1 | //#---------------------------------------------------------------------------
|
---|
2 | //# SDMath.cc: A collection of single dish mathematical operations
|
---|
3 | //#---------------------------------------------------------------------------
|
---|
4 | //# Copyright (C) 2004
|
---|
5 | //# ATNF
|
---|
6 | //#
|
---|
7 | //# This program is free software; you can redistribute it and/or modify it
|
---|
8 | //# under the terms of the GNU General Public License as published by the Free
|
---|
9 | //# Software Foundation; either version 2 of the License, or (at your option)
|
---|
10 | //# any later version.
|
---|
11 | //#
|
---|
12 | //# This program is distributed in the hope that it will be useful, but
|
---|
13 | //# WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | //# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
---|
15 | //# Public License for more details.
|
---|
16 | //#
|
---|
17 | //# You should have received a copy of the GNU General Public License along
|
---|
18 | //# with this program; if not, write to the Free Software Foundation, Inc.,
|
---|
19 | //# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
|
---|
20 | //#
|
---|
21 | //# Correspondence concerning this software should be addressed as follows:
|
---|
22 | //# Internet email: Malte.Marquarding@csiro.au
|
---|
23 | //# Postal address: Malte Marquarding,
|
---|
24 | //# Australia Telescope National Facility,
|
---|
25 | //# P.O. Box 76,
|
---|
26 | //# Epping, NSW, 2121,
|
---|
27 | //# AUSTRALIA
|
---|
28 | //#
|
---|
29 | //# $Id:
|
---|
30 | //#---------------------------------------------------------------------------
|
---|
31 | #include <vector>
|
---|
32 |
|
---|
33 | #include <casa/aips.h>
|
---|
34 | #include <casa/BasicSL/String.h>
|
---|
35 | #include <casa/Arrays/IPosition.h>
|
---|
36 | #include <casa/Arrays/Array.h>
|
---|
37 | #include <casa/Arrays/ArrayIter.h>
|
---|
38 | #include <casa/Arrays/VectorIter.h>
|
---|
39 | #include <casa/Arrays/ArrayMath.h>
|
---|
40 | #include <casa/Arrays/ArrayLogical.h>
|
---|
41 | #include <casa/Arrays/MaskedArray.h>
|
---|
42 | #include <casa/Arrays/MaskArrMath.h>
|
---|
43 | #include <casa/Arrays/MaskArrLogi.h>
|
---|
44 | #include <casa/Exceptions.h>
|
---|
45 |
|
---|
46 | #include <tables/Tables/Table.h>
|
---|
47 | #include <tables/Tables/ScalarColumn.h>
|
---|
48 | #include <tables/Tables/ArrayColumn.h>
|
---|
49 |
|
---|
50 | #include <lattices/Lattices/LatticeUtilities.h>
|
---|
51 | #include <lattices/Lattices/RebinLattice.h>
|
---|
52 | #include <coordinates/Coordinates/SpectralCoordinate.h>
|
---|
53 | #include <coordinates/Coordinates/CoordinateSystem.h>
|
---|
54 | #include <coordinates/Coordinates/CoordinateUtil.h>
|
---|
55 |
|
---|
56 | #include "MathUtils.h"
|
---|
57 | #include "SDContainer.h"
|
---|
58 | #include "SDMemTable.h"
|
---|
59 |
|
---|
60 | #include "SDMath.h"
|
---|
61 |
|
---|
62 | using namespace casa;
|
---|
63 | using namespace asap;
|
---|
64 | //using namespace asap::SDMath;
|
---|
65 |
|
---|
66 | CountedPtr<SDMemTable> SDMath::average(const CountedPtr<SDMemTable>& in)
|
---|
67 | //
|
---|
68 | // Average all rows in Table in time
|
---|
69 | //
|
---|
70 | {
|
---|
71 | Table t = in->table();
|
---|
72 | ROArrayColumn<Float> tsys(t, "TSYS");
|
---|
73 | ROScalarColumn<Double> mjd(t, "TIME");
|
---|
74 | ROScalarColumn<String> srcn(t, "SRCNAME");
|
---|
75 | ROScalarColumn<Double> integr(t, "INTERVAL");
|
---|
76 | ROArrayColumn<uInt> freqidc(t, "FREQID");
|
---|
77 | IPosition ip = in->rowAsMaskedArray(0).shape();
|
---|
78 | Array<Float> outarr(ip); outarr =0.0;
|
---|
79 | Array<Float> narr(ip);narr = 0.0;
|
---|
80 | Array<Float> narrinc(ip);narrinc = 1.0;
|
---|
81 |
|
---|
82 | Array<Float> tsarr(tsys.shape(0));
|
---|
83 | Array<Float> outtsarr(tsys.shape(0));
|
---|
84 | outtsarr =0.0;
|
---|
85 | tsys.get(0, tsarr);// this is probably unneccessary as tsys should
|
---|
86 | Double tme = 0.0;
|
---|
87 | Double inttime = 0.0;
|
---|
88 |
|
---|
89 | // Loop over rows
|
---|
90 |
|
---|
91 | for (uInt i=0; i < t.nrow(); i++) {
|
---|
92 |
|
---|
93 | // Get data and accumulate sums
|
---|
94 |
|
---|
95 | MaskedArray<Float> marr(in->rowAsMaskedArray(i));
|
---|
96 | outarr += marr;
|
---|
97 | MaskedArray<Float> n(narrinc,marr.getMask());
|
---|
98 | narr += n;
|
---|
99 |
|
---|
100 | // Accumulkate Tsys
|
---|
101 |
|
---|
102 | tsys.get(i, tsarr);// this is probably unneccessary as tsys should
|
---|
103 | outtsarr += tsarr; // be constant
|
---|
104 | Double tmp;
|
---|
105 | mjd.get(i,tmp);
|
---|
106 | tme += tmp;// average time
|
---|
107 | integr.get(i,tmp);
|
---|
108 | inttime += tmp;
|
---|
109 | }
|
---|
110 |
|
---|
111 | // Average
|
---|
112 |
|
---|
113 | MaskedArray<Float> nma(narr,(narr > Float(0)));
|
---|
114 | outarr /= nma;
|
---|
115 |
|
---|
116 | // Create container and put
|
---|
117 |
|
---|
118 | Array<Bool> outflagsb = !(nma.getMask());
|
---|
119 | Array<uChar> outflags(outflagsb.shape());
|
---|
120 | convertArray(outflags,outflagsb);
|
---|
121 | SDContainer sc = in->getSDContainer();
|
---|
122 | Int n = t.nrow();
|
---|
123 | outtsarr /= Float(n);
|
---|
124 | sc.timestamp = tme/Double(n);
|
---|
125 | sc.interval = inttime;
|
---|
126 | String tstr; srcn.getScalar(0,tstr);// get sourcename of "mid" point
|
---|
127 | sc.sourcename = tstr;
|
---|
128 | Vector<uInt> tvec;
|
---|
129 | freqidc.get(0,tvec);
|
---|
130 | sc.putFreqMap(tvec);
|
---|
131 | sc.putTsys(outtsarr);
|
---|
132 | sc.scanid = 0;
|
---|
133 | sc.putSpectrum(outarr);
|
---|
134 | sc.putFlags(outflags);
|
---|
135 | SDMemTable* sdmt = new SDMemTable(*in,True);
|
---|
136 | sdmt->putSDContainer(sc);
|
---|
137 | return CountedPtr<SDMemTable>(sdmt);
|
---|
138 | }
|
---|
139 |
|
---|
140 | CountedPtr<SDMemTable>
|
---|
141 | SDMath::quotient(const CountedPtr<SDMemTable>& on,
|
---|
142 | const CountedPtr<SDMemTable>& off)
|
---|
143 | //
|
---|
144 | // Compute quotient spectrum
|
---|
145 | //
|
---|
146 | {
|
---|
147 | const uInt nRows = on->nRow();
|
---|
148 | if (off->nRow() != nRows) {
|
---|
149 | throw (AipsError("Input Scan Tables must have the same number of rows"));
|
---|
150 | }
|
---|
151 |
|
---|
152 | // Input Tables and columns
|
---|
153 |
|
---|
154 | Table ton = on->table();
|
---|
155 | Table toff = off->table();
|
---|
156 | ROArrayColumn<Float> tsys(toff, "TSYS");
|
---|
157 | ROScalarColumn<Double> mjd(ton, "TIME");
|
---|
158 | ROScalarColumn<Double> integr(ton, "INTERVAL");
|
---|
159 | ROScalarColumn<String> srcn(ton, "SRCNAME");
|
---|
160 | ROArrayColumn<uInt> freqidc(ton, "FREQID");
|
---|
161 |
|
---|
162 | // Output Table cloned from input
|
---|
163 |
|
---|
164 | SDMemTable* sdmt = new SDMemTable(*on, True);
|
---|
165 |
|
---|
166 | // Loop over rows
|
---|
167 |
|
---|
168 | for (uInt i=0; i<nRows; i++) {
|
---|
169 | MaskedArray<Float> mon(on->rowAsMaskedArray(i));
|
---|
170 | MaskedArray<Float> moff(off->rowAsMaskedArray(i));
|
---|
171 | IPosition ipon = mon.shape();
|
---|
172 | IPosition ipoff = moff.shape();
|
---|
173 | //
|
---|
174 | Array<Float> tsarr;
|
---|
175 | tsys.get(i, tsarr);
|
---|
176 | if (ipon != ipoff && ipon != tsarr.shape()) {
|
---|
177 | throw(AipsError("on/off not conformant"));
|
---|
178 | }
|
---|
179 |
|
---|
180 | // Compute quotient
|
---|
181 |
|
---|
182 | MaskedArray<Float> tmp = (mon-moff);
|
---|
183 | Array<Float> out(tmp.getArray());
|
---|
184 | out /= moff;
|
---|
185 | out *= tsarr;
|
---|
186 | Array<Bool> outflagsb = !(mon.getMask() && moff.getMask());
|
---|
187 | Array<uChar> outflags(outflagsb.shape());
|
---|
188 | convertArray(outflags,outflagsb);
|
---|
189 |
|
---|
190 | // Fill container for this row
|
---|
191 |
|
---|
192 | SDContainer sc = on->getSDContainer();
|
---|
193 | sc.putTsys(tsarr);
|
---|
194 | sc.scanid = 0;
|
---|
195 | sc.putSpectrum(out);
|
---|
196 | sc.putFlags(outflags);
|
---|
197 |
|
---|
198 | // Put new row in output Table
|
---|
199 |
|
---|
200 | sdmt->putSDContainer(sc);
|
---|
201 | }
|
---|
202 | //
|
---|
203 | return CountedPtr<SDMemTable>(sdmt);
|
---|
204 | }
|
---|
205 |
|
---|
206 | void SDMath::multiplyInSitu(SDMemTable* in, Float factor) {
|
---|
207 | SDMemTable* sdmt = new SDMemTable(*in);
|
---|
208 | Table t = sdmt->table();
|
---|
209 | ArrayColumn<Float> spec(t,"SPECTRA");
|
---|
210 | for (uInt i=0; i < t.nrow(); i++) {
|
---|
211 | MaskedArray<Float> marr(sdmt->rowAsMaskedArray(i));
|
---|
212 | marr *= factor;
|
---|
213 | spec.put(i, marr.getArray());
|
---|
214 | }
|
---|
215 | in = sdmt;
|
---|
216 | delete sdmt;sdmt=0;
|
---|
217 | }
|
---|
218 |
|
---|
219 | CountedPtr<SDMemTable>
|
---|
220 | SDMath::multiply(const CountedPtr<SDMemTable>& in, Float factor)
|
---|
221 | //
|
---|
222 | // Multiply values by factor
|
---|
223 | //
|
---|
224 | {
|
---|
225 | SDMemTable* sdmt = new SDMemTable(*in);
|
---|
226 | Table t = sdmt->table();
|
---|
227 | ArrayColumn<Float> spec(t,"SPECTRA");
|
---|
228 |
|
---|
229 | for (uInt i=0; i < t.nrow(); i++) {
|
---|
230 | MaskedArray<Float> marr(sdmt->rowAsMaskedArray(i));
|
---|
231 | marr *= factor;
|
---|
232 | spec.put(i, marr.getArray());
|
---|
233 | }
|
---|
234 | return CountedPtr<SDMemTable>(sdmt);
|
---|
235 | }
|
---|
236 |
|
---|
237 | CountedPtr<SDMemTable>
|
---|
238 | SDMath::add(const CountedPtr<SDMemTable>& in, Float offset)
|
---|
239 | //
|
---|
240 | // Add offset to values
|
---|
241 | //
|
---|
242 | {
|
---|
243 | SDMemTable* sdmt = new SDMemTable(*in);
|
---|
244 |
|
---|
245 | Table t = sdmt->table();
|
---|
246 | ArrayColumn<Float> spec(t,"SPECTRA");
|
---|
247 |
|
---|
248 | for (uInt i=0; i < t.nrow(); i++) {
|
---|
249 | MaskedArray<Float> marr(sdmt->rowAsMaskedArray(i));
|
---|
250 | marr += offset;
|
---|
251 | spec.put(i, marr.getArray());
|
---|
252 | }
|
---|
253 | return CountedPtr<SDMemTable>(sdmt);
|
---|
254 | }
|
---|
255 |
|
---|
256 |
|
---|
257 | CountedPtr<SDMemTable>
|
---|
258 | SDMath::hanning(const CountedPtr<SDMemTable>& in)
|
---|
259 | //
|
---|
260 | // Hanning smooth each row
|
---|
261 | // Should Tsys be smoothed ?
|
---|
262 | //
|
---|
263 | {
|
---|
264 | SDMemTable* sdmt = new SDMemTable(*in,True);
|
---|
265 |
|
---|
266 | // Loop over rows in Table
|
---|
267 |
|
---|
268 | for (uInt ri=0; ri < in->nRow(); ++ri) {
|
---|
269 |
|
---|
270 | // Get data
|
---|
271 |
|
---|
272 | const MaskedArray<Float>& marr(in->rowAsMaskedArray(ri));
|
---|
273 | Array<Float> arr = marr.getArray();
|
---|
274 | Array<Bool> barr = marr.getMask();
|
---|
275 |
|
---|
276 | // Smooth along the channels axis
|
---|
277 |
|
---|
278 | uInt axis = 3;
|
---|
279 | VectorIterator<Float> itData(arr, axis);
|
---|
280 | VectorIterator<Bool> itMask(barr, axis);
|
---|
281 | Vector<Float> outv;
|
---|
282 | Vector<Bool> outm;
|
---|
283 | while (!itData.pastEnd()) {
|
---|
284 | mathutil::hanning(outv, outm, itData.vector(), itMask.vector());
|
---|
285 | itData.vector() = outv;
|
---|
286 | itMask.vector() = outm;
|
---|
287 | //
|
---|
288 | itData.next();
|
---|
289 | itMask.next();
|
---|
290 | }
|
---|
291 |
|
---|
292 | // Create and put back
|
---|
293 |
|
---|
294 | Array<uChar> outflags(barr.shape());
|
---|
295 | convertArray(outflags,!barr);
|
---|
296 | SDContainer sc = in->getSDContainer(ri);
|
---|
297 | sc.putSpectrum(arr);
|
---|
298 | sc.putFlags(outflags);
|
---|
299 | sdmt->putSDContainer(sc);
|
---|
300 | }
|
---|
301 | return CountedPtr<SDMemTable>(sdmt);
|
---|
302 | }
|
---|
303 |
|
---|
304 |
|
---|
305 |
|
---|
306 | CountedPtr<SDMemTable> SDMath::averages(const Block<CountedPtr<SDMemTable> >& in,
|
---|
307 | const Vector<Bool>& mask)
|
---|
308 | //
|
---|
309 | // Noise weighted averaging of spectra from many Tables. Tables can have different
|
---|
310 | // number of rows.
|
---|
311 | //
|
---|
312 | {
|
---|
313 |
|
---|
314 | // Setup
|
---|
315 |
|
---|
316 | const uInt axis = 3; // Spectral axis
|
---|
317 | IPosition shp = in[0]->rowAsMaskedArray(0).shape();
|
---|
318 | Array<Float> arr(shp);
|
---|
319 | Array<Bool> barr(shp);
|
---|
320 | Double sumInterval = 0.0;
|
---|
321 | const Bool useMask = (mask.nelements() == shp(axis));
|
---|
322 |
|
---|
323 | // Create data accumulation MaskedArray. We accumulate for each
|
---|
324 | // channel,if,pol,beam
|
---|
325 |
|
---|
326 | Array<Float> zero(shp); zero=0.0;
|
---|
327 | Array<Bool> good(shp); good = True;
|
---|
328 | MaskedArray<Float> sum(zero,good);
|
---|
329 |
|
---|
330 | // Create accumulation Array for variance. We accumulate for
|
---|
331 | // each if,pol,beam, but average over channel
|
---|
332 |
|
---|
333 | const uInt nAxesSub = shp.nelements() - 1;
|
---|
334 | IPosition shp2(nAxesSub);
|
---|
335 | for (uInt i=0,j=0; i<(nAxesSub+1); i++) {
|
---|
336 | if (i!=axis) {
|
---|
337 | shp2(j) = shp(i);
|
---|
338 | j++;
|
---|
339 | }
|
---|
340 | }
|
---|
341 | Array<Float> sumSq(shp2);
|
---|
342 | sumSq = 0.0;
|
---|
343 | IPosition pos2(nAxesSub,0); // FOr indexing
|
---|
344 | //
|
---|
345 | Float fac = 1.0;
|
---|
346 | const uInt nTables = in.nelements();
|
---|
347 | for (uInt iTab=0; iTab<nTables; iTab++) {
|
---|
348 | const uInt nRows = in[iTab]->nRow();
|
---|
349 | sumInterval += nRows * in[iTab]->getInterval(); // Sum of time intervals
|
---|
350 | //
|
---|
351 | for (uInt iRow=0; iRow<nRows; iRow++) {
|
---|
352 |
|
---|
353 | // Check conforms
|
---|
354 |
|
---|
355 | IPosition shp2 = in[iTab]->rowAsMaskedArray(iRow).shape();
|
---|
356 | if (!shp.isEqual(shp2)) {
|
---|
357 | throw (AipsError("Shapes for all rows must be the same"));
|
---|
358 | }
|
---|
359 |
|
---|
360 | // Get data and deconstruct
|
---|
361 |
|
---|
362 | MaskedArray<Float> marr(in[iTab]->rowAsMaskedArray(iRow));
|
---|
363 | Array<Float>& arr = marr.getRWArray(); // writable reference
|
---|
364 | const Array<Bool>& barr = marr.getMask(); // RO reference
|
---|
365 |
|
---|
366 | // We are going to average the data, weighted by the noise for each
|
---|
367 | // pol, beam and IF. So therefore we need to iterate through by
|
---|
368 | // spectra (axis 3)
|
---|
369 |
|
---|
370 | VectorIterator<Float> itData(arr, axis);
|
---|
371 | ReadOnlyVectorIterator<Bool> itMask(barr, axis);
|
---|
372 | while (!itData.pastEnd()) {
|
---|
373 |
|
---|
374 | // Make MaskedArray of Vector, optionally apply OTF mask, and find scaling factor
|
---|
375 |
|
---|
376 | if (useMask) {
|
---|
377 | MaskedArray<Float> tmp(itData.vector(),mask&&itMask.vector());
|
---|
378 | fac = 1.0/variance(tmp);
|
---|
379 | } else {
|
---|
380 | MaskedArray<Float> tmp(itData.vector(),itMask.vector());
|
---|
381 | fac = 1.0/variance(tmp);
|
---|
382 | }
|
---|
383 |
|
---|
384 | // Scale data
|
---|
385 |
|
---|
386 | itData.vector() *= fac;
|
---|
387 |
|
---|
388 | // Accumulate variance per if/pol/beam averaged over spectrum
|
---|
389 | // This method to get pos2 from itData.pos() is only valid
|
---|
390 | // because the spectral axis is the last one (so we can just
|
---|
391 | // copy the first nAXesSub positions out)
|
---|
392 |
|
---|
393 | pos2 = itData.pos().getFirst(nAxesSub);
|
---|
394 | sumSq(pos2) += fac;
|
---|
395 | //
|
---|
396 | itData.next();
|
---|
397 | itMask.next();
|
---|
398 | }
|
---|
399 |
|
---|
400 | // Accumulate sums
|
---|
401 |
|
---|
402 | sum += marr;
|
---|
403 | }
|
---|
404 | }
|
---|
405 |
|
---|
406 | // Normalize by the sum of the 1/var.
|
---|
407 |
|
---|
408 | Array<Float>& data = sum.getRWArray();
|
---|
409 | VectorIterator<Float> itData(data, axis);
|
---|
410 | while (!itData.pastEnd()) {
|
---|
411 | pos2 = itData.pos().getFirst(nAxesSub); // See comments above
|
---|
412 | itData.vector() /= sumSq(pos2);
|
---|
413 | itData.next();
|
---|
414 | }
|
---|
415 |
|
---|
416 | // Create and fill output
|
---|
417 |
|
---|
418 | Array<uChar> outflags(shp);
|
---|
419 | convertArray(outflags,!(sum.getMask()));
|
---|
420 | //
|
---|
421 | SDContainer sc = in[0]->getSDContainer(); // CLone from first container of first Table
|
---|
422 | sc.putSpectrum(data);
|
---|
423 | sc.putFlags(outflags);
|
---|
424 | sc.interval = sumInterval;
|
---|
425 | //
|
---|
426 | SDMemTable* sdmt = new SDMemTable(*in[0],True); // CLone from first Table
|
---|
427 | sdmt->putSDContainer(sc);
|
---|
428 | return CountedPtr<SDMemTable>(sdmt);
|
---|
429 | }
|
---|
430 |
|
---|
431 |
|
---|
432 | CountedPtr<SDMemTable>
|
---|
433 | SDMath::averagePol(const CountedPtr<SDMemTable>& in,
|
---|
434 | const Vector<Bool>& mask)
|
---|
435 | {
|
---|
436 | const uInt nRows = in->nRow();
|
---|
437 | const uInt axis = 3; // Spectrum
|
---|
438 | const IPosition axes(2, 2, 3); // pol-channel plane
|
---|
439 |
|
---|
440 | // Create output Table
|
---|
441 |
|
---|
442 | SDMemTable* sdmt = new SDMemTable(*in, True);
|
---|
443 |
|
---|
444 | // Loop over rows
|
---|
445 |
|
---|
446 | for (uInt iRow=0; iRow<nRows; iRow++) {
|
---|
447 |
|
---|
448 | // Get data for this row
|
---|
449 |
|
---|
450 | MaskedArray<Float> marr(in->rowAsMaskedArray(iRow));
|
---|
451 | Array<Float>& arr = marr.getRWArray();
|
---|
452 | const Array<Bool>& barr = marr.getMask();
|
---|
453 | //
|
---|
454 | IPosition shp = marr.shape();
|
---|
455 | const Bool useMask = (mask.nelements() == shp(axis));
|
---|
456 | const uInt nChan = shp(axis);
|
---|
457 |
|
---|
458 | // Make iterators to iterate by pol-channel planes
|
---|
459 |
|
---|
460 | ArrayIterator<Float> itDataPlane(arr, axes);
|
---|
461 | ReadOnlyArrayIterator<Bool> itMaskPlane(barr, axes);
|
---|
462 |
|
---|
463 | // Accumulations
|
---|
464 |
|
---|
465 | Float fac = 0.0;
|
---|
466 | Vector<Float> vecSum(nChan,0.0);
|
---|
467 |
|
---|
468 | // Iterate by plane
|
---|
469 |
|
---|
470 | while (!itDataPlane.pastEnd()) {
|
---|
471 |
|
---|
472 | // Iterate through pol-channel plane by spectrum
|
---|
473 |
|
---|
474 | Vector<Float> t1(nChan); t1 = 0.0;
|
---|
475 | Vector<Bool> t2(nChan); t2 = True;
|
---|
476 | MaskedArray<Float> vecSum(t1,t2);
|
---|
477 | Float varSum = 0.0;
|
---|
478 | {
|
---|
479 | ReadOnlyVectorIterator<Float> itDataVec(itDataPlane.array(), 1);
|
---|
480 | ReadOnlyVectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
|
---|
481 | while (!itDataVec.pastEnd()) {
|
---|
482 |
|
---|
483 | // Create MA of data & mask (optionally including OTF mask) and get variance
|
---|
484 |
|
---|
485 | if (useMask) {
|
---|
486 | const MaskedArray<Float> spec(itDataVec.vector(),mask&&itMaskVec.vector());
|
---|
487 | fac = 1.0 / variance(spec);
|
---|
488 | } else {
|
---|
489 | const MaskedArray<Float> spec(itDataVec.vector(),itMaskVec.vector());
|
---|
490 | fac = 1.0 / variance(spec);
|
---|
491 | }
|
---|
492 |
|
---|
493 | // Normalize spectrum (without OTF mask) and accumulate
|
---|
494 |
|
---|
495 | const MaskedArray<Float> spec(fac*itDataVec.vector(), itMaskVec.vector());
|
---|
496 | vecSum += spec;
|
---|
497 | varSum += fac;
|
---|
498 |
|
---|
499 | // Next
|
---|
500 |
|
---|
501 | itDataVec.next();
|
---|
502 | itMaskVec.next();
|
---|
503 | }
|
---|
504 | }
|
---|
505 |
|
---|
506 | // Normalize summed spectrum
|
---|
507 |
|
---|
508 | vecSum /= varSum;
|
---|
509 |
|
---|
510 | // We have formed the weighted averaged spectrum from all polarizations
|
---|
511 | // for this beam and IF. Now replicate the spectrum to all polarizations
|
---|
512 |
|
---|
513 | {
|
---|
514 | VectorIterator<Float> itDataVec(itDataPlane.array(), 1); // Writes back into 'arr'
|
---|
515 | const Vector<Float>& vecSumData = vecSum.getArray(); // It *is* a Vector
|
---|
516 | //
|
---|
517 | while (!itDataVec.pastEnd()) {
|
---|
518 | itDataVec.vector() = vecSumData;
|
---|
519 | itDataVec.next();
|
---|
520 | }
|
---|
521 | }
|
---|
522 |
|
---|
523 | // Step to next beam/IF combination
|
---|
524 |
|
---|
525 | itDataPlane.next();
|
---|
526 | itMaskPlane.next();
|
---|
527 | }
|
---|
528 |
|
---|
529 | // Generate output container and write it to output table
|
---|
530 |
|
---|
531 | SDContainer sc = in->getSDContainer();
|
---|
532 | Array<uChar> outflags(barr.shape());
|
---|
533 | convertArray(outflags,!barr);
|
---|
534 | sc.putSpectrum(arr);
|
---|
535 | sc.putFlags(outflags);
|
---|
536 | sdmt->putSDContainer(sc);
|
---|
537 | }
|
---|
538 | //
|
---|
539 | return CountedPtr<SDMemTable>(sdmt);
|
---|
540 | }
|
---|
541 |
|
---|
542 |
|
---|
543 | CountedPtr<SDMemTable> SDMath::bin(const CountedPtr<SDMemTable>& in,
|
---|
544 | Int width)
|
---|
545 | {
|
---|
546 | SDHeader sh = in->getSDHeader();
|
---|
547 | SDMemTable* sdmt = new SDMemTable(*in,True);
|
---|
548 |
|
---|
549 | // Bin up SpectralCoordinates
|
---|
550 |
|
---|
551 | IPosition factors(1);
|
---|
552 | factors(0) = width;
|
---|
553 | for (uInt j=0; j<in->nCoordinates(); ++j) {
|
---|
554 | CoordinateSystem cSys;
|
---|
555 | cSys.addCoordinate(in->getCoordinate(j));
|
---|
556 | CoordinateSystem cSysBin =
|
---|
557 | CoordinateUtil::makeBinnedCoordinateSystem (factors, cSys, False);
|
---|
558 | //
|
---|
559 | SpectralCoordinate sCBin = cSysBin.spectralCoordinate(0);
|
---|
560 | sdmt->setCoordinate(sCBin, j);
|
---|
561 | }
|
---|
562 |
|
---|
563 | // Use RebinLattice to find shape
|
---|
564 |
|
---|
565 | IPosition shapeIn(1,sh.nchan);
|
---|
566 | IPosition shapeOut = RebinLattice<Float>::rebinShape (shapeIn, factors);
|
---|
567 | sh.nchan = shapeOut(0);
|
---|
568 | sdmt->putSDHeader(sh);
|
---|
569 |
|
---|
570 |
|
---|
571 | // Loop over rows and bin along channel axis
|
---|
572 |
|
---|
573 | const uInt axis = 3;
|
---|
574 | for (uInt i=0; i < in->nRow(); ++i) {
|
---|
575 | SDContainer sc = in->getSDContainer(i);
|
---|
576 | //
|
---|
577 | Array<Float> tSys(sc.getTsys()); // Get it out before sc changes shape
|
---|
578 |
|
---|
579 | // Bin up spectrum
|
---|
580 |
|
---|
581 | MaskedArray<Float> marr(in->rowAsMaskedArray(i));
|
---|
582 | MaskedArray<Float> marrout;
|
---|
583 | LatticeUtilities::bin(marrout, marr, axis, width);
|
---|
584 |
|
---|
585 | // Put back the binned data and flags
|
---|
586 |
|
---|
587 | IPosition ip2 = marrout.shape();
|
---|
588 | sc.resize(ip2);
|
---|
589 | sc.putSpectrum(marrout.getArray());
|
---|
590 | //
|
---|
591 | Array<uChar> outflags(ip2);
|
---|
592 | convertArray(outflags,!(marrout.getMask()));
|
---|
593 | sc.putFlags(outflags);
|
---|
594 |
|
---|
595 | // Bin up Tsys.
|
---|
596 |
|
---|
597 | Array<Bool> allGood(tSys.shape(),True);
|
---|
598 | MaskedArray<Float> tSysIn(tSys, allGood, True);
|
---|
599 | //
|
---|
600 | MaskedArray<Float> tSysOut;
|
---|
601 | LatticeUtilities::bin(tSysOut, tSysIn, axis, width);
|
---|
602 | sc.putTsys(tSysOut.getArray());
|
---|
603 | sdmt->putSDContainer(sc);
|
---|
604 | }
|
---|
605 | return CountedPtr<SDMemTable>(sdmt);
|
---|
606 | }
|
---|
607 |
|
---|
608 |
|
---|
609 |
|
---|
610 | std::vector<float> SDMath::statistic (const CountedPtr<SDMemTable>& in,
|
---|
611 | const std::vector<bool>& mask,
|
---|
612 | const std::string& which)
|
---|
613 | //
|
---|
614 | // Perhaps iteration over pol/beam/if should be in here
|
---|
615 | // and inside the nrow iteration ?
|
---|
616 | //
|
---|
617 | {
|
---|
618 | const uInt nRow = in->nRow();
|
---|
619 | std::vector<float> result(nRow);
|
---|
620 | Vector<Bool> msk(mask);
|
---|
621 |
|
---|
622 | // Specify cursor location
|
---|
623 |
|
---|
624 | uInt i = in->getBeam();
|
---|
625 | uInt j = in->getIF();
|
---|
626 | uInt k = in->getPol();
|
---|
627 | IPosition start(4,i,j,k,0);
|
---|
628 | IPosition end(4,i,j,k,in->nChan()-1);
|
---|
629 |
|
---|
630 | // Loop over rows
|
---|
631 |
|
---|
632 | const uInt nEl = msk.nelements();
|
---|
633 | for (uInt ii=0; ii < in->nRow(); ++ii) {
|
---|
634 |
|
---|
635 | // Get row and deconstruct
|
---|
636 |
|
---|
637 | MaskedArray<Float> marr(in->rowAsMaskedArray(ii));
|
---|
638 | Array<Float> arr = marr.getArray();
|
---|
639 | Array<Bool> barr = marr.getMask();
|
---|
640 |
|
---|
641 | // Access desired piece of data
|
---|
642 |
|
---|
643 | Array<Float> v((arr(start,end)).nonDegenerate());
|
---|
644 | Array<Bool> m((barr(start,end)).nonDegenerate());
|
---|
645 |
|
---|
646 | // Apply OTF mask
|
---|
647 |
|
---|
648 | MaskedArray<Float> tmp;
|
---|
649 | if (m.nelements()==nEl) {
|
---|
650 | tmp.setData(v,m&&msk);
|
---|
651 | } else {
|
---|
652 | tmp.setData(v,m);
|
---|
653 | }
|
---|
654 |
|
---|
655 | // Get statistic
|
---|
656 |
|
---|
657 | result[ii] = SDMath::theStatistic(which, tmp);
|
---|
658 | }
|
---|
659 | //
|
---|
660 | return result;
|
---|
661 | }
|
---|
662 |
|
---|
663 |
|
---|
664 | float SDMath::theStatistic(const std::string& which, const casa::MaskedArray<Float>& data)
|
---|
665 | {
|
---|
666 | String str(which);
|
---|
667 | str.upcase();
|
---|
668 | if (str.contains(String("MIN"))) {
|
---|
669 | return min(data);
|
---|
670 | } else if (str.contains(String("MAX"))) {
|
---|
671 | return max(data);
|
---|
672 | } else if (str.contains(String("SUMSQ"))) {
|
---|
673 | return sumsquares(data);
|
---|
674 | } else if (str.contains(String("SUM"))) {
|
---|
675 | return sum(data);
|
---|
676 | } else if (str.contains(String("MEAN"))) {
|
---|
677 | return mean(data);
|
---|
678 | } else if (str.contains(String("VAR"))) {
|
---|
679 | return variance(data);
|
---|
680 | } else if (str.contains(String("STDDEV"))) {
|
---|
681 | return stddev(data);
|
---|
682 | } else if (str.contains(String("AVDEV"))) {
|
---|
683 | return avdev(data);
|
---|
684 | } else if (str.contains(String("RMS"))) {
|
---|
685 | uInt n = data.nelementsValid();
|
---|
686 | return sqrt(sumsquares(data)/n);
|
---|
687 | } else if (str.contains(String("MED"))) {
|
---|
688 | return median(data);
|
---|
689 | }
|
---|
690 | }
|
---|