source: trunk/src/SDMath.cc@ 245

Last change on this file since 245 was 244, checked in by kil064, 20 years ago

Add arg 'preserve' to quotient method to preserve continuum (or not)

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 40.2 KB
Line 
1//#---------------------------------------------------------------------------
2//# SDMath.cc: A collection of single dish mathematical operations
3//#---------------------------------------------------------------------------
4//# Copyright (C) 2004
5//# ATNF
6//#
7//# This program is free software; you can redistribute it and/or modify it
8//# under the terms of the GNU General Public License as published by the Free
9//# Software Foundation; either version 2 of the License, or (at your option)
10//# any later version.
11//#
12//# This program is distributed in the hope that it will be useful, but
13//# WITHOUT ANY WARRANTY; without even the implied warranty of
14//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
15//# Public License for more details.
16//#
17//# You should have received a copy of the GNU General Public License along
18//# with this program; if not, write to the Free Software Foundation, Inc.,
19//# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
20//#
21//# Correspondence concerning this software should be addressed as follows:
22//# Internet email: Malte.Marquarding@csiro.au
23//# Postal address: Malte Marquarding,
24//# Australia Telescope National Facility,
25//# P.O. Box 76,
26//# Epping, NSW, 2121,
27//# AUSTRALIA
28//#
29//# $Id:
30//#---------------------------------------------------------------------------
31#include <vector>
32
33#include <casa/aips.h>
34#include <casa/BasicSL/String.h>
35#include <casa/Arrays/IPosition.h>
36#include <casa/Arrays/Array.h>
37#include <casa/Arrays/ArrayIter.h>
38#include <casa/Arrays/VectorIter.h>
39#include <casa/Arrays/ArrayMath.h>
40#include <casa/Arrays/ArrayLogical.h>
41#include <casa/Arrays/MaskedArray.h>
42#include <casa/Arrays/MaskArrMath.h>
43#include <casa/Arrays/MaskArrLogi.h>
44#include <casa/BasicMath/Math.h>
45#include <casa/Containers/Block.h>
46#include <casa/Quanta/QC.h>
47#include <casa/Utilities/Assert.h>
48#include <casa/Exceptions.h>
49
50#include <scimath/Mathematics/VectorKernel.h>
51#include <scimath/Mathematics/Convolver.h>
52#include <scimath/Mathematics/InterpolateArray1D.h>
53#include <scimath/Functionals/Polynomial.h>
54
55#include <tables/Tables/Table.h>
56#include <tables/Tables/ScalarColumn.h>
57#include <tables/Tables/ArrayColumn.h>
58#include <tables/Tables/ReadAsciiTable.h>
59
60#include <lattices/Lattices/LatticeUtilities.h>
61#include <lattices/Lattices/RebinLattice.h>
62#include <coordinates/Coordinates/SpectralCoordinate.h>
63#include <coordinates/Coordinates/CoordinateSystem.h>
64#include <coordinates/Coordinates/CoordinateUtil.h>
65#include <coordinates/Coordinates/VelocityAligner.h>
66
67#include "MathUtils.h"
68#include "SDDefs.h"
69#include "SDContainer.h"
70#include "SDMemTable.h"
71
72#include "SDMath.h"
73
74using namespace casa;
75using namespace asap;
76
77
78SDMath::SDMath()
79{;}
80
81SDMath::SDMath(const SDMath& other)
82{
83
84// No state
85
86}
87
88SDMath& SDMath::operator=(const SDMath& other)
89{
90 if (this != &other) {
91// No state
92 }
93 return *this;
94}
95
96SDMath::~SDMath()
97{;}
98
99
100CountedPtr<SDMemTable> SDMath::average(const Block<CountedPtr<SDMemTable> >& in,
101 const Vector<Bool>& mask, Bool scanAv,
102 const String& weightStr) const
103//Bool alignVelocity)
104//
105// Weighted averaging of spectra from one or more Tables.
106//
107{
108 Bool alignVelocity = False;
109
110// Convert weight type
111
112 WeightType wtType = NONE;
113 convertWeightString(wtType, weightStr);
114
115// Create output Table by cloning from the first table
116
117 SDMemTable* pTabOut = new SDMemTable(*in[0],True);
118
119// Setup
120
121 IPosition shp = in[0]->rowAsMaskedArray(0).shape(); // Must not change
122 Array<Float> arr(shp);
123 Array<Bool> barr(shp);
124 const Bool useMask = (mask.nelements() == shp(asap::ChanAxis));
125
126// Columns from Tables
127
128 ROArrayColumn<Float> tSysCol;
129 ROScalarColumn<Double> mjdCol;
130 ROScalarColumn<String> srcNameCol;
131 ROScalarColumn<Double> intCol;
132 ROArrayColumn<uInt> fqIDCol;
133
134// Create accumulation MaskedArray. We accumulate for each channel,if,pol,beam
135// Note that the mask of the accumulation array will ALWAYS remain ALL True.
136// The MA is only used so that when data which is masked Bad is added to it,
137// that data does not contribute.
138
139 Array<Float> zero(shp);
140 zero=0.0;
141 Array<Bool> good(shp);
142 good = True;
143 MaskedArray<Float> sum(zero,good);
144
145// Counter arrays
146
147 Array<Float> nPts(shp); // Number of points
148 nPts = 0.0;
149 Array<Float> nInc(shp); // Increment
150 nInc = 1.0;
151
152// Create accumulation Array for variance. We accumulate for
153// each if,pol,beam, but average over channel. So we need
154// a shape with one less axis dropping channels.
155
156 const uInt nAxesSub = shp.nelements() - 1;
157 IPosition shp2(nAxesSub);
158 for (uInt i=0,j=0; i<(nAxesSub+1); i++) {
159 if (i!=asap::ChanAxis) {
160 shp2(j) = shp(i);
161 j++;
162 }
163 }
164 Array<Float> sumSq(shp2);
165 sumSq = 0.0;
166 IPosition pos2(nAxesSub,0); // For indexing
167
168// Time-related accumulators
169
170 Double time;
171 Double timeSum = 0.0;
172 Double intSum = 0.0;
173 Double interval = 0.0;
174
175// To get the right shape for the Tsys accumulator we need to
176// access a column from the first table. The shape of this
177// array must not change
178
179 Array<Float> tSysSum;
180 {
181 const Table& tabIn = in[0]->table();
182 tSysCol.attach(tabIn,"TSYS");
183 tSysSum.resize(tSysCol.shape(0));
184 }
185 tSysSum =0.0;
186 Array<Float> tSys;
187
188// Scan and row tracking
189
190 Int oldScanID = 0;
191 Int outScanID = 0;
192 Int scanID = 0;
193 Int rowStart = 0;
194 Int nAccum = 0;
195 Int tableStart = 0;
196
197// Source and FreqID
198
199 String sourceName, oldSourceName, sourceNameStart;
200 Vector<uInt> freqID, freqIDStart, oldFreqID;
201
202// Velocity Aligner. We need an aligner for each Direction and FreqID
203// combination. I don't think there is anyway to know how many
204// directions there are.
205// For now, assume all Tables have the same Frequency Table
206
207/*
208 {
209 MEpoch::Ref timeRef(MEpoch::UTC); // Should be in header
210 MDirection::Types dirRef(MDirection::J2000); // Should be in header
211//
212 SDHeader sh = in[0].getSDHeader();
213 const uInt nChan = sh.nchan;
214//
215 const SDFrequencyTable freqTab = in[0]->getSDFreqTable();
216 const uInt nFreqID = freqTab.length();
217 PtrBlock<const VelocityAligner<Float>* > vA(nFreqID);
218
219// Get first time from first table
220
221 const Table& tabIn0 = in[0]->table();
222 mjdCol.attach(tabIn0, "TIME");
223 Double dTmp;
224 mjdCol.get(0, dTmp);
225 MVEpoch tmp2(Quantum<Double>(dTmp, Unit(String("d"))));
226 MEpoch epoch(tmp2, timeRef);
227//
228 for (uInt freqID=0; freqID<nFreqID; freqID++) {
229 SpectralCoordinate sC = in[0]->getCoordinate(freqID);
230 vA[freqID] = new VelocityAligner<Float>(sC, nChan, epoch, const MDirection& dir,
231 const MPosition& pos, const String& velUnit,
232 MDoppler::Types velType, MFrequency::Types velFreqSystem)
233 }
234 }
235*/
236
237// Loop over tables
238
239 Float fac = 1.0;
240 const uInt nTables = in.nelements();
241 for (uInt iTab=0; iTab<nTables; iTab++) {
242
243// Should check that the frequency tables don't change if doing VelocityAlignment
244
245// Attach columns to Table
246
247 const Table& tabIn = in[iTab]->table();
248 tSysCol.attach(tabIn, "TSYS");
249 mjdCol.attach(tabIn, "TIME");
250 srcNameCol.attach(tabIn, "SRCNAME");
251 intCol.attach(tabIn, "INTERVAL");
252 fqIDCol.attach(tabIn, "FREQID");
253
254// Loop over rows in Table
255
256 const uInt nRows = in[iTab]->nRow();
257 for (uInt iRow=0; iRow<nRows; iRow++) {
258
259// Check conformance
260
261 IPosition shp2 = in[iTab]->rowAsMaskedArray(iRow).shape();
262 if (!shp.isEqual(shp2)) {
263 throw (AipsError("Shapes for all rows must be the same"));
264 }
265
266// If we are not doing scan averages, make checks for source and
267// frequency setup and warn if averaging across them
268
269// Get copy of Scan Container for this row
270
271 SDContainer sc = in[iTab]->getSDContainer(iRow);
272 scanID = sc.scanid;
273
274// Get quantities from columns
275
276 srcNameCol.getScalar(iRow, sourceName);
277 mjdCol.get(iRow, time);
278 tSysCol.get(iRow, tSys);
279 intCol.get(iRow, interval);
280 fqIDCol.get(iRow, freqID);
281
282// Initialize first source and freqID
283
284 if (iRow==0 && iTab==0) {
285 sourceNameStart = sourceName;
286 freqIDStart = freqID;
287 }
288
289// If we are doing scan averages, see if we are at the end of an
290// accumulation period (scan). We must check soutce names too,
291// since we might have two tables with one scan each but different
292// source names; we shouldn't average different sources together
293
294 if (scanAv && ( (scanID != oldScanID) ||
295 (iRow==0 && iTab>0 && sourceName!=oldSourceName))) {
296
297// Normalize data in 'sum' accumulation array according to weighting scheme
298
299 normalize(sum, sumSq, nPts, wtType, asap::ChanAxis, nAxesSub);
300
301// Fill scan container. The source and freqID come from the
302// first row of the first table that went into this average (
303// should be the same for all rows in the scan average)
304
305 Float nR(nAccum);
306 fillSDC(sc, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
307 timeSum/nR, intSum, sourceNameStart, freqIDStart);
308
309// Write container out to Table
310
311 pTabOut->putSDContainer(sc);
312
313// Reset accumulators
314
315 sum = 0.0;
316 sumSq = 0.0;
317 nAccum = 0;
318//
319 tSysSum =0.0;
320 timeSum = 0.0;
321 intSum = 0.0;
322 nPts = 0.0;
323
324// Increment
325
326 rowStart = iRow; // First row for next accumulation
327 tableStart = iTab; // First table for next accumulation
328 sourceNameStart = sourceName; // First source name for next accumulation
329 freqIDStart = freqID; // First FreqID for next accumulation
330//
331 oldScanID = scanID;
332 outScanID += 1; // Scan ID for next accumulation period
333 }
334
335// Accumulate
336
337 accumulate(timeSum, intSum, nAccum, sum, sumSq, nPts, tSysSum,
338 tSys, nInc, mask, time, interval, in, iTab, iRow, asap::ChanAxis,
339 nAxesSub, useMask, wtType);
340//
341 oldSourceName = sourceName;
342 oldFreqID = freqID;
343 }
344 }
345
346// OK at this point we have accumulation data which is either
347// - accumulated from all tables into one row
348// or
349// - accumulated from the last scan average
350//
351// Normalize data in 'sum' accumulation array according to weighting scheme
352 normalize(sum, sumSq, nPts, wtType, asap::ChanAxis, nAxesSub);
353
354// Create and fill container. The container we clone will be from
355// the last Table and the first row that went into the current
356// accumulation. It probably doesn't matter that much really...
357
358 Float nR(nAccum);
359 SDContainer sc = in[tableStart]->getSDContainer(rowStart);
360 fillSDC(sc, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
361 timeSum/nR, intSum, sourceNameStart, freqIDStart);
362 pTabOut->putSDContainer(sc);
363//
364 return CountedPtr<SDMemTable>(pTabOut);
365}
366
367
368
369CountedPtr<SDMemTable> SDMath::quotient(const CountedPtr<SDMemTable>& on,
370 const CountedPtr<SDMemTable>& off,
371 Bool preserveContinuum) const
372{
373 const uInt nRowOn = on->nRow();
374 const uInt nRowOff = off->nRow();
375 Bool ok = (nRowOff==1&&nRowOn>0) ||
376 (nRowOn>0&&nRowOn==nRowOff);
377 if (!ok) {
378 throw (AipsError("The reference Scan Table can have one row or the same number of rows as the source Scan Table"));
379 }
380
381// Input Tables and columns
382
383 Table tabOn = on->table();
384 Table tabOff = off->table();
385 ROArrayColumn<Float> tSysOn(tabOn, "TSYS");
386 ROArrayColumn<Float> tSysOff(tabOff, "TSYS");
387
388// Output Table cloned from input
389
390 SDMemTable* pTabOut = new SDMemTable(*on, True);
391
392// Loop over rows
393
394 MaskedArray<Float>* pMOff = new MaskedArray<Float>(off->rowAsMaskedArray(0));
395 IPosition shpOff = pMOff->shape();
396//
397 Array<Float> tSysOnArr, tSysOffArr;
398 tSysOn.get(0, tSysOnArr);
399 tSysOff.get(0, tSysOffArr);
400//
401 for (uInt i=0; i<nRowOn; i++) {
402 MaskedArray<Float> mOn(on->rowAsMaskedArray(i));
403 IPosition shpOn = mOn.shape();
404//
405 if (nRowOff>1) {
406 delete pMOff;
407 pMOff = new MaskedArray<Float>(off->rowAsMaskedArray(i));
408 shpOff = pMOff->shape();
409 if (!shpOn.isEqual(shpOff)) {
410 throw(AipsError("on/off data are not conformant"));
411 }
412//
413 tSysOff.get(i, tSysOffArr);
414 tSysOn.get(i, tSysOnArr);
415 if (!tSysOnArr.shape().isEqual(tSysOffArr.shape())) {
416 throw(AipsError("on/off Tsys data are not conformant"));
417 }
418//
419 if (!shpOn.isEqual(tSysOnArr.shape())) {
420 throw(AipsError("Correlation and Tsys data are not conformant"));
421 }
422 }
423
424// Get container
425
426 SDContainer sc = on->getSDContainer(i);
427
428// Compute and put quotient into container
429
430 if (preserveContinuum) {
431 MaskedArray<Float> tmp = (tSysOffArr * mOn / *pMOff) - tSysOffArr;
432 putDataInSDC(sc, tmp.getArray(), tmp.getMask());
433 } else {
434 MaskedArray<Float> tmp = (tSysOffArr * mOn / *pMOff) - tSysOnArr;
435 putDataInSDC(sc, tmp.getArray(), tmp.getMask());
436 }
437 sc.putTsys(tSysOffArr);
438 sc.scanid = i;
439
440// Put new row in output Table
441
442 pTabOut->putSDContainer(sc);
443 }
444 if (pMOff) delete pMOff;
445//
446 return CountedPtr<SDMemTable>(pTabOut);
447}
448
449
450CountedPtr<SDMemTable> SDMath::simpleBinaryOperate (const CountedPtr<SDMemTable>& left,
451 const CountedPtr<SDMemTable>& right,
452 const String& op) const
453//
454// Simple binary Table operators. add, subtract, multiply, divide (what=0,1,2,3)
455//
456{
457
458// CHeck operator
459
460 String op2(op);
461 op2.upcase();
462 uInt what = 0;
463 if (op2=="ADD") {
464 what = 0;
465 } else if (op2=="SUB") {
466 what = 1;
467 } else if (op2=="MUL") {
468 what = 2;
469 } else if (op2=="DIV") {
470 what = 3;
471 } else {
472 throw AipsError("Unrecognized operation");
473 }
474
475// Check rows
476
477 const uInt nRows = left->nRow();
478 if (right->nRow() != nRows) {
479 throw (AipsError("Input Scan Tables must have the same number of rows"));
480 }
481
482// Input Tables and columns
483
484 const Table& tLeft = left->table();
485 const Table& tRight = right->table();
486//
487 ROArrayColumn<Float> tSysLeft(tLeft, "TSYS");
488 ROArrayColumn<Float> tSysRight(tRight, "TSYS");
489
490// Output Table cloned from input
491
492 SDMemTable* pTabOut = new SDMemTable(*left, True);
493
494// Loop over rows
495
496 for (uInt i=0; i<nRows; i++) {
497
498// Get data
499 MaskedArray<Float> mLeft(left->rowAsMaskedArray(i));
500 MaskedArray<Float> mRight(right->rowAsMaskedArray(i));
501//
502 IPosition shpLeft = mLeft.shape();
503 IPosition shpRight = mRight.shape();
504 if (!shpLeft.isEqual(shpRight)) {
505 throw(AipsError("left/right Scan Tables are not conformant"));
506 }
507
508// Get TSys
509
510 Array<Float> tSysLeftArr, tSysRightArr;
511 tSysLeft.get(i, tSysLeftArr);
512 tSysRight.get(i, tSysRightArr);
513
514// Make container
515
516 SDContainer sc = left->getSDContainer(i);
517
518// Operate on data and TSys
519
520 if (what==0) {
521 MaskedArray<Float> tmp = mLeft + mRight;
522 putDataInSDC(sc, tmp.getArray(), tmp.getMask());
523 sc.putTsys(tSysLeftArr+tSysRightArr);
524 } else if (what==1) {
525 MaskedArray<Float> tmp = mLeft - mRight;
526 putDataInSDC(sc, tmp.getArray(), tmp.getMask());
527 sc.putTsys(tSysLeftArr-tSysRightArr);
528 } else if (what==2) {
529 MaskedArray<Float> tmp = mLeft * mRight;
530 putDataInSDC(sc, tmp.getArray(), tmp.getMask());
531 sc.putTsys(tSysLeftArr*tSysRightArr);
532 } else if (what==3) {
533 MaskedArray<Float> tmp = mLeft / mRight;
534 putDataInSDC(sc, tmp.getArray(), tmp.getMask());
535 sc.putTsys(tSysLeftArr/tSysRightArr);
536 }
537
538// Put new row in output Table
539
540 pTabOut->putSDContainer(sc);
541 }
542//
543 return CountedPtr<SDMemTable>(pTabOut);
544}
545
546
547
548std::vector<float> SDMath::statistic(const CountedPtr<SDMemTable>& in,
549 const Vector<Bool>& mask,
550 const String& which, Int row) const
551//
552// Perhaps iteration over pol/beam/if should be in here
553// and inside the nrow iteration ?
554//
555{
556 const uInt nRow = in->nRow();
557
558// Specify cursor location
559
560 IPosition start, end;
561 getCursorLocation(start, end, *in);
562
563// Loop over rows
564
565 const uInt nEl = mask.nelements();
566 uInt iStart = 0;
567 uInt iEnd = in->nRow()-1;
568//
569 if (row>=0) {
570 iStart = row;
571 iEnd = row;
572 }
573//
574 std::vector<float> result(iEnd-iStart+1);
575 for (uInt ii=iStart; ii <= iEnd; ++ii) {
576
577// Get row and deconstruct
578
579 MaskedArray<Float> marr(in->rowAsMaskedArray(ii));
580 Array<Float> arr = marr.getArray();
581 Array<Bool> barr = marr.getMask();
582
583// Access desired piece of data
584
585 Array<Float> v((arr(start,end)).nonDegenerate());
586 Array<Bool> m((barr(start,end)).nonDegenerate());
587
588// Apply OTF mask
589
590 MaskedArray<Float> tmp;
591 if (m.nelements()==nEl) {
592 tmp.setData(v,m&&mask);
593 } else {
594 tmp.setData(v,m);
595 }
596
597// Get statistic
598
599 result[ii-iStart] = mathutil::statistics(which, tmp);
600 }
601//
602 return result;
603}
604
605
606SDMemTable* SDMath::bin(const SDMemTable& in, Int width) const
607{
608 SDHeader sh = in.getSDHeader();
609 SDMemTable* pTabOut = new SDMemTable(in, True);
610
611// Bin up SpectralCoordinates
612
613 IPosition factors(1);
614 factors(0) = width;
615 for (uInt j=0; j<in.nCoordinates(); ++j) {
616 CoordinateSystem cSys;
617 cSys.addCoordinate(in.getCoordinate(j));
618 CoordinateSystem cSysBin =
619 CoordinateUtil::makeBinnedCoordinateSystem(factors, cSys, False);
620//
621 SpectralCoordinate sCBin = cSysBin.spectralCoordinate(0);
622 pTabOut->setCoordinate(sCBin, j);
623 }
624
625// Use RebinLattice to find shape
626
627 IPosition shapeIn(1,sh.nchan);
628 IPosition shapeOut = RebinLattice<Float>::rebinShape(shapeIn, factors);
629 sh.nchan = shapeOut(0);
630 pTabOut->putSDHeader(sh);
631
632
633// Loop over rows and bin along channel axis
634
635 for (uInt i=0; i < in.nRow(); ++i) {
636 SDContainer sc = in.getSDContainer(i);
637//
638 Array<Float> tSys(sc.getTsys()); // Get it out before sc changes shape
639
640// Bin up spectrum
641
642 MaskedArray<Float> marr(in.rowAsMaskedArray(i));
643 MaskedArray<Float> marrout;
644 LatticeUtilities::bin(marrout, marr, asap::ChanAxis, width);
645
646// Put back the binned data and flags
647
648 IPosition ip2 = marrout.shape();
649 sc.resize(ip2);
650//
651 putDataInSDC(sc, marrout.getArray(), marrout.getMask());
652
653// Bin up Tsys.
654
655 Array<Bool> allGood(tSys.shape(),True);
656 MaskedArray<Float> tSysIn(tSys, allGood, True);
657//
658 MaskedArray<Float> tSysOut;
659 LatticeUtilities::bin(tSysOut, tSysIn, asap::ChanAxis, width);
660 sc.putTsys(tSysOut.getArray());
661//
662 pTabOut->putSDContainer(sc);
663 }
664 return pTabOut;
665}
666
667SDMemTable* SDMath::simpleOperate(const SDMemTable& in, Float val, Bool doAll,
668 uInt what) const
669//
670// what = 0 Multiply
671// 1 Add
672{
673 SDMemTable* pOut = new SDMemTable(in,False);
674 const Table& tOut = pOut->table();
675 ArrayColumn<Float> spec(tOut,"SPECTRA");
676//
677 if (doAll) {
678 for (uInt i=0; i < tOut.nrow(); i++) {
679
680// Get
681
682 MaskedArray<Float> marr(pOut->rowAsMaskedArray(i));
683
684// Operate
685
686 if (what==0) {
687 marr *= val;
688 } else if (what==1) {
689 marr += val;
690 }
691
692// Put
693
694 spec.put(i, marr.getArray());
695 }
696 } else {
697
698// Get cursor location
699
700 IPosition start, end;
701 getCursorLocation(start, end, in);
702//
703 for (uInt i=0; i < tOut.nrow(); i++) {
704
705// Get
706
707 MaskedArray<Float> dataIn(pOut->rowAsMaskedArray(i));
708
709// Modify. More work than we would like to deal with the mask
710
711 Array<Float>& values = dataIn.getRWArray();
712 Array<Bool> mask(dataIn.getMask());
713//
714 Array<Float> values2 = values(start,end);
715 Array<Bool> mask2 = mask(start,end);
716 MaskedArray<Float> t(values2,mask2);
717 if (what==0) {
718 t *= val;
719 } else if (what==1) {
720 t += val;
721 }
722 values(start, end) = t.getArray(); // Write back into 'dataIn'
723
724// Put
725 spec.put(i, dataIn.getArray());
726 }
727 }
728//
729 return pOut;
730}
731
732
733
734SDMemTable* SDMath::averagePol(const SDMemTable& in, const Vector<Bool>& mask) const
735//
736// Average all polarizations together, weighted by variance
737//
738{
739// WeightType wtType = NONE;
740// convertWeightString(wtType, weight);
741
742 const uInt nRows = in.nRow();
743 const uInt polAxis = asap::PolAxis; // Polarization axis
744 const uInt chanAxis = asap::ChanAxis; // Spectrum axis
745
746// Create output Table and reshape number of polarizations
747
748 Bool clear=True;
749 SDMemTable* pTabOut = new SDMemTable(in, clear);
750 SDHeader header = pTabOut->getSDHeader();
751 header.npol = 1;
752 pTabOut->putSDHeader(header);
753
754// Shape of input and output data
755
756 const IPosition& shapeIn = in.rowAsMaskedArray(0u, False).shape();
757 IPosition shapeOut(shapeIn);
758 shapeOut(polAxis) = 1; // Average all polarizations
759//
760 const uInt nChan = shapeIn(chanAxis);
761 const IPosition vecShapeOut(4,1,1,1,nChan); // A multi-dim form of a Vector shape
762 IPosition start(4), end(4);
763
764// Output arrays
765
766 Array<Float> outData(shapeOut, 0.0);
767 Array<Bool> outMask(shapeOut, True);
768 const IPosition axes(2, 2, 3); // pol-channel plane
769//
770 const Bool useMask = (mask.nelements() == shapeIn(chanAxis));
771
772// Loop over rows
773
774 for (uInt iRow=0; iRow<nRows; iRow++) {
775
776// Get data for this row
777
778 MaskedArray<Float> marr(in.rowAsMaskedArray(iRow));
779 Array<Float>& arr = marr.getRWArray();
780 const Array<Bool>& barr = marr.getMask();
781
782// Make iterators to iterate by pol-channel planes
783
784 ReadOnlyArrayIterator<Float> itDataPlane(arr, axes);
785 ReadOnlyArrayIterator<Bool> itMaskPlane(barr, axes);
786
787// Accumulations
788
789 Float fac = 1.0;
790 Vector<Float> vecSum(nChan,0.0);
791
792// Iterate through data by pol-channel planes
793
794 while (!itDataPlane.pastEnd()) {
795
796// Iterate through plane by polarization and accumulate Vectors
797
798 Vector<Float> t1(nChan); t1 = 0.0;
799 Vector<Bool> t2(nChan); t2 = True;
800 MaskedArray<Float> vecSum(t1,t2);
801 Float varSum = 0.0;
802 {
803 ReadOnlyVectorIterator<Float> itDataVec(itDataPlane.array(), 1);
804 ReadOnlyVectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
805 while (!itDataVec.pastEnd()) {
806
807// Create MA of data & mask (optionally including OTF mask) and get variance
808
809 if (useMask) {
810 const MaskedArray<Float> spec(itDataVec.vector(),mask&&itMaskVec.vector());
811 fac = 1.0 / variance(spec);
812 } else {
813 const MaskedArray<Float> spec(itDataVec.vector(),itMaskVec.vector());
814 fac = 1.0 / variance(spec);
815 }
816
817// Normalize spectrum (without OTF mask) and accumulate
818
819 const MaskedArray<Float> spec(fac*itDataVec.vector(), itMaskVec.vector());
820 vecSum += spec;
821 varSum += fac;
822
823// Next
824
825 itDataVec.next();
826 itMaskVec.next();
827 }
828 }
829
830// Normalize summed spectrum
831
832 vecSum /= varSum;
833
834// FInd position in input data array. We are iterating by pol-channel
835// plane so all that will change is beam and IF and that's what we want.
836
837 IPosition pos = itDataPlane.pos();
838
839// Write out data. This is a bit messy. We have to reform the Vector
840// accumulator into an Array of shape (1,1,1,nChan)
841
842 start = pos;
843 end = pos;
844 end(chanAxis) = nChan-1;
845 outData(start,end) = vecSum.getArray().reform(vecShapeOut);
846 outMask(start,end) = vecSum.getMask().reform(vecShapeOut);
847
848// Step to next beam/IF combination
849
850 itDataPlane.next();
851 itMaskPlane.next();
852 }
853
854// Generate output container and write it to output table
855
856 SDContainer sc = in.getSDContainer();
857 sc.resize(shapeOut);
858//
859 putDataInSDC(sc, outData, outMask);
860 pTabOut->putSDContainer(sc);
861 }
862//
863 return pTabOut;
864}
865
866
867SDMemTable* SDMath::smooth(const SDMemTable& in,
868 const casa::String& kernelType,
869 casa::Float width, Bool doAll) const
870{
871
872// Number of channels
873
874 const uInt chanAxis = asap::ChanAxis; // Spectral axis
875 SDHeader sh = in.getSDHeader();
876 const uInt nChan = sh.nchan;
877
878// Generate Kernel
879
880 VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernelType);
881 Vector<Float> kernel = VectorKernel::make(type, width, nChan, True, False);
882
883// Generate Convolver
884
885 IPosition shape(1,nChan);
886 Convolver<Float> conv(kernel, shape);
887
888// New Table
889
890 SDMemTable* pTabOut = new SDMemTable(in,True);
891
892// Get cursor location
893
894 IPosition start, end;
895 getCursorLocation(start, end, in);
896//
897 IPosition shapeOut(4,1);
898
899// Output Vectors
900
901 Vector<Float> valuesOut(nChan);
902 Vector<Bool> maskOut(nChan);
903
904// Loop over rows in Table
905
906 for (uInt ri=0; ri < in.nRow(); ++ri) {
907
908// Get copy of data
909
910 const MaskedArray<Float>& dataIn(in.rowAsMaskedArray(ri));
911 AlwaysAssert(dataIn.shape()(chanAxis)==nChan, AipsError);
912//
913 Array<Float> valuesIn = dataIn.getArray();
914 Array<Bool> maskIn = dataIn.getMask();
915
916// Branch depending on whether we smooth all locations or just
917// those pointed at by the current selection cursor
918
919 if (doAll) {
920 uInt axis = asap::ChanAxis;
921 VectorIterator<Float> itValues(valuesIn, axis);
922 VectorIterator<Bool> itMask(maskIn, axis);
923 while (!itValues.pastEnd()) {
924
925// Smooth
926 if (kernelType==VectorKernel::HANNING) {
927 mathutil::hanning(valuesOut, maskOut, itValues.vector(), itMask.vector());
928 itMask.vector() = maskOut;
929 } else {
930 mathutil::replaceMaskByZero(itValues.vector(), itMask.vector());
931 conv.linearConv(valuesOut, itValues.vector());
932 }
933//
934 itValues.vector() = valuesOut;
935//
936 itValues.next();
937 itMask.next();
938 }
939 } else {
940
941// Set multi-dim Vector shape
942
943 shapeOut(chanAxis) = valuesIn.shape()(chanAxis);
944
945// Stuff about with shapes so that we don't have conformance run-time errors
946
947 Vector<Float> valuesIn2 = valuesIn(start,end).nonDegenerate();
948 Vector<Bool> maskIn2 = maskIn(start,end).nonDegenerate();
949
950// Smooth
951
952 if (kernelType==VectorKernel::HANNING) {
953 mathutil::hanning(valuesOut, maskOut, valuesIn2, maskIn2);
954 maskIn(start,end) = maskOut.reform(shapeOut);
955 } else {
956 mathutil::replaceMaskByZero(valuesIn2, maskIn2);
957 conv.linearConv(valuesOut, valuesIn2);
958 }
959//
960 valuesIn(start,end) = valuesOut.reform(shapeOut);
961 }
962
963// Create and put back
964
965 SDContainer sc = in.getSDContainer(ri);
966 putDataInSDC(sc, valuesIn, maskIn);
967//
968 pTabOut->putSDContainer(sc);
969 }
970//
971 return pTabOut;
972}
973
974
975SDMemTable* SDMath::convertFlux (const SDMemTable& in, Float a, Float eta, Bool doAll) const
976//
977// As it is, this function could be implemented with 'simpleOperate'
978// However, I anticipate that eventually we will look the conversion
979// values up in a Table and apply them in a frequency dependent way,
980// so I have implemented it fully here
981//
982{
983 SDHeader sh = in.getSDHeader();
984 SDMemTable* pTabOut = new SDMemTable(in, True);
985
986// FInd out how to convert values into Jy and K (e.g. units might be mJy or mK)
987// Also automatically find out what we are converting to according to the
988// flux unit
989
990 Unit fluxUnit(sh.fluxunit);
991 Unit K(String("K"));
992 Unit JY(String("Jy"));
993//
994 Bool toKelvin = True;
995 Double inFac = 1.0;
996 if (fluxUnit==JY) {
997 cerr << "Converting to K" << endl;
998//
999 Quantum<Double> t(1.0,fluxUnit);
1000 Quantum<Double> t2 = t.get(JY);
1001 inFac = (t2 / t).getValue();
1002//
1003 toKelvin = True;
1004 sh.fluxunit = "K";
1005 } else if (fluxUnit==K) {
1006 cerr << "Converting to Jy" << endl;
1007//
1008 Quantum<Double> t(1.0,fluxUnit);
1009 Quantum<Double> t2 = t.get(K);
1010 inFac = (t2 / t).getValue();
1011//
1012 toKelvin = False;
1013 sh.fluxunit = "Jy";
1014 } else {
1015 throw AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K");
1016 }
1017 pTabOut->putSDHeader(sh);
1018
1019// Compute conversion factor. 'a' and 'eta' are really frequency, time and
1020// telescope dependent and should be looked// up in a table
1021
1022 Float factor = 2.0 * inFac * 1.0e-7 * 1.0e26 *
1023 QC::k.getValue(Unit(String("erg/K"))) / a / eta;
1024 if (toKelvin) {
1025 factor = 1.0 / factor;
1026 }
1027 cerr << "Applying conversion factor = " << factor << endl;
1028
1029// For operations only on specified cursor location
1030
1031 IPosition start, end;
1032 getCursorLocation(start, end, in);
1033
1034// Loop over rows and apply factor to spectra
1035
1036 const uInt axis = asap::ChanAxis;
1037 for (uInt i=0; i < in.nRow(); ++i) {
1038
1039// Get data
1040
1041 MaskedArray<Float> dataIn(in.rowAsMaskedArray(i));
1042 Array<Float>& valuesIn = dataIn.getRWArray(); // writable reference
1043 const Array<Bool>& maskIn = dataIn.getMask();
1044
1045// Need to apply correct conversion factor (frequency and time dependent)
1046// which should be sourced from a Table. For now we just apply the given
1047// factor to everything
1048
1049 if (doAll) {
1050 VectorIterator<Float> itValues(valuesIn, asap::ChanAxis);
1051 while (!itValues.pastEnd()) {
1052 itValues.vector() *= factor; // Writes back into dataIn
1053//
1054 itValues.next();
1055 }
1056 } else {
1057 Array<Float> valuesIn2 = valuesIn(start,end);
1058 valuesIn2 *= factor;
1059 valuesIn(start,end) = valuesIn2;
1060 }
1061
1062// Write out
1063
1064 SDContainer sc = in.getSDContainer(i);
1065 putDataInSDC(sc, valuesIn, maskIn);
1066//
1067 pTabOut->putSDContainer(sc);
1068 }
1069 return pTabOut;
1070}
1071
1072
1073
1074SDMemTable* SDMath::gainElevation (const SDMemTable& in, const Vector<Float>& coeffs,
1075 const String& fileName,
1076 const String& methodStr, Bool doAll) const
1077{
1078
1079// Get header and clone output table
1080
1081 SDHeader sh = in.getSDHeader();
1082 SDMemTable* pTabOut = new SDMemTable(in, True);
1083
1084// Get elevation data from SDMemTable and convert to degrees
1085
1086 const Table& tab = in.table();
1087 ROScalarColumn<Float> elev(tab, "ELEVATION");
1088 Vector<Float> x = elev.getColumn();
1089 x *= Float(180 / C::pi);
1090//
1091 const uInt nC = coeffs.nelements();
1092 if (fileName.length()>0 && nC>0) {
1093 throw AipsError("You must choose either polynomial coefficients or an ascii file, not both");
1094 }
1095
1096// Correct
1097
1098 if (nC>0 || fileName.length()==0) {
1099
1100// Find instrument
1101
1102 Bool throwIt = True;
1103 Instrument inst = SDMemTable::convertInstrument (sh.antennaname, throwIt);
1104
1105// Set polynomial
1106
1107 Polynomial<Float>* pPoly = 0;
1108 Vector<Float> coeff;
1109 String msg;
1110 if (nC>0) {
1111 pPoly = new Polynomial<Float>(nC);
1112 coeff = coeffs;
1113 msg = String("user");
1114 } else {
1115 if (inst==PKSMULTIBEAM) {
1116 } else if (inst==PKSSINGLEBEAM) {
1117 } else if (inst==TIDBINBILLA) {
1118 pPoly = new Polynomial<Float>(3);
1119 coeff.resize(3);
1120 coeff(0) = 3.58788e-1;
1121 coeff(1) = 2.87243e-2;
1122 coeff(2) = -3.219093e-4;
1123 } else if (inst==MOPRA) {
1124 }
1125 msg = String("built in");
1126 }
1127//
1128 if (coeff.nelements()>0) {
1129 pPoly->setCoefficients(coeff);
1130 } else {
1131 throw AipsError("There is no known gain-el polynomial known for this instrument");
1132 }
1133//
1134 cerr << "Making polynomial correction with " << msg << " coefficients" << endl;
1135 const uInt nRow = in.nRow();
1136 Vector<Float> factor(nRow);
1137 for (uInt i=0; i<nRow; i++) {
1138 factor[i] = (*pPoly)(x[i]);
1139 }
1140 delete pPoly;
1141//
1142 correctFromVector (pTabOut, in, doAll, factor);
1143 } else {
1144
1145// Indicate which columns to read from ascii file
1146
1147 String col0("ELEVATION");
1148 String col1("FACTOR");
1149
1150// Read and correct
1151
1152 cerr << "Making correction from ascii Table" << endl;
1153 correctFromAsciiTable (pTabOut, in, fileName, col0, col1,
1154 methodStr, doAll, x);
1155 }
1156//
1157 return pTabOut;
1158}
1159
1160
1161
1162SDMemTable* SDMath::opacity (const SDMemTable& in, Float tau, Bool doAll) const
1163{
1164
1165// Get header and clone output table
1166
1167 SDHeader sh = in.getSDHeader();
1168 SDMemTable* pTabOut = new SDMemTable(in, True);
1169
1170// Get elevation data from SDMemTable and convert to degrees
1171
1172 const Table& tab = in.table();
1173 ROScalarColumn<Float> elev(tab, "ELEVATION");
1174 Vector<Float> zDist = elev.getColumn();
1175 zDist = Float(C::pi_2) - zDist;
1176
1177// Generate correction factor
1178
1179 const uInt nRow = in.nRow();
1180 Vector<Float> factor(nRow);
1181 Vector<Float> factor2(nRow);
1182 for (uInt i=0; i<nRow; i++) {
1183 factor[i] = exp(tau)/cos(zDist[i]);
1184 }
1185
1186// Correct
1187
1188 correctFromVector (pTabOut, in, doAll, factor);
1189//
1190 return pTabOut;
1191}
1192
1193
1194
1195
1196// 'private' functions
1197
1198void SDMath::fillSDC(SDContainer& sc,
1199 const Array<Bool>& mask,
1200 const Array<Float>& data,
1201 const Array<Float>& tSys,
1202 Int scanID, Double timeStamp,
1203 Double interval, const String& sourceName,
1204 const Vector<uInt>& freqID) const
1205{
1206// Data and mask
1207
1208 putDataInSDC(sc, data, mask);
1209
1210// TSys
1211
1212 sc.putTsys(tSys);
1213
1214// Time things
1215
1216 sc.timestamp = timeStamp;
1217 sc.interval = interval;
1218 sc.scanid = scanID;
1219//
1220 sc.sourcename = sourceName;
1221 sc.putFreqMap(freqID);
1222}
1223
1224void SDMath::normalize(MaskedArray<Float>& sum,
1225 const Array<Float>& sumSq,
1226 const Array<Float>& nPts,
1227 WeightType wtType, Int axis,
1228 Int nAxesSub) const
1229{
1230 IPosition pos2(nAxesSub,0);
1231//
1232 if (wtType==NONE) {
1233
1234// We just average by the number of points accumulated.
1235// We need to make a MA out of nPts so that no divide by
1236// zeros occur
1237
1238 MaskedArray<Float> t(nPts, (nPts>Float(0.0)));
1239 sum /= t;
1240 } else if (wtType==VAR) {
1241
1242// Normalize each spectrum by sum(1/var) where the variance
1243// is worked out for each spectrum
1244
1245 Array<Float>& data = sum.getRWArray();
1246 VectorIterator<Float> itData(data, axis);
1247 while (!itData.pastEnd()) {
1248 pos2 = itData.pos().getFirst(nAxesSub);
1249 itData.vector() /= sumSq(pos2);
1250 itData.next();
1251 }
1252 } else if (wtType==TSYS) {
1253 }
1254}
1255
1256
1257void SDMath::accumulate(Double& timeSum, Double& intSum, Int& nAccum,
1258 MaskedArray<Float>& sum, Array<Float>& sumSq,
1259 Array<Float>& nPts, Array<Float>& tSysSum,
1260 const Array<Float>& tSys, const Array<Float>& nInc,
1261 const Vector<Bool>& mask, Double time, Double interval,
1262 const Block<CountedPtr<SDMemTable> >& in,
1263 uInt iTab, uInt iRow, uInt axis,
1264 uInt nAxesSub, Bool useMask,
1265 WeightType wtType) const
1266{
1267
1268// Get data
1269
1270 MaskedArray<Float> dataIn(in[iTab]->rowAsMaskedArray(iRow));
1271 Array<Float>& valuesIn = dataIn.getRWArray(); // writable reference
1272 const Array<Bool>& maskIn = dataIn.getMask(); // RO reference
1273//
1274 if (wtType==NONE) {
1275 const MaskedArray<Float> n(nInc,dataIn.getMask());
1276 nPts += n; // Only accumulates where mask==T
1277 } else if (wtType==VAR) {
1278
1279// We are going to average the data, weighted by the noise for each pol, beam and IF.
1280// So therefore we need to iterate through by spectrum (axis 3)
1281
1282 VectorIterator<Float> itData(valuesIn, axis);
1283 ReadOnlyVectorIterator<Bool> itMask(maskIn, axis);
1284 Float fac = 1.0;
1285 IPosition pos(nAxesSub,0);
1286//
1287 while (!itData.pastEnd()) {
1288
1289// Make MaskedArray of Vector, optionally apply OTF mask, and find scaling factor
1290
1291 if (useMask) {
1292 MaskedArray<Float> tmp(itData.vector(),mask&&itMask.vector());
1293 fac = 1.0/variance(tmp);
1294 } else {
1295 MaskedArray<Float> tmp(itData.vector(),itMask.vector());
1296 fac = 1.0/variance(tmp);
1297 }
1298
1299// Scale data
1300
1301 itData.vector() *= fac; // Writes back into 'dataIn'
1302//
1303// Accumulate variance per if/pol/beam averaged over spectrum
1304// This method to get pos2 from itData.pos() is only valid
1305// because the spectral axis is the last one (so we can just
1306// copy the first nAXesSub positions out)
1307
1308 pos = itData.pos().getFirst(nAxesSub);
1309 sumSq(pos) += fac;
1310//
1311 itData.next();
1312 itMask.next();
1313 }
1314 } else if (wtType==TSYS) {
1315 }
1316
1317// Accumulate sum of (possibly scaled) data
1318
1319 sum += dataIn;
1320
1321// Accumulate Tsys, time, and interval
1322
1323 tSysSum += tSys;
1324 timeSum += time;
1325 intSum += interval;
1326 nAccum += 1;
1327}
1328
1329
1330
1331
1332void SDMath::getCursorLocation(IPosition& start, IPosition& end,
1333 const SDMemTable& in) const
1334{
1335 const uInt nDim = 4;
1336 const uInt i = in.getBeam();
1337 const uInt j = in.getIF();
1338 const uInt k = in.getPol();
1339 const uInt n = in.nChan();
1340//
1341 start.resize(nDim);
1342 start(0) = i;
1343 start(1) = j;
1344 start(2) = k;
1345 start(3) = 0;
1346//
1347 end.resize(nDim);
1348 end(0) = i;
1349 end(1) = j;
1350 end(2) = k;
1351 end(3) = n-1;
1352}
1353
1354
1355void SDMath::convertWeightString(WeightType& wtType, const String& weightStr) const
1356{
1357 String tStr(weightStr);
1358 tStr.upcase();
1359 if (tStr.contains(String("NONE"))) {
1360 wtType = NONE;
1361 } else if (tStr.contains(String("VAR"))) {
1362 wtType = VAR;
1363 } else if (tStr.contains(String("TSYS"))) {
1364 wtType = TSYS;
1365 throw(AipsError("T_sys weighting not yet implemented"));
1366 } else {
1367 throw(AipsError("Unrecognized weighting type"));
1368 }
1369}
1370
1371void SDMath::convertInterpString(Int& type, const String& interp) const
1372{
1373 String tStr(interp);
1374 tStr.upcase();
1375 if (tStr.contains(String("NEAR"))) {
1376 type = InterpolateArray1D<Float,Float>::nearestNeighbour;
1377 } else if (tStr.contains(String("LIN"))) {
1378 type = InterpolateArray1D<Float,Float>::linear;
1379 } else if (tStr.contains(String("CUB"))) {
1380 type = InterpolateArray1D<Float,Float>::cubic;
1381 } else if (tStr.contains(String("SPL"))) {
1382 type = InterpolateArray1D<Float,Float>::spline;
1383 } else {
1384 throw(AipsError("Unrecognized interpolation type"));
1385 }
1386}
1387
1388void SDMath::putDataInSDC(SDContainer& sc, const Array<Float>& data,
1389 const Array<Bool>& mask) const
1390{
1391 sc.putSpectrum(data);
1392//
1393 Array<uChar> outflags(data.shape());
1394 convertArray(outflags,!mask);
1395 sc.putFlags(outflags);
1396}
1397
1398Table SDMath::readAsciiFile (const String& fileName) const
1399{
1400 String formatString;
1401 Table tbl = readAsciiTable (formatString, Table::Memory, fileName, "", "", False);
1402 return tbl;
1403}
1404
1405
1406
1407void SDMath::correctFromAsciiTable(SDMemTable* pTabOut,
1408 const SDMemTable& in, const String& fileName,
1409 const String& col0, const String& col1,
1410 const String& methodStr, Bool doAll,
1411 const Vector<Float>& xOut) const
1412{
1413
1414// Read gain-elevation ascii file data into a Table.
1415
1416 Table geTable = readAsciiFile (fileName);
1417//
1418 correctFromTable (pTabOut, in, geTable, col0, col1, methodStr, doAll, xOut);
1419}
1420
1421void SDMath::correctFromTable(SDMemTable* pTabOut, const SDMemTable& in,
1422 const Table& tTable, const String& col0,
1423 const String& col1,
1424 const String& methodStr, Bool doAll,
1425 const Vector<Float>& xOut) const
1426{
1427
1428// Get data from Table
1429
1430 ROScalarColumn<Float> geElCol(tTable, col0);
1431 ROScalarColumn<Float> geFacCol(tTable, col1);
1432 Vector<Float> xIn = geElCol.getColumn();
1433 Vector<Float> yIn = geFacCol.getColumn();
1434 Vector<Bool> maskIn(xIn.nelements(),True);
1435
1436// Interpolate (and extrapolate) with desired method
1437
1438 Int method = 0;
1439 convertInterpString(method, methodStr);
1440//
1441 Vector<Float> yOut;
1442 Vector<Bool> maskOut;
1443 InterpolateArray1D<Float,Float>::interpolate(yOut, maskOut, xOut,
1444 xIn, yIn, maskIn, method,
1445 True, True);
1446// Apply
1447
1448 correctFromVector (pTabOut, in, doAll, yOut);
1449}
1450
1451
1452void SDMath::correctFromVector (SDMemTable* pTabOut, const SDMemTable& in,
1453 Bool doAll, const Vector<Float>& factor) const
1454{
1455// For operations only on specified cursor location
1456
1457 IPosition start, end;
1458 getCursorLocation(start, end, in);
1459
1460// Loop over rows and interpolate correction factor
1461
1462 const uInt axis = asap::ChanAxis;
1463 for (uInt i=0; i < in.nRow(); ++i) {
1464
1465// Get data
1466
1467 MaskedArray<Float> dataIn(in.rowAsMaskedArray(i));
1468 Array<Float>& valuesIn = dataIn.getRWArray();
1469 const Array<Bool>& maskIn = dataIn.getMask();
1470
1471// Apply factor
1472
1473 if (doAll) {
1474 VectorIterator<Float> itValues(valuesIn, asap::ChanAxis);
1475 while (!itValues.pastEnd()) {
1476 itValues.vector() *= factor(i);
1477 itValues.next();
1478 }
1479 } else {
1480 Array<Float> valuesIn2 = valuesIn(start,end);
1481 valuesIn2 *= factor(i);
1482 valuesIn(start,end) = valuesIn2;
1483 }
1484
1485// Write out
1486
1487 SDContainer sc = in.getSDContainer(i);
1488 putDataInSDC(sc, valuesIn, maskIn);
1489//
1490 pTabOut->putSDContainer(sc);
1491 }
1492}
1493
1494
Note: See TracBrowser for help on using the repository browser.