() << " sources to align " << endl;
1178
1179// Get reference Epoch to time of first row or given String
1180
1181   Unit DAY(String("d"));
1182   MEpoch::Ref epochRef(in.getTimeReference());
1183   MEpoch refEpoch;
1184   if (refTime.length()>0) {
1185      refEpoch = epochFromString(refTime, in.getTimeReference());
1186   } else {
1187      refEpoch = in.getEpoch(0);
1188   }
1189   cerr << "Aligning at reference Epoch " << formatEpoch(refEpoch) << endl;
1190
1191// Get Reference Position
1192
1193   MPosition refPos = in.getAntennaPosition();
1194
1195// Get Frequency Table
1196
1197   SDFrequencyTable fTab = in.getSDFreqTable();
1198   const uInt nFreqIDs = fTab.length();
1199
1200// Create VelocityAligner Block. One VA for each possible
1201// source/freqID combination
1202
1203   PtrBlock<VelocityAligner<Float>* > vA(nFreqIDs*nSrcTab);
1204   generateVelocityAligners (vA, in, nChan, nFreqIDs, nSrcTab, firstRow,
1205                             velSystem, velUnit, doppler,  refPos, refEpoch);
1206
1207// New output Table
1208
1209   SDMemTable* pTabOut = new SDMemTable(in,True);
1210
1211// Loop over rows in Table
1212
1213   const IPosition polChanAxes(2, asap::PolAxis, asap::ChanAxis);
1214   VelocityAligner<Float>::Method method = VelocityAligner<Float>::LINEAR;
1215   Bool extrapolate=False;
1216   Bool useCachedAbcissa = False;
1217   Bool first = True;
1218   Bool ok;
1219   Vector<Float> yOut;
1220   Vector<Bool> maskOut;
1221   uInt ifIdx, vaIdx;
1222//
1223   for (uInt iRow=0; iRow<nRows; ++iRow) {
1224      if (iRow%10==0) {
1225         cerr << "Processing row " << iRow << endl;
1226      }
1227
1228// Get EPoch
1229
1230     Quantum<Double> tQ2(times[iRow],DAY);
1231     MVEpoch mv2(tQ2);
1232     MEpoch epoch(mv2, epochRef);
1233
1234// Get FreqID vector.  One freqID per IF
1235
1236     fqIDCol.get(iRow, freqID);
1237
1238// Get copy of data
1239   
1240     const MaskedArray<Float>& mArrIn(in.rowAsMaskedArray(iRow));
1241     Array<Float> values = mArrIn.getArray();
1242     Array<Bool> mask = mArrIn.getMask();
1243
1244// cerr << "values in = " << values(IPosition(4,0,0,0,0),IPosition(4,0,0,0,9)) << endl;
1245
1246// For each row, the Velocity abcissa will be the same regardless
1247// of polarization.  For all other axes (IF and BEAM) the abcissa
1248// will change.  So we iterate through the data by pol-chan planes
1249// to mimimize the work.  At this point, I think the Direction
1250// is stored as the same for each beam. DOn't know where the
1251// offsets are or what to do about them right now.  For now
1252// all beams get same position and velocoity abcissa.
1253
1254     ArrayIterator<Float> itValuesPlane(values, polChanAxes);
1255     ArrayIterator<Bool> itMaskPlane(mask, polChanAxes);
1256     while (!itValuesPlane.pastEnd()) {
1257
1258// Find the IF index and then the VA PtrBlock index
1259
1260        const IPosition& pos = itValuesPlane.pos();
1261        ifIdx = pos(asap::IFAxis);
1262        vaIdx = (srcIdx[iRow]*nFreqIDs) + freqID[ifIdx];
1263//
1264        VectorIterator<Float> itValuesVec(itValuesPlane.array(), 1);
1265        VectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
1266//
1267        first = True;
1268        useCachedAbcissa=False;
1269        while (!itValuesVec.pastEnd()) {     
1270           ok = vA[vaIdx]->align (yOut, maskOut, itValuesVec.vector(),
1271                                  itMaskVec.vector(), epoch, useCachedAbcissa,
1272                                  method, extrapolate);
1273           itValuesVec.vector() = yOut;
1274           itMaskVec.vector() = maskOut;
1275//
1276           itValuesVec.next();
1277           itMaskVec.next();
1278//
1279           if (first) {
1280              useCachedAbcissa = True;
1281              first = False;
1282           }
1283        }
1284//
1285       itValuesPlane.next();
1286       itMaskPlane.next();
1287     }
1288
1289// cerr << "values out = " << values(IPosition(4,0,0,0,0),IPosition(4,0,0,0,9)) << endl;
1290
1291// Create and put back
1292
1293    SDContainer sc = in.getSDContainer(iRow);
1294    putDataInSDC(sc, values, mask);
1295//
1296    pTabOut->putSDContainer(sc);
1297   }
1298
1299// Clean up PointerBlock
1300
1301  for (uInt i=0; i<vA.nelements(); i++) delete vA[i];
1302//
1303  return pTabOut;
1304}
1305
1306
1307void SDMath::fillSDC(SDContainer& sc,
1308                     const Array<Bool>& mask,
1309                     const Array<Float>& data,
1310                     const Array<Float>& tSys,
1311                     Int scanID, Double timeStamp,
1312                     Double interval, const String& sourceName,
1313                     const Vector<uInt>& freqID) const
1314{
1315// Data and mask
1316
1317  putDataInSDC(sc, data, mask);
1318
1319// TSys
1320
1321  sc.putTsys(tSys);
1322
1323// Time things
1324
1325  sc.timestamp = timeStamp;
1326  sc.interval = interval;
1327  sc.scanid = scanID;
1328//
1329  sc.sourcename = sourceName;
1330  sc.putFreqMap(freqID);
1331}
1332
1333void SDMath::normalize(MaskedArray<Float>& sum,
1334                        const Array<Float>& sumSq,
1335                        const Array<Float>& nPts,
1336                        WeightType wtType, Int axis,
1337                        Int nAxesSub) const
1338{
1339   IPosition pos2(nAxesSub,0);
1340//
1341   if (wtType==NONE) {
1342
1343// We just average by the number of points accumulated.
1344// We need to make a MA out of nPts so that no divide by
1345// zeros occur
1346
1347      MaskedArray<Float> t(nPts, (nPts>Float(0.0)));
1348      sum /= t;
1349   } else if (wtType==VAR) {
1350
1351// Normalize each spectrum by sum(1/var) where the variance
1352// is worked out for each spectrum
1353
1354      Array<Float>& data = sum.getRWArray();
1355      VectorIterator<Float> itData(data, axis);
1356      while (!itData.pastEnd()) {
1357         pos2 = itData.pos().getFirst(nAxesSub);
1358         itData.vector() /= sumSq(pos2);
1359         itData.next();
1360      }
1361   } else if (wtType==TSYS) {
1362   }
1363}
1364
1365
1366void SDMath::accumulate(Double& timeSum, Double& intSum, Int& nAccum,
1367                        MaskedArray<Float>& sum, Array<Float>& sumSq,
1368                        Array<Float>& nPts, Array<Float>& tSysSum,
1369                        const Array<Float>& tSys, const Array<Float>& nInc,
1370                        const Vector<Bool>& mask, Double time, Double interval,
1371                        const Block<CountedPtr<SDMemTable> >& in,
1372                        uInt iTab, uInt iRow, uInt axis,
1373                        uInt nAxesSub, Bool useMask,
1374                        WeightType wtType) const
1375{
1376
1377// Get data
1378
1379   MaskedArray<Float> dataIn(in[iTab]->rowAsMaskedArray(iRow));
1380   Array<Float>& valuesIn = dataIn.getRWArray();           // writable reference
1381   const Array<Bool>& maskIn = dataIn.getMask();          // RO reference
1382//
1383   if (wtType==NONE) {
1384      const MaskedArray<Float> n(nInc,dataIn.getMask());
1385      nPts += n;                               // Only accumulates where mask==T
1386   } else if (wtType==VAR) {
1387
1388// We are going to average the data, weighted by the noise for each pol, beam and IF.
1389// So therefore we need to iterate through by spectrum (axis 3)
1390
1391      VectorIterator<Float> itData(valuesIn, axis);
1392      ReadOnlyVectorIterator<Bool> itMask(maskIn, axis);
1393      Float fac = 1.0;
1394      IPosition pos(nAxesSub,0); 
1395//
1396      while (!itData.pastEnd()) {
1397
1398// Make MaskedArray of Vector, optionally apply OTF mask, and find scaling factor
1399
1400        if (useMask) {
1401           MaskedArray<Float> tmp(itData.vector(),mask&&itMask.vector());
1402           fac = 1.0/variance(tmp);
1403        } else {
1404           MaskedArray<Float> tmp(itData.vector(),itMask.vector());
1405           fac = 1.0/variance(tmp);
1406        }
1407
1408// Scale data
1409
1410        itData.vector() *= fac;     // Writes back into 'dataIn'
1411//
1412// Accumulate variance per if/pol/beam averaged over spectrum
1413// This method to get pos2 from itData.pos() is only valid
1414// because the spectral axis is the last one (so we can just
1415// copy the first nAXesSub positions out)
1416
1417        pos = itData.pos().getFirst(nAxesSub);
1418        sumSq(pos) += fac;
1419//
1420        itData.next();
1421        itMask.next();
1422      }
1423   } else if (wtType==TSYS) {
1424   }
1425
1426// Accumulate sum of (possibly scaled) data
1427
1428   sum += dataIn;
1429
1430// Accumulate Tsys, time, and interval
1431
1432   tSysSum += tSys;
1433   timeSum += time;
1434   intSum += interval;
1435   nAccum += 1;
1436}
1437
1438
1439
1440
1441void SDMath::getCursorLocation(IPosition& start, IPosition& end,
1442                               const SDMemTable& in) const
1443{
1444  const uInt nDim = 4;
1445  const uInt i = in.getBeam();
1446  const uInt j = in.getIF();
1447  const uInt k = in.getPol();
1448  const uInt n = in.nChan();
1449//
1450  start.resize(nDim);
1451  start(0) = i;
1452  start(1) = j;
1453  start(2) = k;
1454  start(3) = 0;
1455//
1456  end.resize(nDim);
1457  end(0) = i;
1458  end(1) = j;
1459  end(2) = k;
1460  end(3) = n-1;
1461}
1462
1463
1464void SDMath::convertWeightString(WeightType& wtType, const String& weightStr) const
1465{
1466  String tStr(weightStr);
1467  tStr.upcase();
1468  if (tStr.contains(String("NONE"))) {
1469     wtType = NONE;
1470  } else if (tStr.contains(String("VAR"))) {
1471     wtType = VAR;
1472  } else if (tStr.contains(String("TSYS"))) {
1473     wtType = TSYS;
1474     throw(AipsError("T_sys weighting not yet implemented"));
1475  } else {
1476    throw(AipsError("Unrecognized weighting type"));
1477  }
1478}
1479
1480void SDMath::convertInterpString(Int& type, const String& interp) const
1481{
1482  String tStr(interp);
1483  tStr.upcase();
1484  if (tStr.contains(String("NEAR"))) {
1485     type = InterpolateArray1D<Float,Float>::nearestNeighbour;
1486  } else if (tStr.contains(String("LIN"))) {
1487     type = InterpolateArray1D<Float,Float>::linear;
1488  } else if (tStr.contains(String("CUB"))) {
1489     type = InterpolateArray1D<Float,Float>::cubic;
1490  } else if (tStr.contains(String("SPL"))) {
1491     type = InterpolateArray1D<Float,Float>::spline;
1492  } else {
1493    throw(AipsError("Unrecognized interpolation type"));
1494  }
1495}
1496
1497void SDMath::putDataInSDC(SDContainer& sc, const Array<Float>& data,
1498                          const Array<Bool>& mask) const
1499{
1500    sc.putSpectrum(data);
1501//
1502    Array<uChar> outflags(data.shape());
1503    convertArray(outflags,!mask);
1504    sc.putFlags(outflags);
1505}
1506
1507Table SDMath::readAsciiFile (const String& fileName) const
1508{
1509   String formatString;
1510   Table tbl = readAsciiTable (formatString, Table::Memory, fileName, "", "", False);
1511   return tbl;
1512}
1513
1514
1515
1516void SDMath::correctFromAsciiTable(SDMemTable* pTabOut,
1517                                   const SDMemTable& in, const String& fileName,
1518                                   const String& col0, const String& col1,
1519                                   const String& methodStr, Bool doAll,
1520                                   const Vector<Float>& xOut) const
1521{
1522
1523// Read gain-elevation ascii file data into a Table.
1524
1525  Table geTable = readAsciiFile (fileName);
1526//
1527  correctFromTable (pTabOut, in, geTable, col0, col1, methodStr, doAll, xOut);
1528}
1529
1530void SDMath::correctFromTable(SDMemTable* pTabOut, const SDMemTable& in,
1531                              const Table& tTable, const String& col0,
1532                              const String& col1,
1533                              const String& methodStr, Bool doAll,
1534                              const Vector<Float>& xOut) const
1535{
1536
1537// Get data from Table
1538
1539  ROScalarColumn<Float> geElCol(tTable, col0);
1540  ROScalarColumn<Float> geFacCol(tTable, col1);
1541  Vector<Float> xIn = geElCol.getColumn();
1542  Vector<Float> yIn = geFacCol.getColumn();
1543  Vector<Bool> maskIn(xIn.nelements(),True);
1544
1545// Interpolate (and extrapolate) with desired method
1546
1547   Int method = 0;
1548   convertInterpString(method, methodStr);
1549//
1550   Vector<Float> yOut;
1551   Vector<Bool> maskOut;
1552   InterpolateArray1D<Float,Float>::interpolate(yOut, maskOut, xOut,
1553                                                xIn, yIn, maskIn, method,
1554                                                True, True);
1555// Apply
1556
1557   correctFromVector (pTabOut, in, doAll, yOut);
1558}
1559
1560
1561void SDMath::correctFromVector (SDMemTable* pTabOut, const SDMemTable& in,
1562                                Bool doAll, const Vector<Float>& factor) const
1563{
1564
1565// For operations only on specified cursor location
1566
1567  IPosition start, end;
1568  getCursorLocation(start, end, in);
1569
1570// Loop over rows and apply correction factor
1571 
1572  const uInt axis = asap::ChanAxis;
1573  for (uInt i=0; i < in.nRow(); ++i) {
1574
1575// Get data
1576
1577    MaskedArray<Float> dataIn(in.rowAsMaskedArray(i));
1578
1579// Apply factor
1580
1581    if (doAll) {
1582       dataIn *= factor[i];
1583    } else {
1584       MaskedArray<Float> dataIn2 = dataIn(start,end);  // reference
1585       dataIn2 *= factor[i];
1586    }
1587
1588// Write out
1589
1590    SDContainer sc = in.getSDContainer(i);
1591    putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
1592//
1593    pTabOut->putSDContainer(sc);
1594  }
1595}
1596
1597
1598void SDMath::generateSourceTable (Vector<String>& srcTab,
1599                                  Vector<uInt>& srcIdx,
1600                                  Vector<uInt>& firstRow,
1601                                  const Vector<String>& srcNames) const
1602//
1603// This algorithm assumes that if there are multiple beams
1604// that the source names are diffent.  Oterwise we would need
1605// to look atthe direction for each beam...
1606//
1607{
1608   const uInt nRow = srcNames.nelements();
1609   srcTab.resize(0);
1610   srcIdx.resize(nRow);
1611   firstRow.resize(0);
1612//
1613   uInt nSrc = 0;
1614   for (uInt i=0; i<nRow; i++) {
1615      String srcName = srcNames[i];
1616     
1617// Do we have this source already ?
1618
1619      Int idx = -1;
1620      if (nSrc>0) {
1621         for (uInt j=0; j<nSrc; j++) {
1622           if (srcName==srcTab[j]) {
1623              idx = j;
1624              break;
1625           }
1626         }
1627      }
1628
1629// Add new entry if not found
1630
1631      if (idx==-1) {
1632         nSrc++;
1633         srcTab.resize(nSrc,True);
1634         srcTab(nSrc-1) = srcName;
1635         idx = nSrc-1;
1636//
1637         firstRow.resize(nSrc,True);
1638         firstRow(nSrc-1) = i;       // First row for which this source occurs
1639      }
1640
1641// Set index for this row
1642
1643      srcIdx[i] = idx;
1644   }
1645}
1646
1647MEpoch SDMath::epochFromString (const String& str, MEpoch::Types timeRef) const
1648{
1649   Quantum<Double> qt;
1650   if (MVTime::read(qt,str)) {
1651      MVEpoch mv(qt);
1652      MEpoch me(mv, timeRef);
1653      return me;
1654   } else {
1655      throw(AipsError("Invalid format for Epoch string"));
1656   }
1657}
1658
1659
1660String SDMath::formatEpoch(const MEpoch& epoch)  const
1661{
1662   MVTime mvt(epoch.getValue());
1663   return mvt.string(MVTime::YMD) + String(" (") + epoch.getRefString() + String(")");
1664}
1665
1666
1667void SDMath::generateVelocityAligners (PtrBlock<VelocityAligner<Float>* >& vA,
1668                                       const SDMemTable& in, uInt nChan,
1669                                       uInt nFreqIDs, uInt nSrcTab,
1670                                       const Vector<uInt>& firstRow,
1671                                       MFrequency::Types velSystem,
1672                                       const String& velUnit,
1673                                       MDoppler::Types doppler,
1674                                       const MPosition& refPos,
1675                                       const MEpoch& refEpoch) const
1676{
1677   for (uInt fqID=0; fqID<nFreqIDs; fqID++) {
1678      SpectralCoordinate sC = in.getSpectralCoordinate(fqID);
1679      for (uInt iSrc=0; iSrc<nSrcTab; iSrc++) {
1680         MDirection refDir = in.getDirection(firstRow[iSrc]);
1681         uInt idx = (iSrc*nFreqIDs) + fqID;
1682         vA[idx] = new VelocityAligner<Float>(sC, nChan, refEpoch, refDir, refPos,
1683                                              velUnit, doppler, velSystem);
1684      }
1685   }
1686}
1687
Note: See TracBrowser for help on using the repository browser.