source: trunk/src/SDMath.cc@ 264

Last change on this file since 264 was 262, checked in by kil064, 20 years ago

add functiom VelocityAlignment

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 44.5 KB
Line 
1//#---------------------------------------------------------------------------
2//# SDMath.cc: A collection of single dish mathematical operations
3//#---------------------------------------------------------------------------
4//# Copyright (C) 2004
5//# ATNF
6//#
7//# This program is free software; you can redistribute it and/or modify it
8//# under the terms of the GNU General Public License as published by the Free
9//# Software Foundation; either version 2 of the License, or (at your option)
10//# any later version.
11//#
12//# This program is distributed in the hope that it will be useful, but
13//# WITHOUT ANY WARRANTY; without even the implied warranty of
14//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
15//# Public License for more details.
16//#
17//# You should have received a copy of the GNU General Public License along
18//# with this program; if not, write to the Free Software Foundation, Inc.,
19//# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
20//#
21//# Correspondence concerning this software should be addressed as follows:
22//# Internet email: Malte.Marquarding@csiro.au
23//# Postal address: Malte Marquarding,
24//# Australia Telescope National Facility,
25//# P.O. Box 76,
26//# Epping, NSW, 2121,
27//# AUSTRALIA
28//#
29//# $Id:
30//#---------------------------------------------------------------------------
31#include <vector>
32
33#include <casa/aips.h>
34#include <casa/BasicSL/String.h>
35#include <casa/Arrays/IPosition.h>
36#include <casa/Arrays/Array.h>
37#include <casa/Arrays/ArrayIter.h>
38#include <casa/Arrays/VectorIter.h>
39#include <casa/Arrays/ArrayMath.h>
40#include <casa/Arrays/ArrayLogical.h>
41#include <casa/Arrays/MaskedArray.h>
42#include <casa/Arrays/MaskArrMath.h>
43#include <casa/Arrays/MaskArrLogi.h>
44#include <casa/BasicMath/Math.h>
45#include <casa/Containers/Block.h>
46#include <casa/Exceptions.h>
47#include <casa/Quanta/Quantum.h>
48#include <casa/Quanta/Unit.h>
49#include <casa/Quanta/MVEpoch.h>
50#include <casa/Quanta/QC.h>
51#include <casa/Utilities/Assert.h>
52
53#include <coordinates/Coordinates/SpectralCoordinate.h>
54#include <coordinates/Coordinates/CoordinateSystem.h>
55#include <coordinates/Coordinates/CoordinateUtil.h>
56#include <coordinates/Coordinates/VelocityAligner.h>
57
58#include <lattices/Lattices/LatticeUtilities.h>
59#include <lattices/Lattices/RebinLattice.h>
60
61#include <measures/Measures/MEpoch.h>
62#include <measures/Measures/MDirection.h>
63#include <measures/Measures/MPosition.h>
64
65#include <scimath/Mathematics/VectorKernel.h>
66#include <scimath/Mathematics/Convolver.h>
67#include <scimath/Mathematics/InterpolateArray1D.h>
68#include <scimath/Functionals/Polynomial.h>
69
70#include <tables/Tables/Table.h>
71#include <tables/Tables/ScalarColumn.h>
72#include <tables/Tables/ArrayColumn.h>
73#include <tables/Tables/ReadAsciiTable.h>
74
75#include "MathUtils.h"
76#include "SDDefs.h"
77#include "SDContainer.h"
78#include "SDMemTable.h"
79
80#include "SDMath.h"
81
82using namespace casa;
83using namespace asap;
84
85
86SDMath::SDMath()
87{;}
88
89SDMath::SDMath(const SDMath& other)
90{
91
92// No state
93
94}
95
96SDMath& SDMath::operator=(const SDMath& other)
97{
98 if (this != &other) {
99// No state
100 }
101 return *this;
102}
103
104SDMath::~SDMath()
105{;}
106
107
108
109SDMemTable* SDMath::velocityAlignment (const SDMemTable& in) const
110{
111
112// Get velocity/frame info
113
114 std::vector<std::string> info = in.getCoordInfo();
115 String velUnit(info[0]);
116 if (velUnit.length()==0) {
117 throw(AipsError("You have not set a velocity abcissa unit - use function set_unit"));
118 } else {
119 Unit velUnitU(velUnit);
120 if (velUnitU!=Unit(String("m/s"))) {
121 throw(AipsError("Specified abcissa unit is not consistent with km/s - use function set_unit"));
122 }
123 }
124//
125 String dopplerStr(info[2]);
126 String velSystemStr(info[1]);
127 String velBaseSystemStr(info[3]);
128 if (velBaseSystemStr==velSystemStr) {
129 throw(AipsError("You have not set a velocity frame different from the initial - use function set_frame"));
130 }
131
132cerr << "unit, frame, doppler, baseframe = " << velUnit << ", " << velSystemStr << ", " <<
133 dopplerStr << ", " << velBaseSystemStr << endl;
134//
135 MFrequency::Types velSystem;
136 MFrequency::getType(velSystem, velSystemStr);
137 MDoppler::Types doppler;
138 MDoppler::getType(doppler, dopplerStr);
139
140// Get Header
141
142 SDHeader sh = in.getSDHeader();
143 const uInt nChan = sh.nchan;
144 const uInt nRows = in.nRow();
145
146// Get Table reference
147
148 const Table& tabIn = in.table();
149
150// Get Columns from Table
151
152 ROScalarColumn<Double> mjdCol(tabIn, "TIME");
153 ROScalarColumn<String> srcCol(tabIn, "SRCNAME");
154 ROArrayColumn<uInt> fqIDCol(tabIn, "FREQID");
155//
156 Vector<Double> times = mjdCol.getColumn();
157 Vector<String> srcNames = srcCol.getColumn();
158 Vector<uInt> freqID;
159
160// Generate Source table
161
162 Vector<String> srcTab;
163 Vector<uInt> srcIdx, firstRow;
164 generateSourceTable (srcTab, srcIdx, firstRow, srcNames);
165 const uInt nSrcTab = srcTab.nelements();
166/*
167 cerr << "source table = " << srcTab << endl;
168 cerr << "source idx = " << srcIdx << endl;
169 cerr << "first row = " << firstRow << endl;
170*/
171
172// Set reference Epoch to time of first row
173
174 MEpoch::Ref timeRef = MEpoch::Ref(in.getTimeReference());
175 Unit DAY(String("d"));
176 Quantum<Double> tQ(times[0], DAY);
177 MVEpoch mve(tQ);
178 MEpoch refTime(mve, timeRef);
179
180// Set Reference Position
181
182 Vector<Double> antPos = sh.antennaposition;
183 MVPosition mvpos(antPos[0], antPos[1], antPos[2]);
184 MPosition refPos(mvpos);
185
186// Get Frequency Table
187
188 SDFrequencyTable fTab = in.getSDFreqTable();
189 const uInt nFreqIDs = fTab.length();
190
191// Create VelocityAligner Block. One VA for each possible
192// source/freqID combination
193
194 PtrBlock<VelocityAligner<Float>* > vA(nFreqIDs*nSrcTab);
195 for (uInt fqID=0; fqID<nFreqIDs; fqID++) {
196 SpectralCoordinate sC = in.getCoordinate(fqID);
197 for (uInt iSrc=0; iSrc<nSrcTab; iSrc++) {
198 MDirection refDir = in.getDirection(firstRow[iSrc]);
199 uInt idx = (iSrc*nFreqIDs) + fqID;
200 vA[idx] = new VelocityAligner<Float>(sC, nChan, refTime, refDir, refPos,
201 velUnit, doppler, velSystem);
202 }
203 }
204
205// New output Table
206
207 SDMemTable* pTabOut = new SDMemTable(in,True);
208
209// Loop over rows in Table
210
211 const IPosition polChanAxes(2, asap::PolAxis, asap::ChanAxis);
212 VelocityAligner<Float>::Method method = VelocityAligner<Float>::LINEAR;
213 Bool extrapolate=False;
214 Bool useCachedAbcissa = False;
215 Bool first = True;
216 Vector<Float> yOut;
217 Vector<Bool> maskOut;
218//
219 for (uInt iRow=0; iRow<nRows; ++iRow) {
220
221// Get EPoch
222
223 Quantum<Double> tQ2(times[iRow],DAY);
224 MVEpoch mv2(tQ2);
225 MEpoch epoch(mv2, timeRef);
226
227// Get FreqID vector. One freqID per IF
228
229 fqIDCol.get(iRow, freqID);
230
231// Get copy of data
232
233 const MaskedArray<Float>& mArrIn(in.rowAsMaskedArray(iRow));
234 Array<Float> values = mArrIn.getArray();
235 Array<Bool> mask = mArrIn.getMask();
236
237// cerr << "values in = " << values(IPosition(4,0,0,0,0),IPosition(4,0,0,0,9)) << endl;
238
239// For each row, the Velocity abcissa will be the same regardless
240// of polarization. For all other axes (IF and BEAM) the abcissa
241// will change. So we iterate through the data by pol-chan planes
242// to mimimize the work. At this point, I think the Direction
243// is stored as the same for each beam. DOn't know where the
244// offsets are or what to do about them right now. For now
245// all beams get same position and velocoity abcissa.
246
247 ArrayIterator<Float> itValuesPlane(values, polChanAxes);
248 ArrayIterator<Bool> itMaskPlane(mask, polChanAxes);
249 while (!itValuesPlane.pastEnd()) {
250
251// Find the IF index and then the VA PtrBlock index
252
253 const IPosition& pos = itValuesPlane.pos();
254 uInt ifIdx = pos(asap::IFAxis);
255 uInt vaIdx = (srcIdx[iRow]*nFreqIDs) + freqID[ifIdx];
256//cerr << "VA idx = " << vaIdx << endl;
257//
258 VectorIterator<Float> itValuesVec(itValuesPlane.array(), 1);
259 VectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
260//
261 first = True;
262 useCachedAbcissa=False;
263 while (!itValuesVec.pastEnd()) {
264 Bool ok = vA[vaIdx]->align (yOut, maskOut, itValuesVec.vector(),
265 itMaskVec.vector(), epoch, useCachedAbcissa,
266 method, extrapolate);
267 itValuesVec.vector() = yOut;
268 itMaskVec.vector() = maskOut;
269//
270 itValuesVec.next();
271 itMaskVec.next();
272//
273 if (first) {
274 useCachedAbcissa = True;
275 first = False;
276 }
277 }
278//
279 itValuesPlane.next();
280 itMaskPlane.next();
281 }
282
283// cerr << "values out = " << values(IPosition(4,0,0,0,0),IPosition(4,0,0,0,9)) << endl;
284
285// Create and put back
286
287 SDContainer sc = in.getSDContainer(iRow);
288 putDataInSDC(sc, values, mask);
289//
290 pTabOut->putSDContainer(sc);
291 }
292
293// Clean up PointerBlock
294
295 for (uInt i=0; i<vA.nelements(); i++) delete vA[i];
296//
297 return pTabOut;
298}
299
300
301CountedPtr<SDMemTable> SDMath::average(const Block<CountedPtr<SDMemTable> >& in,
302 const Vector<Bool>& mask, Bool scanAv,
303 const String& weightStr, Bool alignVelocity) const
304//
305// Weighted averaging of spectra from one or more Tables.
306//
307{
308
309// Convert weight type
310
311 WeightType wtType = NONE;
312 convertWeightString(wtType, weightStr);
313
314// Create output Table by cloning from the first table
315
316 SDMemTable* pTabOut = new SDMemTable(*in[0],True);
317
318// Setup
319
320 IPosition shp = in[0]->rowAsMaskedArray(0).shape(); // Must not change
321 Array<Float> arr(shp);
322 Array<Bool> barr(shp);
323 const Bool useMask = (mask.nelements() == shp(asap::ChanAxis));
324
325// Columns from Tables
326
327 ROArrayColumn<Float> tSysCol;
328 ROScalarColumn<Double> mjdCol;
329 ROScalarColumn<String> srcNameCol;
330 ROScalarColumn<Double> intCol;
331 ROArrayColumn<uInt> fqIDCol;
332
333// Create accumulation MaskedArray. We accumulate for each channel,if,pol,beam
334// Note that the mask of the accumulation array will ALWAYS remain ALL True.
335// The MA is only used so that when data which is masked Bad is added to it,
336// that data does not contribute.
337
338 Array<Float> zero(shp);
339 zero=0.0;
340 Array<Bool> good(shp);
341 good = True;
342 MaskedArray<Float> sum(zero,good);
343
344// Counter arrays
345
346 Array<Float> nPts(shp); // Number of points
347 nPts = 0.0;
348 Array<Float> nInc(shp); // Increment
349 nInc = 1.0;
350
351// Create accumulation Array for variance. We accumulate for
352// each if,pol,beam, but average over channel. So we need
353// a shape with one less axis dropping channels.
354
355 const uInt nAxesSub = shp.nelements() - 1;
356 IPosition shp2(nAxesSub);
357 for (uInt i=0,j=0; i<(nAxesSub+1); i++) {
358 if (i!=asap::ChanAxis) {
359 shp2(j) = shp(i);
360 j++;
361 }
362 }
363 Array<Float> sumSq(shp2);
364 sumSq = 0.0;
365 IPosition pos2(nAxesSub,0); // For indexing
366
367// Time-related accumulators
368
369 Double time;
370 Double timeSum = 0.0;
371 Double intSum = 0.0;
372 Double interval = 0.0;
373
374// To get the right shape for the Tsys accumulator we need to
375// access a column from the first table. The shape of this
376// array must not change
377
378 Array<Float> tSysSum;
379 {
380 const Table& tabIn = in[0]->table();
381 tSysCol.attach(tabIn,"TSYS");
382 tSysSum.resize(tSysCol.shape(0));
383 }
384 tSysSum =0.0;
385 Array<Float> tSys;
386
387// Scan and row tracking
388
389 Int oldScanID = 0;
390 Int outScanID = 0;
391 Int scanID = 0;
392 Int rowStart = 0;
393 Int nAccum = 0;
394 Int tableStart = 0;
395
396// Source and FreqID
397
398 String sourceName, oldSourceName, sourceNameStart;
399 Vector<uInt> freqID, freqIDStart, oldFreqID;
400
401// Loop over tables
402
403 Float fac = 1.0;
404 const uInt nTables = in.nelements();
405 for (uInt iTab=0; iTab<nTables; iTab++) {
406
407// Should check that the frequency tables don't change if doing VelocityAlignment
408
409// Attach columns to Table
410
411 const Table& tabIn = in[iTab]->table();
412 tSysCol.attach(tabIn, "TSYS");
413 mjdCol.attach(tabIn, "TIME");
414 srcNameCol.attach(tabIn, "SRCNAME");
415 intCol.attach(tabIn, "INTERVAL");
416 fqIDCol.attach(tabIn, "FREQID");
417
418// Loop over rows in Table
419
420 const uInt nRows = in[iTab]->nRow();
421 for (uInt iRow=0; iRow<nRows; iRow++) {
422
423// Check conformance
424
425 IPosition shp2 = in[iTab]->rowAsMaskedArray(iRow).shape();
426 if (!shp.isEqual(shp2)) {
427 throw (AipsError("Shapes for all rows must be the same"));
428 }
429
430// If we are not doing scan averages, make checks for source and
431// frequency setup and warn if averaging across them
432
433// Get copy of Scan Container for this row
434
435 SDContainer sc = in[iTab]->getSDContainer(iRow);
436 scanID = sc.scanid;
437
438// Get quantities from columns
439
440 srcNameCol.getScalar(iRow, sourceName);
441 mjdCol.get(iRow, time);
442 tSysCol.get(iRow, tSys);
443 intCol.get(iRow, interval);
444 fqIDCol.get(iRow, freqID);
445
446// Initialize first source and freqID
447
448 if (iRow==0 && iTab==0) {
449 sourceNameStart = sourceName;
450 freqIDStart = freqID;
451 }
452
453// If we are doing scan averages, see if we are at the end of an
454// accumulation period (scan). We must check soutce names too,
455// since we might have two tables with one scan each but different
456// source names; we shouldn't average different sources together
457
458 if (scanAv && ( (scanID != oldScanID) ||
459 (iRow==0 && iTab>0 && sourceName!=oldSourceName))) {
460
461// Normalize data in 'sum' accumulation array according to weighting scheme
462
463 normalize(sum, sumSq, nPts, wtType, asap::ChanAxis, nAxesSub);
464
465// Fill scan container. The source and freqID come from the
466// first row of the first table that went into this average (
467// should be the same for all rows in the scan average)
468
469 Float nR(nAccum);
470 fillSDC(sc, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
471 timeSum/nR, intSum, sourceNameStart, freqIDStart);
472
473// Write container out to Table
474
475 pTabOut->putSDContainer(sc);
476
477// Reset accumulators
478
479 sum = 0.0;
480 sumSq = 0.0;
481 nAccum = 0;
482//
483 tSysSum =0.0;
484 timeSum = 0.0;
485 intSum = 0.0;
486 nPts = 0.0;
487
488// Increment
489
490 rowStart = iRow; // First row for next accumulation
491 tableStart = iTab; // First table for next accumulation
492 sourceNameStart = sourceName; // First source name for next accumulation
493 freqIDStart = freqID; // First FreqID for next accumulation
494//
495 oldScanID = scanID;
496 outScanID += 1; // Scan ID for next accumulation period
497 }
498
499// Accumulate
500
501 accumulate(timeSum, intSum, nAccum, sum, sumSq, nPts, tSysSum,
502 tSys, nInc, mask, time, interval, in, iTab, iRow, asap::ChanAxis,
503 nAxesSub, useMask, wtType);
504//
505 oldSourceName = sourceName;
506 oldFreqID = freqID;
507 }
508 }
509
510// OK at this point we have accumulation data which is either
511// - accumulated from all tables into one row
512// or
513// - accumulated from the last scan average
514//
515// Normalize data in 'sum' accumulation array according to weighting scheme
516 normalize(sum, sumSq, nPts, wtType, asap::ChanAxis, nAxesSub);
517
518// Create and fill container. The container we clone will be from
519// the last Table and the first row that went into the current
520// accumulation. It probably doesn't matter that much really...
521
522 Float nR(nAccum);
523 SDContainer sc = in[tableStart]->getSDContainer(rowStart);
524 fillSDC(sc, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
525 timeSum/nR, intSum, sourceNameStart, freqIDStart);
526 pTabOut->putSDContainer(sc);
527//
528 return CountedPtr<SDMemTable>(pTabOut);
529}
530
531
532
533CountedPtr<SDMemTable> SDMath::binaryOperate (const CountedPtr<SDMemTable>& left,
534 const CountedPtr<SDMemTable>& right,
535 const String& op, Bool preserve) const
536{
537
538// Check operator
539
540 String op2(op);
541 op2.upcase();
542 uInt what = 0;
543 if (op2=="ADD") {
544 what = 0;
545 } else if (op2=="SUB") {
546 what = 1;
547 } else if (op2=="MUL") {
548 what = 2;
549 } else if (op2=="DIV") {
550 what = 3;
551 } else if (op2=="QUOTIENT") {
552 what = 4;
553 } else {
554 throw( AipsError("Unrecognized operation"));
555 }
556
557// Check rows
558
559 const uInt nRowLeft = left->nRow();
560 const uInt nRowRight = right->nRow();
561 Bool ok = (nRowRight==1&&nRowLeft>0) ||
562 (nRowRight>=1&&nRowLeft==nRowRight);
563 if (!ok) {
564 throw (AipsError("The right Scan Table can have one row or the same number of rows as the left Scan Table"));
565 }
566
567// Input Tables
568
569 const Table& tLeft = left->table();
570 const Table& tRight = right->table();
571
572// TSys columns
573
574 ROArrayColumn<Float> tSysLeft(tLeft, "TSYS");
575 ROArrayColumn<Float> tSysRight(tRight, "TSYS");
576
577// First row for right
578
579 Array<Float> tSysLeftArr, tSysRightArr;
580 tSysRight.get(0, tSysRightArr);
581 MaskedArray<Float>* pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(0));
582 IPosition shpRight = pMRight->shape();
583
584// Output Table cloned from left
585
586 SDMemTable* pTabOut = new SDMemTable(*left, True);
587
588// Loop over rows
589
590 for (uInt i=0; i<nRowLeft; i++) {
591
592// Get data
593
594 MaskedArray<Float> mLeft(left->rowAsMaskedArray(i));
595 IPosition shpLeft = mLeft.shape();
596 tSysLeft.get(i, tSysLeftArr);
597//
598 if (nRowRight>1) {
599 delete pMRight;
600 pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(i));
601 shpRight = pMRight->shape();
602 tSysRight.get(i, tSysRightArr);
603 }
604//
605 if (!shpRight.isEqual(shpLeft)) {
606 throw(AipsError("left and right scan tables are not conformant"));
607 }
608 if (!tSysRightArr.shape().isEqual(tSysRightArr.shape())) {
609 throw(AipsError("left and right Tsys data are not conformant"));
610 }
611 if (!shpRight.isEqual(tSysRightArr.shape())) {
612 throw(AipsError("left and right scan tables are not conformant"));
613 }
614
615// Make container
616
617 SDContainer sc = left->getSDContainer(i);
618
619// Operate on data and TSys
620
621 if (what==0) {
622 MaskedArray<Float> tmp = mLeft + *pMRight;
623 putDataInSDC(sc, tmp.getArray(), tmp.getMask());
624 sc.putTsys(tSysLeftArr+tSysRightArr);
625 } else if (what==1) {
626 MaskedArray<Float> tmp = mLeft - *pMRight;
627 putDataInSDC(sc, tmp.getArray(), tmp.getMask());
628 sc.putTsys(tSysLeftArr-tSysRightArr);
629 } else if (what==2) {
630 MaskedArray<Float> tmp = mLeft * *pMRight;
631 putDataInSDC(sc, tmp.getArray(), tmp.getMask());
632 sc.putTsys(tSysLeftArr*tSysRightArr);
633 } else if (what==3) {
634 MaskedArray<Float> tmp = mLeft / *pMRight;
635 putDataInSDC(sc, tmp.getArray(), tmp.getMask());
636 sc.putTsys(tSysLeftArr/tSysRightArr);
637 } else if (what==4) {
638 if (preserve) {
639 MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) - tSysRightArr;
640 putDataInSDC(sc, tmp.getArray(), tmp.getMask());
641 } else {
642 MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) - tSysLeftArr;
643 putDataInSDC(sc, tmp.getArray(), tmp.getMask());
644 }
645 sc.putTsys(tSysRightArr);
646 }
647
648// Put new row in output Table
649
650 pTabOut->putSDContainer(sc);
651 }
652 if (pMRight) delete pMRight;
653//
654 return CountedPtr<SDMemTable>(pTabOut);
655}
656
657
658
659std::vector<float> SDMath::statistic(const CountedPtr<SDMemTable>& in,
660 const Vector<Bool>& mask,
661 const String& which, Int row) const
662//
663// Perhaps iteration over pol/beam/if should be in here
664// and inside the nrow iteration ?
665//
666{
667 const uInt nRow = in->nRow();
668
669// Specify cursor location
670
671 IPosition start, end;
672 getCursorLocation(start, end, *in);
673
674// Loop over rows
675
676 const uInt nEl = mask.nelements();
677 uInt iStart = 0;
678 uInt iEnd = in->nRow()-1;
679//
680 if (row>=0) {
681 iStart = row;
682 iEnd = row;
683 }
684//
685 std::vector<float> result(iEnd-iStart+1);
686 for (uInt ii=iStart; ii <= iEnd; ++ii) {
687
688// Get row and deconstruct
689
690 MaskedArray<Float> marr(in->rowAsMaskedArray(ii));
691 Array<Float> arr = marr.getArray();
692 Array<Bool> barr = marr.getMask();
693
694// Access desired piece of data
695
696 Array<Float> v((arr(start,end)).nonDegenerate());
697 Array<Bool> m((barr(start,end)).nonDegenerate());
698
699// Apply OTF mask
700
701 MaskedArray<Float> tmp;
702 if (m.nelements()==nEl) {
703 tmp.setData(v,m&&mask);
704 } else {
705 tmp.setData(v,m);
706 }
707
708// Get statistic
709
710 result[ii-iStart] = mathutil::statistics(which, tmp);
711 }
712//
713 return result;
714}
715
716
717SDMemTable* SDMath::bin(const SDMemTable& in, Int width) const
718{
719 SDHeader sh = in.getSDHeader();
720 SDMemTable* pTabOut = new SDMemTable(in, True);
721
722// Bin up SpectralCoordinates
723
724 IPosition factors(1);
725 factors(0) = width;
726 for (uInt j=0; j<in.nCoordinates(); ++j) {
727 CoordinateSystem cSys;
728 cSys.addCoordinate(in.getCoordinate(j));
729 CoordinateSystem cSysBin =
730 CoordinateUtil::makeBinnedCoordinateSystem(factors, cSys, False);
731//
732 SpectralCoordinate sCBin = cSysBin.spectralCoordinate(0);
733 pTabOut->setCoordinate(sCBin, j);
734 }
735
736// Use RebinLattice to find shape
737
738 IPosition shapeIn(1,sh.nchan);
739 IPosition shapeOut = RebinLattice<Float>::rebinShape(shapeIn, factors);
740 sh.nchan = shapeOut(0);
741 pTabOut->putSDHeader(sh);
742
743
744// Loop over rows and bin along channel axis
745
746 for (uInt i=0; i < in.nRow(); ++i) {
747 SDContainer sc = in.getSDContainer(i);
748//
749 Array<Float> tSys(sc.getTsys()); // Get it out before sc changes shape
750
751// Bin up spectrum
752
753 MaskedArray<Float> marr(in.rowAsMaskedArray(i));
754 MaskedArray<Float> marrout;
755 LatticeUtilities::bin(marrout, marr, asap::ChanAxis, width);
756
757// Put back the binned data and flags
758
759 IPosition ip2 = marrout.shape();
760 sc.resize(ip2);
761//
762 putDataInSDC(sc, marrout.getArray(), marrout.getMask());
763
764// Bin up Tsys.
765
766 Array<Bool> allGood(tSys.shape(),True);
767 MaskedArray<Float> tSysIn(tSys, allGood, True);
768//
769 MaskedArray<Float> tSysOut;
770 LatticeUtilities::bin(tSysOut, tSysIn, asap::ChanAxis, width);
771 sc.putTsys(tSysOut.getArray());
772//
773 pTabOut->putSDContainer(sc);
774 }
775 return pTabOut;
776}
777
778SDMemTable* SDMath::unaryOperate(const SDMemTable& in, Float val, Bool doAll,
779 uInt what) const
780//
781// what = 0 Multiply
782// 1 Add
783{
784 SDMemTable* pOut = new SDMemTable(in,False);
785 const Table& tOut = pOut->table();
786 ArrayColumn<Float> spec(tOut,"SPECTRA");
787//
788 if (doAll) {
789 for (uInt i=0; i < tOut.nrow(); i++) {
790
791// Get
792
793 MaskedArray<Float> marr(pOut->rowAsMaskedArray(i));
794
795// Operate
796
797 if (what==0) {
798 marr *= val;
799 } else if (what==1) {
800 marr += val;
801 }
802
803// Put
804
805 spec.put(i, marr.getArray());
806 }
807 } else {
808
809// Get cursor location
810
811 IPosition start, end;
812 getCursorLocation(start, end, in);
813//
814 for (uInt i=0; i < tOut.nrow(); i++) {
815
816// Get
817
818 MaskedArray<Float> dataIn(pOut->rowAsMaskedArray(i));
819
820// Modify. More work than we would like to deal with the mask
821
822 Array<Float>& values = dataIn.getRWArray();
823 Array<Bool> mask(dataIn.getMask());
824//
825 Array<Float> values2 = values(start,end);
826 Array<Bool> mask2 = mask(start,end);
827 MaskedArray<Float> t(values2,mask2);
828 if (what==0) {
829 t *= val;
830 } else if (what==1) {
831 t += val;
832 }
833 values(start, end) = t.getArray(); // Write back into 'dataIn'
834
835// Put
836 spec.put(i, dataIn.getArray());
837 }
838 }
839//
840 return pOut;
841}
842
843
844
845SDMemTable* SDMath::averagePol(const SDMemTable& in, const Vector<Bool>& mask) const
846//
847// Average all polarizations together, weighted by variance
848//
849{
850// WeightType wtType = NONE;
851// convertWeightString(wtType, weight);
852
853 const uInt nRows = in.nRow();
854
855// Create output Table and reshape number of polarizations
856
857 Bool clear=True;
858 SDMemTable* pTabOut = new SDMemTable(in, clear);
859 SDHeader header = pTabOut->getSDHeader();
860 header.npol = 1;
861 pTabOut->putSDHeader(header);
862
863// Shape of input and output data
864
865 const IPosition& shapeIn = in.rowAsMaskedArray(0u, False).shape();
866 IPosition shapeOut(shapeIn);
867 shapeOut(asap::PolAxis) = 1; // Average all polarizations
868//
869 const uInt nChan = shapeIn(asap::ChanAxis);
870 const IPosition vecShapeOut(4,1,1,1,nChan); // A multi-dim form of a Vector shape
871 IPosition start(4), end(4);
872
873// Output arrays
874
875 Array<Float> outData(shapeOut, 0.0);
876 Array<Bool> outMask(shapeOut, True);
877 const IPosition axes(2, asap::PolAxis, asap::ChanAxis); // pol-channel plane
878//
879 const Bool useMask = (mask.nelements() == shapeIn(asap::ChanAxis));
880
881// Loop over rows
882
883 for (uInt iRow=0; iRow<nRows; iRow++) {
884
885// Get data for this row
886
887 MaskedArray<Float> marr(in.rowAsMaskedArray(iRow));
888 Array<Float>& arr = marr.getRWArray();
889 const Array<Bool>& barr = marr.getMask();
890
891// Make iterators to iterate by pol-channel planes
892
893 ReadOnlyArrayIterator<Float> itDataPlane(arr, axes);
894 ReadOnlyArrayIterator<Bool> itMaskPlane(barr, axes);
895
896// Accumulations
897
898 Float fac = 1.0;
899 Vector<Float> vecSum(nChan,0.0);
900
901// Iterate through data by pol-channel planes
902
903 while (!itDataPlane.pastEnd()) {
904
905// Iterate through plane by polarization and accumulate Vectors
906
907 Vector<Float> t1(nChan); t1 = 0.0;
908 Vector<Bool> t2(nChan); t2 = True;
909 MaskedArray<Float> vecSum(t1,t2);
910 Float varSum = 0.0;
911 {
912 ReadOnlyVectorIterator<Float> itDataVec(itDataPlane.array(), 1);
913 ReadOnlyVectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
914 while (!itDataVec.pastEnd()) {
915
916// Create MA of data & mask (optionally including OTF mask) and get variance
917
918 if (useMask) {
919 const MaskedArray<Float> spec(itDataVec.vector(),mask&&itMaskVec.vector());
920 fac = 1.0 / variance(spec);
921 } else {
922 const MaskedArray<Float> spec(itDataVec.vector(),itMaskVec.vector());
923 fac = 1.0 / variance(spec);
924 }
925
926// Normalize spectrum (without OTF mask) and accumulate
927
928 const MaskedArray<Float> spec(fac*itDataVec.vector(), itMaskVec.vector());
929 vecSum += spec;
930 varSum += fac;
931
932// Next
933
934 itDataVec.next();
935 itMaskVec.next();
936 }
937 }
938
939// Normalize summed spectrum
940
941 vecSum /= varSum;
942
943// FInd position in input data array. We are iterating by pol-channel
944// plane so all that will change is beam and IF and that's what we want.
945
946 IPosition pos = itDataPlane.pos();
947
948// Write out data. This is a bit messy. We have to reform the Vector
949// accumulator into an Array of shape (1,1,1,nChan)
950
951 start = pos;
952 end = pos;
953 end(asap::ChanAxis) = nChan-1;
954 outData(start,end) = vecSum.getArray().reform(vecShapeOut);
955 outMask(start,end) = vecSum.getMask().reform(vecShapeOut);
956
957// Step to next beam/IF combination
958
959 itDataPlane.next();
960 itMaskPlane.next();
961 }
962
963// Generate output container and write it to output table
964
965 SDContainer sc = in.getSDContainer();
966 sc.resize(shapeOut);
967//
968 putDataInSDC(sc, outData, outMask);
969 pTabOut->putSDContainer(sc);
970 }
971//
972 return pTabOut;
973}
974
975
976SDMemTable* SDMath::smooth(const SDMemTable& in,
977 const casa::String& kernelType,
978 casa::Float width, Bool doAll) const
979{
980
981// Number of channels
982
983 const uInt chanAxis = asap::ChanAxis; // Spectral axis
984 SDHeader sh = in.getSDHeader();
985 const uInt nChan = sh.nchan;
986
987// Generate Kernel
988
989 VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernelType);
990 Vector<Float> kernel = VectorKernel::make(type, width, nChan, True, False);
991
992// Generate Convolver
993
994 IPosition shape(1,nChan);
995 Convolver<Float> conv(kernel, shape);
996
997// New Table
998
999 SDMemTable* pTabOut = new SDMemTable(in,True);
1000
1001// Get cursor location
1002
1003 IPosition start, end;
1004 getCursorLocation(start, end, in);
1005//
1006 IPosition shapeOut(4,1);
1007
1008// Output Vectors
1009
1010 Vector<Float> valuesOut(nChan);
1011 Vector<Bool> maskOut(nChan);
1012
1013// Loop over rows in Table
1014
1015 for (uInt ri=0; ri < in.nRow(); ++ri) {
1016
1017// Get copy of data
1018
1019 const MaskedArray<Float>& dataIn(in.rowAsMaskedArray(ri));
1020 AlwaysAssert(dataIn.shape()(asap::ChanAxis)==nChan, AipsError);
1021//
1022 Array<Float> valuesIn = dataIn.getArray();
1023 Array<Bool> maskIn = dataIn.getMask();
1024
1025// Branch depending on whether we smooth all locations or just
1026// those pointed at by the current selection cursor
1027
1028 if (doAll) {
1029 uInt axis = asap::ChanAxis;
1030 VectorIterator<Float> itValues(valuesIn, axis);
1031 VectorIterator<Bool> itMask(maskIn, axis);
1032 while (!itValues.pastEnd()) {
1033
1034// Smooth
1035 if (kernelType==VectorKernel::HANNING) {
1036 mathutil::hanning(valuesOut, maskOut, itValues.vector(), itMask.vector());
1037 itMask.vector() = maskOut;
1038 } else {
1039 mathutil::replaceMaskByZero(itValues.vector(), itMask.vector());
1040 conv.linearConv(valuesOut, itValues.vector());
1041 }
1042//
1043 itValues.vector() = valuesOut;
1044//
1045 itValues.next();
1046 itMask.next();
1047 }
1048 } else {
1049
1050// Set multi-dim Vector shape
1051
1052 shapeOut(asap::ChanAxis) = valuesIn.shape()(chanAxis);
1053
1054// Stuff about with shapes so that we don't have conformance run-time errors
1055
1056 Vector<Float> valuesIn2 = valuesIn(start,end).nonDegenerate();
1057 Vector<Bool> maskIn2 = maskIn(start,end).nonDegenerate();
1058
1059// Smooth
1060
1061 if (kernelType==VectorKernel::HANNING) {
1062 mathutil::hanning(valuesOut, maskOut, valuesIn2, maskIn2);
1063 maskIn(start,end) = maskOut.reform(shapeOut);
1064 } else {
1065 mathutil::replaceMaskByZero(valuesIn2, maskIn2);
1066 conv.linearConv(valuesOut, valuesIn2);
1067 }
1068//
1069 valuesIn(start,end) = valuesOut.reform(shapeOut);
1070 }
1071
1072// Create and put back
1073
1074 SDContainer sc = in.getSDContainer(ri);
1075 putDataInSDC(sc, valuesIn, maskIn);
1076//
1077 pTabOut->putSDContainer(sc);
1078 }
1079//
1080 return pTabOut;
1081}
1082
1083
1084
1085SDMemTable* SDMath::convertFlux (const SDMemTable& in, Float a, Float eta, Bool doAll) const
1086//
1087// As it is, this function could be implemented with 'simpleOperate'
1088// However, I anticipate that eventually we will look the conversion
1089// values up in a Table and apply them in a frequency dependent way,
1090// so I have implemented it fully here
1091//
1092{
1093 SDHeader sh = in.getSDHeader();
1094 SDMemTable* pTabOut = new SDMemTable(in, True);
1095
1096// FInd out how to convert values into Jy and K (e.g. units might be mJy or mK)
1097// Also automatically find out what we are converting to according to the
1098// flux unit
1099
1100 Unit fluxUnit(sh.fluxunit);
1101 Unit K(String("K"));
1102 Unit JY(String("Jy"));
1103//
1104 Bool toKelvin = True;
1105 Double inFac = 1.0;
1106 if (fluxUnit==JY) {
1107 cerr << "Converting to K" << endl;
1108//
1109 Quantum<Double> t(1.0,fluxUnit);
1110 Quantum<Double> t2 = t.get(JY);
1111 inFac = (t2 / t).getValue();
1112//
1113 toKelvin = True;
1114 sh.fluxunit = "K";
1115 } else if (fluxUnit==K) {
1116 cerr << "Converting to Jy" << endl;
1117//
1118 Quantum<Double> t(1.0,fluxUnit);
1119 Quantum<Double> t2 = t.get(K);
1120 inFac = (t2 / t).getValue();
1121//
1122 toKelvin = False;
1123 sh.fluxunit = "Jy";
1124 } else {
1125 throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
1126 }
1127 pTabOut->putSDHeader(sh);
1128
1129// Compute conversion factor. 'a' and 'eta' are really frequency, time and
1130// telescope dependent and should be looked// up in a table
1131
1132 Float factor = 2.0 * inFac * 1.0e-7 * 1.0e26 *
1133 QC::k.getValue(Unit(String("erg/K"))) / a / eta;
1134 if (toKelvin) {
1135 factor = 1.0 / factor;
1136 }
1137 cerr << "Applying conversion factor = " << factor << endl;
1138
1139// For operations only on specified cursor location
1140
1141 IPosition start, end;
1142 getCursorLocation(start, end, in);
1143
1144// Loop over rows and apply factor to spectra
1145
1146 const uInt axis = asap::ChanAxis;
1147 for (uInt i=0; i < in.nRow(); ++i) {
1148
1149// Get data
1150
1151 MaskedArray<Float> dataIn(in.rowAsMaskedArray(i));
1152 Array<Float>& valuesIn = dataIn.getRWArray(); // writable reference
1153 const Array<Bool>& maskIn = dataIn.getMask();
1154
1155// Need to apply correct conversion factor (frequency and time dependent)
1156// which should be sourced from a Table. For now we just apply the given
1157// factor to everything
1158
1159 if (doAll) {
1160 VectorIterator<Float> itValues(valuesIn, asap::ChanAxis);
1161 while (!itValues.pastEnd()) {
1162 itValues.vector() *= factor; // Writes back into dataIn
1163//
1164 itValues.next();
1165 }
1166 } else {
1167 Array<Float> valuesIn2 = valuesIn(start,end);
1168 valuesIn2 *= factor;
1169 valuesIn(start,end) = valuesIn2;
1170 }
1171
1172// Write out
1173
1174 SDContainer sc = in.getSDContainer(i);
1175 putDataInSDC(sc, valuesIn, maskIn);
1176//
1177 pTabOut->putSDContainer(sc);
1178 }
1179 return pTabOut;
1180}
1181
1182
1183
1184SDMemTable* SDMath::gainElevation (const SDMemTable& in, const Vector<Float>& coeffs,
1185 const String& fileName,
1186 const String& methodStr, Bool doAll) const
1187{
1188
1189// Get header and clone output table
1190
1191 SDHeader sh = in.getSDHeader();
1192 SDMemTable* pTabOut = new SDMemTable(in, True);
1193
1194// Get elevation data from SDMemTable and convert to degrees
1195
1196 const Table& tab = in.table();
1197 ROScalarColumn<Float> elev(tab, "ELEVATION");
1198 Vector<Float> x = elev.getColumn();
1199 x *= Float(180 / C::pi);
1200//
1201 const uInt nC = coeffs.nelements();
1202 if (fileName.length()>0 && nC>0) {
1203 throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
1204 }
1205
1206// Correct
1207
1208 if (nC>0 || fileName.length()==0) {
1209
1210// Find instrument
1211
1212 Bool throwIt = True;
1213 Instrument inst = SDMemTable::convertInstrument (sh.antennaname, throwIt);
1214
1215// Set polynomial
1216
1217 Polynomial<Float>* pPoly = 0;
1218 Vector<Float> coeff;
1219 String msg;
1220 if (nC>0) {
1221 pPoly = new Polynomial<Float>(nC);
1222 coeff = coeffs;
1223 msg = String("user");
1224 } else {
1225 if (inst==PKSMULTIBEAM) {
1226 } else if (inst==PKSSINGLEBEAM) {
1227 } else if (inst==TIDBINBILLA) {
1228 pPoly = new Polynomial<Float>(3);
1229 coeff.resize(3);
1230 coeff(0) = 3.58788e-1;
1231 coeff(1) = 2.87243e-2;
1232 coeff(2) = -3.219093e-4;
1233 } else if (inst==MOPRA) {
1234 }
1235 msg = String("built in");
1236 }
1237//
1238 if (coeff.nelements()>0) {
1239 pPoly->setCoefficients(coeff);
1240 } else {
1241 throw(AipsError("There is no known gain-el polynomial known for this instrument"));
1242 }
1243//
1244 cerr << "Making polynomial correction with " << msg << " coefficients" << endl;
1245 const uInt nRow = in.nRow();
1246 Vector<Float> factor(nRow);
1247 for (uInt i=0; i<nRow; i++) {
1248 factor[i] = (*pPoly)(x[i]);
1249 }
1250 delete pPoly;
1251//
1252 correctFromVector (pTabOut, in, doAll, factor);
1253 } else {
1254
1255// Indicate which columns to read from ascii file
1256
1257 String col0("ELEVATION");
1258 String col1("FACTOR");
1259
1260// Read and correct
1261
1262 cerr << "Making correction from ascii Table" << endl;
1263 correctFromAsciiTable (pTabOut, in, fileName, col0, col1,
1264 methodStr, doAll, x);
1265 }
1266//
1267 return pTabOut;
1268}
1269
1270
1271
1272SDMemTable* SDMath::opacity (const SDMemTable& in, Float tau, Bool doAll) const
1273{
1274
1275// Get header and clone output table
1276
1277 SDHeader sh = in.getSDHeader();
1278 SDMemTable* pTabOut = new SDMemTable(in, True);
1279
1280// Get elevation data from SDMemTable and convert to degrees
1281
1282 const Table& tab = in.table();
1283 ROScalarColumn<Float> elev(tab, "ELEVATION");
1284 Vector<Float> zDist = elev.getColumn();
1285 zDist = Float(C::pi_2) - zDist;
1286
1287// Generate correction factor
1288
1289 const uInt nRow = in.nRow();
1290 Vector<Float> factor(nRow);
1291 Vector<Float> factor2(nRow);
1292 for (uInt i=0; i<nRow; i++) {
1293 factor[i] = exp(tau)/cos(zDist[i]);
1294 }
1295
1296// Correct
1297
1298 correctFromVector (pTabOut, in, doAll, factor);
1299//
1300 return pTabOut;
1301}
1302
1303
1304
1305
1306// 'private' functions
1307
1308void SDMath::fillSDC(SDContainer& sc,
1309 const Array<Bool>& mask,
1310 const Array<Float>& data,
1311 const Array<Float>& tSys,
1312 Int scanID, Double timeStamp,
1313 Double interval, const String& sourceName,
1314 const Vector<uInt>& freqID) const
1315{
1316// Data and mask
1317
1318 putDataInSDC(sc, data, mask);
1319
1320// TSys
1321
1322 sc.putTsys(tSys);
1323
1324// Time things
1325
1326 sc.timestamp = timeStamp;
1327 sc.interval = interval;
1328 sc.scanid = scanID;
1329//
1330 sc.sourcename = sourceName;
1331 sc.putFreqMap(freqID);
1332}
1333
1334void SDMath::normalize(MaskedArray<Float>& sum,
1335 const Array<Float>& sumSq,
1336 const Array<Float>& nPts,
1337 WeightType wtType, Int axis,
1338 Int nAxesSub) const
1339{
1340 IPosition pos2(nAxesSub,0);
1341//
1342 if (wtType==NONE) {
1343
1344// We just average by the number of points accumulated.
1345// We need to make a MA out of nPts so that no divide by
1346// zeros occur
1347
1348 MaskedArray<Float> t(nPts, (nPts>Float(0.0)));
1349 sum /= t;
1350 } else if (wtType==VAR) {
1351
1352// Normalize each spectrum by sum(1/var) where the variance
1353// is worked out for each spectrum
1354
1355 Array<Float>& data = sum.getRWArray();
1356 VectorIterator<Float> itData(data, axis);
1357 while (!itData.pastEnd()) {
1358 pos2 = itData.pos().getFirst(nAxesSub);
1359 itData.vector() /= sumSq(pos2);
1360 itData.next();
1361 }
1362 } else if (wtType==TSYS) {
1363 }
1364}
1365
1366
1367void SDMath::accumulate(Double& timeSum, Double& intSum, Int& nAccum,
1368 MaskedArray<Float>& sum, Array<Float>& sumSq,
1369 Array<Float>& nPts, Array<Float>& tSysSum,
1370 const Array<Float>& tSys, const Array<Float>& nInc,
1371 const Vector<Bool>& mask, Double time, Double interval,
1372 const Block<CountedPtr<SDMemTable> >& in,
1373 uInt iTab, uInt iRow, uInt axis,
1374 uInt nAxesSub, Bool useMask,
1375 WeightType wtType) const
1376{
1377
1378// Get data
1379
1380 MaskedArray<Float> dataIn(in[iTab]->rowAsMaskedArray(iRow));
1381 Array<Float>& valuesIn = dataIn.getRWArray(); // writable reference
1382 const Array<Bool>& maskIn = dataIn.getMask(); // RO reference
1383//
1384 if (wtType==NONE) {
1385 const MaskedArray<Float> n(nInc,dataIn.getMask());
1386 nPts += n; // Only accumulates where mask==T
1387 } else if (wtType==VAR) {
1388
1389// We are going to average the data, weighted by the noise for each pol, beam and IF.
1390// So therefore we need to iterate through by spectrum (axis 3)
1391
1392 VectorIterator<Float> itData(valuesIn, axis);
1393 ReadOnlyVectorIterator<Bool> itMask(maskIn, axis);
1394 Float fac = 1.0;
1395 IPosition pos(nAxesSub,0);
1396//
1397 while (!itData.pastEnd()) {
1398
1399// Make MaskedArray of Vector, optionally apply OTF mask, and find scaling factor
1400
1401 if (useMask) {
1402 MaskedArray<Float> tmp(itData.vector(),mask&&itMask.vector());
1403 fac = 1.0/variance(tmp);
1404 } else {
1405 MaskedArray<Float> tmp(itData.vector(),itMask.vector());
1406 fac = 1.0/variance(tmp);
1407 }
1408
1409// Scale data
1410
1411 itData.vector() *= fac; // Writes back into 'dataIn'
1412//
1413// Accumulate variance per if/pol/beam averaged over spectrum
1414// This method to get pos2 from itData.pos() is only valid
1415// because the spectral axis is the last one (so we can just
1416// copy the first nAXesSub positions out)
1417
1418 pos = itData.pos().getFirst(nAxesSub);
1419 sumSq(pos) += fac;
1420//
1421 itData.next();
1422 itMask.next();
1423 }
1424 } else if (wtType==TSYS) {
1425 }
1426
1427// Accumulate sum of (possibly scaled) data
1428
1429 sum += dataIn;
1430
1431// Accumulate Tsys, time, and interval
1432
1433 tSysSum += tSys;
1434 timeSum += time;
1435 intSum += interval;
1436 nAccum += 1;
1437}
1438
1439
1440
1441
1442void SDMath::getCursorLocation(IPosition& start, IPosition& end,
1443 const SDMemTable& in) const
1444{
1445 const uInt nDim = 4;
1446 const uInt i = in.getBeam();
1447 const uInt j = in.getIF();
1448 const uInt k = in.getPol();
1449 const uInt n = in.nChan();
1450//
1451 start.resize(nDim);
1452 start(0) = i;
1453 start(1) = j;
1454 start(2) = k;
1455 start(3) = 0;
1456//
1457 end.resize(nDim);
1458 end(0) = i;
1459 end(1) = j;
1460 end(2) = k;
1461 end(3) = n-1;
1462}
1463
1464
1465void SDMath::convertWeightString(WeightType& wtType, const String& weightStr) const
1466{
1467 String tStr(weightStr);
1468 tStr.upcase();
1469 if (tStr.contains(String("NONE"))) {
1470 wtType = NONE;
1471 } else if (tStr.contains(String("VAR"))) {
1472 wtType = VAR;
1473 } else if (tStr.contains(String("TSYS"))) {
1474 wtType = TSYS;
1475 throw(AipsError("T_sys weighting not yet implemented"));
1476 } else {
1477 throw(AipsError("Unrecognized weighting type"));
1478 }
1479}
1480
1481void SDMath::convertInterpString(Int& type, const String& interp) const
1482{
1483 String tStr(interp);
1484 tStr.upcase();
1485 if (tStr.contains(String("NEAR"))) {
1486 type = InterpolateArray1D<Float,Float>::nearestNeighbour;
1487 } else if (tStr.contains(String("LIN"))) {
1488 type = InterpolateArray1D<Float,Float>::linear;
1489 } else if (tStr.contains(String("CUB"))) {
1490 type = InterpolateArray1D<Float,Float>::cubic;
1491 } else if (tStr.contains(String("SPL"))) {
1492 type = InterpolateArray1D<Float,Float>::spline;
1493 } else {
1494 throw(AipsError("Unrecognized interpolation type"));
1495 }
1496}
1497
1498void SDMath::putDataInSDC(SDContainer& sc, const Array<Float>& data,
1499 const Array<Bool>& mask) const
1500{
1501 sc.putSpectrum(data);
1502//
1503 Array<uChar> outflags(data.shape());
1504 convertArray(outflags,!mask);
1505 sc.putFlags(outflags);
1506}
1507
1508Table SDMath::readAsciiFile (const String& fileName) const
1509{
1510 String formatString;
1511 Table tbl = readAsciiTable (formatString, Table::Memory, fileName, "", "", False);
1512 return tbl;
1513}
1514
1515
1516
1517void SDMath::correctFromAsciiTable(SDMemTable* pTabOut,
1518 const SDMemTable& in, const String& fileName,
1519 const String& col0, const String& col1,
1520 const String& methodStr, Bool doAll,
1521 const Vector<Float>& xOut) const
1522{
1523
1524// Read gain-elevation ascii file data into a Table.
1525
1526 Table geTable = readAsciiFile (fileName);
1527//
1528 correctFromTable (pTabOut, in, geTable, col0, col1, methodStr, doAll, xOut);
1529}
1530
1531void SDMath::correctFromTable(SDMemTable* pTabOut, const SDMemTable& in,
1532 const Table& tTable, const String& col0,
1533 const String& col1,
1534 const String& methodStr, Bool doAll,
1535 const Vector<Float>& xOut) const
1536{
1537
1538// Get data from Table
1539
1540 ROScalarColumn<Float> geElCol(tTable, col0);
1541 ROScalarColumn<Float> geFacCol(tTable, col1);
1542 Vector<Float> xIn = geElCol.getColumn();
1543 Vector<Float> yIn = geFacCol.getColumn();
1544 Vector<Bool> maskIn(xIn.nelements(),True);
1545
1546// Interpolate (and extrapolate) with desired method
1547
1548 Int method = 0;
1549 convertInterpString(method, methodStr);
1550//
1551 Vector<Float> yOut;
1552 Vector<Bool> maskOut;
1553 InterpolateArray1D<Float,Float>::interpolate(yOut, maskOut, xOut,
1554 xIn, yIn, maskIn, method,
1555 True, True);
1556// Apply
1557
1558 correctFromVector (pTabOut, in, doAll, yOut);
1559}
1560
1561
1562void SDMath::correctFromVector (SDMemTable* pTabOut, const SDMemTable& in,
1563 Bool doAll, const Vector<Float>& factor) const
1564{
1565// For operations only on specified cursor location
1566
1567 IPosition start, end;
1568 getCursorLocation(start, end, in);
1569
1570// Loop over rows and interpolate correction factor
1571
1572 const uInt axis = asap::ChanAxis;
1573 for (uInt i=0; i < in.nRow(); ++i) {
1574
1575// Get data
1576
1577 MaskedArray<Float> dataIn(in.rowAsMaskedArray(i));
1578 Array<Float>& valuesIn = dataIn.getRWArray();
1579 const Array<Bool>& maskIn = dataIn.getMask();
1580
1581// Apply factor
1582
1583 if (doAll) {
1584 VectorIterator<Float> itValues(valuesIn, asap::ChanAxis);
1585 while (!itValues.pastEnd()) {
1586 itValues.vector() *= factor(i);
1587 itValues.next();
1588 }
1589 } else {
1590 Array<Float> valuesIn2 = valuesIn(start,end);
1591 valuesIn2 *= factor(i);
1592 valuesIn(start,end) = valuesIn2;
1593 }
1594
1595// Write out
1596
1597 SDContainer sc = in.getSDContainer(i);
1598 putDataInSDC(sc, valuesIn, maskIn);
1599//
1600 pTabOut->putSDContainer(sc);
1601 }
1602}
1603
1604
1605void SDMath::generateSourceTable (Vector<String>& srcTab,
1606 Vector<uInt>& srcIdx,
1607 Vector<uInt>& firstRow,
1608 const Vector<String>& srcNames) const
1609//
1610// This algorithm assumes that if there are multiple beams
1611// that the source names are diffent. Oterwise we would need
1612// to look atthe direction for each beam...
1613//
1614{
1615 const uInt nRow = srcNames.nelements();
1616 srcTab.resize(0);
1617 srcIdx.resize(nRow);
1618 firstRow.resize(0);
1619//
1620 uInt nSrc = 0;
1621 for (uInt i=0; i<nRow; i++) {
1622 String srcName = srcNames[i];
1623
1624// Do we have this source already ?
1625
1626 Int idx = -1;
1627 if (nSrc>0) {
1628 for (uInt j=0; j<nSrc; j++) {
1629 if (srcName==srcTab[j]) {
1630 idx = j;
1631 break;
1632 }
1633 }
1634 }
1635
1636// Add new entry if not found
1637
1638 if (idx==-1) {
1639 nSrc++;
1640 srcTab.resize(nSrc,True);
1641 srcTab(nSrc-1) = srcName;
1642 idx = nSrc-1;
1643//
1644 firstRow.resize(nSrc,True);
1645 firstRow(nSrc-1) = i; // First row for which this source occurs
1646 }
1647
1648// Set index for this row
1649
1650 srcIdx[i] = idx;
1651 }
1652}
Note: See TracBrowser for help on using the repository browser.