//#--------------------------------------------------------------------------- //# SDMath.cc: A collection of single dish mathematical operations //#--------------------------------------------------------------------------- //# Copyright (C) 2004 //# ATNF //# //# This program is free software; you can redistribute it and/or modify it //# under the terms of the GNU General Public License as published by the Free //# Software Foundation; either version 2 of the License, or (at your option) //# any later version. //# //# This program is distributed in the hope that it will be useful, but //# WITHOUT ANY WARRANTY; without even the implied warranty of //# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General //# Public License for more details. //# //# You should have received a copy of the GNU General Public License along //# with this program; if not, write to the Free Software Foundation, Inc., //# 675 Massachusetts Ave, Cambridge, MA 02139, USA. //# //# Correspondence concerning this software should be addressed as follows: //# Internet email: Malte.Marquarding@csiro.au //# Postal address: Malte Marquarding, //# Australia Telescope National Facility, //# P.O. Box 76, //# Epping, NSW, 2121, //# AUSTRALIA //# //# $Id: //#--------------------------------------------------------------------------- #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "MathUtils.h" #include "SDContainer.h" #include "SDMemTable.h" #include "SDMath.h" using namespace casa; using namespace asap; SDMath::SDMath() {;} SDMath::SDMath (const SDMath& other) { // No state } SDMath& SDMath::operator=(const SDMath& other) { if (this != &other) { // No state } return *this; } CountedPtr SDMath::average (const Block >& in, const Vector& mask, bool scanAv, const std::string& weightStr) // // Weighted averaging of spectra from one or more Tables. // { // Convert weight type WeightType wtType = NONE; convertWeightString (wtType, weightStr); // Create output Table by cloning from the first table SDMemTable* pTabOut = new SDMemTable(*in[0],True); // Setup const uInt axis = 3; // Spectral axis IPosition shp = in[0]->rowAsMaskedArray(0).shape(); // Must not change Array arr(shp); Array barr(shp); const Bool useMask = (mask.nelements() == shp(axis)); // Columns from Tables ROArrayColumn tSysCol; ROScalarColumn mjdCol; ROScalarColumn srcNameCol; ROScalarColumn intCol; ROArrayColumn fqIDCol; // Create accumulation MaskedArray. We accumulate for each channel,if,pol,beam // Note that the mask of the accumulation array will ALWAYS remain ALL True. // The MA is only used so that when data which is masked Bad is added to it, // that data does not contribute. Array zero(shp); zero=0.0; Array good(shp); good = True; MaskedArray sum(zero,good); // Counter arrays Array nPts(shp); // Number of points nPts = 0.0; Array nInc(shp); // Increment nInc = 1.0; // Create accumulation Array for variance. We accumulate for // each if,pol,beam, but average over channel. So we need // a shape with one less axis dropping channels. const uInt nAxesSub = shp.nelements() - 1; IPosition shp2(nAxesSub); for (uInt i=0,j=0; i<(nAxesSub+1); i++) { if (i!=axis) { shp2(j) = shp(i); j++; } } Array sumSq(shp2); sumSq = 0.0; IPosition pos2(nAxesSub,0); // For indexing // Time-related accumulators Double time; Double timeSum = 0.0; Double intSum = 0.0; Double interval = 0.0; // To get the right shape for the Tsys accumulator we need to // access a column from the first table. The shape of this // array must not change Array tSysSum; { const Table& tabIn = in[0]->table(); tSysCol.attach(tabIn,"TSYS"); tSysSum.resize(tSysCol.shape(0)); } tSysSum =0.0; Array tSys; // Scan and row tracking Int oldScanID = 0; Int outScanID = 0; Int scanID = 0; Int rowStart = 0; Int nAccum = 0; Int tableStart = 0; // Source and FreqID String sourceName, oldSourceName, sourceNameStart; Vector freqID, freqIDStart, oldFreqID; // Loop over tables Float fac = 1.0; const uInt nTables = in.nelements(); for (uInt iTab=0; iTabtable(); tSysCol.attach(tabIn, "TSYS"); mjdCol.attach(tabIn, "TIME"); srcNameCol.attach(tabIn, "SRCNAME"); intCol.attach(tabIn, "INTERVAL"); fqIDCol.attach(tabIn, "FREQID"); // Loop over rows in Table const uInt nRows = in[iTab]->nRow(); for (uInt iRow=0; iRowrowAsMaskedArray(iRow).shape(); if (!shp.isEqual(shp2)) { throw (AipsError("Shapes for all rows must be the same")); } // If we are not doing scan averages, make checks for source and // frequency setup and warn if averaging across them // Get copy of Scan Container for this row SDContainer sc = in[iTab]->getSDContainer(iRow); scanID = sc.scanid; // Get quantities from columns srcNameCol.getScalar(iRow, sourceName); mjdCol.get(iRow, time); tSysCol.get(iRow, tSys); intCol.get(iRow, interval); fqIDCol.get(iRow, freqID); // Initialize first source and freqID if (iRow==0 && iTab==0) { sourceNameStart = sourceName; freqIDStart = freqID; } // If we are doing scan averages, see if we are at the end of an // accumulation period (scan). We must check soutce names too, // since we might have two tables with one scan each but different // source names; we shouldn't average different sources together if (scanAv && ( (scanID != oldScanID) || (iRow==0 && iTab>0 && sourceName!=oldSourceName))) { // Normalize data in 'sum' accumulation array according to weighting scheme normalize (sum, sumSq, nPts, wtType, axis, nAxesSub); // Fill scan container. The source and freqID come from the // first row of the first table that went into this average ( // should be the same for all rows in the scan average) Float nR(nAccum); fillSDC (sc, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID, timeSum/nR, intSum, sourceNameStart, freqIDStart); // Write container out to Table pTabOut->putSDContainer(sc); // Reset accumulators sum = 0.0; sumSq = 0.0; nAccum = 0; // tSysSum =0.0; timeSum = 0.0; intSum = 0.0; // Increment rowStart = iRow; // First row for next accumulation tableStart = iTab; // First table for next accumulation sourceNameStart = sourceName; // First source name for next accumulation freqIDStart = freqID; // First FreqID for next accumulation // oldScanID = scanID; outScanID += 1; // Scan ID for next accumulation period } // Accumulate accumulate (timeSum, intSum, nAccum, sum, sumSq, nPts, tSysSum, tSys, nInc, mask, time, interval, in, iTab, iRow, axis, nAxesSub, useMask, wtType); // oldSourceName = sourceName; oldFreqID = freqID; } } // OK at this point we have accumulation data which is either // - accumulated from all tables into one row // or // - accumulated from the last scan average // // Normalize data in 'sum' accumulation array according to weighting scheme normalize (sum, sumSq, nPts, wtType, axis, nAxesSub); // Create and fill container. The container we clone will be from // the last Table and the first row that went into the current // accumulation. It probably doesn't matter that much really... Float nR(nAccum); SDContainer sc = in[tableStart]->getSDContainer(rowStart); fillSDC (sc, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID, timeSum/nR, intSum, sourceNameStart, freqIDStart); // pTabOut->putSDContainer(sc); /* cout << endl; cout << "Last accumulation for output scan ID " << outScanID << endl; cout << " The first row in this accumulation is " << rowStart << endl; cout << " The number of rows accumulated is " << nAccum << endl; cout << " The first table in this accumulation is " << tableStart << endl; cout << " The first source in this accumulation is " << sourceNameStart << endl; cout << " The first freqID in this accumulation is " << freqIDStart << endl; cout << " Average time stamp = " << timeSum/nR << endl; cout << " Integrated time = " << intSum << endl; */ return CountedPtr(pTabOut); } CountedPtr SDMath::quotient(const CountedPtr& on, const CountedPtr& off) // // Compute quotient spectrum // { const uInt nRows = on->nRow(); if (off->nRow() != nRows) { throw (AipsError("Input Scan Tables must have the same number of rows")); } // Input Tables and columns Table ton = on->table(); Table toff = off->table(); ROArrayColumn tsys(toff, "TSYS"); ROScalarColumn mjd(ton, "TIME"); ROScalarColumn integr(ton, "INTERVAL"); ROScalarColumn srcn(ton, "SRCNAME"); ROArrayColumn freqidc(ton, "FREQID"); // Output Table cloned from input SDMemTable* pTabOut = new SDMemTable(*on, True); // Loop over rows for (uInt i=0; i mon(on->rowAsMaskedArray(i)); MaskedArray moff(off->rowAsMaskedArray(i)); IPosition ipon = mon.shape(); IPosition ipoff = moff.shape(); // Array tsarr; tsys.get(i, tsarr); if (ipon != ipoff && ipon != tsarr.shape()) { throw(AipsError("on/off not conformant")); } // Compute quotient MaskedArray tmp = (mon-moff); Array out(tmp.getArray()); out /= moff; out *= tsarr; Array outflagsb = mon.getMask() && moff.getMask(); // Fill container for this row SDContainer sc = on->getSDContainer(); // putDataInSDC (sc, out, outflagsb); sc.putTsys(tsarr); sc.scanid = 0; // Put new row in output Table pTabOut->putSDContainer(sc); } // return CountedPtr(pTabOut); } SDMemTable* SDMath::hanning(const SDMemTable& in, Bool doAll) // // Hanning smooth each row // Should Tsys be smoothed ? // { // New Table SDMemTable* pTabOut = new SDMemTable(in,True); // Get cursor location IPosition start, end; getCursorLocation (start, end, in); // const uInt chanAxis = 3; // Spectrum axis IPosition shapeOut(4,1); // Loop over rows in Table for (uInt ri=0; ri < in.nRow(); ++ri) { // Get copy of data const MaskedArray& dataIn(in.rowAsMaskedArray(ri)); Array valuesIn = dataIn.getArray(); Array maskIn = dataIn.getMask(); // Smooth along the channels axis Vector outValues; Vector outMask; if (doAll) { uInt axis = 3; VectorIterator itValues(valuesIn, axis); VectorIterator itMask(maskIn, axis); while (!itValues.pastEnd()) { mathutil::hanning(outValues, outMask, itValues.vector(), itMask.vector()); itValues.vector() = outValues; itMask.vector() = outMask; // itValues.next(); itMask.next(); } } else { // Set multi-dim Vector shape shapeOut(chanAxis) = valuesIn.shape()(chanAxis); // Stuff about with shapes so that we don't have conformance run-time errors Vector valuesIn2 = valuesIn(start,end).nonDegenerate(); Vector maskIn2 = maskIn(start,end).nonDegenerate(); mathutil::hanning(outValues, outMask, valuesIn2, maskIn2); // Write back valuesIn(start,end) = outValues.reform(shapeOut); maskIn(start,end) = outMask.reform(shapeOut); } // Create and put back SDContainer sc = in.getSDContainer(ri); putDataInSDC (sc, valuesIn, maskIn); // pTabOut->putSDContainer(sc); } // return pTabOut; } std::vector SDMath::statistic (const CountedPtr& in, const std::vector& mask, const std::string& which) // // Perhaps iteration over pol/beam/if should be in here // and inside the nrow iteration ? // { const uInt nRow = in->nRow(); std::vector result(nRow); Vector msk(mask); // Specify cursor location IPosition start, end; getCursorLocation (start, end, *in); // Loop over rows const uInt nEl = msk.nelements(); for (uInt ii=0; ii < in->nRow(); ++ii) { // Get row and deconstruct MaskedArray marr(in->rowAsMaskedArray(ii)); Array arr = marr.getArray(); Array barr = marr.getMask(); // Access desired piece of data Array v((arr(start,end)).nonDegenerate()); Array m((barr(start,end)).nonDegenerate()); // Apply OTF mask MaskedArray tmp; if (m.nelements()==nEl) { tmp.setData(v,m&&msk); } else { tmp.setData(v,m); } // Get statistic result[ii] = mathutil::statistics(which, tmp); } // return result; } SDMemTable* SDMath::bin (const SDMemTable& in, Int width) { SDHeader sh = in.getSDHeader(); SDMemTable* pTabOut = new SDMemTable(in, True); // Bin up SpectralCoordinates IPosition factors(1); factors(0) = width; for (uInt j=0; jsetCoordinate(sCBin, j); } // Use RebinLattice to find shape IPosition shapeIn(1,sh.nchan); IPosition shapeOut = RebinLattice::rebinShape (shapeIn, factors); sh.nchan = shapeOut(0); pTabOut->putSDHeader(sh); // Loop over rows and bin along channel axis const uInt axis = 3; for (uInt i=0; i < in.nRow(); ++i) { SDContainer sc = in.getSDContainer(i); // Array tSys(sc.getTsys()); // Get it out before sc changes shape // Bin up spectrum MaskedArray marr(in.rowAsMaskedArray(i)); MaskedArray marrout; LatticeUtilities::bin(marrout, marr, axis, width); // Put back the binned data and flags IPosition ip2 = marrout.shape(); sc.resize(ip2); // putDataInSDC (sc, marrout.getArray(), marrout.getMask()); // Bin up Tsys. Array allGood(tSys.shape(),True); MaskedArray tSysIn(tSys, allGood, True); // MaskedArray tSysOut; LatticeUtilities::bin(tSysOut, tSysIn, axis, width); sc.putTsys(tSysOut.getArray()); // pTabOut->putSDContainer(sc); } return pTabOut; } SDMemTable* SDMath::simpleOperate (const SDMemTable& in, Float val, Bool doAll, uInt what) // // what = 0 Multiply // 1 Add { SDMemTable* pOut = new SDMemTable(in,False); const Table& tOut = pOut->table(); ArrayColumn spec(tOut,"SPECTRA"); // if (doAll) { for (uInt i=0; i < tOut.nrow(); i++) { // Get MaskedArray marr(pOut->rowAsMaskedArray(i)); // Operate if (what==0) { marr *= val; } else if (what==1) { marr += val; } // Put spec.put(i, marr.getArray()); } } else { // Get cursor location IPosition start, end; getCursorLocation (start, end, in); // for (uInt i=0; i < tOut.nrow(); i++) { // Get MaskedArray dataIn(pOut->rowAsMaskedArray(i)); // Modify. More work than we would like to deal with the mask Array& values = dataIn.getRWArray(); Array mask(dataIn.getMask()); // Array values2 = values(start,end); Array mask2 = mask(start,end); MaskedArray t(values2,mask2); if (what==0) { t *= val; } else if (what==1) { t += val; } values(start, end) = t.getArray(); // Write back into 'dataIn' // Put spec.put(i, dataIn.getArray()); } } // return pOut; } SDMemTable* SDMath::averagePol (const SDMemTable& in, const Vector& mask) // // Average all polarizations together, weighted by variance // { // WeightType wtType = NONE; // convertWeightString (wtType, weight); const uInt nRows = in.nRow(); const uInt polAxis = 2; // Polarization axis const uInt chanAxis = 3; // Spectrum axis // Create output Table and reshape number of polarizations Bool clear=True; SDMemTable* pTabOut = new SDMemTable(in, clear); SDHeader header = pTabOut->getSDHeader(); header.npol = 1; pTabOut->putSDHeader(header); // Shape of input and output data const IPosition& shapeIn = in.rowAsMaskedArray(0u, False).shape(); IPosition shapeOut(shapeIn); shapeOut(polAxis) = 1; // Average all polarizations // const uInt nChan = shapeIn(chanAxis); const IPosition vecShapeOut(4,1,1,1,nChan); // A multi-dim form of a Vector shape IPosition start(4), end(4); // Output arrays Array outData(shapeOut, 0.0); Array outMask(shapeOut, True); const IPosition axes(2, 2, 3); // pol-channel plane // const Bool useMask = (mask.nelements() == shapeIn(chanAxis)); // Loop over rows for (uInt iRow=0; iRow marr(in.rowAsMaskedArray(iRow)); Array& arr = marr.getRWArray(); const Array& barr = marr.getMask(); // Make iterators to iterate by pol-channel planes ReadOnlyArrayIterator itDataPlane(arr, axes); ReadOnlyArrayIterator itMaskPlane(barr, axes); // Accumulations Float fac = 1.0; Vector vecSum(nChan,0.0); // Iterate through data by pol-channel planes while (!itDataPlane.pastEnd()) { // Iterate through plane by polarization and accumulate Vectors Vector t1(nChan); t1 = 0.0; Vector t2(nChan); t2 = True; MaskedArray vecSum(t1,t2); Float varSum = 0.0; { ReadOnlyVectorIterator itDataVec(itDataPlane.array(), 1); ReadOnlyVectorIterator itMaskVec(itMaskPlane.array(), 1); while (!itDataVec.pastEnd()) { // Create MA of data & mask (optionally including OTF mask) and get variance if (useMask) { const MaskedArray spec(itDataVec.vector(),mask&&itMaskVec.vector()); fac = 1.0 / variance(spec); } else { const MaskedArray spec(itDataVec.vector(),itMaskVec.vector()); fac = 1.0 / variance(spec); } // Normalize spectrum (without OTF mask) and accumulate const MaskedArray spec(fac*itDataVec.vector(), itMaskVec.vector()); vecSum += spec; varSum += fac; // Next itDataVec.next(); itMaskVec.next(); } } // Normalize summed spectrum vecSum /= varSum; // FInd position in input data array. We are iterating by pol-channel // plane so all that will change is beam and IF and that's what we want. IPosition pos = itDataPlane.pos(); // Write out data. This is a bit messy. We have to reform the Vector // accumulator into an Array of shape (1,1,1,nChan) start = pos; end = pos; end(chanAxis) = nChan-1; outData(start,end) = vecSum.getArray().reform(vecShapeOut); outMask(start,end) = vecSum.getMask().reform(vecShapeOut); // Step to next beam/IF combination itDataPlane.next(); itMaskPlane.next(); } // Generate output container and write it to output table SDContainer sc = in.getSDContainer(); sc.resize(shapeOut); // putDataInSDC (sc, outData, outMask); pTabOut->putSDContainer(sc); } // return pTabOut; } // 'private' functions void SDMath::fillSDC (SDContainer& sc, const Array& mask, const Array& data, const Array& tSys, Int scanID, Double timeStamp, Double interval, const String& sourceName, const Vector& freqID) { // Data and mask putDataInSDC (sc, data, mask); // TSys sc.putTsys(tSys); // Time things sc.timestamp = timeStamp; sc.interval = interval; sc.scanid = scanID; // sc.sourcename = sourceName; sc.putFreqMap(freqID); } void SDMath::normalize (MaskedArray& sum, const Array& sumSq, const Array& nPts, WeightType wtType, Int axis, Int nAxesSub) { IPosition pos2(nAxesSub,0); // if (wtType==NONE) { // We just average by the number of points accumulated. // We need to make a MA out of nPts so that no divide by // zeros occur MaskedArray t(nPts, (nPts>Float(0.0))); sum /= t; } else if (wtType==VAR) { // Normalize each spectrum by sum(1/var) where the variance // is worked out for each spectrum Array& data = sum.getRWArray(); VectorIterator itData(data, axis); while (!itData.pastEnd()) { pos2 = itData.pos().getFirst(nAxesSub); itData.vector() /= sumSq(pos2); itData.next(); } } else if (wtType==TSYS) { } } void SDMath::accumulate (Double& timeSum, Double& intSum, Int& nAccum, MaskedArray& sum, Array& sumSq, Array& nPts, Array& tSysSum, const Array& tSys, const Array& nInc, const Vector& mask, Double time, Double interval, const Block >& in, uInt iTab, uInt iRow, uInt axis, uInt nAxesSub, Bool useMask, WeightType wtType) { // Get data MaskedArray dataIn(in[iTab]->rowAsMaskedArray(iRow)); Array& valuesIn = dataIn.getRWArray(); // writable reference const Array& maskIn = dataIn.getMask(); // RO reference // if (wtType==NONE) { const MaskedArray n(nInc,dataIn.getMask()); nPts += n; // Only accumulates where mask==T } else if (wtType==VAR) { // We are going to average the data, weighted by the noise for each pol, beam and IF. // So therefore we need to iterate through by spectrum (axis 3) VectorIterator itData(valuesIn, axis); ReadOnlyVectorIterator itMask(maskIn, axis); Float fac = 1.0; IPosition pos(nAxesSub,0); // while (!itData.pastEnd()) { // Make MaskedArray of Vector, optionally apply OTF mask, and find scaling factor if (useMask) { MaskedArray tmp(itData.vector(),mask&&itMask.vector()); fac = 1.0/variance(tmp); } else { MaskedArray tmp(itData.vector(),itMask.vector()); fac = 1.0/variance(tmp); } // Scale data itData.vector() *= fac; // Writes back into 'dataIn' // // Accumulate variance per if/pol/beam averaged over spectrum // This method to get pos2 from itData.pos() is only valid // because the spectral axis is the last one (so we can just // copy the first nAXesSub positions out) pos = itData.pos().getFirst(nAxesSub); sumSq(pos) += fac; // itData.next(); itMask.next(); } } else if (wtType==TSYS) { } // Accumulate sum of (possibly scaled) data sum += dataIn; // Accumulate Tsys, time, and interval tSysSum += tSys; timeSum += time; intSum += interval; nAccum += 1; } void SDMath::getCursorLocation (IPosition& start, IPosition& end, const SDMemTable& in) { const uInt nDim = 4; const uInt i = in.getBeam(); const uInt j = in.getIF(); const uInt k = in.getPol(); const uInt n = in.nChan(); // start.resize(nDim); start(0) = i; start(1) = j; start(2) = k; start(3) = 0; // end.resize(nDim); end(0) = i; end(1) = j; end(2) = k; end(3) = n-1; } void SDMath::convertWeightString (WeightType& wtType, const std::string& weightStr) { String tStr(weightStr); tStr.upcase(); if (tStr.contains(String("NONE"))) { wtType = NONE; } else if (tStr.contains(String("VAR"))) { wtType = VAR; } else if (tStr.contains(String("TSYS"))) { wtType = TSYS; throw (AipsError("T_sys weighting not yet implemented")); } else { throw (AipsError("Unrecognized weighting type")); } } void SDMath::putDataInSDC (SDContainer& sc, const Array& data, const Array& mask) { sc.putSpectrum(data); // Array outflags(data.shape()); convertArray(outflags,!mask); sc.putFlags(outflags); }