1 | //#---------------------------------------------------------------------------
|
---|
2 | //# SDMath.cc: A collection of single dish mathematical operations
|
---|
3 | //#---------------------------------------------------------------------------
|
---|
4 | //# Copyright (C) 2004
|
---|
5 | //# ATNF
|
---|
6 | //#
|
---|
7 | //# This program is free software; you can redistribute it and/or modify it
|
---|
8 | //# under the terms of the GNU General Public License as published by the Free
|
---|
9 | //# Software Foundation; either version 2 of the License, or (at your option)
|
---|
10 | //# any later version.
|
---|
11 | //#
|
---|
12 | //# This program is distributed in the hope that it will be useful, but
|
---|
13 | //# WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | //# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
---|
15 | //# Public License for more details.
|
---|
16 | //#
|
---|
17 | //# You should have received a copy of the GNU General Public License along
|
---|
18 | //# with this program; if not, write to the Free Software Foundation, Inc.,
|
---|
19 | //# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
|
---|
20 | //#
|
---|
21 | //# Correspondence concerning this software should be addressed as follows:
|
---|
22 | //# Internet email: Malte.Marquarding@csiro.au
|
---|
23 | //# Postal address: Malte Marquarding,
|
---|
24 | //# Australia Telescope National Facility,
|
---|
25 | //# P.O. Box 76,
|
---|
26 | //# Epping, NSW, 2121,
|
---|
27 | //# AUSTRALIA
|
---|
28 | //#
|
---|
29 | //# $Id:
|
---|
30 | //#---------------------------------------------------------------------------
|
---|
31 | #include <vector>
|
---|
32 |
|
---|
33 | #include <casa/aips.h>
|
---|
34 | #include <casa/BasicSL/String.h>
|
---|
35 | #include <casa/Arrays/IPosition.h>
|
---|
36 | #include <casa/Arrays/Array.h>
|
---|
37 | #include <casa/Arrays/ArrayIter.h>
|
---|
38 | #include <casa/Arrays/VectorIter.h>
|
---|
39 | #include <casa/Arrays/ArrayMath.h>
|
---|
40 | #include <casa/Arrays/ArrayLogical.h>
|
---|
41 | #include <casa/Arrays/MaskedArray.h>
|
---|
42 | #include <casa/Arrays/MaskArrMath.h>
|
---|
43 | #include <casa/Arrays/MaskArrLogi.h>
|
---|
44 | #include <casa/Utilities/Assert.h>
|
---|
45 | #include <casa/Exceptions.h>
|
---|
46 |
|
---|
47 | #include <scimath/Mathematics/VectorKernel.h>
|
---|
48 | #include <scimath/Mathematics/Convolver.h>
|
---|
49 |
|
---|
50 | #include <tables/Tables/Table.h>
|
---|
51 | #include <tables/Tables/ScalarColumn.h>
|
---|
52 | #include <tables/Tables/ArrayColumn.h>
|
---|
53 |
|
---|
54 | #include <lattices/Lattices/LatticeUtilities.h>
|
---|
55 | #include <lattices/Lattices/RebinLattice.h>
|
---|
56 | #include <coordinates/Coordinates/SpectralCoordinate.h>
|
---|
57 | #include <coordinates/Coordinates/CoordinateSystem.h>
|
---|
58 | #include <coordinates/Coordinates/CoordinateUtil.h>
|
---|
59 |
|
---|
60 | #include "MathUtils.h"
|
---|
61 | #include "SDContainer.h"
|
---|
62 | #include "SDMemTable.h"
|
---|
63 |
|
---|
64 | #include "SDMath.h"
|
---|
65 |
|
---|
66 | using namespace casa;
|
---|
67 | using namespace asap;
|
---|
68 |
|
---|
69 |
|
---|
70 | SDMath::SDMath()
|
---|
71 | {;}
|
---|
72 |
|
---|
73 | SDMath::SDMath(const SDMath& other)
|
---|
74 | {
|
---|
75 |
|
---|
76 | // No state
|
---|
77 |
|
---|
78 | }
|
---|
79 |
|
---|
80 | SDMath& SDMath::operator=(const SDMath& other)
|
---|
81 | {
|
---|
82 | if (this != &other) {
|
---|
83 | // No state
|
---|
84 | }
|
---|
85 | return *this;
|
---|
86 | }
|
---|
87 |
|
---|
88 | SDMath::~SDMath()
|
---|
89 | {;}
|
---|
90 |
|
---|
91 |
|
---|
92 | CountedPtr<SDMemTable> SDMath::average(const Block<CountedPtr<SDMemTable> >& in,
|
---|
93 | const Vector<Bool>& mask, Bool scanAv,
|
---|
94 | const std::string& weightStr)
|
---|
95 | //
|
---|
96 | // Weighted averaging of spectra from one or more Tables.
|
---|
97 | //
|
---|
98 | {
|
---|
99 |
|
---|
100 | // Convert weight type
|
---|
101 |
|
---|
102 | WeightType wtType = NONE;
|
---|
103 | convertWeightString(wtType, weightStr);
|
---|
104 |
|
---|
105 | // Create output Table by cloning from the first table
|
---|
106 |
|
---|
107 | SDMemTable* pTabOut = new SDMemTable(*in[0],True);
|
---|
108 |
|
---|
109 | // Setup
|
---|
110 |
|
---|
111 | const uInt axis = 3; // Spectral axis
|
---|
112 | IPosition shp = in[0]->rowAsMaskedArray(0).shape(); // Must not change
|
---|
113 | Array<Float> arr(shp);
|
---|
114 | Array<Bool> barr(shp);
|
---|
115 | const Bool useMask = (mask.nelements() == shp(axis));
|
---|
116 |
|
---|
117 | // Columns from Tables
|
---|
118 |
|
---|
119 | ROArrayColumn<Float> tSysCol;
|
---|
120 | ROScalarColumn<Double> mjdCol;
|
---|
121 | ROScalarColumn<String> srcNameCol;
|
---|
122 | ROScalarColumn<Double> intCol;
|
---|
123 | ROArrayColumn<uInt> fqIDCol;
|
---|
124 |
|
---|
125 | // Create accumulation MaskedArray. We accumulate for each channel,if,pol,beam
|
---|
126 | // Note that the mask of the accumulation array will ALWAYS remain ALL True.
|
---|
127 | // The MA is only used so that when data which is masked Bad is added to it,
|
---|
128 | // that data does not contribute.
|
---|
129 |
|
---|
130 | Array<Float> zero(shp);
|
---|
131 | zero=0.0;
|
---|
132 | Array<Bool> good(shp);
|
---|
133 | good = True;
|
---|
134 | MaskedArray<Float> sum(zero,good);
|
---|
135 |
|
---|
136 | // Counter arrays
|
---|
137 |
|
---|
138 | Array<Float> nPts(shp); // Number of points
|
---|
139 | nPts = 0.0;
|
---|
140 | Array<Float> nInc(shp); // Increment
|
---|
141 | nInc = 1.0;
|
---|
142 |
|
---|
143 | // Create accumulation Array for variance. We accumulate for
|
---|
144 | // each if,pol,beam, but average over channel. So we need
|
---|
145 | // a shape with one less axis dropping channels.
|
---|
146 |
|
---|
147 | const uInt nAxesSub = shp.nelements() - 1;
|
---|
148 | IPosition shp2(nAxesSub);
|
---|
149 | for (uInt i=0,j=0; i<(nAxesSub+1); i++) {
|
---|
150 | if (i!=axis) {
|
---|
151 | shp2(j) = shp(i);
|
---|
152 | j++;
|
---|
153 | }
|
---|
154 | }
|
---|
155 | Array<Float> sumSq(shp2);
|
---|
156 | sumSq = 0.0;
|
---|
157 | IPosition pos2(nAxesSub,0); // For indexing
|
---|
158 |
|
---|
159 | // Time-related accumulators
|
---|
160 |
|
---|
161 | Double time;
|
---|
162 | Double timeSum = 0.0;
|
---|
163 | Double intSum = 0.0;
|
---|
164 | Double interval = 0.0;
|
---|
165 |
|
---|
166 | // To get the right shape for the Tsys accumulator we need to
|
---|
167 | // access a column from the first table. The shape of this
|
---|
168 | // array must not change
|
---|
169 |
|
---|
170 | Array<Float> tSysSum;
|
---|
171 | {
|
---|
172 | const Table& tabIn = in[0]->table();
|
---|
173 | tSysCol.attach(tabIn,"TSYS");
|
---|
174 | tSysSum.resize(tSysCol.shape(0));
|
---|
175 | }
|
---|
176 | tSysSum =0.0;
|
---|
177 | Array<Float> tSys;
|
---|
178 |
|
---|
179 | // Scan and row tracking
|
---|
180 |
|
---|
181 | Int oldScanID = 0;
|
---|
182 | Int outScanID = 0;
|
---|
183 | Int scanID = 0;
|
---|
184 | Int rowStart = 0;
|
---|
185 | Int nAccum = 0;
|
---|
186 | Int tableStart = 0;
|
---|
187 |
|
---|
188 | // Source and FreqID
|
---|
189 |
|
---|
190 | String sourceName, oldSourceName, sourceNameStart;
|
---|
191 | Vector<uInt> freqID, freqIDStart, oldFreqID;
|
---|
192 |
|
---|
193 | // Loop over tables
|
---|
194 |
|
---|
195 | Float fac = 1.0;
|
---|
196 | const uInt nTables = in.nelements();
|
---|
197 | for (uInt iTab=0; iTab<nTables; iTab++) {
|
---|
198 |
|
---|
199 | // Attach columns to Table
|
---|
200 |
|
---|
201 | const Table& tabIn = in[iTab]->table();
|
---|
202 | tSysCol.attach(tabIn, "TSYS");
|
---|
203 | mjdCol.attach(tabIn, "TIME");
|
---|
204 | srcNameCol.attach(tabIn, "SRCNAME");
|
---|
205 | intCol.attach(tabIn, "INTERVAL");
|
---|
206 | fqIDCol.attach(tabIn, "FREQID");
|
---|
207 |
|
---|
208 | // Loop over rows in Table
|
---|
209 |
|
---|
210 | const uInt nRows = in[iTab]->nRow();
|
---|
211 | for (uInt iRow=0; iRow<nRows; iRow++) {
|
---|
212 |
|
---|
213 | // Check conformance
|
---|
214 |
|
---|
215 | IPosition shp2 = in[iTab]->rowAsMaskedArray(iRow).shape();
|
---|
216 | if (!shp.isEqual(shp2)) {
|
---|
217 | throw (AipsError("Shapes for all rows must be the same"));
|
---|
218 | }
|
---|
219 |
|
---|
220 | // If we are not doing scan averages, make checks for source and
|
---|
221 | // frequency setup and warn if averaging across them
|
---|
222 |
|
---|
223 | // Get copy of Scan Container for this row
|
---|
224 |
|
---|
225 | SDContainer sc = in[iTab]->getSDContainer(iRow);
|
---|
226 | scanID = sc.scanid;
|
---|
227 |
|
---|
228 | // Get quantities from columns
|
---|
229 |
|
---|
230 | srcNameCol.getScalar(iRow, sourceName);
|
---|
231 | mjdCol.get(iRow, time);
|
---|
232 | tSysCol.get(iRow, tSys);
|
---|
233 | intCol.get(iRow, interval);
|
---|
234 | fqIDCol.get(iRow, freqID);
|
---|
235 |
|
---|
236 | // Initialize first source and freqID
|
---|
237 |
|
---|
238 | if (iRow==0 && iTab==0) {
|
---|
239 | sourceNameStart = sourceName;
|
---|
240 | freqIDStart = freqID;
|
---|
241 | }
|
---|
242 |
|
---|
243 | // If we are doing scan averages, see if we are at the end of an
|
---|
244 | // accumulation period (scan). We must check soutce names too,
|
---|
245 | // since we might have two tables with one scan each but different
|
---|
246 | // source names; we shouldn't average different sources together
|
---|
247 |
|
---|
248 | if (scanAv && ( (scanID != oldScanID) ||
|
---|
249 | (iRow==0 && iTab>0 && sourceName!=oldSourceName))) {
|
---|
250 |
|
---|
251 | // Normalize data in 'sum' accumulation array according to weighting scheme
|
---|
252 |
|
---|
253 | normalize(sum, sumSq, nPts, wtType, axis, nAxesSub);
|
---|
254 |
|
---|
255 | // Fill scan container. The source and freqID come from the
|
---|
256 | // first row of the first table that went into this average (
|
---|
257 | // should be the same for all rows in the scan average)
|
---|
258 |
|
---|
259 | Float nR(nAccum);
|
---|
260 | fillSDC(sc, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
|
---|
261 | timeSum/nR, intSum, sourceNameStart, freqIDStart);
|
---|
262 |
|
---|
263 | // Write container out to Table
|
---|
264 |
|
---|
265 | pTabOut->putSDContainer(sc);
|
---|
266 |
|
---|
267 | // Reset accumulators
|
---|
268 |
|
---|
269 | sum = 0.0;
|
---|
270 | sumSq = 0.0;
|
---|
271 | nAccum = 0;
|
---|
272 | //
|
---|
273 | tSysSum =0.0;
|
---|
274 | timeSum = 0.0;
|
---|
275 | intSum = 0.0;
|
---|
276 | nPts = 0.0; // reset this too!!!
|
---|
277 |
|
---|
278 | // Increment
|
---|
279 |
|
---|
280 | rowStart = iRow; // First row for next accumulation
|
---|
281 | tableStart = iTab; // First table for next accumulation
|
---|
282 | sourceNameStart = sourceName; // First source name for next accumulation
|
---|
283 | freqIDStart = freqID; // First FreqID for next accumulation
|
---|
284 | //
|
---|
285 | oldScanID = scanID;
|
---|
286 | outScanID += 1; // Scan ID for next accumulation period
|
---|
287 |
|
---|
288 | }
|
---|
289 |
|
---|
290 | // Accumulate
|
---|
291 |
|
---|
292 | accumulate(timeSum, intSum, nAccum, sum, sumSq, nPts, tSysSum,
|
---|
293 | tSys, nInc, mask, time, interval, in, iTab, iRow, axis,
|
---|
294 | nAxesSub, useMask, wtType);
|
---|
295 | //
|
---|
296 | oldSourceName = sourceName;
|
---|
297 | oldFreqID = freqID;
|
---|
298 | }
|
---|
299 | }
|
---|
300 |
|
---|
301 | // OK at this point we have accumulation data which is either
|
---|
302 | // - accumulated from all tables into one row
|
---|
303 | // or
|
---|
304 | // - accumulated from the last scan average
|
---|
305 | //
|
---|
306 | // Normalize data in 'sum' accumulation array according to weighting scheme
|
---|
307 | normalize(sum, sumSq, nPts, wtType, axis, nAxesSub);
|
---|
308 |
|
---|
309 | // Create and fill container. The container we clone will be from
|
---|
310 | // the last Table and the first row that went into the current
|
---|
311 | // accumulation. It probably doesn't matter that much really...
|
---|
312 |
|
---|
313 | Float nR(nAccum);
|
---|
314 | SDContainer sc = in[tableStart]->getSDContainer(rowStart);
|
---|
315 | fillSDC(sc, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
|
---|
316 | timeSum/nR, intSum, sourceNameStart, freqIDStart);
|
---|
317 | //
|
---|
318 | pTabOut->putSDContainer(sc);
|
---|
319 | /*
|
---|
320 | cout << endl;
|
---|
321 | cout << "Last accumulation for output scan ID " << outScanID << endl;
|
---|
322 | cout << " The first row in this accumulation is " << rowStart << endl;
|
---|
323 | cout << " The number of rows accumulated is " << nAccum << endl;
|
---|
324 | cout << " The first table in this accumulation is " << tableStart << endl;
|
---|
325 | cout << " The first source in this accumulation is " << sourceNameStart << endl;
|
---|
326 | cout << " The first freqID in this accumulation is " << freqIDStart << endl;
|
---|
327 | cout << " Average time stamp = " << timeSum/nR << endl;
|
---|
328 | cout << " Integrated time = " << intSum << endl;
|
---|
329 | */
|
---|
330 | return CountedPtr<SDMemTable>(pTabOut);
|
---|
331 | }
|
---|
332 |
|
---|
333 |
|
---|
334 |
|
---|
335 | CountedPtr<SDMemTable>
|
---|
336 | SDMath::quotient(const CountedPtr<SDMemTable>& on,
|
---|
337 | const CountedPtr<SDMemTable>& off)
|
---|
338 | {
|
---|
339 | //
|
---|
340 | // Compute quotient spectrum
|
---|
341 | //
|
---|
342 | const uInt nRows = on->nRow();
|
---|
343 | if (off->nRow() != nRows) {
|
---|
344 | throw (AipsError("Input Scan Tables must have the same number of rows"));
|
---|
345 | }
|
---|
346 |
|
---|
347 | // Input Tables and columns
|
---|
348 |
|
---|
349 | Table ton = on->table();
|
---|
350 | Table toff = off->table();
|
---|
351 | ROArrayColumn<Float> tsys(toff, "TSYS");
|
---|
352 | ROScalarColumn<Double> mjd(ton, "TIME");
|
---|
353 | ROScalarColumn<Double> integr(ton, "INTERVAL");
|
---|
354 | ROScalarColumn<String> srcn(ton, "SRCNAME");
|
---|
355 | ROArrayColumn<uInt> freqidc(ton, "FREQID");
|
---|
356 |
|
---|
357 | // Output Table cloned from input
|
---|
358 |
|
---|
359 | SDMemTable* pTabOut = new SDMemTable(*on, True);
|
---|
360 |
|
---|
361 | // Loop over rows
|
---|
362 |
|
---|
363 | for (uInt i=0; i<nRows; i++) {
|
---|
364 | MaskedArray<Float> mon(on->rowAsMaskedArray(i));
|
---|
365 | MaskedArray<Float> moff(off->rowAsMaskedArray(i));
|
---|
366 | IPosition ipon = mon.shape();
|
---|
367 | IPosition ipoff = moff.shape();
|
---|
368 | //
|
---|
369 | Array<Float> tsarr;
|
---|
370 | tsys.get(i, tsarr);
|
---|
371 | if (ipon != ipoff && ipon != tsarr.shape()) {
|
---|
372 | throw(AipsError("on/off not conformant"));
|
---|
373 | }
|
---|
374 |
|
---|
375 | // Compute quotient
|
---|
376 |
|
---|
377 | MaskedArray<Float> tmp = (mon-moff);
|
---|
378 | Array<Float> out(tmp.getArray());
|
---|
379 | out /= moff;
|
---|
380 | out *= tsarr;
|
---|
381 | Array<Bool> outflagsb = mon.getMask() && moff.getMask();
|
---|
382 |
|
---|
383 | // Fill container for this row
|
---|
384 |
|
---|
385 | SDContainer sc = on->getSDContainer(i);
|
---|
386 | //
|
---|
387 | putDataInSDC(sc, out, outflagsb);
|
---|
388 | sc.putTsys(tsarr);
|
---|
389 | sc.scanid = i;
|
---|
390 |
|
---|
391 | // Put new row in output Table
|
---|
392 |
|
---|
393 | pTabOut->putSDContainer(sc);
|
---|
394 | }
|
---|
395 | //
|
---|
396 | return CountedPtr<SDMemTable>(pTabOut);
|
---|
397 | }
|
---|
398 |
|
---|
399 |
|
---|
400 |
|
---|
401 | std::vector<float> SDMath::statistic(const CountedPtr<SDMemTable>& in,
|
---|
402 | const std::vector<bool>& mask,
|
---|
403 | const String& which)
|
---|
404 | //
|
---|
405 | // Perhaps iteration over pol/beam/if should be in here
|
---|
406 | // and inside the nrow iteration ?
|
---|
407 | //
|
---|
408 | {
|
---|
409 | const uInt nRow = in->nRow();
|
---|
410 | std::vector<float> result(nRow);
|
---|
411 | Vector<Bool> msk(mask);
|
---|
412 |
|
---|
413 | // Specify cursor location
|
---|
414 |
|
---|
415 | IPosition start, end;
|
---|
416 | getCursorLocation(start, end, *in);
|
---|
417 |
|
---|
418 | // Loop over rows
|
---|
419 |
|
---|
420 | const uInt nEl = msk.nelements();
|
---|
421 | for (uInt ii=0; ii < in->nRow(); ++ii) {
|
---|
422 |
|
---|
423 | // Get row and deconstruct
|
---|
424 |
|
---|
425 | MaskedArray<Float> marr(in->rowAsMaskedArray(ii));
|
---|
426 | Array<Float> arr = marr.getArray();
|
---|
427 | Array<Bool> barr = marr.getMask();
|
---|
428 |
|
---|
429 | // Access desired piece of data
|
---|
430 |
|
---|
431 | Array<Float> v((arr(start,end)).nonDegenerate());
|
---|
432 | Array<Bool> m((barr(start,end)).nonDegenerate());
|
---|
433 |
|
---|
434 | // Apply OTF mask
|
---|
435 |
|
---|
436 | MaskedArray<Float> tmp;
|
---|
437 | if (m.nelements()==nEl) {
|
---|
438 | tmp.setData(v,m&&msk);
|
---|
439 | } else {
|
---|
440 | tmp.setData(v,m);
|
---|
441 | }
|
---|
442 |
|
---|
443 | // Get statistic
|
---|
444 |
|
---|
445 | result[ii] = mathutil::statistics(which, tmp);
|
---|
446 | }
|
---|
447 | //
|
---|
448 | return result;
|
---|
449 | }
|
---|
450 |
|
---|
451 |
|
---|
452 | SDMemTable* SDMath::bin(const SDMemTable& in, Int width)
|
---|
453 | {
|
---|
454 | SDHeader sh = in.getSDHeader();
|
---|
455 | SDMemTable* pTabOut = new SDMemTable(in, True);
|
---|
456 |
|
---|
457 | // Bin up SpectralCoordinates
|
---|
458 |
|
---|
459 | IPosition factors(1);
|
---|
460 | factors(0) = width;
|
---|
461 | for (uInt j=0; j<in.nCoordinates(); ++j) {
|
---|
462 | CoordinateSystem cSys;
|
---|
463 | cSys.addCoordinate(in.getCoordinate(j));
|
---|
464 | CoordinateSystem cSysBin =
|
---|
465 | CoordinateUtil::makeBinnedCoordinateSystem(factors, cSys, False);
|
---|
466 | //
|
---|
467 | SpectralCoordinate sCBin = cSysBin.spectralCoordinate(0);
|
---|
468 | pTabOut->setCoordinate(sCBin, j);
|
---|
469 | }
|
---|
470 |
|
---|
471 | // Use RebinLattice to find shape
|
---|
472 |
|
---|
473 | IPosition shapeIn(1,sh.nchan);
|
---|
474 | IPosition shapeOut = RebinLattice<Float>::rebinShape(shapeIn, factors);
|
---|
475 | sh.nchan = shapeOut(0);
|
---|
476 | pTabOut->putSDHeader(sh);
|
---|
477 |
|
---|
478 |
|
---|
479 | // Loop over rows and bin along channel axis
|
---|
480 |
|
---|
481 | const uInt axis = 3;
|
---|
482 | for (uInt i=0; i < in.nRow(); ++i) {
|
---|
483 | SDContainer sc = in.getSDContainer(i);
|
---|
484 | //
|
---|
485 | Array<Float> tSys(sc.getTsys()); // Get it out before sc changes shape
|
---|
486 |
|
---|
487 | // Bin up spectrum
|
---|
488 |
|
---|
489 | MaskedArray<Float> marr(in.rowAsMaskedArray(i));
|
---|
490 | MaskedArray<Float> marrout;
|
---|
491 | LatticeUtilities::bin(marrout, marr, axis, width);
|
---|
492 |
|
---|
493 | // Put back the binned data and flags
|
---|
494 |
|
---|
495 | IPosition ip2 = marrout.shape();
|
---|
496 | sc.resize(ip2);
|
---|
497 | //
|
---|
498 | putDataInSDC(sc, marrout.getArray(), marrout.getMask());
|
---|
499 |
|
---|
500 | // Bin up Tsys.
|
---|
501 |
|
---|
502 | Array<Bool> allGood(tSys.shape(),True);
|
---|
503 | MaskedArray<Float> tSysIn(tSys, allGood, True);
|
---|
504 | //
|
---|
505 | MaskedArray<Float> tSysOut;
|
---|
506 | LatticeUtilities::bin(tSysOut, tSysIn, axis, width);
|
---|
507 | sc.putTsys(tSysOut.getArray());
|
---|
508 | //
|
---|
509 | pTabOut->putSDContainer(sc);
|
---|
510 | }
|
---|
511 | return pTabOut;
|
---|
512 | }
|
---|
513 |
|
---|
514 | SDMemTable* SDMath::simpleOperate(const SDMemTable& in, Float val, Bool doAll,
|
---|
515 | uInt what)
|
---|
516 | //
|
---|
517 | // what = 0 Multiply
|
---|
518 | // 1 Add
|
---|
519 | {
|
---|
520 | SDMemTable* pOut = new SDMemTable(in,False);
|
---|
521 | const Table& tOut = pOut->table();
|
---|
522 | ArrayColumn<Float> spec(tOut,"SPECTRA");
|
---|
523 | //
|
---|
524 | if (doAll) {
|
---|
525 | for (uInt i=0; i < tOut.nrow(); i++) {
|
---|
526 |
|
---|
527 | // Get
|
---|
528 |
|
---|
529 | MaskedArray<Float> marr(pOut->rowAsMaskedArray(i));
|
---|
530 |
|
---|
531 | // Operate
|
---|
532 |
|
---|
533 | if (what==0) {
|
---|
534 | marr *= val;
|
---|
535 | } else if (what==1) {
|
---|
536 | marr += val;
|
---|
537 | }
|
---|
538 |
|
---|
539 | // Put
|
---|
540 |
|
---|
541 | spec.put(i, marr.getArray());
|
---|
542 | }
|
---|
543 | } else {
|
---|
544 |
|
---|
545 | // Get cursor location
|
---|
546 |
|
---|
547 | IPosition start, end;
|
---|
548 | getCursorLocation(start, end, in);
|
---|
549 | //
|
---|
550 | for (uInt i=0; i < tOut.nrow(); i++) {
|
---|
551 |
|
---|
552 | // Get
|
---|
553 |
|
---|
554 | MaskedArray<Float> dataIn(pOut->rowAsMaskedArray(i));
|
---|
555 |
|
---|
556 | // Modify. More work than we would like to deal with the mask
|
---|
557 |
|
---|
558 | Array<Float>& values = dataIn.getRWArray();
|
---|
559 | Array<Bool> mask(dataIn.getMask());
|
---|
560 | //
|
---|
561 | Array<Float> values2 = values(start,end);
|
---|
562 | Array<Bool> mask2 = mask(start,end);
|
---|
563 | MaskedArray<Float> t(values2,mask2);
|
---|
564 | if (what==0) {
|
---|
565 | t *= val;
|
---|
566 | } else if (what==1) {
|
---|
567 | t += val;
|
---|
568 | }
|
---|
569 | values(start, end) = t.getArray(); // Write back into 'dataIn'
|
---|
570 |
|
---|
571 | // Put
|
---|
572 | spec.put(i, dataIn.getArray());
|
---|
573 | }
|
---|
574 | }
|
---|
575 | //
|
---|
576 | return pOut;
|
---|
577 | }
|
---|
578 |
|
---|
579 |
|
---|
580 |
|
---|
581 | SDMemTable* SDMath::averagePol(const SDMemTable& in, const Vector<Bool>& mask)
|
---|
582 | //
|
---|
583 | // Average all polarizations together, weighted by variance
|
---|
584 | //
|
---|
585 | {
|
---|
586 | // WeightType wtType = NONE;
|
---|
587 | // convertWeightString(wtType, weight);
|
---|
588 |
|
---|
589 | const uInt nRows = in.nRow();
|
---|
590 | const uInt polAxis = 2; // Polarization axis
|
---|
591 | const uInt chanAxis = 3; // Spectrum axis
|
---|
592 |
|
---|
593 | // Create output Table and reshape number of polarizations
|
---|
594 |
|
---|
595 | Bool clear=True;
|
---|
596 | SDMemTable* pTabOut = new SDMemTable(in, clear);
|
---|
597 | SDHeader header = pTabOut->getSDHeader();
|
---|
598 | header.npol = 1;
|
---|
599 | pTabOut->putSDHeader(header);
|
---|
600 |
|
---|
601 | // Shape of input and output data
|
---|
602 |
|
---|
603 | const IPosition& shapeIn = in.rowAsMaskedArray(0u, False).shape();
|
---|
604 | IPosition shapeOut(shapeIn);
|
---|
605 | shapeOut(polAxis) = 1; // Average all polarizations
|
---|
606 | //
|
---|
607 | const uInt nChan = shapeIn(chanAxis);
|
---|
608 | const IPosition vecShapeOut(4,1,1,1,nChan); // A multi-dim form of a Vector shape
|
---|
609 | IPosition start(4), end(4);
|
---|
610 |
|
---|
611 | // Output arrays
|
---|
612 |
|
---|
613 | Array<Float> outData(shapeOut, 0.0);
|
---|
614 | Array<Bool> outMask(shapeOut, True);
|
---|
615 | const IPosition axes(2, 2, 3); // pol-channel plane
|
---|
616 | //
|
---|
617 | const Bool useMask = (mask.nelements() == shapeIn(chanAxis));
|
---|
618 |
|
---|
619 | // Loop over rows
|
---|
620 |
|
---|
621 | for (uInt iRow=0; iRow<nRows; iRow++) {
|
---|
622 |
|
---|
623 | // Get data for this row
|
---|
624 |
|
---|
625 | MaskedArray<Float> marr(in.rowAsMaskedArray(iRow));
|
---|
626 | Array<Float>& arr = marr.getRWArray();
|
---|
627 | const Array<Bool>& barr = marr.getMask();
|
---|
628 |
|
---|
629 | // Make iterators to iterate by pol-channel planes
|
---|
630 |
|
---|
631 | ReadOnlyArrayIterator<Float> itDataPlane(arr, axes);
|
---|
632 | ReadOnlyArrayIterator<Bool> itMaskPlane(barr, axes);
|
---|
633 |
|
---|
634 | // Accumulations
|
---|
635 |
|
---|
636 | Float fac = 1.0;
|
---|
637 | Vector<Float> vecSum(nChan,0.0);
|
---|
638 |
|
---|
639 | // Iterate through data by pol-channel planes
|
---|
640 |
|
---|
641 | while (!itDataPlane.pastEnd()) {
|
---|
642 |
|
---|
643 | // Iterate through plane by polarization and accumulate Vectors
|
---|
644 |
|
---|
645 | Vector<Float> t1(nChan); t1 = 0.0;
|
---|
646 | Vector<Bool> t2(nChan); t2 = True;
|
---|
647 | MaskedArray<Float> vecSum(t1,t2);
|
---|
648 | Float varSum = 0.0;
|
---|
649 | {
|
---|
650 | ReadOnlyVectorIterator<Float> itDataVec(itDataPlane.array(), 1);
|
---|
651 | ReadOnlyVectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
|
---|
652 | while (!itDataVec.pastEnd()) {
|
---|
653 |
|
---|
654 | // Create MA of data & mask (optionally including OTF mask) and get variance
|
---|
655 |
|
---|
656 | if (useMask) {
|
---|
657 | const MaskedArray<Float> spec(itDataVec.vector(),mask&&itMaskVec.vector());
|
---|
658 | fac = 1.0 / variance(spec);
|
---|
659 | } else {
|
---|
660 | const MaskedArray<Float> spec(itDataVec.vector(),itMaskVec.vector());
|
---|
661 | fac = 1.0 / variance(spec);
|
---|
662 | }
|
---|
663 |
|
---|
664 | // Normalize spectrum (without OTF mask) and accumulate
|
---|
665 |
|
---|
666 | const MaskedArray<Float> spec(fac*itDataVec.vector(), itMaskVec.vector());
|
---|
667 | vecSum += spec;
|
---|
668 | varSum += fac;
|
---|
669 |
|
---|
670 | // Next
|
---|
671 |
|
---|
672 | itDataVec.next();
|
---|
673 | itMaskVec.next();
|
---|
674 | }
|
---|
675 | }
|
---|
676 |
|
---|
677 | // Normalize summed spectrum
|
---|
678 |
|
---|
679 | vecSum /= varSum;
|
---|
680 |
|
---|
681 | // FInd position in input data array. We are iterating by pol-channel
|
---|
682 | // plane so all that will change is beam and IF and that's what we want.
|
---|
683 |
|
---|
684 | IPosition pos = itDataPlane.pos();
|
---|
685 |
|
---|
686 | // Write out data. This is a bit messy. We have to reform the Vector
|
---|
687 | // accumulator into an Array of shape (1,1,1,nChan)
|
---|
688 |
|
---|
689 | start = pos;
|
---|
690 | end = pos;
|
---|
691 | end(chanAxis) = nChan-1;
|
---|
692 | outData(start,end) = vecSum.getArray().reform(vecShapeOut);
|
---|
693 | outMask(start,end) = vecSum.getMask().reform(vecShapeOut);
|
---|
694 |
|
---|
695 | // Step to next beam/IF combination
|
---|
696 |
|
---|
697 | itDataPlane.next();
|
---|
698 | itMaskPlane.next();
|
---|
699 | }
|
---|
700 |
|
---|
701 | // Generate output container and write it to output table
|
---|
702 |
|
---|
703 | SDContainer sc = in.getSDContainer();
|
---|
704 | sc.resize(shapeOut);
|
---|
705 | //
|
---|
706 | putDataInSDC(sc, outData, outMask);
|
---|
707 | pTabOut->putSDContainer(sc);
|
---|
708 | }
|
---|
709 | //
|
---|
710 | return pTabOut;
|
---|
711 | }
|
---|
712 |
|
---|
713 |
|
---|
714 | SDMemTable* SDMath::smooth(const SDMemTable& in,
|
---|
715 | const casa::String& kernelType,
|
---|
716 | casa::Float width, Bool doAll)
|
---|
717 | {
|
---|
718 |
|
---|
719 | // Number of channels
|
---|
720 |
|
---|
721 | const uInt chanAxis = 3; // Spectral axis
|
---|
722 | SDHeader sh = in.getSDHeader();
|
---|
723 | const uInt nChan = sh.nchan;
|
---|
724 |
|
---|
725 | // Generate Kernel
|
---|
726 |
|
---|
727 | VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernelType);
|
---|
728 | Vector<Float> kernel = VectorKernel::make(type, width, nChan, True, False);
|
---|
729 |
|
---|
730 | // Generate Convolver
|
---|
731 |
|
---|
732 | IPosition shape(1,nChan);
|
---|
733 | Convolver<Float> conv(kernel, shape);
|
---|
734 |
|
---|
735 | // New Table
|
---|
736 |
|
---|
737 | SDMemTable* pTabOut = new SDMemTable(in,True);
|
---|
738 |
|
---|
739 | // Get cursor location
|
---|
740 |
|
---|
741 | IPosition start, end;
|
---|
742 | getCursorLocation(start, end, in);
|
---|
743 | //
|
---|
744 | IPosition shapeOut(4,1);
|
---|
745 |
|
---|
746 | // Output Vectors
|
---|
747 |
|
---|
748 | Vector<Float> valuesOut(nChan);
|
---|
749 | Vector<Bool> maskOut(nChan);
|
---|
750 |
|
---|
751 | // Loop over rows in Table
|
---|
752 |
|
---|
753 | for (uInt ri=0; ri < in.nRow(); ++ri) {
|
---|
754 |
|
---|
755 | // Get copy of data
|
---|
756 |
|
---|
757 | const MaskedArray<Float>& dataIn(in.rowAsMaskedArray(ri));
|
---|
758 | AlwaysAssert(dataIn.shape()(chanAxis)==nChan, AipsError);
|
---|
759 | //
|
---|
760 | Array<Float> valuesIn = dataIn.getArray();
|
---|
761 | Array<Bool> maskIn = dataIn.getMask();
|
---|
762 |
|
---|
763 | // Branch depending on whether we smooth all locations or just
|
---|
764 | // those pointed at by the current selection cursor
|
---|
765 |
|
---|
766 | if (doAll) {
|
---|
767 | uInt axis = 3;
|
---|
768 | VectorIterator<Float> itValues(valuesIn, axis);
|
---|
769 | VectorIterator<Bool> itMask(maskIn, axis);
|
---|
770 | while (!itValues.pastEnd()) {
|
---|
771 |
|
---|
772 | // Smooth
|
---|
773 | if (kernelType==VectorKernel::HANNING) {
|
---|
774 | mathutil::hanning(valuesOut, maskOut, itValues.vector(), itMask.vector());
|
---|
775 | itMask.vector() = maskOut;
|
---|
776 | } else {
|
---|
777 | mathutil::replaceMaskByZero(itValues.vector(), itMask.vector());
|
---|
778 | conv.linearConv(valuesOut, itValues.vector());
|
---|
779 | }
|
---|
780 | //
|
---|
781 | itValues.vector() = valuesOut;
|
---|
782 | //
|
---|
783 | itValues.next();
|
---|
784 | itMask.next();
|
---|
785 | }
|
---|
786 | } else {
|
---|
787 |
|
---|
788 | // Set multi-dim Vector shape
|
---|
789 |
|
---|
790 | shapeOut(chanAxis) = valuesIn.shape()(chanAxis);
|
---|
791 |
|
---|
792 | // Stuff about with shapes so that we don't have conformance run-time errors
|
---|
793 |
|
---|
794 | Vector<Float> valuesIn2 = valuesIn(start,end).nonDegenerate();
|
---|
795 | Vector<Bool> maskIn2 = maskIn(start,end).nonDegenerate();
|
---|
796 |
|
---|
797 | // Smooth
|
---|
798 |
|
---|
799 | if (kernelType==VectorKernel::HANNING) {
|
---|
800 | mathutil::hanning(valuesOut, maskOut, valuesIn2, maskIn2);
|
---|
801 | maskIn(start,end) = maskOut.reform(shapeOut);
|
---|
802 | } else {
|
---|
803 | mathutil::replaceMaskByZero(valuesIn2, maskIn2);
|
---|
804 | conv.linearConv(valuesOut, valuesIn2);
|
---|
805 | }
|
---|
806 | //
|
---|
807 | valuesIn(start,end) = valuesOut.reform(shapeOut);
|
---|
808 | }
|
---|
809 |
|
---|
810 | // Create and put back
|
---|
811 |
|
---|
812 | SDContainer sc = in.getSDContainer(ri);
|
---|
813 | putDataInSDC(sc, valuesIn, maskIn);
|
---|
814 | //
|
---|
815 | pTabOut->putSDContainer(sc);
|
---|
816 | }
|
---|
817 | //
|
---|
818 | return pTabOut;
|
---|
819 | }
|
---|
820 |
|
---|
821 |
|
---|
822 |
|
---|
823 |
|
---|
824 |
|
---|
825 | // 'private' functions
|
---|
826 |
|
---|
827 | void SDMath::fillSDC(SDContainer& sc,
|
---|
828 | const Array<Bool>& mask,
|
---|
829 | const Array<Float>& data,
|
---|
830 | const Array<Float>& tSys,
|
---|
831 | Int scanID, Double timeStamp,
|
---|
832 | Double interval, const String& sourceName,
|
---|
833 | const Vector<uInt>& freqID)
|
---|
834 | {
|
---|
835 | // Data and mask
|
---|
836 |
|
---|
837 | putDataInSDC(sc, data, mask);
|
---|
838 |
|
---|
839 | // TSys
|
---|
840 |
|
---|
841 | sc.putTsys(tSys);
|
---|
842 |
|
---|
843 | // Time things
|
---|
844 |
|
---|
845 | sc.timestamp = timeStamp;
|
---|
846 | sc.interval = interval;
|
---|
847 | sc.scanid = scanID;
|
---|
848 | //
|
---|
849 | sc.sourcename = sourceName;
|
---|
850 | sc.putFreqMap(freqID);
|
---|
851 | }
|
---|
852 |
|
---|
853 | void SDMath::normalize(MaskedArray<Float>& sum,
|
---|
854 | const Array<Float>& sumSq,
|
---|
855 | const Array<Float>& nPts,
|
---|
856 | WeightType wtType, Int axis,
|
---|
857 | Int nAxesSub)
|
---|
858 | {
|
---|
859 | IPosition pos2(nAxesSub,0);
|
---|
860 | //
|
---|
861 | if (wtType==NONE) {
|
---|
862 |
|
---|
863 | // We just average by the number of points accumulated.
|
---|
864 | // We need to make a MA out of nPts so that no divide by
|
---|
865 | // zeros occur
|
---|
866 |
|
---|
867 | MaskedArray<Float> t(nPts, (nPts>Float(0.0)));
|
---|
868 | sum /= t;
|
---|
869 | } else if (wtType==VAR) {
|
---|
870 |
|
---|
871 | // Normalize each spectrum by sum(1/var) where the variance
|
---|
872 | // is worked out for each spectrum
|
---|
873 |
|
---|
874 | Array<Float>& data = sum.getRWArray();
|
---|
875 | VectorIterator<Float> itData(data, axis);
|
---|
876 | while (!itData.pastEnd()) {
|
---|
877 | pos2 = itData.pos().getFirst(nAxesSub);
|
---|
878 | itData.vector() /= sumSq(pos2);
|
---|
879 | itData.next();
|
---|
880 | }
|
---|
881 | } else if (wtType==TSYS) {
|
---|
882 | }
|
---|
883 | }
|
---|
884 |
|
---|
885 |
|
---|
886 | void SDMath::accumulate(Double& timeSum, Double& intSum, Int& nAccum,
|
---|
887 | MaskedArray<Float>& sum, Array<Float>& sumSq,
|
---|
888 | Array<Float>& nPts, Array<Float>& tSysSum,
|
---|
889 | const Array<Float>& tSys, const Array<Float>& nInc,
|
---|
890 | const Vector<Bool>& mask, Double time, Double interval,
|
---|
891 | const Block<CountedPtr<SDMemTable> >& in,
|
---|
892 | uInt iTab, uInt iRow, uInt axis,
|
---|
893 | uInt nAxesSub, Bool useMask,
|
---|
894 | WeightType wtType)
|
---|
895 | {
|
---|
896 |
|
---|
897 | // Get data
|
---|
898 |
|
---|
899 | MaskedArray<Float> dataIn(in[iTab]->rowAsMaskedArray(iRow));
|
---|
900 | Array<Float>& valuesIn = dataIn.getRWArray(); // writable reference
|
---|
901 | const Array<Bool>& maskIn = dataIn.getMask(); // RO reference
|
---|
902 | //
|
---|
903 | if (wtType==NONE) {
|
---|
904 | const MaskedArray<Float> n(nInc,dataIn.getMask());
|
---|
905 | nPts += n; // Only accumulates where mask==T
|
---|
906 | } else if (wtType==VAR) {
|
---|
907 |
|
---|
908 | // We are going to average the data, weighted by the noise for each pol, beam and IF.
|
---|
909 | // So therefore we need to iterate through by spectrum (axis 3)
|
---|
910 |
|
---|
911 | VectorIterator<Float> itData(valuesIn, axis);
|
---|
912 | ReadOnlyVectorIterator<Bool> itMask(maskIn, axis);
|
---|
913 | Float fac = 1.0;
|
---|
914 | IPosition pos(nAxesSub,0);
|
---|
915 | //
|
---|
916 | while (!itData.pastEnd()) {
|
---|
917 |
|
---|
918 | // Make MaskedArray of Vector, optionally apply OTF mask, and find scaling factor
|
---|
919 |
|
---|
920 | if (useMask) {
|
---|
921 | MaskedArray<Float> tmp(itData.vector(),mask&&itMask.vector());
|
---|
922 | fac = 1.0/variance(tmp);
|
---|
923 | } else {
|
---|
924 | MaskedArray<Float> tmp(itData.vector(),itMask.vector());
|
---|
925 | fac = 1.0/variance(tmp);
|
---|
926 | }
|
---|
927 |
|
---|
928 | // Scale data
|
---|
929 |
|
---|
930 | itData.vector() *= fac; // Writes back into 'dataIn'
|
---|
931 | //
|
---|
932 | // Accumulate variance per if/pol/beam averaged over spectrum
|
---|
933 | // This method to get pos2 from itData.pos() is only valid
|
---|
934 | // because the spectral axis is the last one (so we can just
|
---|
935 | // copy the first nAXesSub positions out)
|
---|
936 |
|
---|
937 | pos = itData.pos().getFirst(nAxesSub);
|
---|
938 | sumSq(pos) += fac;
|
---|
939 | //
|
---|
940 | itData.next();
|
---|
941 | itMask.next();
|
---|
942 | }
|
---|
943 | } else if (wtType==TSYS) {
|
---|
944 | }
|
---|
945 |
|
---|
946 | // Accumulate sum of (possibly scaled) data
|
---|
947 |
|
---|
948 | sum += dataIn;
|
---|
949 |
|
---|
950 | // Accumulate Tsys, time, and interval
|
---|
951 |
|
---|
952 | tSysSum += tSys;
|
---|
953 | timeSum += time;
|
---|
954 | intSum += interval;
|
---|
955 | nAccum += 1;
|
---|
956 | }
|
---|
957 |
|
---|
958 |
|
---|
959 |
|
---|
960 |
|
---|
961 | void SDMath::getCursorLocation(IPosition& start, IPosition& end,
|
---|
962 | const SDMemTable& in)
|
---|
963 | {
|
---|
964 | const uInt nDim = 4;
|
---|
965 | const uInt i = in.getBeam();
|
---|
966 | const uInt j = in.getIF();
|
---|
967 | const uInt k = in.getPol();
|
---|
968 | const uInt n = in.nChan();
|
---|
969 | //
|
---|
970 | start.resize(nDim);
|
---|
971 | start(0) = i;
|
---|
972 | start(1) = j;
|
---|
973 | start(2) = k;
|
---|
974 | start(3) = 0;
|
---|
975 | //
|
---|
976 | end.resize(nDim);
|
---|
977 | end(0) = i;
|
---|
978 | end(1) = j;
|
---|
979 | end(2) = k;
|
---|
980 | end(3) = n-1;
|
---|
981 | }
|
---|
982 |
|
---|
983 |
|
---|
984 | void SDMath::convertWeightString(WeightType& wtType, const std::string& weightStr)
|
---|
985 | {
|
---|
986 | String tStr(weightStr);
|
---|
987 | tStr.upcase();
|
---|
988 | if (tStr.contains(String("NONE"))) {
|
---|
989 | wtType = NONE;
|
---|
990 | } else if (tStr.contains(String("VAR"))) {
|
---|
991 | wtType = VAR;
|
---|
992 | } else if (tStr.contains(String("TSYS"))) {
|
---|
993 | wtType = TSYS;
|
---|
994 | throw(AipsError("T_sys weighting not yet implemented"));
|
---|
995 | } else {
|
---|
996 | throw(AipsError("Unrecognized weighting type"));
|
---|
997 | }
|
---|
998 | }
|
---|
999 |
|
---|
1000 | void SDMath::putDataInSDC(SDContainer& sc, const Array<Float>& data,
|
---|
1001 | const Array<Bool>& mask)
|
---|
1002 | {
|
---|
1003 | sc.putSpectrum(data);
|
---|
1004 | //
|
---|
1005 | Array<uChar> outflags(data.shape());
|
---|
1006 | convertArray(outflags,!mask);
|
---|
1007 | sc.putFlags(outflags);
|
---|
1008 | }
|
---|