source: trunk/src/SDMath.cc@ 223

Last change on this file since 223 was 221, checked in by kil064, 20 years ago

add function 'convertFlux'

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 30.2 KB
Line 
1//#---------------------------------------------------------------------------
2//# SDMath.cc: A collection of single dish mathematical operations
3//#---------------------------------------------------------------------------
4//# Copyright (C) 2004
5//# ATNF
6//#
7//# This program is free software; you can redistribute it and/or modify it
8//# under the terms of the GNU General Public License as published by the Free
9//# Software Foundation; either version 2 of the License, or (at your option)
10//# any later version.
11//#
12//# This program is distributed in the hope that it will be useful, but
13//# WITHOUT ANY WARRANTY; without even the implied warranty of
14//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
15//# Public License for more details.
16//#
17//# You should have received a copy of the GNU General Public License along
18//# with this program; if not, write to the Free Software Foundation, Inc.,
19//# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
20//#
21//# Correspondence concerning this software should be addressed as follows:
22//# Internet email: Malte.Marquarding@csiro.au
23//# Postal address: Malte Marquarding,
24//# Australia Telescope National Facility,
25//# P.O. Box 76,
26//# Epping, NSW, 2121,
27//# AUSTRALIA
28//#
29//# $Id:
30//#---------------------------------------------------------------------------
31#include <vector>
32
33#include <casa/aips.h>
34#include <casa/BasicSL/String.h>
35#include <casa/Arrays/IPosition.h>
36#include <casa/Arrays/Array.h>
37#include <casa/Arrays/ArrayIter.h>
38#include <casa/Arrays/VectorIter.h>
39#include <casa/Arrays/ArrayMath.h>
40#include <casa/Arrays/ArrayLogical.h>
41#include <casa/Arrays/MaskedArray.h>
42#include <casa/Arrays/MaskArrMath.h>
43#include <casa/Arrays/MaskArrLogi.h>
44#include <casa/Containers/Block.h>
45#include <casa/Quanta/QC.h>
46#include <casa/Utilities/Assert.h>
47#include <casa/Exceptions.h>
48
49#include <scimath/Mathematics/VectorKernel.h>
50#include <scimath/Mathematics/Convolver.h>
51
52#include <tables/Tables/Table.h>
53#include <tables/Tables/ScalarColumn.h>
54#include <tables/Tables/ArrayColumn.h>
55
56#include <lattices/Lattices/LatticeUtilities.h>
57#include <lattices/Lattices/RebinLattice.h>
58#include <coordinates/Coordinates/SpectralCoordinate.h>
59#include <coordinates/Coordinates/CoordinateSystem.h>
60#include <coordinates/Coordinates/CoordinateUtil.h>
61#include <coordinates/Coordinates/VelocityAligner.h>
62
63#include "MathUtils.h"
64#include "Definitions.h"
65#include "SDContainer.h"
66#include "SDMemTable.h"
67
68#include "SDMath.h"
69
70using namespace casa;
71using namespace asap;
72
73
74SDMath::SDMath()
75{;}
76
77SDMath::SDMath(const SDMath& other)
78{
79
80// No state
81
82}
83
84SDMath& SDMath::operator=(const SDMath& other)
85{
86 if (this != &other) {
87// No state
88 }
89 return *this;
90}
91
92SDMath::~SDMath()
93{;}
94
95
96CountedPtr<SDMemTable> SDMath::average(const Block<CountedPtr<SDMemTable> >& in,
97 const Vector<Bool>& mask, Bool scanAv,
98 const std::string& weightStr)
99//Bool alignVelocity)
100//
101// Weighted averaging of spectra from one or more Tables.
102//
103{
104 Bool alignVelocity = False;
105
106// Convert weight type
107
108 WeightType wtType = NONE;
109 convertWeightString(wtType, weightStr);
110
111// Create output Table by cloning from the first table
112
113 SDMemTable* pTabOut = new SDMemTable(*in[0],True);
114
115// Setup
116
117 IPosition shp = in[0]->rowAsMaskedArray(0).shape(); // Must not change
118 Array<Float> arr(shp);
119 Array<Bool> barr(shp);
120 const Bool useMask = (mask.nelements() == shp(asap::ChanAxis));
121
122// Columns from Tables
123
124 ROArrayColumn<Float> tSysCol;
125 ROScalarColumn<Double> mjdCol;
126 ROScalarColumn<String> srcNameCol;
127 ROScalarColumn<Double> intCol;
128 ROArrayColumn<uInt> fqIDCol;
129
130// Create accumulation MaskedArray. We accumulate for each channel,if,pol,beam
131// Note that the mask of the accumulation array will ALWAYS remain ALL True.
132// The MA is only used so that when data which is masked Bad is added to it,
133// that data does not contribute.
134
135 Array<Float> zero(shp);
136 zero=0.0;
137 Array<Bool> good(shp);
138 good = True;
139 MaskedArray<Float> sum(zero,good);
140
141// Counter arrays
142
143 Array<Float> nPts(shp); // Number of points
144 nPts = 0.0;
145 Array<Float> nInc(shp); // Increment
146 nInc = 1.0;
147
148// Create accumulation Array for variance. We accumulate for
149// each if,pol,beam, but average over channel. So we need
150// a shape with one less axis dropping channels.
151
152 const uInt nAxesSub = shp.nelements() - 1;
153 IPosition shp2(nAxesSub);
154 for (uInt i=0,j=0; i<(nAxesSub+1); i++) {
155 if (i!=asap::ChanAxis) {
156 shp2(j) = shp(i);
157 j++;
158 }
159 }
160 Array<Float> sumSq(shp2);
161 sumSq = 0.0;
162 IPosition pos2(nAxesSub,0); // For indexing
163
164// Time-related accumulators
165
166 Double time;
167 Double timeSum = 0.0;
168 Double intSum = 0.0;
169 Double interval = 0.0;
170
171// To get the right shape for the Tsys accumulator we need to
172// access a column from the first table. The shape of this
173// array must not change
174
175 Array<Float> tSysSum;
176 {
177 const Table& tabIn = in[0]->table();
178 tSysCol.attach(tabIn,"TSYS");
179 tSysSum.resize(tSysCol.shape(0));
180 }
181 tSysSum =0.0;
182 Array<Float> tSys;
183
184// Scan and row tracking
185
186 Int oldScanID = 0;
187 Int outScanID = 0;
188 Int scanID = 0;
189 Int rowStart = 0;
190 Int nAccum = 0;
191 Int tableStart = 0;
192
193// Source and FreqID
194
195 String sourceName, oldSourceName, sourceNameStart;
196 Vector<uInt> freqID, freqIDStart, oldFreqID;
197
198// Velocity Aligner. We need an aligner for each Direction and FreqID
199// combination. I don't think there is anyway to know how many
200// directions there are.
201// For now, assume all Tables have the same Frequency Table
202
203/*
204 {
205 MEpoch::Ref timeRef(MEpoch::UTC); // Should be in header
206 MDirection::Types dirRef(MDirection::J2000); // Should be in header
207//
208 SDHeader sh = in[0].getSDHeader();
209 const uInt nChan = sh.nchan;
210//
211 const SDFrequencyTable freqTab = in[0]->getSDFreqTable();
212 const uInt nFreqID = freqTab.length();
213 PtrBlock<const VelocityAligner<Float>* > vA(nFreqID);
214
215// Get first time from first table
216
217 const Table& tabIn0 = in[0]->table();
218 mjdCol.attach(tabIn0, "TIME");
219 Double dTmp;
220 mjdCol.get(0, dTmp);
221 MVEpoch tmp2(Quantum<Double>(dTmp, Unit(String("d"))));
222 MEpoch epoch(tmp2, timeRef);
223//
224 for (uInt freqID=0; freqID<nFreqID; freqID++) {
225 SpectralCoordinate sC = in[0]->getCoordinate(freqID);
226 vA[freqID] = new VelocityAligner<Float>(sC, nChan, epoch, const MDirection& dir,
227 const MPosition& pos, const String& velUnit,
228 MDoppler::Types velType, MFrequency::Types velFreqSystem)
229 }
230 }
231*/
232
233// Loop over tables
234
235 Float fac = 1.0;
236 const uInt nTables = in.nelements();
237 for (uInt iTab=0; iTab<nTables; iTab++) {
238
239// Should check that the frequency tables don't change if doing VelocityAlignment
240
241// Attach columns to Table
242
243 const Table& tabIn = in[iTab]->table();
244 tSysCol.attach(tabIn, "TSYS");
245 mjdCol.attach(tabIn, "TIME");
246 srcNameCol.attach(tabIn, "SRCNAME");
247 intCol.attach(tabIn, "INTERVAL");
248 fqIDCol.attach(tabIn, "FREQID");
249
250// Loop over rows in Table
251
252 const uInt nRows = in[iTab]->nRow();
253 for (uInt iRow=0; iRow<nRows; iRow++) {
254
255// Check conformance
256
257 IPosition shp2 = in[iTab]->rowAsMaskedArray(iRow).shape();
258 if (!shp.isEqual(shp2)) {
259 throw (AipsError("Shapes for all rows must be the same"));
260 }
261
262// If we are not doing scan averages, make checks for source and
263// frequency setup and warn if averaging across them
264
265// Get copy of Scan Container for this row
266
267 SDContainer sc = in[iTab]->getSDContainer(iRow);
268 scanID = sc.scanid;
269
270// Get quantities from columns
271
272 srcNameCol.getScalar(iRow, sourceName);
273 mjdCol.get(iRow, time);
274 tSysCol.get(iRow, tSys);
275 intCol.get(iRow, interval);
276 fqIDCol.get(iRow, freqID);
277
278// Initialize first source and freqID
279
280 if (iRow==0 && iTab==0) {
281 sourceNameStart = sourceName;
282 freqIDStart = freqID;
283 }
284
285// If we are doing scan averages, see if we are at the end of an
286// accumulation period (scan). We must check soutce names too,
287// since we might have two tables with one scan each but different
288// source names; we shouldn't average different sources together
289
290 if (scanAv && ( (scanID != oldScanID) ||
291 (iRow==0 && iTab>0 && sourceName!=oldSourceName))) {
292
293// Normalize data in 'sum' accumulation array according to weighting scheme
294
295 normalize(sum, sumSq, nPts, wtType, asap::ChanAxis, nAxesSub);
296
297// Fill scan container. The source and freqID come from the
298// first row of the first table that went into this average (
299// should be the same for all rows in the scan average)
300
301 Float nR(nAccum);
302 fillSDC(sc, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
303 timeSum/nR, intSum, sourceNameStart, freqIDStart);
304
305// Write container out to Table
306
307 pTabOut->putSDContainer(sc);
308
309// Reset accumulators
310
311 sum = 0.0;
312 sumSq = 0.0;
313 nAccum = 0;
314//
315 tSysSum =0.0;
316 timeSum = 0.0;
317 intSum = 0.0;
318 nPts = 0.0;
319
320// Increment
321
322 rowStart = iRow; // First row for next accumulation
323 tableStart = iTab; // First table for next accumulation
324 sourceNameStart = sourceName; // First source name for next accumulation
325 freqIDStart = freqID; // First FreqID for next accumulation
326//
327 oldScanID = scanID;
328 outScanID += 1; // Scan ID for next accumulation period
329
330}
331
332// Accumulate
333
334 accumulate(timeSum, intSum, nAccum, sum, sumSq, nPts, tSysSum,
335 tSys, nInc, mask, time, interval, in, iTab, iRow, asap::ChanAxis,
336 nAxesSub, useMask, wtType);
337//
338 oldSourceName = sourceName;
339 oldFreqID = freqID;
340 }
341 }
342
343// OK at this point we have accumulation data which is either
344// - accumulated from all tables into one row
345// or
346// - accumulated from the last scan average
347//
348// Normalize data in 'sum' accumulation array according to weighting scheme
349 normalize(sum, sumSq, nPts, wtType, asap::ChanAxis, nAxesSub);
350
351// Create and fill container. The container we clone will be from
352// the last Table and the first row that went into the current
353// accumulation. It probably doesn't matter that much really...
354
355 Float nR(nAccum);
356 SDContainer sc = in[tableStart]->getSDContainer(rowStart);
357 fillSDC(sc, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
358 timeSum/nR, intSum, sourceNameStart, freqIDStart);
359 pTabOut->putSDContainer(sc);
360//
361 return CountedPtr<SDMemTable>(pTabOut);
362}
363
364
365
366CountedPtr<SDMemTable>
367SDMath::quotient(const CountedPtr<SDMemTable>& on,
368 const CountedPtr<SDMemTable>& off)
369{
370//
371// Compute quotient spectrum
372//
373 const uInt nRows = on->nRow();
374 if (off->nRow() != nRows) {
375 throw (AipsError("Input Scan Tables must have the same number of rows"));
376 }
377
378// Input Tables and columns
379
380 Table ton = on->table();
381 Table toff = off->table();
382 ROArrayColumn<Float> tsys(toff, "TSYS");
383 ROScalarColumn<Double> mjd(ton, "TIME");
384 ROScalarColumn<Double> integr(ton, "INTERVAL");
385 ROScalarColumn<String> srcn(ton, "SRCNAME");
386 ROArrayColumn<uInt> freqidc(ton, "FREQID");
387
388// Output Table cloned from input
389
390 SDMemTable* pTabOut = new SDMemTable(*on, True);
391
392// Loop over rows
393
394 for (uInt i=0; i<nRows; i++) {
395 MaskedArray<Float> mon(on->rowAsMaskedArray(i));
396 MaskedArray<Float> moff(off->rowAsMaskedArray(i));
397 IPosition ipon = mon.shape();
398 IPosition ipoff = moff.shape();
399//
400 Array<Float> tsarr;
401 tsys.get(i, tsarr);
402 if (ipon != ipoff && ipon != tsarr.shape()) {
403 throw(AipsError("on/off not conformant"));
404 }
405
406// Compute quotient
407
408 MaskedArray<Float> tmp = (mon-moff);
409 Array<Float> out(tmp.getArray());
410 out /= moff;
411 out *= tsarr;
412 Array<Bool> outflagsb = mon.getMask() && moff.getMask();
413
414// Fill container for this row
415
416 SDContainer sc = on->getSDContainer(i);
417//
418 putDataInSDC(sc, out, outflagsb);
419 sc.putTsys(tsarr);
420 sc.scanid = i;
421
422// Put new row in output Table
423
424 pTabOut->putSDContainer(sc);
425 }
426//
427 return CountedPtr<SDMemTable>(pTabOut);
428}
429
430
431
432std::vector<float> SDMath::statistic(const CountedPtr<SDMemTable>& in,
433 const std::vector<bool>& mask,
434 const String& which)
435//
436// Perhaps iteration over pol/beam/if should be in here
437// and inside the nrow iteration ?
438//
439{
440 const uInt nRow = in->nRow();
441 std::vector<float> result(nRow);
442 Vector<Bool> msk(mask);
443
444// Specify cursor location
445
446 IPosition start, end;
447 getCursorLocation(start, end, *in);
448
449// Loop over rows
450
451 const uInt nEl = msk.nelements();
452 for (uInt ii=0; ii < in->nRow(); ++ii) {
453
454// Get row and deconstruct
455
456 MaskedArray<Float> marr(in->rowAsMaskedArray(ii));
457 Array<Float> arr = marr.getArray();
458 Array<Bool> barr = marr.getMask();
459
460// Access desired piece of data
461
462 Array<Float> v((arr(start,end)).nonDegenerate());
463 Array<Bool> m((barr(start,end)).nonDegenerate());
464
465// Apply OTF mask
466
467 MaskedArray<Float> tmp;
468 if (m.nelements()==nEl) {
469 tmp.setData(v,m&&msk);
470 } else {
471 tmp.setData(v,m);
472 }
473
474// Get statistic
475
476 result[ii] = mathutil::statistics(which, tmp);
477 }
478//
479 return result;
480}
481
482
483SDMemTable* SDMath::bin(const SDMemTable& in, Int width)
484{
485 SDHeader sh = in.getSDHeader();
486 SDMemTable* pTabOut = new SDMemTable(in, True);
487
488// Bin up SpectralCoordinates
489
490 IPosition factors(1);
491 factors(0) = width;
492 for (uInt j=0; j<in.nCoordinates(); ++j) {
493 CoordinateSystem cSys;
494 cSys.addCoordinate(in.getCoordinate(j));
495 CoordinateSystem cSysBin =
496 CoordinateUtil::makeBinnedCoordinateSystem(factors, cSys, False);
497//
498 SpectralCoordinate sCBin = cSysBin.spectralCoordinate(0);
499 pTabOut->setCoordinate(sCBin, j);
500 }
501
502// Use RebinLattice to find shape
503
504 IPosition shapeIn(1,sh.nchan);
505 IPosition shapeOut = RebinLattice<Float>::rebinShape(shapeIn, factors);
506 sh.nchan = shapeOut(0);
507 pTabOut->putSDHeader(sh);
508
509
510// Loop over rows and bin along channel axis
511
512 for (uInt i=0; i < in.nRow(); ++i) {
513 SDContainer sc = in.getSDContainer(i);
514//
515 Array<Float> tSys(sc.getTsys()); // Get it out before sc changes shape
516
517// Bin up spectrum
518
519 MaskedArray<Float> marr(in.rowAsMaskedArray(i));
520 MaskedArray<Float> marrout;
521 LatticeUtilities::bin(marrout, marr, asap::ChanAxis, width);
522
523// Put back the binned data and flags
524
525 IPosition ip2 = marrout.shape();
526 sc.resize(ip2);
527//
528 putDataInSDC(sc, marrout.getArray(), marrout.getMask());
529
530// Bin up Tsys.
531
532 Array<Bool> allGood(tSys.shape(),True);
533 MaskedArray<Float> tSysIn(tSys, allGood, True);
534//
535 MaskedArray<Float> tSysOut;
536 LatticeUtilities::bin(tSysOut, tSysIn, asap::ChanAxis, width);
537 sc.putTsys(tSysOut.getArray());
538//
539 pTabOut->putSDContainer(sc);
540 }
541 return pTabOut;
542}
543
544SDMemTable* SDMath::simpleOperate(const SDMemTable& in, Float val, Bool doAll,
545 uInt what)
546//
547// what = 0 Multiply
548// 1 Add
549{
550 SDMemTable* pOut = new SDMemTable(in,False);
551 const Table& tOut = pOut->table();
552 ArrayColumn<Float> spec(tOut,"SPECTRA");
553//
554 if (doAll) {
555 for (uInt i=0; i < tOut.nrow(); i++) {
556
557// Get
558
559 MaskedArray<Float> marr(pOut->rowAsMaskedArray(i));
560
561// Operate
562
563 if (what==0) {
564 marr *= val;
565 } else if (what==1) {
566 marr += val;
567 }
568
569// Put
570
571 spec.put(i, marr.getArray());
572 }
573 } else {
574
575// Get cursor location
576
577 IPosition start, end;
578 getCursorLocation(start, end, in);
579//
580 for (uInt i=0; i < tOut.nrow(); i++) {
581
582// Get
583
584 MaskedArray<Float> dataIn(pOut->rowAsMaskedArray(i));
585
586// Modify. More work than we would like to deal with the mask
587
588 Array<Float>& values = dataIn.getRWArray();
589 Array<Bool> mask(dataIn.getMask());
590//
591 Array<Float> values2 = values(start,end);
592 Array<Bool> mask2 = mask(start,end);
593 MaskedArray<Float> t(values2,mask2);
594 if (what==0) {
595 t *= val;
596 } else if (what==1) {
597 t += val;
598 }
599 values(start, end) = t.getArray(); // Write back into 'dataIn'
600
601// Put
602 spec.put(i, dataIn.getArray());
603 }
604 }
605//
606 return pOut;
607}
608
609
610
611SDMemTable* SDMath::averagePol(const SDMemTable& in, const Vector<Bool>& mask)
612//
613// Average all polarizations together, weighted by variance
614//
615{
616// WeightType wtType = NONE;
617// convertWeightString(wtType, weight);
618
619 const uInt nRows = in.nRow();
620 const uInt polAxis = asap::PolAxis; // Polarization axis
621 const uInt chanAxis = asap::ChanAxis; // Spectrum axis
622
623// Create output Table and reshape number of polarizations
624
625 Bool clear=True;
626 SDMemTable* pTabOut = new SDMemTable(in, clear);
627 SDHeader header = pTabOut->getSDHeader();
628 header.npol = 1;
629 pTabOut->putSDHeader(header);
630
631// Shape of input and output data
632
633 const IPosition& shapeIn = in.rowAsMaskedArray(0u, False).shape();
634 IPosition shapeOut(shapeIn);
635 shapeOut(polAxis) = 1; // Average all polarizations
636//
637 const uInt nChan = shapeIn(chanAxis);
638 const IPosition vecShapeOut(4,1,1,1,nChan); // A multi-dim form of a Vector shape
639 IPosition start(4), end(4);
640
641// Output arrays
642
643 Array<Float> outData(shapeOut, 0.0);
644 Array<Bool> outMask(shapeOut, True);
645 const IPosition axes(2, 2, 3); // pol-channel plane
646//
647 const Bool useMask = (mask.nelements() == shapeIn(chanAxis));
648
649// Loop over rows
650
651 for (uInt iRow=0; iRow<nRows; iRow++) {
652
653// Get data for this row
654
655 MaskedArray<Float> marr(in.rowAsMaskedArray(iRow));
656 Array<Float>& arr = marr.getRWArray();
657 const Array<Bool>& barr = marr.getMask();
658
659// Make iterators to iterate by pol-channel planes
660
661 ReadOnlyArrayIterator<Float> itDataPlane(arr, axes);
662 ReadOnlyArrayIterator<Bool> itMaskPlane(barr, axes);
663
664// Accumulations
665
666 Float fac = 1.0;
667 Vector<Float> vecSum(nChan,0.0);
668
669// Iterate through data by pol-channel planes
670
671 while (!itDataPlane.pastEnd()) {
672
673// Iterate through plane by polarization and accumulate Vectors
674
675 Vector<Float> t1(nChan); t1 = 0.0;
676 Vector<Bool> t2(nChan); t2 = True;
677 MaskedArray<Float> vecSum(t1,t2);
678 Float varSum = 0.0;
679 {
680 ReadOnlyVectorIterator<Float> itDataVec(itDataPlane.array(), 1);
681 ReadOnlyVectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
682 while (!itDataVec.pastEnd()) {
683
684// Create MA of data & mask (optionally including OTF mask) and get variance
685
686 if (useMask) {
687 const MaskedArray<Float> spec(itDataVec.vector(),mask&&itMaskVec.vector());
688 fac = 1.0 / variance(spec);
689 } else {
690 const MaskedArray<Float> spec(itDataVec.vector(),itMaskVec.vector());
691 fac = 1.0 / variance(spec);
692 }
693
694// Normalize spectrum (without OTF mask) and accumulate
695
696 const MaskedArray<Float> spec(fac*itDataVec.vector(), itMaskVec.vector());
697 vecSum += spec;
698 varSum += fac;
699
700// Next
701
702 itDataVec.next();
703 itMaskVec.next();
704 }
705 }
706
707// Normalize summed spectrum
708
709 vecSum /= varSum;
710
711// FInd position in input data array. We are iterating by pol-channel
712// plane so all that will change is beam and IF and that's what we want.
713
714 IPosition pos = itDataPlane.pos();
715
716// Write out data. This is a bit messy. We have to reform the Vector
717// accumulator into an Array of shape (1,1,1,nChan)
718
719 start = pos;
720 end = pos;
721 end(chanAxis) = nChan-1;
722 outData(start,end) = vecSum.getArray().reform(vecShapeOut);
723 outMask(start,end) = vecSum.getMask().reform(vecShapeOut);
724
725// Step to next beam/IF combination
726
727 itDataPlane.next();
728 itMaskPlane.next();
729 }
730
731// Generate output container and write it to output table
732
733 SDContainer sc = in.getSDContainer();
734 sc.resize(shapeOut);
735//
736 putDataInSDC(sc, outData, outMask);
737 pTabOut->putSDContainer(sc);
738 }
739//
740 return pTabOut;
741}
742
743
744SDMemTable* SDMath::smooth(const SDMemTable& in,
745 const casa::String& kernelType,
746 casa::Float width, Bool doAll)
747{
748
749// Number of channels
750
751 const uInt chanAxis = asap::ChanAxis; // Spectral axis
752 SDHeader sh = in.getSDHeader();
753 const uInt nChan = sh.nchan;
754
755// Generate Kernel
756
757 VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernelType);
758 Vector<Float> kernel = VectorKernel::make(type, width, nChan, True, False);
759
760// Generate Convolver
761
762 IPosition shape(1,nChan);
763 Convolver<Float> conv(kernel, shape);
764
765// New Table
766
767 SDMemTable* pTabOut = new SDMemTable(in,True);
768
769// Get cursor location
770
771 IPosition start, end;
772 getCursorLocation(start, end, in);
773//
774 IPosition shapeOut(4,1);
775
776// Output Vectors
777
778 Vector<Float> valuesOut(nChan);
779 Vector<Bool> maskOut(nChan);
780
781// Loop over rows in Table
782
783 for (uInt ri=0; ri < in.nRow(); ++ri) {
784
785// Get copy of data
786
787 const MaskedArray<Float>& dataIn(in.rowAsMaskedArray(ri));
788 AlwaysAssert(dataIn.shape()(chanAxis)==nChan, AipsError);
789//
790 Array<Float> valuesIn = dataIn.getArray();
791 Array<Bool> maskIn = dataIn.getMask();
792
793// Branch depending on whether we smooth all locations or just
794// those pointed at by the current selection cursor
795
796 if (doAll) {
797 uInt axis = asap::ChanAxis;
798 VectorIterator<Float> itValues(valuesIn, axis);
799 VectorIterator<Bool> itMask(maskIn, axis);
800 while (!itValues.pastEnd()) {
801
802// Smooth
803 if (kernelType==VectorKernel::HANNING) {
804 mathutil::hanning(valuesOut, maskOut, itValues.vector(), itMask.vector());
805 itMask.vector() = maskOut;
806 } else {
807 mathutil::replaceMaskByZero(itValues.vector(), itMask.vector());
808 conv.linearConv(valuesOut, itValues.vector());
809 }
810//
811 itValues.vector() = valuesOut;
812//
813 itValues.next();
814 itMask.next();
815 }
816 } else {
817
818// Set multi-dim Vector shape
819
820 shapeOut(chanAxis) = valuesIn.shape()(chanAxis);
821
822// Stuff about with shapes so that we don't have conformance run-time errors
823
824 Vector<Float> valuesIn2 = valuesIn(start,end).nonDegenerate();
825 Vector<Bool> maskIn2 = maskIn(start,end).nonDegenerate();
826
827// Smooth
828
829 if (kernelType==VectorKernel::HANNING) {
830 mathutil::hanning(valuesOut, maskOut, valuesIn2, maskIn2);
831 maskIn(start,end) = maskOut.reform(shapeOut);
832 } else {
833 mathutil::replaceMaskByZero(valuesIn2, maskIn2);
834 conv.linearConv(valuesOut, valuesIn2);
835 }
836//
837 valuesIn(start,end) = valuesOut.reform(shapeOut);
838 }
839
840// Create and put back
841
842 SDContainer sc = in.getSDContainer(ri);
843 putDataInSDC(sc, valuesIn, maskIn);
844//
845 pTabOut->putSDContainer(sc);
846 }
847//
848 return pTabOut;
849}
850
851
852SDMemTable* SDMath::convertFlux (const SDMemTable& in, Float a, Float eta, Bool doAll)
853//
854// As it is, this function could be implemented with 'simpleOperate'
855// However, I anticipate that eventually we will look the conversion
856// values up in a Table and apply them in a frequency dependent way,
857// so I have implemented it fully here
858//
859{
860 SDHeader sh = in.getSDHeader();
861 SDMemTable* pTabOut = new SDMemTable(in, True);
862
863// FInd out how to convert values into Jy and K (e.g. units might be mJy or mK)
864// Also automatically find out what we are converting to according to the
865// flux unit
866
867 Unit fluxUnit(sh.fluxunit);
868 Unit K(String("K"));
869 Unit JY(String("Jy"));
870//
871 Bool toKelvin = True;
872 Double inFac = 1.0;
873 if (fluxUnit==JY) {
874 cerr << "Converting to K" << endl;
875//
876 Quantum<Double> t(1.0,fluxUnit);
877 Quantum<Double> t2 = t.get(JY);
878 inFac = (t2 / t).getValue();
879//
880 toKelvin = True;
881 sh.fluxunit = "K";
882 } else if (fluxUnit==K) {
883 cerr << "Converting to Jy" << endl;
884//
885 Quantum<Double> t(1.0,fluxUnit);
886 Quantum<Double> t2 = t.get(K);
887 inFac = (t2 / t).getValue();
888//
889 toKelvin = False;
890 sh.fluxunit = "Jy";
891 } else {
892 throw AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K");
893 }
894 pTabOut->putSDHeader(sh);
895
896// Compute conversion factor. 'a' and 'eta' are really frequency, time and
897// telescope dependent and should be looked// up in a table
898
899 Float factor = 2.0 * inFac * 1.0e-7 * 1.0e26 * QC::k.getValue(Unit(String("erg/K"))) / a / eta;
900 if (toKelvin) {
901 factor = 1.0 / factor;
902 }
903 cerr << "Applying conversion factor = " << factor << endl;
904
905// For operations only on specified cursor location
906
907 IPosition start, end;
908 getCursorLocation(start, end, in);
909
910// Loop over rows and apply factor to spectra
911
912 const uInt axis = asap::ChanAxis;
913 for (uInt i=0; i < in.nRow(); ++i) {
914
915// Get data
916
917 MaskedArray<Float> dataIn(in.rowAsMaskedArray(i));
918 Array<Float>& valuesIn = dataIn.getRWArray(); // writable reference
919 const Array<Bool>& maskIn = dataIn.getMask();
920
921// Need to apply correct conversion factor (frequency and time dependent)
922// which should be sourced from a Table. For now we just apply the given
923// factor to everything
924
925 if (doAll) {
926 VectorIterator<Float> itValues(valuesIn, asap::ChanAxis);
927 while (!itValues.pastEnd()) {
928 itValues.vector() *= factor; // Writes back into dataIn
929//
930 itValues.next();
931 }
932 } else {
933 Array<Float> valuesIn2 = valuesIn(start,end);
934 valuesIn2 *= factor;
935 valuesIn(start,end) = valuesIn2;
936 }
937
938// Write out
939
940 SDContainer sc = in.getSDContainer(i);
941 putDataInSDC(sc, valuesIn, maskIn);
942//
943 pTabOut->putSDContainer(sc);
944 }
945 return pTabOut;
946}
947
948
949
950// 'private' functions
951
952void SDMath::fillSDC(SDContainer& sc,
953 const Array<Bool>& mask,
954 const Array<Float>& data,
955 const Array<Float>& tSys,
956 Int scanID, Double timeStamp,
957 Double interval, const String& sourceName,
958 const Vector<uInt>& freqID)
959{
960// Data and mask
961
962 putDataInSDC(sc, data, mask);
963
964// TSys
965
966 sc.putTsys(tSys);
967
968// Time things
969
970 sc.timestamp = timeStamp;
971 sc.interval = interval;
972 sc.scanid = scanID;
973//
974 sc.sourcename = sourceName;
975 sc.putFreqMap(freqID);
976}
977
978void SDMath::normalize(MaskedArray<Float>& sum,
979 const Array<Float>& sumSq,
980 const Array<Float>& nPts,
981 WeightType wtType, Int axis,
982 Int nAxesSub)
983{
984 IPosition pos2(nAxesSub,0);
985//
986 if (wtType==NONE) {
987
988// We just average by the number of points accumulated.
989// We need to make a MA out of nPts so that no divide by
990// zeros occur
991
992 MaskedArray<Float> t(nPts, (nPts>Float(0.0)));
993 sum /= t;
994 } else if (wtType==VAR) {
995
996// Normalize each spectrum by sum(1/var) where the variance
997// is worked out for each spectrum
998
999 Array<Float>& data = sum.getRWArray();
1000 VectorIterator<Float> itData(data, axis);
1001 while (!itData.pastEnd()) {
1002 pos2 = itData.pos().getFirst(nAxesSub);
1003 itData.vector() /= sumSq(pos2);
1004 itData.next();
1005 }
1006 } else if (wtType==TSYS) {
1007 }
1008}
1009
1010
1011void SDMath::accumulate(Double& timeSum, Double& intSum, Int& nAccum,
1012 MaskedArray<Float>& sum, Array<Float>& sumSq,
1013 Array<Float>& nPts, Array<Float>& tSysSum,
1014 const Array<Float>& tSys, const Array<Float>& nInc,
1015 const Vector<Bool>& mask, Double time, Double interval,
1016 const Block<CountedPtr<SDMemTable> >& in,
1017 uInt iTab, uInt iRow, uInt axis,
1018 uInt nAxesSub, Bool useMask,
1019 WeightType wtType)
1020{
1021
1022// Get data
1023
1024 MaskedArray<Float> dataIn(in[iTab]->rowAsMaskedArray(iRow));
1025 Array<Float>& valuesIn = dataIn.getRWArray(); // writable reference
1026 const Array<Bool>& maskIn = dataIn.getMask(); // RO reference
1027//
1028 if (wtType==NONE) {
1029 const MaskedArray<Float> n(nInc,dataIn.getMask());
1030 nPts += n; // Only accumulates where mask==T
1031 } else if (wtType==VAR) {
1032
1033// We are going to average the data, weighted by the noise for each pol, beam and IF.
1034// So therefore we need to iterate through by spectrum (axis 3)
1035
1036 VectorIterator<Float> itData(valuesIn, axis);
1037 ReadOnlyVectorIterator<Bool> itMask(maskIn, axis);
1038 Float fac = 1.0;
1039 IPosition pos(nAxesSub,0);
1040//
1041 while (!itData.pastEnd()) {
1042
1043// Make MaskedArray of Vector, optionally apply OTF mask, and find scaling factor
1044
1045 if (useMask) {
1046 MaskedArray<Float> tmp(itData.vector(),mask&&itMask.vector());
1047 fac = 1.0/variance(tmp);
1048 } else {
1049 MaskedArray<Float> tmp(itData.vector(),itMask.vector());
1050 fac = 1.0/variance(tmp);
1051 }
1052
1053// Scale data
1054
1055 itData.vector() *= fac; // Writes back into 'dataIn'
1056//
1057// Accumulate variance per if/pol/beam averaged over spectrum
1058// This method to get pos2 from itData.pos() is only valid
1059// because the spectral axis is the last one (so we can just
1060// copy the first nAXesSub positions out)
1061
1062 pos = itData.pos().getFirst(nAxesSub);
1063 sumSq(pos) += fac;
1064//
1065 itData.next();
1066 itMask.next();
1067 }
1068 } else if (wtType==TSYS) {
1069 }
1070
1071// Accumulate sum of (possibly scaled) data
1072
1073 sum += dataIn;
1074
1075// Accumulate Tsys, time, and interval
1076
1077 tSysSum += tSys;
1078 timeSum += time;
1079 intSum += interval;
1080 nAccum += 1;
1081}
1082
1083
1084
1085
1086void SDMath::getCursorLocation(IPosition& start, IPosition& end,
1087 const SDMemTable& in)
1088{
1089 const uInt nDim = 4;
1090 const uInt i = in.getBeam();
1091 const uInt j = in.getIF();
1092 const uInt k = in.getPol();
1093 const uInt n = in.nChan();
1094//
1095 start.resize(nDim);
1096 start(0) = i;
1097 start(1) = j;
1098 start(2) = k;
1099 start(3) = 0;
1100//
1101 end.resize(nDim);
1102 end(0) = i;
1103 end(1) = j;
1104 end(2) = k;
1105 end(3) = n-1;
1106}
1107
1108
1109void SDMath::convertWeightString(WeightType& wtType, const std::string& weightStr)
1110{
1111 String tStr(weightStr);
1112 tStr.upcase();
1113 if (tStr.contains(String("NONE"))) {
1114 wtType = NONE;
1115 } else if (tStr.contains(String("VAR"))) {
1116 wtType = VAR;
1117 } else if (tStr.contains(String("TSYS"))) {
1118 wtType = TSYS;
1119 throw(AipsError("T_sys weighting not yet implemented"));
1120 } else {
1121 throw(AipsError("Unrecognized weighting type"));
1122 }
1123}
1124
1125void SDMath::putDataInSDC(SDContainer& sc, const Array<Float>& data,
1126 const Array<Bool>& mask)
1127{
1128 sc.putSpectrum(data);
1129//
1130 Array<uChar> outflags(data.shape());
1131 convertArray(outflags,!mask);
1132 sc.putFlags(outflags);
1133}
Note: See TracBrowser for help on using the repository browser.